PROBLEMAS PROPUESTOS APLICACIONES DE LAS ECUACIONES LINEALES EN CIRCUITOS ELECTRICOS
PROBLEMA 22:
Un circuito eléctrico consta de una inductancia de 0.1 henrios, una resistencia de 20 ohmios y un condensador cuya capacidad es de 25 microfaradios (1 microfaradio = 10-6 faradios). Hallar la carga “q” y la corriente “i” en el tiempo “t”, siendo las condiciones iníciales: a.
q = 0.05 culombios, i = dq/dt = 0 para t = 0
b.
q = 0.05 culombios, i = -0.2 amperios para t = 0
Solución:
Como L = 0.1
R = 20
C = 25*10-6
E(t) = 0
L*(d2q/dt2) + R*(dq/dt) + q/C = E(t) Se reduce a: Integrando:
d2q/dt2 + 200dq/dt + 400.000q = 0
√ √
Derivando una vez con respecto a t:
(√ (√ )√ )√ (√ (√ )√ )√
a.
Empleando las condiciones iniciales q = 0.05, i = 0 para t = 0, A = 0.05 y
√ = 0.008
B = 0.05/
Por tanto:
b.
Empleando
las condiciones iníciales q = 0.05, i = -0.2 para t = 0, A =
0.05 y B = 0.0077 Por tanto:
Y
Obsérvese que q e i son funciones transitorias, haciéndose despreciables en seguida. PROBLEMA 24:
Resolver el problema 23 suponiendo que hay una f.e.m. variable E (t) = 100Cos200t
Solución:
En este caso la ecuación diferencial es:
Entonces:
( ) Empleando las condiciones iníciales:
Entonces:
Y:
Aquí las partes transitorias de q e i se hacen muy pronto despreciables. Por esta razón, si se pueden despreciar las partes transitorias solo es necesario hallar las soluciones de régimen permanente.
y
La frecuencia 200/2π ciclos/seg de las soluciones de régimen permanente es igual a la frecuencia de la f.e.m. aplicada. PROBLEMA 25:
Deducir la fórmula para la corriente de régimen permanente en el caso de un circuito que contenga una inductancia L, una resistencia R, una capacidad C y una fem E(t) = E0
Donde:
√ y se determina
Mediante
Derivando:
Y empleando:
se obtiene
… (1) La solución de régimen permanente pedida es la integral particular de (1):
X se denomina la reactancia del circuito; cuando X=0, la amplitud de i es máxima (el circuito esta en resonancia). Z, denominada la impedancia del circuito, también es la razón de las amplitudes de la fem y la corriente.
se
llama el ángulo de fase. En los tiempo t = π/2w, 3π/2w,… la fem alcanza amplitud máxima, mientras
que en los tiempos dados por wt – θ = π/2, 3π/2, …, esto es, cuando , … la corriente alcanza amplitud máxima. Así, pues, la tensión
conduce la corriente por un tiempo θ/w, o sea, la corriente y la tensión están desfasadas un ángulo θ. Obsérvese que θ = 0 cuando X = 0, esto es, θ = 0 si hay resonancia.
PROBLEMA 39:
Un circuito consta de una inductancia de 0.05 henrios, una resistencia de 5 ohmios y un condensador de 4(10)-4 faradios de capacidad. Si q = i = 0 para t = 0 , hallar q e i en función de t cuando: a.
Hay una fem constante = 110 voltios
b.
Hay una fem alterna = 200Cos100t.
Hallar las soluciones de régimen permanente en “b”. Solución:
a.
√ √ √
√ √ b.
√ √ √
√ √ √ PROBLEMA 40:
Resolver el problema 39 después de sustituir la resistencia de 5 ohmios por una resistencia de 50 ohmios. Solución: a. b.