DOC NO : HZL-BTN-ELE-DS-SY-028 SAG TENSION CALCULA TION FOR 26.68 26.68 m SPA N SINGLE BEA R ACSR - 132kV TRANSFORMER FEEDER FEEDER 1.0.0 DESIGN INPUT 1.1.0 System Parameters 1.1.1 Bay Location
=
132kV TRANSFORMER FEEDER
1.1.2 Conductor type & strands
=
SINGLE BEAR ACSR
1.1.3 Initial Tension (Max.)
T1
=
1000
1.1.4 c/c distance of tower (Maximum Span)
L
=
26680
mm
1.1.5 Girder Width
Lg
=
750
mm
1.1.6 Tower height
H1
=
8000
mm
1.1.7 Height of the equipment below the conductor
H2
=
5955
mm
1.1.8 Number of Conductors
nc
=
1
Nos.
1.1.9 Number of Insulator Strings
ns
=
1
Nos.
1.1.10 Basic Wind Speed
Vb
=
47
m/s
1.1.11 Span (c/c tower - lg)
Ls
=
25930
mm
1.1.12 Maximum Temperature
To
=
85
°C
1.1.13 Minimum Temperature
Tmin
=
0
1.2.1 Conductor unit weight
m's
=
1.2.2 Conductor Area
Ac
=
325.6
mm
1.2.3 Conductor overall diameter
dc
=
23.45
mm
1.2.4 Expansion coefficient of conductor
α
=
1.78E-05 /°C
1.2.5 Elasticity modulus
E
=
8.2E+03 kg/mm 2
1.3.1 Number of discs per string
nd
=
12
1.3.2 Weight of each disc
Wd
=
7.5
kg
1.3.3 Weight of hardware
Wh
=
17.02
kg
1.3.4 Mean Diameter of Insulator
di
=
255
mm
1.3.5 Length of each disc
Ld
=
145
mm
1.3.6 Length of hardware
Lh
=
750
mm
1.3.7 Width of the hardware
dh
=
250
mm
kg
(1T per phase)
(As p er IS: 875 -1987,
Part : 3)
(As per Clause 10.2,
IS-802,pageno.9) °C
1.2.0 ACSR Co nd uc to r 0.001213
kg/mm 2
1.3.0 Tension Tension Insulator
1 of 14
(As per Vendor drawing)
DOC NO : HZL-BTN-ELE-DS-SY-028 2.0.0 CALCULA TION OF BASIC DESIGN PARAMETERS PARAMETERS 2.0.1 Weight Weight of Disc ins ulator stri ng (W wi ) W wi
=
W d x nd x ns
=
7.5 x 12 x 1
=
90
kg
2.0.3 Length of the Disc insulator string (L str ) Lstr
=
nd x Ld
=
12 x 145
=
1740
mm
2.0.4 Conductor Chord length (L c ) Lc
=
(L - Lg) - 2 x (Lstr + Lh)
=
(26680 - 750) - 2 x (1740 + 750)
k0
= = = =
4 47 1 1.375
Meteorological wind speed
Vr
=
Vb / k0
Risk co efficient Terrain roughness co efficient Design wind speed
k1 k2 Vd
= = =
=
20950
mm
3.0.0 DESIGN CALCULTION 3.1.0 Design Design wind speed (Vd ) Wind zone Basic wind speed Reliability level of structure factor
Vb
m/s (As per IS 802, Clause 8.2, Pg no:3) =
1 1 Vr x k1 x k2
34.19
=
m/s
=
34.19 x 1 x 1
34.19
m/s
3.2.0 Design Design Wind pressur e (Pd ) Pd
=
0.6 x Vd
2
=
0.6 x (34.19^2)
=
2
701.38
N/m
=
0.0000715
(As per IS 802, Clause 9.2, Pg no:7)
kg/mm
3.3.0 Wind pressure on conductor (P c ) Drag Co efficient for conductor
Cd
=
1
Gust response factor for 8000mm level (For reliability level 1, Terrain category 2)
Gc
=
1.66
(As per IS 802, Table 7, Pg no:9)
Full wind pressure on conductor, Pc
=
Pd x Cd x Gc
=
0.0000715 x 1 x 1.66
=
0.0001187
kg/mm
2
3.4.0 Wind pressure on Insulator (P i ) Drag Co efficient for insulator
Cdi
=
1.2
Gust response factor for le level (For reliability level 1, Terrain category 2)
Gci
=
1.864
(As per IS 802, Clause 9.3, Pg no:9) (As per IS 802, Table 6, Pg no:9)
Full wind pressure on insulator, Pi
=
Pd x Cdi x Gci
=
0.0000715 x 1.2 x 1.864
2 of 14
=
0.00016
kg/mm2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 3.5.0 Equivalent weight of Conductor in loaded condition 3.5.1 Full wind load on conductor (W c ) Wc
=
Pc x dc
=
0.0001187 x 23.45
=
0.00279
kg/mm
3.5.2 Equivalent weight of conductor at full wind (W 2) W2
2
=
m'sc + W c
2
=
(0.001213^2) + (0.00279^2)
=
0.00305 kg/mm
3.6.0 Equivalent weight of insulator in loaded condition 3.6.1 Full wind load on insu lator (W s ) Ws
=
=
(As per IS 802, Clause 9.3, Pg no:9)
0.5 x Pi x di x Lstr x ns
0.5 x 0.00016 x 255 x 1740 x 1
=
35.5
kg
3.6.2 Equivalent weight of insulator at full wi nd (W i2 ) W i2
2
=
2
=
W wi + W s
(90^2) + (35.5^2)
=
96.75
kg
3.6.3 Resultant Resultant ins ulator load on each sub conduct or (W i) Wi
=
W i2
nc
/
=
96.75 / 1
=
96.75
kg
3.7.0 Equivalent load of insulator hardware in loaded condition 3.7.1 Full wind load on insulator hardware W wh
=
Pi x dh x Lh
=
WT
=
17.02 x 1
=
0.00016 x 250 x 750
17.02
=
30
kg
kg
3.7.2 Equivalent weight of hardware at full wind (W hT ) W hT
2
=
W wh + W
2
=
T
(30^2) + (17.02^2)
=
3.7.3 Resultant Resultant Hardware load on each sub con ductor (W hr ) W hr
=
W hT
/
nc
=
34.492 / 1
3 of 14
=
34.492
kg
34.492
kg
DOC NO : HZL-BTN-ELE-DS-SY-028 4.0.0 FULL WIND CONDITION 4.1.0 Load distribution 96.750 kg
34.492 kg
0.003050 kg/mm
34.492 kg
96.750 kg
A
B
1740.0 mm
750 mm
20950.000 mm
750 mm
1740.0 mm
4.1.1 Reaction at each end R A
RB
=
=
96.75 + 34.492 + ((0.00305 x 20950)/2)
kg
=
163.1908
kg
4.1.2 Shear Shear f orce di agram +163.1908 kg +66.4408 kg 10475
+31.9488 kg
870
1245
375
375
1245
870
-31.9488 kg
10475
-66.4408 kg NOTE: LENGTH IN "mm" -163.1908 kg Maximum Sag occurs at the centre of the span 4.1.3 Cross for ce area (Upto (Upto m aximum s ag) I1
=
163.1908 x 870
=
141975.996
kg.mm
I2
=
66.4408 x 1245
=
82718.796
kg.mm
I3
=
31.9488 x 375
=
11980.8
kg.mm
I4
=
0.5 x 31.9488 x 10475
=
167331.84
kg.mm
=
404007.432
kg.mm
SI1 4.1.4 Cross Force moments
2
S1
=
141975.996 x 163.1908 x 0.5
=
11584588.1840
kg mm
S2
=
82718.796 x 66.4408 x 0.5
=
2747951.4906
kg mm
S3
=
11980.8 x 31.9488 x 0.5
=
191386.0915
kg mm
S4
=
167331.84 x 31.9488 / 3
=
1782017.1633
kg mm
TS
=
(S1 + S2 + S3 + S4) x 2
=
32611885.8588
kg mm
4 of 14
2
2
2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 5.0.0 STILL WIND CONDITION 5.1.0 Load distribution 90.000 kg
17.020 kg
0.001213 kg/mm
17.020 kg
90.000 kg
A
B
1740.0 mm
750 mm
20950.000 mm
750 mm
1740.0 mm
5.1.1 Reaction at each end R A
RB
=
=
90 + 17.02 + ((0.001213 x 20950)/2)
kg
=
119.7262
kg
5.1.2 Shear Shear f orce di agram +119.7262 kg +29.7262 kg 10475
+12.7062 kg
870
1245
375
375
1245
870
-12.7062 kg
10475
-29.7262 kg NOTE: LENGTH IN "mm" -119.7262 kg Maximum Sag occurs at the centre of the span 5.1.3 Cross for ce area (Upto (Upto m aximum s ag) I1
=
119.7262 x 870
=
104161.794
kg.mm
I2
=
29.7262 x 1245
=
37009.119
kg.mm
I3
=
12.7062 x 375
=
4764.825
kg.mm
I4
=
0.5 x 12.7062 x 10475
=
66548.7225
kg.mm
=
212484.4605
kg.mm
SI2 5.1.4 Cross Force moments
2
S1
=
104161.794 x 119.7262 x 0.5
=
6235447.8904
kg mm
S2
=
37009.119 x 29.7262 x 0.5
=
550070.2366
kg mm
S3
=
4764.825 x 12.7062 x 0.5
=
30271.4097
kg mm
S4
=
66548.7225 x 12.7062 / 3
=
281860.4593
kg mm
TSS
=
(S1 + S2 + S3 + S4) x 2
=
14195299.9920
kg mm
5 of 14
2
2
2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 6.0.0 EVALUA TION OF SAG SAG A ND DEFLECTION DEFLECTION AT ANY TEMPERATURE 6.1.0 Sag Sag at any temperature 6.1.1 Final Stress at any temperature
σ
2
E x SM1 x (σ-σ1) +
2
Ac x Ls x
E x SM2
σ1
+ E x α (T1-To)
2
= 2
kg/mm
2
kg/mm
2
Ac x Ls
Where 3.07125
2
σ1
=
SM1
=
TS
=
32611885.8588
kg mm
SM2
=
TSS
=
14195299.9920
kg mm
k /mm
2
2
6.1.2 Sag at any Temperature (S) S
=
Tstill
=
SI2 / Tstill
mm
x A
kg
σ
where, σ is the final stress at still wind condition for a given temperature
6.2.0 Deflection Deflection at any temperature 6.2.1 Final Stress at any temperature
σ
2
E x SM1 x (σ-σ1) +
2
Ac x Ls x
E x SM1
σ1
+ E x α (T1-To)
2
= 2 Ac x
Ls
Where σ1
=
SM1
=
3.07125 TS
kg/mm
=
2
32611885.8588
k
2
mm
6.2.2 Deflection at any Temperature (D) D
=
Tfull
=
SI2 / Tfull
mm
x A
kg
σ
where, σ is the final stress at full wind condition for a given temperature
6.3.0 Conductor Swing at any temperature (Swg ) Swg
=
2
D - S
2
mm
6 of 14
DOC NO : HZL-BTN-ELE-DS-SY-028 6.4.0 Sag, Sag, Tension, Deflectionand Deflectionand Swing f or Various Temperatures Temperatures Temp °c
(Full wind)
σ
kg/mm
2
σ
(Still wind) kg/mm
2
Tfull (kg)
Tstill (kg)
Sag (mm)
Deflection (mm)
Swing (mm)
0
3.0713
2.1319
1000
694.1
306.1
404
263.7
5
2.9813
2.0601
970.7
670.8
316.8
416.2
269.9
10
2.897
1.995
943.3
649.6
327.1
428.3
276.5
15
2.8187
1.935
917.8
630
337.3
440.2
282.9
20
2.7459
1.8799
894.1
612.1
347.1
451.9
289.4
25
2.6779
1.8289
871.9
595.5
356.8
463.4
295.7
30
2.6143
1.7816
851.2
580.1
366.3
474.6
301.8
35
2.5548
1.7376
831.8
565.8
375.5
485.7
308.1
40
2.4987
1.6966
813.6
552.4
384.7
496.6
314
45
2.4461
1.6581
796.5
539.9
393.6
507.2
319.9
50
2.3963
1.6221
780.2
528.2
402.3
517.8
326
55
2.3494
1.5882
765
517.1
410.9
528.1
331.7
60
2.3049
1.5563
750.5
506.7
419.3
538.3
337.6
65
2.2627
1.5261
736.7
496.9
427.6
548.4
343.4
70
2.2226
1.4976
723.7
487.6
435.8
558.3
349
75
2.1846
1.4705
711.3
478.8
443.8
568
354.5
80
2.1482
1.4448
699.5
470.4
451.7
577.6
360
85
2.1135
1.4204
688.2
462.5
459.4
587
365.4
6.4.1 Maximum Working Tension
T
=
1000
kg
6.4.2 Maximum sag of Lower most conductor
S
=
459.4
mm
6.4.3 Height of tower
H
=
8000
mm
6.4.4 Height of Equipment
h
=
5955
mm
V cl r
=
1585.6
mm
=
1300
mm
6.4.5 Vertical Clearance between lower most Conductor and equipment 6.4.6 Clearance between phase to phase for 132kV as per CBIP manual
6.4.7 Since the calculated vertical clearance between Equ Equipment and Lower most conductor is greater than the minimum clearance between phase to phase, The selected height of tower 8000mm is adequate.
7 of 14
DOC NO : HZL-BTN-ELE-DS-SY-028 SAG TENSION CAL CAL CULATION FOR 12 m SPAN SINGLE BEA R ACSR - 132kV BUS 1.0.0 DESIGN INPUT 1.1.0 System Parameters 1.1.1 Bay Location
=
132kV BUS
1.1.2 Conductor type & strands
=
SINGLE BEAR ACSR
1.1.3 Initial Tension (Max.)
T1
=
1000
1.1.4 c/c distance of tower (Maximum Span)
L
=
12000
mm
1.1.5 Girder Width
Lg
=
750
mm
1.1.6 Tower height
H1
=
8000
mm
1.1.7 Height of the equipment below the conductor
H2
=
5050
mm
1.1.8 Number of Conductors
nc
=
1
Nos.
1.1.9 Number of Insulator Strings
ns
=
1
Nos.
1.1.10 Basic Wind Speed
Vb
=
47
m/s
1.1.11 Span (c/c tower - lg)
Ls
=
11250
mm
1.1.12 Maximum Temperature
To
=
85
°C
1.1.13 Minimum Temperature
Tmin
=
0
1.2.1 Conductor unit weight
m's
=
1.2.2 Conductor Area
Ac
=
325.6
mm
1.2.3 Conductor overall diameter
dc
=
23.45
mm
1.2.4 Expansion coefficient of conductor
α
=
1.78E-05 /°C
1.2.5 Elasticity modulus
E
=
8.2E+03 kg/mm 2
1.3.1 Number of discs per string
nd
=
12
1.3.2 Weight of each disc
Wd
=
7.5
kg
1.3.3 Weight of hardware
Wh
=
17.02
kg
1.3.4 Mean Diameter of Insulator
di
=
255
mm
1.3.5 Length of each disc
Ld
=
145
mm
1.3.6 Length of hardware
Lh
=
750
mm
1.3.7 Width of the hardware
dh
=
250
mm
kg
(1T per phase)
(As p er IS: 875 -1987, -1987,
Part : 3)
(As per Clause 10.2,
IS-802,pageno.9) °C
1.2.0 ACSR Co nd uc to r 0.001213
kg/mm 2
1.3.0 Tension Tension Insulator
8 of 14
(As per Vendor drawing)
DOC NO : HZL-BTN-ELE-DS-SY-028 2.0.0 CALCULA TION OF BASIC DESIGN PARAMETERS PARAMETERS 2.0.1 Weight Weight of Disc ins ulator stri ng (W wi ) W wi
=
W d x nd x ns
=
7.5 x 12 x 1
=
90
kg
2.0.3 Length of the Disc insulator string (L str ) Lstr
=
nd x Ld
=
12 x 145
=
1740
mm
2.0.4 Conductor Chord length (L c ) Lc
=
(L - Lg) - 2 x (Lstr + Lh)
=
(12000 - 750) - 2 x (1740 + 750)
k0
= = = =
4 47 1 1.375
Meteorological wind speed
Vr
=
Vb / k0
Risk co efficient Terrain roughness co efficient Design wind speed
k1 k2 Vd
= = =
=
6270
mm
3.0.0 DESIGN CALCULTION 3.1.0 Design Design wind speed (Vd ) Wind zone Basic wind speed Reliability level of structure factor
Vb
m/s (As per IS 802, Clause 8.2, Pg no:3) =
1 1 Vr x k1 x k2
34.19
=
m/s
=
34.19 x 1 x 1
34.19
m/s
3.2.0 Design Design Wind pressur e (Pd ) Pd
=
0.6 x Vd
2
=
0.6 x (34.19^2)
=
2
701.38
N/m
=
0.0000715
(As per IS 802, Clause 9.2, Pg no:7)
kg/mm
3.3.0 Wind pressure on conductor (P c ) Drag Co efficient for conductor
Cd
=
1
Gust response factor for 8000mm level (For reliability level 1, Terrain category 2)
Gc
=
1.66
(As per IS 802, Table 7, Pg no:9)
Full wind pressure on conductor, Pc
=
Pd x Cd x Gc
=
0.0000715 x 1 x 1.66
=
0.0001187
kg/mm
2
3.4.0 Wind pressure on Insulator (P i ) Drag Co efficient for insulator
Cdi
=
1.2
Gust response factor for le level (For reliability level 1, Terrain category 2)
Gci
=
1.864
(As per IS 802, Clause 9.3, Pg no:9) (As per IS 802, Table 6, Pg no:9)
Full wind pressure on insulator, Pi
=
Pd x Cdi x Gci
=
0.0000715 x 1.2 x 1.864
9 of 14
=
0.00016
kg/mm
2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 3.5.0 Equivalent weight of Conductor in loaded condition 3.5.1 Full wind load on conductor (W c ) Wc
=
Pc x dc
=
0.0001187 x 23.45
=
0.00279
kg/mm
3.5.2 Equivalent weight of conductor at full wind (W 2) W2
2
=
m'sc + W c
2
=
(0.001213^2) + (0.00279^2)
=
0.00305 kg/mm
3.6.0 Equivalent weight of insulator in loaded condition 3.6.1 Full wind load on insu lator (W s ) Ws
=
=
(As per IS 802, Clause 9.3, Pg no:9)
0.5 x Pi x di x Lstr x ns
0.5 x 0.00016 x 255 x 1740 x 1
=
35.5
kg
3.6.2 Equivalent weight of insulator at full wi nd (W i2 ) W i2
2
=
2
=
W wi + W s
(90^2) + (35.5^2)
=
96.75
kg
3.6.3 Resultant Resultant ins ulator load on each sub conduct or (W i) Wi
=
W i2
nc
/
=
96.75 / 1
=
96.75
kg
3.7.0 Equivalent load of insulator hardware in loaded condition 3.7.1 Full wind load on insulator hardware W wh
=
Pi x dh x Lh
=
WT
=
17.02 x 1
=
0.00016 x 250 x 750
17.02
=
30
kg
kg
3.7.2 Equivalent weight of hardware at full wind (W hT ) W hT
2
=
W wh + W
2
=
T
(30^2) + (17.02^2)
=
3.7.3 Resultant Resultant Hardware load on each sub con ductor (W hr ) W hr
=
W hT
/
nc
=
34.492 / 1
10 of 14
=
34.492
kg
34.492
kg
DOC NO : HZL-BTN-ELE-DS-SY-028 4.0.0 FULL WIND CONDITION 4.1.0 Load distribution 96.750 kg
34.492 kg
0.003050 kg/mm
34.492 kg
96.750 kg
A
B
1740.0 mm
750 mm
6270.000 mm
750 mm
1740.0 mm
4.1.1 Reaction at each end R A
RB
=
=
96.75 + 34.492 + ((0.00305 x 6270)/2)
kg
=
140.8038
kg
4.1.2 Shear Shear f orce di agram +140.8038 kg +44.0538 kg 3135
+9.5618 kg
870
1245
375
375
1245
870
-9.5618 kg
3135
-44.0538 kg NOTE: LENGTH IN "mm" -140.8038 kg Maximum Sag occurs at the centre of the span 4.1.3 Cross for ce area (Upto (Upto m aximum s ag) I1
=
140.8038 x 870
=
122499.306
kg.mm
I2
=
44.0538 x 1245
=
54846.981
kg.mm
I3
=
9.5618 x 375
=
3585.675
kg.mm
I4
=
0.5 x 9.5618 x 3135
=
14988.1215
kg.mm
=
195920.0835
kg.mm
SI1 4.1.4 Cross Force moments
2
S1
=
122499.306 x 140.8038 x 0.5
=
8624183.8911
kg mm
S2
=
54846.981 x 44.0538 x 0.5
=
1208108.9658
kg mm
S3
=
3585.675 x 9.5618 x 0.5
=
17142.7536
kg mm
S4
=
14988.1215 x 9.5618 / 3
=
47771.1401
kg mm
TS
=
(S1 + S2 + S3 + S4) x 2
=
19794413.5012
kg mm
11 of 14
2
2
2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 5.0.0 STILL WIND CONDITION 5.1.0 Load distribution 90.000 kg
17.020 kg
0.001213 kg/mm
17.020 kg
90.000 kg
A
B
1740.0 mm
750 mm
6270.000 mm
750 mm
1740.0 mm
5.1.1 Reaction at each end R A
RB
=
=
90 + 17.02 + ((0.001213 x 6270)/2)
kg
=
110.8228
kg
5.1.2 Shear Shear f orce di agram +110.8228 kg +20.8228 kg 3135
+3.8028 kg
870
1245
375
375
1245
870
-3.8028 kg
3135
-20.8228 kg NOTE: LENGTH IN "mm" -110.8228 kg Maximum Sag occurs at the centre of the span 5.1.3 Cross for ce area (Upto (Upto m aximum s ag) I1
=
110.8228 x 870
=
96415.836
kg.mm
I2
=
20.8228 x 1245
=
25924.386
kg.mm
I3
=
3.8028 x 375
=
1426.05
kg.mm
I4
=
0.5 x 3.8028 x 3135
=
5960.889
kg.mm
=
129727.161
kg.mm
SI2 5.1.4 Cross Force moments
2
S1
=
96415.836 x 110.8228 x 0.5
=
5342536.4549
kg mm
S2
=
25924.386 x 20.8228 x 0.5
=
269909.1524
kg mm
S3
=
1426.05 x 3.8028 x 0.5
=
2711.4915
kg mm
S4
=
5960.889 x 3.8028 / 3
=
7556.0229
kg mm
TSS
=
(S1 + S2 + S3 + S4) x 2
=
11245426.2434
kg mm
12 of 14
2
2
2
2
DOC NO : HZL-BTN-ELE-DS-SY-028 6.0.0 EVALUA TION OF SAG SAG A ND DEFLECTION DEFLECTION AT ANY TEMPERATURE 6.1.0 Sag Sag at any temperature 6.1.1 Final Stress at any temperature
σ
2
E x SM1 x (σ-σ1) +
2
Ac x Ls x
E x SM2
σ1
+ E x α (T1-To)
2
= 2
kg/mm
2
kg/mm
2
Ac x Ls
Where 3.07125
2
σ1
=
SM1
=
TS
=
19794413.5012
kg mm
SM2
=
TSS
=
11245426.2434
kg mm
k /mm
2
2
6.1.2 Sag at any Temperature (S) S
=
Tstill
=
SI2 / Tstill
mm
x A
kg
σ
where, σ is the final stress at still wind condition for a given temperature
6.2.0 Deflection Deflection at any temperature 6.2.1 Final Stress at any temperature
σ
2
E x SM1 x (σ-σ1) +
2
Ac x Ls x
E x SM1
σ1
+ E x α (T1-To)
2
= 2 Ac x
Ls
Where σ1
=
SM1
=
3.07125 TS
kg/mm
=
2
19794413.5012
k
2
mm
6.2.2 Deflection at any Temperature (D) D
=
Tfull
=
SI2 / Tfull
mm
x A
kg
σ
where, σ is the final stress at full wind condition for a given temperature
6.3.0 Conductor Swing at any temperature (Swg ) Swg
=
2
D - S
2
mm
13 of 14
DOC NO : HZL-BTN-ELE-DS-SY-028 6.4.0 Sag, Sag, Tension, Deflectionand Deflectionand Swing f or Various Temperatures Temperatures Temp °c
(Full wind)
σ
kg/mm
2
σ
(Still wind) kg/mm
2
Tfull (kg)
Tstill (kg)
Sag (mm)
Deflection (mm)
Swing (mm)
0
3.0713
2.3757
1000
773.5
167.7
195.9
101.3
5
3.004
2.3191
978.1
755.1
171.8
200.3
103
10
2.9399
2.2665
957.2
738
175.8
204.7
104.9
15
2.8794
2.2169
937.5
721.8
179.7
209
106.7
20
2.8221
2.1704
918.9
706.7
183.6
213.2
108.4
25
2.7679
2.1264
901.2
692.4
187.4
217.4
110.2
30
2.7165
2.085
884.5
678.9
191.1
221.5
112
35
2.6677
2.0457
868.6
666.1
194.8
225.6
113.8
40
2.6212
2.0084
853.5
653.9
198.4
229.5
115.4
45
2.577
1.973
839.1
642.4
201.9
233.5
117.3
50
2.5348
1.9393
825.3
631.4
205.5
237.4
118.9
55
2.4945
1.9073
812.2
621
208.9
241.2
120.6
60
2.456
1.8767
799.7
611.1
212.3
245
122.3
65
2.4191
1.8475
787.7
601.5
215.7
248.7
123.8
70
2.3838
1.8196
776.2
592.5
218.9
252.4
125.7
75
2.3499
1.7928
765.1
583.7
222.2
256.1
127.3
80
2.3173
1.7672
754.5
575.4
225.5
259.7
128.8
85
2.2861
1.7426
744.4
567.4
228.6
263.2
130.4
6.4.1 Maximum Working Tension
T
=
1000
kg
6.4.2 Maximum sag of Lower most conductor
S
=
228.6
mm
6.4.3 Height of tower
H
=
8000
mm
6.4.4 Height of Equipment
h
=
5050
mm
V cl r
=
2721.4
mm
=
1300
mm
6.4.5 Vertical Clearance between lower most Conductor and equipment 6.4.6 Clearance between phase to phase for 132kV as per CBIP manual
6.4.7 Since the calculated vertical clearance between Equ Equipment and Lower most conductor is greater than the minimum clearance between phase to phase, The selected height of tower 8000mm is adequate.
14 of 14