RINGKASAN BAB 6 GETARAN, GELOMBANG, DAN BUNYI
Standar Kompetensi :
6. Memahami konsep dan penerapan getaran, gelombang, dan optika dalam produk teknologi sehari-hari Kompetensi Dasar :
6.1. Mendeskripsikan konsep getaran dan gelombang serta parameter-parameternya 6.2. Mendeskripsikan konsep bunyi dalam kehidupan sehari-hari
A. GETARAN Getaran
adalah
gerak
bolak-balik
secara
periodik
melalui
titik
keseimbangan
Contoh peristiwa getaran:
senar gitar yang dipetik
gendang yang dipukul
pita suara ketika kita berbicara
ayunan bandul
Perhatikan getaran bandul pada gambar berikut ini!
b
c A
a
Satu getaran adalah gerak dari dari c melintasi titik a, b , a kemudian kembali ke c Jadi, gerak : dari c ke a
= ¼ getaran
dari c ke a ke b
= ½ getaran
a – c – c - a
= ½ getaran
a – c – c – aa - b
= ¾ getaran
b – b – a – a – c – c – a – a – b b
= 1 getaran
a – c – c – a – a – b b-a
= 1 getaran
http://pakgurufisika.blogspot.com
[email protected]
Periode, Frekuensi, dan Amplitudo Periode ( T ) adalah waktu yang dibutuhkan untuk melakukan satu kali
T
T = periode (s) n = jumlah getaran t = waktu (s)
t =
getaran penuh
n
Frekuensi ( f ) adalah banyaknya getaran tiap detik f
f = frekuensi (Hertz) n = jumlah getaran t = waktu (s)
n t
=
Jadi, hubungan antara frekuensi dan periode : f
=
1
T
atau
T
=
1 f
Amplitudo (A) adalah simpangan maksimum atau jarak terjauh diukur dari titik
keseimbangan ( cm) Resonansi adalah peristiwa Ikut bergetarnya suatu benda akibat getaran be nda lain
Syarat terjadinya resonansi adalah : frekuensi a lamiah kedua benda sama Frekuensi getaran bandul hanya bergantung pada panjang talinya dan tidak bergantung pada amplitudo maupun berat beban, Bandul yang memiliki panjang tali yang sama akan memiliki frekuensi alami ah yang sama Perhatikan susunan bandul berikut ini:
C B
E
D A Bila A digetarkan maka D ikut bergetar/ resonansi, sedangkan bila B yang digetarkan, maka
hanya E yang akan ikut bergetar/resonansi.
B. GELOMBANG
Gelombang dapat dipandang sebagai getaran yang merambat . Dalam peristiwa gelombang terjadi perambatan energi. Berdasarkan arah rambatannya, gelombang dibedakan menjadi gelombang transversa l dan gelombang longitudinal
http://pakgurufisika.blogspot.com
[email protected]
Gelombang Transversal memiliki arah rambatan tegak lurus arah getaran.
b c
a
f
getaran
A
e
g
rambatan
d
Beberapa istilah pada gelombang transversal : a. puncak gelombang = titik b dan f b. bukit gelombang = lengkungan abc, efg c. lembah gelombang = lengkungan cde d. dasar gelombang
= titik d
e. simpul gelombang = titik a, c, e, dan g f. amplitudo (A) = simpangan terjauh diukur dari titik seimbang g. panjang gelombang
= jarak antara dua puncak yang berdekatan
h. satu gelombang
= terdiri dari satu bukit dan satu lembah
Contoh gelombang transversal misalnya gelombang pada tali/senar dan
gelombang
permukaan air. Gelombang Longitudinal memiliki arah rambatan berihimpit dengan arah getar. regangan
rapatan
getaran dan ambatan
Panjang gelombang longitudinal ( ) adalah sama dengan jarak antara dua rapatan atau dua regangan yang berdekatan 1 gelombang longitudinal terdiri dari satu rapatan dan satu regangan Contoh gelombang longitudinal misalnya gelombang pada slinki dan gelombang bunyi.
Berdasarkan mediumnya gelombang dibedakan menjadi
gelombang mekanik dan
gelombang elektromagnetik .
Gelombang mekanik seperti gelombang bunyi, tsunami, dan gelombang pada tali memerlukan medium untuk merambat, sedangkan gelombang elektromagnetik seperti cahaya,
gelombang
radio,
dan
gelombang
tv
tidak
memerlukan
medium
dalam
perambatannya.
http://pakgurufisika.blogspot.com
[email protected]
Hubungan antara f. T, λ , dan v v =
T
atau :
v = x f
v = cepat rambat gelombang (m/s) λ = panjang gelombang (m) T = periode (s) f
= frekuensi (Hz)
s = jarak tempuh gelombang (m) t
= waktu (sekon)
C. BUNYI
Sumber bunyi adalah benda yang bergetar Misalnya ; senar yang dipetik, gong yang dipukul, dan seruling yang ditiup. Tidak semua bunyi yang dihasilkan oleh sumber bunyi dapat kita dengar. Perhatikan tabel berikut ini: No. Frekuensi bunyi
Nama
Dapat didengar Oleh
Gelombang 1.
Kurang dari 20 Hz
Infrasonik
2.
20 Hz – 20.000 Hz
Audiosonic
anjing dan jangkrik
manusia Kalelawar, paus, dan lumba-
3.
Lebih dari 20.000 Hz
Ultrasonic
lumba
Tinggi Bunyi
Tinggi bunyi atau tinggi nada (pitch) yang kita dengar ditentukan oleh frekuensi getaran .sumber bunyi, sedangkan keras atau lemahnya bunyi ditentukan oleh amplitudo. Warna Bunyi (Timbre)
Nada do pada piano terdengar berbeda dengan nada do pada organ, demikian juga suara nyanyian dari dua orang yang berbeda akan terdengar berbeda meskipun dinyanyikan dengan
http://pakgurufisika.blogspot.com
[email protected]
frekuensi dan amplitudo yang sama. Warna bunyi ini disebabkan karena keadaan dan bentuk sumber bunyi yang berbeda-beda. Nada
Bunyi dengan frekuensi yang tidak beraturan seperti suara angin atau suara kaleng yang dipukul disebut derau sedangkan bunyi yang memiliki frekuensi yang teratur disebut nada. Frekuensi Nada Dawai atau Senar
Frekuensi nada dawai (senar) dipengaruhi oleh faktor-faktor berikut : a. tegangan dawai (senar) b. panjang dawai c. massa jenis dawai d. luas penampang dawai Hal ini dinyatakan oleh hukum Mersenne sebagai berikut : f
=
1 2L
F A
f
= frekuensi (Hz)
L
= panjang senar (m)
F
= tegangan senar (N)
A
= luas penampang senar (m2)
ρ
= massa jenis senar (kg/m3)
Cepat rambat bunyi
Bunyi memerlukan medium untuk merambat (gel. Mekanik). Bunyi dapat merambat melalui gas (udara), zat padat, maupun zat cair. Cepat rambat bunyi :
v =
S t
v = cepat rambat bunyi (m/s) s = jarak yang ditempuh (m) t = waktu (s)
Pemantulan Bunyi
Bunyi pantul dapat dimanfaatkan untuk mengukur kedalaman laut atau untuk mengukur jarak (kedalaman) dinding lorong gua. Karena bunyi pantul menempuh jarak bolak-balik, maka untuk bunyi pantul, rumus jarak tempuhnya dapat ditulis :
http://pakgurufisika.blogspot.com
[email protected]
2S =vxt atau
S =
v x t 2
Bunyi pantul dapat dibedakan menjadi : a. bunyi pantul yang memperkuat bunyi asli. Ini terjadi jika jarak antara bidang pantul dan pendengar sangat dekat. b. gaung atau kerdam : sebagian bunyi pantul terdengar bersamaan dengan bunyi asli sehingga bunyi terdengar tidak jelas. c. Gema : bunyi pantul yang terdengar setelah bunyi asli sehingga bunyi terdengar dua kali secara berurutan. Pemantulan bunyi banyak dimanfaatkan dalam teknologi, misalnya untuk keperluan: mengukur krdalaman laut, untuk survey geofisika, dan untuk pemeriksaan janin dalam kandungan (USG). Manfaat Resonansi Bunyi
Resonansi bunyi sangat penting dalam kehidupan sehari-hari. Telinga kita dapat mendengar bunyi karena adanya resonansi pada selaput pendengaran kita. Pada alat-alat musik seperti gitar, suling, gong, piano, dan lainnya memanfaatkan resonansi kolom udara untuk menghasilkan bunyi.
http://pakgurufisika.blogspot.com
[email protected]