UNIVERSIDAD AUTÓNOMA DE OCCIDENTE DEPARTAMENTO DE OPERACIONES Y SISTEMAS TALLER DE FORMULACIÓN DE MODELOS Para los cursos de: INVESTIGACIÓN DE OPERACIONES e INVESTIGACIÓN DE OPERACIONES 1 Se recomienda seguir los siguientes pasos al abordar cada problema:
1.
Definir claramente el problema para cada situación. Elaborar una tabla o esquema que facilite la comprensión del problema. Identificar con precisión las las variables de decisión, decisión, incluyendo incluyendo el tipo de variable. Formular la función objetivo como una expresión matemática. Construir el modelo correspondiente, considerando el balance balance de las unidades utilizadas.
La gerente de cocina de un “internado” intenta decidir qué dar de comer a los internos. Quisiera ofrecerles alguna combinación de leche, fríjoles y naranjas. La meta es minimizar los costos y satisfacer los requerimientos nutricionales requeridos. El costo y contenido nutricional de cada alimento, así como los requerimientos nutricionales mínimos, se dan en la tabla de abajo. ¿Qué dieta debe dar a cada interno? Formule el modelo de programación lineal. Indique las variables de decisión, la función objetivo y cada una de las restricciones.
Leche Frijoles Naranjas (galones) (tazas) (cada una) Niacina (mg) Tiamina (mg) Vitamina C (mg) Costo ( $) 2.
3,20 1,12 32,00 2,00
4,90 1,30 0,00 0,20
0,80 0,19 93,00 0,25
Requerimiento mínimo diario (mg) 13,00 1,50 45,00
Una empresa produce dos referencias A y B, los cuales se producen en su fábrica la cual consta de 5 departamentos. Los precios de venta son $26 y $22 y los costos variables son de $11 y $7 respectivamente. Los costos fijos totales son de $75.000. En el siguiente cuadro se presentan las horas requeridas por cada una de las referencias en cada departamento y la capacidad en horas de cada uno. Determine la cantidad a producir de cada referencia r eferencia con el fin de maximizar sus utilidades. HR/REF DEPART AM AMENT O
REF. A
REF. B
HO RA RAS DISPONIBLES
1
3
1
13500
2
7
5
35000
3
5
6
30000
4
2
5
20000
5
2
2
12000
1
3.
La administración FEDEX-RAPIDO, empresa de mensajería en la ciudad de Cali, desea contratar operadores extras para la temporada de navidad, pero debido a las limitaciones de espacio en la oficina principal el número de empleados no puede exceder de 50. De experiencias anteriores el administrador pudo determinar que un hombre puede manejar 6000 cartas diarias o 2000 paquetes diarios, mientras que una mujer puede manejar 7000 o 1000 respectivamente. Conociendo que al menos llegarán 8000 cartas diarias y 15000 paquetes por día y que por estudios en las operaciones de entrega se ha detectado que por cada entrega que realiza una mujer el hombre realiza 2 entregas, construya un modelo de Programación Lineal para la situación de la empresa si el pago a cada hombre y a cada mujer es de $600000.
4.
La empresa VIDRIUS COLOMBIA. Produce artículos de vidrio de alta calidad, incluyendo ventanas y puertas de vidrio. Tiene tres plantas. Los marcos y molduras de aluminio se hacen en la planta 1, los marcos de madera se fabrican en la planta 2 y en la tres se produce el vidrio y se ensamblan los productos. Debido a que las ganancias se han reducido. La alta administración ha decidido reorganizar la línea de producción de la compañía, descontinuando varios productos no rentables y dejando libre una parte de la capacidad de producción para emprender la fabricación de dos productos nuevos que tienen ventas potenciales grandes. El producto 1 requiere una hora en la planta 1, no utiliza la planta 2 y requiere de tres horas en la planta tres para la producción de una unidad. El producto 2 no utiliza la planta 1 y necesita de dos horas en las plantas 2 y 3 para su producción. La división de comercialización ha concluido que la compañía puede vender todos los productos que se puedan fabricar en las plantas. El departamento de contabilidad calcula que la ganancia por unidad del Producto 1 y 2 es de $3000 y $5000 respectivamente. El personal de la división de manufactura proporciona el análisis de los procesos en cada una de las plantas y determina que el tiempo disponible en las plantas 1, 2 y 3 es de 4, 12 y 18 horas a la semana respectivamente. Cómo los productos competirán por la misma capacidad de producción en la planta 3, no está claro que mezcla de productos sería la más rentable. Por lo tanto, se le pide a usted que formule un modelo de Programación Lineal para alcanzar el objetivo de la empresa y darle solución al problema.
5.
La empresa de Tecnología del Valle importa componentes electrónicos que se usan para ensamblar dos modelos de computadoras personales. A uno de los modelos se le denomina VT Computador de Escritorio y VT Computador Portátil. Los administradores de Tecnología del Valle están interesados en elaborar el programa semanal para ambos productos. El VT Computador de Escritorio genera una contribución a las utilidades de $500.000 pesos por unidad y el VT Computador Portátil genera una contribución de $400.000 pesos por unidad. Se tendrán disponibles un máximo de 150 horas de ensamble para la producción de la semana siguiente. Cada unidad de VT Computador de Escritorio requiere de 3 horas de tiempo de ensamblado, y cada una de VT Computador Portátil requiere de 5 horas. Además Tecnología del Valle tiene en estos momentos un inventario de sólo 20 monitores (visualizadores) de los que se emplean en la VT Computador Portátil; por ello, no es posible ensamblar más de 20 unidades de este tipo. Finalmente, sólo se puede disponer de 300 pies cúbicos de espacio de almacén para la producción nueva de estos productos. Cada unidad de VT Computador de Escritorio requiere de 8 pies cúbicos de espacio de almacén y cada unidad de VT Computador Portátil requiere de 5 pies cúbicos.
2
6.
El gerente del hospital universitario ha observado que algunos de sus servicios tienen capacidad ociosa. Siguiendo una propuesta realizada por el equipo médico, esta capacidad ociosa podría aprovecharse para introducir dos tipos nuevos de cirugía, A y B. Tanto los pacientes de tipo A como los de tipo B tienen que pasar primero por una sala de pre-cirugía y, una vez pasado por el quirófano tienen que estar en observación en una sala postoperatoria, que no existe de momento. El equipo médico ha estimado el tiempo medio que necesita cada paciente de tipo A y de tipo B en uno de los servicios pre-quirúrgico (PQ), quirúrgico (QI) y postoperatorio (PO). La experiencia en un hospital similar muestra que por cada tres pacientes de tipo A que llegan al hospital como mínimo llega uno de tipo B. Por otra parte, se ha estimado el coste de cada paciente en los diferentes servicios. El cuadro muestra los datos del problema, teniendo en cuenta que la capacidad ociosa es en horas mensuales y el costo por paciente en $ (pesos colombianos).
Cuadro. Estimaciones horarias de las cirugías A y B Estimaciones horarias de Capacidad las cirugías A y B Ociosa A B 1 3 144 Sala PQ Sala QI 3 2 162 Sala PO 4 2 1.300.000 1.800.000 Costo Como el servicio postoperatorio (PO) aún no existe, el gerente argumenta que para justificar su creación tiene que utilizarse durante un mínimo de 135 horas al mes. Por otra parte, el presupuesto mensual asignado a las nuevas cirugías es de 982.000.000 de pesos. El gerente quiere saber cuál será el número máximo de pacientes que podrán ser operados al mes. 7.
Un nuevo taller de automóviles, está planeando el recurso humano requerido que consiste en electricistas y mecánicos. Por necesidades de mercado, es necesario que el número de mecánicos sea como mínimo igual al número de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la empresa por jornada es de 25.000 pesos electricista y 20.000 pesos por mecánico.
8.
Electro cómputo S.A. fabrica dos productos eléctricos: aires acondicionados y grandes ventiladores. El proceso de ensamble de cada uno es similar en el sentido que ambos requieren una cierta cantidad de horas en los procesos de alambrado y soldadura. Cada aire acondicionado requiere 3 horas en alambrado y 2 en soldadura y cada ventilador debe pasar 2 horas en alambrado y 1 hora en soldadura. Durante el siguiente periodo de producción están disponibles 240 horas en el proceso de alambrado y hasta 140 horas en soldadura. La administración decide que para garantizar un suministro adecuado de aires acondicionados de un contrato, se deben fabricar, por lo menos 10 de estos aparatos. Como la empresa incurrió en una sobreoferta de ventiladores en el periodo anterior, la administración insiste en que no se produzcan más de 80 ventiladores durante este periodo de producción. Cada aire acondicionado produce una ganancia de $25.000 y cada ventilador de $15.00x0.
3
9.
Verduras del Valle, tiene 50 hectáreas de tierra en la cual puede plantar cualquier cantidad de maíz, soya, lechuga, algodón y brócoli. La siguiente tabla muestra información relevante perteneciente a la producción, el costo de plantación, el precio de venta esperado y los requerimientos de agua para cada cultivo:
Cultivo
Producción
Costo ($/kg)
Precio de
(Kg/hectárea)
venta ($/kg)
Agua requerida (litros/kg)
Maíz
640
1
1.7
8.75
Soya
500
0.5
1.3
5
Lechuga
400
0.4
1
2.25
Algodón
300
0.25
1
4.25
brocoli
350
0.6
1.3
3.5
Para la próxima temporada, hay 100000 litros de agua disponibles y la compañía ha contratado vender al menos 5120 Kg de maíz. Resuelva la situación anterior a través de la modelación matemática. 10. Colombiana de dulces está desarrollando una nueva barra de mantequilla de cacahuate y chocolate. El dulce debe tener al menos 5 gramos de proteínas, pero no más de 5 gramos de carbohidratos y 3 gramos de grasas saturadas. Formule un plan de producción para la situación anterior.
Mantequilla de cacahuate
Chocolate
0.1 4 2.5 2
0.18 0.8 1 0.5
Costo ($/onza) Proteínas (g/onza) Carbohidratos(g/onza) Grasas saturadas (g/onza)
11. El Casino “El gran juego”, está promoviendo un concurso de póker y ha presupuestado $80.000 por semana para publicidad local. El dinero tiene que ser asignado entre cuatro medios promocionales: anuncios en TV, anuncios en periódicos y dos tipos de anuncios en radio. La siguiente tabla muestra presenta el número de jugadores potenciales influenciados con cada uno de los cuatro medios, el costo por tipo de anuncio y el número máximo de anuncios a adquirirse por semana. Audiencia alcanzada
Costo por anuncio
Anuncios máximos por semana
TV (1 minuto)
5000
800
12
Periódico (1/4 pág.)
8500
925
5
Radio (30 seg.)
2400
290
25
Radio (1 min.)
2800
380
20
Medio
Los acuerdo contractuales del casino, requieren que por lo menos se coloquen cinco anuncios de radio cada semana. Para garantizar una campaña promocional de amplio alcance, la administración determina que se gasten no más de $1800 en publicidad por radio en el mismo periodo. 4
12. El hospital Matasanos ha decidido ampliar su servicio de urgencias (abierto las 24 horas) con la consiguiente necesidad de nuevo personal de enfermería. La gerencia del hospital ha estimado las necesidades mínimas de personal por tramos horarios para poder cubrir las urgencias que se presenten. Se definieron 6 tramos de 4 horas. La necesidad mínima de personal en cada tramo se indica en el Cuadro 1.1. Por otro lado, el departamento de recursos humanos ha informado a gerencia que los contratos laborales han de ser de ocho horas seguidas, según el Convenio firmado con los sindicatos, independientemente de los horarios de entrada y salida del personal.
Necesidades de personal por tramos horarios
13. La fábrica de zapatos “El Andariego” produce tres tipos de zapatos exclusivos para caballeros: ejecutivos, botas y pantuflas. El gerente de planta debe decidir el mejor programa de producción para el próximo mes. Los datos de la tabla describen la operación de manufactura y se recopilaron en meses anteriores. Existe una oferta limitada de cuero. Se dispone en la planta de un máximo de 1.200 horas de producción para el mes siguiente. El tiempo de producción cuesta $10/hora y cada pulgada cuadrada de cuero tiene un costo de $4. La empresa hace sus ventas a mayoristas que le pagan en efectivo y por lo tanto la compañía no tiene cuentas por cobrar. Los precios de venta a para cada par de zapatos a los mayoristas son: $60, $64 y $50, respectivamente. Los costos fijos de operación para el siguiente mes son: $3.000 y el saldo actual de efectivo de la empresa es de $16.560, producto de las ventas del mes anterior, que se utilizarán para adquirir el cuero y pagar la mano de obra. El gerente de planta tiene comprometidos los siguientes pedidos (en pares): 300 ejecutivos, 55 botas y 32 pantuflas. Pueden venderse todos los pares que se fabriquen durante el mes que excedan esos pedidos ya comprometidos a excepción de las pantuflas las cuales el Depto. de Mercadeo estima que no se venderán más de 70 pares en el mes. Todos los zapatos que se fabriquen en un mes se distribuyen en ese mismo mes y por ello no existen inventarios.
Producto Ejecutivos Botas Pantuflas Disponibilidad
Horas por par de zapatos 3,5 2,5 2,0 1200
Pulgadas de cuero por par de zapatos 3,3 4,5 2,0 2000
Precio de venta
Costo
Utilidad
60,0 64,0 50,0
48,2 43,0 28,0
11,8 21,0 22,0
Formule el modelo de programación lineal e indique si las variables serán continuas, enteras o binarias.
5
14.
“Fragancias S.A.” produce varios accesorios para baño, entre ellos soportes decorativos para toallas y cortinas de baño. Cada uno de estos accesorios comprende un tubo de acero inoxidable. Sin embargo usan muchos tamaños distintos: 12, 18, 24 y 60 pulgadas. Fragancias compra tubos de 60 pulgadas a un proveedor externo y luego los corta según lo requiera para sus productos. Cada tubo de 60 pulgadas puede utilizarse para hacer varios tubos más pequeños. Para el siguiente período de producción, Fragancias necesita 25 tubos de 12 pulgadas, 52 de 18”, 45 de 24”, y 12 de 60 pulgadas. La empresa como política no permite que su desperdicio en el corte sea mayor a 6 pulgadas. ¿Cuál es el menor número de tubos de 60 pulgadas que puede adquirir para satisfacer sus requerimientos de producción? Formule un modelo de P.L.
15. Molinos del cauca tiene una máquina que muele semillas de linaza hasta producir un polvo fino a una velocidad de 30 lb por hora. La compañía también usa la máquina para hacer crema de cacao con semillas de cacao tostadas a una velocidad de 60 lb por hora. El tiempo de fijación para cambiar la máquina de un producto al otro es despreciable. La demanda mensual y los costos de mantenimiento de inventario de cada producto se muestran en la tabla siguiente:
Demanda (libras) Crema de Linaza cacao molida Mayo Junio Julio
400 450 500
600 700 650
Costos de mantenimiento (4/libra) Crema de Linaza molida cacao 0.1 0.1 0.12
0.05 0.05 0.05
El inventario inicial para cada producto a principios de mayo es 0 y también debe ser 0 a finales de julio. En ningún momento el inventario de linaza molida puede exceder las 1.000 libras ni el de crema de cacao las 500 libras. Asimismo, cada mes hay 20 hs. de tiempo de máquina disponible. La empresa quiere encontrar una solución a la situación anteriormente planteada para los meses de mayo, junio y julio. 16. Tintas Jamundí mezcla tres aditivos A1, A2 y A3 a una base en diferentes proporciones para obtener diferentes colores de tinta. La tinta roja se obtiene mezclando A1, A2 y A3 en la proporción de 3,1, 2; la tinta azul en la proporción de 2, 3, 4 y la tinta verde en la proporción de 1, 2, 3. Después de mezclar estos aditivos, se añade una cantidad igual de base para cada color: La compañía actualmente tiene 1000 galones de A1, 1500 de A2, 2000 de A3 y 4000 de base. Dado que el precio de venta por galón de cada tipo de tinta es el mismo, desarrolle un modelo para saber cómo deben usarse los recursos mencionados. 17. Una familia dispone de una finca de 100 Ha de terreno cultivable y dispone de cuatrocientos millones de pesetas para invertir. Los miembros de la familia pueden producir un total de 3.500 horas-hombre de mano de obra durante los meses de invierno y de 4.000 horashombre durante el resto del tiempo, el verano. Si no fuesen necesarias en el trabajo de la finca una parte de esas horas-hombre se emplearán para trabajar en un campo vecino, a razón de 50.000 pesos la hora en invierno y de 60.000 en verano. En el trabajo de la finca se pueden obtener ingresos produciendo tres tipos de cosecha soya, maíz y avena, y cuidando las vacas lecheras y gallinas ponedoras. Para las cosechas no se necesita inversión (se autoabastecen), pero cada vaca exige un desembolso de 8.000.000 de pesos y cada gallina les cuesta 30.000 pesos.
6
Para el pasto de las vacas se necesitan 1.5 Ha por cada vaca, 70 horas-hombre durante el invierno y 50 horas-hombre durante el verano. Cada vaca produce un ingreso neto de 10.000.000 de pesos. Las gallinas se pueden pasear por cualquier lugar, no necesitando de un terreno propio, pero hay que dedicar 0.6 horas hombre en invierno y 0.3 horas-hombre en verano para cada gallina, de cada una de ellas se obtiene un beneficio de 70.000 pesos. Por la noche hay que recoger las gallinas y las vacas, para ello se dispone de un gallinero de 300 plazas y de un establo para 32 vacas, si hubiera más morirían asfixiadas. La cosecha de soya requiere 20 horas-hombre de trabajo por hectárea, en invierno y 50 en verano; la de maíz requiere 35 horas-hombre de trabajo por hectárea, en invierno y 75 en verano y la de avena requiere 10 horas-hombre de trabajo por hectárea, en invierno y 40 en verano. El rendimiento neto que se obtiene, por cada Ha de la cosecha de soya es de 5.100.000 pesos, por cada Ha de la cosecha de maíz es de 7.900.000 pesos y por cada Ha de la cosecha de avena es de 3.200.000 pesos. Como es lógico la familia quiere maximizar sus ingresos. 18. Dos ciudades (1 y 2) descargan sus aguas residuales a un mismo río, cuya calidad está regulada por una entidad de control, que establece los niveles máximos de DBO 5 en los diferentes tramos del río. Cada ciudad debe instalar una planta de tratamiento. Los costos de estas son directamente proporcionales a las eficiencias, las cuales, por razones técnicas, no pueden ser mayores que 95%.
Q2
q1 C1
C2
El río tiene su propia capacidad de auto-purificación, en cada tramo. Para simplificar, ésta se expresa como porcentaje de remoción de DBO5 por acción propia del río.
7
La información recolectada se condensa así:
Carga inicial DBO5 (t/d) Caudal del río Q (m3/d) x 106 Caudal de aguas residuales q (m3/d) x 106 Carga de DBO5 sin tratar C (t/d) % de autopurificación Nivel permitido máximo DBO5 (g/m3) Costo del tratamiento (US$/t)
Punto 1 10 2.5
2 2.5
100 2.0 1000
250 2.0 800
Tramo 1 47.5 -
2 50 -
80 -
50 -
Las dos ciudades se han unido para hacer sus inversiones y usted debe aconsejarles sobre cómo hacerlo. 19. Una empresa de transporte de la ciudad tiene $3.200 millones para adquirir una flota nueva de camiones, piensa en comprar camiones de tres tipos. El camión A tiene una capacidad de 10 toneladas y se espera de él un promedio de 35 kilómetros hora, su precio es de $120 millones. El camión tipo B tiene una capacidad de 20 toneladas, alcanza un promedio de 30 kilómetros por hora y vale $150 millones. El camión tipo C, que es una versión modificada del B, tiene un compartimento para que duerma un chofer y esto reduce su capacidad a 18 toneladas y aumenta su costo a $180 millones. El camión A requiere un solo chofer y si se utilizan 3 turnos, pueden trabajar durante 18 horas diarias. Los camiones B y C requieren dos choferes cada uno y si se utilizan 3 turnos pueden funcionar durante 18 y 21 horas, respectivamente. La empresa tiene 150 choferes disponibles por día. Las instalaciones donde se realiza el mantenimiento son tales que el número total de camiones no debe ser mayor que 30. Formule un modelo matemático de P.L. que le permita optimizar la decisión a la empresa. 20. Adonis ha estado saliendo con dos chicas: Roxana y Frida. A Roxana la “Complicada” le gusta ir a sitios glamurosos, de tal manera que una salida (3 horas) con esta chica le cuesta a Adonis $200.000, mientras que a Frida le gustan los sitios más populares, por tanto, una salida (3 horas) solo le representa $100.000. Adonis considera los siguientes requerimientos energéticos: una salida con Frida le implica un gasto de 9.000 calorías, mientras que Roxana le absorbe 7.000 calorías por salida. Formule un modelo de programación lineal que le permita planear a Adonis su vida social, si dispone de $600.000 para “festines”, 25.000 calorías de energía y 14 horas libres a la semana para dedicar a éste tipo de actividades. Considere además que una salida con Frida “la sagaz” le reporta 7 unidades de placer y una salida con Roxana le reporta 4 unidades de placer.
8
21. Gracias a una adecuada estrategia de marketing y a la calidad del producto, cierta pequeña fábrica de canastos de mimbre ha recibido pedidos que superan su actual capacidad de producción. Durante las próximas cuatro semanas debe entregar 52, 65, 70 y 85 canastos, respectivamente. Actualmente cuenta con seis artesanos. La gerencia general de la fábrica ha decidido contratar personal nuevo para poder cumplir sus compromisos comerciales. Dada la escasez de artesanos, se deberá contratar personal sin experiencia. Un novato puede ser entrenado para llegar a ser aprendiz durante una semana. La segunda semana trabaja como aprendiz para ganar experiencia. Comenzando la tercera semana (después de dos semanas de trabajo) se transforma en artesano. La producción estimada y sueldos de los empleados es la siguiente:
PRODUCCIÓN Canastos/semana Artesano dedicado sólo a la producción Artesano dedicado a producción y entrenamiento Aprendiz Novato
10 5 5 1
SALARIOS $/semana 30.000 40.000 15.000 5.000
Cada artesano puede entrenar hasta dos novatos por semana (el entrenamiento de un novato sólo dura una semana). Todo excedente de producción semanal puede ser guardado para cumplir los siguientes compromisos comerciales. Los analistas de la empresa estiman que la demanda semanal de canastos difícilmente superará los noventa canastos, por lo que han decidido terminar el período sin novatos y aprendices, pero con al menos nueve artesanos. Los reglamentos sindicales de la empresa prohíben los despidos por reducción de personal. Formule un modelo de programación lineal que permita definir las contrataciones a realizar, de modo de cumplir los compromisos comerciales a costo mínimo. 22. Considere el problema de programación de la producción de un conjunto de m tipos diferentes de artículos para los próximos n meses en una fábrica. En cuanto al uso de materias primas, el costo de producción de cada artículo de tipo i se estima en c i. La producción de un artículo tipo i requiere moi horas de mano de obra, disponiendo la fábrica de h j horas de mano de obra durante el mes j . En ciertos meses, la fábrica puede emplear horas extras para aumentar sus recursos de mano de obra. En general, se puede denotar por st j la cantidad máxima de horas extras disponibles en el mes j , cada una de las cuales tiene un costo unitario de cst. La demanda de artículos tipo i en el mes j se estima en d ij , las cuales necesariamente deben ser satisfechas. El exceso de producción puede ser almacenado a un costo mensual unitario de s. Existe capacidad para almacenar un volumen máximo de v , pudiéndose representar por v i el volumen de un artículo de tipo i . Políticas de producción exigen que al final del período bajo consideración exista un inventario mínimo de si unidades de artículos tipo i .
9
Formule un modelo de programación lineal que permita planificar la operación de la fábrica durante los próximos n meses de forma tal de minimizar el costo total. 23. La Siderúrgica del Valle está explotando dos minas para obtener mineral de hierro. Este se embarca a cualquiera de sus dos bodegas. Cuando se necesita, de ahí se envía al alto horno de la compañía. En el diagrama siguiente se muestra la red de distribución, donde M1 y M2 son las dos minas, S1 y S2 son las dos bodegas y P es el alto horno (donde se funde el mineral de hierro). En el diagrama también se muestran las cantidades mensuales producidas en las minas y las requeridas en el alto horno, así como el costo de embarque y la cantidad máxima que puede enviarse cada mes por cada ruta de embarque. La administración quiere determinar el plan más económico para enviar el mineral de hierro de las minas al alto horno por la red de distribución. Formule el modelo de programación lineal.
24. Formule el siguiente modelo: Se ha concedido licencia a una nueva empresa de turismo, para realizar vuelos entre Bogotá y las Islas de San Andrés y Providencia e Interinsulares (Vuelos entre las islas del archipiélago). Para ello, debe comprar turborreactores con los que cubrir los vuelos entre Bogotá y las Islas, así como Aviones de Hélice y/o helicópteros con los que servir los vuelos interinsulares. El presupuesto de compra es de $2.800’000.000. Las características de los aparatos que puede comprar la empresa de turismo son:
Se pueden contratar como máximo 10 pilotos y 16 azafatas. Se desea contratar al menos 3 copilotos. El tráfico entre Bogotá y las Islas de San An drés se estima en 8.000 pasajeros por mes; y el interinsular en 500 pasajeros por mes. El permiso concedido requiere que el número máximo de aparatos sea de 15. La Empresa de Turismo desea operar con costos de mantenimiento mínimos.
10
25. Una empresa constructora de viviendas prefabricadas estima que la demanda de su producto va a aumentar en el próximo futuro. La capacidad normal de producción es de 1.500 viviendas/mes, pero en caso de necesidad se puede aumentar, mediante trabajo extra, en un 40% con costos adicionales que suman $1.000/unidad. También es posible almacenar los excesos de producción en los tiempos de baja demanda para compensar el déficit en los meses de alta demanda. Los costos de almacenamiento son de $200 / unidad / mes. La demanda estimada para los próximos 4 meses es de 1.200, 1.000, 2.100 y 2.600 respectivamente. Se desea planificar y programar la producción durante estos 4 meses y se le consulta a usted sobre el caso. 26. El municipio 1 del Valle del Cauca produce 500 toneladas de basura por día y el municipio 2 del Valle del Cauca produce 400 toneladas por día. La basura debe ser incinerada en los incineradores 1 ó 2, y cada incinerador puede procesar hasta 500 toneladas de basura por día. El costo de incinerar la basura es $80.000/ton en el incinerador 1 y $60.000/ton en el incinerador 2. La incineración reduce cada tonelada de basura a 0.2 toneladas de cenizas, las cuales deben ser llevadas a uno de dos depósitos. Cada depósito puede recibir a lo más 200 toneladas de cenizas por día. El costo es de $6.000/km para transportar una tonelada de material (ya sea ceniza o basura). Las distancias en kilómetros se muestran en la tabla.
Municipio 1 Municipio 2 Incinerador 1 Incinerador 2
Incinerador 1
Incinerador 2
30 36
5 42
Botadero 1
Botadero 2
5 9
8 6
27. XYZ es una empresa que fabrica bolsas de empanadas de 25 unidades. La demanda que posee de este producto aumenta y disminuye debido a sus características de aleatoriedad. Por ejemplo, la demanda que se ha pronosticado para los próximos 4 meses es de 1800, 2200, 3400 y 2800, respectivamente. Debido a las variaciones en dicha demanda , Julián rodríguez (ingeniero industrial encargado de la planta) ha encontrado que en algunos meses existe producción en exceso, lo cual ocasiona grandes costos de manejo y almacenamiento; en tanto que en otros meses la compañía no está en condiciones de satisfacer la demanda. La compañía puede fabricar 2400 bolsas de empanadas por mes en sus turnos normales. Utilizando tiempo extra, es posible fabricar 800 bolsas mensuales adicionales. Debido a los mayores costos de mano de obra en el tiempo extra, se produce un aumento de $70 por cualquier bolsa que no se fabrique durante el turno normal. Los administradores han estimado que se incurre en un costo de bodegaje de $30 por cualquier bolsa de empanadas que se fabrique en un mes determinado y que no se venda durante el mismo. La empresa desea encontrar una solución para la situación anterior. 28. Una empresa de cítricos, usa una sola máquina durante 150 horas para destilar jugo de naranja y de toronja para ser vendidos como concentrado congelado. Durante el tiempo que la máquina esté procesando naranja, NO podrá procesar toronja y viceversa. El jugo obtenido en cada caso, se almacena en 2 tanques separados de 1000 galones cada uno y luego se realiza el proceso de concentrado. La máquina puede procesar 25 galones de jugo de naranja por hora, pero solo 20 galones de jugo de toronja por hora. Cada galón de jugo de naranja que se obtenga cuesta $3000 y al concentrarlo pierde 30% de contenido de agua. El concentrado de jugo de naranja se vende en $12000 por galón. Cada galón de jugo 11
de toronja que se obtenga que se obtenga cuesta $4000 y al concentrarlo pierde 25% de contenido de agua. El concentrado de jugo de toronja se vende en $16000 por galón. Formule un modelo de optimización adecuado para determinar un plan de producción para la empresa.
29. “MEGA-ACIDOS2” diluye cada litro de ácido sulfúrico concentrado con 20 litros de agua destilada para producir H2SO4. De manera similar cada litro de ácido clorhídrico HCL concentrado se diluye en 30 litros de agua destilada para producir ácido clorhídrico. Estos dos productos son vendidos a colegios de bachillerato a $100 por botella de 100 mililitros (0.1 litros). La empresa actualmente tiene 50000 botellas vacías en inventario. Suponga que existe una cantidad virtualmente ilimitada de agua destilada que cuesta $150 el litro. Se dispone de los siguientes datos:
Ácido (H2SO4) Costo ($/litro) Suministro (litros)
12000 máximo 200
Sulfúrico Ácido (HCL)
clorhídrico
18000 150
Formule un modelo que le permita a Mega-ácidos programar el concentrado para el ácido sulfúrico y para el ácido clorhídrico.
12
30. Un proveedor debe preparar con 5 bebidas de fruta en existencia, al menos 500 galones de un ponche que contenga por lo menos 20% de jugo de naranja, 10% de jugo de toronja y 5% de jugo de arándano. Si los datos del inventario son los que se muestran en la tabla siguiente ¿Qué cantidad de cada bebida deberá emplear el proveedor a fin de obtener la composición requerida a un costo total mínimo?
Jugo de Naranja
Jugo de Toronja
Jugo de Existencia Arándano [gal]
Costo
Bebida A
40
40
0
200
1,50
Bebida B
5
10
20
400
0,75
Bebida C
100
0
0
100
2,00
Bebida D
0
100
0
50
1,75
Bebida E
0
0
50
800
0,25
[$/gal]
Nota: Las tres primeras columnas indican el porcentaje de un tipo de jugo dentro de una determinada bebida.
31. Una empresa de confecciones puede producir 1000 pantalones o 3000 blusas (o una combinación de ambos) diariamente. El departamento de acabado puede trabajar sobre 1500 pantalones o sobre 2000 blusas (o una combinación de ambos) cada día; el departamento de mercadeo requiere que se produzcan diariamente al menos 400 pantalones. Si el beneficio de un pantalón es de $ 4000 y el de una blusa es de $ 3000. ¿Cuántas unidades se deben producir de cada uno para maximizar las utilidades? 32. Un granjero de la sabana de Bogotá cultiva trigo y maíz en su granja de 45 hectáreas. Puede vender a lo más a 140 bultos de trigo y a lo más 120 bultos de maíz. Cada hectárea cultivada produce 5 bultos de trigo o 4 bultos de maíz. El trigo se vende a $30.000 el bulto y el maíz a $50.000 el bulto. Se necesitan 6 horas de mano de obra para cosechar una hectárea de trigo y 10 horas de mano de obra para cosechar una hectárea de maíz. Se pueden adquirir 350 horas de mano de obra a $10.000 la hora. Formule un modelo de programación lineal que le permita al granjero programar la producción de maíz y trigo. 33. Un fabricante debe cumplir un contrato a cuatro meses durante los cuales varían los costos de producción. El costo de almacenamiento de unidades producidas en un mes determinado y no vendidas en ese mes es de 10 pesos por unidad y por mes. Se dispone de la siguiente información.
Mes
Contrato de ventas en unidades
Capacidad de producción en unidades
Costo unitario de producción en pesos
1
20
40
140
2
30
50
160
3
50
30
150
13
4
40
50
170
¿Cuál sería el programa óptimo de producción que cumple con el contrato? 34. Una industria productora de papel recibe un pedido de la siguiente forma: 600 rollos de 35 pulg. de ancho 300 rollos de 30 pulg. de ancho 200 rollos de 40 pulg. de ancho 100 rollos de 50 pulg. de ancho La industria tiene en sus bodegas rollos semejantes, pero de 114 pulg. de ancho, y en cantidad suficiente y decide utilizarlos para el pedido, cortándolos en los diferentes anchos solicitados. ¿Cuál es la mejor forma de cortar los rollos de 114 pulgadas de ancho para satisfacer el pedido y minimizar el desperdicio de papel? 35. Un inversionista puede elegir entre las actividades A o B disponibles al comienzo de cada uno de los próximos 5 años. Cualquier cantidad invertida y recuperada en el futuro puede ser reinvertida en cualquier alternativa disponible. Cada peso que invierte en A al comienzo de cada año produce $1.4 dos años más tarde. Cada peso invertido en B al comienzo de un año le produce $1.7 tres años después. Además las actividades C y D están disponibles una sola vez en el futuro, C al comienzo del año 2 y D al comienzo del quinto año. Cada peso invertido en C genera $1.6 en dos años. Cada peso invertido en D produce $1.3 un año después. El inversionista dispone hoy de $100.000. formule un modelo de programación lineal que le permita determinar la mejor forma de inversión a lo largo de los cinco años para maximizar el capital disponible al final del quinto año (comienzos del sexto). 36. Two alloys, A and B, are made with four different metals, I, II, III and IV, according to the following specifications:
Alloy
Specifications
A
At most 80% of I At most 30% of II At least 50% of IV Between 40% and 60% of II At least 30% of III At most 70% of IV
B
The four metals are being extracted from three different metallic minerals: Mineral
Maximum Constituted by (%) Quantity I II III IV Others (ton) 1 1000 20 10 30 30 10 2 2000 10 20 30 30 10 3 3000 5 5 70 20 0 Assume that market prices of alloys A and B are $200, $300 per ton.
Price ($/ton) 30 40 50
14
37. Gudiela Gutiérrez está preocupada por su sobrepeso y el costo de la comida diaria. Ella sabe, que para bajar de peso, debe consumir máximo, 1350 Kilocalorías, pero requiere de cómo mínimo de 500 mg de vitamina A, 350 mg de Calcio, 200 mg de proteínas y 150 mg de minerales. De acuerdo con esto, ella ha elegido 6 alimentos, que según su criterio son ricos en nutrientes y de bajo costo:
Alimento
Porción
Vitamin Calcio Proteínas Minerale aA (mg) (mg) s (mg) (mg)
Cost Kilocaloría o ($) s
LECHE
1 Taza
105
75
50
35
5
60
HUEVO
2 Piezas
75
80
50
15
7
50
ESPINACAS
1 Ración
100
125
78
2
0
CHULETAS
2 Piezas
25
10
55
45
175
PESCADO
1 Tilapia
150
50
100
60
150
2 Reb.
30
5
8
50
200
PASTEL
50
Gudiela se ha dado cuenta que es muy posible que comiendo cinco tilapias diarias, tendría satisfechas sus necesidades de nutrientes y de Kilocalorías; pero no está dispuesta a tal sacrificio, por tanto, ella ha decidido que lo máximo que puede comerse en porciones de leche son tres, de huevo dos, de espinacas uno, de chuletas una, dos de pescado y de pastel una y media porciones. Proporcionar a Gudiela el modelo de Programación Lineal que determine la dieta más económica. 38. Una pequeña empresa fabrica dos tipos de partes automotrices, A y B. Compra delgadas láminas de acero que deben ser moldeadas, perforadas y pulidas, como se indica en el cuadro siguiente (en unidades por hora): CAPACIDAD
PARTE A
PARTE B
Moldeo
25/hora
40/hora
Perforado
28/hora
35/hora
Pulido
35/hora
25/hora
Las láminas para la parte A cuestan $2 (dólares) cada una; para la B, $3. Son vendidas a $5 y $6, respectivamente. Las máquinas que realizan las actividades ya señaladas tienen costos por hora de operación de $20, $14 y $17.5, respectivamente. Supóngase que se 15
puede vender cualquier combinación de parte A y B, y que se desea hacer máxima la utilidad de la compañía. Formule un modelo de programación lineal. 39. A su empresa ha llegado un pedido de 3500 unidades de cierto producto, el cual puede usted manufacturar en cualquiera de cuatro máquinas, con las siguientes características:
MÁQUINA
COSTO FIJO DE ALISTAMIENTO ($)
COSTO DE PRODUCCIÓN ($/unidad)
CAPACIDAD ACTUAL (Unidades)
1
150
15
1500
2
450
3
2900
3
300
7.5
1800
4
520
2
1100
Formule un modelo de PL para determinar en cuáles máquinas debe usted producir el pedido y la cantidad a producir en cada máquina, con el objeto de minimizar la suma de los costos fijos de alistamiento y los costos variables d e producción. 40. Ramón y Hnos. S.A. fabrica seis productos diferentes en su planta de Santo Domingo. El proceso productivo requiere que se usen cuatro departamentos. Los datos pertinentes aparecen a continuación, (en horas /unidad):
Producto
Dpto. 1
Dpto. 2
Dpto. 3
Dpto. 4
Beneficio / unidad
A
1
1
1
4
$15
B
2
2
8
3
20
C
1
-
3
2
16
D
-
2
-
3
18
E
3
1
2
-
10
F
1
3
1
4
14
200
180
300
240
Horas
$5
8
7
6
Disponible Costo ocio
/
hora
¿Cuál debe ser la mezcla óptima de productos?
16