ANALYSIS AND DESIGN ANALYSIS DESIG N OF RESIDENTIAL R.C BUILDING USING STAAD Pro A PROJECT REPORT ON JAWAHARLAL AHARLAL NEHRU TECHNOLOGICAL TECHNOLOGICAL UNIVERSITY A dissertation Submitted to the JAW KAKINADA in partial fulfillment of the requirement for the award of the degree
Of BACHELOR OF TECHNOLOGY IN CIVIL ENGINEERING SUBMITTED BY M.CHAITANYA NAVA KUMAR (09KP1A0131) S.VALESA S.VALESARA RA RAO(10KP!A0101) RAO(10KP! A0101) SK.RIYA"(10KP!A010#) SK.RAMEE"(10KP!A010$) SK. ABDUL MA%EED(10KP!A010!) Under the gud!n"e #$ Dr.K.CHANDRA Dr.K.CHANDRA MOULI B.E& M.E (STRUCT)& M.I.S.T.E& P'.D (%NTU) Pro**or+H.O.D Pro**or+ H.O.D OF CIVIL ENGINEERING
DEPARTMENT DEPARTMENT OF CIVIL ENGINEERING ENGI NEERING
NRI INSTITUTE OF TECHNOLOGY (A,,ro- / AICTE& A24 4o %NTU5KAKINADA) V*2 (P.O)& (P.O)& M6o78r8 (M)& GUNTUR5!$$#3 GUNTUR5!$$# 3 ANDHRA PRADESH DEPARTMENT DEPAR TMENT OF CIVIL ENGINEERING ENGI NEERING
NRI INSTITUTE OF TECHNOLOGY
Page 1
$013
CERTIFICATE ANALYSIS AND DESIGN OF This is to certify that the project entitled “ ANALYSIS RESIDENTIAL R.C BUILDING USING STAAD PRO PRO” ” has been carried out by the team under my guidance in partial fulllment for the award of the degr degree ee of Bachelor of Technology in Civil Engine Engineeri ering ng of Jaaharlal Nehr! Technolog"cal Un"#er$"%y& 'a("na)a during the academic year 202!20"#
BATCH M.CHAIANYA M.CH AIANYA NAVA NAVA KUMAR
09KP1A01 09KP 1A0131 31
S.VALESA S.VALESARA RA RAO
10KP!A0101
SK.RIYA"
10KP!A010#
SK.RAMEE"
10KP!A010$
SK. ABDUL MA%EED
10KP!A010! 10KP!A010 !
Projet oordinator
!ead of
department
E:4r72 E:;7r
NRI INSTITUTE OF TECHNOLOGY
Page 2
$013
CERTIFICATE ANALYSIS AND DESIGN OF This is to certify that the project entitled “ ANALYSIS RESIDENTIAL R.C BUILDING USING STAAD PRO PRO” ” has been carried out by the team under my guidance in partial fulllment for the award of the degr degree ee of Bachelor of Technology in Civil Engine Engineeri ering ng of Jaaharlal Nehr! Technolog"cal Un"#er$"%y& 'a("na)a during the academic year 202!20"#
BATCH M.CHAIANYA M.CH AIANYA NAVA NAVA KUMAR
09KP1A01 09KP 1A0131 31
S.VALESA S.VALESARA RA RAO
10KP!A0101
SK.RIYA"
10KP!A010#
SK.RAMEE"
10KP!A010$
SK. ABDUL MA%EED
10KP!A010! 10KP!A010 !
Projet oordinator
!ead of
department
E:4r72 E:;7r
NRI INSTITUTE OF TECHNOLOGY
Page 2
ACKNOWLEDGEDEMENT The projet entitled "Anal#sis $ %esign of Residential building& is the Cambered effort of our bath 'it is our dut# to bring forward eah $ e(er#one who is diretl# or indiretl# in relation with our projet $ b# whih we ha(e gained a struture) Prof Prof))
Dr.K.CHANDRA MOULI*
our !O% for his guidane $ his (aluable suggestions
whih helped us to arr# out this projet +e e,press our gratitude $ most than-s to prof)
Dr.K.CHANDRA MOULI for his (aluable
suggestions we than- all FACULTY MEMBERS for the help the# e,tended* in ompletion this projet) +e also also e,press our gratitude towards one $ all who ha(e helped us internall#)
.)C!A/TAN0A NA1A 23.AR S)1A4ES+ARA S)1A4ES+ARA RAO RA O S2)R/0A5 S2)RA.EE5 S2)A6%34 .AJEE%
NRI INSTITUTE OF TECHNOLOGY
Page 3
CONTENTS SUMMARY
NOTATIONS
ABSTRACT
C',4r 1< INTRODUCTION
7)7 About STAA% Pro
C',4r $ < SOFTARES
8)7 STAA%)PRO 8)8 STAA% 9O3N%AT/ON 8): A3TO CA% 8;;< C',4r 3 < MODEL GENERATION
:)7 SA/4ENT 9EAT3RES :)8 /SO.ETR/C 1/E+ C',4r # < PLAIN AND ELEVATION C',4r ! < LOADINGS C',4r = < ANALYSIS OF STRUCTURE FRAME C',4r > < DESIGNING OF BEAMS C',4r < DESIGNING OF COLUMNS C',4r 9 < DEIGN OF FOOTINGS C',4r 10 < REINFORCEMENT DETAILS OF FOUNDATION +COLUMNS C',4r11 < REINFORCEMENT DETAILS OF PLINTH BEAM C',4r1$
REFERENCES
NRI INSTITUTE OF TECHNOLOGY
Page 4
PROJECT TEA* This is to certify that the students whose names are mentioned below are studying in $#Tech nal year of Civil Engineering $ranch of NRI INSTITUTE OF TEC+NOLOGY # They have completed their project wor% entitled “ ANALYSIS AND DESIGN OF RESIDENTIAL R.C BUILDING USING STAAD PRO” under the guidance of
&r# 'r#(#C)*+',*
&-./ 1tructural Engineer3 in +, +TT.TE -4 TEC)+-/-567 8'*/*7 5.+T., during the period from 20!0!20" to 29!0"!20"#
BATCH<
.)C!A/TAN0ANA1A 23.AR
;=2P7A;7:7
S)1A4ES+ARA RAO
7;2P>A;7;7
S2)R/0A5
7;2P>A;7;?
S2)RA.EE5
7;2P>A;7;8
S2)A6%34 .AJEE%
7;2P>A;7;>
NRI INSTITUTE OF TECHNOLOGY
Page 5
SUMMARY The project comprises the development of plans7 elevations7 and sectional view of a ,esidential ,einforced Concrete building of ground :oor7 using *uto!cad 2009# tructural loads 15ravitational loads only37 'ead and /ive loads are only considered for the design of structure7 and the loads considered are as per ; 9<= > ?art! @ # The analysis and design of the building s%eletal fame is performed by using T**' ?ro 89i pac%age for factored 1/imit state of strength3 combination1s3# The structural displacements in vertical and horiAontal directions of the building are permitted to the limitations as per ; B= > 20007 for un! factored 1/imit state of serviceability3 combination1s3# tructural elements li%e lab1s3 and 4ooting1s3 are designed manually using &s EDcel# The reinforcement details are furnished according to the codal provisions and presented in this report#
NOTATIONS
NRI INSTITUTE OF TECHNOLOGY
Page 6
The following letter s#mbols shall ha(e the meaning indiated against eah) A
Area of onrete
Ag
@ross area of setion
AS
Area of steel in a olumn or in a singl# reinfored beam or slab
ASC
Area of ompression steel
AS1
Area of stirrups
6
6readth of beam or shorter %imensions of a retangular olumn
6r
Effeti(e width of flange in a
Tbeam
6w
6readth of web in a Tbeam
%
O(erall depth of beam or slab or %iameter of olumn or large %imension in a retangular Column or dimension of a Retangular olumn in the %iretion of bending
%f
Thi-ness of flange in a Tbeam
%
Effeti(e depth of a beam or slab
E
.odulus of elastiit# of onrete
Es
.odulus of elastiit# of steel
Emin
.inimum eentriit#
9-
Charateristi ompressi(e strength of onrete
9#
Charateristi #ield strength of steel
NRI INSTITUTE OF TECHNOLOGY
Page 7
4
4ength of olumn or span of
4e,
6eam Effeti(e length of a olumn* 6ending about ,,a,is
4e#
Effeti(e length of a olumn* bending about ##a,is
.
.a,imum moment under ser(ie 4oads
.u
%esign moment for limit state %esign Bfatored moment
.ulim
4imiting moment of resistane of a singl# reinfored retangular beam
.u,
%esign moment about ,,a,is
.u#
%esign moment about 00a,is
P
A,ial load
Pu
%esign a,ial load for limit state %esign Bfatored load
1
Shear fore
1u
Shear fore due to fatored loads
Tu
Torsional moment due to fatored loads
ABSTRACT
NRI INSTITUTE OF TECHNOLOGY
Page 8
The priniple objeti(e of this projet is to anal#De and design a multistor# building @F>G usi STAA% Pro) The design in(ol(es load alulations manuall# and anal#Ding the whole struture b# STAA% Pro) The design methods used in STAA% Pro anal#sis are 4imit State %esign onfirming to /ndian Standard Code of Pratie) STAA% Pro features a state of the art user interfae* (isualiDation tools* powerful anal#sis and design engines with ad(aned finite element and d#nami anal#sis apabilities) 9rom model generation* anal#sis and design to (isualiDation and design (erifiation* STAA% Pro is the professional hoie) /nitiall# we started with the 8 % frames and manuall# he-ed the aura# of the software with our results) The results pro(ed to be (er# aurate) STAA% Pro has a (er# interati(e user interfae whih allows the users to draw the frames and input the load (alues and dimensions) Then aording to speifi riteria assigned it anal#ses the struture and designs the members with reinforement details for RCC frames) +e ontinued with our wor- with some more multistoried 8 % and : % frames under (arious load ombinations) Our final wor- was the proper anal#sis and design of @F> :% R frame under (arious load ombinations) Compliated and high rise strutures need (er# time ta-ing and umbersome alulations using on(entional manual methods) STAA% Pro pro(ides us a fast* effiient* eas# to use and aurate platform for anal#Ding and designing strutures)
NRI INSTITUTE OF TECHNOLOGY
Page 9
CHAPTER51
NRI INSTITUTE OF TECHNOLOGY
Page 10
ABOUT STAAD PRO STAAD Pro is
a Strutural Anal#sis and design omputer program originall# de(eloped b#
Resear Researhh Engine Engineers ers /ntern /nternatio ational nal in 0orba 4inda* CA) CA) /n late 8;;>* Researh Engineer /nternational was bought b# 6entle# S#stems) S#stems) STAA% Pro allows strutural engineers to anal#De and design (irtuall# an# t#pe of struture through its fle,ible modelling en(ironment* ad(aned features and fluent data ollaboration) STA ST AA% Pro is one of the leading leading strut strutural ural anal#sis anal#sis and design design software software whih supports more than 7;; steel* onrete and timber design odes and has the largest worldwide user base) /t an ma-e use of (arious forms of anal#sis from the traditional 7st order stati anal#sis* 8nd order pdelta order pdelta anal#sis* geometri non linear anal#sis or a bu-ling a bu-ling anal#sis) /t an also ma-e use of (arious forms of d#nami anal#sis from modal e,tration to time histor# and response spetrum anal#sis) /n reent #ears it has beome part of integrated strutural anal#sis and design solutions mainl# using an e,posed AP/ alled Open STAA% to aess and dri(e the program using an 16 maro maro s#ste s#stem m inl inlud uded ed in the the appl appli iati ation on or othe otherr b# inl inlud udin ingg Open Open ST STA AA% funtionalit# in appliations that themsel(es inlude suitable programmable maro s#stems) Additionall# STAA% Pro is added diret lin-s to appliations suh as RA. Connetion and STAA% 9oundation to pro(ide engineers wor-ing with those appliations whih handle design post proessing not handled b# STAA% Pro itself) Another form of integration supported b# STAA% Pro is the anal#sis shema of the C/. steel /ntegration Standard* (ersion 8 ommonl# -nown as C/SH8 and used b# a number modelling and anal#sis appliations)
NRI INSTITUTE OF TECHNOLOGY
Page 11
CHAPTER $
NRI INSTITUTE OF TECHNOLOGY
Page 12
The softwareIs used in the building design are as follows 7) STAA% Pro1Ki 8) STAA% 9oundation ?); :) Auto CA% 8;7; ABOUT STAAD PRO< STAADPro is a S!"#"!a$ %&a$'sis a&( (esig& #)*+"e! +!)g!a*
)!igi&a$$' (e,e$)+e( -' Resea!#. E&gi&ee!s I&e!&ai)&a$ i& Y)!-a Li&(a/ C% I& $ae 2005/ Resea!#. E&gi&ee! I&e!&ai)&a$ as -)"g. -' e&$e' S'se*s STAAD Pro allows structural engineers to analyze an esign !irtually any ty"e o# structure t$roug$ its %e&i'le (oelling en!iron(ent) a!ance #eatures an %uent ata colla'oration*
ST%% P!) is )&e ) .e $ea(i&g s!"#"!a$ a&a$'sis a&( (esig& s)a!e .i#. s"++)!s *)!e .a& 100 see$/ #)!ee a&( i*-e! (esig& #)(es a&( .as .e $a!ges )!$(i(e "se! -ase I #a& *ae "se ) ,a!i)"s )!*s ) a&a$'sis !)* .e !a(ii)&a$ 1s )!(e! sai# a&a$'sis/ 2&( )!(e! +(e$a a&a$'sis/ ge)*e!i# &)& $i&ea! a&a$'sis )! a -"#$i&g a&a$'sis I #a& a$s) *ae "se ) ,a!i)"s )!*s ) ('&a*i# a&a$'sis !)* *)(a$ e!a#i)& ) i*e .is)!' a&( !es+)&se s+e#!"* a&a$'sis I& !e#e& 'ea!s i .as -e#)*e +a! ) i&eg!ae( s!"#"!a$ a&a$'sis a&( (esig& s)$"i)&s *ai&$' "si&g a& e+)se( %PI #a$$e( O+e&ST%% ) a##ess a&( (!i,e .e +!)g!a* "si&g a& *a#!) s'se* i$"(e( i& .e a++$i#ai)& )! ).e! -' i$"(i&g O+e&ST%% "i)&a$i' i& a++$i#ai)&s .a
.e*se$,es
i$"(e
s"ia-$e
+!)g!a**a-$e
*a#!)
s'se*s
%((ii)&a$$' ST%%P!) is a((e( (i!e# $i&s ) a++$i#ai)&s s"#. as R% C)&&e#i)& a&( ST%%F)"&(ai)& ) +!),i(e e&gi&ee!s )!i&g i. .)se a++$i#ai)&s .i#. .a&($e (esig& +)s +!)#essi&g &) .a&($e( -' ST%%
NRI INSTITUTE OF TECHNOLOGY
Page 13
P!) ise$ %&).e! )!* ) i&eg!ai)& s"++)!e( -' ST%% P!) is .e a&a$'sis s#.e*a ) .e CIsee$ I&eg!ai)& Sa&(a!(/ ,e!si)& 2 #)**)&$' &)& as CIS:2 a&( "se( -' a &"*-e! *)(e$$i&g a&( a&a$'sis a++$i#ai)&s
S4 o874o7< Staad foundation is a powerful tool used to alulate different t#pes of foundations) /t is also liensed b# 6entle# softwareIs) All 6entle# softwareIs ost about 7; la-hs and so all engineers anIt use it due to hea(# ost) Anal#sis and design arried in Staad and post proessing in staad gi(es the load at (arious supports) These supports are to be imported into these software to alulate the footing details i)e)* regarding the geometr# and reinforement details) This software an deal different t#pes of foundations Shallow B%L6 7) /solated BSpread 9ooting 8)Combined BStrip 9ooting :).at BRaft 9oundation %eep B%M6 7)Pile Cap 8) %riller Pier
A84oCAD< AutoCA% is powerful software liensed b# auto des-) The word auto ame from auto des- ompan# and ad stands for omputer aided design) AutoCA% is used for drawing different la#outs* details* plans* ele(ations* setions and different setions an be shown in auto ad) /t is (er# useful software for i(il* mehanial and also eletrial engineer) The importane of this software ma-es e(er# engineer a ompulsion to learn this softwareIs) +e used AutoCA% for drawing the plan* ele(ation of a residential building) +e also used AutoCA% to show the reinforement details and design details of a stair ase) AutoCA% is a (er# eas# software to learn and muh user friendl# for an#one to handle and an be learn qui-l# 4earning of ertain ommands is required to draw in AutoCA%)
NRI INSTITUTE OF TECHNOLOGY
Page 14
NRI INSTITUTE OF TECHNOLOGY
Page 15
NRI INSTITUTE OF TECHNOLOGY
Page 16
CHAPTER 3 PLAN PLAN AND ELE ELEV VATION
NRI INSTITUTE OF TECHNOLOGY
Page 17
PLAN
The auto ad plotting no)7 represents the plan of a gF7; building) The plan learl#
shows that it is a ombination of fi(e apartments) +e an obser(e there is a ombination between eah and e(er# apartments) The plan shows the details of dimensions of eah and e(er# room and the t#pe of room and orientation orientation of the different different rooms li-e bed room* bathroom* bathroom* -ithen* -ithen* hall et)) All the fi(e apartments ha(e similar room arrangement) The plan also gi(es the details of loation of stair ases in different blo-s) +e ha(e 8 stair ases for eah blo-
ELEVATION<
The below figure represents the enter line diagram of our building in staad pro) Eah
support represents the loation of different olumns in the struture) This struture is used in generating the entire struture using a tool alled transitional repeat and lin- steps) After using the tool the struture that is reated an be anal#Ded in staad pro under (arious loading ases) 6elow figure represents the s-eletal struture of the building whih is used to arr# out the anal#sis of our building) building) All the loadings are ated on this s-eletal struture struture to arr# out the anal#sis of our building) This is not the atual struture but just represents the outline of the building in staad pro) A mesh is automatiall# reated for the anal#sis of these building)
NRI INSTITUTE OF TECHNOLOGY
Page 18
PLAN OF THE STRUCTURE
NRI INSTITUTE OF TECHNOLOGY
Page 19
ELEVATION<
, + -
Load 1
CHAPTER #
NRI INSTITUTE OF TECHNOLOGY
Page 20
LOADINGS
DEAD LOAD<
%ead loads onsist of the permanent onstrution material loads ompressing the roof*
floor* wall* and foundation s#stems* inluding laddings* finishes and fi,ed equipment) %ead load is the total load of all of the omponents of the omponents of the building that generall#
NRI INSTITUTE OF TECHNOLOGY
Page 21
do not hange o(er time* suh as the steel olumns* onrete floors* bri-s* roofing material et) /n staad pro assignment of dead load is automatiall# done b# gi(ing the propert# of the member) /n load ase we ha(e option alled self weight whih automatiall# alulates weights using the properties of material i)e)* densit# and after assignment of dead load the s-eletal struture loo-s red in olor as shown in the figure)
, + -
Load 3
L- Lo*<
4i(e loads are produed b# the use and oupan# of a building) 4oads inlude those
from human oupants* furnishings* no fi,ed equipment* storage* and onstrution and maintenane ati(ities) As required to adequatel# define the loading ondition* loads are presented in terms of uniform area loads* onentrated loads* and uniform line loads) The uniform and onentrated li(e loads should not be applied simultaneousl# n a strutural e(aluation) Conentrated loads should be applied to a small area or surfae onsistent with the appliation and should b e loated or direted to gi(e the ma,imum load effet possible in enduse onditions) 9or e,ample) The stair load of :;; pounds should be applied to the enter of the stair tread between supports) /n staad we assign li(e load in terms of 3)%)4 )we has to reate a load ase for li(e load and selet all the beams to arr# suh load) After the assignment of the li(e load the struture appears as shown below)
NRI INSTITUTE OF TECHNOLOGY
Page 22
, + -
Load 4
7 2o*<
/n the list of loads we an see wind load is present both in (ertial and horiDontal
loads) This is beause wind load auses uplift of the roof b# reating a negati(eBsution pressure on the top of the roof Assignment of wind speed is quite different ompared to remaining loads) +e ha(e to define a load ase prior to assignment) After designing wind load an be assigned in two wa#s 7) Colleting the standard (alues of load intensities for partiular heights and assigning of the loads for respeti(e height) 8) Calulation of wind load as per
IS >! ,r4 3.
+e designed our struture using seond
method whih in(ol(es the alulation of wind load using wind speed) /n 1ija#awada we ha(e a wind speed of >; -mph for 7; m height and this (alue is used in alulation) After the assignment of wind load the struture loo-s as shown in figure
NRI INSTITUTE OF TECHNOLOGY
Page 23
B*?
*,<
@7
, + -
Load 5
@i(es basi wind speed of /ndia* as appliable to 7m height abo(e means ground le(el for different Dones of the ountr#) 6asi wind speed is based on pea- just (eloit# a(eraged o(er a short time inter(al of about : seonds and orresponds to mean heights abo(e ground le(el in an open terrain) The wind speed for some important itiesHtowns is gi(en table below) D*7 @7 *,<
The basi wind speed B1b for an# site shall be obtained the following effets to get design wind (eloit# at an# height B1D for the hosen struture) a Ris- le(el b Terrain roughness* height and siDe of the struture and 4oal topograph# /t an be mathematiall# e,pressed as follows 1s)1b 27 28 2: +here* 1D design wind speed at an# height 5 in mHs 27 probabilit# fator Bris- oeffiient 28terrain height and struture siDe fator and 2:topograph# fator Lo ?o;/74o7*<
NRI INSTITUTE OF TECHNOLOGY
Page 24
All the load ases are tested b# ta-ing load fators and anal#Ding the building in different load ombination as per IS#!= and anal#Ded the building for all the load ombinations and results are ta-en and ma,imum load ombination is seleted for the design 4oad fators as per IS#!=5$000 L- 2o
7)8 7)8
2o
@7 2o
7)> 7)8
0
7)8
CHAPTER5!
NRI INSTITUTE OF TECHNOLOGY
Page 25
STATEMENT OF THE PRO%ECT< SAILENT FEATURES<
7) 3tilit# of 6uilding No) Of 9loors 8) Shape of 6uilding :) T#pe of Constrution T#pe of +alls
Residential @F> floors Retangular R)C)C framed struture 6ri- walls 77> and 8:;mm thi-
?) @eometri details 4ength of the building +idth of the building 9loor height 9ounding depth >) .aterials Conrete Steel grade
.8; 9e?7>
<) Code 6oo-
/S ?><8;;;
NRI INSTITUTE OF TECHNOLOGY
8;)K8 m :K)KK m :);m 8)> m B9rom N)@)4
Page 26
ISOMETRIC VIE OF BUILDING
, + -
NRI INSTITUTE OF TECHNOLOGY
Load 5
Page 27
MATERIAL PROPERTIES<
.aterial
Conrete* .8;
Reinforing Steel
Propert#
1alue
3nits
Remar-s
%ensit# Charateristi
8>
-NH m:
/S K> Part 7
8;
NH mm8
/S ?>< 8;;;
8;;;;
NH mm 8
/S?>< 8;;;
K)>
-NH m:
/S K> Part 7
?7>
NH mm8
/SK;; 8;;
8;;;;;
NH mm 8
/SK;; 8;;
Strength .odulus of Elastiit# %ensit# Charateristi Strength .odulus of Elastiit#
CALCULATION OF LOADS<
D 7 2- 2o* 4 ,274' 2-2 (0.00)
%ead load of bri- wall B8:; mm thi-
;)8:8)8; 78)>-NHm
%ead load of bri- wall B77> mm thi-
;)77>8)8; <)> -NHm
D 7 2- 2o* 4 F2oor 2-2<
%ead load of slab B78> mm assuming
;)78>8> =:)78>
NRI INSTITUTE OF TECHNOLOGY
-NHm8
Page 28
9loor finishes
7-NHm8
Total floor load
:)78>F7 ?)78> -NHm8
4i(e load BOn floor* aessible
8 -NHm8
D 7 2- 2o* 4 Roor 2-2<
%ead load of bri- wall B8:; mm thi- BParapet wall %ead load of slab B78> mm assuming
;)8:;)?>8; 8); -NHm ;)78>8> :)78> -NHm8
+ater proofing
:-NHm8
Total floor load
:)78>F: <)78> -NHm8
4i(e load BOn floor* aessible
7)>-NHm8
3D RENDERING<
NRI INSTITUTE OF TECHNOLOGY
Page 29
NRI INSTITUTE OF TECHNOLOGY
Page 30
STAAD INPUT <5 STAA% SPACE START JO6 /N9OR.AT/ON EN@/NEER %ATE ;7Apr7> EN% JO6 /N9OR.AT/ON /NP3T +/%T! = 3N/T .ETER 2N JO/NT COOR%/NATES 7 ; ; ;Q 8 ?)K ; ;Q : 7;)=< ; ;Q ? ; ; :):>Q > ?)K ; :):>Q < 7;)=< ; :):>Q ; ; )<7Q K ?)K ; )<7Q = <):= ; )<7Q 7; K)87 ; )<7Q 77 7;)=> ; )<7Q 78 <):= ; >)?KQ 7: K)87 ; >)?KQ 7? ?)K ; >)?KQ 7> 7;)=< ; <):=Q 7< K)87 ; <):=Q 7 K)87 ; :):>Q 7K ; ; K)K7Q 7= 7;)=> ; K)K7Q 8; ?)K ; K)K7Q 87 7;)=< ; K)K7Q 88 7;)=< ; 78)7
; ; 7<)?8Q 8< ?)K ; 7<)?8Q 8 ?)K ; 7?)8=Q 8K <):= ; 7?)8=Q 8= K)87 ; 7?)8=Q :; K)87 ; 7>)8Q :7 <):= ; 7<)?8Q :8 K)87 ; 7<)?8Q :: 7;)=< ; 7>)8Q :? 7;)=> ; 7<)?8Q :> K)87 ; 78)7Q ?; 7:)=< ; :):>Q ?7 7K)K: ; :):>Q ?8 7:)=< ; )<7Q ?: 7K)K: ; )<7Q ?? 7K)K: ; >)?KQ ?> 8;):> ; >)?KQ ?< 88)7 ; >)?KQ ? 88)7 ; <):=Q ?K 8;):> ; )<7Q ?= 88)7 ; )<7Q >; 8?)=8 ; <):=Q >7 8?)=7 ; )<7Q >8 88)7 ; :):>Q >: :K)KK ; ;Q >? :?);7 ; ;Q >< :K)KK ; :):>Q > :?);7 ; :):>Q >K 8)=8 ; :):>Q >= :K)KK ; )<7Q <; :?);7 ; )<7Q <7 :8)?= ; )<7Q <8 :;)< ; )<7Q <: 8)=: ; )<7Q :8)?= ; >)?KQ <> :;)< ; >)?KQ << :?);7 ; >)?KQ < 8)=8 ; <):=Q Q ; :K)KK ; K)K7Q 7 8)=: ; K)K7Q 8 :?);7 ; K)K7Q : 8)=8 ; K)K7Q ? 8)=8 ; 78)7 :K)KK ; 78)7)8Q K: :8)?= ; 7<)?8Q K? :;)< ; 7<)?8Q
NRI INSTITUTE OF TECHNOLOGY
Page 31
K> 8)=8 ; 7>)8Q K< 8)=: ; 7<)?8Q K :;)< ; 78)7 88)?? ; 7)8Q =< 7<)?? ; ?)?Q = 88)?? ; ?)?Q =K 7)?? ; 7)8Q == 87)?? ; 7)8Q 7;; 7=)?? ; 7)8Q 7;7 7)?? ; :)8Q 7;8 87)?? ; :)8Q 7;: 7=)?? ; :)8Q 7;? 7<)?? ; 7<)?8Q 7;> 88)?? ; 7<)?8Q 7;K 7)?? ; 7:)88Q 7;= 87)?? ; 7:)88Q 777 7)?? ; 7>)88Q 778 87)?? ; 7>)88Q 77: 7=)?? ; 7>)88Q 77? 7=)?? ; 7:)88Q 77< 7<)?? ; 7:)88Q 77 88)?? ; 7:)88Q 77K 7<)?? ; ;Q 77= 88)?? ; ;Q 78; ; 8 ;Q 787 ?)K 8 ;Q 788 7;)=< 8 ;Q 78: ; 8 :):>Q 78? ?)K 8 :):>Q 78> 7;)=< 8 :):>Q 78< ; 8 )<7Q 78 ?)K 8 )<7Q 78K 7;)=> 8 )<7Q 78= ; 8 K)K7Q 7:; 7;)=> 8 K)K7Q 7:7 ?)K 8 K)K7Q 7:8 7;)=< 8 K)K7Q 7:: 7;)=< 8 78)7 ?)K 8 78)7 8 7<)?8Q 7:= 7:)=< 8 ;Q 7?; 7K)K: 8 ;Q 7?7 8?)=8 8 ;Q 7?8 8?)=8 8 :):>Q 7?: 7:)=< 8 :):>Q 7?? 7K)K: 8 :):>Q 7?> 7:)=< 8 )<7Q 7?< 7K)K: 8 )<7Q 7? 8?)=7 8 )<7Q 7?K :K)KK 8 ;Q 7?= :?);7 8 ;Q 7>; :K)KK 8 :):>Q 7>7 :?);7 8 :):>Q 7>8 8)=8 8 :):>Q 7>: :K)KK 8 )<7Q 7>? :?);7 8 )<7Q 7>> 8)=: 8 )<7Q 7>< :K)KK 8 K)K7Q 7> 8)=: 8 K)K7Q 7>K :?);7 8 K)K7Q 7>= 8)=8 8 K)K7Q 7<; 8)=8 8 78)7 8)=: 8 7<)?8Q 7<< 8)=8 8 ;Q 7< 7<)?? 8 7)8Q 7 87)?? 8 :)8Q 7< 7=)?? 8 :)8Q 7 7<)?? 8 7<)?8Q 7K 88)?? 8 7<)?8Q 7= 7)?? 8 7:)88Q 7K; 87)?? 8 7:)88Q 7K7 7)?? 8 7>)88Q 7K8 87)?? 8 7>)88Q 7K: 7=)?? 8 7>)88Q 7K? 7=)?? 8 7:)88Q 7K> 7<)?? 8 7:)88Q 7K< 88)?? 8 7:)88Q 7K ; : ;Q 7KK ?)K : ;Q 7K= 7;)=< : ;Q 7=; ; : :):>Q 7=7 ?)K : :):>Q 7=8 7;)=< : :):>Q 7=: ; : )<7Q 7=? ?)K : )<7Q 7=> 7;)=> : )<7Q 7=< ; : K)K7Q 7= 7;)=> : K)K7Q 7=K ?)K : K)K7Q 7== 7;)=< : K)K7Q 8;; 7;)=< : 78)7
NRI INSTITUTE OF TECHNOLOGY
Page 32
8;? ?)K : 7<)?8Q 8;> 7;)=> : 7<)?8Q 8;< 7:)=< : ;Q 8; 7K)K: : ;Q 8;K 8?)=8 : ;Q 8;= 8?)=8 : :):>Q 87; 7:)=< : :):>Q 877 7K)K: : :):>Q 878 7:)=< : )<7Q 87: 7K)K: : )<7Q 87? 8?)=7 : )<7Q 87> :K)KK : ;Q 87< :?);7 : ;Q 87 :K)KK : :):>Q 87K :?);7 : :):>Q 87= 8)=8 : :):>Q 88; :K)KK : )<7Q 887 :?);7 : )<7Q 888 8)=: : )<7Q 88: :K)KK : K)K7Q 88? 8)=: : K)K7Q 88> :?);7 : K)K7Q 88< 8)=8 : K)K7Q 88 8)=8 : 78)7 88)?? : 7)8Q 8:< 7<)?? : ?)?Q 8: 88)?? : ?)?Q 8:K 7)?? : 7)8Q 8:= 87)?? : 7)8Q 8?; 7=)?? : 7)8Q 8?7 7)?? : :)8Q 8?8 87)?? : :)8Q 8?: 7=)?? : :)8Q 8?? 7<)?? : 7<)?8Q 8?> 88)?? : 7<)?8Q 8?< 7)?? : 7:)88Q 8? 87)?? : 7:)88Q 8?K 7)?? : 7>)88Q 8?= 87)?? : 7>)88Q 8>; 7=)?? : 7>)88Q 8>7 7=)?? : 7:)88Q 8>8 7<)?? : 7:)88Q 8>: 88)?? : 7:)88Q 8>? ; < ;Q 8>> ?)K < ;Q 8>< 7;)=< < ;Q 8> ; < :):>Q 8>K ?)K < :):>Q 8>= 7;)=< < :):>Q 8<; ; < )<7Q 8<7 ?)K < )<7Q 8<8 7;)=> < )<7Q 8<: ; < K)K7Q 8 7;)=> < K)K7Q 8<> ?)K < K)K7Q 8<< 7;)=< < K)K7Q 8< 7;)=< < 78)7 < 7<)?8Q 8: 7:)=< < ;Q 8? 7K)K: < ;Q 8> 8?)=8 < ;Q 8< 8?)=8 < :):>Q 8 7:)=< < :):>Q 8K 7K)K: < :):>Q 8= 7:)=< < )<7Q 8K; 7K)K: < )<7Q 8K7 8?)=7 < )<7Q 8K8 :K)KK < ;Q 8K: :?);7 < ;Q 8K? :K)KK < :):>Q 8K> :?);7 < :):>Q 8K< 8)=8 < :):>Q 8K :K)KK < )<7Q 8KK :?);7 < )<7Q 8K= 8)=: < )<7Q 8=; :K)KK < K)K7Q 8=7 8)=: < K)K7Q 8=8 :?);7 < K)K7Q 8=: 8)=8 < K)K7Q 8=? 8)=8 < 78)7 :K)KK < 78)7 7)?? < 7)8Q :;< 87)?? < 7)8Q :; 7=)?? < 7)8Q :;K 7)?? < :)8Q :;= 87)?? < :)8Q :7; 7=)?? < :)8Q :77 7<)?? < 7<)?8Q :78 88)?? < 7<)?8Q :7: 7)?? < 7:)88Q
NRI INSTITUTE OF TECHNOLOGY
Page 33
:7? 87)?? < 7:)88Q :7> 7)?? < 7>)88Q :7< 87)?? < 7>)88Q :7 7=)?? < 7>)88Q :7K 7=)?? < 7:)88Q :7= 7<)?? < 7:)88Q :8; 88)?? < 7:)88Q :87 ; = ;Q :88 ?)K = ;Q :8: 7;)=< = ;Q :8? ; = :):>Q :8> ?)K = :):>Q :8< 7;)=< = :):>Q :8 ; = )<7Q :8K ?)K = )<7Q :8= 7;)=> = )<7Q ::; ; = K)K7Q ::7 7;)=> = K)K7Q ::8 ?)K = K)K7Q ::: 7;)=< = K)K7Q ::? 7;)=< = 78)7 ; = 78)7 = 7<)?8Q :?; 7:)=< = ;Q :?7 7K)K: = ;Q :?8 8?)=8 = ;Q :?: 8?)=8 = :):>Q :?? 7:)=< = :):>Q :?> 7K)K: = :):>Q :?< 7:)=< = )<7Q :? 7K)K: = )<7Q :?K 8?)=7 = )<7Q :?= :K)KK = ;Q :>; :?);7 = ;Q :>7 :K)KK = :):>Q :>8 :?);7 = :):>Q :>: 8)=8 = :):>Q :>? :K)KK = )<7Q :>> :?);7 = )<7Q :>< 8)=: = )<7Q :> :K)KK = K)K7Q :>K 8)=: = K)K7Q :>= :?);7 = K)K7Q :<; 8)=8 = K)K7Q :<7 8)=8 = 78)7 :?);7 = 7<)?8Q :<< 8)=: = 7<)?8Q :< 8)=8 = ;Q : 7)?? = :)8Q :< 87)?? = :)8Q : 7=)?? = :)8Q :K 7<)?? = 7<)?8Q := 88)?? = 7<)?8Q :K; 7)?? = 7:)88Q :K7 87)?? = 7:)88Q :K8 7)?? = 7>)88Q :K: 87)?? = 7>)88Q :K? 7=)?? = 7>)88Q :K> 7=)?? = 7:)88Q :K< 7<)?? = 7:)88Q :K 88)?? = 7:)88Q :KK ; 78 ;Q :K= ?)K 78 ;Q :=; 7;)=< 78 ;Q :=7 ; 78 :):>Q :=8 ?)K 78 :):>Q :=: 7;)=< 78 :):>Q :=? ; 78 )<7Q :=> ?)K 78 )<7Q :=< 7;)=> 78 )<7Q := ; 78 K)K7Q :=K 7;)=> 78 K)K7Q :== ?)K 78 K)K7Q ?;; 7;)=< 78 K)K7Q ?;7 7;)=< 78 78)7 ?)K 78 7<)?8Q ?;< 7;)=> 78 7<)?8Q ?; 7:)=< 78 ;Q ?;K 7K)K: 78 ;Q ?;= 8?)=8 78 ;Q ?7; 8?)=8 78 :):>Q ?77 7:)=< 78 :):>Q ?78 7K)K: 78 :):>Q ?7: 7:)=< 78 )<7Q ?7? 7K)K: 78 )<7Q ?7> 8?)=7 78 )<7Q ?7< :K)KK 78 ;Q ?7 :?);7 78 ;Q ?7K :K)KK 78 :):>Q ?7= :?);7 78 :):>Q ?8; 8)=8 78 :):>Q ?87 :K)KK 78 )<7Q ?88 :?);7 78 )<7Q ?8: 8)=: 78 )<7Q
NRI INSTITUTE OF TECHNOLOGY
Page 34
?8? :K)KK 78 K)K7Q ?8> 8)=: 78 K)K7Q ?8< :?);7 78 K)K7Q ?8 8)=8 78 K)K7Q ?8K 8)=8 78 78)7 7<)?? 78 7)8Q ?:< 88)?? 78 7)8Q ?: 7<)?? 78 ?)?Q ?:K 88)?? 78 ?)?Q ?:= 7)?? 78 7)8Q ??; 87)?? 78 7)8Q ??7 7=)?? 78 7)8Q ??8 7)?? 78 :)8Q ??: 87)?? 78 :)8Q ??? 7=)?? 78 :)8Q ??> 7<)?? 78 7<)?8Q ??< 88)?? 78 7<)?8Q ?? 7)?? 78 7:)88Q ??K 87)?? 78 7:)88Q ??= 7)?? 78 7>)88Q ?>; 87)?? 78 7>)88Q ?>7 7=)?? 78 7>)88Q ?>8 7=)?? 78 7:)88Q ?>: 7<)?? 78 7:)88Q ?>? 88)?? 78 7:)88Q ?>> ; 7> ;Q ?>< ?)K 7> ;Q ?> 7;)=< 7> ;Q ?>K ; 7> :):>Q ?>= ?)K 7> :):>Q ?<; 7;)=< 7> :):>Q ?<7 ; 7> )<7Q ?<8 ?)K 7> )<7Q ?<: 7;)=> 7> )<7Q ? ; 7> K)K7Q ?<> 7;)=> 7> K)K7Q ?<< ?)K 7> K)K7Q ?< 7;)=< 7> K)K7Q ? 78)7 78)7 78)7 7<)?8Q ?8 ?)K 7> 7<)?8Q ?: 7;)=> 7> 7<)?8Q ?? 7:)=< 7> ;Q ?> 7K)K: 7> ;Q ?< 8?)=8 7> ;Q ? 8?)=8 7> :):>Q ?K 7:)=< 7> :):>Q ?= 7K)K: 7> :):>Q ?K; 7:)=< 7> )<7Q ?K7 7K)K: 7> )<7Q ?K8 8?)=7 7> )<7Q ?K: :K)KK 7> ;Q ?K? :?);7 7> ;Q ?K> :K)KK 7> :):>Q ?K< :?);7 7> :):>Q ?K 8)=8 7> :):>Q ?KK :K)KK 7> )<7Q ?K= :?);7 7> )<7Q ?=; 8)=: 7> )<7Q ?=7 :K)KK 7> K)K7Q ?=8 8)=: 7> K)K7Q ?=: :?);7 7> K)K7Q ?=? 8)=8 7> K)K7Q ?=> 8)=8 7> 78)7 78)7 78)7 7<)?8Q ?== :?);7 7> 7<)?8Q >;; 8)=: 7> 7<)?8Q >;7 8)=8 7> ;Q >;8 7<)?? 7> 7)8Q >;: 88)?? 7> 7)8Q >;? 7<)?? 7> ?)?Q >;> 88)?? 7> ?)?Q >;< 7)?? 7> 7)8Q >; 87)?? 7> 7)8Q >;K 7=)?? 7> 7)8Q >;= 7)?? 7> :)8Q >7; 87)?? 7> :)8Q >77 7=)?? 7> :)8Q >78 7<)?? 7> 7<)?8Q >7: 88)?? 7> 7<)?8Q >7? 7)?? 7> 7:)88Q >7> 87)?? 7> 7:)88Q >7< 7)?? 7> 7>)88Q >7 87)?? 7> 7>)88Q >7K 7=)?? 7> 7>)88Q >7= 7=)?? 7> 7:)88Q >8; 7<)?? 7> 7:)88Q >87 88)?? 7> 7:)88Q >88 <):= : )<7Q >8: K)87 : )<7Q >8? <):= : >)?KQ >8> K)87 : >)?KQ >8< ?)K : >)?KQ >8 7;)=< : <):=Q >8K K)87 : <):=Q >8= K)87 : :):>Q >:; ?)K : 7?)8=Q >:7 <):= : 7?)8=Q
NRI INSTITUTE OF TECHNOLOGY
Page 35
>:8 K)87 : 7?)8=Q >:: K)87 : 7>)8Q >:? <):= : 7<)?8Q >:> K)87 : 7<)?8Q >:< 7;)=< : 7>)8Q >: K)87 : 78)7:K 7K)K: : >)?KQ >:= 8;):> : >)?KQ >?; 88)7 : >)?KQ >?7 88)7 : <):=Q >?8 8;):> : )<7Q >?: 88)7 : )<7Q >?? 8?)=8 : <):=Q >?> 88)7 : :):>Q >?< :8)?= : )<7Q >? :;)< : )<7Q >?K :8)?= : >)?KQ >?= :;)< : >)?KQ >>; :?);7 : >)?KQ >>7 8)=8 : <):=Q >>8 :;)< : <):=Q >>: :;)< : :):>Q >>? :?);7 : 7?)8=Q >>> :8)?= : 7?)8=Q >>< :;)< : 7?)8=Q >> :;)< : 7>)8Q >>K :8)?= : 7<)?8Q >>= :;)< : 7<)?8Q ><; 8)=8 : 7>)8Q ><7 :;)< : 78)7<8 7<)?? : ;Q ><: 88)?? : ;Q > <):= < )<7Q ><> K)87 < )<7Q ><< <):= < >)?KQ >< K)87 < >)?KQ >)?KQ ><= 7;)=< < <):=Q >; K)87 < <):=Q >7 K)87 < :):>Q >8 ?)K < 7?)8=Q >: <):= < 7?)8=Q >? K)87 < 7?)8=Q >> K)87 < 7>)8Q >< <):= < 7<)?8Q > K)87 < 7<)?8Q >K 7;)=< < 7>)8Q >= K)87 < 78)7K; 7K)K: < >)?KQ >K7 8;):> < >)?KQ >K8 88)7 < >)?KQ >K: 88)7 < <):=Q >K? 8;):> < )<7Q >K> 88)7 < )<7Q >K< 8?)=8 < <):=Q >K 88)7 < :):>Q >KK :8)?= < )<7Q >K= :;)< < )<7Q >=; :8)?= < >)?KQ >=7 :;)< < >)?KQ >=8 :?);7 < >)?KQ >=: 8)=8 < <):=Q >=? :;)< < <):=Q >=> :;)< < :):>Q >=< :?);7 < 7?)8=Q >= :8)?= < 7?)8=Q >=K :;)< < 7?)8=Q >== :;)< < 7>)8Q <;; :8)?= < 7<)?8Q <;7 :;)< < 7<)?8Q <;8 8)=8 < 7>)8Q <;: :;)< < 78)7 88)?? < ;Q <;< <):= = )<7Q <; K)87 = )<7Q <;K <):= = >)?KQ <;= K)87 = >)?KQ <7; ?)K = >)?KQ <77 7;)=< = <):=Q <78 K)87 = <):=Q <7: K)87 = :):>Q <7? ?)K = 7?)8=Q <7> <):= = 7?)8=Q <7< K)87 = 7?)8=Q <7 K)87 = 7>)8Q <7K <):= = 7<)?8Q <7= K)87 = 7<)?8Q
NRI INSTITUTE OF TECHNOLOGY
Page 36
CHAPTER5= ANALYSIS OF STRUCTURAL FRAME
NRI INSTITUTE OF TECHNOLOGY
Page 37
169 96 236 303 370 437 504
120 1 187 254 321 388 455
121 2 188 255 322 389 456
123 4 190 257 324 391 458
124 5 191 258 325 392 459
17 529 571 613 655 697
14 650 526 568 610 652 694 12 524 566 608 692
13 525 567 609 651 693
126 7 193 260 327 394 461
127 690 8 194 261 328 395 462 9 522 564 606 648
129 18 196 263 330 397 464
131 20 198 265 332 399 466
134 23 201 268 335 402 469
135 24 202 269 336 403 470
27 699 530 572 614 656 698 28 531 573 615 657
, + -
136 25 203 270 337 404 471
137 660 26 204 271 338 405 472 31 534 576 618 702
122 3 189 256 323 390 457
139 36 206 273 340 407 474
125 6 192 259 326 393 460
143 40 210 277 344 411 478
16 528 570 612 654 696
15 527 569 611 653 695
10 523 565 607 649 691
128 11 195 262 329 396 463
35 537 579 621 663 705
170 97 237 304 371 438 505
174 101 241 308 375 442 509
1 44 103 243 310 377 4 511 76
102 242 309 376 510 17 3 44 5
167506 94 234 301 368 435 502 171 98 238 305 372 439
173 100 240 307 374 441 508
172503 99 239 306 373 440 507 168 95 235 302 369 436
118 562 604 646 730 688
145 42 212 346 413 480 279
140 37 207 274 341 408 475
119 563 605 647 689 731
144 41 211 278 345 412 479
52 545 587 629 671 713
44 707 538 580 622 664 706 45 539 581 623 665
46 540 582 624 666 708
146 710 43 213 280 347 414 481 48 542 584 626 668
141 38 208 275 342 409 476
166 91 233 300 367 434 501
142 39 209 276 343 410 477
152 58 219 286 353 420 487
65 549 591 633 675 717
64 718 548 590 632 674 716 66 550 592 634 676
49 543 585 627 669 711
147 51 214 348 415 281 482
155 222 356 423 490 63 289
62 547 589 631 673 715
185514 116 252 319 386 453 520 179 108 246 313 380 447
184 114 251 318 385 452 519
180521 109 247 314 381 448 515 186 117 253 320 387 454
181 111 248 315 382 449 516
183 113 250 317 384 451 518
182 112 249 316 383 450 517
29 532 574 616 658 700
177 104 244 311 378 445 512
150 56 217 284 351 418 485
68 552 594 636 678 720
160 74 294 361 428 495 227
138 34 205 272 339 406 473
151 218 285 352 419 486 57
67 551 593 635 677 719
133 22 200 267 334 401 468
32 535 577 619 661 703
69 553 595 637 679 721
50 544 628 670 712 586
159 73 226 293 360 427 494 157 71 224 291 358 425 492
33 536 578 620 662 704
148 53 215 282 349 416 483
47 541 583 625 667 709
264 331 400 465 130 132 21 19 197 199 266 333 398 467
30 533 575 617 659 701
149 54 216 283 350 417 484
178 105 245 312 379 446 513
546 588 630 672 714 61 489 154 60 221 288 355 422
153 59 220 354 421 488 287
158 72 225 292 359 426 493
156 70 223 290 357 424 491
87 561 603 687 729 645
162 76 229 296 363 430 497
161 75 228 295 362 429 496
81 556 598 640 682 724
80 722 555 597 639 681 723 79 554 596 638 680
85 560 602 644 686 728
82 557 599 641 683 725
165 86 232 299 366 433 500
84 559 601 643 685 727
Load 5 83 499 558 600 642 684 726 164 78 231 298 365 432
163 77 230 297 364 431 498
DEFLECTION DIAGRAM OF FRAMES
NRI INSTITUTE OF TECHNOLOGY
Page 38
SHA
, + -
Load 5 : Shear Y : Displacement
ER FORCE DIAGRAM OF FRAMES
NRI INSTITUTE OF TECHNOLOGY
Page 39
BENDING MOMENT DIAGRAM OF HOLE STRUCTURE
NRI INSTITUTE OF TECHNOLOGY
Page 40
NRI INSTITUTE OF TECHNOLOGY
Page 41
NRI INSTITUTE OF TECHNOLOGY
Page 42
NRI INSTITUTE OF TECHNOLOGY
Page 43
NRI INSTITUTE OF TECHNOLOGY
Page 44
NRI INSTITUTE OF TECHNOLOGY
Page 45
, + -
NRI INSTITUTE OF TECHNOLOGY
Load 5
Page 46
NRI INSTITUTE OF TECHNOLOGY
Page 47
NRI INSTITUTE OF TECHNOLOGY
Page 48
NRI INSTITUTE OF TECHNOLOGY
Page 49
,
+ -
Load 5 : Axial Force
U7?4or S8,,or4 R?4o7* S8;;r :
H)!i;)& a$ N)(e
L:C
a F
8 L 38 LL
i& F
3
a F'
7 L 31 LL
i& F'
3
a F;
7 L 31 LL
F N 69155 3254
e!i#a$ F' N 29333 7 12647 8
H)!i;)& a$ F; N 30046
)*e& N* 40642
2746
3751
7382
537
3254
11149 91 12647 8
2746
3751
5199
11149 91
7382
537
5199
NRI INSTITUTE OF TECHNOLOGY
' N* 141 5 053 6 010 2 053 6 010 2
; N* 9480 1 4617 1 4347 4617 1 4347
Page 50
i& F;
8 L 36 LL
a i&
7 L 31 LL 8 L 36 LL
a '
8 L 223 LL
i& '
8 L 222 LL
a ;
3
i& ;
8 L 37 LL
43811 5199 43811 31249
34682 6 11149 91 34682 6 53139
3254
35002 9 12647 8
54956
58886 1
5974
NRI INSTITUTE OF TECHNOLOGY
30952
41417
5088
537
217 010 2
7382 30952
41417
217
5088 5241 6 1082 2
3751
316 2 238 6 053 6
30621
260 3
1818
26293
20666
28247
2746 2141
4347
4617 1 9589 1
Page 51
S8,,or4 N8;/r*
NRI INSTITUTE OF TECHNOLOGY
Page 52
148 149
169
174
176
170 175
173 167171 140
139
151
166
153 156
141
172168
152
154 158
142 144
122
147
155 159 157
143
120
145
124
128 132 130
123 127 131 126 129
184
162 163
180186
164 165
182 178 185179 183 181 177
133 135
161
160
146
125
121
150
138
134 137 ,
136
+ -
Load 5
DEFLECTION CHECK D2?4o7 S8;;r o 'o2 S4r8?48r H)!i;)& e!i# a$ a$ N)(e a =
L:C 3
i& =
8 L 396 LL
i& Y
4
a >
8 L 398 LL
i& > a !=
3
a Y
= **
Y **
H)!i;)& a$ > **
Res"$a &
R)ai)& a$
!Y ** != !a( !a( 000 1891 0 1 000 48071 0002 2 000 9119 0 2
18904
0401
0236
37355
7008
29434
9108
0382
0216
0489
9194
6403
11214
0003
37326
5622
39881
54912
0001
8658 13864
0186 6804
2082 9346
8907 18052
0 0004
NRI INSTITUTE OF TECHNOLOGY
0 000 3 000 1 000
Page 53
1 i& != a !Y
7 L 388 LL 8 L 342 LL
0022
3369
6065
6938
0001
1093
1842
27344
29505
0001
i& !Y
8 L 341 LL
10952
0909
29426
31411
0001
a !> i& !>
8 L 244 LL
12391
1866
1389
18707
0002
0487
8922
5877
10694
0003
a Rs
8 L 398 LL
37326
5622
39881
54912
0001
0 000 3 000 5 000 1 0 000 3
4ateral defletion de(eloped in the struture 7K)=;? mm Permissible limit
!H>;; 8;>;;H>;; ?7 mm 7K)=;? L?7 mm BSA9E
1ertial defletion de(eloped in the struture =)7=? mm Permissible limit Bminimum of
4H:>; or 8; mm 78;K;H:>; :?)> mm =)7=? L :?)> mm BSA9 E
CHAPTER5> DESIGNING OF BEAMS
NRI INSTITUTE OF TECHNOLOGY
Page 54
BEAM DESIGN<
A reinfored onrete beam should be able to resist tensile* ompressi(e and shear stress induedin it b# loads on the beam) There are three t#pes of reinforeed onrete beams 7) single reinfored beams 8) double reinfored onrete :) flanged beams S72 r7or? /;*<
/n singl# reinfored simpl# supported beams steel bars are plaed near the bottom of the beamwhere the# are more effeti(e in resisting in the tensile bending stress)
NRI INSTITUTE OF TECHNOLOGY
Page 55
Do8/2 r7or? ?o7?r4 /;*<
/t is reinfored under ompression tension regions) The neessit# of steel of ompression region arises due to two reasons) +hen depth of beam is restrited) The strength a(ailabilit# singl# reinfored beam is in adequate) At a support of ontinuous beam where bending moment hanges sign suh as situation ma# also arise in design of a beam irular in plan) These are the strutures that transfer loads from slabs to olumns) 6eams are designed for fle,ure* shear and torsion) /f required the effet of the a,ial fore ma# be ta-en into onsideration) 9or all these fores* all ati(e beam loadings are presanned to identif# the ritial load ases at different setions of the beams) 9or design to be performed as per /S 7:=8; the width of the member shall not be less than 8;;mm) Also the member shall preferabl# ha(e a widthto depth ratio of more than ;):)
DESIGN .O/ .LE+0/E1 esig& +!)#e("!e is sa*e as .a )! IS 456 H)e,e! .i$e (esig&i&g )$$)i&g #!ie!ia a!e sais?e( as +e! IS13920@ 1 T.e *i&i*"* g!a(e ) #)!ee s.a$$ +!ee!a-$' -e 20 2 See$ !ei&)!#e*e&s ) g!a(e Fe415 )! $ess )&$' s.a$$ -e "se( 3 T.e *i&i*"* e&si)& see$ !ai) )& a&' a#e/ a a&' se#i)&/ is gi,e& -'@ A*i& B 024#:'
T.e *ai*"* see$ !ai) )& a&' a#e/ a a&' se#i)&/ is gi,e& -' A*a B 0025 4 T.e +)sii,e see$ !ai) a a D)i& a#e *"s -e a $eas e"a$ ) .a$ .e &egai,e see$ a .a a#e 5 T.e see$ +!),i(e( a ea#. ) .e )+ a&( -))* a#e/ a a&' se#i)&/ s.a$$ a $eas -e e"a$ ) )&e)"!. ) .e *ai*"* &egai,e *)*e& see$ +!),i(e( a .e a#e ) ei.e! D)i&
DESIGN .O/ S2EA/1 T.e s.ea! )!#e ) -e !esise( -' ,e!i#a$ .))+s is g"i(e( -' .e IS 13920@1993 !e,isi)& E$asi# saggi&g a&( .)ggi&g *)*e&s ) !esisae
NRI INSTITUTE OF TECHNOLOGY
Page 56
) .e -ea* se#i)& a e&(s a!e #)&si(e!e( .i$e #a$#"$ai&g s.ea! )!#e P$asi# saggi&g a&( .)ggi&g *)*e&s ) !esisae #a& a$s) -e #)&si(e!e( )! s.ea! (esig& i PL%STIC +a!a*ee! is *e&i)&e( i& .e i&+" ?$e S.ea! !ei&)!#e*e& is #a$#"$ae( ) !esis -). s.ea! )!#es a&( )!si)&a$ *)*e&s
6 E A . N O)
.:;
7 %ES/@N RES34TS
9e?7> B.ain
4EN@T! ?K;); mm
9e?7> BSe)
S/5E 8:;); mm ?;;); mm CO1ER 8>); mm
S3..AR0 O9 RE/N9) AREA BSq)mm SECT/ON
;); mm
787)> mm
8?:>); mm
:<>8)> mm
?K;); mm
TOP
7K)7<
RE/N9)
BSq) mm
6OTTO. RE/N9)
7:)K: BSq) mm
7?):;
7?):;
BSq) mm
7:)K: BSq) mm
7?):;
BSq) mm
7:)K: BSq) mm
8?8)K;
BSq) mm
7:)K:
BSq) mm
7:)K:
BSq) mm
BSq) mm
S3..AR0 O9 PRO1/%E% RE/N9) AREA
NRI INSTITUTE OF TECHNOLOGY
Page 57
SECT/ON
;); mm
787)> mm
8?:>); mm
:<>8)> mm
?K;); mm
TOP
:7;
:7;
:7;
:7;
?7;
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs
6OTTO.
878
878
878
878
878
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs
S!EAR 8 legged K 8 legged K 8 legged K 8 legged K 8 legged K RE/N9) 78; mm H 78; mm H 78; mm H 78; mm H 78; mm H
S!EAR %ES/@N RES34TS AT %/STANCE d BE99ECT/1E %EPT! 9RO. 9ACE O9 T!E S3PPORT
S!EAR %ES/@N RES34TS AT ><>); mm A+A0 9RO. START S3PPORT 10 8?)< .
;):< 4% ?
Pro(ide 8 4egged K 78; mm H
S!EAR %ES/@N RES34TS AT ><>); mm A+A0 9RO. EN% S3PPORT 10 8)<; .
;):< 4% ?
Pro(ide 8 4egged K 78; mm H
10 ?)8? . ?)<> 4% K
Pro(ide 8 4egged K 7:; mm H
NRI INSTITUTE OF TECHNOLOGY
Page 58
NRI INSTITUTE OF TECHNOLOGY
Page 59
CHAPTER5 DESIGNING OF COLUMNS
NRI INSTITUTE OF TECHNOLOGY
Page 60
COL0MN DESIGN1 A olumn ma# be defined as an element used primar# to support a,ial ompressi(e loads and with a height of a least three times its lateral dimension) The strength of olumn depends upon the strength of materials* shape and siDe of ross setion* length and degree of proportional and dediational restrains at its ends) A olumn ma# be lassif# based on deferent riteria suh as
NRI INSTITUTE OF TECHNOLOGY
Page 61
7) shape of the setion 8) slenderness ratioBA4F% :) t#pe of loading* land ?) pattern of lateral reinforement) The ratio of effeti(e olumn length to least lateral dimension is released to as slenderness ratio) /n our struture we ha(e : t#pes of olumns) Column with beams on two sides Columns with beams on three sides Columns with beams on four sides
A olumn is defined as an element used primar# to support a,ial ompressi(e loads and with a height of atleast three times its lateral diretion) Columns are designed for a,ial fores and bia,ial moments per /S ?><8;;;) Columns are also designed for shear fores) All major riteria for seleting longitudinal and trans(erse reinforement as stipulated b# /S ?>< ha(e been ta-en are of in the olumn design of STAA%) !owe(er following lauses ha(e been satisfied to inorporate pro(isions of /S 7:=8; 1 T.e *i&i*"* g!a(e ) #)!ee s.a$$ +!ee!a-$' -e 20 2 See$ !ei&)!#e*e&s ) g!a(e Fe415 )! $ess )&$' s.a$$ -e "se( 3 T.e *i&i*"* (i*e&si)& ) #)$"*& *e*-e! s.a$$ &) -e $ess .a& 200 ** F)! #)$"*&s .a,i&g "&s"++)!e( $e&g. e#ee(i&g 4*/ .e s.)!es (i*e&si)& ) #)$"*& s.a$$ &) -e $ess .a& 300 **
?) The ratio of the shortest rosssetional dimension to the perpendiular dimension shall preferabl# be not less than ;) 5 T.e s+a#i&g ) .))+s s.a$$ &) e#ee( .a$ .e $eas $ae!a$ (i*e&si)& ) .e #)$"*&/ e#e+ .e!e s+e#ia$ #)&?&i&g !ei&)!#e*e& is +!),i(e( 6 S+e#ia$ #)&?&i&g !ei&)!#e*e& s.a$$ -e +!),i(e( ),e! a $e&g. $) !)* ea#. D)i& a#e/ )a!(s *i( s+a&/ a&( )& ei.e! si(e ) a&' se#i)&/ .e!e e"!a$ 'ie$(i&g *a' )##"! T.e $e&g. $) s.a$$ &) -e $ess .a& a $a!ge! $ae!a$ (i*e&si)& ) .e *e*-e! a .e se#i)& .e!e 'ie$(i&g )##"!s/ - 1:6 ) #$ea! s+a& ) .e *e*-e!/ a&( # 450 **
NRI INSTITUTE OF TECHNOLOGY
Page 62
) The spaing of hoops used as speial onfining reinforement shall not e,eed U of minimum member dimension but need not be less than > mm nor more than 7;; mm) C O 4 3 . N N O) <:? % E S / @ N R E S 3 4 T S
.:;
9e?7> B.ain
9e?7> BSe)
4EN@T! :8>;); mm CROSS SECT/ON 8:;); mm ?7;); mm CO1ER ?;); mm @3/%/N@ 4OA% CASE K S!ORTB5 REV%) STEE4 AREA
H6RACE% 4ON@B0
7>:8)?> Sq)mm)
REV%) CONCRETE AREA =8<)> Sq)mm) .A/N RE/N9ORCE.ENT Pro(ide K 7< dia) B7)7W* 7<;K)>; Sq)mm) BEquall# distributed T/E RE/N9ORCE.ENT Pro(ide K mm dia) retangular ties 8:; mm H SECT/ON CAPAC/T0 6ASE% ON RE/N9ORCE.ENT REV3/RE% B2NS.ET PuD 78=):? .uD7
KK)7= .u#7
?8)=
/NTERACT/ON RAT/O 7);; Bas per Cl) :=)<* /S?><8;;;
NRI INSTITUTE OF TECHNOLOGY
CHAPTER59
Page 63
DESIGN OF FOOTINGS
9oundations are strutural elements that transfer loads from the building or indi(idual olumn to the earth )/f these loads are to be properl# transmitted* foundations must be
NRI INSTITUTE OF TECHNOLOGY
Page 64
designed to pre(ent e,essi(e settlement or rotation* to minimiDe differential settlement and to pro(ide adequate safet# against sliding and o(erturning) GENERAL<
7) 9ooting shall be designed to sustain the applied loads* moments and fores and the indued reations and to assure that an# settlements whih ma# our will be as nearl# uniform as possible and the safe bearing apait# of soil is not e,eeded) 8) Thi-ness at the edge of the footing in reinfored and plain onrete footing at the edge shall be not less than 7>; mm for footing on the soil nor less than :;;mm abo(e the tops of the pile for footing on piles) BEARING CAPACITY OF SOIL<
The siDe foundation depends on permissible bearing apait# of soil) The total load
per unit area under the footing must be less than the permissible bearing apait# of soil to the e,essi(e settlements) Fo874o7 *7<
9oundations are struture elements that transfer loads from building or indi(idual olumn to earth this loads are to be properl# transmitted foundations must be designed to pre(ent e,essi(e settlement are rotation to minimiDe differential settlements and to pro(ide adequate safet# isolated footings for multi store# buildings) These ma# be square retangle are irular in plan that the hoie of t#pe of foundation to be used in a gi(en situation depends on a number of fators) 7) 6earing apait# of soil 8) T#pe of struture :) T#pe of loads ?) Permissible differential settlements >) eonom# A footing is the bottom most part of the struture and last member to transfer the load) /n order to design footings we used staad foundation software) These are the t#pes of foundations the software an deal) Shallow B%L6 7) /solated BSpread 9ooting 8)Combined BStrip 9ooting :).at BRaft 9oundation
%eep B%M6 7)Pile Cap
NRI INSTITUTE OF TECHNOLOGY
Page 65
8) %riller Pier
The ad(antage of this software is e(en after the anal#sis of staad we an update the following properities if required) The following Parameters an be updated Column Position Column Shape Column SiDe 4oad Cases Support 4ist
After the anal#sis of struture at first we has to import the reations of the olumns from staad pro using import button) After we import the loads the plaement of olumns is indiated in the figure) FOUNDATION DESIGN
Isolated Footing 30 Input alues !oncrete and "e#ar $roperties Unit Weight of Concrete : trength of Concrete :
26.000 kN/m3 25.000 N/mm2
!ie"# trength of tee" : 415.000 N/mm2 $inim%m &'r i(e : 6
mm
$')im%m &'r i(e : 32
mm
$inim%m &'r *'cing :
50.00 mm
$')im%m &'r *'cing :
450.00 mm
!oncrete !o%ers +ooting C"e'r Co,er -+ C : 50.00 mm
NRI INSTITUTE OF TECHNOLOGY
Page 66
Soil $roperties Unit Weight : 14.00 kN/m3 oi" &e'ring C'*'cit : 90.00 kN/m2 oi" %rch'rge : e*th of oi" 'o,e +ooting :
0.00 N/mm 2 0.00 mm
&eometr' Initial Footing Dimensions hickne -+t :
250.00 mm
ength -+" : 1000.00 mm Wi#th -+ : 1000.00 mm
Footing Design !alculations Footing Si(e niti'" ength - o ;
1.00 m
niti'" Wi#th -W o ;
1.00 m
$in. 're' re<%ire# from e'ring *re%re = min ;
> /
12.347
=re' from initi'" "ength 'n# i#th =o ;
o ? Wo ;
1.00
m2 m2
Final dimensions )or design* ength - 2 ;
3.68 m
@o,erning o'# C'e :
A7
Wi#th -W 2 ;
3.68 m
@o,erning o'# C'e :
A7
=re' -=2 ;
13.51 m2
!alculated pressures at 4 corners*
Load !ase
$ressure at corner 1 +,1+./m-
$ressure at corner +, +./m-
$ressure at corner 3 +,3+./m-
$ressure at corner 4 +, 4+./m-
Area o) )ooting in upli)t +Au+m-
7
22*13
86.86
88.46
89.73
0.00
7
88.13
2*2
88.46
89.73
0.00
7
88.13
86.86
22*4
89.73
0.00
7
88.13
86.86
88.46
2*3
0.00
NRI INSTITUTE OF TECHNOLOGY
Page 67
f =% i (ero there i no %*"ift 'n# no *re%re '#B%tment i nece'r. therie to 'cco%nt for %*"ift 're' of neg'ti,e *re%re i"" e et to (ero 'n# the *re%re i"" e re#itri%te# to rem'ining corner.
Summar' o) ad6usted pressures at 4 corners* $ressure at corner 1 +, 1-
$ressure at corner +,-
$ressure at corner 3 +, 3-
$ressure at corner 4 +, 4-
Load !ase
+./m-
+./m-
+./m-
+./m-
7
22*13
86.86
88.46
89.73
7
88.13
2*2
88.46
89.73
7
88.13
86.86
22*4
89.73
7
88.13
86.86
88.46
2*3
Ad6ust )ooting si(e i) necessar'*
Detail o) 7ut8o)8contact Area @o,erning "o'# c'e ;
N/=
>"'n 're' of footing ;
13.51 $ 2
=re' not in cont'ct ith oi" ;
0.00 $2
D of tot'" 're' not in cont'ct ;
0.00D
!hec. )or sta#ilit' against o%erturning and sliding:8 Factor o) sa)et' against sliding
Factor o) sa)et' against o%erturning
Load !ase /o*
Along 98 Direction
Along 8 Direction
A#out 98 Direction
A#out 8 Direction
7
119.062
83.981
330.019
416.840
8
34.091
35.433
63.746
67.276
NRI INSTITUTE OF TECHNOLOGY
Page 68
!ritical load case and the go%erning )actor o) sa)et' )or o %erturning and sliding Critic'" o'# C'e for "i#ing '"ong irection :
8
@o,erning it%ring +orce :
15.073 kN
@o,erning Eetoring +orce :
513.873 kN
$inim%m "i#ing E'tio for the Critic'" o'# C'e :
34.091
Critic'" o'# C'e for ,ert%rning 'o%t irection :
8
@o,erning ,ert%rning $oment :
29.625 kN m
@o,erning Eeiting $oment :
1888.483 kN m
$inim%m ,ert%rning E'tio for the Critic'" o'# C'e :
63.746
!ritical load case and the go%erning )actor o) sa)et' )or o %erturning and sliding Critic'" o'# C'e for "i#ing '"ong irection :
8
@o,erning it%ring +orce :
14.503 kN
@o,erning Eetoring +orce :
513.873 kN
$inim%m "i#ing E'tio for the Critic'" o'# C'e :
35.433
Critic'" o'# C'e for ,ert%rning 'o%t irection :
8
@o,erning ,ert%rning $oment :
28.071 kN m
@o,erning Eeiting $oment :
1888.483 kN m
$inim%m ,ert%rning E'tio for the Critic'" o'# C'e :
NRI INSTITUTE OF TECHNOLOGY
67.276
Page 69
!hec. ;rial Depth against moment +along LengthFffecti,e e*th ; @o,erning moment -$ %
; 347.00
mm
; 431.338009
kNm
= >er 456 2000 =NNF @ @1.1C imiting +'ctor1 -G %m') ;
; 0.479107
imiting +'ctor2 -E %m') ;
; 3.444291 ; 1524.109477
imit $oment f Eeit'nce -$ %m') ; $% H; $%m')
N/mm 2 kNm
hence 'fe
!hec. ;rial Depth against moment +along
; 347.00
mm
; 430.681874
kNm
= >er 456 2000 =NNF @ @1.1C imiting +'ctor1 -G %m') ;
; 0.479107
imiting +'ctor2 -E %m') ;
; 3.444291 ; 1524.109477
imit $oment f Eeit'nce -$ %m') ; $% H; $%m')
N/mm 2 kNm
hence 'fe
!hec. ;rial Depth )or one =a' shear +along Lengthhe'r +orce-
; 450997.58
Neton
he'r tre- ,
; 0.329894
N/mm2
>ercent'ge f tee"-> t
; 0.2786
= >er 456 2000 C"'%e 40 '"e 19 he'r trength f Concrete- c
; 0.38 ,H c
NRI INSTITUTE OF TECHNOLOGY
hence 'fe
Page 70
N/mm2
!hec. ;rial Depth )or one =a' shear +along
; 450341.83
Neton
he'r tre- ,
; 0.329414
N/mm2
>ercent'ge f tee"-> t
; 0.2781
= >er 456 2000 C"'%e 40 '"e 19 he'r trength f Concrete- c
; 0.38 ,H c
N/mm2
hence 'fe
!hec. ;rial Depth )or t=o =a' shear he'r +orce- he'r tre- ,
; 1253945.53
Neton
; 1.25
N/mm2
= >er 456 2000 C"'%e 31.6.3.1 G ;
; 1.00
he'r trength- c;
; 1.2500
N/mm2
G c
; 1.2500
N/mm2
,H; G c
hence 'fe
!alculation o) >aximum ?ar Si(e
Along Length &'r #i'meter corre*on#ing to m') 'r i(e -#
; 25 mm
= >er 456 2000 C"'%e 26.2.1 e,e"o*ment ength-" # ;
; 1611.83 mm
=""o'"e ength-"# ;
; 1635.10 mm
"# I"#
NRI INSTITUTE OF TECHNOLOGY
hence 'fe
Page 71
Along
; 25 mm
= >er 456 2000 C"'%e 26.2.1 e,e"o*ment ength-" # ;
; 1611.83 mm
=""o'"e ength-"# ;
; 1635.10 mm
"# I"#
hence 'fe
Selection o) "ein)orcement Along Length = >er 456 2000 C"'%e 26.5.2.1 $inim%m =re' of tee" -= tmin
; 1768.41 $m 2
C'"c%"'te# =re' of tee" -= t
; 3612.78 $m 2
>ro,i#e# =re' of tee" -= t>ro,i#e#
; 3612.78 $m 2
=tminH; =t tee" 're' i 'cce*te#
e"ecte# 'r i(e -#
; 8 mm
$inim%m *'cing '""oe# - min ;
; 50.00 mm
e"ecte# *'cing -
; 50.24 mm
min H; H; 450 mm 'n# e"ecte# 'r i(e H e"ecte# m')im%m 'r i(e...
he reinforcement i 'cce*te#.
Along er 456 2000 C"'%e 26.5.2.1 $inim%m =re' of tee" -= tmin
; 1768.41 $m 2
C'"c%"'te# =re' of tee" -= t
; 3607.00 $m 2
>ro,i#e# =re' of tee" -= t>ro,i#e#
; 3607.00 $m 2
=tminH; =t tee" 're' i 'cce*te#
NRI INSTITUTE OF TECHNOLOGY
Page 72
e"ecte# 'r i(e -#
; 8 mm
$inim%m *'cing '""oe# - min ;
; 50.00 mm
e"ecte# *'cing -
; 50.24 mm
min H; H; 450 mm 'n# e"ecte# 'r i(e H e"ecte# m')im%m 'r i(e...
he reinforcement i 'cce*te#.
Isolated Footing 30 Input alues !oncrete and "e#ar $roperties Unit Weight of Concrete : trength of Concrete :
26.000 kN/m3 25.000 N/mm2
!ie"# trength of tee" : 415.000 N/mm2 $inim%m &'r i(e : 6
mm
$')im%m &'r i(e : 32
mm
$inim%m &'r *'cing :
50.00 mm
$')im%m &'r *'cing :
450.00 mm
!oncrete !o%ers +ooting C"e'r Co,er -+ C : 50.00 mm
Soil $roperties Unit Weight : 14.00 kN/m3 oi" &e'ring C'*'cit : 90.00 kN/m2 oi" %rch'rge : e*th of oi" 'o,e +ooting :
0.00 N/mm 2 0.00 mm
&eometr' Initial Footing Dimensions hickne -+t :
250.00 mm
ength -+" : 1000.00 mm Wi#th -+ : 1000.00 mm
NRI INSTITUTE OF TECHNOLOGY
Page 73
Footing Design !alculations Footing Si(e niti'" ength - o ;
1.00 m
niti'" Wi#th -W o ;
1.00 m
$in. 're' re<%ire# from e'ring *re%re = min ;
> /
=re' from initi'" "ength 'n# i#th =o ;
12.347
m2
1.00 m2
o ? Wo ;
Final dimensions )or design* ength - 2 ;
3.68 m
@o,erning o'# C'e :
A7
Wi#th -W 2 ;
3.68 m
@o,erning o'# C'e :
A7
=re' -=2 ;
13.51 m2
!alculated pressures at 4 corners*
Load !ase
$ressure at corner 1 +,1+./m-
$ressure at corner +, +./m-
$ressure at corner 3 +,3+./m-
$ressure at corner 4 +, 4+./m-
Area o) )ooting in upli)t +Au+m-
7
22*13
86.86
88.46
89.73
0.00
7
88.13
2*2
88.46
89.73
0.00
7
88.13
86.86
22*4
89.73
0.00
7
88.13
86.86
88.46
2*3
0.00
f =% i (ero there i no %*"ift 'n# no *re%re '#B%tment i nece'r. therie to 'cco%nt for %*"ift 're' of neg'ti,e *re%re i"" e et to (ero 'n# the *re%re i"" e re#itri%te# to rem'ining corner. Summar' o) ad6usted pressures at 4 corners* $ressure at corner 1 +, 1-
$ressure at corner +,-
$ressure at corner 3 +, 3-
$ressure at corner 4 +, 4-
Load !ase
+./m-
+./m-
+./m-
+./m-
7
22*13
86.86
88.46
89.73
7
88.13
2*2
88.46
89.73
7
88.13
86.86
22*4
89.73
7
88.13
86.86
88.46
2*3
Ad6ust )ooting si(e i) necessar'*
NRI INSTITUTE OF TECHNOLOGY
Page 74
Detail o) 7ut8o)8contact Area @o,erning "o'# c'e ;
N/=
>"'n 're' of footing ;
13.51 $ 2
=re' not in cont'ct ith oi" ;
0.00 $2
D of tot'" 're' not in cont'ct ;
0.00D
!hec. )or sta#ilit' against o%erturning and sliding:8 Factor o) sa)et' against sliding
Factor o) sa)et' against o%erturning
Load !ase /o*
Along 98 Direction
Along 8 Direction
A#out 98 Direction
A#out 8 Direction
7
119.062
83.981
330.019
416.840
8
34.091
35.433
63.746
67.276
Cr4?2 2o ?* 7 4' o-r77 ?4or o *4 or o-r48r77 7 *27 Critic'" o'# C'e for "i#ing '"ong irection :
8
@o,erning it%ring +orce :
15.073 kN
@o,erning Eetoring +orce :
513.873 kN
$inim%m "i#ing E'tio for the Critic'" o'# C'e :
34.091
Critic'" o'# C'e for ,ert%rning 'o%t irection :
8
@o,erning ,ert%rning $oment :
29.625 kN m
@o,erning Eeiting $oment :
1888.483 kN m
$inim%m ,ert%rning E'tio for the Critic'" o'# C'e :
NRI INSTITUTE OF TECHNOLOGY
63.746
Page 75
!ritical load case and the go%erning )actor o) sa)et' )or o %erturning and sliding Critic'" o'# C'e for "i#ing '"ong irection :
8
@o,erning it%ring +orce :
14.503 kN
@o,erning Eetoring +orce :
513.873 kN
$inim%m "i#ing E'tio for the Critic'" o'# C'e :
35.433
Critic'" o'# C'e for ,ert%rning 'o%t irection :
8
@o,erning ,ert%rning $oment :
28.071 kN m
@o,erning Eeiting $oment :
1888.483 kN m
$inim%m ,ert%rning E'tio for the Critic'" o'# C'e :
67.276
!hec. ;rial Depth against moment +along LengthFffecti,e e*th ; @o,erning moment -$ %
; 347.00
mm
; 431.338009
kNm
= >er 456 2000 =NNF @ @1.1C imiting +'ctor1 -G %m') ;
; 0.479107
imiting +'ctor2 -E %m') ;
; 3.444291 ; 1524.109477
imit $oment f Eeit'nce -$ %m') ; $% H; $%m')
N/mm 2 kNm
hence 'fe
!hec. ;rial Depth against moment +along
; 347.00
mm
; 430.681874
kNm
= >er 456 2000 =NNF @ @1.1C imiting +'ctor1 -G %m') ;
; 0.479107
imiting +'ctor2 -E %m') ;
; 3.444291 ; 1524.109477
imit $oment f Eeit'nce -$ %m') ; $% H; $%m')
NRI INSTITUTE OF TECHNOLOGY
hence 'fe
Page 76
N/mm 2 kNm
!hec. ;rial Depth )or one =a' shear +along Lengthhe'r +orce-
; 450997.58
Neton
he'r tre- ,
; 0.329894
N/mm2
>ercent'ge f tee"-> t
; 0.2786
= >er 456 2000 C"'%e 40 '"e 19 he'r trength f Concrete- c
; 0.38 ,H c
N/mm2
hence 'fe
!hec. ;rial Depth )or one =a' shear +along
; 450341.83
Neton
he'r tre- ,
; 0.329414
N/mm2
>ercent'ge f tee"-> t
; 0.2781
= >er 456 2000 C"'%e 40 '"e 19 he'r trength f Concrete- c
; 0.38 ,H c
N/mm2
hence 'fe
!hec. ;rial Depth )or t=o =a' shear he'r +orce- he'r tre- ,
; 1253945.53
Neton
; 1.25
N/mm2
= >er 456 2000 C"'%e 31.6.3.1 G ;
; 1.00
he'r trength- c;
; 1.2500
N/mm2
G c
; 1.2500
N/mm2
,H; G c
NRI INSTITUTE OF TECHNOLOGY
hence 'fe
Page 77
C2?824o7 o M:;8; Br S Along Length &'r #i'meter corre*on#ing to m') 'r i(e -#
; 25 mm
= >er 456 2000 C"'%e 26.2.1 e,e"o*ment ength-" # ;
; 1611.83 mm
=""o'"e ength-"# ;
; 1635.10 mm
"# I"#
hence 'fe
Along
; 25 mm
= >er 456 2000 C"'%e 26.2.1 e,e"o*ment ength-" # ;
; 1611.83 $m
=""o'"e ength-"# ;
; 1635.10 $m
"# I"#
hence 'fe
Selection o) "ein)orcement
Along Length
= >er 456 2000 C"'%e 26.5.2.1 $inim%m =re' of tee" -= tmin
; 1768.41 mm2
C'"c%"'te# =re' of tee" -= t
; 3612.78 mm2
>ro,i#e# =re' of tee" -= t>ro,i#e#
; 3612.78 mm2
=tminH; =t tee" 're' i 'cce*te#
NRI INSTITUTE OF TECHNOLOGY
Page 78
e"ecte# 'r i(e -#
; 8 $m
$inim%m *'cing '""oe# - min ;
; 50.00 $m
e"ecte# *'cing -
; 50.24 $m
min H; H; 450 mm 'n# e"ecte# 'r i(e H e"ecte# m')im%m 'r i(e...
he reinforcement i 'cce*te#.
Along er 456 2000 C"'%e 26.5.2.1 $inim%m =re' of tee" -= tmin
; 1768.41 mm2
C'"c%"'te# =re' of tee" -= t
; 3607.00 mm2
>ro,i#e# =re' of tee" -= t>ro,i#e#
; 3607.00 mm2
=tminH; =t tee" 're' i 'cce*te#
e"ecte# 'r i(e -#
; 8 $m
$inim%m *'cing '""oe# - min ;
; 50.00 $m
e"ecte# *'cing -
; 50.24 $m
min H; H; 450 mm 'n# e"ecte# 'r i(e H e"ecte# m')im%m 'r i(e...
NRI INSTITUTE OF TECHNOLOGY
he reinforcement i 'cce*te#.
Page 79
CHAPTER510 REINFORCEMENT DETAILS OF FOUNDATION + COLUMN
NRI INSTITUTE OF TECHNOLOGY
Page 80
NRI INSTITUTE OF TECHNOLOGY
Page 81
NRI INSTITUTE OF TECHNOLOGY
Page 82
NRI INSTITUTE OF TECHNOLOGY
Page 83
NRI INSTITUTE OF TECHNOLOGY
Page 84
C O 4 3 . N N O) ?= % E S / @ N R E S 3 4 T S
.:;
9e?7> B.ain
9e?7> BSe)
4EN@T! :;;;); mm CROSS SECT/ON 8:;); mm ?<;); mm CO1ER ?;); mm @3/%/N@ 4OA% CASE K S!ORTB5
H6RACE% 4ON@B0
%9 /.PORT O9 1A.S/ CENTRE 4/NE)%[email protected]%/9/E%)%9
PA@E NO)
7;?K REV%) STEE4 AREA
7:7);> Sq)mm)
REV%) CONCRETE AREA 7;??8K)= Sq)mm) .A/N RE/N9ORCE.ENT Pro(ide K 7< dia) B7)>8W* 7<;K)>; Sq)mm) BEquall# distributed T/E RE/N9ORCE.ENT Pro(ide K mm dia) retangular ties 8:; mm H SECT/ON CAPAC/T0 6ASE% ON RE/N9ORCE.ENT REV3/RE% B2NS.ET PuD 7K:<)>: .uD7 78<)K> .u#7
NRI INSTITUTE OF TECHNOLOGY
>>);<
Page 85
C O L U M N N O.
.:;
!$# D E S I G N R E S U L T S
9e?7> B.ain
9e?7> BSe)
4EN@T! :;;;); mm CROSS SECT/ON 8:;); mm ?<;); mm CO1ER ?;); mm GUIDING LOAD CASE : S!ORTB5 RED. STEEL AREA
H6RACE% 4ON@B0
K?<)?; Sq)mm)
RED. CONCRETE AREA
7;?=>:)<8 Sq)mm)
MAIN REINFORCEMENT Pro(ide
K 78 dia) B;)K
BEquall# distributed TIE REINFORCEMENT
Pro(ide K mm dia) retangular ties 7=; mm H
SECT/ON CAPAC/T0 6ASE% ON RE/N9ORCE.ENT REV3/RE% B2NS.ET PuD 7
>=):8 .u#7
NRI INSTITUTE OF TECHNOLOGY
8)7
Page 86
CHAPTER511 REINFORCEMENT DETAILS OF PLINTH BEAMS
NRI INSTITUTE OF TECHNOLOGY
Page 87
NRI INSTITUTE OF TECHNOLOGY
Page 88
NRI INSTITUTE OF TECHNOLOGY
Page 89
6 E A . N O)
.:;
7 % E S / @ N R E S 3 4 T S
9e?7> B.ain
4EN@T! ?;); mm
9e?7> BSe)
S/5E 8:;); mm ?7;); mm CO1ER 8>); mm
S3..AR0 O9 RE/N9) AREA BSq)mm SECT/ON
;); mm
77<;); mm
8:8;); mm
:?K;); mm
?;); mm
TOP
7=);7
RE/N9)
BSq) mm
6OTTO. RE/N9)
7=);7 BSq) mm
7=);7
7=);7
BSq) mm
7K)K; BSq) mm
7=);7
BSq) mm
8K:);7
7=);7
BSq) mm
7K):;
BSq) mm
BSq) mm
7=);7
BSq) mm
BSq) mm
S3..AR0 O9 PRO1/%E% RE/N9) AREA SECT/ON
;); mm
77<;); mm
NRI INSTITUTE OF TECHNOLOGY
8:8;); mm
:?K;); mm
?;); mm
Page 90
TOP
878
878
878
878
878
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 6OTTO.
:7;
:7;
?7;
:7;
:7;
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs
S!EAR 8 legged K 8 legged K 8 legged K 8 legged K 8 legged K RE/N9) 7:; mm H 7:; mm H 7:; mm H 7:; mm H 7:; mm H
6 E A . N O) .:;
7< % E S / @ N R E S 3 4 T
9e?7> B.ain
4EN@T! ?;); mm
9e?7> BSe)
S/5E 8:;); mm ?7;); mm CO1ER 8>); mm
S3..AR0 O9 RE/N9) AREA BSq)mm SECT/ON
;); mm
77<;); mm
8:8;); mm
:?K;); mm
?;); mm
TOP
7=);7
7=);7
7=);7
NRI INSTITUTE OF TECHNOLOGY
7=);7
7=);7
Page 91
RE/N9)
BSq) mm
6OTTO. RE/N9)
BSq) mm
7=);7 BSq) mm
7K)8: BSq) mm
BSq) mm
BSq) mm
8K8)=
7=?)=7
BSq) mm
BSq) mm
BSq) mm 7=);7 BSq) mm
S3..AR0 O9 PRO1/%E% RE/N9) AREA SECT/ON TOP
;); mm
878
77<;); mm
878
8:8;); mm
878
878
:?K;); mm
?;); mm
878
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 6OTTO.
:7;
:7;
?7;
:7;
:7;
RE/N9) 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs 7 la#erBs S!EAR 8 legged K 8 legged K 8 legged K 8 legged K 8 legged K RE/N9) 7:; mm H 7:; mm H 7:; mm H 7:; mm H 7:; mm H
NRI INSTITUTE OF TECHNOLOGY
Page 92
NRI INSTITUTE OF TECHNOLOGY
Page 93
NRI INSTITUTE OF TECHNOLOGY
Page 94
CHAPTER51$ DESIGN AND REINFORCEMENT DETAILS OF SLABS
NRI INSTITUTE OF TECHNOLOGY
Page 95
Slab End Condition
Two Adjaent Edges %isontinuous
SiDe of the slab
4# in . , 4, in .
:)=:):
4#H4,
7)7K
%esigning as
Two +a# Slab
.aterials @rade of ConreteB9-
8;
.pa
@rade of steelB9#
?7>
.pa
O(erall depth of slabB%
7>
.m
Clear o(er to reinforement
8>
.m
6ar diameter onsideredBX
K
.m
Effeti(e depth Bd
7>;
.m
Slab %ead 4oad
?):>
2NHm8
9loor 9inishes
7
2NHm8
4i(e load
:
2NHm8
Total 4oad B+
K):>
2NHm8
78)><
2NHm8
4oads
%esign 4oad B+7)> B+u
C2?824o7 o ;o;74*<
As per /S ?><8;;; * table 8< Q this is ase ?
NRI INSTITUTE OF TECHNOLOGY
Page 96
9rom whih Y,;);>K
Y,+ul,Z8
;);>7,78):>, 8)K?Z8 >)8:82n.
.u#
Y#+ul#Z8
;);:>,78):>,:)K8Z8 <)>K 2n.
9or shorter span width of middle strip [ ,l ,
8)7:m
width of edge strip \ ,B8)K?8)7: ;):>>m 9or longer span width of middle strip [ ,l #
8)K<>m
width of edge strip \ ,B:)K88)K<> ;)?Km C2?824o7 o ?4- ,4' <
Adopting .8; onrete and 9e ?7> steel As per /S ?><8;;;BAnne,ure @ R u
;):<,uma,HdB7;)?8uma,Hd,f -
;):<,;)?
Assuming
;)?K Bfor 9e ?7>
R u
8)<
b
7;;;mm
d
]BK)<7,7;
><):?mm
Adopting Kmm dia bars as reinforement Effeti(e o(er
8>mm
O(er all depth
7>mm
Therefore from defletion point of (iew pro(iding o(erall depth % 7>;mm Effeti(e depth
9or shorter span d
7>;8>?787mm
Effeti(e depth
9or longer span d 78<K 77Kmm C2?824o7 o *42< B.A/N RE/N9ORCE.ENT 9OR S!ORTER SPAN 9orm /S ?><8;;;BAnne,ure @ .u K)7< ,7;<
;)K, f # ,AstB7Bf # , AstHbdf - ;)K,?7> , Ast ,7> , A stHB7;;;,7>;,8;
Ast 7<>)>
Bast ,7;;;HAst B^, ?8 ,7;;;HB7K;)7 8=)8= 8K;mm H
As per /S ?>< 8;;;* lause 8<):):b*the spaing of Reinforement should be not more than least of following
NRI INSTITUTE OF TECHNOLOGY
Page 97
7) :,effeti(e depth
:,7>; ?>;mm
8) :;;mm Pro(ide K mm _ bars :;; mm H B.A/N RE/N9ORCE.ENT 9OR 4ON@ER SPAN 9orm /S ?><8;;;BAnne,ure @ .u ;)K, f # , Ast , dB7Bf # , AstHbd f - 7;)78>,7; < ;)K,?7>,A st ,77KB7?7>,A stHB7;;;,77K,8;
Ast 8?K)>7?mm8 Spaing of Kmm dia bars
Bast ,7;;;HAsst B^ , ?8 ,7;;;HB7<>)< :;:); :7;mm H
As per /S ?>< 8;;;* lause 8<):):b*the spaing of Reinforement should be not more than least of following 7) :,effeti(e depth
:,77K :>?mm
8) :;;mm Pro(ide K mm _ bars :7; mm H Tor*o72 r7or?;74 4 ?or7r*
SiDe of torsional mesh l,H>
:)?>H> ;)<=m
Spaing of
B^,:<,7;;;H7>)> :>=mm
/t is preferable to pro(ide < mm _ bars :;; mm H
NRI INSTITUTE OF TECHNOLOGY
Page 98
NRI INSTITUTE OF TECHNOLOGY
Page 99
NRI INSTITUTE OF TECHNOLOGY
Page 100
CHAPTER513 DESIGN OF STAIR CASE
NRI INSTITUTE OF TECHNOLOGY
Page 101
DESIGN OF STAIRCASE %imension of Stair Case Room :)8 m , :); m !eight of Eah Store# !eight of 9light
:)7 m
7st 9light
8)7; m
8nd 9light 7); m Assuming the !eight of Riser as
1>! ;; $ width of Thread as $10 ;;.
87;;
st
= 78
No) of Risers in 7 9light No) of Threads R ` 7 78 ` 7 77 +idth of 4anding 7)?; m !oriDontal length of eah flight 7)?; F 77 , ;)87; :)8 m 7P>
7)?;m
R D 1>! ;; T D $10 ;; 4' o( 2377A D 1.#0 ;
Now* Assuming +aist Slab thi-ness 7> mm % 7> mm
d 7> ` 8;
7>> mm
Calulating 4oad per metre Strip)) : 2NHm 8
7) 4i(e 4oad 8) %ead 4oad due to Slab
;)7> , 8> ?):> 2NHm 8
:) 9loor 9inishes
NRI INSTITUTE OF TECHNOLOGY
;)> 2NHm 8 B Assumed
Page 102
)K> 2NHm 8
Total 4oad Bw Now*
Con(erting load on Plan area ) w × R 8 + T 8
w7
T
=
P)KP> ×
87;
8
+ 7P>8
87;
= 7;)8> KN
m8
)I) 4oad per metre Strip 7;)8> , 7); 7;)8> 2NHm Now* Calulating the Steps 4oad )
;)7P> × 8)7 × 8> × 8 w8
7;;; 87;
8
+ 7P>
8
= 7<)K; KN m
)I) Total 4oad w 7 F w8 7;)8> F 7<)K; 8);> 2NHm ?;)>> 2NHm 8
)I) 9atored 4oad + u 7)> , 8);>
Then* Calulation of Effeti(e Span Assuming wall thi-ness as 8:; mm 8)78
+ 8):8 8 + 7)?; + ;)77> = ?)
Calulation of .a,) S)9 $ 6).)) W u × l
S)9
8
=
W u × l
?;)>P> × ?) 8
8
6).
K
=
= =?)7:? KN
8>)7? × ?) K
8
=
Calulation of %epth) d =
M u ;)7:K × f ck × b
=
<
;)7:K × 8; × 7;;;
= 7><)>Pmm
)I) % 7> F 8; 7; mm L 7> mm B O2
NRI INSTITUTE OF TECHNOLOGY
Page 103
Are! #$ Stee% $#r M!n Ren$#r"e&ent'(
A st × f y
b × d × f ck
M u = ;)KP × f y × A st ×d × 7 −
M
<
Ast × ?7> = ;)KP × ?7> × A st ×7>; × 7 − 7;;; × 7>; × 8;
M Ast 7><<)> mm 8 Assuming 78 mm J bars) π
?
×78 8 ×7;;; 7><<)>P
)I) Spaing of 6ars
= P8)7=mm b c c
C'?6 For S,?7<5
Spaing
: , d : , 7>> ?<> mm B
OK
Are! #$ Stee% $#r D)tr*ut#n Ren$#r"e&ent'( A st = ;)78W))of )) Area))of ))Concrete
=> A st =
;)78 7;;
× (7;;; × 7P>) = 87;mm 8
Assuming
?
)I) Spaing
× < 8 ×7;;; 87;
= 7:?)< ≈ 78>mm b c c
C'?6 For S,?7<5
Spaing
> , d > , 7>; >; mm B
NRI INSTITUTE OF TECHNOLOGY
OK
Page 104
NRI INSTITUTE OF TECHNOLOGY
Page 105
NRI INSTITUTE OF TECHNOLOGY
Page 106
/E.E/ENCES 13 4* IS 56738999 Co)e Of Prac%"ce For Pla"n , Re"nforce) Concre%e
8* Re"nforce) concre%e
:
As$o;*K*
=* L"-"% $%a%e %heory , De$"gn of re"nforce) conc!rre) 'y Dr* >*L S$a$ ? Late* S*/*Kar!y an s$a$*
5* www*@entley*co(
6* www*staa"ro *co(
7* T$eory o# structures
3
S*/a(a(rut$a(
* T$eory o# structures
3
S*S*@$a!a;atti
B* Analysis o# Structures
3
>*N*!azirani
* Design o# /*C*C Structures
3
2*<* S$a$
49*
Structure Design
NRI INSTITUTE OF TECHNOLOGY
3
A*K*
Page 107
NRI INSTITUTE OF TECHNOLOGY
Page 108