@+)' *5!*5(! /ĘůÂäœĈ÷ŬŬ÷Ŭ妹ůſœ œĒÂʶŬ]òŀŬ]òĘ÷
!
! "#"$%&"!'"()'"(%*)!%%! "#$%&'()*!*!+(,(-$.('! !
/'0%#1!234!23(5(#*! !
! ! ! ! ! ! ! 6789":7/;!<=!6>9?"<"@!=!/7AB;"A!@>C!
! ! !
1 Integrali i pacaktuar 1. Integralet tabelare Duke zbatuar tabelën e integrale të zgjidhen integralet: 1.
(x
2.
3.
4.
5.
1 x
6.
4
7.
8x 2 2 2x 1 dx.
2
3x 4)dx .
x 3 dx . x4 dx 3
x2
.
x 3 x dx .
1
16 x x
x x dx .
dx .
Zgjidhja. 1.
2 2 ( x 3x 4)dx x dx 3xdx 4dx
2.
x 3 dx x4
x
x
4
x3 3 x dx 4 dx 3
x3 x2 3 4 x C. 3 2
dx
3 dx dx dx 3 3 4 x 3 dx 3 x 4 dx 4 x x x
INTEGRALI I PACAKTUAR
2
x 31 x 4 1 1 1 3 2 3 C. 3 1 4 1 2x x
3.
dx 3
x2
dx x
2 3
2 1
2 3
1
x 3 x3 x dx 3 3 x C. 2 1 1 3 3
1 3
2
2 3
5.
1 1 1 1 x x x 1 x x 2 x 4 dx 1 x x 4 dx
x x dx
x x dx
1
3 4
x dx x 7
1
x3 3 x dx x dx 3 x 5 C. 2 5 1 3
4.
3
4 3
1
1
3
3
3 4
1
3
1 x4 x dx x 4 dx 3 1 4
3
4
7
x4 x4 4 4 4 3 x x C. 7 3 7 3 4 4
6. Mënyra e parë. 16 x
4
x
dx
4 2 ( x )2 4 x
dx
(4 x )(4 x ) 4 x
dx (4 x ) dx
3
1 2
x2 2 4 dx x dx 4 x 4x x 3 C. 3 3 2
Mënyra e dytë. Kryjemë racionalizimin e emëruesit: 16 x
4
x
dx
16 x
4 x
4 x 4 x
4x
2 x 3 C. 3
dx
(16 x )(4 x ) dx (4 x )dx 16 x
ANALIZA MATEMATIKE II
7.
3
8x 2 2 2(4 x 2 1) (2x 1)(2x 1) dx 2x 1 2x 1 dx 2 (2x 1) dx 2 (2x 1)dx
2 2 x dx dx 4
x2 2x 2x 2 2x C. 2
Detyra plotësuese Të njehsohen integralet: 1. ( x 3 x 2) dx. dx
4.
x
7.
( x 1) dx.
.
4
3
10.
x
12.
x4 1 x 2 dx.
14.
2
x
dx .
Të njehsohen integralet: 8.
ex x e 1 x dx.
9.
e
2 x
10.
(e
11.
e
12.
(2
13.
2
x
2x dx .
x e ) dx .
e3 x 8 dx . x 2
x
x
x
.
6.
x
8. ( x 2 1)2 dx .
9.
x
5.
x x x2 3 x
9 x
3
3.
2.
3x ) dx . 3 x dx.
x ( x 1) dx. dx 4
x
1 dx . x
13. 15.
11.
dx . 3x 1
3
x
x3 dx.
dx . x
x 2x 3
( x 1)( x 2 1) dx . x3 9x 2 3
4
3
(1 x 2 ) dx .
dx .
INTEGRALI I PACAKTUAR
4
14.
(3
15.
3x 1 5x 1 15x dx.
x
4 x )2 dx .
Zgjidhja. 8.
ex x e 1 x
9.
dx x e x ln| x | C. dx e dx x
e 2 x 2x dx ( e 2 x 2x ) dx e 2 x dx 2x dx e 2 e x dx e 2 e x dx
2x ln 2
2x 2x 2x e2 e x e 2 x C. ln 2 ln 2 ln 2 x e 1 C. e 1
10.
x e x e x (e x ) dx e dx x dx e
11.
e3 x 8 ( e x )3 23 ( e x 2)( e 2 x 2e x 4) dx dx ex 2 ex 2 ex 2 e 2 x dx 2 e x dx 4 dx ( e 2 )x dx 2e x 4 x
( e 2 )x e2x e2x x x 2 e 4 x 2 e 4 x 2e x 4 x C. 2 ln e 2 ln e 2
12. (2x 3x ) dx 2x dx 3x dx
2x 3x C. ln 2 ln 3 x
2 x 3 2 13. 2x 3 x dx 2x (31 )x dx dx C. 2 3 ln 3
14.
(3
x
4 x )2 dx (32 x 2 3x 4 x 4 2 x )dx 9 x dx 2 12x dx 16 x dx
9x 12x 16 x 2 C. ln 9 ln12 ln16 x
15.
x
3x 1 5x 1 3 3x 51 5x 1 1 1 dx dx 3 dx dx 15x 5 5 3 15x
ANALIZA MATEMATIKE II
5 x
x
1 1 5 1 3 3 x 1 3 5 3 x C. 1 5 1 ln 5 5 ln 5 ln ln 5 3
Detyra plotësuese Të njehsohen integralet: e x 16. e 1 2 dx. x x
x 1 1 x 2 17. e 2 dx . 2
18.
2x 2e (e x ) dx.
19.
e4 x 1 e2x 1dx.
20.
e3 x 27 e x 3 dx.
21.
3
22.
(2
23.
(3
24.
2x 1 3x 1 6x dx.
25.
(e
x
2 x ) dx .
Të njehsohen integralet: 16.
x2 x 2 1 dx.
17.
x4 1 x 2 dx.
18.
(1 x )2 x (1 x 2 ) dx.
19.
x2 4 x 2 1 dx.
20.
x3 x 2 x 2 1 dx.
21.
4e
x
dx . 4 4x 2 5
5 x dx .
x
x
3 x )2 dx .
x e
x e 1 ) dx .
INTEGRALI I PACAKTUAR
6
Zgjidhja. 16. Mënyra e parë. Pjesëtojmë polinomit x 2 me polinomin x 2 1. Merret: x2 1 1 2 . x2 1 x 1
Pra, x2 1 dx x 2 1 dx 1 x 2 1 dx dx x 2 1 x arctan x C.
Mënyra e dytë. x2 x 2 1 dx
x2 1 x2 1 1 1 dx x2 1 x 2 1 x 2 1 dx
1 1 2 dx x arctan x C. x 1
17.
18.
x4 1 x 2 dx
x4 1 1 x4 1 1 dx 1 x2 1 x 2 dx 1 x 2 dx
( x 2 1)( x 2 1) dx arctan x ( x 2 1)dx arctan x 1 x2
x3 x arctan x C. 3
(1 x )2 1 2x x 2 dx x (1 x 2 ) x (1 x 2 ) dx
19.
x2 4 x 2 1 dx
1 x2 2x x (1 x 2 ) dx x (1 x 2 ) dx
dx dx 2 ln| x | 2 arctan x C. x 1 x2
x2 1 3 3 dx x 2 1 dx 1 x 2 1 dx dx 3 x 2 1
x 3 arctan x C.
20. Pas pjesëtimit të polinomeve x 3 x 2 me x 2 1 merret: x3 x 2 2 x 2 . 2 x 1 x 1
ANALIZA MATEMATIKE II
7
Kemi: x3 x 2 2 x2 dx x dx 2 arctan x C. x2 1 x 2 1 2
21.
4e
x
dx 5 dx 4 e x 5 4e x arcsin x C. 2 4 4x 2 2 1 x2 5
Detyra plotësuese Të njehsohen integralet: 26.
3x 2 1 x 2 1 dx.
27.
x4 1 x 2 1 dx.
28.
(1 x )3 x 2 x 3 dx . x (1 x )
29.
x3 x 3 x 2 1 dx.
x8 1 x 2 1 dx.
31. 3x
30.
1 dx . 2 1 x 9 3
Të njehsohen integralet: 22.
( x sin x 2 cos x ) dx.
23.
sin
2
24.
sin
2
25.
tan
26.
cos
27.
cos 2x dx . x cos2 x
2
2
dx . x cos2 x x dx .
x dx . 2
1 sin 2x dx .
Zgjidhja. 22.
( x sin x 2 cos x ) dx x dx sin x dx 2 cos x dx
INTEGRALI I PACAKTUAR
8
x2 ( cos x ) 2 sin x C 2
x2 cos x 2 sin x C. 2
23. Zbatojmë formulën cos 2x cos2 x sin 2 x.
Merret: cos 2x cos2 x sin 2 x dx sin2 x cos2 x sin2 x cos2 x dx
24.
cos2 x sin 2 x dx sin2 x cos2 x sin2 x cos2 x dx
sin
dx 2
x
dx cot x tan x C. cos2 x
dx sin 2 x cos2 x dx dx sin2 x cos2 x sin2 x cos2 x dx cos2 x sin 2 x tan x cot x C.
25.
2 tan x dx
sin 2 x 1 cos2 x dx dx cos2 x cos2 x dx cos2 x dx
tan x x C.
26. Meqë cos2 x
1 cos 2x x 1 cos x atëherë cos2 . 2 2 2
D.m.th.
cos 27.
2
x 1 cos x 1 1 1 1 dx dx dx cos x dx x sin x C. 2 2 2 2 2 2
1 sin 2x dx
sin 2 x cos2 x 2 sin x cos x dx
(sin x cos x ) |sin x cos x |dx (sin x cos x ) sgn(sin x cos x ) dx
2
( cos x sin x ) sgn(sin x cos x )
ANALIZA MATEMATIKE II
9
(sin x cos x ) sgn(sin x cos x ) (sin x cos x ) sgn(cos x sin x ).
Detyra plotësuese Të njehsohen integralet: x 32. 2sin x 3cos x dx. 2
4
34.
sin
36.
2 sin
38.
1 sin3 x sin3 x dx.
2
2x
dx .
x dx . 2
cos 2x dx . 2 2x
33.
sin
35.
cot
37.
x x sin 2 cos 2 dx.
2
x dx . 2
2. Integrimi me metodën e zëvendësimit Duke zbatuar metodën e zëvendësimit të njehsohen integralet: 1.
(1 x ) dx. 7
2.
(3 2x ) dx. 6
3.
1 xdx .
4.
4
1 x dx .
Zgjidhja. 1.
7 (1 x ) dx
1x t t8 (1 x )8 t7 dt C C. 8 8 dx dt
3 2x t 1 1 2. (3 2x ) dx 2dx dt t 6 dt t 6 dt 2 2 1 dx dt 2 6
1 t7 t7 (3 2x )7 C C C 2 7 14 14
3. Mënyra e parë: 1x t
1 x dx dx dt dx dt
1
1 2
1
t2 t ( dt ) t dt C 1 1 2
2
2 2 t3 C (1 x )3 C. 3 3
Mënyra e dytë: 1 x t2
1 x dx
2 t( 2t )dt 2 t 2dt t 3 C 3 dx 2tdt dx 2tdt
t 1x
4.
4
1 xdx
2 (1 x )3 C. 3
1 x t4 t 4 1 x 3
dx 4t dt
3
t 4t dt 4 t 4 dt
INTEGRALI I PACAKTUAR
2
4
t5 4 C 4 (1 x )5 C. 5 5
Detyra për ushtrime Të njehsohen integralet: 4
1.
(1 2x ) dx.
2 2. x dx . 3
4.
5.
7.
((1 x )
5
3
1 3x dx . 3
5
5x 1 dx .
3.
6.
(
1
x dx . 2
x 1 x 1)dx .
3 1 x )dx .
Të njehsohen integralet: 5.
2x 1 x 2 x 3 dx.
8.
x
2
1 x 3 dx .
x3 x 4 1 dx. x2 3 dx . 9. 3 x 2
6.
7.
x
1 2x 2 dx .
Zgjidhja. 5.
6.
x2 x 3 t 2x 1 dt dx ln|t | ln( x 2 x 3) C. x2 x 3 t (2x 1)dx dt
x
x
3
4
1
x4 1 t dx 4 x 3 dx dt 1 x 3 dx dt 4
1 dt ln( x 4 1) 1 dt 1 4 C. ln|t | 4 t 4 t 4
1 2x 2 t 2 t 1 2x 2 1 7. x 1 2x 2 dx 4 xdx 2tdt t t dt 2 1 xdx tdt 2 3 1 t 1 (1 2x 2 )3 C. 2 3 6
ANALIZA MATEMATIKE II
3
1 x 3 t2 t 1 x 3
8.
1 x 3 x 2 dx 3x 2 dx 2tdt x 2 dx
9.
x2 3 3
x 2
dx
2 tdt 3
2 2 t3 t tdt C 3 3 3
2 (1 x 3 )3 C 9
x 2 t 3 x t 3 2; t 3 x 2 dx 3t 2 dt
(t 3 2)2 3 3t 2 dt 3 (t 6 4t 3 4 3) t dt t t8 t5 t2 3 (t7 4t 4 t )dt 3 12 3 8 5 2 33 12 3 3 ( x 2)8 ( x 2)5 3 ( x 2)2 C. 8 5 2
Detyra plotësuese Të njehsohen integralet 8.
2x 1 x 2 x 4 dx.
9.
2x 3 x 2 3x 1 dx.
10.
x5 x 6 1 dx.
11.
2x a 2x 3 , a-const.12. dx x 2 ax 1 4x 4 1 dx.
13.
14.
2 x 1 x dx.
15.
2 x 2 3x dx.
16.
17.
2 3 x 2 5x dx.
18.
x 3 x 5
dx . x 2 x2 2
Të njehsohen integralet: dx
10.
x 1 x 1
12.
1x dx . 1x
.
1x
11.
13.
x
1 x2
dx .
dx x2 1
.
x 2 x 3
dx .
x ( x 2 1) 3
x2 1
dx .
INTEGRALI I PACAKTUAR
4
Zgjidhja. 10. Pas racionalizimit të emëruesit kemi: dx 1 x 1 x 1 I dx x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 dx dx x 1 ( x 1) 2 1 1 x 1dx x 1dx ( I1 I 2 ) , 2 2 ku I1 x 1 dx ; I 2 x 1 dx .
Zgjidhim veçmas integralet I1 , I 2 . Merret: x 1 t2
I1
t3 2 x 1dx t x 1 t 2tdt 2 ( x 1)3 C. 3 3 dx 2tdt x 1 t2
I2
t3 2 x 1dx t x 1 t 2tdt 2 ( x 1)3 C. 3 3 dx 2tdt
Pra
12 2 1 ( x 1)3 ( x 1)3 C ( x 1)3 ( x 1)3 C. 23 3 3 1x dx xdx 11. I dx arcsin x I1 . 2 2 1x 1x 1 x2 I
I1
1 x 2 t2 2xdx 2tdt 1 x2 xdx tdt xdx
tdt dt t 1 x 2 t
Pra, I arcsin x 1 x 2 C 12. Pasi të kryejmë racionalizimin merret 1x 1x 1x 1x 1 x dx 1 x 1 x dx 1 x 2 dx. Integrali që morëm është i ngjashëm me integralin e detyrës paraprake. 1x Pas zgjidhjes merret dx arcsin x 1 x 2 C. 1x
ANALIZA MATEMATIKE II
13.
x
dx x2 1
5
dx 1 x x 2 1 2 x
dx 1 x x sgn x 1 x
2
dx 1 x |x | 1 x dx
1 sgn x
1 x2 1 x
2
2
1 t dx dt x sgn x sgn x 2 1 1 t2 1 2 dt x 1 x2 x 1 sgn x arcsin t C sgn x arcsin C. x
Detyra për ushtrime Të njehsohen integralet: 19.
22.
25.
dx
dx
20.
x 3 dx . 1 (2x )2
23.
1x dx . 1x
26.
15.
x
18.
1 x
x 1 x 1
.
1
21.
dx .
24.
.
27.
x
16.
x ln x ln(ln x ) .
2x 1 2x 1
x 1 1 9x
2
xdx 4
x x
2
x 2 dx . 1 x2
3
.
1x 1 4x 2 dx x2 1
dx . .
Të njehsohen integralet: dx
14.
x (1 2 ln x ).
17.
x cos
19.
dx
2
ln x
.
ln( x 1 x 2 ) dx . 1 x2
dx 2
1 ln x
1
2
ln
.
1x dx. 1x
dx
INTEGRALI I PACAKTUAR
6
Zgjidhja. (1 2 ln x ) t dx 1 dt 1 14. dx 1 ln|t | x (1 2 ln x ) 2 t 2 dt x 2 1 ln|1 2ln x |C. 2 ln x t dx dt 15. dx arcsin t C arcsin(ln x ) C. 2 dt x 1 - ln x 1 t2 x ln(ln x ) u dx du 16. dx ln|u | C ln|ln(ln x )| C. x ln x ln(ln x ) u du x ln x ln x t dx dt 17. dx tan t C tan(ln x ) C. 2 x cos ln x cos2 t dt x 1 1x 18. I ln dx 2 1x 1x 1x Zëvendësojmë ln u 1x Pas diferencimit merret: '
1 1 x dx du 1 x 1 x 1x 1 x (1 x )' (1 x ) (1 x )(1 x )' dx du 1x (1 x )2 1 1 x (1 x )( 1) dx du 1x 1x 1 x 1 x dx du 1 x2 1 1 dx du 2 1x 2 Pra, kemi: 2
1x ln 1 x 2 du u 1 ln 2 1 x C. I u 2 4 4 4 1x
ANALIZA MATEMATIKE II
19. I
7
ln( x 1 x 2 ) ln( x 1 x 2 ) dx dx 1 x2 1 x2
Zëvendësojmë ln( x 1 x 2 ) u Pas diferencimit merret: ( x 1 x 2 )'
dx du x 1 x2 x 1 1 x 2 dx du x 1 x2
x 1 x2 1 x2
dx du x 1 x2 dx Pra du. 1 x2 Merret: I
3
1 2
u2 2 udu u du ln3 ( x 1 x 2 ) C. 3 3 2
Detyra për ushtrime Të njehsohen integralet: dx
28.
2x (ln x 1).
31.
34.
dx
29.
x
ln(sin x ) dx.
32.
cos
1 1x 1 x 2 ln 1 x dx.
35.
cos x
1 ln x 2
.
dx . x ln(ctgx )
sin x
30.
ln(cos x ) dx.
33.
x sin
dx 2
ln x
.
ln( x 1 x 2 ) dx . 1 x2
Të njehsohen integralet: 20.
cos x e sin x dx.
21.
ex 1 e x x dx. 22.
ex 1 e 2 x
dx . 23.
x
2 x3
e
dx .
INTEGRALI I PACAKTUAR
8 1
ex 24. 2 dx . x
25.
dx ex ex .
26.
ex ex 1
dx .
Zgjidhja. cos x t
20.
e
21.
ex x t ex 1 dt dx ln|t | ln| e x x | C. ex x x t ( e 1)dx dt
22.
cos x
sin xdx
ex ex
1 2
dx
sin xdx dt
1 t dt 1 ln|t | ln e x C. 2 t 2 e x dx dt ex
x 3 t
23.
x
2 x3
e
et dt et e cos x C.
dx 3x 2 dx dt 1 x 2 dx dt 3
1 t 1 1 3 e dt et e x C. 3 3 3
1 1 t 1 ex x et dt et e x C. 24. 2 dx 1 x 2 dx dt x dx dx dx e x dx 25. x e2x 1 e2x 1 e ex x 1 e x e ex
26.
ex x
e 1
ex t e x dx dt 2 arctan t arctan e x C. x 2 x ( e ) 1 e dx dt t 1
dx
ex 1 t2 t ex 1 x
e dx 2tdt
2tdt 2 e x 1 C. t
Detyra për ushtrime Të njehsohen integralet: 36.
sin x e cos xdx.
37.
e tgx cos2 x dx.
38.
e
dx . 1
x
ANALIZA MATEMATIKE II
39. 42.
9
2e 2 x 1 e2x x dx.
e x dx 3
ex 3
40.
x
2 2 x 3
e
dx .
41.
xe
x 2 a2
dx .
.
Të njehsohen integralet: dx 8x 3 x 2 dx 27. 2 28. 29. 2 . dx . . 2 6 x a x 7 9x Zgjidhja. dx x 2 t dx 1 dx 1 a 2 2 2 27. 2 a 2 2 2 x a x a a x a 1 dx adt 2 a a 1 dt 1 1 x 2 arctan t arctan C. a t 1 a a a
t
adt 2 1
dt x dx x dx 1 dt 2 3x 2 dx dt 2 3 2 2 2 . 28. I 6 3 2 3 3 t 9x 3 (x ) 3 t dt 2 x dx 3 Në bazë të detyrës paraprake dt 1 t 1 x3 arctan C arctan C1 . 1 32 t 2 3 3 3 3 1 x3 Pra I arctan C. 9 3 8x 3 8x dx 29. 2 dx 8 2 dx 3 2 8 I1 3 I 2 , ku x 7 x 7 x ( 7 )2 xdx dx I1 2 ; I2 2 x 7 x ( 7 )2 2
2
x3 t
x2 7 t I1
Pra
xdx 1 dt 1 1 2xdx dt ln|t | ln( x 2 7). 2 2 t 2 2 7 dt xdx 2
x
INTEGRALI I PACAKTUAR
10
1 1 x ln( x 2 7) 3 arctan C 2 7 7 3 x 4 ln( x 2 7) arctan C. 7 7
I 8
Detyra për ushtrime Të njehsohen integralet 43.
dx 2x 2 a 2 .
46.
2x
x2 dx . 6 5
44.
dx 2x 2 3 .
47.
x
9x 1 dx . 2 15
45.
x3 7 x 8 dx.
48.
(ex )
dx . 2 2
Të njehsohen integralet: 30.
a arctan x 1 x 2 dx , a R \ {1}, a 0.
31.
dx
arcsin x
1 x2 e arctg2 x x 33. dx . 1 4x 2
.
arctanx x ln(1 x 2 ) dx . 1+x 2 Zgjidhja. arctan x u a arctan x au a arctan x u 30. dx a du C. dx ln| a | ln a 1 x2 du 2 1x arcsin x u dx du 31. ln|u | ln|arcsin x | C. dx 2 du u arcsin x 1 x 1 x2
32.
arctan x x ln(1 x 2 ) arctan x x ln(1 x 2 ) dx dx 1 x2 1 x 2 dx 1 x2 I1 I 2 ,
32. I
arctan x u u2 (arctan x )2 u du . dx 2 2 du 2 1x ln(1 x 2 ) u ln(1 x 2 ) 1 u2 ln 2 (1 x 2 ) I2 dx udu . 1 du 2 4 4 1 x2 xdx 2 1 x2 Pra
ku I1
arctan x 1 x 2 dx
ANALIZA MATEMATIKE II
11
(arctan x )2 ln 2 (1 x 2 ) C. 2 4 e arctan 2 x x e arctan 2 x xdx 33. I dx dx I1 I 2 , 2 2 1 4x 1 4x 1 4x 2 I
arctan 2x u I1
I2
arctan 2 x
e 1 1 u eu e arctan 2 x dx 2 dx du e du . 2 2 1 4x 2 2 2 1 4x dx 1 du 2 2 1 4x 1 4 x 2 t 1 dt 1 xdx 1 2 1 4x 2 8xdx dt 8 t 8 ln|t | 8 ln(1 4x ).
Pra, I
e arctan 2 x 1 ln(1 4 x 2 ) C. 2 8
Detyra për ushtrime Të njehsohen integralet: 49.
3arctan x 1 x 2 dx.
50.
52.
x ln(1 3x 2 ) 1 3x 2 dx.
53.
Të njehsohen integralet: 34. sin ax dx. 35. 37. 40. 43.
cot ax dx. tan x dx. sin x sin 2x dx. 4
51.
3
arcsin 2 x 1 x2
dx .
e arctan 4 x e arctan 4 x dx . 1 x2 16
cos ax dx.
36. tan ax dx .
cos 2x
sin x cos x dx. 39. sin x dx. 41. sin x dx . 42. cot x dx . 44. cos x cos 2x cos 3x dx. 38.
dx 2 sin2 x cos2 x . 46. sin x sin 3 x 48. dx . 49. 2 cos2 x sin 2 x
45.
arctan 3 x 1 9x 2 dx.
4
5
sin 2x tan4 x dx. dx sin x .
5
47.
sin 3 x cos2 x dx.
50.
sin
4
x cos4 x dx .
INTEGRALI I PACAKTUAR
12
Zgjidhja. ax t
34.
sin ax dx adx dt dx
1 1 1 sin t dt cos t cos ax C. a a a
1 1 1 cos t dt sin t sin ax C. a a a
1 dt a
ax t
35.
cos ax dx adx dt dx
1 dt a
cos ax u sin ax 36. tan ax dx dx 1 cos ax sin ax dx du a 1 du 1 1 ln|u| ln|cos ax |C. a u a a sin ax u cos ax 37. cot ax dx dx 1 sin ax cos ax dx du a 1 du 1 1 ln|u| ln|sin ax |C. a u a a 38. Mënyra e parë: cos 2x cos2 x sin 2 x cos x sin x I dx dx dx dx sin x cos x sin x cos x sin x cos x cot x dx tan x dx ln|sin x | ln|cos x | ln|sin x cos x |C.
Mënyra e dytë: cos 2x 2 cos 2x cos 2x I dx dx 2 dx 2 cot 2x dx sin x cos x 2 sin x cos x sin 2x ln|sin 2x | C1 . Shënim.
ANALIZA MATEMATIKE II
13
Lexuesi mund të ketë përshtypjen se rezultatet që morrëm nga zgjidhja në dy mënyrat janë të ndryshme por lehtë vërejmë se: ln|sin 2x | C1 ln|2 sin x cos x | C1 ln 2 ln|sin x cos x | C1 ln|sin x cos x | C. 2
1 cos 2x 4 2 2 sin xdx (sin x ) dx 2 dx 1 (1 2 cos 2x cos2 2x ) dx 4 1 1 1 1 cos4 x dx cos2x dx dx 4 2 4 2 1 1 1 x I1 I 2 . 4 2 4 2x u 1 1 1 I1 cos 2x dx cos u du sin u sin 2x C1 . 1 2 2 dx du 2 2 1 cos 4 x 1 1 1 1 I2 dx dx cos 4 x dx x sin 4 x C2 . 2 2 2 2 8 Përfundimisht merret: 1 1 1 1 1 1 3x sin 2x sin 4 x I x sin 2x x sin 4 x C. 4 22 4 2 8 8 4 32 1 1 dx 40. tan 4 x dx tan 2 tan 2 x dx tan 2 x 2 cos x 1 tan 2 x dx tan 2 x dx I1 I 2 . cos2 x tan x u 1 u3 tan3 x 2 2 I1 tan x dx u du . dx 3 3 cos2 x du 2 cos x 2 sin x 1 cos2 x dx I 2 tan 2 x dx dx dx dx 2 2 cos x cos x cos2 x tan x x C. Përfundojmë se tan3 x 4 tan x dx tan x x C. 3 cos x t 41. sin 5 xdx sin x sin 4 x dx sin x (1 cos2 x )2 dx sin xdx dt
39.
INTEGRALI I PACAKTUAR
14
(1 t 2 )2 dt dt 2 t 2 dt t 4 dt t 2
t3 t5 3 5
2 1 cos3 x cos5 x C. 3 5 5 cos x cos x cos4 x cos x (1 sin 2 x )2 42. cot 5 xdx dx dx dx sin5 x sin5 x sin 5 x sin x u (1 u2 )2 1 2u2 u4 du du cos x dx du u5 u5 du 1 1 u 5 du 2 u 3 du 4 2 ln|u | u 4u u 1 1 ln|sin x | C. 4 sin 4 x sin 2 x Në detyrat vijuese zbatohen formulat: 1 sin x sin y (cos( x y) cos( x y)) 2 1 cos x cos y (cos( x y ) cos( x y )) 2 1 sin x cos y (sin( x y) sin( x y)). 2 1 43. sin x sin 2x dx (cos( x 2x ) cos( x 2x )) dx 2 1 1 1 cos x dx cos 3x dx sin x sin 3x C. 2 2 6 1 44. cos x cos 2x cos 3x dx cos 2x (cos( x 3x ) cos( x 3x )) dx 2 1 cos 2x (cos( 2x ) cos 4 x ))dx 2 1 cos 2x cos 2x dx cos 2x cos 4 x dx 2 1 dx cos 4 x dx cos 2x dx cos 6x dx 4 1 1 1 1 x sin 2x sin 4 x sin 6 x C. 4 2 4 6 dx dx tan x u 2 2 dx cos x cos x 45. dx 2 sin 2 x cos2 x sin 2 x 2 tan 2 x 1 du 2 1 cos2 x 2 cos x cos x
ANALIZA MATEMATIKE II
15
du du 2 arctan 2u 2 1 ( 2u )2 1
2u
2 arctan( 2 tan x ) C. sin 2x 2 sin x cos x sin x cos x cos4 x 46. dx dx 2 dx 4 4 tan x sin x sin 4 x cos4 x sin x u sin x (1 sin 2 x )2 cos x 2 dx 4 cos x dx du sin x u(1 u2 )2 du du du du 2 3 4 2 2 4 u u u u 1 4 1 4 2 2 ln|u | 2 ln|sin x | C. u u sin 2 x sin x sin3 x sin x sin 2 x sin x (1 cos2 x ) 47. dx dx dx cos2 x cos2 x cos2 x 2
cos x u sin x dx du
1 u2 1 1 du u cos x C. u cos x u2
sin x sin 3 x sin x (1 sin 2 x ) sin x cos2 x dx dx dx 2 2 2 x sin x cos x 1 cos2 x 1 cos x t t2 dt 2 dt dt 2 sin x dx dt t 1 t 1 t arctan t cos x arctan(cos x ) C. x x sin 2 cos2 dx dx 2 2 dx 49. x x x x sin x 2 sin cos 2 sin cos 2 2 2 2 x x sin cos 1 1 2 2 dx dx ( I 2 I 2 ). x x 2 2 sin cos 2 2
48.
2 cos
INTEGRALI I PACAKTUAR
16
x u 2 x sin 2 dx 1 sin x dx du du 2 ln|u | 2 ln|cos x |. I1 u x 2 2 2 cos x 2 sin dx 2 du 2 cos
x x sin u du x 2 2 dx I2 2 2 ln|u | 2 ln sin . x u 2 x sin cos dx 2du 2 2 x sin 1 x x 2 ln tan x C. Pra I 2 ln cos 2 ln sin ln x 2 2 2 2 cos 2 cos
4
2 sin x cos x 50. sin x cos x dx (sin x cos x ) dx dx 2 4
4
4
2
(sin 2 2x )2 1 1 cos 4 x 16 dx 16 2 dx 1 (1 2 cos 4 x cos2 4 x ) dx 64 1 dx 2 cos4 x dx cos2 4 x dx 64 1 1 1 cos 8x x 2 sin 4 x dx 64 4 2
1 1 1 1 x sin 4 x x sin 8 x 64 2 2 16
1 3 1 1 x sin 4 x sin 8 x C. 64 2 2 16
Detyra për ushtrime Të njehsohen integralet: cos x dx . x x sin cos 2 2
54.
57.
cos
5
x dx .
55.
cos
58.
tan xdx.
4
5
x dx .
56.
cot
59.
sin 3x sin x dx.
4
x dx .
ANALIZA MATEMATIKE II
17
dx . x 5 cos2 x
60.
sin x sin 2x cos 3xdx.
61.
sin
62.
cos 2x cot4 x dx.
63.
sin 2x cot4 x dx.
65.
cos2 x sin 2 x sin x sin3 x dx.
66.
cos x .
Të njehsohen integralet dx 51. . 2 x a2 53.
a 2 x 2 dx .
2
64.
dx
52.
x
54.
67.
dx a2 x 2 dx (1 x 2 )3
sin5 x dx . cos2 x
dx . x sin 2
. .
Zgjidhja. x 2 a2 t x , t x x 2 a2 x 2 a 2 t 2 2tx x 2
51.
dx
x 2 a2
t2 a2 t2 a2 , dx dt 2t 2t 2 t2 a2 x 2 a2 t 2t 2 t a2 x 2 a2 2t
2tx t 2 a 2 x
t2 a2 2t 2 dt dt ln|t | ln| x x 2 a 2 | C. t t2 a2 2t
x a tan u dx du 52. dx a 2 2 cos2 u x a x a2 x 2 a
du 2 cos u 2 a tan u a a 2 tan 2 u a
1 cos u
INTEGRALI I PACAKTUAR
18
du du 2 1 du cos u cos2 u 2 1 a sin u a tan u 1 tan u a sin u cos u 1 u ln tan . a 2 a x Meqë cos u atëherë sin u dhe 2 2 2 a x a x2 x tan
Pra
53.
u sin u 2 1 cos u
x
dx 2
a x
2
1
a2 x 2 a
x a a2 x 2
.
a2 x 2
1 x ln C. a a a2 x 2
x a sin t dx a cos t dt a 2 x 2 dx sin t x a x t arcsin a
a 2 a 2 sin 2 t a cos t dt
a 2 1 sin 2 t cos t dt a 2 cos2 t dt a 2
dt cos 2tdt a2 t 12 sin 2t 2
1 x x x2 a2 t 2 sin t cos t arcsin 1 2 2 a a a 2 a2 x x arcsin a 2 x 2 C. 2 a 2 dt x tan t dx dt cos2 t dt 3 dx (1 x 2 )3 (1 tan 2 t )3 sin 2 t 2 cos2 t cos t 1 cos2 t
54.
a2 2
1 cos 2t dt 2
a2 2
ANALIZA MATEMATIKE II
19
dt cos2 t
1 cos3 t
x 1 x2
cos t dt sin t C
tan t 1 tan 2 t
C.
Shënim. sin 2 t sin t tan 2 t tan t cos2 t sin 2 t sin t . 2 2 2 2 2 2 sin t cos t sin t cos t 1 tan t 1 tan t cos2 t cos2 t 2
Detyra për ushtrime Të njehsohen integralet: 68.
71.
dx 2
x a
69.
2
dx ( a 2 x 2 )3
.
x
dx 2
x 1
.
70.
dx 9 x2
.
3. Integrimi me metodën parciale Të njehsohen integralet: 1.
ln x dx.
2.
x ln x dx.
3.
x
n
ln x dx .
4.
x
4
ln3 x dx .
Zgjidhja. ln x u dx du 1. ln x dx x
x ln x x
dx x ln x dx x
dx v v x x ln x x C.
ln x u
2.
x ln x dx
dx du x v xdx ; v
x2 x 2 dx ln x 2 2 x
x2 2
x2 1 x2 x2 ln x xdx ln x C. 2 2 2 4
ln x u dx du 3. x n ln x dx x v x n dx ; v
x n1 x n1 dx ln x n 1 n 1 x
x n1 n 1
x n1 1 x n1 1 x n1 n ln x x dx ln x n 1 n 1 n 1 n 1 (n 1)
x n1 x n1 ln x C. n 1 (n 1)2
INTEGRALI I PACAKTUAR
2
ln3 x u
4.
4 3 x ln x dx
3 ln 2 x x5 3 3x 5 ln 2 x dx du ln x dx x 5 5 x x5 v x 4 dx 5
x5 3 3 x5 3 3 ln x x 4 ln 2 xdx ln x I1 , 5 5 5 5
ku ln 2 x u I1 x 4 ln 2 dx
2 ln x x5 2 x 5 2 ln x dx du ln x dx x 5 5 x x5 v 5
x5 2 2 x5 2 2 ln x x 4 ln x ln x I 2 . 5 5 5 5
Në bazë të detyrës 3. I 2 x 4 ln xdx
Pra I1
x5 x5 ln x 2 5 5
x5 2 2 x5 x5 x5 2 2 5 2 5 ln x ln x 2 ln x x ln x x . 5 5 5 25 125 5 5
Përfundimisht, I
x5 3 3 x5 2 5 2 5 ln x ln 2 x x ln x x C. 5 5 5 25 125
Detyra për ushtrime Të njehsohen integralet: 1.
x
2
ln x dx .
2.
x ln
2
x dx .
3.
x
3
ln 2 x dx .
ANALIZA MATEMATIKE II
3
Të njehsohen integralet: 5.
ln 2 x x 2 dx.
6.
(x
2
7.
ln( x
8.
x
ln
1 x 2 )dx .
2
x ) ln( x 1) dx .
1x dx. 1x
Zgjidhja. ln 2 x u ln 2 x 1 1 1 1 5. 2 dx 2 ln x dx du ln 2 x 2 ln x dx x x x x x 2 1 v x dx x
1 2 ln x 1 ln x 2 2 dx ln 2 x 2 I1 , x x x
ku ln x u ln x dx 1 dx 1 I1 2 dx du x 1 ln x ln x x 2 dx x x x x x v x 1
1 1 ln x . x x
Pra, I
1 2 1 1 1 ln x 2 ln x (ln 2 x 2 ln x 2) C. x x x x
ln( x 1) u x3 x2 dx du 6. ( x 2 x ) ln( x 1)dx ln( x 1) x 1 2 3 x3 x2 v 3 2
x 3 x 2 dx x3 x2 2x 3 3x 2 dx ln( x 1) 2 x 1 3 2 6( x 1) 3
INTEGRALI I PACAKTUAR
4
x3 x2 ln( x 1) I1 , 2 3
ku I1
2x 3 3x 2 2x 3 2x 2 x 2 2 x 2 ( x 1) dx dx dx 6( x 1) 6( x 1) 6 x 1
1 x2 1 1 1 dx x 2 dx x 1 dx 6 x 1 3 6 x 1
x3 1 x2 x ln( x 1) . 9 6 2
Pra x3 x2 x3 x2 x 1 I ln( x 1) ln( x 1) 2 9 12 6 6 3 x3 x2 1 x3 x2 x ln( x 1) C. 2 6 9 12 6 3 ln( x 1 x 2 ) u ( x 1 x 2 )'
dx du x 1 x2 1 1 2 x 1 dx du 7. ln( x 1 x 2 )dx x 1 x2 dx du x2 1 v dx v x
x ln( x 1 x 2 )
xdx 2
x 1
x ln( x 1 x 2 ) 1 x 2 C.
ANALIZA MATEMATIKE II
5
1x u 1x 1x 2 x3 1 x x3 2 dx 2 dx du ln 2 dx 8. x 2 ln 1x 3 1x 3 x 1 x 1 x3 v 3 ln
x3 1 x 2 x x3 1 x 2 x2 ln x 2 dx ln 3 1x 3 3 1x 3 2 x 1
2 1 x3 1 x x2 1 ln| x 2 1| ln ln| x 2 1| C. 3 2 3 1x 3 3
Detyra për ushtrime Të njehsohen integralet:
4.
2
x ln 2 x dx .
5.
ln x x dx.
6.
ln x dx . x3
Të njehsohen integralet: 9.
xe
x
dx .
10.
x e
3 x2
dx .
11.
e
x
dx .
12.
e
x ln x
dx .
Zgjidhja. x u
9.
x xe dx
dx du v e x dx
xe x e x dx xe x e x C.
v e x x2 u 2xdx du
10.
x e
3 x2
dx x 2 x e x dx v xe x 2 dx 2
v
2 1 2 x2 1 x e 2xe x dx 2 2
1 x2 e 2
2 2 1 2 x2 1 1 2 1 2 x e xe x dx x 2 e x e x e x ( x 2 1) C. 2 2 2 2
INTEGRALI I PACAKTUAR
6
1
x u
11.
x e dx
2 xe
x
x
x
e
x
2e
dx
x t e dx v dx dt 2 et dt 2e x 2 x dx 2dt x
dx
x
dx du
2 x
2 x
x
x
2 xe
e
x
x
dx 2 xe
x
2e
x
x
2( x 1)e x .
12.
e
x ln x
dx e x e ln x dx xe x dx
x u, dx du ve
x
xe x e x dx
xe x e x e x ( x 1) C.
Detyra për ushtrime Të njehsohen integralet: 7.
x
10.
2 x
e dx .
x 3 ln x e dx.
8. 11.
x
n x n 1
e
9.
dx .
x2 e x dx.
e
12.
2 x 1
x
2
dx .
3x dx .
Të njesohen integralet 13.
e
15.
x sin 2x dx.
2x
( x 2 3x 4) dx .
14.
(x
16.
x
2
2
x 1) sin x dx.
cos 5x dx .
Zgjidhja. x 2 3x 4 u 13. e 2 x ( x 2 3x 4)dx (2x 3)dx du v e 2 x dx v
1 2x e 2
1 2x 2 e ( x 3x 4) 2
ANALIZA MATEMATIKE II
7
1 2x 1 1 e (2x 3)dx e 2 x ( x 2 3x 4) I1 . 2 2 2 2x 3 u
1 1 I1 e (2x 3)dx 2dx du e 2 x (2x 3) 2 e 2 x dx 2 2 1 v e2x 2 2x
1 2x 1 1 e (2x 3) e 2 x dx e 2 x (2x 3) e 2 x . 2 2 2
Përfundimisht, I
1 2x 2 1 1 e ( x 3x 4) e 2 x (2x 3) e 2 x 2 4 4 1 1 2x e (2x 2 6x 8 2x 3 1) e2 x ( x 2 2x 6) C. 4 2 x2 x 1 u
14.
2 ( x x 1) sin xdx
(2x 1)dx du v sin xdx
cos x ( x 2 x 1)
v cos x cos x (2x 1)dx ( x 2 x 1) cos x I1 ,
ku
I1 (2x 1) cos xdx
2x 1 u 2dx du v cos xdx
(2x 1) sin x 2 sin xdx
v sin x (2x 1) sin x 2 cos x .
Pra, I ( x 2 x 1) cos x (2x 1) sin x 2 cos x (1 x 2 x ) cos x (2x 1) sin x C.
INTEGRALI I PACAKTUAR
8
x u dx du
15.
x sin 2xdx v sin 2xdx v
1 cos 2x 2
x cos 2x 1 sin 2x C. 2 4 x2 u
16.
2 x cos 5x dx 2xdx du 1 v sin 5x 5
x cos 2x 1 cos 2xdx 2 2
x 2 sin 5x 2 x sin 5x dx 5 5
x 2 sin 5x 2 I1 , ku 5 5
x u
1 1 I1 x sin 5xdx dx du x cos 5x cos 5xdx 5 5 1 v cos 5x 5
1 1 x cos 5x sin 5x. 5 25
Pra, I
x 2 sin 5x 2 1 1 x cos 5x sin 5x 5 5 5 25
x 2 sin 5x 2 2 x cos 5x sin 5x 5 25 125
x2 2 2 x cos5x C. sin 5x 25 5 125
ANALIZA MATEMATIKE II
9
Detyra për ushtrime Të njehsohen integralet: 13.
x
15.
(x
2
sin 3x dx. 2
x 1) cos 2x dx .
14.
( x 1) cos( x 2) dx.
16.
x
x
( x 2 x 3)dx .
Të njehsohen integralet 17.
e
x
20.
e
x
sin x dx.
23.
e
x
cos2 x dx .
cos x dx .
18.
sin(ln x ) dx.
19.
cos(ln x ) dx.
21.
e
22.
e
x
cos x dx .
x
sin 2 x dx .
Zgjidhja. cos x u
17.
e
x
cos x dx sin xdx du e x cos x e x sin x dx v e x
e x cos x I1 ,
ku sin x u I1 e
x
sin x dx cos xdx du e x sin x e x cos x dx v e x
e x sin x I .
Pra, I e x cos x ( e x sin x I ) I e x cos x e x sin x I 2 I e x (sin x cos x ) ex I (sin x cos x ) C. 2 18. sin(ln x )dx. 19. cos(ln x )dx . Në vijim, njëkohësisht do të zgjidhim integralet në detyrat 18, 19. Le të shënojmë: I1 sin(ln x )dx ; I 2 cos(ln x )dx. Zgjidhim I1 . Merret:
INTEGRALI I PACAKTUAR
10
sin(ln x ) u cos(ln x ) cos(ln x ) I1 sin(ln x )dx dx du x sin(ln x ) x dx x x vx x sin(ln x ) cos(ln x )dx x sin(ln x ) I 2 .
Pra, kemi: I1 x sin(ln x ) I 2 gjegjësisht I1 I 2 x sin(ln x )
(1)
Zgjidhim I 2 . Merret: cos(ln x ) u I 2 cos(ln x )dx
sin(ln x ) sin(ln x ) dx du x cos ln x x dx x x vx
x cos(ln x ) sin(ln x ) dx x cos(ln x ) I1 .
Pra, I 2 x cos(ln x ) I1 , gjegjësisht, I1 I 2 x cos(ln x ).
(2)
Nga (1), (2) merret sistemi: I1 I 2 x sin(ln x ) I1 I 2 x cos(ln x )
me zgjidhjen e të cilit merret: x x I1 (sin(ln x ) cos(ln x )), I 2 (sin(ln x ) cos(ln x )). 2 2 x x 20. e sin xdx. 21. e cos xdx . Veprojmë ngjashëm si në detyrat paraprake. Shënojmë: I1 e x sin xdx, Zgjidhim integralin I1 .
I 2 e x cos xdx .
ANALIZA MATEMATIKE II
11
sin x u I1 e sin xdx cos xdx du e x sin x e x cos xdx e x sin x I 2 . x
v ex
Pra, I1 I 2 e x sin x .
(1)
Zgjidhim integralin I 2 . cos x u I 2 e cos xdx sin xdx du e x cos x e x sin xdx x
v ex
e x cos x I1 .
Pra I1 I 2 e x cos x
(2)
Nga (1) dhe (2) merret sistemi: I1 I 2 e x sin x x I1 I 2 e cos x
me zgjidhjen e të cilit merret: I1
ex ex (sin x cos x ), I 2 (sin x cos x ). 2 2
Duke vepruar si më sipër tregoni se:
e
ax
sin bxdx
a sin bx b cos bx ax e a 2 b2
a cos bx b sin bx ax e . a 2 b2 1 cos 2x 1 1 22. e x sin 2 xdx e x dx e x dx e x cos 2xdx 2 2 2 1 x 1 cos 2x 2 sin 2x x e e C. 2 2 5 Shënim. Shprehja e fundit mund të transformohet në ex (sin 2 x 2 sin x cos x 2) C. 5 1 cos 2x 1 1 23. e x cos2 xdx e x dx e x dx e x cos 2xdx 2 2 2
e
ax
cos bxdx
INTEGRALI I PACAKTUAR
12
1 x 1 cos 2x 2 sin 2x x e e 2 2 5
1 x cos2 x sin 2 x 4 sin x cos x e 1 2 5
1 x e (cos2 x 2 sin x cos x 2) C. 5
Detyra për ushtrime Të njehsohen integralet: 17.
e
20.
sin
23.
e
2x
x
cos 3x dx .
18.
e
2x
sin 3x dx.
19.
cos (ln x ) dx.
2
21.
e
ax
sin 2 x dx .
22.
e
24.
e
x
(ln x ) dx.
sin 4 x dx.
2
ax
cos2 x dx .
cos4 x dx .
Të njehsohen integralet 25.
27.
x a dx. arctan x dx.
30.
x arc tgx dx.
33.
(1 x
24.
2
2
dx 2 2
)
.
x a dx. x arccos x dx.
26.
31.
2 x (arc tgx ) dx.
32.
34.
x
28.
2
2
2
2
29.
1 x 2 dx . 35.
arcsin x dx. (arcsin x ) dx. 2
x2 (1 x 2 )2 dx. x5 dx . 1 x4
Zgjidhja.
24. I
x 2 a2 u xdx xdx x 2 a 2 dx du x x 2 a 2 x 2 2 x a x 2 a2 vx
x x 2 a2
x 2 a2 a2 x 2 a2
dx
x 2 a2 dx x x 2 a2 dx a 2 2 2 2 x a x a2
x x 2 a 2 x 2 a 2 dx
ANALIZA MATEMATIKE II
dx
a 2
2
x a
13
x x 2 a 2 I a 2 ln|a x 2 a 2 |.
2
Pra 2 I a x 2 a 2 a 2 ln| x x 2 a 2 |
x x 2 a2 a2 ln| x x 2 a 2 | C. 2 2 25. Duke vepruar ngjashëm si në detyrën paraprake merret: I
x 2 a 2 dx
x x 2 a2 a2 ln| x x 2 a 2 | C. 2 2 arcsin x u
26.
1
arcsin xdx
1 x2 vx
dx du x arcsin x
xdx 1 x2
x arcsin x 1 x 2 C. arctan x u
27.
dx
arctan xdx 1 x
2
du x arctan x
xdx 1 x2
vx
x arctan x
1 ln(1 x 2 ) C. 2 arccos x u,
28. I x arccos xdx 2
v
1 1 x2
dx du
x3 3
x3 1 x3 x3 1 arccos x dx arccos x I1 , ku 2 3 3 3 3 1x
I1 x 2
x2 u 2xdx du
x 1x
2
dx
v
xdx 1 x2
v 1 x2
x 2 1 x 2 1 x 2 2dx
INTEGRALI I PACAKTUAR
14
x 2 1 x 2
Pra I
2 (1 x 2 )3 . 3
x3 1 2 arccos x x 2 1 x 2 (1 x 2 )3 3 3 3
C.
(arcsin x )2 u
29.
(arcsin x ) dx 2
2 arcsin x 1 x2 vx
x (arcsin x )2 2 x
dx du
arcsin x 1x
2
dx x (arcsin x )2 2 I1 ,
ku I1 arcsin x
x 1 x2
arcsin x u, dx v
1 x 2 arcsin x 1 x 2
x 1x dx
2
1x
dx 1 x2
du
dx v 1 x 2
2
1 x 2 arcsin x x.
Pra, I x (arcsin x )2 2 1 x 2 arcsin x 2x C.
arctan x u dx x2 x2 dx du arctan x 30. x arctan x dx 2 2 2 1 x2 1x x2 v 2 x2 1 1 arctan x 1 dx 2 2 1 x 2 x2 1 1 x2 1 1 arctan x x arctan x arctan x x C. 2 2 2 2 2
ANALIZA MATEMATIKE II
15
(arctan x )2 u 2 arctan x dx du 31. I x (arctan x )2 dx 1 x2 x2 v 2 2 2 x x arctan x x2 (arctan x )2 dx (arctan x )2 I1 , 2 2 1 x2 1 arctan x u, dx du 2 x 1 x2 ku I1 arctan x dx 1 x2 x2 v dx v x arctan x 1 x2 ( x arctan x ) ( x arctan x ) arctan x dx 1 x2 1 x arctan x x arctan x (arctan x )2 dx dx 2 2 1x 1 x2 1 (arctan x )2 x arctan x (arctan x )2 ln(1 x 2 ) 2 2 1 1 x arctan x (arctan x )2 ln(1 x 2 ). 2 2 Pra x2 1 1 I (arctan x )2 x arctan x (arctan x )2 ln(1 x 2 ) 2 2 2 2 x 1 1 (arctan x )2 x arctan x ln(1 x 2 ) C. 2 2 x u dx du 2 x xdx 1 x 1 dx xdx 32. dx x v 2 2 2 2 2 2 2 21x 2 1 x2 (1 x ) (1 x ) (1 x ) v
1 1 2 1 x2
1 x 1 arctan x C. 2 21x 2 dx 1 x2 x2 1 x2 x2 dx dx 33. I (1 x 2 )2 (1 x 2 )2 dx (1 x 2 )2 (1 x 2 )2
INTEGRALI I PACAKTUAR
16
dx x2 1 x 2 (1 x 2 )2 dx. x2 dx e zgjidhëm në detyrën paraprake, prandaj Integrali (1 x 2 )2 1 x 1 arctan x 1 x I arctan x arctan x C. 2 21x 2 2 2 1 x2 x u
dx du
34. I x 2 1 x 2 dx x x 1 x 2 dx v x 1 x 2 dx v
(1 x 2 ) 1 x 2 3
x 1 (1 x 2 ) 1 x 2 (1 x 2 ) 1 x 2 dx 3 3 x 1 1 (1 x 2 ) 1 x 2 (1 x 2 )dx x 2 1 x 2 dx 3 3 3 x 1 1 (1 x 2 ) 1 x 2 I1 I , 3 3 3
ku
I1
Pra
1 x 2 dx
x 1 1 x 2 ln| x 1 x 2 |. 2 2
1 x 1x 1 I (1 x 2 ) 1 x 2 1 x 2 ln| x 1 x 2 | 3 3 32 6 x (1 2x 2 ) 1 I 1 x 2 ln| x 1 x 2 | C. 8 8 x2 u 2xdx du 5 3 x x x3 35. I dx x 2 dx v 1 x 4 dx 1 x4 1 x4 1 v 1 x4 2 x2 1 x2 1 x 4 2 x 1 x 4 dx 1 x 4 I1 . 2 2 2 I
ANALIZA MATEMATIKE II
17
x2 t
1 2 dt 1 t dt 2 xdx 2 1 1 t x2 1 arcsin t 1 t 2 arcsin x 2 1 x4 . 22 2 4 4 Pra, x2 1 x2 I 1 x 4 arcsin x 2 1 x4 2 4 4 x2 arcsin x 2 1 x4 C. 4 4 I1 x 1 x dx x 1 ( x ) dx 4
2 2
Detyra për ushtrime Të njehsohen integralet: x arcsin x
25.
27.
x 2ex ( x 2)2 dx.
29.
(a
1 x2
2
dx .
dx . x 2 )3
26. arcsin x arccos xdx. 28.
x 2 arctan x 1 x 2 dx.
30.
x
2
a 2 x 2 dx .
! "#!$%&'()*+*!*!,-%./*0%'1'!)23*0%24'!! ! ! !
!"#$%&'()'&$#*$+&,-./&+0# 5#! ³
!" 2! ! " #1 1
!
!
!
!
!
6#! ³
!" 2! # "1 1
!"#$%'()$ 5##
3 " #1
3 4 " # 54 " # 5
#
3
%4 " # 5 &4 " # 5 #
#
3
4 % & 5" 4 % & 5# #
1
% & # " # " #
6&--&+#(*(+&7*0# #
% & 8 2# ® ¯4 % & 5# 3 3 <& 1#
9.(#:,%*;'%&(#7&--&+# %
3 2# 1#
9-.$;.%=# # #
³"
1
!" #1
!" · 3 § !" ³ ¨ ³ " # ¸¹ 1# © " #
3 4/$> " # > /$> " # >5 # 1#
3 " # /$ '2 # 1# "#
6##?,%.('"7=#:,%*;'&+#;&+@-.#12#A&:B/+.+*#"('+"#
#" 3 '2 # /$ #" 1#
*+,-.')/0.)12&,.$3+))
!"#$%&'()'&$#*$+&,-./&+0# 5#!
!
!"
³3 "
1
2!
!
6#!
!"
³§"·
1
1 ¨# ¸ ( © ¹
2! !
7#! ³
!" 2! ! C" 1 1
"#! ³
!" 2! D" 3E 1
!"#$%&'(!)!)*'+',#-'&)
2
7#!!"#('F@-+)'&+#;'+"#$%&'()'&+#*$+&,-./*0#
#
³ #"
1
!" = # z 82 # (" )
!"#$%'($
!-*$)7*# #" 1 (" ) #('$;"--)'&+#$"#G)-7"$#H.$)$*H 1 §§ · ( · # ¨¨ " * ¸=# ¨© ¸ 1# ¸¹ © ¹
1
#
I#) (1 ( · § #¨" 1# ¸¹ I# 1 ©
1
#" (" )
HB# #
*
I#) (1 2# I# 1
6&--&+#:"J&$;"(*7*# " #
³ #"
,
1
!" (" )
3 #
( 1#
³+
+= !"
!+2 #K&7*0#
!+ 2# *
1
L.-"(*('+=#$,.#J/&-.#F"#7&--#*#;.//)%7"#-.(+&+0# § I#) (1 8< # ¨ M272+'2 ¨ I# 1 ©
35# * #
3 !+ # ³ +1
,
3 + 1 !+ ³ #
· 8 ¸ = #.+"'&-"# ¹ 1 '# 1#" (
§ · I#) (1 ! 8 ¸ = #.+"'&-"# 15# * ! 8< # ¨ M272+'2 1 ¨ I# ¹ © 3 #
,
³+
!+ 1
*
1
3 3 + .-N+.$ # * *
1 1
I#) (
.-N+.$
§ · I#) (1 8 ¸ = #.+"'&-"#7&--&+# O5# * 8< # ¨ M272+'2 1 ¨ I# ¹ © ,
3 #
³+
!+ *
1
3 #
³+
!+ 1
*
1
3 3 + * /$ '# # 1* + *
1#" ( I#) (1
'#
'"'(!.')/'#$/'#!,$)!!)
3
###
(1 I#)
/$
3
1#" ( (1 I#) 1#" ( (1 I#)
'2 #
!"#$%&'()'&$#*$+&,-./&+0# "#! ³
!" 2! " E" 3P
!
!
!
8#! ³
!" 2# # " D" E
#
#
9#! ³
!" 2# " I" I
:#! ³
!" 2# # " I"
#
#
#
;#! ³
!" 2# # " " 3
#
#
<#! ³
!" 2# O " 1" 1
1
#
1
1
1
1
1
!"#$%'() "#! ³
!" " E" 3P 1
!
OE
.-N+.$
1
!"
³ 4 " O5
1
1
1" E E
C
I 3 3P OE
.-N+.$
1 3 " E I 3 3P OE
3 " O .-N+.$ '2 ! O O
4&05$3##Q$+&,-./*$#'"$"#$"#;&+@-"$#GB$;*+#;)#+"#7B$;#+.# :,%*;'*7#&;'.$"#+"#7&+);"(#("#:"J&$;"(*7*+0#
" O
!"
#
³ 4 " O5
#
#
#
#
1
1
O
#
##
!"
O!1 C
³ C-
O!-
O!1 35
³ C4-
3 .-N+.$ - # O
3 " O '2 # .-N+.$ O O
3= (
8#!?"#H"+"#-.(+0# #
K&7*# *
O-
I#) (1 I# 1
D= )
I 3 E 1D I
E2 #
3 2# I
9-.=#H&7*#-.(+*$#+-&+"0# 9-.$;.%# !" ³ " 1 D" E
#
,
#
### /$
1" E 1" I
/$
3 4 D51 I 3 E
/$
1 3 " D 4 D51 I 3 E 1 3 " D 4 D51 I 3 E
" O '2 # " 1
4&05$3##M&+@-"$#7B$;#+.#:,%*;'*7#&;'(*#J*%)$0#
#
!
!"#$%&'(!)!)*'+',#-'&)
4
!" D" E
!"
,
³"
###
³ " O ³ " 1
1
!"
³ 4 " 154 " O5 ³
!"
4 " 15 4 " O5 !" # 4 " 154 " O5
/$> " O> /$> " 1> '
9##R&'+"#J"-&%7"#( *
/$
" O '2 # " 1
8 0#
M272+'2# #
³"
1
!" I" I
:##K&7*# #
!"
³ 4 " 15
3= (
I= )
1
1 ' 1 3 " I
3 '2 # " 1
I 82 #
82 #S+"'&-"# *
9-.$;.%# #
³"
1
!" I"
3 1" I I /$ I 1" I I
!" ;#! ³ 1 " " 3
O 1
#
³§
³
3 " /$ '2 # I " I
"
!" 1 3· § O· § " ¨ ¸ ¨ 1 ¸¹ ¨© 1 ¸¹ ©
!1
O· 1 § O· ¨¨ ¸¸ - ¨¨ ¸¸ © 1 ¹ © 1 ¹
1
3 1
1
O !1
!"
O 3 1 O I
³-
O 1 #
!3
1
1 O .-N+.$ O
3 1# O 1
"
1 O 1" 3 .-N+.$ '2 # O O
# <#! ³
!" O " 1" 1 1
³
!" 1" 1 · § O ¨ "1 O O ¸¹ ©
!" 3 1 1 O³§ 3· § D· ¨ " O ¸ ¨¨ O ¸¸ © ¹ © ¹
3 " O !"
D O D !O
3 O³
!" # 3 3 1 3 1 " 1" O C O C
§ · D ¨ ¸ !¨ ¸ 3 O ¨³ ¸# 1 O¨ § D· ¸ 1 ¸¸ 4- 35 ¸¸ ¨¨ ¨¨ © © O ¹ ¹
'"'(!.')/'#$/'#!,$)!!)
5
3 O O" 3 .-N+.$ O D D
#
3 D
.-N+.$
O" 3 D
'2 #
) *+,-.')/0.)12&,.$3+))
!"#('F@-+)'&+#;'+"#$%&'()'&+#*$+&,-./*#*#G)-7"(0## 8#! ³
!" 2! ! " 1 (" )
!
!
!
!
!
!
9#! ³
!" 2! #" 1 " )
!"#$%&'()'&$#*$+&,-./&0# :#! ³
!" 2 ## " I" I
#
#
;#! ³
!" 2# # " " 3
#
#
55#! ³
5=#! ³
1
1
!" 2 ## " D" 3
#
#
<#! ³
!" 2# # " " 3
#
#
56#! ³
1
1
!" 2# O" " I 1
!" 2! O" " D 1
?"# -.(+*$# T"-,%*+'('"7=# *$+&,-./*# *# GB$H(*)$&J -.N*)$./ ('$;"--)'&+#$"#*$+&,-*7*$#+'@&("(#("#+-.%+"(# #
#
#
#
#
#
#
#
.4 " 5 ## /4 " 5
#
#
#
#
#
#
#
#
#
#
#
#
435#
HB## ;&, .4 " 5 ;&, /4 " 52 # ?"(T)/*$)7*# /4 " 5 #7B$;#+"#('T-&'&+#(*0# /4 " 5
4 " # 50 4 " 1 ." / 51 #
HB# ## "('+"# --"$%"# -&./ 0# U# G*('+# T)/*$)7*+=# HB-( D r E2 # %.$"# --"$%"# +"# ('B7"G*('+.# H)7T/&H( .+"'&-"# ('T-&'%.# 435# T.-.F*+&+# $"# +-.%+"$0# .4 " 5 /4 " 5
%0 & '1 " %3 %1 & '3 " 222 13 222 1 1 2# 0 1 " # 4" #5 4" #5 4 " ." / 51 " ." /
!"# T.$%)'B-.+# %3 =222= %0 = &3 =222= &1 = '3 =222= '1 # N.H+)'&$# 7 7&+);"$# H)&G*N*&$+&J+"#T.N.H+B.-2# !"#$%&'()'&$#*$+&,-./&+0# 5=#! ³
" !" 2 !! 4 " 154 " O5
!
!
!
!
55#! ³
"1 1 !" 2 # 4 " 351 4 " 15
!"#$%&'(!)!)*'+',#-'&)
6
56#! ³
1" 1 !" 2 # # "I 3
#
#
#
#
#
#
57#! ³
!" 2# "O 3
!"#$%'() 5=#!VB$H(*)$*$!
" !('"$)%7"#$"#+-.%+"$# 4 " 154 " O5 #
" 4 " 154 " O5
% & 2 ## # " 1 " O
#
#
#
#
#
#
MBH('B7":B.-#+"#;@#.$"+#Ƴ#7 ( x 2)( x 3) #7&--&+0#
A( x 3) B( x 2) #
x
x ( A B ) x (2 B 3 A). # 9-.=#7&--&+#(*(+&7*0# #
A B 1 # ® ¯2B 3 A 0
7:,%*;'%&$#+"#N*/*+#H&7*0# A
2 ,B 5
3 .# 5
9-.## #
³ ( x 2)( x 3)dx
x
2 dx 3 dx ³ ³ 5 x2 5 x3
#
#
1 1 1 ln( x 2) 2 ln | x 3 |3 ln( x 2) 2 | x 3 |3 C. # 5 5 5
#
#
#
#
###
2 3 ln | x 2 | ln | x 3 | # 5 5
55##MBHJ&T-B.-#$,%.('"7#7&--&+0# "1 1 4 " 351 4 " 15
x2 2
% & ' # 1 " 3 4 " 35 " 1
A( x 1)( x 2) B( x 2) C ( x 1) 2 . #
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0# A C 1 ° ®3 A B 2C 0 # °2 A 2 B C 2 ¯ 6:,%*;'%&$#+"#N*/*+#7&--&+0# A 5, B 3, C
6. #
435##
'"'(!.')/'#$/'#!,$)!!)
7
9-.=# "1 1 ³ 4 " 351 4 " 15 !"
D³
!" !" !" O³ E³ # 1 " 3 " 1 4 " 35 3 6ln | x 2 | # x 1
#
#
#
#
#
#
## 5ln | x 1|
#
#
#
#
#
#
## ln( x 2)6 ln | x 1|5 ln
56#!
1" 1 "I 3
3 x 1
( x 2)6 3 C. 5 | x 1| x 1
1" 1 4 " 1 354 " 1 35
1" 1 # 4 " 354 " 354 " 1 35
9-.# #
1" 1 4 " 354 " 354 " 1 35
% & '" 3 1 # " 3 " 3 " 3
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0#
A B C 0 °A B D 2 ° ® °A B C 0 °¯ A B D 0 6:,%*;'%&$#+"#N*/*+#H&7*0# A
1 ,B 2
1 ,C 2
9-.# #
2 x2 ³ x 4 1 dx
1 dx 1 dx dx # ³ ³ 2 ³ 2 x 1 2 x 1 x 1
#
#
#
#
##
1 1 ln | x 1| ln | x 1| arctan x # 2 2
#
#
#
#
##
1 x 1 ln arctan x C 2# 2 x 1
0, D 1. #
!"#$%&'(!)!)*'+',#-'&)
8
57#!
1 x 1
A Bx C 2 ! x 1 x x 1
1 ( x 1)( x 2 x 1)
3
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0#
A B 0 ° ®A B C °A C 1 ¯
0!
6:,%*;'%&$#+"#N*/*+#7&--&+0# A
1 ,B 3
1 ,C 3
2 .# 3
M272+'2#
1 2 x 1 dx 3 3 dx 3 ³ x 1 ³ x2 x 1
dx ³ x3 1
1 ln | x 1| I1 # 3
HB#
1 2 x 3 3 ³ x 2 x 1 dx
#
I1
#
#####
#
#
#
I2
³x
I3
dx ³ x2 x 1
#
x2 1 dx 2 ³ 3 x x 1
1 2x 1 3 dx 6 ³ x2 x 1
1 1 2( x 2) ³ 2 dx # 3 2 x x 1
1 2x 1 1 dx dx ³ 2 # 2 ³ 6 x x 1 2 x x 1
1 1 # I 2 I3 . # 6 2 2x 1 dx x 1
ln( x 2 x 1). #
2
³§
dx 2
1· 3 ¨x ¸ 2¹ 2 ©
x 1 arctan 2 3 3 2 2
1
9-.# #
I1
1 1 2 2x 1 ln( x 2 x 1) arctan .# 6 2 3 3
M272+'2##
2 3
arctan
2x 1 3
.#
'"'(!.')/'#$/'#!,$)!!)
³x
9
1 1 1 2x 1 # ln | x 1| ln( x 2 x 1) arctan 3 6 3 3
dx 1
3
#
#
###
1 1 1 2x 1 # ln( x 1) 2 ln( x 2 x 1) arctan 6 6 3 3
#
#
###
1 ( x 1) 2 1 2x 1 ln 2 arctan C. # 6 x x 1 3 3
!"#$%&'()'&$#*$+&,-./&+0# 5"#! ³
1 dx. !! 4 x 1
!
!
!
!
!
58#! ³
" O D" 1 O " 1 !" 2 # " O D"
59#! ³
3x5 x3 x dx. # # x3 x
#
#
#
#
5:## ³
x2 dx. # x x2 x 1
!
3
dx dx . # # 5<#! ³ 3 .# 3 2 x x x x 1 x 3x 2
5;##
³x
6=##
³ (1 x)(1 x
5
4
dx .# 2 )(1 x x 2 )
!"#$%'() 5"##6%&07$32#
W'T-&'%.#'"$"#+-.$(G)-7)'&+#(*#J*%)$0# 1 x4 1
#
#
1 x4 2 x2 1 2 x2
1 ( x 1) ( 2 x) 2
2
1 2
1 .# ( x 2 x 1)( x 2 2 x 1) 2
M272+'2# #
1 x 1 4
Ax B Cx D 2 .# x 2x 1 x 2x 1 2
58##W"#T.-*#H-@&%7"#T%&("+*7*$2#6&--&+##
" O D" 1 O " 1 " O D"
3
D" 1 1 " 1 2# " 4 " 1 D5
( x 1 2 x)( x 2 1 2 x) 2
#
!"#$%&'(!)!)*'+',#-'&)
10
MBHJ&T-B.-#(*#$"#;&+@-.+#T.-.T-.H&--&+0# D" 1 1 " 1 " 4 " 1 D5
% &" ' 1 2# " " D
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0# #
A B 5 ° ®C 2 # °5 A 2 ¯
2 ,B 5
T-&%#$,.# A
23 ,C 5
2. #
M272+'2##
1 1O § · " 1¸ ¨ D D ³ ¨¨3 " " 1 D ¸¸ !" # ¨ ¸ © ¹
" O D" 1 O" 1 !" ³ " O D"
"
1 1O " 1 " /$> " > !" .-N+.$ ! 1 ³ D D " D D D
"
1 1O 1 " '2 ! /$> " > /$4 " 1 15 .-N+.$ D 38 D D
59#!L&T-)%7"!$,%.('"7#(*#$"#;&+@-"$#T.-.T-.H&0#
#
O" D " O " "O "
O" 1 I
O" ## " " O
M272+'2#
³
O" D " O " !" "O "
# 5:#! ³
#
#
#
#
#
" 1 !" " "1 " 3 O
§
³ ¨© O"
1
I
O" · !" # " 4 " 354 " 35 ¸¹
" O I " O³
³"
1
!" " 3 1
" O I"
" 1 !" 4 " 35 4 " 35
MBHJ&T-B.-#(*#$&+@-.+#T.-.T-.H&--&+0#
O " 3 /$ '2 # 1 " 3 " 1
³ 4 " 35 4 " 35 !"2 # 1
'"'(!.')/'#$/'#!,$)!!)
" 1 4 " 351 4 " 35
11
% & ' 2# 1 " 3 4 " 35 " 3
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0# % ' 3 ° ® & 1' 8 ° % & 1' ¯
=# 1
7:,%*;'%&$#+"#N*/*+#7&--&+# %
3 =& I
O =' 1
O 2 ## I
9-.## " 1
³ 4 " 35 4 " 35 !" 1
3 !" O !" O !" # ³ ³ 1 ³ I " 3 1 4 " 35 I " 3
#
#
#
#
#
#
###
3 O 3 O /$> " 3># /$> " 3> I 1 " 3 I
#
#
#
#
#
#
###
3 O '2 # # /$> " 3>> " 3>O I 14 " 35
5;##6&F"#
"D "I "O "1 " 3
" I 4 " 35 " 1 4 " 35 4 " 35 #
#
#
#
# 4 " I " 1 354 " 35 4 " 354 " I 1" 1 3 " 1 5 #
#
#
#
# 4 " 3544 " 1 35 " 1 5 4 " 354 " 1 "354 " 1 " 35 #
7&--&+0#
1 x x x x2 x 1 5
4
3
A Bx C Dx E # 2 2 x 1 x x 1 x x 1
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0#
A B D 0 °C 2 D E 0 °° ® A 2D 2E 0 # ° B D 2 E 0 ° °¯ A C E 1
!"#$%&'(!)!)*'+',#-'&)
12
7 :,%*;'%&$# +"# N*/*+# 7&--&+0# # A
E
1 ,B 3
0, C
1 ,D 2
1 ,# 3
1 .# 6
9-.##
³x
5
dx x x3 x 2 x 1 4
1 1 x 1 dx 1 dx 3 6 dx # ³ 2 ³ 3 x 1 2 x x 1 ³ x2 x 1
1 1 2x 1 1 ln( x 2 x 1) # ln | x 1 | arctan 3 6 3 3 1 ( x 1) 2 1 2x 1 ln 2 arctan C. # 6 x x 1 3 3 5<##W"#T.-*#G.H+)-*:)%7"#('T-&'%&$# x3 3 x 2
( x 1) 2 ( x 2). #
M272+'2# #
1 x 3x 2 3
A B C # 2 x 1 ( x 1) x2
9.(#+-.$(G)-7*7&J&--&+#(*(+&7*0#
A C 0 ° ## ® A B 2C 0 # °2 A 2 B C 1 ¯ 7:,%*;'%&$#+"#N*/*+#7&--&+0# A
1 ,B 5
3 ,C 5
1 .# 5
M272+'2# # # ! !
³x
3
dx 3x 2
1 dx 3 dx 1 dx # ³ ³ 2 ³ 5 x 1 5 ( x 1) 5 x2
1 3 1 1 1 x2 3 ln ln | x 1 | ln | x 2 | C. # 5 5 x 1 5 5 x 1 5( x 1)
'"'(!.')/'#$/'#!,$)!!)
13
6=## 6%&07$3()
(1 x)(1 x 2 )(1 x3 )
(1 x)(1 x 2 )(1 x)(1 x x 2 ) #
#
(1 x) 2 (1 x 2 )(1 x x 2 ). #
#
#
#
#
#
## #
M272+'2#H&7*0# #
A B Cx D Ex F .# 2 2 1 x (1 x) 1 x 1 x x2
1 (1 x)(1 x 2 )(1 x x 2 )
) *+,-.')/0.)12&,.$3+))
!"#$%&'()'&$#*$+&,-./&0# 57#!
³"
!
!
!
!
5"#! ³
" O O " 1 1" 3 !"2 ! "O "
58##
2 x5 x3 2 x ³ x3 2 x dx. ##
#
#
#
59#! ³
x5 2 dx. # x4 x
5:#! ³
x2 dx. ## x x 2 3x 3
#
#
#
5;##
³x
5<##
!" ! ! I 3E
3
³x
3
!
5
#
dx .# # x x3 x 2 x 1 4
dx dx . # # # # # 6=#! ³ .! 2 2 x x 1 (1 x) (1 x 2 )(1 x x 2 )
>'&0?2!'!@/&)0()2?/.*&!
R +"# %&$"# P ( x) # ;' Q( x) # T)/*$)7 7 H)&G*N*&$+# -&./"2# R +"# %&+"# ('H.//.#T)/*$)7*+ P( x) #7"#J),"/#(('H.//.#T)/*$)7*+# Q( x), #T-.# +'@&(.#
P( x) ##"('+"#--&,B//+2# Q( x)
435#R+"#%&+"# # Q( x)
( x a1 )D1 ... ( x ar )Dr ( x 2 p1 x q1 ) E1 ... ( x 2 ps x qs ) E s # p 2j
q j 0, #HB-( D i #;' E j # 4 %.$"#$B7-.#$.+@-)-=# i 1, 2,..., r ; j 1, 2,..., s. # HB# ai , pi , q j #%.$"#$B7-.#-&./#+"#+*//"#F"#
R+"#%&$"#
!"#$%&'(!)!)*'+',#-'&)
14
Q1 ( x)
( x a1 )D1 1 ... ( x ar )D r 1 ( x 2 p1 x q1 ) E1 1 ... ( x 2 ps x qs ) E s 1
Q2 ( x)
( x a1 ) ... ( x ar ) ( x 2 p1 x q1 ) ... ( x 2 ps x qs ). #
S+"'&-"#&H:*(+)%$"#T)/*$)7&+# P1 ( x) #;' P2 ( x) #('H.//.#+"#N*/"J"('+"# 7"#J),"/#(('H.//.#T)/*$)7*+# Q1 ( x) #;' Q2 ( x), #HB#T)#N&H*7#F"# ('H.//.# T)/*$)7*+# Q1 ( x) # "('+"# n1 # HB-( ('H.//.# T)/*$)7*+# a2 ( x) # "('+"# n2 ( r 2 s ), #+"#+*//"#F"#
P1 ( x) P ( x) ³ 2 dx. # Q1 ( x) Q2 ( x)
P( x)
³ Q( x) dx
K)&G*N*&$+"+# T)/*$)7&J P1 ( x) # ;' Q1 ( x) # $%&'()'&$# 7 .$"# +"# 7&+);"(#("#H)&G*N*&$+&J+"#T.N.H+B.-2# ABC%*+*!5##9)/*$)7&+# Q1 ( x) #;' Q2 ( x) #7B$;#+"#N.H+)'&$#$"#7"$@-"#
+"# ;-&%+T"-;-&%+"# &;' T.# ;*+B-# :X"-+'*7*$# 435# T)/*$)7*+# Q( x) # $"# G.H+)-"#+"#T.:X"-+'@&('"72# 9)/*$)7*# Q1 ( x) # "('+"# T%&("+B&(*# 7"# *# 7.;'"# *# T"-X.('H"+# *# T)/*$)7&J Q( x) # ;' ;&-*J.+*+# +"# +*%# Q ' ( x), # ;' 7B$;# +"# N.H+)'&+# T"-7&(#./,)-*+7*+#+"#YBH/*;*+=#,%&-"(.# Q2 ( x)
Q( x) .# Q1 ( x)
ABC%*+*! 6#! K%)# 7&+);"# ("# T.-*# B# TBX/*HB.-# $,.# 62L2# Z(+-),-.;(H*# 7"#3PID#;'T"-#'*-"#+"#+*%#7X.$"#H"+"#&7"-2# #
MBH:X.+B.-#7&+);"$#Z(+-),-.;(H*+#+"#$%&'()'&$#*$+&,-./&+0# 68##
xdx
³ ( x 1) ( x 1) 2
3
# #
#
#
#
69#!
³ (x
dx .# 1) 2
3
!"#$%'() 68##?"#-.(+*$#+)$"0# !
!
P ( x)
x!
!
!
Q ( x)
( x 1) 2 ( x 1)3 . #
S+"'&-"# Q1 ( x)
( x 1) 21 ( x 1)31
( x 1)( x 1)2 #
'"'(!.')/'#$/'#!,$)!!)
#
deg Q1 ( x)
#
Q2 ( x)
15
3. #
( x 1)( x 1) deg Q2 ( x)
M272+'2# T)/*$)7&+#
2. #
P1 ( x) # ;' P2 ( x) # .('+B# F"# deg P1 ( x)
2; #
deg P2 ( x) 1. # 9-.# P1 ( x)
Ax 2 Bx C ; P2 ( x)
D1 x F1 . #
S+"'&-"0#
xdx ³ ( x 1)2 ( x 1)3
D1 x F1 Ax 2 Bx C dx # ³ 2 ( x 1)( x 1) ( x 1)( x 1)
?"(JT&-)%7"#(*#$"#-.(+&+#T.-.T-.H&--&+0#
D1 x E1
³ ( x 1)( x 1)dx
D³
dx dx E³ # x 1 x 1
9-.=#H&7*0#
xdx ³ ( x 1)2 ( x 1)3
Ax 2 Bx C dx dx .# D³ E³ 2 ( x 1)( x 1) ( x 1) x 1
M*G&-&$N)%7"#+"#;@#.$"+#('T-&'%&(#("#GB$;*+=#7&--&+0#
( x 2 1)(2 Ax B) (3 x 1)( Ax 2 Bx C ) # ( x 1) 2 ( x 1)3
x 2 ( x 1) ( x 1)3
D E .# x 1 x 1
MBHJ&T-B.-#(*#$"#-.(+&+#"(*T"-7&--&+#(*(+&7*#*#X.-.:*7&J&0#
#
D E 0 ° A 2 D 0 °° # ® A 2B 2E 0 °2 A B _ 3C 2 D 1 ° °¯C B D E 0
!"#$%&'(!)!)*'+',#-'&)
16
9.(# :,%*;'%&(# ("# (*(+&7*+# 7&--&+0# A
B
1 ;C 8
1 ;D 4
1 .# 6
E
M272+'2#
xdx ³ ( x 1)2 ( x 1)3 69## P ( x)
1#
#
( x 3 1) 2
# Q( x)
1 x2 x 2 x 1 ln C ; x z r1. # 2 8( x 1)( x 1) 16 x 1
[( x 1)( x 2 x 1)]2
( x 1)2 ( x 2 x 1)2 . #
S+"'&-"#
( x 1) 21 ( x 2 x 1)21
#
Q1 ( x)
#
deg Q1 ( x)
#
Q2 ( x)
( x 1)( x 2 x 1). #
3. #
( x 1)( x 2 x 1). deg Q2 ( x)
3. #
9-.=#&H:*(+)%$"#T)/*$)7&+# P1 ( x) #;' P2 ( x) #.('+B#F"0# #
deg P1 ( x)
2; deg P2 ( x)
2. #
Ax 2 Bx C ; P2 ( x)
9-.# P1 ( x)
D1 x 2 E1 x F1 . #
K&7*0# #
#
dx ³ ( x3 1)2
d1 x 2 E1 x F1 Ax 2 Bx C # ( x 1)( x 2 x 1) ³ ( x 1)( x 2 x 1)
#
#
dx ³ ( x3 1)2
Ax 2 Bx C dx Ex F dx. # D³ ³ 2 3 x 1 x 1 x x 1
M*G&-&$N)%7"#+"#;@#.$"+#;':,%&;'*7#(*(+&7*$0# 6&--&+0# #
#
A
M272+'2#
C
0; B
1 ;D 3
2 ;E 9
2 ;F 9
4 .# 9
1 ;# 16
'"'(!.')/'#$/'#!,$)!!)
#
#
#
³ (x
3
dx 1) 2
17
x 3( x 1) 3
2 2 x2 dx # ln | x 1 | ³ 2 9 9 x x 1
1 ln( x 1) 2 2 2x 1 arctan C, 3 2 3( x 1) 9 x x 1 3 3 3 x
#
( x z 1). #
# *+,-.')/0.)12&,.$3+)) MBH:X.+B.-#7&+);"$#Z(+-),-.;(H*+#+"#$%&'()'&$#*$+&,-./&0# 65#!
³ (x
2
dx dx . ! ! ! ! ! ! ! ! 66#! ³ 3 . !! 3 x 1) ( x x 1)3
dx x 2 dx 67#! ³ 2 . # # # # # # # 6"#! ³ 4 .# # # 2 ( x 1) 2 ( x 2 x 2) 68#!
dx x2 1 . # # # # # # # # # 69#! ³ ( x 4 1)3 ³ ( x 4 x 2 1)2 dx. ## #
6:#!
dx 4 x5 1 ³ ( x5 x 1)2 dx. # # # # # # # 6;#! ³ x 4 2 x3 3x 2 2 x 1. !
! !
#
! "#!$%&'()*+'&!)',-)'%&'!! ! !"#$%&'(&'#)*+,-./0#+&1-+&'0"+#'%&345,5'#'0&$+/.&6&7# .##
³x e
1##
³ sin
n x
dx. # # # # /## ³ x a (ln x) n dx, a z 1. ## # # 0## ³ sin n xdx. #
dx n
x
³ (x
. # # # # "##
2
dx , n z 1. # a 2 )n
!"#$%'(!
xn
³x e
n x
.## I n
dx
n n 1
nx dx v
#
e x
x n e x n ³ x n1e x dx
#
(ln x) n
³
/# x a (ln x) n dx
x n e x ³ e x nx n1dx #
du
x n e x nI n1 . #
u n 1
n(ln x) dx x v xD 1
du ##
x a 1 n x a 1 (ln x) n1 dx # (ln x) n a 1 a 1 ³ x #
#
#
x a 1 n (ln n x) x a (ln n1 x)dx ³ a 1 a 1
#
sin n1 x
u
0## I n
³ sin
#
#
:*4 # 45' " 8 # ; " 8< ³ 45' " 9 # :*49 # $# #
#
#
:*4 # 45' " 8 # ;" 8<³ 45' " 9 # ;8 45' 9 < $# #
n
dx
³ sin
x a 1 n n ln x I n1 . # a 1 a 1
n 1
x sin x dx
n2
(n 1) sin x cos xdx v cos x
du #
!"#$%&'(!)!)*'+',#-'&)
2
#
:*4 # 45' "8 # ; " 8< ³ 45' " 9 # $# ;" 8< % " = #
#
>+/## % " ;" 8< % "
:*4 # 45' " 8 # ; " 8< % " 9 #
2+&%#'$/#,&++&07# #
%"
8 " 8 :*4 # 45' " 8 # % " 9 = # " "
1
u dx
1## I n
³ sin
#
# #
#
n
x
³ sin
1 n2
dx x sin 2 x
sin n2 x (n 2) cos x du dx # sin n1 x dx ctgx v ³ 2 sin x
ctgx cos x (n 2) ³ ctgx n1 dx # n 2 sin x sin x
cos x cos x cos x sinn2x (n 2) ³ dx # sin x sin x sin n1 x
#
cos x cos 2 x n 1 (n 2) ³ dx sin x sin n x
#
cos x 1 sin 2 x ( n 2) ³ sin n x dx sin n1 x
cos x dx º ª dx (n 2) « ³ n ³ n2 » n 1 sin x sin x ¼ ¬ sin x
cos x (n 2) I n (n 2) I n2 sin n1 x
I n (n 2) I n In
cos x (n 2) I n2 sin n1 x
cos x n2 I n2 , n 1 (n 1) sin x n 1
n t 2. #
'"'(!.')/'#$/'#!,$)!!)
dx ³ ( x 2 a 2 )n
"## I n
3
1 a2
³
x2 a2 x2 dx # ( x 2 a 2 )n
#
1 a2
#
1 1 xdx I 2 ³x 2 # # # # # # # # # # ;8<# 2 n 1 a a ( x a 2 )n
³ (x
2
dx 1 2 2 n 1 a a )
³
?"#'%&34*%,"# x
#
³ x (x
2
xdx # a 2 )n
xdx =#@&,5#A"6&'("45,5'# ( x a 2 )n 2
x u dx du
³ (x
v
#
xdx a2 )
2
1 2(n 1)(a 2 x 2 ) n1
>+/# #
x 2 dx ³ ( x 2 a 2 )n
#
x 1 dx # 2 2 n 1 2 ³ 2(n 1)(a x ) 2(n 1) (a x 2 ) n1
x 1 I n1 . # 2 2 n 1 2(n 1)(a x ) 2(n 1)
>+/B#(-1A"6&'("4-/+#+&A-.0/05'#)-'(50#'"#;8<#,&++&07# #
· 1 1 § x 1 I 2 ¨ I n1 ¸ # 2 n 1 2 2 n 1 a a © 2(n 1)(a x ) 2(n 1) ¹
In
§ 1 · x # ¨1 ¸ I n1 2 2a (n 1)(a 2 x 2 ) n1 © 2(n 1) ¹
#
1 a2
#
§ · 1 x .# ¨ (2n 3) I n1 2 2 n 1 ¸ 2a (n 1) © (a x ) ¹
! ! ! !
2
!"#$%&'(!)!)*'+',#-'&)
4
)*+,-'./0-.12&+-$3*..
!"#'%&34*3&'#5'0&$+/.&07# .#! I n
³e
/#! I n
4 ³ cos xdx
ax
sin xdx
0#!!&
³ tg
#
³ ctg
'<# I n
1#! I n
³ (a
"#! I n
³ cos
2#! I n
³ sin
n
sin x cos n1 x n 1 I n 2 . ! ! ! ! n n
n
1 ctg n1 x I n2 , (n z 1). # (n 1) x(a x) 2 2na 2 1 I n1 , n z . # 2n 1 2n 1 2
x ) dx
2
2 n
n
x
1 sin x n2 I n2 . # n 1 n 1 cos x n 1
x cos ax 1 # n 1 (n 1)a sin x (n 1)(n 2)a 2 sin n2 ax
n2 I n2 , (n ! 2). n 1 xdx n ax
³ cos
xdx
xdx n ax
3#! I n
1 tg n1 x I n2 # a(n 1)
xdx
dx
##########
e ax n(n 1) sin n1 x(a sin x n cos a) 2 I n2 !! ! 2 2 a n a n2
n
x sin ax 1 # n 1 (n 1)a cos x (n 1)(n 2)a 2 cos n2 x
n2 I n2 , (n ! 2). ! n 1 xdx
4#! I n
³ sin ax cos
5#! I n
³ sin
n
n
1 I n2 , (n z 1). ! a (n 1) cos n1 ax
ax
xdx ax cos ax
1 I n2 , (n z 1). # a(n 1) sin n1 ax
.6## I n
sin n ax ³ cos ax dx
sin n1 ax I n2 . # a (n 1)
..#! I n
cos n ax ³ sin ax dx
cos n1 ax I n2 , (n z 1). ! a(n 1)
'"'(!.')/'#$/'#!,$)!!)
5
x n e ax n I n1 . ! n a
./#! I n
n ax ³ x e dx
.0#! I n
e ax ³ x n dx
.1#! I n
ax n ³ e cos xdx
######
##
· 1 § e ax ¨ n1 aI n1 ¸ , n 1© x ¹
n z 1. !
e ax cos n1 x (a cos x n sin x) # a 2 n2
n(n 1) I n2 , n z 1. a 2 n2
."#! I n
³ ln
.2#! I n
³ (ln x)
.3#! I n
ln n x ³ x m dx
ln n x n I n1 , m z 1. ! m 1 (m 1) x m 1
.4#! I n
xm ³ ln n x dx
.5#! I n
³x
dx ln n x
! !
n
xdx
dx
m
n
x ln n x nI n1 , n z 1. !
x 1 I n1 , n z 1. ! n 1 (n 1) ln x n 1
x m1 m 1 I n1 , n z 1. ! n 1 (m 1) ln x n 1
x
m 1
1 m 1 I n1 , n z 1. ! n 1 (n 1) ln x n 1
! "#!$%&'()*+*!*!,-%./*0%'1'!*)23*0%24'!! ! !"#$%&'()'&$#*$+&,-./&+0# 5#!
7#!
³
9#!
³
:##
dx
³
³
x x 5
3
. ! ! ! ! ! ! ! ! 6##
x 1 dx. ! ! ! x2 3 x2
³
2 x2 x 3 x2 dx . !! ! ! 8#! ³ x 3 x 2 dx, x z 2. ! x2 4 x 4 x 2
dx 3
( x 3) 4 ( x 5) 2 x2 1 x x2
. !! ! ! ! ! "#! ³
dx. # # # # # # # ;#! ³
dx .! 1 x x 1 dx ( x 2 x 1) x 2 x 1
.!
!"#$%'(! 5##1.--*2#3"4&$5"(*2*$# x
t10 ; dx 10t 9 dt. #
6-.# #
³
dx x 5 x3
10t 9 dt ³ t5 t6
10
t 9 dt t 5 (1 t )
10³
!
1 · § 10³ ¨ t 3 t 2 t 1 ¸ dt ! t 1¹ ©
!
§ t 4 t3 t2 · 10 ¨ ln | t 1 | ¸ C ku t ©4 3 2 ¹
6#!7"4&$5"()%2"# x 2 #
# !
³
x 1 dx x2 3 x2 6³
(t 6 1)t 3 dt t 1
t 6 , dx
t4 dt ! t 1
10
x. !
6t 5 dt. #1&--&+0#
(t 6 1)6t 5 ³ t 3 t 2 dt
6³
(t 6 1)t 5 dt # t 2 (t 1)
§ t9 t8 t7 t6 t5 t 4 · 6 ¨ ¸ C #89# t ©9 8 7 6 5 4¹
6
x 2. #
:#
!"#$%&'(!)!)*'+',#-'&)
7##;$+&,-./*$#'"$"#('"$)%2"#$"#+-.%+"$0# #
I
2 x2 ³ ( x 2)2 x 2 dx
!
!!!
2³
2t dt t3 1
x2
t2
2t 2tdt 4 t
³t
2tdt
dx
2³
2t tdt ! t (t 3 1)
Bt C · § A 2³ ¨ 2 ¸dt. ! © t 1 t t 1¹
6.(#+-.$(<)-2*2&4&--&+# A
1; C
1; B
1. #
6-.# #
I
2³
dt t 1 2³ 2 dt # t 1 t t 1
2 ln | t 1 | ln(t 2 t 1)
#
8##7"4&$5"()%2"# x 2 #
³
x3 x 2 dx x 3 x2
t 3 , dx
1 2t 1 C , #89# t arctan 3 3 3t 2 dt #
(t 3 2)t 3t 2 ³ (t 3 2) t dt
§ · t 2 2t 3³ ¨ t 3 t ¸dt 2 (t 1)(t t 2) ¹ ©
!
x 2. #
3³
t 6 2t 3 dt ! t3 t 2
t 2 2t 3t 4 3t 2 3³ dt ! 4 2 (t 1)(t 2 t 2)
='>-&'%&$#$"$#<9$8(*)$*$#*$+&,-./#+-.$(<)-2)%2"#(*#4*%)$0# #
3t 2 6t (t 1)(t 2 t 2)
A Bt C .# 2 t 1 t t 2
6.(#3,%*5'%&(#2&--&+0# A
1 ;B 4
5 ;C 4
1 .# 2
6.(#3,%*5'%&(#2&--&+0# #
I
89# t
3 4 3 2 3 15 27 2t 1 t t ln | t 1 | ln(t 2 t 2) arctan C, # 4 2 4 8 4 7 7 3
x 2. #
?#
'"'(!.')/'#$/'#!,$)!!)
#
³
9## I
dx 3
( x 3)4 ( x 5)2
7"4&$5"()%2"0#
x5 x3
dx
³ 3
t3;
( x 5) 2 ( x 3)6 ( x 3) 4
dx ( x 3) 2
dx
³
2
3
§ x 5· 2 ¨ ¸ ( x 3) © x 3¹
3 2 t dt. # 2
6-.# #
3 t 2 dt 2 ³ t2
I
3 t C 2
"##7"4&$5"()%2"0# x
3 2
3
x5 C. # x3
x 1
u#
@+"'&-"# #
#
x 2 x x 1 x 1 u2 #
#
#
2x 2 x x 1
#
#
2 x ( x x 1)
#
#
2 x u
#
#
u2 1 #
u2 1 #
u2 1 x 2u
x
u2 1 #
2
§ u2 1 · ¨ ¸ .# © 2u ¹
@+"'&-"# '
#
#
#
#
dx
u2 1 § u2 1 · 2 ¨ ¸ du # 2u © 2u ¹
dx
(u 1)(u 1)(u 2 1) du # 2u 3
@+"'&-"#
#
#
I
³
(u 1)(u 1)(u 2 1) 2u 3 du 1 u
1 (u 1)(u 2 1) du # u3 2³
.!
A#
!"#$%&'(!)!)*'+',#-'&)
#
#
#
#
1 u3 u 2 u 1 du 2³ u3 x
1 1 1 1 u ln u 2 C# 2 2 2u 4u
1 x 1 2 ln( x x 1) 1 x x C, 2 2 2
x ! 0. #
:##;$+&,-./*$#'"$"#+-.$(<)-2)%2"#(*#4*%)$0#
³
x
2
1 x x
2
³
dx
1 x x
2
1 x x2
dx ³
# #
#
#
³
1 dx ³ 2 1 x x2
³
1 x 2 dx # 1 x x2
1 x x2
1 2x 1 1 dx # dx ³ ³ 2 1 x x2 2 1 x x2
2
1· 3 1 § 1 § 2 2 · ¨ x ¸ dx 1 x x ln ¨ x 1 x x ¸ C # 2¹ 4 2 © 2 © ¹ 1 2x 3 § 1 · 1 x x 2 ln ¨ x 1 x x 2 ¸ 1 x x 2 # 4 8 © 2 ¹ 2x 3 1 x x2 # 4
#
1 § 1 · ln ¨ x 1 x x 2 ¸ 2 © 2 ¹
#
1 § 1 · ln ¨ x 1 x x 2 ¸ C. # 8 © 2 ¹
;#!;$+&,-./*$#'"$"#>.-.B&(*2#$"#+-.%+"$# #
³ (x
dx 2
x 1) x x 1 2
7"4&$5"()%2"# #
x
1 2
t ; dx
dt #
³§
dx
2 1· 3· § 1· 5 § ¨¨ ¨ x ¸ ¸¸ ¨ x ¸ 2¹ 4¹ © 2¹ 4 ©© 2
.!
C#
'"'(!.')/'#$/'#!,$)!!)
# #
³§
I
dt
3· 2 5 ¨t ¸ t 4¹ 4 ©
7"4&$5"()%2"#
#
t
1 ln 6
3 2u 2 C# 3 2u 2
3( x 2 x 1) (2 x 1) 2
1 ln 6
#
u , #.+"'&-"#2&--&+0#
5 t2 4
1 dt ³ 3 2 t2 8
I
.#
2
3( x 2 x 1) (2 x 1) 2
C , ku x
1 5 ! .# 2 2
)*+,-'./0-.12&+-$3*.. !"#$%&'()'&$#*$+&,-./&+0# 5#!!
³
7###
³
9##
dx x ( 3 x 4 x3 )
dx
. # # # # # # 6#! ³
dx . # # # # # # 8#! x 1 4 x 1 1 x 1 dx. # # # # # # "## 3 x 1
³ x 1
x3 7 x 2
xdx .# # # # # # x3 3 x3
³ ³
.! ! !
x 1 x 1 .# x 1 x 1 x 1 x 1
2 3
3
x 1 4 x 2 x x3 :## ³ dx. # # # # # # # ;#! ³ dx. ! ( x 1) 4 x 2 x x3 <##
³
55##
dx n
( x a ) n1 ( x b) n1
. ## # # # 5=#! ³
x 2 dx n
x 2 (3 x)
.#
dx x2 2x 2 dx. ! . ## # # # 56#! ³ ³1 x 2 x 3 x
D#
!"#$%&'(!)!)*'+',#-'&)
57#!
³
59#!
³
x2 2 dx .! dx. # # # # # # # # 58#! ³ 2 x 1 ( x 2 x 1) ( x 2 x 1)
dx ( x x 1)( x x 1) 2
2
. ! ! ! 5"#! ³
dx ( x x 1)( x 2 x 1) 2
.! ! !
>?1'%@?/*+'&!'!A-4')* ;$+&,-./*#*#<)-2"(0# #
I
³ R( x
ax 2 bx c )dx # # # # # # # # # # # EFG#
89#"#"('+"#<9$8(*)$#-.H*)$./#$"#/*5'%##5' ax 2 bx c , # >"-2&(#3"4&$5"(*2&4+"#I9/&-*+#('$5"--)'&$#$"#*$+&,-./#+"# <9$8(*)$*+#-.H*)$./J# K.//)%2"#8"+)#-.(+&L#$"#+"#H*/.+#>"-5)-*2#3"4&$5"(*2&+#I9/&-*+J# FG#M"( a ! 0, #2&--&+#3"4&$5"(*2*#
ax 2 bx c
# #
r ax z. #
N+"#2.--*2#>J('J#
ax 2 bx c
# #
@+"'&-"#
#
ax 2 bx c
#
bx 2 a x z
#
x
ax z. #
ax 2 2 a x z z 2 # z2 c #
z2 c ; >-&%#$,.#,%&$5&+# $# J # b 2z a
>.(#3"4&$5"(*2*+#$"#EFG#2&--&+# #
I
³ r (t )dt , #89# r (t ) #>.-.B&+#<9$8(*)$#-.H*)$./J#
M,%.('"2#5)#+"#2&--&%#$"()#+"#3"4&$5"()'&+#
ax 2 bx c
ax z. #
:G#M"( c ! 0, #2&--&+#3"4&$5"(*2*0#
O#
'"'(!.')/'#$/'#!,$)!!)
#
ax 2 bx c
#
xz r c . #
@+"'&-"# #
ax 2 bx c
#
ax b
#
x( z 2 a)
#
x
x 2 z 2 2 xz c c #
xz 2 2 z c # b 2z c #
b 2z c #>-&%#$,.#>.(+.%#H.8+)%2"# $# J # z2 a
6.(#3"4&$5"(*2*+#$"#EFG#2&--&+0# #
I
³ r (t )dt , #89# r (t ) #"('+"#<9$8(*)$#-.H*)$./J#
M,%.('"2#5)#+"#2&--&%$"()#+"#3"4&$5"()$*2#
ax 2 bx c
#
xz c . #
?G# M"( +-*$)2*# 89.5-.+*8# 8.# --"$%"# +"# $5-P('2 -&./ x1 , x2 # >-.# $"( ax 2 bx c #
ax 2 bx c
#
a( x x1 )( x x2 )
#
a ( x x2 )
#
ax ax2
#
( z 2 a) x
#
x
a( x x1 )( x x2 ) #.+"'&-"#2&--&+#3"4&$5"(*2*0# a ( x x1 )( x x2 )
z ( x x1 ) #
z 2 ( x x1 ) 2 #
z 2 ( x x1 ) # z 2 x z 2 x1 # z 2 x1 ax2 #
z 2 x1 ax2 ; >-&%#$,.#H.8+)%2"# $# J # z2 a
6.(# 3"4&$5"(*2*+# $"# EFG# 2&--&+# -.H*)$./J#
³ r (t )dt , # 89#
r (t ) # "('+"# <9$8(*)$#
K98Q.+9.-#3"4&$5"(*2&+#I9/&-*+#+"#$%&'()'&$#*$+&,-./&+0#
R#
<#!!
!"#$%&'(!)!)*'+',#-'&)
dx
³x
55##
4x x 1 2
J##
dx
³
x 5x 6 2
#
#
#
#
#
5=## #
³
x 1 x 3x 9 2
dx. ! ! !
.!
!"#$%'(! <##1&B"# a ! 0, #2&--&+#3"4&$5"(*2*#*#>.-"#*#I9/&-*+0#
#
4x2 x 1
2x z #
@+"'&-"L# 4 x 2 x 1 #
x 4 xz 1 z 2 #
#
x(1 4 z ) 1 z 2 ;
@+"'&-"L# dx
4 x 2 4 xz z 2 #
x
1 z2 .# 1 4z
2z2 z 2 2 dz. # (1 4 z ) 2
7"4&$5"()%2"#$"#*$+&,-./*$#'"$"#$"#<*//*2J#1&--&+0#
#
2z2 z 2 (1 4 z ) 2 ³ 1 z 2 § 1 z 2 ·dz z¸ ¨2 1 4z © 1 4z ¹
#
2z2 z 2 dz 2 ³ (1 z 2 )(2 z 2 z 2)
2
2z 2 z 2 (1 4 z ) 2 2³ dz # 1 z2 § 2 2z2 z 4z2 · ¨ ¸ 1 4z © 1 4z ¹ 2³
dz z 1 2
ln
z 1 C. # z 1
;$+&,-./*# *# <9$5*+# >.-.B&+# *$+&,-./# -.H*)$./L# 2 3,%*5'%&$# +"# H*/*+# 2&--&+0# 5=#!1&B"# c
#
9, #2&--&+#3"4&$5"(*2*#*#5P+"#*#I9/&-*+J#1&--&+0#
x 2 3x 9
xz 9
xz 3. #
@+"'&-"# #
x 2 3x 9
#
x 3
x 2 z 2 6 xz 9 #
xz 2 6 z #
S#
'"'(!.')/'#$/'#!,$)!!)
# #
xz 2 x
#
x( z 2 1)
#
x
3
3 6z # 3(1 2 z ) #
1 2z ; 1 z2
6
dx
1 z2 z dz. # (1 z 2 ) 2
6-.#
#
³
#
#
x 1 x 2 3x 9 2³
³
dx
3(1 2 z ) 1 1 z2 z 1 z2 6 dz # 2 2 3(1 2 z ) z (1 ) z 3 1 z2
z2 6z 4 dz # (1 z 2 ) 2
6.(#3,%*5'%&(#2&--&+0# # 55##1&B"# x 2 5 x 6 I9/&-*+J#T&2*0#
x2 5x 6
#
( x 2)( x 3) #3Q.+)%2"#3"4&$5"(*2*$#+-&+"#+"#
z ( x 2). #
@+"'&-"L# x 2 5 x 6
( x 2)( x 3)
z 2 ( x 2) 2 . #
KJ2J+'J# #
( x 3)
#
x3 x2
z 2 ( x 2) # z2; x
3 2z2 ; dx 1 z2
2z dz # (1 z 2 ) 2
1&--&+0#
#
³
dx x2 5x 6
³
2z (1 z 2 ) 2 dz § 3 2z2 · z¨ 2¸ 2 © 1 z ¹
³
2z (1 z 2 ) 2 dz ! § 3 2z2 2 2z2 · z¨ ¸ 1 z2 © ¹
FU#
!
!"#$%&'(!)!)*'+',#-'&)
!
!
!
!
!
2³
dz 1 z2
ln
1 z C. ! 1 z
)*+,-'./0-.12&+-$3*..
!"#$%&'()'&$#*$+&,-./&+0# 5:#!
5<#!
dx
³ x
x2 x 1
x x2 5x 6
³ x
³1
. ! ! ! ! ! ! ! ! 5;#!
x2 5x 6
dx 1 2x x2
.! ! !
dx. !! !
! B*/2!,0)+2!&?!*%&'()24'1'!*)23*0%24'# 5#! ;$+&,-./*#*#<)-2"(#
#
³
Pm ( x) ax 2 bx c
dx, # # # # # # # # # # # # # # # EFG#
89# Pm ( x) #"('+"#>)/*$)2#*#('8.//"(#%J# ;$+&,-./*#EFG#$%&'()'&+#(*>.(#<)-2"(0# #
³
Pm ( x) ax 2 bx c
dx
Pm1 ( x) ax 2 bx c K ³
dx
ax 2 bx c
#
89# Pm 1 ( x) #"('+"#>)/*$)2#*#('8.//"(#%VFL#&V#8)$(+.$+"J# T)&<*H*&$+"+# >)/*$)2*+# Pm 1 ( x) # 5' 8)$(+.$+.# H.8+)'&$# >"-2&(# 2&+)5"(#("#8)&<*H*&$+&4+"#>.H.8+9.-J# !"#$%&'()'&+#*$+&,-./*0# 56##
³x
2
x 2 4dx. #
!"#$%'(!
# #
2 2 ³ x x 4dx
³
x2 x2 4 x2 4 x2 4
( Ax3 Bx 2 Cx D) x 2 4 K ³
dx
³
x4 4 x2
dx x2 4
x2 4
.#
dx #
FF#
'"'(!.')/'#$/'#!,$)!!)
# K98&-*49.-#+"#5P#.$"+#Q.-.3*2*+#("#<9$5*+#2&--&+0#
x4 4x2
#
[( Ax3 Bx 2 Cx D) x 2 4]' K
x 4 2
1 x 4 2
#
ª ( Ax 3 Bx 2 Cx D) x º K 2 2 3 Ax 2 Bx C ) x 4 « » x2 4 ¬ x2 4 x2 4 ¼ # x 4 4 x 2 ( Ax 2 2 Bx C )( x 2 4) ( Ax 3 Bx 2 Cx D ) x K # x4 4 x2
1 ,B 4
6.(#+-.$(<)-2*2&4&--&+0# A
1 ,D 2
0, C
0, K
2. #
6-.$5.%L#>.(#3,%*5'%&(#2&--&+0# #
³x
2
x3 2 x 2 x 4 2 ln( x x 2 4) C. # 4
x 4dx 2
)*+,-'./0-.12&+-$3*..
!"#$%&'()'&$#*$+&,-./&+0# 6=#!
³
x3 x 1 x2 2 x 5
dx. ! ! ! ! ! ! 65#!
³
x3 2 x 5 x2 x 1
dx. ! ! ! !
6#!;$+&,-./*#*#<)-2"(#
#
#
#
³ ( x b)
dx m
ax 2 bx c
. # # # # # # # # # # # # # E:G#
;$+&,-./*#E:G#3,%*5'&+#2.$"#+"#3"4&$5"(*2*+0# #
xb
1 . #@+"'&-"# dx t
dt .# t2
!"#$%&'()'&+#*$+&,-./*0# 57#!
³ ( x 1)
dx 2
x2 x 1
.#
!"#$%'(!!
7"4&$5"()%2"# x 1
1 ; dx t
dt . #1&--&+0# t2
F:#
#
!"#$%&'(!)!)*'+',#-'&)
³
I
³
#
dt t2
³
2
1 § 1· 1 ¨1 ¸ 1 1 2 t © t¹ t dt 1 3 3 t2 t
³
dt # 2 1 1 1 2 2 t t t
dt 3t 2 3t 1 t2
³
t 3t 2 3t 1
dt. #
;$+&,-./*# $"# 4*%*2# 3,%*5'&+# 2 3"4&$5"(*2*$# >.-"# E)( +"# 5P+"G# +"# I9/&-*+J# 6.(#3,%*5'%&(#2&--&+0# # . )*+,-'./0-.12&+-$3*.. !"#$%&'()'&$#*$+&,-./&+0# 66#!
68##
³ ( x 1)
³x
dx 3
x x 1 2
dx 4
x x 1 2
. # # # # 67## ³
dx 1· § ¨x ¸ 2¹ ©
.#
3
x 2x 7 2
.!
$CDAEF$G$!$!B$HAFCI$JK$D!L$CMG$JK#
;$+&,-./*#*#<)-2"(0# #
³x
m
(a bx n ) p dx, #
89# m, n, p # %.$"# $92-.# -.H*)$./# 5' a, b R # B9'&+# *%&'()24! *! @*,')'%3*24*&!N*%0+*24J# ;$+&,-./*#*#2"(*>"-2"L#$"#2"$P-"#&/&2&$+.-$5#+"#3,%*5'&+#4&+"2# $"#$%"-*$#$,.#+-*#-.(+&+#4*%9&(&0# FG##M"('#"('+"#$92"-#*#>/)+"#2&--&+#3"4&$5"(*2*0# x t s , #89#(#"('+"# ('92"<*('*#2"#*#4),"/#*#>"-Q.('8"+#>"-#&2"-9&(*+#$92-.4 m, n. #
F?#
'"'(!.')/'#$/'#!,$)!!)
# :G##M"( p Z # E>-.# p Q), # 5J2J+'J# $"( p .+"'&-"#2&--&+#3"4&$5"(*2*# a bx n
m 1 r Z, # # 5' s n
t s #E(#W#&2"-9&(*#*#'#W#("GJ#
r· m 1 m 1 § p Z, # Z , # 89-( ¸ # 5' s¹ n n © 2&--&+#3"4&$5"(*2* a bx n x n t s . #
?G# M"( '# "('+"# +'P&("# ¨ p
!"#$%&'()'&$#*$+&,-./&+0#
dx . !! ! ! 59#! x (1 3 x )
³
58#!
³
x 1 x 3
dx. ! ! 5"#! 2
!"#$%'(! 58##;$+&,-./*#*#5'"$"#('"$)'&+#$"#+-.%+"$#
#
1
1
2 ³ x 2 (1 x 3 ) dx. #
I
X"-&%2"#( m
1 ;n 2
t 6 #E(&>( [2, 3]
x
#
dx
2. #
2 #"('+"#$92"-#*#>/)+"L#3"4&$5"()%2"0#
1&B"# p #
1 , p 3
6). #
6t 5 . #
1&--&+0# # #
I
1
1
6 6 5 2 ³ (t ) 2 (1 (t ) 3 ) 6t dt
6³
t 5 dt t 3 (1 t 2 ) 2
6³
t 2 dt (1 t 2 ) 2
2,%*5'%&$#+"#H*/*+#2&--&+0# # # # #
³ t 3(1 t #
2 2
) 6t 5 dt #
³
dx 4
1 x4
.!
FA#
!"#$%&'(!)!)*'+',#-'&)
59##;$+&,-./*$#'"$"#>.-.B&(*2#$"#+-.%+"$0#
#
³ x(1 x
I
2 1 3 2
X"-&%2"#( m 1&B"#
xdx
) .#
2 ; p 3
1; n
1 .# 2
m 1 3 # 2&--&+# 3"4&$5"(*2*# 1 3 x 2 n 2 3t (t 1) 2 dt. #
t 2 , # >-&%# $,.#
T&2*0#
I
2 ³ (t )
1 2
3³ (t 2 1) 2 dt
3t (t 2 1) 2 dt
3
t5 2t 3 3t C ; ## 5
1 3 x2 . #
89# t
5"##;$+&,-./*$#'"$"#>.-.B&(*2#$"#+-.%+"$0#
#
I
dx
³
4
1 x4
X"-&%2"#( m X"-&%2"#(
1
4 ³ (1 x ) 4 dx. !
0; n
m 1 n
4; p
1 .# 4
m 1 1 Z #>)-# p n 4
KJ2J+'J#3"4&$5"()%2"0# 1 x 4
1 1 4 4
x 4t 4 . #
KJ2J+'J# #
x 4t 4 x 4
1 x4
1 x t 1 4
1 4
t4 1
.#
6.(#5&-*4*2*+#2&--&+0# #
dx
t3 4
(t 4 1)5
dt. #
7"4&$5"()%2"#$"#*$+&,-./*$#'"$"J#1&--&+0#
0 Z. #
FC#
'"'(!.')/'#$/'#!,$)!!)
# #
1
4 ³ (1 x ) 4 dx
³
4
(t 4 1) t
t3 4
(t 4 1)5
³
dt
t 2 dt .# t4 1
;$+&,-./*#*#<9$5*+#>.-.B&+#*$+&,-./#+"#$%"#<9$8(*)$*#-.H*)$./J# 6.(#3,%*5'%&(#2&--&+0#
I
1 t 1 1 ln arctan t C 4 t 1 2
4 4 1 1 x4 1 1 1 x4 ln arctan C. # x 4 4 1 x4 1 2
)*+,-'./0-.12&+-$3*..
!"#$%&'()'&$#*$+&,-./&+0# 2
§ 2 · ³ x x ¨© 3 x 1¸¹ dx. ! ! ! 6"#!
69#!
6:#!
³
6<#!
³
! ! !
3
³x
3
x 2 ( x 1) 2 dx. ! ! ! !
1 4 x dx. ! ! ! ! ! ! 6;#! ³ 4 4 x x 4 dx. ! ! x
dx 1 x x 4
5
. ! ! ! ! ! ! 7=#! ³ 3 3x x 3 dx. !
! "#!$%&'()*+*!*!,-%./*0%'1'!&)*(0%0+'&)*.'!! ! !
³
!"##$%#&'#(%&'# R (sin x, cos x)dx, #)!"#*+#!#',-&'#.+/*,01/#23401/356# 7'#23,&0/#%#8'29(0&-,-':#:%22%'<%/=',0:0># #
tan
x 2
t. #?&'-%2'# sin 2
#
#
sin x
cos x
x 2
arctan t x
x 2
2 arctan t , dx
2dt .# 1 t2
2t .# 1 t2
x x sin 2 cos 2 2 2 § 1 t2 ¨ . cos x 1 t2 ¨ ©
1 sin x 2
4t 2 1 (1 t 2 ) 2
2 § 1 t 2 · ¸· .# ¨ 2 ¸ © 1 t ¹ ¸¹
@+*%#;'<%/=',+32#/'#)!"#:%22%&># #
§ 2t 1 t 2 R ³ ¨© 1 t 2 . 1 t 2
· 2dt .# ¸ 2 ¹1 t
A23B#0/&%92350#0#.+/*,01/%<%#&2091/1:%&20*%#,-/='221-%/'#0/&%9235#&'# .+/*,01/0孩/356# C"# 7',%#.+/*,01/0#0/&%9235#851&',1/#*+,-&0/##
R ( sin x, cos x)
R(sin x, cos x), #823#/',%#.+/*,01/0#0/&%9235#',-&'#
&%*# ,083,# ,0/D# 3&'-%2'# :%22% ;'<%/=',0:0># cos x
x
arcsin t ; dx
1 1 t2
t ; sin x
dt. #
E"##7',%# R (sin x, cos x) R(sin x, cos x), # 823# /',%# /'/0/&%9235#',-&'#&%*#,083,# cos x, #:%22%'<%/=',0:0># #
sin x
t; x
1 t2 ; #
arcsin t ; dx
dt 1 t
2
; cos x
1 t2 . #
.+/*,01/0#
C#
!"#$%&'(!)!)*'+',#-'&)
F"# 7',%# R ( sin x, cos x) R(sin x, cos x), # 823# /',%# .+/*,01/0# /'/0/&%9235#',-&'#G0.,083,# sin x, cos x, #:%22%'<%/=',0:0># #
tan x
t; x
dt .# 1 t2
arctan x; dx
H%I'##
#
sin 2 x cos 2 x sin 2 x cos 2 x cos 2 x cos 2 x
sin 2 x sin 2 x cos 2 x
sin 2 x
tan 2 x tan 2 x 1
t2 # 1 t2
3&'-%2'## #
t
sin x
1 t2
#
1 sin 2 x
cos x
1
J"# K/&%9235% %# &080
t2 1 t2
³ sin
m
1 1 t2
.#
x cos n xdx # ,-/='221-%/# /'# 0/&%9235%# &'#
.+/*,01/%<%#23401/35%#:%#*'&1#;'<%/=',0:%># #
0"# 7',%#"#',-&'#/+:'2#&%*B#;'<%/=',1(:'# cos x
#
00"#7',%###',-&'#/+:'2#&%*B#;'<%/=',1(:'# sin x
#
000"#7',%# m, n #(3/'#/+:23#/3&L235#G0.M3&1(:'#.12:+53&>#
#
#
#
#
#
sin 2 x
1 cos 2 x ; cos 2 x 2
t. # t. #
1 cos 2 x .# 2
#####0<"#7',%# m, n #(3/'#/+:23#G0.:%#,-%/(3#&'#*+/='2&3B###### ###########;'<%/=',1(:'# tan x t #1,%# ctanx t. # N"# K/&%9235%%#&080&>#
³ sin mx sin nxdx. #
#
0"#
#
00"## sin mx cos nxdx. #
#
000"# cos mx cos nxdx. #
³
³
E#
'"'(!.')/'#$/'#!,$)!!)
# O9(0=-%/# =+*%# ;M3&+32# .12:+3&B# &'# 4053 0# *%:0# 8'2:%/=+2# &%*# 0/&%920:0#:%#:%&1='/#%#;'<%/=',0:0&6# #
sin mx sin nx
1 (cos( m n) x cos(m n) x) # 2
#
sin mx cos nx
1 (sin( m n) x sin(m n) x) # 2
#
cos mx cos nx
1 (cos(m n) x cos(m n) x). # 2
P'#/(%-,1-%/#0/&%9235%&2091/1:%&20*%#
cos 4 x sin 3 x dx . ! ! ! ! ! ! ! 3#! ³ sin 3 x ³ cos4 x dx. ! ! !
2#!
³
4## sin 3 x cos 4 xdx. ##
#
#
#
#
³
5#! ctan 6 xdx. !
# ! 6(7*897:#!! 2#!O'<%/=',1(:'# cos x
#
cos 4 x ³ sin 3 x dx
!
!
3#!#
sin 3 x ³ cos4 x dx cos x
!
t4 dt ³ (1 t 2 )3 1 t 2
t
sin xdx dt sin xdx dt
³ sin
3
x cos 4 xdx
³
1 t2 dt t4
2
1 t2
#
t4 ³ (1 t 2 )2 dt !
1 1 C. ! 3 3 cos x cos x
3, #;'<%/=',1(:'# cos x
³ (1 cos
dt
1 t 2 ; dx
1 cos 2 x ³ cos4 x sin xdx !
sin 2 x sin x ³ cos4 x dx
4#!7'#*'&'#23, m #
t ; sin x
t ; sin xdx
x) cos 4 x sin xdx
dt #
³ (1 t 2 )t 4 dt #
F#
!"#$%&'(!)!)*'+',#-'&)
#
³
t5 t7 C 5 7
cos5 x cos 7 x C. # 5 7
cos6 x ³ sin 6 x dx
6
5#!# ctan xdx
cos 4 x dx 4 ³ sin 4 x cos x sin 2 x ! ctanx
4
2 ³ ctan x cos x
!
dx sin 2 x
u
dx sin 2 x
du
cos 2 x
u2 1 u2
³
u6 du. ! 1 u2
! !"#$%&'()%'*+,#%-."'' P'#/(%-,1-%/#0/&%9235%&># 2#!
sin 3 x sin 6 x dx ! ! ! 3#! . ³ 3 cos2 x dx. ! ! ! ! 4#! ³ ³ cos5 x
³
5#! sin x cos 2 xdx. ! !
;#!
dx x x sin 3 cos3 2 2
sin 4 x ³ cos6 x dx. !
@+*%#0#;M3&+32#.12:+53&># #
#
#
#
#
#
#
sin(D E)
sin(( x D) ( x E)) #
#
#
#
#
#
#
#
cos(D E)
cos(( x D) ( x E)) #
/(%,1/0### ;##
dx
³ sin( x D) sin( x E). # #
#
<#!
dx
³ sin x sin a . !
/01-2,1&3$
dx
³ sin( x D) sin( x E) #
1 sin(( x D) ( x E)) dx # ³ sin(D E) sin( x D) sin( x E)
1 sin( x D) cos( x E) sin( x E) cos( x D ) dx # ³ sin(D E) sin( x D) sin( x E)
.!
J#
'"'(!.')/'#$/'#!,$)!!)
# #
§ cos( x E) 1 cos( x D) · dx ³ dx ¸ # ¨³ sin(D E) © sin( x D ) sin( x D) ¹
#
1 sin( x E) ln C , sin(D E) z 0. # sin(D E) sin( x D)
<#!H%I'# cos a
#
§xa xa· cos ¨ ¸ #3&'-%2'#*%:0># 2 ¹ © 2
dx
³ sin x sin a
§§ x a · § x a ·· cos ¨ ¨ ¸¨ ¸¸ 1 ©© 2 ¹ © 2 ¹¹ # 2 cos a ³ sin x a cos x a 2 2
#
§xa· § xa· § xa· § xa· cos ¨ cos ¨ sin ¨ ¸ ¸ ¸ sin ¨ ¸ 1 © 2 ¹ © 2 ¹ © 2 ¹ © 2 ¹dx # xa xa 2 cos a ³ sin cos 2 2
#
xa xa º ª cos sin 1 « 2 dx 2 dx » # «³ ³ xa » 2 cos a « sin x a » cos ¬ ¼ 2 2
#
xa sin 1 2 C , cos a z 0; sin x z sin a. # ln cos a cos x a 2
P'#/(%-,1-%/&%9235%&>##
dx sin 2 x cos 2 x . ! ! ! ! ! =#! ³ 4 dx. ! "## ³ sin x cos x 3 sin x cos 4 x >#!
sin x 3cos x dx. ! 2 x 5 cos 2 x
³ 3sin
/01-2,1&3$ O'<%/=',1(:'># tan
x 2
t;
x 2
arctan t ; x
2 arctan t #
N#
#
!"#$%&'(!)!)*'+',#-'&)
2dt ; sin x 1 t2
dx
1 t2 .# 1 t2
2t ; cos x 1 t2
=6:6&-6#
#
#
2dt 1 t2 ³ 2t 1 t 2 3 1 t2 1 t2
dx
³ sin x cos x 3 2³
dt 4t 2t 2 2
³ 2t
=##O'<%/=',1(:'# tan x
2
dt 1 t2 2³ # 2t 1 t 2 3 3t 2 1 t2
dt .# t 1
t ; dx
dt ; sin x 1 t2
t 1 t2
; cos x
1 1 t2
.#
?&'-%2'#
#
sin 2 x cos 2 x ³ sin 4 x cos4 xdx
>#!!
³ 3sin
!
3³
#
³
sin x 3cos x dx 2 x 5 cos 2 x
1 t2 2 dt 1 t 1 t2 4 t 1 1 t2 (1 t 2 ) 2 (1 t 2 ) 2 sin xdx ! 2 x) 5 cos 2 x
³ 3(1 cos
cos xdx 3sin x 5(1 sin 2 x)
³
2
t2 ³ (t 2 1)(t 4 1)dt. !
sin xdx
³ 3 2 cos
2
x
3³
cos xdx # 5 2 sin 2 x
d (cos x) d (sin x) 3³ .# 2 3 2 cos x 5 2 sin 2 x
2?##P'#<'2&%&1-%,%# #
dx
³ (a sin x b cos x)
n
*+# A, B, C #Q#*1/,&3/&%6# /01-2,1&3$
A sin x B cos x dx C³ # n 1 (a sin x b cos x ) (a sin x b cos x) n2
R#
'"'(!.')/'#$/'#!,$)!!)
#
dx
³ (a sin x b cos x)
$%# &'# (%&'# I n
n
. # @+*%# 8'2=12# :%&1='/# 8324035%# &'#
0/&%920:0:%22%&>#
d (a cos x b sin x)
³ (a sin x b cos x)
#
In
#
(a cos x b sin x ) 2 (n 1) ³ (a sin x b cos x) n 2
#
(n 1) ³
n 1
a cos x b sin x # (a sin x b cos x) n1 a cos x b sin x # (a sin x b cos x) n1
(a cos x b sin x) 2 (b cos x a sin x) 2 dx. # (a sin x b cos x) n 2
A23# #
In
§ 1 b sin x a cos x · (n 2) I n2 ¸# 2 2 ¨ (n 1)(a b ) © (a sin x b cos x) n1 ¹
9('#I'#=+-%(#&2%9+326# ' !"#$%&'()%'*+,#%-."'' P'#/(%-,1-%/#0/&%9235%&>#
dx
<#!
³ cos( x a) cos( x b). !!
=#!
³ cos x cos a . #
dx
dx
!
!
!
"#!
³ sin( x a) cos( x b). !! ³ sin x sin a . !
dx
#
#
#
#
#
#
>#!
2?#!
³ cos x cos a . # #
#
#
#
#
#
22#!
23##
dx sin 2 xdx . ## # # # # 24#! ³ 3sin x cos x 1 ³ sin 2 x cos4 x . #
dx
!
dx
³ sin x 2 cos x 5. #
sin 2 x cos 4 x sin x 2 cos x 25#! ³ dx. # dx. # # # # # 2;## ³ 4 4 3sin 2 x 7 cos 2 x cos x sin x 2<##
dx
³ (2 sin x 5 cos x) . # 3
#
#
#
#
2"#!
3sin x 4 cos x dx. ! 2 x 5 cos 2 x
³ 4 sin
!
!
S#
!"#$%&'(!)!)*'+',#-'&)
2=#!
dx
³ (sin x 3 cos x) . ## 3
#
2>#!
³
cos n1 sin n1
xa 2 dx, # # # xa 2
n
xa · § ¨ sin 2 ¸ 3?## ³ ¨ ¸ dx, n N . ! x a ¨ sin ¸ 2 ¹ © 32#!T'2&%&1/0#,%#<5%/#
dx
³ (a b cos x) # ! ! ! ! ! ! ! ! ! ! ! ! ! !
#
#
C ³
n
A sin x dx B³ # n 1 (a b cos x) (a b cos x) n1
dx , ( A, B, C ) Q#*1/,&3/&%B# n N , (| a |z| b | . # (a b cos x) n2
! "#!$%&'()*+*!*!,-%./*0%'1'!&)2%/3'%4'%&'!!! ! ! !"#$%&'()'&$#*$+&,-./&+0#
³
5#!! xe x sin xdx. ! !
8#!
³
!
dx 1 e 1 ex x
!
!
6#!
e3 x dx ³ 1 2e x . ! ! ! 7#!
³
dx x 2
x 5
1 e e e
. !! ! 9#!! ³ ln( 1 x 1 x )dx !
!"#$%'(! 5##12.+)%3"#4.5+*$#6"# sin x #
x ³ xe sin xdx
eix e ix . #7&--&+# 2i
ix ix x §e e xe ³ ¨© 2i
· ¸ dx ¹
1 x(e x (1i ) e x (1 x ) )dx ! 2i ³
!
1 § x (1i ) § x 1 · x (1i ) § x 1 ·· e C! ¨e ¨ ¨ 2 ¸ 3 ¸¸ 2i © © 1 i (1 i ) ¹ © 1 i (1 i ) ¹ ¹
!
ex ( x(sin x cos x) cos x) C. ! 2
6##1"8&$9"()%3"0# e x #
!
e3 x dx ³ 1 2e x
u; e3 x
e3 x e x dx ³ ( e x 1 2e x )
1 1 1 · §1 ³ ¨© 2 u 4 4 2u 1 ¸¹du
7##1"8&$9"()%3"0# e
x 10
u 3 ; e x dx u 3 du ³ u (1 2u )
du. # u2 ³ 2u 1du !
1 u2 1 u ln | 2u 1 | C. ! 4 4 4 x
1 u e10 dx 10
x 10
du; e dx 10du. #7&--&+0#
x 10
.!
:#
#
!"#$%&'(!)!)*'+',#-'&)
³
dx x 2
10³
!
8#!! I
x 5
x 10
du u[ (u 1) u 2 (u 3 1
³e
e x dx x
( 1 ex 1 ex )
1 u 1 u
du ! u 1 u u 2 u1 5
10 ³
du # u (u 1)(1 u 2 (u 2 u 1))
ex
u
e x dx
du
³ u(
du # 1 u 1 u)
1 1 u 1 1 u du ³ du. # 2 ³ 2 u 2 u2
³ u(1 u 1 u ) du
#
10³
§ · e ¨1 e e e ¸ © ¹ x 10
;.(#<,%*9'%&(#3*--&+0# #
I
1 ex 1 1 ex 1 ln C. # 2 ex 1 ex 1
9#!12.+)%3"#3&+)9"$#=.->*./+"#*$+&,-*3*+0#
ln( 1 x 1 x )
³ ln(
1 x 1 x )dx
u
1 1 1 · § 1 ¨ ¸ dx 2 1 x 1 x) © 1 x 1 x ¹ v x
du !
x ln( 1 x 1 x )
§ 1 1 x 1 · ¨ ¸ dx # 2 ³ 1 x 1 x © 1 x) 1 x ¹
x ln( 1 x 1 x )
1 x( 1 x 1 x ) dx # 2³ 1 x 2 x
1 x( 1 x 1 x ) dx 2 x 2³ 1 x
· · 1 § 1 x 1 § 1 x 1¸ dx ³ ¨ 1¸ dx # ¨ ³ 4 © 1 x 4 © 1 x ¹ ¹
x ln( 1 x 1 x ) #
?#
'"'(!.')/'#$/'#!,$)!!)
#
x ln( 1 x 1 x )
1 x · x 1 § 1 x ³¨ ¸ dx # 2 4 © 1 x 1 x ¹
x ln( 1 x 1 x )
x 1 arcsin x C , | x | 1. # 2 2
)*+,-'./0-.12&+-$3*.. !"#$%&'()'&$#*$+&,-./&+0#
³x e
2 x
5#!
8#!!
cos xdx. ! ! ! 6#!
³
! !
dx x 2
x 3
1 e e e
e4 x ln x 2 2 ³ 1 4e2 x dx. ! ! ! ! 9#! ³ ln ( x 1 x )dx. ! :#! ³ (1 x 2 )3 dx. # 1 x
;## x arccos dx. ! !
³
ex 1 . ! ! ! ! ! 7#! ³ ex 1
!
!
³
"#! x arctan x ln(1 x 2 ) dx. !
x 6
.!