telugu boothu kama sex kathalu vadina puku madda modda chelli amma akka bava vadina pinni peddamma mama mayaiah babai sallu thammudu athulu vattaluFull description
Descripción: Serway_ 7th Solution
Descripción completa
soluotion manual statics
audit ch 5
Descripción: Plan Ch Ayacucho
test questionFull description
Full description
Deskripsi lengkap
Full description
Full description
719472-1-53
AID: 75 | 13/05/2016
Conhecendo as temperaturas nca! e "na! de uma chapa de a#o no$d%&e! AI'I 304 durante um est%(o de processo de t)mpera* ao passar atra&+s de um "orno a,uecdo e!etrcamente 'a.endo ,ue o teto e as ,uatro paredes do "orno esto e$postos ao ar am.ente e a uma (rande &nhan#a de mesma temperatura* e ,ue no cho do "orno pousa uma p!aca de concreto recsamos estmar a pot)nca e!+trca ,ue de&e ser "ornecda ao "orno
Com os dados "ornecdos no enuncado podemos montar o es,uema a.a$o:
Chapa de a#o no$d%&e! AI'I 304:
= 300 K emperatura de entrada To = 1250 K emperatura de sada tc = mm = 0* 00 m spessura da chapa Wc = 2 m ar(ura da chapa Vc = 0*01 *01 m e!ocdade de a,uecmento Ti
8orno: H f = 2 m
A!tura do "orno
L f = 25 m
ar(ura do "orno
W f = 2* 4 m
Comprmento do do "o "orno
em mper peratura tura das das sup supe er" r"c ce ess do do "o "orno rno = 350 K e ε sup = 0* Coe" Coe"c ce ente nte de de emss emss& &da dade de
Tsup
h = 10 W
( m ×K ) 2
Coe"cente de con&ec#/o
Ar am.ente: T∞ = 300 K emperatur tura do ar am.en ente h = 10 W
( m ×K ) 2
Coe"cente de con&ec#/o do ar
!aca de concreto:
= 350 K tb = 0* 5 m
Tb
emperatura do .!oco spessura do .!oco
recsamos anda de dados adconas do a#o no$d%&e! AI'I 304 ta.e!a A1 e do .!oco de concreto ta.e!a A3: T
=
( 300 + 1250 ) 2
= 775 K
em e mperatur tura m+da da chapa
= 7900 kg m3 Densdade do a#o c p = 57 J kg ×K Ca!or espec"co do a#o kc = 1* 4 W m ×K Condut&dade t+rmca do concreto a 300 ;
ρ a
As se(untes consdera#
A ta$a ta$a de aume aument nto o de ener ener( (aa para para o "orn "orno o de&e de&e ser ser .a!a .a!anc ncea eada da com com a ta$a ta$a de trans"er)nca de ener(a para a chapa de a#o e a ta$a de perda de ca!or do "orno Consderando o "orno com um sstema a.erto* podemos ut!ar a e,ua#o smp!"cada da ener(a t+rmca para sstemas com escoamento em re(me estacon%ro: Pele
− q = m&×c p ×( Ti −T 0 ) q = Ca!or trans"erdo pe!o "orno &= a/o m%ssca m P ele = ot)nca e!+trca "ornecda ao "orno
1
odemos ca!cu!ar a &ao m%ssca como o produto da densdade* !ar(ura e espessura da chapa de a#o pe!a &e!ocdade de a,uecmento do "orno:
(
)
&= ρ Wc ×tc Vc m
2 = ca!or trans"erdo pe!o "orno pode ser ca!cu!ado como a soma das trans"er)ncas de ca!or por con&ec#o* condu#o e rada#o: q = qcond
+ qconv + qrad dT = −kc × ÷ +h ×A ( ×TS dx
T−∞ )
+ A×σ ×( TS4×
ε
Tviz4 −)
A trans"er)nca de ca!or por condu#o entre o "orno e o .!oco de concreto* pode ser ca!cu!ada como: qcond
dT = −k c × ÷ dx
= kc ×( W f L f )
( T − T b ) t b
3
A trans"er)nca de ca!or por con&ec#o entre o "orno e o ar am.ente* pode ser ca!cu!ada como: qconv
= h ×A ×( TS −T∞ ) = h ( 2H f L f + 2H f W f + W f L f ) ( TS − T∞ )
4
A trans"er)nca de ca!or por rada#o entre o "orno e o ar am.ente* pode ser ca!cu!ada como: qrad
= ε ×A σ × ( ×TS4 T−viz4 ) = ε ( 2 H f L f + 2 H f W f + W f L f ) σ ( TS 4 − T ∞4 )
5
'u.sttundo as e,ua#
= m&×c p ×( Ti −T0 ) +q ( T − T b )
= ρ ( Wc ×tc ) Vc ×c p ( ×Ti T−0 ) k+c ( W × f Lf )
t b
+
+ ( 2 H f L f + 2 H f W f + W f L f ) h ( TS − T∞ ) + εσ ( TS 4 − T ∞4 ) 'u.sttundo os dados conhecdos na e,ua#o acma* temos ,ue: Pele
= 7900 +1* 4
kg
m
m
2 m ×0* 00 m ) 0* 01 3 (
W m ×k
×( 2* 4 m ×25 m )
57 ×
J kg ×K
( 350 − 300 ) K 0*5 m
+ ( 2 ×2 m ×25 m +2 2×m 2*×4 m
2*+4 m
= 694* 000W +169* 6 m2 ( 500 + 313 )
W 2
m = ( 694* 00 + 4*00 + 53*100 + 400 ) W
300 × − ) K + ( 1250
+
10 W 350 − 300 + ) m 2 ×K ( 25×m ) 0* ×5* 67 ×10 − W ( 350 4 −300 4 ) K 4 m2 K 4 + 400W
= 40kW ortanto* a pot)nca e!+trca ,ue precsa ser transmtda ao "orno + de 40kW odemos perce.er tam.+m ,ue do tota! de ener(a trans"erda para o sstema* 3> + trans"erda para o a#o* en,uanto 10>* 6> e 1> so perddas por con&ec#o* rada#o e condu#o* respect&amente