Servomotores
Microcontroladores
Instituto Tecnológico de Durango Ing. Mecatrónica Microcontroladores Unidad Temática No. 4
Investigación: Funcionamiento de los Servomotores
Alumno: Jorge Alberto Campos Méndez
No. de control: 11040321
Profesor: Montesinos Meraz Jesús Fecha de entrega: martes 06 de mayo del 2014
1
Servomotores
Microcontroladores
Definición Un servomotor (o servo) es un motor de corriente continua que tiene la capacidad de ser Controlado en posición. Es capaz de ubicarse en cualquier posición dentro de un rango de Operación (generalmente de 180º) y mantenerse estable en dicha posición. Los servos se Suelen utilizar en robótica, automática y modelismo (vehículos por radio-control, RC) Debido a su gran precisión en el posicionamiento.
El servo es un potente dispositivo que dispone en su interior de un pequeño motor con un Reductor de velocidad y multiplicador de fuerza, también dispone de un circuito que controla el sistema. El ángulo de giro del eje es de 180º en la mayoría de ellos, pero puede ser fácilmente modificado para tener un giro libre de 360º, como un motor estándar.
El motor servo es el encargado de dar movilidad al robot y su forma física es posible de apreciar en la figura 1.
Figura 1: “Motor servo”
Para controlar un servo se debe aplicar un pulso de duración y frecuencia específicas. Todos los servos disponen de tres cables, dos para alimentación Vcc y Gnd (4.8 a 6 [V]) y un tercero para aplicar el tren de pulsos de control, que hace que el circuito de control diferencial interno ponga el servo en la posición indicada, dependiendo del ancho del pulso.
2
Servomotores
Microcontroladores
En la figura 2 es posible apreciar ejemplos del posicionamiento del eje del servo dependiendo del ancho del pulso, donde se logra 0º, 90º y 180º con anchos de pulso de 0.5, 1.5 y 2.5 [ms] respectivamente.
En general, los servos suelen estar compuestos por 4 elementos fundamentales:
Motor de corriente continua (DC): Es el elemento que le brinda movilidad al servo.
Cuando se aplica un potencial a sus dos terminales, este motor gira en un sentido a su velocidad máxima. Si el voltaje aplicado sus dos terminales es inverso, el sentido de giro también se invierte.
Engranajes reductores: Tren de engranajes que se encarga de reducir la alta
velocidad de giro del motor para acrecentar su capacidad de torque (o par-motor).
Sensor de desplazamiento: Suele ser un potenciómetro colocado en el eje de salida
del servo que se utiliza para conocer la posición angular del motor.
Circuito de control: Es una placa electrónica que implementa una estrategia de control de la posición por realimentación. Para ello, este circuito compara la señal de
3
Servomotores
Microcontroladores
entrada de referencia (posición deseada) con la posición actual medida por el potenciómetro. La diferencia entre la posición actual y la deseada es amplificada y utilizada para mover el motor en la dirección necesaria para reducir el error.
Principios de Funcionamiento Los servos disponen de tres cables (Figura 2): dos cables de alimentación (positivo y negativo/masa) que suministran un voltaje 4.8-6V y un cable de control que indica la posición deseada al circuito de control mediante señales PWM (“Pulse Width Modulación”).
4
Servomotores
Microcontroladores
Las señales PWM utilizadas para controlar los servos están formadas por pulsos positivos cuya duración es proporcional a la posición deseada del servo y que se repiten cada 20ms (50Hz). Todos los servos pueden funcionar correctamente en un rango de movimiento de 90º, que se corresponde con pulsos PWM comprendidos entre 0.9 y 2.1ms. Sin embargo, también existen servos que se pueden mover en un rango extendido de 180º y sus pulsos de control varían entre 0.5 y 2.5ms (Figura 3). Antes de utilizar un servo habrá que comprobar experimentalmente su rango de movimiento para no dañarlo. Para mantener fijo un servo en una posición habrá que enviar periódicamente el pulso correspondiente; ya que si no recibe señales, el eje del servo quedará libre y se podrá mover ejerciendo una leve presión.
Tipologías de los servomotores
Existen dos tipos de servos: analógicos y digitales. Ambos tipos de servos son iguales a nivel de usuario: tienen la misma estructura (motor DC, engranajes reductores, potenciómetro y placa de control) y se controlan con las mismas señales PWM. La principal diferencia entre ellos radica en la adición de un microprocesador en el circuito de 5
Servomotores
Microcontroladores
control de los servos digitales [3]. Este microprocesador se encarga de procesar la señal PWM de entrada y de controlar el motor mediante pulsos con una frecuencia 10 veces superior a los servos analógicos. El aumento en la frecuencia de excitación del motor en los servos digitales permite disminuir su tiempo de respuesta (menor deadband), aumentar su resolución de movimiento y suavizar su aceleración/deceleración. El uso de un microprocesador permite también a los servos digitales programar distintos parámetros de configuración que son fijos en los analógicos: sentido de giro, posición central inicial, topes en el recorrido del servo, velocidad de respuesta del servo y resolución. Para establecer estos parámetros se deben utilizar aparatos específicos de cada marca. El principal inconveniente de los servos digitales es que consumen más energía que los analógicos al tener que generar más pulsos de control para el motor.
Dado que existen algunas pequeñas diferencias entre las distintas marcas de servos, en la tabla 1 están indicados las características técnicas de varias marcas que comercializan este producto.
6
Servomotores
Microcontroladores
Los Servos son sumamente útiles en robótica. Los motores son pequeños, cuando usted observa la foto de abajo, tiene internamente una circuitería de control interna y es sumamente poderoso para su tamaño. Un servo normal o Standard como el HS-300 de Hitec tiene 42 onzas por pulgada o mejor 3kg por cm. De torque que es bastante fuerte para su tamaño. También potencia proporcional para cargas mecánicas.
Un servo, por consiguiente, no consume mucha energía. Se muestra la composición interna de un servo motor en el cuadro de abajo. Podrá observar la circuitería de control, el motor, un juego de piñones, y la caja. También puede ver los 3 alambres de conexión externa. Uno es para alimentación Vcc (+5volts), conexión a tierra GND y el alambre blanco es el alambre de control.
Un servo desmontado.
El motor del servo tiene algunos circuitos de control y un potenciómetro (una resistencia variable) esta es conectada al eje central del servo motor. En la figura se puede observar al lado derecho del circuito. Este potenciómetro permite a la circuitería de control, supervisar el ángulo actual del servo motor. Si el eje está en el ángulo correcto, entonces el motor está 7
Servomotores
Microcontroladores
apagado. Si el circuito chequea que el ángulo no es el correcto, el motor girará en la dirección adecuada hasta llegar al ángulo correcto. El eje del servo es capaz de llegar alrededor de los 180 grados. Normalmente, en algunos llega a los 210 grados, pero varía según el fabricante. Un servo normal se usa para controlar un movimiento angular de entre 0 y 180 grados. Un servo normal no es mecánicamente capaz de retornar a su lugar, si hay un mayor peso que el sugerido por las especificaciones del fabricante.
La cantidad de voltaje aplicado al motor es proporcional a la distancia que éste necesita viajar. Así, si el eje necesita regresar una distancia grande, el motor regresará a toda velocidad. Si este necesita regresar sólo una pequeña cantidad, el motor correrá a una velocidad más lenta. A esto se le llama control proporcional.
¿Cómo se debe comunicar el ángulo a cual el servo debe posicionarse? El cable de control se usa para comunicar el ángulo. El ángulo está determinado por la duración de un pulso que se aplica al alambre de control. A esto se le llama PCM Modulación codificada de Pulsos. El servo espera ver un pulso cada 20 milisegundos (.02 segundos). La longitud del pulso determinará los giros de motor. Un pulso de 1.5 ms., por ejemplo, hará que el motor se torne a la posición de 90 grados (llamado la posición neutra). Si el pulso es menor de 1.5 ms., entonces el motor se acercará a los 0 grados. Si el pulso es mayor de 1.5ms, el eje se acercará a los 180 grados.
8
Servomotores
Microcontroladores
Como se observa en la figura, la duración del pulso indica o dictamina el ángulo del eje (mostrado como un círculo verde con flecha). Nótese que las ilustraciones y los tiempos reales dependen del fabricante de motor. El principio, sin embargo, es el mismo. Para los Hitec: 0.50 ms = 0 grados, 1.50 ms = 90 grados y 2.5 ms = 180 grados.
9
Servomotores
Microcontroladores
Conclusiones Un Servo es un dispositivo pequeño que tiene un eje de rendimiento controlado. Este puede ser llevado a posiciones angulares específicas al enviar una señal codificada. Con tal de que una señal codificada exista en la línea de entrada, el servo mantendrá la posición angular del engranaje. Cuando la señal codificada cambia, la posición angular de los piñones cambia. En la práctica, se usan servos para posicionar superficies de control como el movimiento de palancas, pequeños ascensores y timones. Ellos también se usan en radio control, títeres, y por supuesto, en robots. Los Servos son sumamente útiles en robótica. Los motores son pequeños, tiene internamente una circuitería de control interna y es sumamente poderoso para su tamaño.
10