ACOPOS Control Concept and Ad j juustment T M450
P r e r e q u i s i te s
Training mod ule s :
TM410 – Motion Components B as is
Sof t war e :
A ut o ma t ion St ud io 2.5 or high e r A ut o mat ion Runtime 2.80 or highe r
ACP10-SW V1.160 or high e r
Har dware:
2
TM450
8V1xxx .yy- 2
ACOPOS Con onttr ol Concept and Adjustment
Table of contents
1.
I N NT R OD U C T IO N
1.1
4
O b je cti ve s
5
2.
THE B A SICS OF CONTROL TECHNOLOGY
3.
CASCADED CONTROLLER C O NC E PT
6 10
3.1 Ove r vie w 3.2
10
Set value ge ne r a tor
11
po s itio n co ntr o ll e r 3.3 Pr e dict ive po
15
3.4 Speed c ontr o ll er
18
3.5 Curre urrent nt con tr oll e r
22
4. TH E ORE TIC A L LY D ETER MI N NI N NG THE CONTROL PARAMETERS
23
4.1 Speed c ontr oll e r 4.2 Pos ition co ntr oll e r
23 24
5. PROCEDURE FOR SET TI N NG THE CONTROLLER
26
5.1 Ge ne r a l inf o r m a tio n
26
5.2 Speed c ontr o ll er
29
5.3 Po s iti on co nt r o ll e r
35
5.4
Limit pa r ame te r
41
5.5 Ove r vie w 6.
NG THE SA V I N
44
CONTROLLER SE TT I N NGS
45
6.1 NC INIT parameter INIT parameter mod ule 6.2 ACOPOS parameter ta b le
45 45
7.
SUMMA R Y
46
8.
A PPE ND IX
47
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
3
Introduction
1.
I N TR OD UCTIO N
The high level of pe r ff or manc e of a servo d r ive 's contr oll e r i r is crucial for the q uali t y, pr e ci s io n and d yna m ic ca p a bili il it ie s dur ing a process. This means that the contr ol conce pt as well as the contr oll e r s e tt ing s are de c is ive f a c tor s .
Fig. 1 ACOPOS servo drive and m ot or
During this tr aining we will first learn the bas ics b ef or e taking a step-bystep look a t the c on tr ol concept of the ACOPOS servo d r i ve . We will then take some time le ar ning how to de te r mine the optimum con tr ol parameters. Some of the comp comp onents from Mo tion Components (t r a in ing mod u le TM410) will help us throughout th is tr a in ing mod u l e .
4
TM450
ACOPOS Contr ol Concept and Adjustment
Introduction
1.1
Ob Ob je cti v es
i pan t will become familiar with the structure and the The course pa r tic p e ff ec t ive ness of the ACOPOS c ont r ol conc e p t.
Each course pa r tic p i pant will be able to a d jus t and
optimize
the contr ol
p a r am am ete r s .
Fig. 2
O ve r vi e w
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
5
The Basics of Control Techn hno ology
2.
THE BASICS OF CONTROL TECHNOLOGY
To be gin our tr aining , we would like to briefly r e vie w a few b asics be f or e diving into the th e de tail s of the ACOPOS c ont r ol co nce pt. L e t 's start by a s k ing o ur s e l ve s
the f oll o wing que s tion:
Why does a servo drive need a cont r r o ll e r?
The goal of a servo drive is to reach a po s ition as f ast and as acc ur ate ly as po po ss b ibl e us ing a motor and var io us m ec ha nic s .
Fig. 3 ACOPOS servo drive and m ot or
The
first thing the c ont r oll e r must know is where to send the motor. This i s ge ne r a ll y r e f e rr e d to as the set position. In co ntr o l te chn ol og y, a ref erenc e variable is used to do t h is .
The contr oll e r must r e ce ive some inf or ma ma tio n to find out where the motor encode r. The is p r e s e ntl y loca t e d. This in f o r m a tio n i s ob ta in e d u s in g an encod encoder i encoder is a mea suri ng element, element, which pr o vid es the c ontr o ll er with the inf or ma ma tion (a ct ua l po s it io n of the m oto r ) via f ee dba c k .
Fig. 4 ACOPOS servo drive, motor and f ee ee dba c k
6
TM450
ACOPOS Contr ol Concept and Adjustment
The Basics of Control Techn hno ology
A lag
error or control deviation occurs when po s it io n do not m atch. a ctua l po
the set pos ition and the
This lag error is compensated for by the ser vo drive. This is why it outputs ll ed ip ul ate d va r ia ble a ff ect s the c ontrolle a mani pul a ted variable. This m an p system (in thi s case, the motor and the su bse quen quen t me chan ha nics ) so that the po s it io n reaches the set pos ition . In our case, the ac tua l po po s it ion is a ctua l po the control va riable.
All of this together is call e d the
Fig. 5 ACOPOS servo drive,
closed control l oop.
motor, cl ose d co n tr o l
loop and dis t ur ba nc e va r iab les
There are even more e xt e r na na l f a ct or s that affect this system. These types of factors a r e c all e d di sturba nc e va ri abl able s , and a ls o must be comp comp ensated for by the contr oll e r . A suspended load is one exa m ple of a dis tur b a nce va r ia bl e.
D iff e r e nce s between clo s e d and open loop c ontr o ll e r s :
Unlike a c los e d loop contr oll e r , an open loop contr oll e r does r does not have feedback. T hi s means we cannot d e t e r min e when, how or wh ether the goal r is g e n e r all y used for has ha s been reached. An op e n loop c ontr o ll e r i con ve nti on a l f r r e qu e nc y co nve r te r s .
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
7
The Basics of Control Techn hno ology
wha t happ happ ens within a cl o s e d loop cont r But now wh r oll e r?
A c lo s e d loop contr oll e r can be made up of one or more parts of tr ansf e r e l e me nt s . These tr ans f e r e le men ts react di ff e r e nt ly to input valu e s . The contr oll e r s on the ACOPOS servo drive are ge ne r all y ma de up of a proporti on element (P- e le me n t) and an integral element ( I-e le me nt) . A P- e le me nt imm e dia te ly reacts to an input value jump with a pr opo op o r t io na l output va l ue jump. The s iz e of the jump on the output is d e t er m ine d by a f a c tor. This is la b e le d as t he f a c tor k v . "
"
Fig. 6 R e a cti on of a P- e le me nt
The output value incr e as e s continu ously in the form of a ramp if the input value of an I-e le me nt jum p s. The s lop e of this ramp and the rate at which the output value incr e as e s depends on the time. We will label the time as int e g r a l a c tio n time tn . "
"
Fig. 7 R e a cti on of an I-e le m e n t
8
TM450
ACOPOS Contr ol Concept and Adjustment
The Basics of Control Techn hno ology
A PI c ontrolle ll er c on ta ins a P- and an I- s e ct io n. The output va l ue s of both e l e me nt s ar e added together. As a r e s ult, the PI- co ntr o ll e r reacts to a jumping input value a s f o ll ows .
Fig. 8 R e a cti on of a
PI- c o n tr oll e r
The P- se ction a ll ows the contr oll e r to react imme diate ly to a change in the input valu e . A r e maining contr oll e r de viation wou ld occur if only one Ps e c tion was used a lone . T he I-s e ct io n inte gr at es thi s , thereby co m p e n s a ting for the d e via tio n .
The ACOPOS servo drive is e qu pp ipp e d with a high - p p e r ff or ma nce processor. Amo ng ot he r tasks, th is processor a l s o ca l cula t e s the c ont r o ll e r a l go r it hm s . This is why the term d ig it a l co ntr ol is used. The d iff e r e nc e between an r is that ana l og (co nti nu ou s ) c o nt r oll e r and a d ig ita l (di s c r e t e time) co nt r o ll e r i the contr oll e r de viations is scanned in a corr e s po nd ing timef r r a me (cycle). The dur atio n of this cycle sh ould a lwa ys be the same ( = jitter-free), but ibl e to r e ce ive the changes in the cont r oll e r s hould als o be as short as po ss b "
"
as po ss b d e viat ion a s f a s t as po ib le .
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
9
Cascaded Controller Concept
3. 3.1
CASCADED CONTROLLER CONCEPT Ov O ve rvie w
The cascaded contr oll er concept is the core of the ACOPOS servo drive. ll er , speed controlle ll er and current c ontrolle ll er are The p osition controlle i pulate d cascaded s tar t ing with the s e t va lue generator. As a r e s u lt, the ma n p va r ia bl e of the high e r - le vel con tr o ll e r becom become s the r e f e r e nce va r ia bl e f o r the low er -le ve l contr o ll e r s (e .g.: the po s ition contr oll e r de te r mine s the th e set spe ed for t he speed c o nt r oll e r ).
Fig. 9 Cascaded s tr uc uc t ur e
10
TM450
ACOPOS Con onttr ol Concept and Adjustment
Cascaded Controller Concept
3.2
Set value gene ra tor
Fig. 10
i p le Pr i nc p
3.2.1 B as is move me nts li e r , the r e f e r e nce va r ia b le is p r o vi d e d for the po s it io n As seen e a r li se t value generator. This is done with a cycle time of 400 µs. con tr oll e r by a set
se t value generator is to create a movement profile after a The job of this set vement. The course of th is profile command f o r ex e cuting a b a s is mo vement. dep ends mos tl y on the basi s movement pa ramete rs (ta r ge t po s it io n, a cc e le r a tion, e t c.).
Fig. 11 A ut oma ti on S t udio o nli n e help, ba s i s m ove me nt s
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
11
Cascaded Controller Concept
The f oll owing figure i llus tr ate s this type of profile and the parameter value s us e d:
Fig. 12 Trace d is pla y of the po s i ti o n, speed and acc e l e r a tio n ( de r iva ti ve of the s pee d )
We can see from the
chart that jum ps occur at each end of the a cc e le r a tion. T he s e jum ps are c all e d jol ts. These occur when there is bend in the r e s p e ct ive s p ee d c ur ve .
a
Ge ne r a ll y this type of b b e ha vi or i r is not de s ir e d because the motor must generate a h ighe r torque. Furthermore, a high load i s pl a ce d on the ib r at e s . me cha nics and the e nt i r e system v b
se t This i s why the set with j olt li mitation.
12
TM450
value generator in an ACOPOS servo drive is pr o vide d
ACOPOS Contr ol Concept and Adjustment
Cascaded Controller Concept
3.2.2
J o lt
li mit a t io n
As we have a lr e a d y le a r n e d, the jolt occurs due to a change that causes a bend in t he speed curve. If the speed is s lo wl y incr e a s e d at the b e g inn ing or s lo wly reduced at the end of the acc e le r ation phase, the r e ctan gula r a cc e le r a tion profile becomes a t r a p ez oid. The f oll owing chart ill us tr a te s thi s point for us (the ba sis movement parameters were set the same as in F ig. 12 ):
Fig. 13 Trace d is pla y of the po s i ti o n, speed and acc e l e r a tio n with a c t ive jolt f ilt il te r
A jolt filter time can be set se t for the ACOPOS servo drive to generate a mo ve me nt profile with jolt li mit a tion. The jolt filter time is the time r eq uir e d for acc e le r ation from zero to the maximum va lu e d e f in e d. J olt li mit a t io n uses a linear filter du r in g r un un ti me . se t to 0.03 ha s been set In Fig. 13 we can see that the jolt filter time t _ jol t has seconds. T he measurement cursors in the low e r chart d iag r a m ind ic a te the r ise time of the acc e le r ation is the same as the jolt filter time. "
"
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
that
13
Cascaded Controller Concept
An active jolt li mita tio n extends the time for the set se t value ge ne r atio n (see Fig. 14). However, in many cases the th e po po s it io ning goal can be reached sooner because the s e tt li ng time of the system is co ns i de r a bly shortened by the lo we r jolt load .
Fig. 14 Timing diag r am of a movement with (bold line) and w it h ou t
(dotted
line) jol t li mi tat i o n
N ote:
The t _ jolt parameter is locate d in the limit va lue s : "
"
Fig. 15 A ut oma ti on St u dio o nli n e help system – Limit va l u es
A value between 0.0 and 0.2 seconds can be de f ine d for t _ jo lt . "
14
TM450
ACOPOS Con onttr ol Concept and Adjustment
"
Cascaded Controller Concept
3.3
Pr edi cti ve position controlle ll er
po s it i on c ont r o ll e r i se t value The r e f e r ence var ia ble of the po r is created by the set ge ne r a to r. T he ACOPOS servo drive r e ce ive s the c ont r o l var ia b le (current motor po po s ition ) via the mo to r 's encoder system and a co rr e s po nding encoder i encoder in te r ff a ce card. The co ntr o l d e via t io n i s de te r min e d from these two tw o ipula te d var ia ble for the l o we r - l e ve l va r ia bl es , which r es ult s in a new man p spe ed co ntr oll e r .
Fig. 16 Block dia g r a m of the po s i tio n c on tr oll e r
The po s ition contr oll e r i r i s i m p le m ent e d as PI c ontr oll e r with an t i- wi nd u p i pula te d va r ia ble limitation) and p pr e d icti ve feed f o rw a r d (input (m a n p "
"
con tr ol).
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
15
Cascaded Controller Concept
The pr opo opo r tiona l e le me nt with the f ac to r k v causes an imm e d i ate change se t in the s e t speed in the event that a lag error occurs. Changes in the set value or dis tur ban ce va r ia ble s can cause these type of contr ol de viations . "
"
The I- ele me nt with inte gr al action time tn is used to compensate for s ta ti onar y dis t ur ba nce q ua ntiti e s (e.g. suspended lo ad s ). "
"
The man p ipulat e d var ia b le li m it ati on is i m ple me nt e d us ing the parameters p _ max max an d i_ max max . These va lu e s limit the maximum effect of the Ps e c tion and the I-s e ct io n. "
"
"
"
The feed f o rw ar d is the pr e dic tive e le me nt of the po sition contr oll e r.
Fig. 17
Pr e d i c t i o n,
feed f or wa r d
se t A feed f orw a r d speed ( v _ ff ee ee d ) r e s ults from a d iff er e nt ia tion of the set po po s itio n ( s _ s et ). T he PI- c ont r oll e r e s ta bli s he s a co rr e ct ion speed ( v _ c o rr ) from the lag error (∆s). T he s e two speeds are added together to produce the set speed (v_set) for the subsequent s p ee d c ont r o ll e r. The feed f o rw a r d i s then pr e d ict ive if the se t po s it i on is sent to the PI- cont r oll e r with a d el a y (t_total). The set se t value s hould be d el a ye d as long as the de la y time of the p r e d ict ) is con tr oll e d system. This i s why the set speed (t_total – t _ se t po s iti on of int r od od uce d to the s pee d c ont r oll e r first. If the co rr e s po ndi ng set the PI- contr oll e r i r is then accepted, t he c ont r o l de via t i on is then s ma ll e r as a r e s u lt of the a l r e a d y fed fe d set speed value . T his presents a load on the PIcon tr oll e r because because it still has to compensate for the r e ma i ni ng de via tion. r wo ul d have to take care of With out speed input c ont r ol, the PI- c ont r o ll e r w the set speed by itself. This im pr ove s the r e f e r ence be ha vior and the d yna mic pr op op e r ti e s of the d r i ve. "
"
"
16
TM450
ACOPOS Contr ol Concept and Adjustment
"
Cascaded Controller Concept
C a lcul ation of v _ c o rr which r e s ults from the lag error ∆s "
"
First, the speed
"
"
:
v _p resulting from the propo proporr tional gain is calculated and limited to p _max": "
"
"
v _ p = kv * s if ( v_p > p_max ) v_p = p_max else if ( v_p < -p_max ) v_p = -p_max
_max are used to This value and i _m calculate i_lim i_limit and the speed resulting from the integral gain v _i is limited to this value: "
"
"
"
"
"
i_limit = i_max - |v_p| if ( i_limit < 0 ) i_limit = 0 v_i = f(v_i, s,kv,tn) if ( v_i > i_limit ) v_i = i_limit else if ( v_i < -i_limit ) v_i = -i_limit Fig. 18 A ut oma ti on S t udio o nli n e help, ca lcu la ti on of v _ co rr "
Finally
"
v _ c orr
=
v_p
+
v _i
"
"
can be c alcula te d.
The set speed is converted from the conf ig ur a ble measurement system (unit/sec) to the p h ys i ca l motor encoder system (rev./sec) b e f or e b e ing pa pas sed onto the s pee d co ntr o ll er . Lag error monitor ing is a ls o pe r ff or me d in the po s itio n contr oll e r. An E-Stop is executed if the co nt r ol d e vi a tion exceeds a con f i gur a b le thr e s ho ld va lue .
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
17
Cascaded Controller Concept
3.4
Speed c ontrolle ll er
3.4.1 Speed c ontr o ll er – Ge ne r al f un un ct ion The speed contr oll e r 's job is to de te r mine the diff e r ence between the ipulat e d va r ia bl e of the high e r - le ve l po s itio n cont r o ll e r and the ma n p ipulat e d var ia bl e for the lo we r - le ve l current mea su red sp sp eed. A man p ll er with a nt i- win d u p. con tr oll e r i r i s then generated us in g a PI-controlle
Fig. 19 Block dia g r a m of the speed c on tr oll e r
18
TM450
ACOPOS Contr ol Concept and Adjustment
Cascaded Controller Concept
The set speed value from the po po s it ion contr oll e r i r is first fed through an int e r po lato r. T his i s necessary because the po s itio n co ntr o ll e r runs r runs at a cycle time of 40 400 0 µs, whereas th e speed co nt r o ll e r runs r runs at 200µs. 200µs . The value is then li mit e d u s in g the th e maximum motor s pee d. The a ctual speed is de te r mine d by diff e r e ntiating the encoder po po s it i on. The value is the n sent through the speed filter. The value is converted from se t i nc r. /s e c to the unit r e v./s ec b ef o r e it can be subtracted from the set "
"
"
"
s p ee d.
We will take a more de ta il ed look at the little late r. The
functionality of
the speed filter a
P- el e me nt with the f a ctor k v a ll o ws the th e contr oll e r to react imm e d ia t e ly to an y co nt r o l de via t ion . This makes t hi s e le me nt de cis ive the d ynam na mics of the s p ee d co ntr ol le r. "
"
for
The I- ele me nt with inte gr al action time tn is used to compensate for s ta ti onar y dis t ur ba nce var i a b le s (e.g. load t o r q ue ). "
The output of the f un un ct io n
PI- c ontr oll e r can
"
be f ilil te r e d us ing a notch filter. The
of the notch filter will be ex pla ine d in a later s e ctio n. Before
the set current can be pr ovide d as the r e f e r e nce var ia b le for the current c ont r o ll e r, the value is li mit e d u s in g a torque limiter. This t or qu e li mit a t io n a ls o d et e r mi ne s the anti win du p limits for the speed c ont r o ll e r Ie l e me nt .
3.4.2 Torque l imiter The torque limiter is mos tly used to protect the motor and the A C OPOS ser vo drive from the f o ll ow ing r is k s : The ACOPOS servo drive cannot output mo mor e current than the motor can han ha nd le ( mot or peak curr e nt ). The motor 's stator current cannot exceed the ACOPOS peak curr e nt. By de f ault, the torque limiter is initialized u s ing the s mall e r of the f o ll owing two value s : Motor peak curr e nt ACOPOS peak cu rr ent
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
19
Cascaded Controller Concept
3.4.3 Signal f ililte r il t e r s can be used on ACOPOS servo dr i ve s to separate high Sig na l f il r e qu e ncy d is t ur b anc e s (e.g. s ig na l n ois e ) from a d e s ir e d s igna l and f r suppress a r es on a nce f r r e qu e nc y.
to
b an c e in the encoder s igna l can be caused by one or more of the D is tur ibili tie s : f o ll owing po ss b
C o u p li ng of di s tur b anc e s on the c o mmun ic at ion path ( e ncod e r c a b le ) . Quan tiz a ti on no is e when c on ve r ting the ana an al o g s i gna gn al to a digital form. T his mos tly occ occ urs whe whe n e va lu a ting a r e s o lve r s igna gn a l with low r e s o lut ion.
With war p-r e s istant drive mechanics (e.g. d ir e ct load cou pli ng to the motor s haf ha f t u s ing f a s te n ing de vice s ) the me chan ha nica l system can be s u b je ct to os cill il la tion s due to the clo s e d c on tr ol loop ( two - ma ss o s cill a tio n ) . These types of systems g e n e r a l ly have a r e s ona nce f r r e qu e ncy in the range f r r o m 700 to 1500Hz. This is f ur the r dependent on the f oll owing f ac tor s: "
"
Rigidity of the me cha nic a l system ha nic a l system Ma ss in e r tia of the me chan Ph ys ica l la yo u t of the s ys t e m. Speed f il il t e r
ib e d in s e ct io n 3.4, the ac t ua l speed is f il il te r e d, b e f o r e be in g As d e s cr b il te r and f un processed in the speed co nt r o ll er. This filter is a s pee d f il un ction s like a low pass. H igh- f r r e qu e nc y dis tur banc e s can be f il il te r e d out from the spe ed s igna gn a l u s i ng th is low pass b e ha vior. T hi s a l low s us to a ch ie ve h igh e r con tr oll e r qua li ty. "
"
C a u t i on :
of the d e s ir e d s igna il te r ed out if the limit f r r e qu en cy gn a l will a ls o be f il se t too of the low pass filter is set to o low! Parts
20
TM450
ACOPOS Con onttr ol Concept and Adjustment
Cascaded Controller Concept
Notch f il il te r
The f r r e qu e nc y range of the set current, which causes the me ch a n ica l il te r e d for the current c ont r oll e r. system to os c ill a te , can be f il C a u t i on :
The notch filter sh ould only be used on me chanic s with a rigid cou pli ng (e.g. dir e ct drive). This filter should not be used for fo r conn e ctions such as b e lt s or ge a r s ! Furthermore, it can a l wa ys c on s tan t!
only be used if the e xis ting moments of inertia are
The resonance f r r e q u e nc y of the system co u ld s h if t as a r e s u lt of m ec han ha nic a l we a r. This means that over time the d e f ine d filter can lo s e i ts e ff e cti ve ne ss .
The notch filter is only e ff e c tive when the th e resonance f r r e q u ency i s in the r o m 700 to 1500 H z . range f r The filter has r eq u e ncy ha s the highe s t amount of da m p i ng at the notc h f r r e qu e nc y of the me c han entered (= resonance f r ha nic a l s ys t e m). There is a b an d width) ar oun d this notch f r r e qu e ncy in which the dam p ing is range ( b lo we r than 3dB. The s ma l le r the b a n d width i s set, the th e stronger the d a m ping i s in the notch f r r e qu e ncy. "
"
us e ha ve The notch filter can be used (once all of the r e quir e me nts for use been met) to inc r e a s e the c ont r oll e r gain f a ct or s , wit h out ca u s in g the e nt ir e system to become un s ta ble .
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
21
Cascaded Controller Concept
3.5
Current c ontrolle ll e r
The
current co ntr o ll e r i r is made up of PI- con t r oll e r s (like the po s i tion and s p ee d c ontr oll e r s ). The corr e s po nding parameters ng parameters are au t o ma t ica ll y d e t e r mine d by the s e r vo drive u s ing the th e mo tor parameters and the s pe c if ic ACOPOS parameters. This means tha t we do not have to spend time in a later s e ction going over how to set these va lu e s .
The
current co ntr o ll e r uses its man p ip ulate d var i a ble to c ont r o l the IGB T s (In s u la t e d Gate Bipolar T r an s is t o r ). These then output a pu ls e width mod ulate d (PWM) curr e nt signa gn a l to the mo t or .
The current contr oll e r f un un ction at d iff e r e nt cycle ti me s d e pe nding on the PWM s witching f r r e qu e nc y: PWM f requency
Display un i t
Cycle ti me
5kH z
8V 128 M.00 - 2
2 0 0µ s
Hz 10 k Hz
8V 101 x.yy - 2
100 µ s
8V 1090.00 - 2 8V 1180.00 - 2 8V 1320.00 - 2 8V 1640.00 - 2 20 kH z
8V 1022.00 - 2
50 µ s
8V 1045.00 - 2
22
TM450
ACOPOS Con onttr ol Concept and Adjustment
Theoretically Determining the Control Par aram ame eters
4.
THEORETICALL Y DETER MIN ING THE CONTROL PARAMETERS
In the p r e vio us s e ct io n s we le a r ne d how the ACOPOS servo drive con tr oll e r s a r e structured and int er - r e la t e d. Now we want to find the corr e s po nd ing va lu e s for th e c ont r o l parameters. These va lues can be ca lc ula te d or d e te r mi ne d e m p ir ic all y if some o f the r e qu ir em en ts have been met.
not
We can use us e the f o ll owing f o r mu mula s to de te r mi ne good output va lues for the con tr ol parameters in the event that we don't a lr e a d y know the s ys te m 's total moment of ine rti a and if the load is fixed to the motor . In m o s t b eha vior by ma k ing fine cases, we will a ch ie ve even better cont r oll e r b a d ju s t me nts to the parameter va lue s manual ly. 4.1
Speed c ontrolle ll er
R e pla ce ment time constant TI of the current c ont r o l l oo p: T I
2
1 0.000075 2 SwitchingFrequency
Summation
of the
individual
time constants to a r e plac ement time cons tant
Tσ_v : T
T I
v
Tdead_v
=
T dead ead
v
T filter
0.000175 s (e ncod e r i r in te r ff a ce dead time, speed d e te r mi na ti on und
s ca nn ing) ng )
Tfilter ( t _ ff ilil ter pa r ame te r ) = Filter time constant of the speed f ilil te r "
"
Proportional
kv
J
2
T _ v k t
gain of the speed contr oll e r :
total moment of inertia (Jmo to r + J brake
J =
k t
=
Torque constant
Int e g r a l a c tion tn
4
+
J l oad )
of the motor b b e ing used [Nm/A]
time of the speed c ontr oll e r :
T _ v
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
23
Theoretically Determining the Control Par aram ame eters
4.2
Pos ition c ontrolle ll e r Summation
of the
individual
time constants to a r e plac ement time cons tant
Tσ_p : T _ p
T int erpol
Tinterpol
=
4 x T σ_v Tdead_p
24
p
Dead time r e s ulting from sc ann ing (0.0002s ) gain of the po s ition contr oll e r :
1 2 T _ p
Int e g r a l a c tion tn
T dead
R e p lac e me nt time constant of the speed c o ntr o l loop
Proportional
kv
v
Dead time r e s ulting from inte r po lator (0.0001 s )
=
=
4 T
4
TM450
time of the po po s it io n c ontr o ll e r :
T _ p
ACOPOS Con onttr ol Concept and Adjustment
Theoretically Determining the Control Par aram ame eters
E xam p le :
C o nf igu r ation of the 8MSA2S.E0 motor with ACOPOS 8V1010.00-2 w it h o u t l o a d :
k t J
0.46 Nm/A
= =
0.06 k gc m²
r e que nc y Switc hing f r
=
10000 Hz
Speed c ontr o ll er :
1 0.000075 = 2 SwitchingFrequency 1 2 0.000075 0.00025 sec 2 10000
T I
2
T
v
kv
T I
J T _ v
T dead
2 k t
0.00025 0.000175 0 0.000425 sec
v
T filter =
=
0.000006 2 0.000425 0.46
0.136 As / Re v.
tn
4 T _ v
4 0.000 .00042 4255 0.001 .00177 se sec
=
Po s it ion co nt r o ll e r :
T _ p
kv
tn
4 T
T int erpol
1 2 T _ p
4 T _ p
=
=
v
T dead
1 2 0.002
p =
250
0.0001 4 0.000425 0.0002 0.002 sec
1 sec
4 0.002 0.008 sec
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
25
Procedure for Setting the Controll lle er
5.
PROCEDURE FOR SETTIN G THE CONTROLLER
In th is s e c tio n we will learn about a possibility for de te r min ing c on tr ol p a r a m ete r s , which has ha s been proven time and time ag a in in the field. This will allow you to che c k an d make fine ad jus tme nts to va lue s that have po ss b i ble , s uita b le value s can be a lr e ad y been c a lcu la t e d . If t his is no t po d e t e r mine d e m pi r ic all y. In thi s case, the va lue s s p ecif i ed in the corr e s po nd ing notes can be used as start va lu e s .
5.1
General inf orma ti on
The contr o l parameters only really have to be de te r mine d when the me cha nics ar e a lr e ad y put together. When de ali ng with a m a ch ine where the axis is loa d ed with diff e r ent ma sses, the parameters must be tested both without load and with the h ig he s t load. The parameters s hould a ls o be tested at diff e r e nt speeds and acc e le r atio ns . These tests co uld r e s ul t
in the need for a com pr omis e .
Globally valid c ontr ol parameters cannot be used because all me chan ha nics ha ve d iff er e nt f ea t ur e s .
To d e te r mine parameters from cascaded contr oll e r s , it is best to start from the bo tt om (last) contr oll e r and work up. In our case, this means that we wo ul d start by s e tt ing th e speed co ntr oll e r first f oll o we d by the po s ition con tr oll e r. The current c ont r o ll er i r i s a ut oma t ic all y c onf ig ur e d by the ACOPOS servo dr ive .
Fig. 20 Order for se tti tt i ng the c o n t r oll e r s
26
TM450
ACOPOS Con onttr ol Concept and Adjustment
Procedure for Setting the Controll lle er
se t the c ont r o ll e r as t ough as poss b ib le . A It is us ua ll y the goal to set con tr oll e r c r c an be con s i de r e d t ough ban ce var ia b le is ug h wh en a di s tur fo r a s q uic k ly and pe r ff ec tly as po ss b ib le . compensated for "
"
"
"
E xam p le :
We want to manua nu a ll y rotate a flywheel mass which is mounted to the mo tor s haf ha f t.
se t s of t if the flywheel mass can be The contr o ll e r s are set ea s il y r otate d. The contr o ll e r s are set se t ha r d if the flywheel mass i s d iff ic ult to rotate or cannot be rotated at all. ll . "
"
"
"
se t the c o ntr oll e r as tough as Howe owe ver, s o me time s it is not the goal to set po po ss b ibl e . This is because a tough co ntr o ll e r can cause quick he at ing , a h ighe r load on the me chanics and t he r e f or e more wear. This i s the reason why a com pr omise must of ten be found whe n de te r mining the pa r a me te r s .
We will be using the
Comp onents test windo w to help us set the Mot i on Com con tr ol parameters. This a ll ow s us to change and initialize the c on tr ol po ss b i ble to start po po s it io ning parameters onli ne . T h is a ls o makes it po mo vements us ing any ba s is move me nt parameters. We can a ls o co nf igu r e , start and e va lua te the trace in the Mo tion C om po n ent s test w indo w.
The be havior of the contr oll e r dur ing a typical mo vem vem en t can be cl os e ly d e t e r mine d b y s e le cti ng s uit a ble parameters for tr ac ing . T he r ef o r e , a b a s is mo vement (e.g. r e la t ive o r a bs o lut e move me nt ) is us ua ll y started and the r e s pe ct i ve parameters are r ec o r d e d. Furthermore, the c ont r o l parameters s hou ld of the recorded value s is minimal.
be s e le cte d so that os cill il la t ion
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
27
Procedure for Setting the Controll lle er
E xam p le s :
Fig. 21 Strong os c ill ati o ns
Fig. 22 A l m os t no os c ill at i on s
The user must then check to mak mak e sure that all of the r e qu ir e me nt s have been met (e .g. lag error within the toler a nce ) once all parameters have been s et. If thi s is the case, make sure that there are reserves for the gain f a ct or because the system can behave diff e r e ntly due to me c han ic a l we ar . T her e f o r e , a c orr e s po n ding reserve (approx 1/3) s hould be taken from the d e t e r mine d val ue s .
28
TM450
ACOPOS Con onttr ol Concept and Adjustment
Procedure for Setting the Controll lle er
5.2
Speed c ontrolle ll er
se t for the speed contr o ll e r. These The f oll owing three parameters can be set are loc ated in a subgroup of the contr ol pa r ame te r s :
Fig. 23 A ut oma ti on S t udio o nli n e help system – C on tr oll e r
N ote:
The f oll owing parameters ng parameters can be c on f igu r e d for the trace when s e tt ing the th e s pee d co ntr o ll er : Set speed: ACP10PAR_SCTRL_SPEED_REF (ID 250) [1/sec] Actual s pee d: ACP10PAR_SCTRL_SPEED_ACT (ID 251) [1/sec] Current c on tr oll e r : Se t stator current of quadrature component [A] The scan rate s hould be set as low as poss b i ble (approx. 0.2 to 4m s e c) . ibl e A tr igg e r event r event can be used to start the trace as a cc ur a t e ly as po ss b (further i (further inf or ma ma tion c an be found in the A ut o ma t i on St ud i o Online lp ). he p po s itio n contr oll e r s hould be The k v and tn parameters of the po initialized with the value 0 so that only the speed contr oll e r i r is a ctive "
"
"
"
"
"
N ote:
The value from curr e nt contr oll e r : set stator current of the quadrature c o m po n en t is the torque ge n e r a ti ng component of the set se t curr e nt . "
"
The peak value of the
current i s d i s p la ye d in the Mo ti on Components trace. T h i s va lu e must be d ivide d by the f a ct or √2 (≈ 1.414 ) to compare it with the s pe cif ications of the motor parameters and the ACOPOS™ ser vo drive p a r am am e te r s .
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
29
Procedure for Setting the Controll lle er
5.2.1
Proportional
gain k v "
"
The most im po r ta nt parameter of the three speed c ontr oll e r parameters parameters is the g ain f actor k v . This parameter significantly de te r mines the dyna mic p r op op e r ti e s of t his contr oll e r. The goal is to set se t the value as large as po po ss b ibl e wit ho ut c aus in g the system to os cill at e . "
"
N ote:
1/5 to 1/10 of the nomina l motor current (In) can be used as s tar ting value f or this f ac tor.
E xam p le : se t and act ual speed: D iff e r e nce between the set
1 R e v./s e c
Value of the f actor k v :
2 A s /R e v.
"
Output
value of the
5.2.2 Inte gr al action time
"
tn
"
P - e l e me n t :
2A
"
For most a pp lic li c a t io ns it is not necessary to use us e an inte g r a l ac tio n time in se t the s pee d contr oll e r ( tn = 0s). However, this time value s hould not be set too low if an a pp lic li ca tio n does r e q u ir e an I- s e ct io n (e.g. to compensate for lo a d- s i d e d i s tur b anc e s , poor (soft) loa d co u pli ng, high speed p r ecis io n). Oth e rwi rw i s e , the tendency for os cill a tion is i ncr e a s e d in th e speed co nt r o ll e r. "
"
N ote:
100msec (0.1sec) can be used as s ta r t ing value us e the I- s e ct ion.T he value time if you want to use r e duc e d.
30
TM450
ACOPOS Contr ol Concept and Adjustment
for the inte gr al action can then be gr adua ll y
Procedure for Setting the Controll lle er
5.2.3 Speed f ililte r The filter time constant t _ ff ilil te r for the spe spee d filter is the th e las t parameter in se t the limit f r the s pee d contr ol parameters. It can be used to set r e q ue n cy with the unit [sec] (e.g. 1kH z e quals 0.001s e c ). "
"
be ha vio r us ing the speed filter can only be Im p r o ve me n t to the con tr oll e r b mome nt of inertia and encoder a ch ie ve d in systems with a high mass mome systems with a low r e s olu tion (e.g. r es olve r ). Whereas if encoder systems with a high r e s olution are used, the s pee d f ililte r ge ner a ll y cannot create any im pr o ve me nts in the c on tr oll e r b be ha vio r. N ote:
(0.0008 sec). This value can be You can start with a value of 0.8msec (0.0008 be ha vi o r (less then b e incr e a s e d in s mall steps until the cont r oll e r b o s cill il la tion ) has ha s im p r o ve d. Gene r all y, the u s a b le va lue s are in the range from 0.8msec to 2mse c.
5.2.4 Notch f ilil te r N ote:
As we a lr e a d y know, the notch filter a ls o works in the speed c o nt r o ll e r. H ow e ve r, there is no entry for this in the a xi s structure because it is not used too of t e n. T he r e f or e , it must be d ir e ctl y co nf igur e d us ing parameter ID s :
TE R _ F 0 ( ID Speed c ont r o ll er – notch f il il t e r : Frequency: A C P10PA R _ F IL TER 226 22 6) Speed c ont r o ll er – notch f il il t e r : B a n d wi dth : A C P10 PAR _ F IL TER TE R _ B 0 ( ID 22 227 7)
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
31
Procedure for Setting the Controll lle er
The resonance f r r e q ue nc y of the system can be d e t e r mi ne d u s in g the f o ll owing s te p s : In itia li z e the po s itio n con tr oll e r parameters parameters with the value 0 , d e act ivat e the s pee d filter (t_filter = 0) and d e act ivat e the th e notch filter ( s e t both parameters to 0 ) . Switch on the c ontr oll er The pr opo opo r ti ona l gain of the speed c ontr o ll e r i r is inc r e a s e d until the il la te . m ec ha nic s os cill Record the a ct u a l speed u s i n g the trace (s ca n rate = 200µs). Switc h th e con t r oll e r off a g a i n when the trace has f ini s h e d. Analyze the f r r e que nc y spectrum in the trace u s ing FFT (Fast F o ur i e r T r an an s f or ma ma tion ) . Set the most nota ble f r r e qu en c y o cc urr ing in the trace as notch r e qu e nc y for the notch f il il t er. f r Enter a minimum band width (e.g. 25H z ). th e contr oll e r on aga Switc h the ag a in and de te r mi ne a critical p r op or ti ona l gain for the speed co ntr oll e r . If the critical value has ha s been i nc r ea s e d, de te r mine if the be ha vio r has ha s r i m pr o ve d due to the va r ia t ion of the band width and th e f ur the r i notch f r r e qu e nc y. Othe rwi rw i s e , d e te r m in e a ch a r a ct er i s tic na tur a l r e qu e nc y aga ag a in. f r po ss b ib l e, the d e te r mi ne d va lu e s If f ur th e r i r im p r o ve me nt i s no lo ng e r po can be entered in an ACOPOS parameter ta ble for e xam ple. "
"
"
"
N ote:
The notch filter cannot be used if a d is tinct resonance f r r e qu e ncy cannot b e d et e r mine d.
32
TM450
ACOPOS Con onttr ol Concept and Adjustment
Procedure for Setting the Controll lle er
Fig. 24 FFT an alys is .
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
33
Procedure for Setting the Controll lle er
Ex e r c i s e :
Pr o je ct : Nam e
Har dware: Test
rack, flywheel mass mounted to the motor s ha f t.
S pe cif ica t ion s :
The ba s is movement parameters to be used are alr e a dy def ine d in the NC INIT parameter INIT parameter mod ule . Po s it ion ing pa th s = ± 50000 U nits "
"
A sta tionar y ma n p ipu la te d var ia ble is s imu late d in the e xa m pl e p r o je ct se t to r q ue. u s ing an a dd it ive set
Parameters
for the tr ac e :
Max. trace dur ation:
2 s e c on d s 0.0008 s econds
Scan rate:
Ta s k :
Use
the flow
chart
se t the speed c o ntr o ll e r in s t e p s . (Fig. 32) to set
What happens in this case if the value 0 is entered for the "
"
po po s iti on co ntr ol parameter k v ? "
"
Can the notch filter be used and de f ine d? Can the speed filter be used and d ef in e d? Would you de f ine an inte gr al ac tion time c ontr oll e r?
34
TM450
ACOPOS Contr ol Concept and Adjustment
"
tn
"
for the speed
Procedure for Setting the Controll lle er
5.3
Pos ition c ontrolle ll e r
The parameters for s e tt ing the po s ition contr oll e r are locate d in a subgroup of the contr ol pa r a me te r s :
Fig. 25 A ut oma ti on S t udio o nli n e help system – C on tr oll e r
N ote:
The f oll owing parameters can be conf igur e d for the trace when s e tt ing the th e po s ition contr oll e r : Po s it ion co nt r o ll e r : Actual speed [U nit s /s e c] Po s it ion co nt r o ll e r : Lag error [Un it s ] Current con tr oll e r : Set stator current of quadrature c o m po ne nt
[A] The scan rate s hould be set as low as poss b i ble in thi s case as we ll. ll .
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
35
Procedure for Setting the Controll lle er
5.3.1
Proportional
gain k v "
"
i ble for The value from the k v f ac tor s ho uld als o be set as large as po ss b the po s itio n contr oll e r w r wit ho ut c a u s i ng the c ont r o ll e r to o s cill a t e . "
"
N ote:
You can start with a value of 50 /sec and incr e as e it gr aduall y.
Exampl xample :
Lag error:
15 un its
Value of the f actor k v : "
Output
value of the
5.3.2 Inte gr al action time
"
tn
"
P- e le m e n t :
100 10 0 /sec
1500 U nits /se c
"
The s imil a r c r c on diti ons a ls o apply for th is value as for the int e gr a l a cti on time of the speed c ontr oll e r. For some a pp lic li ca ti on s it is s uff icie nt to ju s t use us e one tr ue P- co ntr o ll e r. An I- s e ct i on must be used if an a xis ha s to i pulat e d va r ia bl e (e.g. hangi ng load). compensate for a s ta tio na r y man p us e the I-s e ct io n of the po s it io n Furthermore, it may be necessary to use con tr oll e r if the speed cont r o ll e r was r was only able to be set se t s of t. The inte g r a l action time does not have to be set se t for the po s iti on co ntr o ll e r if alr e ady s e t for the spe ed contr oll e r. N ote:
You can a ls o use us e a s ta r t ing value of 100msec if necessary in this case. An I- s ec tion in the po s ition contr oll e r causes an overshoot when the target po s ition i s reached and th e r e f or e s h ou ld only be used in s p e cia l cas e s.
36
TM450
ACOPOS Contr ol Concept and Adjustment
Procedure for Setting the Controll lle er
5.3.3 Total de la y time t _ total "
"
li ca ti on , th is parameter s ho ul d In a s ing le - a xi s a pp lic sam e va lue as the p r e d ict io n ti me .
be initialized with the
The de la y via the network can be compensated using the t _ tota l in multi"
"
li ca ti on s . a xi s a pp lic
The po po t e ntia l value range is a ls o as large as in the parameter t _ p r e d ict . "
5.3.4
Pr e dict ion
time t _ p r e dict "
"
"
This parameter is r e q u ir e d d i s a b le s t he off s et.
for the feed f orw a r d. A value t _ pr e dict = 0s "
"
The pr e d ictio n time mak es it po ss b ib le to compensate for the lag error d ur ing t he acc el e r at io n and de c el e r at io n phase to ne ar ly 0 . This se t a f t e r correct value s have been de t e r m ine d for fo r parameter is ge ne r all y set k v and tn . "
"
"
"
"
"
N ote:
po t e n tial value range of the t _ pr e dict parameter is 0.0 to 0.06 The po "
"
s ec o n ds . Ge ne r a ll y, a large p r e d ict ion c ont r oll e r c se t ha r d. r cou ld be set
Definition r ule : _ predict t _ predict
4
J
(kvSpeedCont k t ) SpeedCont roll roll er er
time is not really necessary if the speed
0.0002
J = Moment of inertia on the motor [ k gm gm ² ] kv speed co ntr o ll e r = Proportional gain of the speed cont r oll e r [ A s /R e v.] k t = Tor Tor que constant of the motor b b ei ng used [ N Nm /A ]
N ote:
The po sition contr oll e r runs r runs at a cycle time of 400µs. 400µs. This is why the va lu es f o r t _ pr e d ict and t _ t ot al s houl d alwa ys be s e le cte d in a way so that they are e qual to a multiple of 0.0004 seconds. Otherwi rw is e , they are rounded off by the ACOPOS™ s e r vo dr i ve . "
"
"
"
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
37
Procedure for Setting the Controll lle er
The f oll owing charts dis play the lag error for d iff e r e nt pr e diction time va l u e s .
C o rr e s po nd ing speed pr of il il e :
Fig. 26 C orr es po n di ng speed curve for the f oll owi ng lag error cu r ve s "
t _ pr e dic t set se t "
Fig. 27 "
"
Pr e d i c t i o n
too high:
time se t too h ig h
t _ pr e dic t set se t corr e ct ly:
Fig. 29
38
time se t too l ow
t _ se t pr e dic t set
Fig. 28 "
Pr e d i c t i o n
too low :
TM450
"
Pr e d i c t i o n
time se t c orr e c tl y
ACOPOS Con onttr ol Concept and Adjustment
Procedure for Setting the Controll lle er
5.3.5 Maximum pr op or tional action p p _ ma x "
"
The inf lue nce of the p r opo opo r tio na l gain can be li mit e d us ing the p _ ma x parameter. T h i s can be done to prevent ma n p ipulat e d va r i a ble s that are too "
"
la r g e . N ote:
The value for these parameters can be calcula te d us ing the f oll o wing f o r mu mu la s :
p_max
I max
2
kvSpeedController
UnitFactor
Ima x = Motor peak current [A] kv speed co ntr o ll e r = Proportional gain of the speed cont r oll e r [ A s /R e v.] Unit f ac tor = Unit sca li ng [un its /r e v.]
_ ma 5.3.6 Maximum inte gr al actio n i _ ma x "
The "
maximum in f lue nc e _ ma i _ ma x parameter. This "
"
of the inte gr a l s e ction can be li mite d us ing the can be done to prevent a windu p . "
"
N ote:
The value for these parameters can be calcula te d us ing the f oll o wing formula to a chie ve a r e quir e d holding to r que : M i _ max
k t
1.1
kvSpeedController
UnitFactor
M = R e quir e d ho lding torque [ N Nm] k t = Tor Tor que constant of the motor b b ei ng used [ N Nm /A ] kv speed co ntr o ll e r = Proportional gain of the speed cont r oll e r [ A s /R e v.] Unit f ac tor = Unit sca li ng [un its /r e v.]
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
39
Procedure for Setting the Controll lle er
Ex e r c i s e :
Same pr o je ct
and ha rdware as be f o r e .
S pe cif ica t ion s :
The ba s is movement parameters to be used are alr e a dy def ine d in the NC INIT parameter INIT parameter mod ule . Po s it ion ing path ng path s = ± 50000 U nits "
"
ipu la te d var ia ble is s imu late d in the e xam pl e p r o je ct A sta tiona r y man p se t to r q ue. u s ing an a dd it ive set
Parameters
for the tr ac e :
Max. trace dur ation: Scan rate:
2 s e c on d s 0.0008 s econds
Ta s k :
Use the flow chart (Fig. 32) to set se t the po s it io n cont r o ll e r in incr e me nt s . This s e tt ing will be based on the va lu e s de te r min e d for the speed c ont r oll e r in the pr e vio us ex er c is e.
What happens if you are not us ing an inte gr al action time the po s ition contr oll e r?
40
TM450
ACOPOS Con onttr ol Concept and Adjustment
"
tn
"
for
Procedure for Setting the Controll lle er
5.4
Limit pa rame am e ter
When the th e contr ol parameters set se t for the limit values .
5.4.1
J o lt
filter time t _ jolt "
are op timiz e d, two parameters must still be
"
The value for the parameter can be de te r mine d by r e cor ding the lag errors d ur ing a po s itioning mo vement witho ut jolt filter time. At the end of this mo vement, it will be c ome e vi de n t that the system must first s e tt le do wn . After be ing de te r mine d from the trace, the s e tt li ng time (time until the o s cill use d as jolt f il il la tion s level out) can now be use il te r time t _ jo lt . "
"
"
"
Fig. 30 D e te r m i ni ng the jolt tim e
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
41
Procedure for Setting the Controll lle er
5.4.2 Lag error stop limit ds _ s top "
"
Fig. 31 A ut oma ti on S t udio o nli n e help system – Limit va l ue s
se t for the ds _ war ning A w ar ning is output if the current lag error value set parameter is exceeded. An emergency stop is executed if the value of the "
"
"
d s _ s t op parameter is als o e xcee de d. "
N ote:
A contr oll e d e-stop ramp is generated when an e-stop occurs. The set th e current initialized limit value s .T he spe ed is d e c el e r a t e d to 0 us ing the "
"
c ont r oll e r i r is th e n s witc he d off .
N ote:
The value for ds _ stop can be de te r min ed using the f ol lowing "
"
c a lc u l a t i o n : I max
kvSpee Speed d C C ont ont rolle roller r
kv P ositi osition onC C ont on t rolle roller r
2 UnitFactor
Ima x = Motor peak current [A] kv speed co ntr o ll e r = Proportional gain of the speed cont r oll e r [ A s /r ev.] k v po s i tio n co n tr oll e r = Proportional gain of the po s it io n c ont r o ll e r [1/s e c] Unit f ac tor = Unit sca li ng [un its /r e v.]
42
TM450
ACOPOS Contr ol Concept and Adjustment
Procedure for Setting the Controll lle er
Ta s k :
Same pr o je ct
and ha rdware as be f o r e .
S pe cif ica t ion s :
The ba s is movement parameters to be used are alr e a dy def ine d in the NC INIT parameter INIT parameter mod ule . Po s it ion ing pa th s "
"
= ±
50000 U nits
A sta tionar y ma n p ipu la te d var ia ble is s imu late d in the e xa m pl e p r o je ct se t to r q ue. u s ing a n a dd it ive set
Parameters
for the tr ac e :
Max. trace dur ation: Scan rate:
2 s e c on d s 0.0008 s econds
Ta s k :
Set the limit value corr e ctly and check the r e sult.
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
43
Procedure for Setting the Controll lle er
5.5
Ov O ve rvie w
Fig. 32
44
TM450
O ve rvi rv ie w
of the process for se tti tt i ng the c o n tr o l pa r a m e te r s
ACOPOS Contr ol Concept and Adjustment
Sav Sa v ing the Controller Sett ings
6.
SAV I NG THE CONTROLLER SETTINGS
The data jus t de te r mine d must be saved to the contr oll e r so that it is a vail a b le to the ACOPOS servo drive each time the ma c hine is started. All parameters avail a b le in t he a x is structure can be saved in an NC INIT parameter mod ul e. The r e ma in ing va lue s c an be entered in a parameter t a b le . 6.1
NC I NI T para me ter module
The f oll owing op tions are a vail a ble for saving the
va lu e s
in the NC I N NIT
parameter mod u le .
E nt e r ing the val ue s dir ec tly in the co rr e s po ndi ng mod ule .
Fig. 33 NC INIT parameter m od u le
S a v in g
the d ete r mine d value s imm e diate ly in the NC test windo w.
Once e ve r yt hing has ha s been saved, the p r o je ct s hou ld be c om p il e d cu rr e n t ve r s io n s h ou ld be tr a n s f e rr e d to the c ont r oll e r . 6.2
and the
ACOPOS pa rame am e ter tabl ab le
The parameters and value s (e.g. for the notch filter) can be entered in a n ACOPOS parameter ta b le .
Fig. 34 ACOPOS parameter tab le
juss tm tmen en t ACOPOS Contr ol Concept and Ad ju
TM450
45
Summ ar ary y
7.
SUMMA RY
By un de r s ta nd ing how the parameters that we will be u s ing work, we are now able to d e te r min e correct va lue s . The cascaded contr ol concept all ows us to and f ililte r parameters by- s te p. parameters s t e p - b
optimize
the contr ol parameters
The parameters d e te r mine d are us ua ll y diff e r e nt. However, the procedure for ob taining these va lue s is alwa ys the s a me .
46
TM450
ACOPOS Con onttr ol Concept and Adjustment
App ppe endix
8.
APP ENDIX
k t = ___ _______ N Nm/A __________ k g m²
J =
r e que n cy Switch ing f r
=
_______ ___ ___ Hz Hz
Speed c on tr o ll e r :
2 0.000075 2 SwitchingFrequency 2
1
2 0.000075
T
v
T I
T d e a d
0.000175
T filter
v
kv
tn
2
2
J
T _ v k t
4 T _ v 4
Po s itio n co ntr o ll er :
T _ p p
T int
4 T
v
erpol
kv
tn
1 2 T _ p p
1 2
4 T _ p p 4
T dead
p
0.0001 4
0.0002
1
juss tm tmen en t ACOPOS Con onttr ol Concept and Ad ju
TM450
47