STPM TRIAL 2014 MATHEMATICS T ANSWERFull description
hawau
cape maths
soal multimedia SMKDeskripsi lengkap
Carbon Steel Girder Rails of Plain, Grooved, and Guard
soal unFull description
Soal USBN PAI SMK Tahun 2013/ 2014 paket A kelas XIIDeskripsi lengkap
Soalan Pertengahan Tahun Tingkatan 1Full description
SEA past paper with answers Secondary Entrance Assessment
ICAS Maths Paper J 2014
mt thn 2
latihan pembinaan geometri dan KoordinatFull description
MEASUREMENTS In class VI, we have learnt about the concepts and formulae for finding the perimeter and area of simple closed figures like rectangle , square and right triangle. In this chap…Descripción completa
maths imp inter
Std12 Maths VOL 2
AHLI USAHAWANFull description
A. Samad Ahmad (1985). Kerajaan Johor Riau. Kuala Lumpur: Dewan Bahasa dan Pustaka
cape mathsFull description
Descripción completa
Descripción: la calidad del dato
1) a) f(x) = 1 – x3 f (׳x) = - 3x2 =− = −
dy = −4 dx Further differentiation
2 3x 2 dx − 3 ∫ 1 − x3
2 d 2 y dy dy 1 − 2 + −2 ln y = 2 + 2 ln x y dx dx dx when x = y = 1
d2y d3y d2 y dy d2y sin x sin x cos x 2 + − − − + − = ( ) ( ) ( ) 2 dx dx 3 dx 2 dx 2 dx
d 3 y dy d2y − cos x = 2 dx 3 dx dx 2 y(0) = 1 y(׳0) = 2 y(׳׳0) = 4 y(׳׳׳0) = 10 cos x
f(x) = 1 + 2x + 2x2 +
5 3 x +… 3
7.
5. The vertical asymptote, x = -1 2x + 1 lim x →±∞ x + 1 1 2+ x = lim x →±∞ 1 1+ x =2 The horizontal asymptote, y = 2.
dx = −k ( x − x0 ) dt dx ∫ x − x0 = − ∫ kdt ln ( x − x0 ) = −kt + c ln ( x − 27 ) = −kt + c
6
4
y=-1
2
-5
5
-2
-4
x=-1 when x = 0, y = 1 When y = 0, x = - ½ (0, 1), and ( - ½ , 0 ) Let y =
2x + 1 x +1
x=
2 y +1 y +1
x − 27 = 36e x = 27 + 36
1 − t 6
1 − t 6
( proven)
(a)
x – 27 −
7
= 36 6 = 11.2°C The fall of temperature after being left in the room for 7 minutes is 11.2°C t
−
(b) 36e 6 = 2 1
1− x y= x−2 ∴ f −1 : x →
When t = 0, x = 63 c = ln36 when t = 6ln 2, x = 45, 1 k= 6 1 ln ( x − 27 ) = − t + ln 36 6
1− x ,x ≠ 2 x−2
t
e 6 = 18 t = 6 ln 18 t = 17.3 minutes The time that elapses is 17.3 minutes.
D f −1 = { x : x ∈ R, x ≠ 2} R f −1 = { y : y ∈ R, y ≠ −1}
8. y =
25 − x 2 x
6. y = ex dy = ex dx dy = ea dx when x = a, y = ea The equation of the tangent at the point where x = a is, y – ea = ea ( x – a ) y = ea( 1+x – a ) At (0,0), ea ( 1 – a ) = 0 a=1 The equation of tangent which passes through origin is y=e(1+x–1) y = ex For y = mx to intersect y = ex at two distinct points, m > e. when x = a,