contains the formulae of calculas and other chapters like probability etc.Full description
addmaths pyear
Additional Mathematics project work for SPM 2014 ( PERLIS ) - OPTION 2Full description
This is the correct version of the project work 2 of 2011. Please refrain from downloading and copying as is...Full description
Add Maths Paper 1 SPM 2018Full description
Form 4Full description
Add Math pass yearFull description
Add Maths pass year questionFull description
Add Maths pass year questionFull description
SPM-Add-Maths-Formula-List-Form4.pdf
well pdf
Full description
DE VARIIS LATINIS GRAECISQVE COLLOQVENDI FORMVLIS ENCHIRIDION IN ANGLICAM LINGVAM CONVERSIS ΠΕΡΙ ΠΟΙΚΙΛΩΝ ΡΩΜΑΙΚΩΝ ΤΕ ΚΑΙ ΕΛΛΗΝΙΚΩΝ ΤΗΣ ΟΜΙΛΙΑΣ ΡΗΤΡΩΝ ΕΝΧΕΙΡΙΔΙΟΝ ΕΙΣ ΤΗΝ ΑΝΓΛΙΚΗΝ ΓΛΩΤΤΑΝ ΜΕΘΕ...
DE VARIIS LATINIS GRAECISQVE COLLOQVENDI FORMVLIS ENCHIRIDION IN ANGLICAM LINGVAM CONVERSIS ΠΕΡΙ ΠΟΙΚΙΛΩΝ ΡΩΜΑΙΚΩΝ ΤΕ ΚΑΙ ΕΛΛΗΝΙΚΩΝ ΤΗΣ ΟΜΙΛΙΑΣ ΡΗΤΡΩΝ ΕΝΧΕΙΡΙΔΙΟΝ ΕΙΣ ΤΗΝ ΑΝΓΛΙΚΗΝ ΓΛΩΤΤΑΝ ΜΕΘΕ...Full description
ONE-SCHOOL.NET SPM Additional Mathematics Formula List for Paper 1 ALGEBRA
−b±
=
1
x
2
a
3
a
m
m
− 4ac
b2
log c b
=
8
log a b
9
T n = a + (n – 1)d
10
S n
11
T n = ar
log c a
2a n
x
a =a
÷
a = a
n
m n
m+n
m–n
mn
4
( a ) = a
5
log a mn = log a m + log a n m
= log a m − log a n
6
log a
7
log a mn = n log a m
n
n
= [2a + (n − 1)d ] 2
n–1
(
− 1) a (1 − r n ) , r ≠ 1 = = 1 − r r − 1 n
a r
12
S n
13
S ∞
=
a
, 1 − r
r <1
CALCULUS (KALKULUS )
1
y = uv ,
dy dx
=u
dv dx
+v
du
4
dx
Area under a curve (Luas di bawah lengkung)
2
y =
u v
,
dy dx
v
=
du dx
−u v
dv
3
dx
=
dy du
×
or (atau)
a
b
a
dx
2
5
dy
b
∫ y dx = ∫ x dy =
du dx
http://www.one-school.net/notes.html
Volume generated (Isipadu janaan) b
∫ = ∫
=
a b a
π y
2
π x
2
dx dx
or (atau)
ONE-SCHOOL.NET STATISTICS (STATISTIK)
1
x
=
2
x
=
=
Σ x N
Σ fx Σ f Σ( x − x )2
Σ x 2
=
− x
2
3
σ
4
Σ f ( x − x ) Σ fx 2 2 = − x σ = Σ f Σ f
5
⎛ 12 N − F ⎞ ⎟⎟ C m = L + ⎜⎜ f ⎝ m ⎠
N
N
Σ W i I i Σ W i
I =
7
8
n
9
n
Pr
=
C r =
n!
(n − r )! n!
(n − r )! r !
10
P( A ∪ B ) = P( A) + P( B ) − P( A ∩ B )
11
P ( X = r )
12
Mean (Min),
13
σ
14
Z =
2
6
I =
Q1 Q2
× 100
=
=
n
− C r p r q n r , p + q = 1
μ
= np
npq X − μ σ
GEOMETRY (GEOMETRI) 1
Distance (Jarak) =
2
3
( x1 − x2 )2 + ( x1 − x2 )2
Midpoint (Titik tengah) x + x y + y ( x, y ) = ⎛ ⎜ 1 2 , 1 2 ⎞⎟ 2 ⎠ ⎝ 2
r
6
ˆ= r
nx1 + mx2
⎝
m+n
,
ny1 + my 2 ⎞ m+n
=
x
xi x
A point dividing a segment of a line (Titik yang membahagi suatu tembereng garis)
( x , y )= ⎛ ⎜ 4
5
⎟ ⎠
Area of triangle (Luas segi tiga ) 1 = ( x1 y 2 + x2 y 3 + x3 y1 ) − ( x2 y1 + x3 y 2 2
http://www.one-school.net/notes.html
+ x1 y3 )
2
+ y 2
+ y j 2
+ y 2
SULIT
3
3472/1
TRIGONOMETRY (TRIGONOMETRI)
1
8
Arc length, s = j θ Panjang lengkok, s = j θ
2
Area of sector, A
=
=
1
Luas sektor, L 3
2
1 2
j 2θ
j 2θ
sin2 A + cos2 A = 1 2
9
sin ( A A ± B) = sin A cos B
± cos A sin B
sin ( A A ± B) = sin A kos B
± kos A sin B
cos ( A A ± B) = cos A cos B
∓
sin A sin B
kos ( A A ± B) = kos A kos B
∓
sin A sin B
10
tan ( A ± B)
11
tan 2 A
=
tan A
± tan B
1 ∓ tan A tan B
2
sin A + kos A = 1 4
sec2 A = 1 + tan2 A
=
2 tan A 1 − tan 2 A
sek 2 A = 1 + tan2 A 5
2
cosec2 A = 1 + cot A 2
12
2
a
sin A
=
b
sin B
=
c
sin C
kosek A = 1 + kot A
6
sin 2 A = 2 sin A cos A
13
sin 2 A = 2 sin A kos A
7
cos 2 A = cos2 A – sin2 A = 2 cos2 A – 1 = 1 – 2sin2 A kos 2 A = kos2 A – sin2 A = 2 kos2 A – 1 = 1 – 2sin2 A