1 FUNDAMENTOS ELÉCTRICOS Y ELECTRÓNICOS AUTOMOTRICES 1.1 CIRCUITO ELÉCTRICO Y MAGNITUDES FUNDAMENTALES Un circuito eléctrico es una interconexión de elementos eléctricos unidos entre sí de forma que pueda fluir fluir una corriente eléctrica. En la figura 1.1 se puede ver un ejemplo circuito eléctrico. Se puede ver cómo los diferentes elementos están conectados entre sí mediante conductores o cables. Un circuito es circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores), y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.
Figura 1.1 Circuito eléctrico Componente: Componente: Un dispositivo con dos o más terminales que puede fluir carga dentro de él. En la figura 1.1 se ven 9 componentes entre resistores y fuentes. Nodo: Nodo : Punto de un circuito donde concurren varios conductores distintos. A, B, D, E son nodos. Nótese que C no es considerado como un nodo puesto que es el mismo nodo A al no existir entre ellos diferencia de potencial o tener tensión 0 (V A - VC = 0).
2/40
Rama: Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente. Malla: Malla: Un grupo de ramas que están unidas en una red y que a su vez forman un lazo. Fuente: Fuente: Componente que se encarga de transformar algún tipo de energía en energía eléctrica. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2. Conductor : Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.
Clasificación Los circuitos eléctricos se clasifican de la siguiente forma:
2/40
Rama: Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente. Malla: Malla: Un grupo de ramas que están unidas en una red y que a su vez forman un lazo. Fuente: Fuente: Componente que se encarga de transformar algún tipo de energía en energía eléctrica. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2. Conductor : Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.
Clasificación Los circuitos eléctricos se clasifican de la siguiente forma:
3/40
Voltaje: El Voltaje: El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica. A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor, la unidad es el Voltio. Corriente: Históricamente, Corriente: Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó el sentido convencional de circulación de la corriente como un flujo de cargas desde el polo positivo al negativo y sin embargo posteriormente se observó, gracias al efecto Hall, que en los metales los portadores de carga son negativos, estos son los electrones, los cuales fluyen en sentido contrario al convencional. En resultas, el sentido convencional y el real son ciertos en tanto que los electrones fluyen desde el polo negativo hasta llegar al positivo (sentido real), cosa que no contradice que dicho movimiento se inicia al lado del polo positivo donde el primer electrón se ve atraído por dicho polo creando un hueco para ser cubierto por otro electrón del siguiente átomo y así sucesivamente hasta llegar al polo negativo (sentido convencional) es decir la corriente eléctrica es el paso de electrones desde el polo negativo al positivo comenzando dicha progresión en el polo positivo. En el siglo XVIII cuando se hicieron los primeros experimentos con electricidad, sólo se disponía de carga eléctrica generada por frotamiento o por inducción. Se logró (por primera vez, en 1800) tener un movimiento constante de carga cuando el físico italiano Alessandro Volta inventó la primera pila eléctrica, la unidad de medida es el amperio. Potencia eléctrica: eléctrica: es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt). Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías. 1.2 TENSIÓN Y CAÍDA DE TENSIÓN La tensión la produce una fuente (batería y/o generador), mientras que la caída de tensión se realiza en una resistencia (carga), un circuito eléctrico básico e ideal es
4/40
el indicado en la figura 1.2. 1.2. Mantiene constante la diferencia de potencial entre sus bornes e igual a ε.
Figura 1.2: Circuito eléctrico básico ideal En la figura 1.2 se tiene un circuito eléctrico básico pero real, donde La diferencia de potencial entre sus bornes disminuye con el aumento de la corriente, y se ajusta a la formula siguiente:
V I r
Figura 1.3: Circuito eléctrico básico real 1.3 INTENSIDAD DE CORRIENTE
5/40
Mientras mayor es la corriente mayor es la potencia disipada, o el consumo es mayor de acuerdo a la siguiente formula:
P I V El voltaje es constante tal como se vio en el numeral anterior, la Corriente varía de acuerdo o en relación a la resistencia, menor resistencia mayor potencia. 1.4 RESISTENCIA, CONDENSADOR, INDUCTANCIA RESISTENCIA Todos los materiales y elementos conocidos ofrecen mayor o menor resistencia al paso de la corriente eléctrica, incluyendo los mejores conductores. Los metales que menos resistencia ofrecen son el oro y la plata, pero por lo costoso que resultaría fabricar cables con esos metales, se adoptó utilizar el cobre, que es buen conductor y mucho más barato. Con alambre de cobre se fabrican la mayoría de los cables conductores que se emplean en circuitos de baja y media tensión. También se utiliza el aluminio en menor escala para fabricar los cables que vemos colocados en las torres de alta tensión para transportar la energía eléctrica a grandes distancias. Entre los metales que ofrecen mayor resistencia al paso de la corriente eléctrica se encuentra el alambre nicromo (Ni-Cr), compuesto por una aleación de 80% de níquel (Ni) y 20% de cromo (Cr). Ese es un tipo de alambre ampliamente utilizado como resistencia fija o como resistencia variable (reóstato), para regular la tensión o voltaje en diferentes dispositivos eléctricos. Además se utilizan también resistencias fijas de alambre nicromo de diferentes diámetros o grosores, para producir calor en equipos industriales, así como en electrodomésticos de uso muy generalizado. Entre esos aparatos o quipos se encuentran las planchas, los calentadores o estufas eléctricas utilizadas para calentar el ambiente de las habitaciones en invierno, los calentadores de agua, las secadoras de ropa, las secadoras para el pelo y la mayoría de los aparatos eléctricos cuya función principal es generar calor. CONDENSADOR En electricidad y electrónica, un condensador es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separadas por un material dieléctrico
6/40
(siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidas a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada). INDUCTANCIA Es posible demostrar que el paso de corriente por un conductor va acompañado de efectos magnéticos; la aguja de una brújula colocada cerca de un conductor, por ejemplo, se desviará de su posición normal norte-sur.La corriente crea un campo magnético. La transferencia de energía al campo magnético representa trabajo efectuado por la fuente de FEM. Se requiere potencia para hacer trabajo, y puesto que la potencia es igual a la corriente multiplicada por la tensión, debe haber una caída de tensión en el circuito durante el tiempo en que la energía está almacenándose en el campo. Esta caída de tensión que no tiene nada que ver con la caída de tensión de ninguna resistencia del circuito, es el resultado de una tensión opuesta inducida en el circuito mientras el campo crece hasta su valor final. Cuando el campo se vuelve constante, la FEM inducida o fuerza contraelectromotriz desaparece, puesto que ya no se está almacenando más energía. Puesto que la FEM inducida se opone a la FEM de la fuente, tiende a evitar que la corriente aumente rápidamente cuando se cierra el circuito. La amplitud de la FEM inducida es proporcional al ritmo con que varía la corriente y a una constante asociada con el circuito, llamada inductancia del circuito. La inductancia depende de las características fisicas del conductor. Por ejemplo, si se enrolla un conductor, la inductancia aumenta. Un arrollamiento de muchas espiras tendrá más inductancia que uno de unas pocas vueltas. Además, si un arrollamiento se coloca alrededor de un núcleo de hierro, su inductancia será mayor de lo que era sin el núcleo magnético. 1.5 LEY DE OHM Según la ley de Ohm, cuando por una resistencia eléctrica "R", circula una corriente "I", se produce en ella una caída de tensión "V" entre los extremos de la resistencia cuyo valor viene dado por V=I*R. En el Sistema Internacional I viene dado en Amperios, V en Voltios y R en Ohmios. I (corriente o amperaje) es igual a E (voltaje) dividido R (resistencia en ohmios). Esta relación se conoce como ley de ohm porque fue desarrollada por el físico alemán Georg Simón Ohm ( 1787 - 1854 ). Esta ecuación fue hallada en el año de 1,827. La ecuación anteriormente descrita nos sirve para hallar la corriente, si el voltaje y la resistencia se conocen, tomemos como ejemplo que tenemos 20 voltios ( E ) y un resistor de 5 ohmios ( R ) el resultado es 4 amperios ( I ). Si lo que queremos es hallar la resistencia, la ecuación es: R igual a E dividido I, o sea,
7/40
20 voltios dividido 4 amperios igual: 5 ohmios. Ahora bien, lo que queremos es hallar el voltaje, aquí usamos la ecuación siguiente: E igual a I por R, o sea: 4 amperios por 5 ohmios igual: 20 voltios.
1.6 TRABAJO Y POTENCIA ELÉCTRICOS Energía o Trabajo Eléctrico. El trabajo eléctrico es el producto de la potencia absorbida por una carga, por el tiempo. Recordemos que la potencia es una potencia llamada Instantánea, al calcularla decíamos que era el cuociente entre el Trabajo en la unidad de tiempo, es decir, el trabajo en el segundo en que eS medido. Ahora lo que calcularemos es toda la Potencia absorbida por una carga en un tiempo determinado. Es decir, el Trabajo o Energía eléctrica es el producto de la Potencia Absorbida por la carga, por el Tiempo. T=P*t Donde: T = Trabajo eléctrico en (Watt/Seg o Kwatt/Hr). P = Potencia en (Watt o Kwatt). t = Tiempo en (Segundos u Horas). Cuando se trata de corriente continua (CC) la potencia eléctrica desarrollada en un cierto instante por un dispositivo de dos terminales, es el producto de la diferencia de potencial entre dichos terminales y la intensidad de corriente que pasa a través del dispositivo. Por esta razón la potencia es proporcional a la corriente y a la tensión. Esto es,
8/40
donde I es el valor instantáneo de la corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en watts (vatios). Igual definición se aplica cuando se consideran valores promedio para I, V y P. Cuando el dispositivo es una resistencia de valor R o se puede calcular la resistencia equivalente del dispositivo, la potencia también puede calcularse como,
1.7 CIRCUITOS SERIE Y PARALELO
Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente. Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise. En función de los dispositivos conectados en serie, el valor total o equivalente se obtiene con las siguientes expresiones:
Para Resistencias
Figura 1.4: Resistencias en serie
Para Generadores
9/40
Figura 1.5: Generadores en serie
Para Condensadores
Figura 1.6: Condensadores en serie El circui to eléctrico en paralelo es una conexión donde los bordes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida. Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo. En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones:
Para generadores
10/40
Figura 1.7: Generadores en Paralelo
Para Resistencias
Figura 1.8: Resistencias en Paralelo
11/40
Para Condensadores
Figura 1.8: Condensadores en Paralelo 1.8 APARATOS DE MEDIDA
Am per ímetro: Es el instrumento que mide la intensidad de la Corriente Eléctrica. Su unidad de medida es el Amperio y sus Submúltiplos, el miliamperio y el micro-amperio. Los usos dependen del tipo de corriente, ósea, que cuando midamos Corriente Continua, se usara el amperímetro de bobina móvil y cuando usemos Corriente Alterna, usaremos el electromagnético. El Amperímetro de C.C. puede medir C.A. rectificando previamente la corriente, esta función se puede destacar en un Multímetro. Si hablamos en términos básicos, el Amperímetro es un simple galvanómetro (instrumento para detectar pequeñas cantidades de corriente) con una resistencia paralela llamada Shunt. Los amperímetros tienen resistencias por debajo de 1 Ohmnio, debido a que no se disminuya la corriente a medir cuando se conecta a un circuito energizado. La resistencia Shunt amplia la escala de medición. Esta es conectada en paralelo al amperímetro y ahorra el esfuerzo de tener otros amperímetros de menor rango de medición a los que se van a medir realmente. Uso del Amperímetro Es necesario conectarlo en serie con el circuito. Se debe tener un aproximado de corriente a medir ya que si es mayor de la escala del amperímetro, lo puede dañar. Por lo tanto, la corriente debe ser menor de la escala del amperímetro. Cada instrumento tiene marcado la posición en que se debe utilizar: horizontal, vertical o inclinada. Si no se siguen estas reglas, las medidas no serían del todo
12/40
confiables y se puede dañar el eje que soporta la aguja. Todo instrumento debe ser inicialmente ajustado en cero. Las lecturas tienden a ser más exactas cuando las medidas que se toman están intermedias a al escala del instrumento. Nunca se debe conectar un amperímetro con un circuito que este energizado. Utilidad del Amperímetro Su principal, conocer la cantidad de corriente que circula por un conductor en todo momento, y ayuda al buen funcionamiento de los equipos, detectando alzas y bajas repentinas durante el funcionamiento. Además, muchos Laboratorios lo usan al reparar y averiguar subidas de corriente para evitar el malfuncionamiento de un equipo. Se usa además con un Voltímetro para obtener los valores de resistencias aplicando la Ley de Ohm. A esta técnica se le denomina el “Método del Voltímetro - Amperímetro”
Figura 1.9: Multímetro digital Voltímetro: Es el instrumento que mide el valor de la tensión. Su unidad básica de medición es el Voltio (V) con sus múltiplos: el Megavoltio (MV) y el Kilovoltio (KV) y sub.múltiplos como el milivoltio (mV) y el micro voltio. Existen Voltímetros que miden tensiones continuas llamados voltímetros de bobina móvil y de tensiones alternas, los electromagnéticos.
13/40
Sus características son también parecidas a las del galvanómetro, pero con una resistencia en serie. Dicha resistencia debe tener un valor elevado para limitar la corriente hacia el voltímetro cuando circule la intensidad a través de ella y además porque el valor de la misma es equivalente a la conexión paralela aproximadamente igual a la resistencia interna; y por esto la diferencia del potencial que se mide (I2 x R) no varía. Ampliación de la escala del Voltímetro El procedimiento de variar la escala de medición de dicho instrumento es colocándole o cambiándole el valor de la resistencia Rm por otro de mayor Ohmeaje, en este caso. Uso del Voltímetro • Es necesario conectarlo en paralelo con el circuito, tomando en cuenta la polaridad si es C.C. • Se debe tener un aproximado de tensión a medir con el fin de usar el voltímetro apropiado • Cada instrumento tiene marcado la posición en que se debe utilizar: horizontal, vertical o inclinada. • Todo instrumento debe ser inicialmente ajustado en cero. Utilidad del Voltímetro Conocer en todo momento la tensión de una fuente o de una parte de un circuito. Cuando se encuentran empotrados en el Laboratorio, se utilizan para detectar alzas y bajas de tensión. El Óhmetro: Es un arreglo de los circuitos del Voltímetro y del Amperímetro, pero con una batería y una resistencia. Dicha resistencia es la que ajusta en cero el instrumento en la escala de los Ohmios cuando se cortocircuitan los terminales. En este caso, el voltímetro marca la caída de voltaje de la batería y si ajustamos la resistencia variable, obtendremos el cero en la escala. Generalmente, estos instrumentos se venden en forma de Multímetro el cual es la combinación del amperímetro, el voltímetro y el Óhmetro juntos. Los que se venden solos son llamados medidores de aislamiento de resistencia y poseen una escala bastante amplia. Uso del Óhmetro: La resistencia a medir no debe estar conectada a ninguna fuente de tensión o a ningún otro elemento del circuito, pues causan mediciones inexactas. Se debe ajustar a cero para evitar mediciones erráticas gracias a la falta de carga de la batería. En este caso, se debería de cambiar la misma.
14/40
Al terminar de usarlo, es más seguro quitar la batería que dejarla, pues al dejar encendido el instrumento, la batería se puede descargar totalmente. Utilidad del Ohmimetro Su principal consiste en conocer el valor Ohmico de una resistencia desconocida y de esta forma, medir la continuidad de un conductor y por supuesto detectar averías en circuitos desconocidos dentro los equipos 1.9 SEÑAL DE CORRIENTE CONTINUA O DC La corriente continua (CC o DC) se genera a partir de un flujo continuo de electrones (cargas negativas) siempre en el mismo sentido, el cual es desde el polo negativo de la fuente al polo positivo. Al desplazarse en este sentido los electrones, los huecos o ausencias de electrones (cargas positivas) lo hacen en sentido contrario, es decir, desde el polo positivo al negativo. Por convenio, se toma como corriente eléctrica al flujo de cargas positivas, aunque éste es a consecuencia del flujo de electrones, por tanto el sentido de la corriente eléctrica es del polo positivo de la fuente al polo negativo y contrario al flujo de electrones y siempre tiene el mismo signo. La corriente continua se caracteriza por su tensión, porque, al tener un flujo de electrones prefijado pero continuo en el tiempo, proporciona un valor fijo de ésta (de signo continuo), y en la gráfica V-t (tensión tiempo) se representa como una línea recta de valor V. Ej: Corriente de +1v
Grafico 1.1: Señal de corriente continua
15/40
1.10 SEÑAL DE CORRIENTE ALTERNA O AC En la corriente alterna (CA o AC), los electrones no se desplazan de un polo a otro, sino que a partir de su posición fija en el cable (centro), oscilan de un lado al otro de su centro, dentro de un mismo entorno o amplitud, a una frecuencia determinada (número de oscilaciones por segundo). Por tanto, la corriente así generada (contraria al flujo de electrones) no es un flujo en un sentido constante, sino que va cambiando de sentido y por tanto de signo continuamente, con tanta rapidez como la frecuencia de oscilación de los electrones. En la gráfica V-t, la corriente alterna se representa como una curva u onda, que puede ser de diferentes formas (cuadrada, sinusoidal, triangular..) pero siempre caracterizada por su amplitud (tensión de cresta positiva a cresta negativa de onda), frecuencia (número de oscilaciones de la onda en un segundo) y período (tiempo que tarda en dar una oscilación). Ej: Corriente de 2Vpp (pico a pico) de amplitud, frecuencia 476'2 Hz (oscil/seg)
Grafico 1.2: Señal de corriente alterna También se pueden emplear corrientes combinación de ambas, donde la componente continua eleva o desciende la señal alterna de nivel. Ej: Aplicando las dos señales anteriores, tenemos:
16/40
Grafico 1.3: Suma de la señal continua y la señal alterna
1.11 EL DIODO Diodo semiconductor
Un diodo semiconductor moderno está hecho de cristal semiconductor como el silicio con impurezas en él para crear una región que contiene portadores de carga negativos (electrones), llamado semiconductor de tipo n, y una región en el otro lado que contiene portadores de carga positiva (huecos), llamado semiconductor tipo p. Las terminales del diodo se unen a cada región. El límite dentro del cristal de estas dos regiones, llamado una unión PN, es donde la importancia del diodo toma su lugar. El cristal conduce una corriente de electrones del lado n (llamado cátodo), pero no en la dirección opuesta; es decir, cuando una corriente convencional fluye del ánodo al cátodo (opuesto al flujo de los electrones). Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je). Al establecerse una corriente de difusión, estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe el nombre de región de agotamiento. A medida que progresa el proceso de difusión, la región de agotamiento va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos. Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (V D) es de 0,7 V en el caso del silicio y 0,4 V para los cristales de germanio. La anchura de la región de
17/40
agotamiento una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor. Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.
Figura 1.10: Formación de la región de agotamiento, en la gráfica
z.c.e.
Polarización directa de un diodo En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad. Para que un diodo esté polarizado directamente, se debe conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
18/40
El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n. El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n. Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n. Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.
De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.
Figura 1.11: Polarización directa del diodo pn. Polarización inversa de un diodo En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión
19/40
en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación: El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, ver semiconductor y átomo) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos. El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos. Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.
Figura 1.12: Polarización inversa del diodo pn.
20/40
En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco (ver semiconductor) a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μ A) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable. Curva característica del dio do
Grafico 1.4: Curva característica del diodo.
Tensión umbral, de codo o de partida (Vγ ). La tensión umbral (también llamada barrera de potencial) de polarización directa coincide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al polarizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incrementando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que
21/40
para pequeños incrementos de tensión se producen grandes variaciones de la intensidad de corriente.
Corriente máxima (Imax ). Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.
Corriente inversa de saturación (Is ). Es la pequeña corriente que se establece al polarizar inversamente el diodo por la formación de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.
Corriente superficial de fugas. Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.
Tensión de ruptu ra (Vr ). Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalancha.
Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo normal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:
Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al chocar con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más electrones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión superiores a 6 V.
22/40
Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como cociente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·10 5 V/cm. En estas condiciones, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.
Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos. Tipos de diodo semiconductor
Figura 1.13: Diodo semiconductor
Varios diodos semiconductores. Abajo: Un puente rectificador. En la mayoría de los diodos, el terminal cátodo se indica pintando una franja blanca o negra.
23/40
Existen varios tipos de diodos, que pueden diferir en su aspecto físico, impurezas, uso de electrodos, que tienen características eléctricas particulares usados para una aplicación especial en un circuito. El funcionamiento de estos diodos es fundamentado por principios de la mecánica cuántica y teoría de bandas. Los diodos normales, los cuales operan como se describía más arriba, se hacen generalmente de silicio dopado o germanio. Antes del desarrollo de estos diodos rectificadores de silicio, se usaba el óxido cuproso y el selenio: su baja eficiencia le dio una caída de tensión muy alta (desde 1,4 a 1,7V) y requerían de una gran disipación de calor mucho más grande que un diodo de silicio. La gran mayoría de los diodos pn se encuentran en circuitos integrados CMOS, que incluyen dos diodos por pin y muchos otros diodos internos.
Diodo avalancha: Diodos que conducen en dirección contraria cuando el voltaje en inverso supera el voltaje de ruptura. Electricámente son similares a los diodos Zener, pero funciona bajo otro fenómeno, el efecto avalancha. Esto sucede cuando el campo eléctrico inverso que atraviesa la unión p-n produce una onda de ionización, similar a una avalancha, produciendo una corriente. Los diodos avalancha están diseñados para operar en un voltaje inverso definido sin que se destruya. La diferencia entre el diodo avalancha (el cual tiene un voltaje de reversa de aproximadamente 6.2V) y el diodo zener es que el ancho del canal del primero excede la "libre asociación" de los electrones, por lo que se producen colisiones entre ellos en el camino. La única diferencia práctica es que los dos tienen coeficientes de temperatura de polaridades opuestas. Diodo de cristal: Es un tipo de diodo de contacto. El diodo cristal consiste de un cable de metal afilado presionado contra un cristal semiconductor, generalmente galena o de una parte de carbón. El cable forma el ánodo y el cristal forma el cátodo. Los diodos de cristal tienen una gran aplicación en los radio a galena. Los diodos de cristal están obsoletos, pero puede conseguirse todavía de algunos fabricantes. Diodo de corr iente constante: Realmente es un JFET, con su compuerta conectada a la fuente, y funciona como un limitador de corriente de dos terminales análogo al diodo Zener, el cual limita el voltaje. Ellos permiten una corriente a través de ellos para alcanzar un valor adecuado y así estabilizarse en un valor específico. También suele llamarse CLDs (por sus siglas en inglés) o diodo regulador de corriente. Diodo túnel o Esaki: Tienen una región de operación que produce una resistencia negativa debido al efecto túnel, permitiendo amplificar señales y circuitos muy simples que poseen dos estados. Debido a la alta concentración de carga, los diodos túnel son muy rápidos, pueden usarse
24/40
en temperaturas muy bajas, campos magnéticos de gran magnitud y en entornos con radiación alta. Por estas propiedades, suelen usarse en viajes espaciales.
Diodo Gunn: Similar al diodo túnel son construidos de materiales como GaAs o InP que produce una resistencia negativa. Bajo condiciones apropiadas, las formas de dominio del dipolo y propagación a través del diodo, permitiendo osciladores de ondas microondas de alta frecuencia. Diodo emisor de luz: En un diodo formado de un semiconductor con huecos en su banda de energía, tal como arseniuro de galio, los portadores de carga que cruzan la unión emiten fotones cuando se recombinan con los portadores mayoritarios en el otro lado. Dependiendo del material, la longitud de onda que se pueden producir varía desde el infrarrojo hasta longitudes de onda cercanas al ultravioleta. El potencial que admiten estos diodos dependen de la longitud de onda que ellos emiten: 2.1V corresponde al rojo, 4.0V al violeta. Los primeros LEDs fueron rojos y amarillos. Los LEDs blancos son en realidad combinaciones de tres LEDs de diferente color o un LED azul revestido con un centelleador amarillo. Los LEDs también pueden usarse como fotodiodos de baja eficiencia en aplicaciones de señales. Un LED puede usarse con un fotodiodo o fototransistor para formar un optoacoplador. Diodo láser : Cuando la estructura de un LED se introduce en una cavidad resonante formada al pulir las caras de los extremos, se puede formar un láser. Los diodos láser se usan frecuentemente en dispositivos de almacenamiento ópticos y para la comunicación óptica de alta velocidad. Diodo térmico: Este término también se usa para los diodos convencionales usados para monitorear la temperatura a la variación de voltaje con la temperatura, y para refrigeradores termoeléctricos para la refrigeración termoeléctrica. Los refrigeradores termoeléctricos se hacen de semiconductores, aunque ellos no tienen ninguna unión de rectificación, aprovechan el comportamiento distinto de portadores de carga de los semiconductores tipo P y N para transportar el calor. Fotodiodos: Todos los semiconductores están sujetos a portadores de carga ópticos. Generalmente es un efecto no deseado, por lo que muchos de los semiconductores están empacados en materiales que bloquean el paso de la luz. Los fotodiodos tienen la función de ser sensibles a la luz (fotocelda), por lo que están empacados en materiales que permiten el paso de la luz y son por lo general PIN (tipo de diodo más sensible a la luz). Un fotodiodo puede usarse en celdas solares, en fotometría o en comunicación óptica. Varios fotodiodos pueden empacarse en un dispositivo como un
25/40
arreglo lineal o como un arreglo de dos dimensiones. Estos arreglos no deben confundirse con los dispositivos de carga acoplada.
Diodo con puntas de contacto: Funcionan igual que los diodos semiconductores de unión mencionados anteriormente aunque su construcción es más simple. Se fabrica una sección de semiconductor tipo n, y se hace un conductor de punta aguda con un metal del grupo 3 de manera que haga contacto con el semiconductor. Algo del metal migra hacia el semiconductor para hacer una pequeña región de tipo p cerca del contacto. El muy usado 1N34 (de fabricación alemana) aún se usa en receptores de radio como un detector y ocasionalmente en dispositivos analógicos especializados. Diodo PIN: Un diodo PIN tiene una sección central sin doparse o en otras palabras una capa intrínseca formando una estructura p-intrinseca-n. Son usados como interruptores de alta frecuencia y atenuadores. También son usados como detectores de radiación ionizante de gran volumen y como fotodetectores. Los diodos PIN también se usan en la electrónica de potencia y su capa central puede soportar altos voltajes. Además, la estructura del PIN puede encontrarse en dispositivos semiconductores de potencia, tales como IGBTs, MOSFETs de potencia y tiristores. Diodo Schottky: El diodo Schottky están construidos de un metal a un contacto de semiconductor. Tiene una tensión de ruptura mucho menor que los diodos pn. Su tensión de ruptura en corrientes de 1mA está en el rango de 0.15V a 0.45V, lo cual los hace útiles en aplicaciones de fijación y prevención de saturación en un transistor. También se pueden usar como rectificadores con bajas pérdidas aunque su corriente de fuga es mucho más alta que la de otros diodos. Los diodos Schottky son portadores de carga mayoritarios por lo que no sufren de problemas de almacenamiento de los portadores de carga minoritarios que ralentizan la mayoría de los demás diodos (por lo que este tipo de diodos tiene una recuperación inversa más rápida que los diodos de unión pn. Tienden a tener una capacitancia de unión mucho más baja que los diodos pn que funcionan como interruptores veloces y se usan para circuitos de alta velocidad como fuentes conmutadas, mezclador de frecuencias y detectores.
1.12 EL TRANSISTOR El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se encuentran prácticamente en todos los aparatos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos
26/40
de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, ordenadores, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, teléfonos móviles, etc.
Figura 1.14: Transistores de diferentes potencias
El transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956. Fue el sustituto de la válvula termoiónica de tres electrodos, o triodo. El transistor de efecto de campo fue descubierto antes que el transistor (1930), pero no se encontró una aplicación útil ni se disponía de la tecnología necesaria para fabricarlos masivamente.
27/40
Es por ello que al principio se usaron transistores bipolares y luego los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre el surtidor o fuente (source) y el drenaje (drain) se controla mediante el campo eléctrico establecido en el canal. Por último, apareció el MOSFET (transistor FET de tipo Metal-Óxido-Semiconductor). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (CI). Hoy la mayoría de los circuitos se construyen con tecnología CMOS. La tecnología CMOS (Complementary MOS ó MOS Complementario) es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga. El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, condensadores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica. De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de colector y corriente de base, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas(configuraciones) básicos para utilización analógica de los transistores son emisor común, colector común y base común. Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control (graduador) y gradúa la conductancia del canal entre los terminales de Fuente y Drenaje. Cuando la conductancia es nula y el canal se encuentra estrangulado, por efecto de la tensión aplicada entre Compuerta y Fuente, es el campo eléctrico presente en el
28/40
canal el responsable de impulsar los electrones desde la fuente al drenaje. De este modo, la corriente de salida en la carga conectada al Drenaje (D) será función amplificada de la Tensión presente entre la Compuerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Compuerta, Drenador y Fuente son Reja (o Grilla Control), Placa y Cátodo. Los transistores de efecto de campo, son los que han permitido la integración a gran escala disponible hoy en día, para tener una idea aproximada pueden fabricarse varios cientos de miles de transistores interconectados, por centímetro cuadrado y en varias capas superpuestas. 1.13 EL TIMER 555 El circuito integrado 555 es de bajo costo y de grandes prestaciones. Inicialmente fue desarrollado por la firma Signetics. En la actualidad es construido por muchos otros fabricantes. Entre sus aplicaciones principales cabe destacar las de multivibrador estable (dos estados metaestables) y monoestable (un estado estable y otro metaestable), detector de impulsos, etcétera.
Figura 1.15: Timer 555
El temporizador 555 se puede conectar para que funcione de diferentes maneras, entre los más importantes están: como multivibrador astable y como multivibrador monoestable. Puede también configurarse para por ejemplo generar formas de onda tipo Rampa.
29/40
Multivibrador As table
Figura 1.16: Esquema de la aplicación de multivibrador astable del 555. Este tipo de funcionamiento se caracteriza por una salida con forma de onda cuadrada (o rectangular) continua de ancho predefinido por el diseñador del circuito. El esquema de conexión es el que se muestra. La señal de salida tiene un nivel alto por un tiempo t1 y un nivel bajo por un tiempo t2. La duración de estos tiempos dependen de los valores de R1, R2 y C, según las fórmulas siguientes: [segundos]
y [segundos]
La frecuencia con que la señal de salida oscila está dada por la fórmula:
El período está dada por la fórmula:
30/40
También decir que si lo que queremos es un generador con frecuencia variable, debemos variar la capacidad de condensador, ya que si el cambio lo hacemos mediante los resistores R1 y/o R2, también cambia el ciclo de trabajo o ancho de pulso (D) de la señal de salida según la siguiente expresión:
Hay que recordar que el período es el tiempo que dura la señal hasta que ésta se vuelve a repetir (Tb - Ta). Si se requiere una señal cuadrada donde el ciclo de trabajo D sea del 50%, es decir que el tiempo t1 sea igual al tiempo t2, es necesario añadir un diodo en paralelo con R2 según se muestra en la figura. Ya que, según las fórmulas, para hacer t1 = t2 sería necesario que R1 fuera cero, lo cual en la práctica no funcionaría. CORRECCION: Para realizar un ciclo de trabajo igual al 50% se necesita colocar el resistor R1 entre la fuente de alimentación y la terminal 7; desde la terminal 7 hacia el condensador se colo un diodo con el ánodo apuntando hacia el condensador, después de esto se coloca un diodo con el cátodo del lado del condensador seguido del resistor R2 y este conjunto de diodo y resistor en paralelo con el primer diodo, ademas de esto los valores de los resistores R1 y R2 tienen que ser de la misma magnitud. 1.14 EL CONTADOR En electrónica es bastante frecuente verse necesitado de contabilizar eventos y por tanto se requiere utilizar un contador, en nuestro caso se tratará de un contador electrónico digital. Un contador electrónico básicamente consta de una entrada de impulsos que se encarga de conformar (escuadrar), de manera que el conteo de los mismos no sea alterado por señales no deseadas, las cuales pueden falsear el resultado final. Estos impulsos son acumulados en un contador propiamente dicho cuyo resultado, se presenta mediante un visor que puede estar constituido por una serie de sencillos dígitos de siete segmentos o en su caso mediante una sofisticada pantalla de plasma. Empezaremos por considerar un circuito de entrada que nos permita tomar la señal motivo del conteo, para lo cual hemos de pensar en la forma de tomar la señal a medir.Para que el mencionado circuito sea lo más universal posible:
Entrada de alta impedancia (Z). El circuito no debería absorber demasiada señal para no inducir errores.
31/40
Dicha señal, la deberemos escuadrar de forma segura.
El circuito constará de un separador de corriente continua mediante un condensador ceramico de baja capacidad (47nf/400V), para detectar las señales de alta frecuencia si es el caso, la salida se conectará a un diferenciador constituido por una puerta lógica, para una mayor seguridad dicha puerta será un disparador Schmitt (trigger Schmitt). Si utilizamos un transistor, éste debe ser de alta velocidad.
Figura 1.17: Circuito de un contador de un digito
1.15 EL MICROCONTROLADOR Un microcontrolador es un circuito integrado que incluye en su interior las tres unidades funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entrada y salida.
32/40
Figura 1.18: Esquema del microcontrolador Dentro del mundo de la electrónica digital existen básicamente dos maneras de diseñar o construir un circuito: mediante componentes discretos y circuitos integrados, o bien utilizando microcontroladores. Estos incluyen dentro de una misma capsula (a veces de tan solo 8 pines) un microprocesador, una memoria RAM, una ROM (generalmente de tipo FLASH), puertos de entrada y salida, etc. y pueden ser fácilmente programados para llevar a cabo las más diversas tareas. Explicado mediante términos sencillos, podemos definir a un microcontrolador como un circuito integrado (chip) que incluye en su interior las tres unidades funcionales de una computadora: CPU, memoria y unidades de E/S, es decir, se trata de una computadora completa en un solo circuito integrado. Aunque por supuesto sus prestaciones son limitadas si las comparamos con las de cualquier ordenador personal, además de dicha integración, su característica principal es su alto nivel de especialización. Si bien los hay del tamaño de un sello de correos, lo normal es que sean incluso más pequeños, ya que, lógicamente, forman parte del dispositivo que controlan. Los microcontroladores representan la inmensa mayoría de los chips microprocesadores vendidos, sobre un 50% son controladores "simples" y otro son DSP (Digital Signal Processor, Procesador Digital de Señal), circuitos más especializados. Mientras podemos tener uno o dos microprocesadores de propósito general en casa (dentro del ordenador, claro!),
33/40
probablemente tenemos distribuido entre los electrodomésticos de nuestra casa entre una y dos docenas de microcontroladores. Pueden encontrarse en casi cualquier dispositivo eléctrico como automóviles, lavarropas, hornos microondas, teléfonos, equipos de audio, etc. Un microcontrolador difiere de un microprocesador de los que estamos acostumbrados a ver (por ejemplo un Athlon o un Pentium), no solo fisicamente si no en que es más fácil convertirlo en una “computadora” en funcionamiento, con un mínimo de chips externos de apoyo. La idea es que el chip se coloque en el dispositivo, enganchado a la fuente de energía y de información (por medio de sus puertos de entrada/salida integrados) que necesite, y eso es todo. Un microprocesador convencional no le permitirá hacer esto, ya que normalmente requiere que todas estas tareas sean manejadas por otros chips. Típicamente, un microcontrolador puede disponer de un generador de reloj integrado y una pequeña cantidad de memoria RAM y ROM/EPROM/EEPROM, significando que para hacerlo funcionar, todo lo que se necesita son unos pocos programas de control y un cristal de sincronización. Los microcontroladores disponen generalmente también de una gran variedad de dispositivos de entrada/salida, como convertidores de analógico a digital, temporizadores, UARTs y buses de interfaz serie especializados, como I2C y CAN, entre otros. Frecuentemente, estos dispositivos integrados pueden ser controlados por instrucciones de procesadores especializados. Los modernos microcontroladores a veces incluyen un lenguaje de programación integrado, como el VISUAL BASIC que se utiliza bastante con este propósito. En caso de que no dispongan de un interprete “on-board”, se pueden programar desde el ordenador, usando también alguna versión de VisuaL Basic, Visual C, assembler u otros dentro de la larga lista de lenguajes disponibles, muchas veces en forma gratuita. Los microcontroladores negocian la velocidad y la flexibilidad para facilitar su uso. Debido a que se utiliza bastante sitio en el chip para incluir funcionalidad, como los dispositivos de entrada/salida o la memoria que incluye el microcontrolador, se ha de prescindir de cualquier otra circuitería. Incluso en una de las familias mas difundidas, solo se dispone de un set de 35 instrucciones básicas.
34/40
Figura 1.19: Plac a co n un micr ocon trol ador ATme l. Microchip es la empresa que fabrica los microcontroladores PIC. En los últimos tiempos esta familia de microcontroladores ha revolucionado el mundo de las aplicaciones electrónicas. Tienen una facilidad de uso y programación tales, que junto a las inmensas posibilidades de E/S que brindan han conquistado a programadores y desarrolladores. Su principal ventaja (y según sus detractores la principal desventaja) es su carácter general, la flexibilidad que les permite ser empleados en casi cualquier aplicación. Otras familias de microcontroladores son más eficaces en aplicaciones específicas. La familia PIC se divide en cuatro gamas, gamas que podemos llamar mini, baja, media y alta. Las principales diferencias entre estas gamas radica en el número de instrucciones y su longitud, el número de puertos y funciones, lo cual se refleja en el encapsulado, la complejidad interna y de programación, y en el número de aplicaciones, como veremos a continuación. Gama mini, con encapsulado de 8 pines, tiene como principal característica su reducido tamaño, al disponer todos sus componentes de solamente 8 pines. Se alimentan con un voltaje de corriente continua comprendido entre 2,5 V y 5,5 V, y consumen menos de 2 mA cuando trabajan a 5 V y 4 MHz. El formato de sus instrucciones puede ser de 12 o de 14 bits y su repertorio es de 33 o 35 instrucciones, respectivamente. En la figura 1 se muestra el diagrama de conexionado de uno de estos PIC. A pesar de tener solo 8 pines, se pueden destinar hasta 6 de ellos como E/S para los periféricos porque disponen de un oscilador interno R-C, lo cual es una de su principales características (los dos
35/40
restantes corresponden a la alimentación) Los modelos 12C5xx pertenecen a esta gama, siendo el tamaño de las instrucciones de 12 bits; mientras que los 12C6xx son de la gama media y sus instrucciones tienen 14 bits. Los modelos 12F6xx poseen memoria Flash para el programa y EEPROM para los datos. Algunos modelos disponen de conversores Analógico/Digital de 8 bits incorporados. La gama baja o básica consiste en una serie de PIC de recursos limitados, pero con una de la mejores relaciones coste/prestaciones de la familia. Sus versiones están encapsuladas con 18 y 28 patitas y pueden alimentarse a partir de una tensión de 2,5 V, lo que les hace ideales en las aplicaciones que funcionan con pilas teniendo en cuenta su bajo consumo (menos de 2 mA a 5 V y 4 MHz). Tienen un repertorio de 33 instrucciones cuyo formato consta de 12 bits. La figura 2 ilustra su conexionado. Al igual que todos los miembros de la familia PIC16/17, los componentes de la gama baja se caracterizan por poseer los siguientes recursos: Sistema “Power On Reset”, Perro guardián (Watchdog o WDT), Código de protección, etc. La denominada gama media es la más variada y completa de los PIC. Abarca modelos con encapsulado desde 18 hasta 68 pines, cubriendo varias opciones que integran abundantes periféricos. Dentro de esta gama se halla el famoso PIC16F84, quizás el modelo mas utilizado en la historia de los microcontroladores, aunque ya se lo considera obsoleto. En esta gama sus componentes añaden nuevas prestaciones a las que poseían los de la gama baja, haciéndoles más adecuados en las aplicaciones complejas. Poseen comparadores de magnitudes analógicas, convertidores A/D, puertos serie y diversos temporizadores. El repertorio de instrucciones es de 35, de 14 bits cada una y compatible con el de la gama baja. Sus distintos modelos contienen todos los recursos que se precisan en las aplicaciones de los microcontroladores de 8 bits. También dispone de interrupciones y una pila de 8 niveles que permite el anidamiento de subrutinas. Encuadrado en la gama media también se halla la versión PIC14C000, que soporta el diseño de controladores inteligentes para cargadores de baterías, pilas pequeñas, fuentes de alimentación y UPS y cualquier sistema de adquisición y procesamiento de señales que requiera gestión de la energía de alimentación. Los PIC 14C000 admiten cualquier tecnología de las baterías como Li-Ion, NiMH, NiCd, Ph y Zinc. La gama alta dispone de chips con 58 instrucciones de 16 bits en el repertorio y que disponen de un sistema de gestión de interrupciones vectorizadas muy potente. También incluyen variados controladores de periféricos, puertos de comunicación serie y paralelo con elementos externos, un multiplicador hardware de gran velocidad y mayores capacidades de memoria, que alcanza los 8 k palabras en la memoria de instrucciones y 454 bytes en la memoria de datos. Quizás la característica más destacable de los componentes de esta gama es su arquitectura abierta, que
36/40
consiste en la posibilidad de ampliación del microcontrolador con elementos externos. Para este fin, algunos pinen comunican con el exterior las líneas de los buses de datos, direcciones y control, a las que se pueden conectar memorias o controladores de periféricos. Esta facultad obliga a estos componentes a tener un elevado número de pines, comprendido entre 40 y 44. Esta filosofía de construcción del sistema es la que se empleaba en los microprocesadores y no suele ser una práctica habitual cuando se emplean microcontroladores. Esta gama se utiliza en aplicaciones muy especiales, con grandes requerimientos. Familias de microc ontroladores Los microcontroladores más comunes en uso son:
Empresa
8 bits
Atmel
AVR (mega y tiny),89S xxxx familia similar 8051
Freescale (antes Motorola)
68HC05, 68HC08, 68HC11, HCS08
Holtek
HT8
12 14 bi bi ts ts
16 bits
32 bits
64 Observaci bi ones ts
SAM7 (ARM7TDMI), SAM3 (ARM Cortex‐M3), SAM9 (ARM926) 683xx, PowerPC x Architecture,Co ldFire
x
x
68HC12, 68HCS12, 68HCSX12, 68HC16
Intel
MCS‐48 (familia 8048) MCS51 (familia 8051) 8xC251
x
x
MCS96, MXS296
x
x
x
National Semiconduct or
COP8
x
x
x
x
x
x
Microchip
Familia 10f2xx
PIC24F, PIC24H y dsPIC30FXX,dsPIC33F con
PIC32
x
x
x
37/40
Familia 12Cxx Familia 12Fxx, 16Cxx y 16Fxx 18Cxx y 18Fxx NXP (antes Philips)
motor dsp integrado
80C51
XA
Cortex ‐M3, Cortex ‐M0, ARM7, ARM9
78K,H8
H8S,78K0R,R8C,R32C/M3 2C/M16C
RX,V850,Super H,SH‐ Mobile,H8SX
Parallax Renesas (antes Hitachi, Mitsubishi y NEC)
x
x
STMicroelectr ST 62,ST onics 7 Texas Instruments
TMS370, MSP430
Zilog
Z8, Z86E02
Silabs
C8051
C2000, Cortex‐ M3 (ARM) , TMS570 (ARM)
Unidad aritmético–lógica (UAL) Esta unidad es la encargada de realizar las operaciones elementales de tipo aritmético (generalmente sumas o restas) y de tipo lógico (generalmente comparaciones). Para realizar su función, consta de los siguientes elementos:
Banco de registros (BR). Está constituido por 8, 16 ó 32 registros de tipo general que sirven para situar dates antes de cada operación, para almacenar datos intermedios en las operaciones y para operaciones internas del procesador. Circuitos operadores (CIROP). Compuesto de uno o varios circuitos electrónicos que realizan operaciones elementales aritméticas y lógicas (sumador, complementador, desplazador, etc).
38/40
Registro de resultado (RR). Se trata de un registro especial, en el que se depositan los resultados que producen los circuitos operadores. Señalizadores d e estado (SE). Registro con un conjunto de biestables en los que se deja constancia de algunas condiciones que se dieron en la última operación realizada.
Figura 1.20: Esqu ema d e la unid ad a ritm étic a y l ógic a
1.16 SEÑALES DIGITALES Los circuitos electrónicos se pueden dividir en dos amplias categorías: digitales y analógicos. Señales analógi cas La señal analógica es aquella que presenta una variación continua con el tiempo, es decir, que a una variación suficientemente significativa del tiempo le corresponderá una variación igualmente significativa del valor de la señal (la señal es continua). Toda señal variable en el tiempo, por complicada que ésta sea, se representa en el ámbito de sus valores (espectro) de frecuencia. De este modo, cualquier señal es susceptible de ser representada descompuesta en su frecuencia fundamental y sus armónicos. El proceso matemático que permite esta descomposición se denomina análisis de Fourier. Un ejemplo de señal analógica es la generada por un usuario en el micrófono de su teléfono y que después de sucesivos procesos, es recibida por otro abonado en el altavoz del suyo.
39/40
Figura 1.21: señ al ana lóg ica . Es preciso indicar que la señal analógica, es un sistema de comunicaciones de las mismas características, mantiene dicho carácter y deberá ser reflejo de la generada por el usuario. Esta necesaria circunstancia obliga a la utilización de canales lineales, es decir canales de comunicación que no introduzcan deformación en la señal original. Las señales analógicas predominan en nuestro entorno (variaciones de temperatura, presión, velocidad, distancia, sonido etc.) y son transformadas en señales eléctricas, mediante el adecuado transductor, para su tratamiento electrónico. La utilización de señales analógicas en comunicaciones todavía se mantiene en la transmisión de radio y televisión tanto privada como comercial. Los parámetros que definen un canal de comunicaciones analógicas son el ancho de banda (diferencia entre la máxima y la mínima frecuencia a transmitir) y su potencia media y de cresta. Señales dig itales Una señal digital es aquella que presenta una variación discontinua con el tiempo y que sólo puede tomar ciertos valores discretos. Su forma característica es ampliamente conocida: la señal básica es una onda cuadrada (pulsos) y las representaciones se realizan en el dominio del tiempo. Sus parámetros son:
Altura de pulso (nivel eléctrico) Duración (ancho de pulso) Frecuencia de repetición (velocidad pulsos por segundo)
Las señales digitales no se producen en el mundo físico como tales, sino que son creadas por el hombre y tiene una técnica particular de tratamiento, y como dijimos anteriormente, la señal básica es una onda cuadrada, cuya representación se realiza necesariamente en el dominio del tiempo.