FIITJEE
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
JEE(Advanced)-2016 ANSWERS, HINTS & SOLUTIONS FULL TEST – I (PAPER-2)
ALL INDIA TEST SERIES
FIITJEE Students From Classroom / Integrated School Programs have secured to 2 Zonal, 6 State & 18 City Topper Ranks. 33 in Top 100, 78 in Top 200 and 205 in Top 500 All India Ranks bagged by FIITJEE Students from All Programs have qualified in JEE (Advanced), 2015.
1
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
1.
A
C
B
2.
A
B
A
3.
B
C
C
4.
C
A
A
5.
C
B
B
6.
C
A
C
7.
D
A
A
8.
A, B
A, B
A, B
9.
B, C
B, D
A, C
10.
C, D
B, C
B, D
11.
A, D
A, B, C
A, B
12.
D
D
B
13.
C
C
C
14.
B
D
A
15.
C
A
B
16.
D
C
C
1.
(A) p,q, (B) p,q, (C) p,q,s, (D) r,s
(A) p,r,s, (B)p,r,s,t, (C) q, r, (D) p, r, s
(A) r, (B) t, (C) q, (D) r 4
(A)p,s, (B) q,r,t, (C) p,s, (D) q,r,t 3
2. 1.
(A) p, q, r, s (B) p, r, s (C) t (D) p, s (A) q, (B) p, (C) r, s, (D) r 8
2.
8
2
6
3.
1
6
4
4.
3
2
7
5.
1
6
3
6.
0
4
2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
Physics
2
PART – I SECTION – A
charge in flux R resis tance B A n 0 2I 1 A n R 4 r R IAn 0 2rR
1.
Q
2.
Relative acceleration of rod with respect to wedge is parallel to the inclined plane.
3.
4.
v vD fapp f0 v fs Simply use the above relation
for B to C part A h1 v = gT B
liquid h2 C
u = gT a
v v 0 g v0
T 2 0 O gt 0 v0 a
1
T g 2
0 20 0 20
3 0
5.
Calculate the initial and final distance of object from the concave mirror.
6.
To avoid t toppling
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
3
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
F N
O
fx mg
net 0
0
F a mg
a 0 2
mg 2 Now apply Newton’s laws of motion. F
7.
As we know L0 = L1 + L2 L1 = due to rotational motion L2 = due to linear motion.
8.
If temperature of a body is constant that means amount of hear energy received and amount of hear energy emitted are equal.
9.
If direction of field is along the x-axis then its magnitude will be 20 V/cm other wise greatest then hat.
10.
Apply conservation of linear momentum 2 KE 2 mass
11.
Calculate the time constant
R
R a b
Battery is replaced by a wire L L Rab R 12 – 13. Now apply newton’s law of motion for the particle B. T
N
T
B 60
o
r
m r
mg mg
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
4
14 – 16. Initially current will pass through the resistance only. I R1 = 4 k
C1 E R2
7 k
C2
Power in R2 = 7 (I2) = 2.8 W 2 Power in R1 = 4 I = 4 (4) = 1.6 -6
2.8 7 103
3
Charge in C1 = 3 10 8 10 = 240 C.
SECTION – B 1.
In such type of situation, we have to use these basic facts. (a) charge will flow between the two body if there is potential difference between the two. (b) during this process energy will lose due to sparking.
2.
At equilibrium Fnet will be zero and at the extreme point, particle will be in state of rest.
SECTION – C 1.
in this situation block B will not move at all. N fk 2a1
T 2 = 2T 1
T2
mag Now apply newton’s laws of motion. T1
C
a1 mg
mg 2.
a sin30o
v 02 R
v = 8 m/sec 30
o
2
a sin30o
a = 2 m/sec Where R is radius of curvature.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
5
3.
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
apply newton’s laws of motion for the body A and body B N M A Mgsin
Mgcos
T Mg m
B 4.
length of rod is R 2 Hollow sphere
2v O v P Velocity of point P 2v R v KE of rod = rotational KE t translatory KE 5.
simply use this concept After earthing a conductor its potential will become zero. If conductor are connected together both will be at the same potential.
6.
from P – T diagram, write the P – T equation. By using PV = nRT Find P in terms of volume w Pdv .
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
6
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
Chemistry
PART – II SECTION – A
1.
C Reimer – Tiemann’s reaction
2.
B + The cell reaction is: H2(g) + I2(s) 2H (aq) + 2I (aq) 2
Ecell = E
o cell
H I 0.0591 log 2 PH2
2
2
H 0.1 0.0591 0.7714 = 0.535 log 2 1 pH = 3
3.
2
C Mosley’s equation is :
a z b
= az ab Given that, ab = 1, a = tan45o = 1
51 1 50 2500 Hz 4.
A H2O S 2Cl2 SCl4
OH
HO S
OH
HO Hybridisation of S in H2SO3 = 5.
OH
1 6 2 0 4 sp3 3 1 2
B H
H 6.
H2O HO S O
H
H
up
down
A 10 3 1000 0.01 M 50 50 0.1 50 [Cl-] initial just after mixing 0.05 M 50 50 I.P = [Ag+] [Cl-] = 5 104 I.P K sp
[Ag+]initial just after mixing =
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
7
Ag aq
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
Cl aq AgCl s
0.01M
0.05
initial conc.
x
0.04 M
conc. after precipitation
K sp Ag Cl 1010 Ag 0.04 Ag 2.5 109 M
7.
A OCH 3
OCH 3
OCH 3
OCH 3
H+
O2/Pt
Ph - CH = CH2 H+
Ph
O
O O
OH H3C
Ph +
O
H3C
H
1. -H +
2
-H 2O
OCH 3
+
H3C
Ph O
H2 O
+
OCH 3
+O H
H
+ OH2 Ph O
2. H
CH3
Ph
CH3
Ph
CH3
rearrangement
Ph
OCH 3
+
CH3
O
OCH 3
OH +
HO
O
H
+
+
C Ph
CH3
O
-H +
C Ph
CH3
C CH3
Ph (Y)
CH3 (X)
8.
A, B All reducing sugars are muatrotating. Although (IV) is an hydroxy ketone and hence reducing but it can’t mutarotate as it not a carbohydrate, can’t form ring. In (II) the glycosidic linkage is in between two anomeric carbons and hence ring opening can’t occur, thus non – reducing as well as non – mutarotating.
9.
B, D In B and D compound after mixing undergoes H – bonding and hence boiling point will be raised and hence vapour pressure lowered.
10.
B, C Fact
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
11.
8
A, B, C Re dhot Fe tube CH3 C CH
Al2O 3 /Cr2 O3 / n C6H14
+
+
4H2 Cl
t - Buo-
CHCl3
N
N
H
12.
D NH4NO3 N2 O H2 O
A
(B )
(C)
N2 O P4 P4 O10 N2 (D)
13.
C P4 O10 HClO 4 Cl2 O7 H3PO4 P4 O10 6H2O 4H3PO 4
14.
D If k1, k2 and k3 be the rate constants of the reaction along path I, II and III respectively, then overall rate constant of consumption of A will be k1 + k2 + k3. So, 86.625 min
0.693 k1 k 2 k 3
or k1 k 2 k 3
0.693 8 10 3 min1 86.625
0.693 4 103 min1 173.25 0.693 k2 2 103 min1 346.5 k 3 8 103 4 2 103 2 103 min1 k1
% distribution of C
15.
2k 2 2 2 103 100 40 k1 2k 2 k 3 10 10 3
A d A dt
k1 k 2 k 3 A 8 103 0.25 2 103 mol L1 min1 dC dD dt dt dt k1 A 2k 2 A k 3 A
dB
k1 2k 2 k 3 A 10 103 0.25 2.5 103 mol L1 min1 .
16.
C
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
9
Ea overall
k 1E a1 k1 k 2 k 3
k 2Ea2 k1 k 2 k 3
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
k 3E a3 k1 k 2 k 3
0.5 40 0.25 60 0.25 80 55 kJ / mol
SECTION – B 1.
(A p, r, s) (B p, r, s, t) (C q, r) (D p, r, s) 3 O 2 2HF 2 P4 3OH 3H2 O PH3 3H2PO 2 3XeF4 6H2 O XeO3 2Xe
B2H6 6H2O 2H3BO3 6H2
B OH3 2H2 O B OH 4 H3 O 3Br2 3Na2 CO 3 5NaBr NaBrO3 3CO2
2.
(A p, s) (B q, r, t) (C p, s) (D q, r, t) Fact
SECTION – C 1.
3 92
2.
U238 o n1 92 U239 Np239 Pu239 93 94
2 1 3.5 8 Effective no. of atoms of Y = 4 – 1 = 3 Effective no. of atoms Z = 8 – 4 = 4 34 Therefore, required answer = 2 7 2
Effective no. of atoms of X = 4 4
3.
6 H3C
CH2
C
+
H
H
HC
O
CHO
OH-
CH3
+
C
H
CH2
C
CH2 CH3
O
OH-
+
H
CH
C
CH3
O
CH3
H2C CH3 H3C
C
CH2
HO
H2C CH3 C
CH CH CHO
O
O
H3C
CH2
HO
H2C CH3 H3C
H3C
CH3
OH-
C
CH2 CH3
O
C2H5 H3C
C HO
HC CH3
C
CH3
O
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
H3C
CH2
C
H
+
H
CH2
CH2
C
CH2
C
H
+
H3C
CH2 HC
O
+
CH2
C
CH2
CH3
O
OH
OHH
CH
C
CH3
O
H3C
CH3
CH2 HC
H
CH
CH
OH CH3
CHO
C
CH3
O
OH
OH-
CH3
4.
OH-
O
O
H3C
CH2 CH3
C
O
H3C
10
H3C
CH3
CH2
C
CH
CHO
CH3 CH3
2 U nC v T 5.6 C v 10 22.4 50 Cv 5 cal 10 Cp Cv R Cp 7 cal 12.5
CP 7 1.4 CV 5
The gas is thus diatomic
5.
6 No. of eq. of NaOH that can be produced theoretically for 100% current efficiency = no of equivalents of NaCl decomposed = no of eq. of Cu deposited
wt. of Cu 31.75 1 Eq. wt. of Cu 63.5 / 2
No. of eq. of NaOH produced experimentally =
% yield
6.
meq. of NaOH 1000
N V 1 60 0.06 1000 1000
0.06 100 6% 1
4 Hoffmann’s mustard oil reaction is a test of 1o amine. SH R NH2 S C S S
C
NHR
HgCl2
RNCS
(Alkyl isothiocyanote) smells like mustard oil
+ HgS + 2HCl
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
11
Mathematics
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
PART – III SECTION – A
n
1.
f x
x dx
0 n
x dx 0
f x n 1
2.
y y 3 y
n n 1 2
n
n2 n 2
2
y
y
y dx 3 ydx
x A 1y 2 A 2 y A 3
3.
d AC d
A
bcosec .cot asec tan
a sec
P
a
y
bcosec
b B
C
x 2
AC
2
b a3 b3 b
1 3
2
2
a a3 b3 1
a3 3
2 2 2 a3 b3
4.
Let , , , be the four roots Then 4 and 1 AM = GM 1 x 4 4x3 ax 2 5x 1 x 1
4
a 6, b 4
5.
Let APB = PA 2 PB 2 AB2 cos 2PA.PB
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
12
PA 2 PB 2 AB 2 2PA.PB cos 2PA.PB as cos 1 2
PA PB AB 2
Thus the max value of |PA – PB| is AB This is possible only when P lies on AB but P lies on AB P is the point of intersection of x + y = 2 and 2x + 3y + 1 = 0. 6.
r 6! P q 2 x 3x 2 P!q!r! P q r 6 & q 2r 5
coeff 5052
7.
tan3 tan2 tan2 tan sin 3 2 sin 2 cos 3 cos 2 cos 2 cos sin 2 sin sin2 0
sin 0 or sin2 0
n is not for possible as n is odd tan is not define. 2 Hence n, n z is the only solution. n, n z or 2 n
8.
AB c, BC a, AC b
In OBD A
z O
E y
A x B
D
C
OD OB x cos A R x R cos A cos A
a a b c cos A 2R 2 sin A sin A sinB sinC a a x cot A tan A 2 2x Similarly b tanB 2y x
c 2z Also tan A tanB tanC tanA .tanB.tanC (when A+ B + C = )
And tanC
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
13
9.
a b c abc 2x 2y 2z 8xyz
a b c abc x y z 4xyz
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
4 tan x cot x
(A) 0 x
also ln sin x 0 ln sin x
tan x
ln sin x
cot x
(B) in 0, 2 cosecx 1 4ln cos ecx 5ln cosec x (C) in 0, , cos x 0,1 2 lncos x 0 also 1 2
10
1 1 2 3
ln cosx
1 3
ln cos x
= 5m – 3n 7(5m – 3n)2 + 5m2 – 3n2 = 0 6m2 – 7mn + 2n2 = 0 2 n m n or m 3 2 If m = 2/3n from (1) = 1/3 n If m = n/2 ….. = -n/2 cos
1 1 2 1 3 2 12 22 33
11.
1
2
7
14 6
12 22
2 2 a b c d a 2 a.b 4 2d. a b c Let d a b c Then d.a d.b d.c cos cos
Also 2 2 2 1 3cos2 or cos 2 3 a b c d 4 2. 3
7 12
a,b,c are mutually r
1 3
42 3
12.
end point of latus rectum P(1, 2) & Q(1, -2) PAQ is isosceles right angled
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
14
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
slope of PA is – 1 In equation y – 2 = - (x – 1) x+y–3=0 similarly equation of line QB x–y–3=0 2 solving x + y – 3 = 0 with parabola y = 4x 2 3 x 4x x 1,9 co-ordinate of B & C are (9, -6) & (9, 6) respectively Area of trapezium 1 12 4 x8 2 64 sq units
13.
let the circumcenter of trapezium be T(n, 0) Then PT = PB
n 1
2
n 9
4
2
36
or n = 7 radius 40 2 10
14. – 16 z 2 1 Case I when 1 1 We get 2 < 1 z i 1 2 or x = - y2 = 1 – x2 or x2 + y2 = 1 case II > 1 2 1 0 z 2 1 or x 2 1, y 0
Roots are 2 1,0 , 2 1,0
One root lies inside the unit circle and other will lies outside the unit circle Case III where is very large then z 2 1 2 z 2 1
1 2
1
1 2
SECTION – B 1.
6
total number of function = 3 = 729 (a) total number of onto function = 3 C116 3 C2 26 3 C3 36 3 192 729 540
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
15
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
(b) since f(ai) bi It means that a1, a2, a3 cannot be assigned images b1, b2, b3 Number of function = 2333 = 216 (c) number of invertible function = 0 as function is not one – one (d) total many one function = 729 – 0 = 729 2.
(a) sin1 sin 3 10 3 10 (b) cos cos 4 10 1
4 10 1 (c) tan1 x tan1 if x 0 x 2 if x 0 2 n n 1 n n 1 (d) sin1 tan 1 n n 1 n n 1 n n 1 n n 1 sin1 tan 1 n n 1 n 1 n 1 n n 1
tan1 n 2
SECTION – C 1.
let each friend has n sons. 3 tickets can be distributed among 2n sons in 2n C3 ways. The number of ways distributing 3 tickets such that two tickets go to the sons of one and one tickets goes to sons of the other. n C2 n C1 n C1 n C2 2 n C1 n C2 probability that two tickets go to the sons of one and one tickets goes the sons of the other 2 n C1 n C2 2n C3
6n2 n 1 2n 2n 1 2n 2
3n 2 2n 1
But from question 6 3n 7 2 2n 1 n 4 Hence total number of boys = 8.
2.
2
2
2
2
2
2
the equation of the tangents to the circle x + y = a at P and the hyperbola x – y = a at Q are x my a 1 m2 or x my a 1 m2 respectively Where y = mx is intersecting line through (2, 0) Let (h, k) be the point of intersection of these two lines
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-FT-I-(Paper-2)-PCM(Sol)-JEE(Advanced)/16
16
h mk a 1 m 2 are h mk a 1 m2 2
2
h mK a2 1 m2 and h mK a2 1 m2
K
2mhK h
m2 K 2 a2 2mhK h2 a2 0 m2
2
a2
2
a2 0
Elimination m from these two equation and we get a 4 4y 4 x 2 a6 3.
A BC
Since ei 1, eiB C ei A eiA e
i A B
ei2A e
i A B
e
i A C
1
ei2B
e
i A C
e
i B C
e
i B C
ei2C
1 1
1 1 1 1 1 1 4 4 4
x 1 t x2
4.
put
5.
OP HP
x2 y2 3 x 3 or y 2 6 x 2 3
Area of region =
9 y2 0 6 dy
= 3 sq unit 1
6.
1 2 3... n n f x lim n n n .... n 1 1 2 n log f x lim log log ... log n n n n n n 1 r lim log n n r 1 n 1
log x dx 1 0
f x e1
1 e
Hence e2f(x) = e2
1 e e
e2 f x e 2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com