MODELO DEMANDA DE EJECUCION DE ACTA DE CONCILIACION DE ALIMENTOSDescripción completa
Full description
Clasificación de los tipos de refrigerantesDescripción completa
Descripción completa
Contradocumento de Contrato de Transferencia de Vehiculo
Análise de Poemas de Álvaro de CamposDescrição completa
Descripción completa
Full description
PRODUCTOS DE LIMPIEZA, COSMETICOS, PINTURAS
CURSO DE FABRICACION DE CEATECI
El curso FABRICACIÓN DE PRODUCTOS
INDUSTRIALES de CEATECI le permite aprender a
fabricar :
Productos de Limpieza
Cosméticos o productos de Higiene o belleza personal
P
normasDescripción completa
Reguli de derivare
1.
(α ⋅ f )′ = α ⋅ f ′
;
' 2. ( f ± g ) = f ' ± g ' ;
n ' n 3. ∑ f = ∑ f ' ; k k k =1 k =1 4. ( f ⋅ g )
'
= f ' g + g ' f ;
' n n 5. ∏ f = ∑ f ⋅ f ⋅K⋅ f ' ⋅K⋅ f n ; k 1 2 k k =1 k =1 ' f f ' g − g ' f 6. ; = 2 g g ' 1 − g ' 7. = 2 ; g g ' 8. ( f (u )) = f ' (u ) ⋅ u' ;
( f (u(v)))' = f ' (u(v ))⋅ u' (v)⋅ v'
9. 10. 10 .
y
.
' ' 1 1 f −1 = − 1 sau f , unde y0 = f ' x f ' − 1 0 f
= f x . 0 0
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
-2-
Tabel de derivare al fun functiilor ctiilor elementare Nr. Nr.
Functia
Derivata
Domeniul de derivabilitate
1 2 3
c (constanta) x
0 1 x
x ∈ R x ∈ R x ≠ 0
x
x 4
x n , n ∈ N ∗
nx n−1
x ∈ R
5
x r , r ∈ R
rx r −1
x ∈ (0 , ∞ )
x
1
x ∈ (0 , ∞ )
x , n ∈ N ∗
2 x 1
6 7
n
ln x
nn x n −1 1
ln x
x 1
log log a x
x 1
e x
x ln a e x
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
a x , a
> 0, a ≠ 1
x ∈ (0 , ∞ ) daca n este par x ≠ 0 daca n este impar x ∈ (0 , ∞ ) x
x ∈ (0 , ∞ ) x ∈ R x ∈ R
a x ln a cos x − sin x
sin x cos x tg x
1
ctg x
cos 2 x 1
−
= 1 + tg 2 x
= −(1 + ctg 2 x )
sin sin 2 x
≠0
x ∈ R x ∈ R x
≠
π
x
≠ k π , k ∈ Z
2
+ k π , k ∈ Z
arcsin x
1
x ∈ (− 1,1)
arccos x
1 − x 2 1
x ∈ (− 1,1)
−
1 − x 2 1
arctg x arcctg x
ch x =
e x
+ e − x
2 e x − e − x
1 + x 2 1
−
x ∈ R
1 + x 2
sh x =
e x
− e − x 2
e x
x ∈ R
+ e − x
x ∈ R x ∈ R
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
-3-
Tabel de derivare derivar e al functiilor functiilor compuse Nr. Nr.
Functia
Derivata
1
u n , n ∈ N∗
n ⋅ u n−1 ⋅ u '
2
u r , r ∈ R
r ⋅ u r −1 ⋅ u '
3 4
n
u'
u
2 u u'
ln u
n ⋅ n u n−1 u'
u
≠0
log log a u
u u'
u
>0
9
au , 0, a
12
>
u ⋅ ln a eu ⋅ u '
u
a u ⋅ u ' ⋅ ln a
≠1
cos u ⋅ u '
sin u cos u tg u
− sin u ⋅ u ' 1 2
13 14 15
n par u ≠ 0 pentru n impar
ln u
e
11
> 0 pentru
u u'
8
10
u
≠0
6
a
>0 u >0 u
u
5
7
u
Coditii de derivabilitate derivabilit ate
ctg u
−
cos u 1 2
sin sin u
⋅ u ' = (1 + tg 2u )⋅ u ' ⋅ u ' = −(1 + ctg2u )⋅ u '
cos u ≠ 0 sin sin u ≠ 0
arcsin u
u'
u2
<1
arccos u
1−u2 u'
u2
<1
−
16
arctg u
17
arcctg u
18
sh u
19
ch u
1−u2 1 ⋅u' 1+u2 1 − ⋅u' 1+u2 ch u ⋅ u ' sh u ⋅ u '