Chen CL
0
Luyben: Disti Distillatio llation n Desig Design n and Control Using ASPEN Simulation
ASPEN Simulation Scenarios-Based Tutorial – 1 Physical Properties
Cheng-Liang Chen
PSE
LABORATORY
Department of Chemical Engineering National TAIWAN University
1
1
Chen CL
2
Outline Part 1: -
Start-up ASPEN Plus
-
Physical Properties of Pure Components (Benzene and Toulene)
-
Binary Vapor-Liquid Equilibrium (Benzene and Toulene)
Part 2: -
Distillation Short-cut Design: DSTWU (Benzene and Toulene) Rigorous Distillation Simulator: RadFrac
Ex: Benzene and Toluene Separation Ex: Propane and iso-Butane Separation
Part 3: -
Simulation of Multicomponent Nonideal Systems
Ex: Methyl Acetate / Methanol / Water Ex: Ethanol Dehydration Ex: Heat-integrated Columns (Methanol / Water)
Chen CL
3
Start Up ASPEN Plus
Chen CL
4
Start Up ASPEN Plus
Chen CL
5
Start Up
Chen CL
6
Start Up
Chen CL
7
Physical Properties of Pure Components
Chen CL
8
Physical Properties of Pure Components Benzene and Toulene
Chen CL
9
Physical Properties of Pure Components Benzene and Toulene
Int. system units (SI ); English eng. units (ENG ); Metric eng. units (MET )
Chen CL
10
Physical Properties of Pure Components Benzene and Toulene
Chen CL
11
Physical Properties of Pure Components Benzene and Toulene
Chen CL
12
Physical Properties of Pure Components Benzene and Toulene
Chen CL
13
Physical Properties of Pure Components Benzene and Toulene
Chen CL
14
Physical Properties of Pure Components Benzene and Toulene
Chen CL
15
Physical Properties of Pure Components Benzene and Toulene Chao-Seader Pure Component Liquid Fugacity Model -
The Chao-Seader model calculates pure component fugacity coefficient, for liquids . It is used in the CHAO-SEA property method.
-
This is an empirical model with the Curl-Pitzer form. The general form of the model is: 0 1 ln (ϕi) = ln ν i + ωi ln ν i ν i0, ν i1
-
= fcn (T, T ci; p, pci)
References K.C. Chao and J.D. Seader, “A General Correlation of Vapor-Liquid Equilibria in Hydrocarbon Mixtures,” AIChE J., Vol. 7, (1961), p. 598.
Chen CL
16
Physical Properties of Pure Components Benzene and Toulene
Chen CL
17
Physical Properties of Pure Components Benzene and Toulene
Chen CL
18
Physical Properties of Pure Components Benzene and Toulene
Chen CL
19
Physical Properties of Pure Components Benzene and Toulene
Chen CL
20
Physical Properties of Pure Components Benzene and Toulene
Chen CL
21
Physical Properties of Pure Components Benzene and Toulene
Chen CL
22
Physical Properties of Pure Components Benzene and Toulene
Chen CL
23
Physical Properties of Pure Components Benzene and Toulene
Chen CL
24
Physical Properties of Pure Components Benzene and Toulene
Chen CL
25
Physical Properties of Pure Components Benzene and Toulene
Chen CL
26
Pure Component Properties -
On the Pure Component Properties Analysis dialog box, most of the required information is set to defaults, including: Item Property Method
Temperature
Number of points to be tabulated Pressure
Information The global property method is used, as specified on the Properties Specifications Global sheet. You can select any Property Method that appears on the Properties Specifications form. The default is a temperature range from 0 to 25oC. You can enter a new range by modifying lower and upper temperatures, or you can change from a temperature range to a temperature list, and specify a list of discreet temperature values. The default is 41 points. You can change the number of points, or enter a temperature increment The default is 1 atm. You must change the default for vapor properties, for liquid properties near the critical point, and properties generated from EOS property methods
Chen CL
27
Available Thermodynamic/Transport Properties Item AVAIL CP CPCV CV DG DGPC DH DHPC DHVL DS K MU
Property Availability, H − T 0S Constant pressure heat capacity Heat capacity ratio Constant volume heat capacity Free energy departure Free energy dep, pressure cor. Enthalpy departure Enthalpy dep, pressure cor. Enthalpy of vaporization Entropy departure Thermal conductivity Viscosity
Item GIG H PHI PHIPC PL RHO S V SONVEL U SIGMA
Property (Ideal gas) Free energy Enthalpy Fugacity coefficient Fugacity coef, pressure cor. Vapor pressure Density Entropy Volume Sonic velocity Internal energy Surface tension
Chen CL
28
Physical Properties of Pure Components Benzene
Chen CL
29
Physical Properties of Pure Components Benzene
Chen CL
30
Physical Properties of Pure Components Benzene
Chen CL
31
Physical Properties of Pure Components Benzene
S
ln P
D = C + T
Chen CL
32
Physical Properties in Aspen Physical Property System The following properties may be required by Aspen Physical Property System calculations: -
Thermodynamic Properties
-
Fugacity coefficients (for K values)
-
Enthalpy
-
Entropy
-
Gibbs energy
-
Molar volume
-
Transport Properties
-
Viscosity
-
Thermal conductivity
-
Diffusion coefficient
-
Surfa
tensio
Chen CL
33
Physical Properties in Aspen Physical Property System -
The properties required by unit operation models in the Aspen Physical Property System are called major properties and are listed in the table labeled Major Properties in Aspen Physical Property System.
-
A major property may depend on other major properties . In addition, a major property may depend on other properties that are not major properties . These other properties can be divided into two categories: subordinate properties and intermediate properties .
-
Subordinate properties may depend on other major, subordinate or intermediate properties, but are not directly required for unit operation model calculations.
-
Examples of subordinate properties are enthalpy departure and excess enthalpy .
-
The table labeled Subordinate Properties in Aspen Physical Property System lists the subordinate properties.
Chen CL
34
Physical Properties in Aspen Physical Property System -
The properties required by unit operation models in the Aspen Physical Property System are called major properties and are listed in the table labeled Major Properties in Aspen Physical Property System.
-
A major property may depend on other major properties . In addition, a major property may depend on other properties that are not major properties . These other properties can be divided into two categories: subordinate properties and intermediate properties .
-
Intermediate properties are calculated directly by property models , rather than as fundamental combinations of other properties.
-
Common examples of intermediate properties are vapor pressure and activity coefficients .
-
The table labeled Intermediate Properties in Aspen Physical Property System lists the intermediate properties.
-
Major and subordinate properties are obtained by a method evaluation. Intermediate properties are obtained by a model evaluation.
Chen CL
35
Major Properties in Aspen Physical Property System Prop Name PHlV PHIL PHlS PHlV PHlLMX PHlSMX HV HL HS HVMX HLMX HSMX GV GL GS GVMX GLMX GSMX SV SL SS SVMX SLMX SSMX
Symbol ,v
∗
ϕi
,l
∗
ϕi ,s ϕi ϕv i ϕli ϕsi ,v H i ∗
∗
,l
∗
H i ,s H i v H m l H m s H m ,v µi ∗
∗
,l
∗
µi ,s µi Gv m Glm Gsm ,v S i ∗
∗
,l
∗
S i ,s S i v S m l S m s S m ∗
Description Vapor pure component fugacity coefficient Liquid pure component fugacity coefficient Solid pure component fugacity coefficient Vapor fugacity coefficient of a component in a mixture Liquid fugacity coefficient of a component in a mixture Solid fugacity coefficient of a component in a mixture Vapor pure component molar enthalpy Liquid pure component molar enthalpy Solid pure component molar enthalpy Vapor mixture molar enthalpy Liquid mixture molar enthalpy Solid mixture molar enthalpy Vapor pure component molar Gibbs free energy Liquid pure component molar Gibbs free energy Solid pure component molar Gibbs free energy Vapor mixture molar Gibbs free energy Liquid mixture molar Gibbs free energy Solid mixture molar Gibbs free energy Vapor pure component molar entropy Liquid pure component molar entropy Solid pure component molar entropy Vapor mixture molar entropy Liquid mixture molar entropy Solid mixture molar entropy
Chen CL
36
Major Properties in Aspen Physical Property System Prop Name VV
Symbol ,v
∗
V i
,l
∗
VL VS VVMX VLMX VSMX MUV MUL MUVMX MULMX KV KL KS KVMX KLMX KSMX DV
V i ,s V i v V m l V m s V m ,v ηi
DL DVMX DLMX SIGL SIGLMX
l Dij Div Dil
∗
∗
∗
,l
ηi µv µl ,v λi ∗
,l
∗
λi ,s λi λv λl λs v Dij ∗
∗
σi
σl
,l
Description Vapor pure component molar volume Liquid pure component molar volume Solid pure component molar volume Vapor mixture molar volume Liquid mixture molar volume Solid mixture molar volume Vapor pure component viscosity Liquid pure component viscosity Vapor mixture viscosity Liquid mixture viscosity Vapor pure component thermal conductivity Liquid pure component thermal conductivity Solid pure component thermal conductivity Vapor mixture thermal conductivity Liquid mixture thermal conductivity Solid mixture thermal conductivity Vapor binary diffusion coefficient Liquid binary diffusion coefficient Vapor diffusion coefficient of a component in a mixture Liquid diffusion coefficient of a component in a mixture Pure component surface tension Mixture surface tension
Chen CL
37
Subordinate Properties in Aspen Physical Property System Prop Name
Symbol
DHV DHL DHS DHVMX DHLMX DHSMX DHVPC
H i
DHLPC DHSPC DGV DGL DGS DGVMX DGLMX DGSMX DGVPC DGLPC DGSPC DSV
H i ( p) − H i ( pi ) ,s ,s H i ( p) − H i ( pi )
DSL DSS
si
,v
∗
,l
∗
H i
Description
− −
,s
∗
,ig
∗
H i
,ig
∗
H i
,ig
∗
H i − H i v ig H m − H m l ig H m − H m s ig H m − H m ,v ,v H i ( p) − H i ( pi ) ∗
∗
,l
,l
∗
∗
∗
,v ,l
∗
µi
∗
∗
∗
µi
∗
− −
,s
∗
∗
µi
∗
,ig
,ig
∗
µi
,ig
∗
µi − µi ig Gv m − Gm Glm − Gig m Gsm − Gig m ,v ,v µi ( p) − µi ( pi ) ∗
∗
,l
,l
∗
∗
∗
∗
µi ( p) − µi ( pi ) ,s ,s µi ( p) − µi ( pi ) ∗
,v
∗
si
,l
∗
,s
∗
si
∗
− − −
,ig
∗
si ∗
si
,ig ,ig
∗
si
∗
Vapor pure component molar enthalpy departure Liquid pure component molar enthalpy departure Solid pure component molar enthalpy departure Vapor mixture molar enthalpy departure Liquid mixture molar enthalpy departure Solid mixture molar enthalpy departure Vapor pure component molar enthalpy departure pressure correction Liquid pure component molar enthalpy departure pressure correction Solid pure component molar enthalpy departure pressure correction Vapor pure component molar Gibbs energy departure Liquid pure component molar Gibbs energy departure Solid pure component molar Gibbs energy departure Vapor mixture molar Gibbs energy departure Liquid mixture molar Gibbs energy departure Solid mixture molar Gibbs energy departure Vapor pure component molar Gibbs energy departure pressure correction Liquid pure component molar Gibbs energy departure pressure correction Solid pure component molar Gibbs energy departure pressure correction Vapor pure component molar entropy departure Liquid pure component molar entropy departure Solid pure component molar entropy departure
Chen CL
38
Subordinate Properties in Aspen Physical Property System Prop Name DSVMX DSLMX DSSMX HNRY HLXS HSXS GLXS GSXS PHILPC PHISPC GAMPC GAMPC1 HNRYPC XTRUE MUVLP MUVPC MUVMXLP MUVMXPC KVLP KVLP KVMXLP KVMXPC
Symbol ig sv m − sm slm − sig m ssm − sig m H iA E,l H m E,s H m GE,l m GE,s m θ ,l θ ,s θE θ E P c θiA xt ,v ηi ( p = 0) ,v ,v ηi ( p) − ηi ( p = 0) η v ( p = 0) η v ( p) − η v ( p = 0) ,v λi ( p = 0) λv ( p) − λv ( p = 0) ,v λi ( p = 0) λv ( p) − λv ( p = 0) ∗ ∗
∗
∗ ∗
∗
∗
∗
Description Vapor mixture molar entropy departure Liquid mixture molar entropy departure Solid mixture molar entropy departure Henry’s constant of supercritical component i in subcritical component A Liquid mixture molar excess enthalpy Solid mixture molar excess enthalpy Liquid mixture molar excess Gibbs energy Solid mixture molar excess Gibbs energy Pure component liquid fugacity coefficient pressure correction Pure component solid fugacity coefficient pressure correction Liquid activity coefficient pressure correction, symmetric convention Liquid activity coefficient pressure correction, asymmetric convention Henry’s constant pressure correction for supercritical component i True composition. in subcritical component A Pure component low pressure vapor viscosity Pure component vapor viscosity pressure correction Low pressure vapor mixture viscosity Vapor mixture viscosity pressure correction Pure component low pressure vapor thermal conductivity Pure component vapor thermal conductivity pressure correction Low pressure, vapor mixture thermal conductivity Vapor mixture thermal conductivity pressure correction
Chen CL
39
Intermediate Properties in Aspen Physical Property System Prop Name GAMMA GAMUS GAMMAS WHNRY PL PS DHVL DHLS DHVS VLPM
Symbol γ γ γ s w
∗
∗
,l
pi ,s pi ∗
∗
∆vapH i ∆fusH i ∆subH i ∗
∗
V il
Description Liquid phase activity coefficient Liquid phase activity coefficient, unsymmetric convention Solid phase activity coefficient Henry’s constant mixing rule weighting factor Liquid pure component vapor pressure Solid pure component vapor pressure Pure component enthalpy of vaporization Pure component enthalpy of fusion Pure component enthalpy of sublimation Partial molar liquid volume
Chen CL
40
Vapor Pressure Models for Pure Liquids -
The Aspen Physical Property System has several submodels for calculating vapor pressure of a liquid . It uses parameter THRSWT/3 to determine which submodel is used. If THRSWT/3 is
Then this equation is used
0
Extended Antoine
200 301
BARIN Wagner
302 400
PPDS Modified Wagner PML
401 501 502
IK-CAPE NIST TDE Polynomial NIST Wagner 25
See Pure Component Temperature-Dependent Properties for details.
Chen CL
41
Vapor Pressure Models for Pure Liquids Extended Antoine Equation -
Parameters for many components are available for the extended Antoine equation from the Aspen Physical Property System pure component databank.
-
This equation can be used whenever the parameter PLXANT is available.
-
The equation for the extended Antoine vapor pressure model is: ln( pi ,l) = C 1i + ∗
-
C 2i + C 4i + C 5i ln(T ) + C 6iT C 7i T + C 3i
Default values are zero for C 3i, . . . , C8 i; 1000 for C 9i
for C 8i ≤ T ≤ C 9i
Chen CL
42
Thermodynamic Properties Model Model Antoine/Wagner API liquid volume Aqueous Electrolyte NRTL Enthalpy Aqueous Electrolyte NRTL Gibbs Energy ASME Steam Tables Brelvi O’Connell Bromley Pitzer Bromley Pitzer Enthalpy Bromley Pitzer Gibbs Energy BWR Lee Starling Cavett Liquid Enthalpy Departure Chao Seader Clarke Aqueous Electrolyte Density Constant Activity Coefficient Costald Liquid Volume COSMO-SAC Debye Huckel Volume DIPPR Liquid Heat Capacity Electrolyte NRTL Electrolyte NRTL Enthalpy Electrolyte NRTL Gibbs Energy ENRTL-SAC (patent pending) Grayson Streed Hayden O’Connell
Model Name PL0XANT VL2API HAQELC GAQELC ESH2O0, ESH2O VL1BROC GMPT2 HAQPT2 GAQPT2 ESBWR0, ESCSTBWR DHL0CVT, DHL2CVT PHL0CS VAQCLK GMCONS VL0CTD,VL2CTD COSMOSAC VAQDH HL0DIP, DHL0DIP GMENRTL HMXENRTL GMXENRTL ENRTLSAC PHL0GS ESHOC0, ESHOC
Phase L L1 L2 L L L VL L L L L VL L L L S L L L L L L1 L2 L L L L V
Properties PL VLMX HLMX GLMX + VLPM GAMMA HLMX GLMX +,++ DHL,DHLMX PHIL VLMX GAMMA VL,VLMX GAMMA VLMX HL, DHL GAMMA HLMX GLMX GAMMA PHIL +, ++
+ A pure component equation of state model calculates: PHIL,PHIV,DHL,DHV,DGL,DGV,DSL,DSV,VL,VV ++ A mixture equation of state model calculates: PHILMX,PHIVMX,DHLMX,DHVMX,DGLMX,DGVMX,DSLMX,DSVMX,VLMX,VVMX
Chen CL
43
Thermodynamic Properties Model Model Henry’s constant HF equation of state Ideal Gas Kent Eisenberg Lee Kesler Lee Kesler Plocker Modified UNIFAC Dortmund NBS/NCR Steam Tables Nothnagel NRTL (Non Random Two Liquid) NRTL-SAC (patent pending) Peng Robinson Boston Mathias Pitzer Pitzer Enthalpy Pitzer Gibbs Energy Polynomial Activity Coefficient Predictive SRK Peng Robinson Wong Sandler Peng Robinson MHV2
Model Name HENRY1 ESHF0, ESHF ESIG0, ESIG ESAMIN ESLK ESLKP0, ESLKP GMUFDMD ESSTEAM0, ESSTEAM ESNTH0, ESNTH GMRENON NRTLSAC ESPR0, ESPR GMPT1 HAQPT1 GAQPT1 GMPOLY ESRKSV10, ESRKSV1 ESPRWS0, ESPRWS ESPRV20, ESPRV2
Phase L V V L VL VL L L1 L2 VL V L L VL L L L LS VL VL VL
Properties HNRY,WHNRY +,++ +,++ PHILMX, GLMX, HLMX, SLMX +++ +,++ GAMMA +,++ +,++ GAMMA GAMMA +,++ GAMMA HLMX GLMX GAMMA +++ +++ +++
+ A pure component equation of state model calculates: PHIL,PHIV,DHL,DHV,DGL,DGV,DSL,DSV,VL,VV ++ A mixture equation of state model calculates: PHILMX,PHIVMX,DHLMX,DHVMX,DGLMX,DGVMX,DSLMX,DSVMX,VLMX,VVMX +++ DHLMX,DHVMX,DGLMX,DGVMX,DSLMX,DSVMX,VLMX,VVMX
Chen CL
44
Thermodynamic Properties Model Model Rackett / DIPPR Liquid Density Redlich Kister Redlich Kwong Redlich Kwong Soave Boston Mathias Redlich Kwong Aspen RKS MHV2 RKS Wong Sandler Schwartzentruber Renon Scatchard Hildebrand Solids Heat Capacity Polynomial Solids Volume Polynomial Standard Peng Robinson Standard Redlich Kwong Soave Three Suffix Margules UNIFAC UNIQUAC Van Laar Wagner interaction parameter Watson / DIPPR Wilson
Model Name VL0RKT, VL2RKT GMREDKIS ESRK0, ESRK ESRKS0, ESRKS ESRKA0, ESRKA ESRKSV20, ESRKSV2 ESRKWSWS0, ESRKSWS ESRKU0, ESRKU GMXSH HS0POLY VS0POLY ESPRSTD0, ESPRSTD ESRKSTD0, ESRKSTD GMMARGUL GMUFAC GMUQUAC GMVLAAR GMWIP DHVLWTSN GMWILSON
Phase L LS V VL VL VL VL VL L S S VL VL LS L L1 L2 L L1 L2 L S L L
Properties VL VLMX GAMMA +,++ +,++ +,++ +++ +++ +,++ GAMMA HS VS +,++ +,++ GAMMA GAMMA GAMMA GAMMA GAMMA DHVL GAMMA
+ A pure component equation of state model calculates: PHIL,PHIV,DHL,DHV,DGL,DGV,DSL,DSV,VL,VV ++ A mixture equation of state model calculates: PHILMX,PHIVMX,DHLMX,DHVMX,DGLMX,DGVMX,DSLMX,DSVMX,VLMX,VVMX +++ DHLMX,DHVMX,DGLMX,DGVMX,DSLMX,DSVMX,VLMX,VVMX
Chen CL
45
Thermodynamic Properties Model
Chen CL
46
Binary Vapor-Liquid Equilibrium
Phase Diagram
Chen CL
47
Vapor Pressure -
Vapor pressure is a physical property of a pure chemical component. It is the pressure that a pure component exerts at a given temperature when both liquid and vapor phases are present .
-
Vapor pressure depends only on temperature. Figure S 1.1a gives vapor pressure curves for benzene and toluene . ( P : mmHg; [T ] : Kelvin)
Chen CL
48
Vapor Pressure -
Vapor pressure is a physical property of a pure chemical component. It is the pressure that a pure component exerts at a given temperature when both liquid and vapor phases are present .
-
Vapor pressure depends only on temperature. Figure S 1.1a gives vapor pressure curves for benzene and toluene . ( P : mmHg; [T ] : Kelvin)
Chen CL
49
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
50
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
51
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
52
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
53
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
54
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
55
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
56
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
57
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
58
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
59
Binary VLE Phase Diagram Benzene and Toulene
Chen CL
60
VLE Nonideality -
Liquid-phase ideality (activity coefficients γ j = 1) occurs only when the components are quite similar. The benzene/toluene system is a common example.
-
If components are dissimilar, nonideal behavior occurs.
-
Consider a mixture of methanol and water . Water is very polar. Methanol is polar on the OH end of the molecule, but the CH 3 end is nonpolar. This results in some nonideality.
Chen CL
61
VLE Nonideality -
Consider a mixture of ethanol and water .
-
The CH 3-CH 2 end of the ethanol molecule is more nonpolar than the CH 3 end of methanol.
-
Note that the activity coefficient of ethanol at the x = 0 end (pure water) is very large (γ EtOH = 6.75) and also that the xy curve crosses the 45o line (x = y ) at ∼ 90 mol% ethanol. This indicates the presence of an azeotrope .
-
Note also that the temperature at the azeotrope (351.0 K) is lower than the boiling point of ethanol (351.5 K).
Chen CL
62
VLE Nonideality -
The ethanol/water azeotrope is a minimum-boiling homogeneous azeotrope .
-
Step 1: Setup Property Analysis, Property Estimation (UNIFAC)
Chen CL
63
VLE Nonideality -
The ethanol/water azeotrope is a minimum-boiling homogeneous azeotrope .
-
Step 2: Components Specification (find Water and Ethanol)
Chen CL
64
VLE Nonideality -
The ethanol/water azeotrope is a minimum-boiling homogeneous azeotrope .
-
Step 3: Tools → Conceptual Design → Azeotrope Search
Chen CL
65
VLE Nonideality -
The ethanol/water azeotrope is a minimum-boiling homogeneous azeotrope .
-
Step 4: Azeotrope → Report