SAT Math II Formula 1 Real Numbers Rational Numbers
Integers Whole Numbers Irrational Numbers Natural Numbers
Absolute Value
n-th root (n even)
a a 0 a a 0
a
n
Ex) 3 3 , 3 3
n-th root (n odd)
a a 0 a a 0
an
2 3 3,
2
3 3
n
3
a
3 3 3,
n
a 3
3 3 3
Invented Operations - Follow the directions and plug in. If x y 4 x
Percent change :
2 y 3
, then 3 6 4 3
Amount Change Original
2 6 3
12 4 16 .
100%
Percent-increase / Percent Decrease Final Amount = Original × (1 + Rate )
number of change
; Rate가 + 면 increase / – 면 decrease
The compound interest
r A = P 1 + n A = Pe rt
nt
A : amount of principal and interest, P : principal, r : annual interest rate t : # of years, n : # of compounding in a year( k=4 quarterly, k=12 monthly, etc. )
Continuously compounding ( as k → ∞ )
http:// 고강사 고강사.com
SAT Math II Formula 2
Imaginary numbers : i 1 Ex) i 2 1 , i 3 i , i 4 1 , i 5 i ,
Complex Numbers : a bi where
a
and b are real numbers.
Conjugate : a bi a bi c di
Rationalization : Reciprocal :
a bi
1 a bi bi
c di a bi
1 a bi bi
a bi bi a bi
a bi bi
a bi bi
ac bd ad bc i a 2 b2
a bi bi a 2 b2
Complex Plane
Im z = a + bi
bi z
θ a
O
Absolute value (or modulus) of complex number nu mber
Re
z a bi a 2 b 2
Vectors
A vector in a plane : V a, b ai b j
A vector in a space : V a, b, c ai b j c k Magnitude (or Norm) of vector
y V = a, b = ai + b j V =
j = 1, 0 O i = 1, 0
a +b 2
x
2
2 2 V a, b , V a b 2 2 2 V a , b, c , V a b c V is unit vector , then V 1 .
http:// 고강사 고강사.com
SAT Math II Formula 3
Resultant vector
V a, b , U c, d
kV ka , kb
V U a, b c, d a c, b d
V U a, b c, d a c, b d
Counting Factorial : n! n n 1n 2 3 21 , 0! 1
n!
Permutation : n Pr
Combination :
n
n r !
n n 1 n r 2 n r 1, n Pn n!
n P n! Cr n r , C C r! r n r ! r ! n r n nr
Matrices Adding, Subtracting, and scalar multiplication a b e c d g
f
a e b f , h c g d h
a b e c d g
f
a e b f a b ka kb , k h c g d h c d kc kd
Matrix multiplication p q a b c ap br ct aq bs cu r s dp er ft f t dq es fu fu d e f t u
2 3 3 2 2 2 1
Inverse matrix : XX
Determinant :
1
a
b
c
d
http:// 고강사 고강사.com
X
1
X I ,
a b 1 d b ad bc c a c d a b c
ad bc ,
d e f aei bfg cdh bdi afh ceg g h i
SAT Math II Formula 4
Arithmetic Sequences and Series a1
a2
a3
a4
a1
a1 d
a1 2d
a1 3d
an a1 n 1d
n th term : an a1 n 1d
Sum of the first n terms : S n
a1 an n 2
2a1 n 1 d n 2
Geometric Sequences and Series a1
a2
a3
a4
an
a1
a1 r
a1r 2
a1r 3
a1r n1
n1 n th term : an a1r
a1 1 r
n
Sum of the first n terms : S n
1 r
Sum of infinite geometric series : S
a1 1 r
n 1 1 r 1
Direct and Indirect Variation Direct variation
Indirect variation y
y kx
k x
x varies directly as y
x varies indirectly as y
x and y change proportionally
x and y are inversely proportional
x and y are in proportion
x and y are in inverse proportion
Quantity
x y
will always have the same value
Quantity xy will always have the same value
Travel, Work, and Average
Distance time
speed
Work time
rate of work
Total # of average things
http:// 고강사 고강사.com
SAT Math II Formula 5
Basic Exponential Properties x ⋅ x = x a
b
( x ) a
b
x a
a +b
x
= x ab
b
= x a −b
x − a =
x = 1 0
x a ⋅ y a = ( xy )
1 x a a
1
a
b
x x 2
x a x b
Basic Logarithmic Properties p = log a p − loga q q
log a ( p ⋅ q ) = log a p + log a q
log a y p x =
x
log a p =
log a p
y
log a 1 = 0 , log a a = 1
log a
logb p
a
logb a
loga p
=p
Factoring 2
2
x 2 2 xy y 2 x y
x 2 2 xy y 2 x y
x 2 y 2 x y x y
Quadratic Formula b b 2 4ac
a 0 2a b c where α and β are zeros α + β = − , αβ = a a
2
For ax bx c 0
Discriminant :
x
b2 4ac 0 two real, unequal roots b2 4ac 0 one real root (a double root) b2 4ac 0 no real roots (two complex, unequal roots a bi )
Binomial Theorem n
n
x y n Cnk x nk y k k 0
= nC0 x n y 0 n C1 x n1 y n n Cn2 x n2 y 2 n C 2 x 2 y n2 n C1 x1 y n1 n C 0 x 0 y n
http:// 고강사 고강사.com
SAT Math II Formula 6
Odd and Even Functions Odd function : f x f x , symmetric with respect to the origin Even function : f x f x , symmetry with respect to the y -axis
Compound Functions
( f + g ) ( x ) = f ( x) + g ( x)
( f − g ) ( x ) = f ( x ) − g ( x)
( f ⋅ g ) ( x ) = f ( x ) × g ( x)
f ( x ) f ( x ) = g ( x) g
( f
( g ( x ) ≠ 0)
g ) ( x ) = f ( g ( x) )
Inverse Functions f − has property that 1
( f
f −1
)( x) = ( f −
1
f
)(x) = x
Horizontal line test : the inverse of the one-to-one function is also a function. 1 Graph of f and f − are reflections of each other with respect to the line y = x .
f −1 ( x ) = y ⇔ x = f ( y )
Graphs of Basic Functions
y
O
y
y
y
x
x
O
1
x
O
x
O
y = x
Domain Range
( −∞, ∞ ) ( −∞, ∞ )
y = x Domain Range
2
( −∞, ∞ ) [0, ∞ )
y = x Domain Range
3
( −∞, ∞ ) ( −∞, ∞ )
y = a
x
Domain Range
( a > 1) ( −∞, ∞ ) ( 0, ∞ )
http:// 고강사 고강사.com
SAT Math II Formula 7
Graphs of Basic Functions - continued
y
y
y
y =
x
=x
1
1
−1
y =
Domain
( −∞, 0 ) ( 0, ∞) Range ( −∞, 0 ) ( 0, ∞)
y =
x = x2
Domain Range
y
O
x
1
x
O
1
x
O
x
O
y
[0, ∞ ) [0, ∞ )
3
Domain Range
y = log a x ( a > 1)
x = x3
( −∞, ∞ ) ( −∞, ∞ )
Range
y
y
( 0, ∞ ) ( −∞, ∞ )
Domain
y
c O
x
O
x O
x
x
O
y = [ x ] y = 0
( −∞, ∞ ) Range {0}
Domain
y = x
y = c
( −∞, ∞ ) Range {a}
Domain
Domain Range
greatest integer function
( −∞, ∞ ) [0, ∞ )
Domain
( −∞, ∞ )
Range n ( n is a integer)
Linear Functions (Lines) Slope-intercept Slope-intercept form : f ( x ) = mx + b , slope m
rise run
=
changes in y changes in x
y2 y1 x2 x1
A horizontal line : slope of 0 A vertical lines : undefined slope Parallel lines : m1 m2 Perpendicular Perpendicular lines : m1m2 1
http:// 고강사 고강사.com
m
θ
rise run
tan
SAT Math II Formula 8
Quadratic Functions 2
Standard form : y = a ( x − h ) + k vertex ( h, k ) , axis of symmetry x = h , minimum(or maximum) k 2 General form : y = ax + bx + c where a ≠ 0 , b and c are constant 2
2 b b − 4 ac y = ax + bx + c = a x + − 2a 4a 2
Higher-Degree Higher-Degree Polynomial Functions A polynomial function of x with degree n is given by P ( x ) = an x n + an −1 x n −1 + a2 x 2 + a1 x1 + a0
n odd, an > 0
n odd, an < 0
n even, an > 0
n even, an < 0
Remainder theorem : P ( x ) is divided by ( x − r ) , then the remainder, R = P ( r ) Factor theorem : P ( k ) = 0 ⇔ P ( x ) has a factor of ( x − k ) Rational root theorem : all possible pos sible rational roots are derived using x = ±
p q
p ; factor of the constant term a0 , q ; factor of the leading coefficient an
Complex zeros occurs in conjugate pairs : a + bi ( b ≠ 0 ) is a zero ⇔ a − bi is a zero.
Vertical asymptotes y =
After simplify
f ( x ) g ( x )
f ( x ) g ( x )
, vertical asymptote occurs at x = a that satisfy g ( a ) = 0
http:// 고강사 고강사.com
SAT Math II Formula 9
f ( x )
Horizontal asymptotes y =
g ( x )
Degree of f ( x ) > degree of g ( x ) : no horizontal asymptotes Degree of f ( x ) = degree of g ( x ) : y = the ratio of leading coefficients Degree of f ( x ) < degree of g ( x ) : y = 0
Triangle inequality theorem b ~ c
a
a ~c
c
Three Special Triangle Types C
C 60°
Hypotenuse
a
b
(leg)
a=b A
c
Opposite
60°
60°
A
s
∠ A = ∠B
Isosceles triangle
Equilateral triangle
The area of triangle
1 2
B
Adjacent Adjacent (leg) (leg)
Right triangle
× (base) × (height ) or
1 2
ab sin θ
Special Right Triangles
13
5
60°
2
1
5
3
30° 4
3 − 4 − 5 Triangle
http:// 고강사 고강사.com
12
5 − 12 − 13 Triangle
45°
2
1 45°
3
30° − 60° − 90° Triangle
1
45° − 45° − 90° Triangle
SAT Math II Formula 10
Special Quadrilaterals b1
b1
b1 y°
Trapezoids Area
b1 b2 2
h
h
h
h
x°
y°
b2
x°
a
h
Area b h
x°
ab sin x ab sin y
Rectangle
x°
b2
b2
Parallelogram
y°
y° b
h
Area b h
b
y °
Rhombus
x°
Area b h
y°
x°
s 2 sin x s 2 sin y
Square 2
Area s
1 2
d 2
d
s
Circles and Sector A r r
O
r
x° l = θ (rad)
x° l = θ (rad)
d B
Circumference 2r d
l x 2 r r AB 360
Area
x 360
1
1
2
2
r 2 rl r 2
2
Area r
2 (r (rad) 360 1
180
(rad)
1(rad)
180
http:// 고강사 고강사.com
SAT Math II Formula 11
Solids Rectangular Rectangular prism h
S 2lw 2lh 2hw
d h
V lwh
l 2 + w2
w
d l 2 w2 h 2
l
w
l
Cube s
S 6s 2 V s3
d f
s
d s 3
s
r
Cylinder r
2π r
2
S 2 r 2 rh 2
V Bh r h 2 2r h 2
d
d
h
h
h
r
Pyramids 1 V Bh 3
Cones S
1 2
l
2 2 cl r rl r
V
1
l
h
1
2
Bh r h 3 c 2r (rad ) l l 3
θ
c
r
r
중심 (0,0,0) , 반지름 r 인 구의 방정식
Spheres
x 2 + y 2 + z 2 = r 2
S 4r 2
V
4 3
3
r
http:// 고강사 고강사.com
r
P ( x1 , y1 , z 1 ) , Q ( x2 , y2 , z 2 ) 일 때,
PQ =
2
2
( x2 − x1 ) + ( y2 − y1 ) + ( z2 − z 1 )
2
SAT Math II Formula 12
Inscribed Solids
c a
s
b
2 2 2 d a b c 2R
d 3s 2 R
( R ; radius of a sphere) r H
h
r
r
R s
d
R r , H 2r
2
2r h2 2R
s 2r
( R ; radius of a sphere)
( R , H ; radius and height of
( r ; radius of a sphere)
cylinder,
r
; radius of a sphere,)
Changing Dimensions Ratio of sides m : n Ratio of area m 2 : n 2 . Ratio of volumes m3 : n 3
Coordinates in Three Dimensions z
x2 , y2 , z 2
( 3,5,4) d
z 2 z 1
x1 , y1 , z 1 y
x2 x1
y 2 y1
x
The distance between origin and x1, y1 , z 1 2 2 2 d x1 y1 z1
The distance between x1, y1 , z 1 and x2 , y2 , z 2 d
2
2
2
x2 x1 y2 y1 z2 z1
http:// 고강사 고강사.com
SAT Math II Formula 13 y II
I
( −, + )
A Plane Rectangular Coordinate System (or Cartesian Plane)
( +, + ) x
O IV ( +, − )
III ( −, − )
Distance 2
2
The distance between any two points x1 , y1 and x2 , y2 is d x2 x1 y2 y1 Midpoint
x x2 y1 y2 The midpoint of a line segment with endpoints x1 , y1 and x2 , y2 is M 1 , 2 2
Distance between a Point and a Line y
Ax + By + C = 0
Ax + By + C = 0
d
d
d
( x1 , y1 )
x
O
C
d
2 2 A B
Ax1 By1 C 2 2 A B
Transformation Reflection
x -axis
y -axis
origin
y = x
Points & graph
y → − y
x → − x
x → − x , y → − y
x → y , y → x
Translation
→ h unit
↑ y unit
→ h unit, ↑ y unit
Points ( x, y )
x → x + h
y → y + k
x → x + h
y → y + k
Graph y = f ( x )
x → x − h
y → y − k
x → x − h
y → y − k
Stretch / Shrink
horizontally horizonta lly a
vertically b
Points ( x, y )
x → ax
y → by
Graph y = f ( x )
http:// 고강사 고강사.com
x →
x a
y →
y b
horizontally a , vertically b x → ax x →
x a
y → by y →
y b
SAT Math II Formula 14
Conics Sections
Circle
Parabola x 2 4 py
x 2 y 2 r 2
p 0
y
y
Equal Distances C ( 0,0 0, 0 )
F ( 0, p )
P ( x, y )
r
x
O
P ( x, y ) x
O V ( 0, 0 ) y = − p
0,0
Center
0,0 Directrix y 0, p Axis of symmetry
Vertex Focus
a2
y2 b2
1 y
x 0
Hyperbola x 2
a b 0
a2
y2 b2
( c, 0 )
( − a, 0 )
x
c, 0 where c 2 a 2 b2
Major axis 2a , Minor axis 2b y intercepts 0,b ,
O
( c, 0 )
x
( 0, −b )
0,0 , Vertex a, 0 , a, 0
Foci c, 0 ,
a 0, b 0
( a, 0 )
( −c, 0 )
( 0, −b )
Center
1
0, b ) ( 0,b
P ( x, y )
( a, 0 ) O
y 0, b ) ( 0,b
( − a, 0 ) ( −c, 0 )
r
p
Ellipse x 2
Radius
0, b 0,b
Center
0,0 , Vertex a, 0 , a, 0
Foci c, 0 ,
c, 0
where c 2 a 2 b2 b
Asymptotes y x a
http:// 고강사 고강사.com
SAT Math II Formula 15
Polar Coordinates Relationship Relationship between rectangular and polar coordinates:
( x, y )
y
( r ,θ )
y
r θ
θ x
O
x
O
x, y r ,
r , x, y
r x 2 y 2 y 1 t a n Verify the quadrant x
x r cos y r sin
Six Trigonometric Functions B
sin
csc
O
cos
H
1 sin
H
sec
O
A
tan
H
1 cos
H A
cot
O Hypotenuse
A
1 tan
Opposite
A O
A
θ Adjacent
C
Trigonometric Identities tan
sin cos
cot
cos 2 sin 2 1
cos sin
1 tan 2 sec2
cot 2 1 csc 2
Cofunction Identities
A B 90 (complementary angle) ⇒ sin A cos B , cos A sin B , tan A
http:// 고강사 고강사.com
1 tan B
cot B
SAT Math II Formula 16
Special Right Triangles
2
30° =
45° =
6
3
0 0
6
Trig Trig. ft . sin
π
2
1
4
45
3
3
0
90
1
1
0
2
2
Undefined
3
1
3
2
2
1 tan
3
1
2
1
60
2
3
cos
1
π
1
1
0
60° =
4
30
3
1
1
π
2
2
All Students Take Calculus.
Unit Circle Approach π 2 y
Quadrant
P ( x, y )
π
1 β β α α α α
sin x
II
III
IV
sin
sin
sin
sin
cos
cos
cos
cos
cos
cos
cos
cos
sin
sin
sin
sin
tan
tan
tan
tan
cot
cot
cot
cot
0
β β
cos
3π
I
tan
2
Reference angle (formed by the x axis and the terminal side ) sin sin , cos cos , tan tan (sign is determined by terminal side, ASTC)
Reference angle (formed by the y axis and the terminal side ) sin cos , cos sin , tan cot (sign is determined by terminal side, ASTC) http:// 고강사 고강사.com
SAT Math II Formula 17
Graphs of Six Trigonometric Functions y T
1
y sin x (Odd function) A
−2π
−π
π
O
2π
Domain , , Range 1,1
x
Period 2 , Amplitude 1 −1 y T
1
y cos x (Even function) A
−π
−2π
2π
π
O
Domain , , Range 1,1
x
Period 2 , Amplitude 1 −1
y T
y tan x (Odd function)
1
−
3π 2
−
π 2
2
Domain , except 2n 1 , π
3π
2
2
−1
Range ,
x
Period
Vertical asymptotes at x 2n 1
Sinusoidal Graphs
y A sin x B A sin x
B
y A tan x B A tan x
http:// 고강사 고강사.com
B
Period
Period
2
, Amplitude A , Phase shift
, Amplitude A , Phase shift
2
SAT Math II Formula 18
Addition and Subtraction Formula sin( A ± B) = si sin A co cos B ± cos A sin B tan( A ± B) =
cos( A ± B) = co cos A cos B sin A si sin B
tan A ± tan B 1 tan A tan B
Double-Angle Formula cos 2 A = cos 2 A − sin 2 A = 2 cos 2 A − 1 = 1 − 2 sin 2 A
sin 2 A = 2 si sin A co cos A tan2 A =
2tan A 1 − tan 2 A
The Law of Sines B
sin A a
c
a
=
si n B b
=
sin C c
=
1 2R
( R ; the radius of the circumscribed circle) A
C
b
The Law of Cosines B
a 2 = b2 + c 2 − 2bc cos A
a
c
b 2 = c 2 + a2 − 2ca cos B 2 2 2 c = a + b − 2ab cos A
A
b
C
http:// 고강사 고강사.com
SAT Math II Formula 19
Probability Definition: P A
# of possible outcomes of A total # of possible outcomes
Properties of probability probability - 0 P A 1 - P A 1 P Ac - P A B P A P B P A B Probability Probability of independent events - P A B P( A) P( B) Event A and B are independent Mutually exclusive events - P A B 0 Event A and B are mutually exclusive Binomial trial P x nC x p 1 p x
n x
n
C x
P x
n
x !
n!
n x! x!
where n ; total # of trials, x ; # of successes, p ; probability of success
Statistics N
X
i
Mean :
i 1
N
where X i ; data values, N ; total # of data
Median : the middle value when the values are ordered from smallest to largest Mode : the value that occurs most often. N
Standard deviation (SD):
X ; mean of X X ; SD of X 2
X i i 1
N
If Y aX b , then
Y a X b , Y a X
Range : The difference between the maximum and the minimum Interquartile range (IQR) : IQR Q3 Q1
Q2 median
Quartile - Three values which divide the sorted data set into four equal parts.
http:// 고강사 고강사.com
SAT Math II Formula 20
Regression 1) Linear regression regression y ax b
Speed
Fuel used
(Km/h)
(liters/100km)
60
5.90
70
6.30
80
6.95
90
7.57
100
8.27
110
9.03
2) Quadratic regression y ax 2 bx c
3) Exponential regression regression y a b x
Limit 2 x + 2 x − 3 2
lim
x →∞
2 x 2 − 1
2 x 2
= lim x x →∞
2
+
2 x 2 x 2
2x x
2
−
− 1
3 2
x = lim
2+
x→ ∞
x2
2
−
3
x2 = 2 + 0 − 0 = 1 1 2−0 2− 2 x x
2 x 2 + 2 x − 3 ∞ TI-89 : limit , x , =1 2 2 x − 1
lim x →1
x 2 + 2 x − 3 x 2 − 1
( x − 1) ( x + 3) 4 = =2 x →1 ( x + 1) ( x − 1) 2
= lim
x 2 + 2 x − 3 , x , 1 TI-89 : limit =2 2 x − 1 x
1 lim 1 + = e ; natural constant e x →∞ x
1 x TI-89 : limit 1 + , x, ∞ = e x lim+ x x = ?????
x → 0
TI-89 : limit ( x x , x, 0, 1) = 1
http:// 고강사 고강사.com