ABOUT OURSELVES
Patel Wire Industries, a subsidiary of Patel Engineering Pvt. Limited was established in 1973 in Mumbai (Previously Know as Bombay) to manufacture AAC and ACSR Conductors. In 1191 the plant was re-located to a more spacious present location at Igatpuri which is 130 kms from the city of Mumbai. this re-location of the plant was in tandem with the expansion and modernisation activities of the company and also venturing into manufacture of Aluminium Alloy Conductors (AAAC). Patel Wire has an upto date modern plant and machinery operated by well qualified technicians and workers, who have made “quality” a way of life. Patel Wire has successfully supplied conductors to various power utilities in India as well also other sectors like railways, post and telegraph department etc. the company has also successfully exported its products to various countries. the company is committed to manufacturing quality products as per various international standards and specifications. at Patel Wire, “Customer is the King”
PATEL WIRE INDUSTRIES
PREFACE
This catalogue is brought in the interest to technicians and engineers who are engaged in the Power Transmission and distribution projects. It will assist them in Selection of overhead line conductors for their projects.
ACKNOWLEDGEMENTS
We take this opportunity to express our indebtness to those who had given their valuable suggestions in preparing this catalogue
PATEL WIRE INDUSTRIES
INDEX SR. NO NO..
P ARTICULARS PARTICULARS
PA GE NO PAGE NO..
1.
INTRODUCTION TO BARE OVERHEAD CONDUCTORS
1-2
2.
STRANDING CONSTRUCTION
3-4
3.
AMERICAN STANDARD
5-11
4.
AUSTRALIAN STANDARD
12-14
5.
BRITISH STANDARD
15-20
6.
CANADIAN STANDARD
21-27
7.
FRENCH STANDARD
28-33
8.
GERMAN STANDARD
34-38
9.
INDIAN STANDARD
39-40
10.
INTERNATIONAL ELECTROTECHNICAL COMMISSION STANDARD
41-45
11.
SOUTH AFRICAN STANDARD
46
12.
COMPACTED CONDUCTORS (AAC)
47
13.
COMPACTED CONDUCTORS (ACSR)
48
14.
MODULI OF ELASTICITY AND COEFFICIENTS OF LINEAR EXPANSION
49
15.
NON-RETURNABLE WOODEN DRUMS
50-51
16.
APPENDIX a) WIRE GAUGES b) CONVERSION FACTORS c) ALTERNATION CURRENT FORMULAE d) DESIGN AND LAYOUT DATA
52-53 54-55 56 57
16.
DESIGN CALCULATIONS FOR TRANSMISSION LINES
58-61
17.
GLOSSARY
62-67
PATEL WIRE INDUSTRIES
INTRODUCTION TO BARE OVERHEAD CONDUCTORS The value of overhead transmission lines is increasing dramatically. Mandated transmission access, mounting demand for electricity, and continuing evolution towards competitive markets are creating strong demand for transmissions services. Since the conductor is one of the major cost components of a line design costing usually 20 to 30% of the labour and material cost of a line, it is essential that the most appropriate conductor type and size be selected for optimum operating efficiency. The use of aluminium in conductors for the transmission of electrical energy dates back to the first use of this metal in the electrical industry at the start of 20th century. Amazingly, some of these lines are still in service. Although its conductivity is not as high as copper, aluminium’s lower cost and lighter weight are attributes that have resulted in its almost completely displacing copper for overhead applications. Of all the known non-precious metals aluminium ranks second to copper in conductivity. On a conductivity-to-weight basis it is first and its strength - to weight ratio is 30% higher than copper. Over the more than 75 years that aluminium has been used in electrical conductors, several design concepts have been developed in arriving at the wide variety of conductors that are available today.
As the resistance of the conductor increases, cost of electrical losses over the life of the line increases.
As the size of the conductor increases, the cost of the conductor itself increases.
The radial electric field about the conductor increases as the conductor size decreases but yields higher levels of corona-included noise.
An increase in conductor diameter yields increased wind and ice loads on the existing structures.
Stringing any conductor to a higher tension will yield increased longitudinal broken wire loads and increased transverse tension loads on angle structures.
Many sizes and types of both standard and special conductors encompass the above criteria. Both standard and special conductors perform uniquely under specified conditions, and the benefit of each is reviewed.
ST AND ARD CONDUCT ORS STAND ANDARD CONDUCTORS There are four common type of standard conductor that have been used for many years in the utility industry (1) All Aluminium (2) Aluminium Conductor Steel Reinforced, (3) Aluminium Conductor, Alloy-Reinforced and (4) All Aluminium Alloy. Regardless of the type of metal used in the make-up of the Conductor, the strands are always round and have a concentric lay. These conventional conductors have long proven track-records of performance under specified conditions and certain types of applications.
A systematic approach should be taken in the selection of the conductor. Factors such as tension loads, ice and wind loads, current loading of the line, voltage stability, environmental effects, electrical losses, ambient conditions, and many others must be considered in the process. The goal is to select a conductor that exemplifies the best conductivity-to-weight ratio and/or strength-to-weight ratio at a minimal cost for the applications. The electrical and mechanical properties, thermal properties and stress-strain relationship of the conductor will dictate the choice of conductor type and size for a given design.
ALL ALUMINIUM CONDUCTOR (AAC) AAC, manufactured with 1350-H19 aluminium is a low cost conductor that offers a conductivity of 61.2% IACS, or more, good corrosion resistance. The conductivity of AAC makes it the choice conductor for applications requiring high conductivity and moderate strength. AAC has the highest conductivity-to-weight ratio of all the overhead conductors. This property makes AAC ideal for installations in urban areas limited in space where short spans with maximum current transfer are required.
The choice of conductor type and size has a major impact on transmission line design. Some of the physical and economic consequences that affect the choice of conductor in the design process are:
1
PATEL WIRE INDUSTRIES
ALUMINIUM CONDUCTOR, STEEL REINFORCED (ACSR)
instances, improved qualities over both ACSR and AAC conductors. AAAC offers the combination of good conductivity, high tensile strength and excellent corrosion resistance. An equivalent diameter of this conductor is typically used to replace 6/1 and 26/7 ACSR conductor. As replacement, the AAC conductors have comparable thermal rating, improved strength-to weight ratio, lower electrical losses, and superior corrosion resistance. These factors make AAAC conductors prominent choices for distribution installations on the seacost and other areas severely impacted by corrosion problems.
The utility industry has utilized ACSR as a common choice of conductor in transmission and rural distribution circuits for many years. ACSR is used extensively on long spans as both ground and phase conductors because of its high mechanical strength-to-weight ratio and good currentcarrying capacity. ACSR consists of a solid or stranded galvanised steel core surrounded by one or more layers of 1350-H19 aluminium. Because of the presence of the 1350 aluminium in the construction, ACSR has equivalent or higher thermal ratings to equivalent sizes of AAC. The circular mil area or ACSR is specified according to the cross-sectional area of aluminium to be contained in the construction. For example, a 795 kcmil-26/7 ACSR has 795,000 circular mils of aluminium, the equivalent aluminium area content of a 795 kcmil AAC.
ALUMINIUM CONDUCTOR, ALUMINIUM-ALLOY REINFORCED (ACAR) ACAR consisting of mix of 6201-T81 and 1350-H19 strands of the same diameter, has an excellent balance between mechanical and electrical properties. Because the 6201 and 1350 strands are equal in diameter, they can be interchanged to optimize the properties of ACAR for each particular application. An example of this flexibility is the increase of the relative number of 6201 strands to achieve a strength-to-weight ratio matching that of a wide range of ACSR conductor. These conductors exhibit excellent corrosion resistance and utilize simple termination hardwares making them an excellent choice for may transmission line applications.
The steel content of ACSR typically ranges from 11% to 18% by weight for larger-than AWG sizes available in 18/1, 15/7, 72/7 or 84/19 stranding. However, it can vary upto 40% depending on the desired tensile strength it is desirable for ground wires in extra long spans crossing rivers, for example, to have a stranding or 8/1, 12/7 or 16/19, giving them higher tensile strength. The high tensile strength combined with the good conductivity gives ACSR several advantages. 1. Because of the presence of the steel core, lines, designed with ACSR elongate less than other standard conductors, yielding less sag at a given tension. Therefore, the maximum allowable conductor temperature can be increased to allowable conductor temperature can be increased to allow a higher thermal rating when replacing other standard Conductor with ACSR.
MODIFIED CONDUCTORS Many times, the construction of a conventional conductor can be adjusted to enhance its performance under certain conditions. It may be desirable to have an increase in the thermal rating of a conductor having the same diameter, increase the self-damping ability of the conductor to help dissipate aeolian vibrations, or maybe even to allow for an increase in the tension to yield reduced sag. The changes may come in the form of (1) differently shaped strands (2) The degree of temper of the aluminium strands, (3) different types of coatings for corrosion Protection of the steel core in composite cables, or (4) the modification of the geometric configuration of the conductor to produce a varying profile to the wind. These modifications may be used separately or in combinations to achieve the desired conductor properties for optimum performance.
2. The high tensile strength of ACSR allows it to be installed in areas subject to extreme ice and wind loading. 3. ACSR is less likely to be broken by falling tree limbs.
ALL ALUMINIUM ALLOY CONDUCTOR (AAAC) AAAC, developed as a replacement for high strength 6/1 and 26/7 ACSR conductors is made of 6201-T81 aluminium alloy giving it comparable and, in some
2
PATEL WIRE INDUSTRIES
STRANDING CONSTRUCTION ALL ALUMINIUM CONDUCTOR (AAC) / ALL ALUMINIUM ALLOY CONDUCTOR (AAAC)
3
PATEL WIRE INDUSTRIES
STRANDING CONSTRUCTION ALUMINIUM CONDUCTOR STEEL REINFORCED (ACSR)
54 Al./7St..
30 Al./19 St..
16 Al./19 St..
45 Al./7 St..
30 Al./7St..
26 Al./7St..
24 Al./7St..
54 Al./19 St..
12 Al./7 St.
7 Al./1 St.
18 Al./1 St.
8 Al./1 St.
6 Al./1 St.
4 Al./3 St.
4
3 Al./4 St.
PATEL WIRE INDUSTRIES
AMERICAN STANDARD TYPE OF WIRE EC H19
ASTM B230/1972 Tensile Strength Minimum
Nominal wire diameter
Average for a lot
inch
mm
0.2600-0.2101 0.2100-0.1801 0.1800-0.1501 0.1500-0.1401 0.1400-0.1201 0.1200-0.1101 0.1100-0.1001 0.1000-0.0901 0.0900-0.0801 0.0800-0.0701 0.0700-0.0601 0.0600-0.0501 0.0500-0.0105
6.614-5.337 5.334-4.575 4.572-3.813 3.810-3.559 3.556-3.051 3.048-2.797 2.794-2.543 2.540-2.289 2.286-2.035 2.032-1.781 1.778-1.527 1.524-1.273 1.270-0.267
Ksi
23.5 24.0 24.0 24.5 25.0 25.5 26.0 27.0 27.5 28.0 28.5 29.0 25.0
MP A MPA
Ki
MPa
160 165 165 170 170 175 180 185 190 195 195 200 170
22.5 23.0 23.0 23.5 23.5 24.0 24.5 25.5 26.0 26.5 27.0 27.0 23.0
155 160 160 160 160 165 170 175 180 185 185 185 160
TOLERANCE ON NOMINAL DIAMETERS OF WIRES Specifies diameter inch
0.2600-0.1000 under 0.1000-0.0360 under 0.0360-0.0105
mm
6.604-2.540 under 2.540-0.914 under 0.914-0.267
Individual tests
Elongation in 10 in or 250 mm minimum Average Individual for a lot tests percent
2.3 2.1 2.0 1.9 1.8 1.7 1.6 1.6 1.6 1.6 1.5 1.4 -
2.2 2.0 1.9 1.8 1.7 1.6 1.5 1.5 1.5 1.4 1.3 1.2 -
Resistivity : at 20°C max : ohm.mm2/km
Tolerance plus and minus
1% 0.0010 inch (0.025 mm) 0.0005 inch (0.013 mm)
Average for a lot
Individual tests
28.172
28.264
61.2%
61.0% Condivctivity I.A.CS
Density at 20°C 2.703 g/cm3 0.097652 lb/in3
5
PATEL WIRE INDUSTRIES
AMERICAN STANDARD TYPE OF WIRE 5005 H19
ASTM B 396/1967
Inch pound wire Diameter
inch
0.2600 to 0.2101 0.2100 to 0.1601 0.1600 to 0.1501 0.1500 to 0.1401 0.1400 to 0.1201 0.1200 to 0.1101 0.1100 to 0.1001 0.1000 to 0.0901 0.0900 to 0.0801 0.0800 to 0.0701 0.0700 to 0.0601
Minimum tensile strength Individual test
Average for a lot
ib/in2
ib/in2
31500 32500 34500 35000 35000 35500 36000 36500 37000 37500 38000
33,000 34,000 36,000 36,500 37,000 37,500 38,000 38,500 39,000 39,500 40,000
Minimum elongation in 10 in (254 mm) for individual test %
2.2 2.2 1.9 1.8 1.7 1.6 1.5 1.5 1.5 1.4 1.3
Metric Units mm
6.604 to 5.336 5.334 to 4.066 4.064 to 3.812 3.810 to 3.558 3.556 to 3.050 3.048 to 2.796 2.794 to 2.542 2.540 to 2.288 2.286 to 2.034 2.032 to 1.780 1.778 to 1.526
kg/mm2
kg/mm2
22.1 22.9 24.3 24.6 24.6 24.9 25.3 25.6 26.0 26.4 26.7
23.2 23.9 25.3 25.6 26.0 26.4 26.7 27.0 27.4 27.8 28.1
percent
2.2 2.2 1.9 1.8 1.7 1.6 1.5 1.5 1.5 1.4 1.3
Tolerance on specified diameters of wires Specified diameter inch
mm
0.2600 to 0.1000 under 0.1000 to 0.0601
6.604 to 2.540
Tolerance plus and minus
1 percent 0.0010 (0.025 mm)
2.540 to 1.526
Density at 20°C 2.703 g/cm3 0.09758 lb/in3 Resistivity at 20ºC max. 32.226 ohm.mm2/km 19.423 ohm.CM/foot Conductivity at 20°C percent IACS 53.5
6
PATEL WIRE INDUSTRIES
AMERICAN STANDARD TYPE OF WIRE 6201 T81
ASTM B 398/1967
Inch pound wire Diameter
inch
0.1878 to 0.1328 0.1327 to 0.0612
Minimum tensile strength Average for a lot
Individual test
ib/in2
ib/in2
46,000 48,000
44000 46000
kg/mm2
kg/mm2
Minimum elongation in 10 in (254 mm) for individual test %
3.0 3.0
Metric Units mm
4.770 to 3.373 3.371 to 1.554
32.3 33.7
30.9 32.3
percent
3.0 3.0
Tolerance on specified diameters of wires
inch
mm
Tolerance plus and minus
0.1878 to 0.1000 under 0.1000 to 0.0612
4.770 to 2.540 incl under 2.540 to 1.554 incl
1 percent 0.0010 in (0.025 mm)
Specified diameter
Density at 20°C 2.703 g/cm3 0.09758 lb/in3 Resistivity at 20ºC 32.839 ohm.mm2/km 19.792 ohm.CM/foot Conductivity at 20°C percent IACS 52.5
7
PATEL WIRE INDUSTRIES
AMERICAN STANDARD ALL ALUMINIUM CONDUCTOR - (AAC)
ASTM B231
Code
Conductor Size
AL.
Overall Dia.
Word
AWG(CM)
No./mm.
mm
PEACHBELL ROSE IRIS PANSY POPPY ASTER PHLOX OXLIIP SNEEZEWORT VALERIAN DAISY LAUREL PEONY TULIP DAFFODIL CANNA GOLDENTUFT COSMOS SYRINGA ZINNIA HYACINTH DAHLIA MISTLETOE MEADOWSWEET ORCHID HEUCHERA VERBERA FLAG VIOLET NASTURTIUM PETUNIA CATTAIL ARBUTUS LILAC COCKSCOMB SNAPDRAGON MAGNOLIA GOLDENROD HAWKWEED CAMELLIA BLUEBELL LARKSPUR MARIGOLD HAWTHORN NARCISSUS COLUMBINE CARNATION GLADIOLUS COREOPSIS JESSAMINE
6 4 2 1 1/0 2/0 3/0 4/0 250,000 250,000 266,800 266,800 300,000 336,400 350,000 397,500 450,000 477,000 477,000 500,000 500,000 556,500 556,500 600,000 636,000 650,000 700,000 700,000 715,500 715,500 750,000 750,000 795,000 795,000 900,000 900,000 954,000 954,000 1000,000 1000,000 1033,500 1033,500 1113,000 1192,500 1272,000 1351,500 1431,000 1510,500 1590,000 1750,000
7/1.55 7/1.96 7/2.47 7/2.78 7/3.12 7/3.50 7/3.93 7/4.42 7/4.80 19/2.91 7/4.96 19/3.01 19/3.19 19/3.38 19/3.45 19/3.68 19/3.91 19/4.02 37/2.88 19/4.12 37/2.95 19/4.35 37/3.11 37/3.23 37/3.33 37/3.37 37/3.49 61/2.72 37/3.53 61/2.75 37/3.62 61/2.82 37/3.72 61/2.90 37/3.96 61/3.09 37/4.08 61/3.18 37/4.18 61/3.25 37/4.25 61/3.31 61/3.43 61/3.55 61/3.67 61/3.78 61/3.89 61/4.00 61/4.10 61/4.30
4.65 5.88 7.41 8.34 9.36 10.50 11.79 13.26 14.40 14.55 14.88 15.05 15.95 16.90 17.25 18.40 19.55 20.10 20.16 20.60 20.65 21.75 21.77 22.61 23.31 23.59 24.43 24.48 24.71 24.75 25.34 25.38 26.04 26.10 27.72 27.81 28.56 28.62 29.26 29.25 29.75 29.79 30.87 31.95 33.03 34.02 35.01 36.00 36.90 38.70
Calculated Sectional Area mm2
13.21 21.12 33.54 42.49 53.52 67.35 84.91 107.41 126.67 126.37 135.25 135.20 151.85 170.48 177.62 202.09 228.14 241.16 241.03 253.30 252.89 282.37 281.07 303.18 322.24 330.03 353.95 354.45 362.11 362.31 380.81 380.99 402.14 402.92 455.70 457.44 483.74 484.48 507.74 506.04 524.89 524.90 563.65 603.78 645.29 684.55 724.97 766.55 805.36 885.84
8
Weight kg/Km
36.4 58.3 92.5 117.2 147.7 185.8 234.3 296.3 349.5 348.7 373.2 373.0 419.0 470.4 490.1 557.6 629.5 665.4 665.0 698.9 697.8 779.1 775.5 836.5 889.1 910.6 976.6 978.0 999.1 999.7 1050.7 1051.2 1109.5 1111.7 1257.3 1262.1 1334.7 1336.7 1400.9 1396.2 1448.2 1448.3 1555.2 1665.9 1780.4 1888.7 2000.3 2115.0 2222.1 2444.1
Calculated Electric Resistance ohm/Km
2.17553 1.36056 0.85671 0.67630 0.53693 0.42667 0.33841 0.26754 0.22685 0.22740 0.21245 0.21254 0.18923 0.16855 0.16178 0.14219 0.12596 0.11916 0.11922 0.11344 0.11363 0.10176 0.10224 0.09478 0.08917 0.08707 0.08118 0.08107 0.07936 0.07931 0.07546 0.07542 0.07146 0.07132 0.06306 0.06282 0.05940 0.05931 0.05659 0.05678 0.05475 0.05474 0.05098 0.04759 0.04453 0.04198 0.03964 0.0749 0.03568 0.03244
Rated Strength Kg
254 399 611 746 903 1137 1375 1739 2051 2107 2190 2254 2483 2787 2904 3238 3579 3784 3933 3974 4126 4430 4496 4850 5155 5280 5662 5831 5793 5961 5971 6148 6305 6502 6996 7238 7426 7665 7795 8007 8058 8305 8918 9553 10006 10615 11007 11639 12228 13450
PATEL WIRE INDUSTRIES
AMERICAN STANDARD ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR) Code
Conductor Size
Word
WREN TURKEY SWAN SWANTE SWALLOW SP ARROW SPARROW SP ARA TE SPARA ARATE ROBIN RAVEN QUAIL PIGEON PENGUIN WAXWING PARTRIDGE OSTRICH MERLIN LINNET ORIOLE CHICKADEE BRANT IBIS LARK PELICAN FLICKER HAWK HEN OSPREY PARAKEET DOVE EAGLE PEACOCK SQUAB WOOD DUCK TEAL SWIFT KINGBIRD ROOK GROSBEAK SCOTER EGRET FLAMINGO GANNET STILT STARLING REDWING GOOT TERN CUCKOO CONDOR DRAKE MALLARD
AL.
ST ST..
CM (AMG) No./mm No./mm
8 6 4 4 3 2 2 1 1/10 2/0 3/0 4/0 266,800 266,800 300,000 366,400 336,400 336,400 397,500 397,500 397,500 397,500 477,000 477,000 477,000 477,000 556,500 556,500 556,500 556,500 605,000 605,000 605,000 605,000 636,000 636,000 636,000 636,000 636,000 636,000 666,600 666,600 715,500 715,500 715,500 795,000 795,000 795,000 795,000 795,000 795,000
6/1.33 6/1.68 6/2.12 7/1.96 6/2.38 6/2.67 7/2.47 6/3.00 6/3.37 6/3.78 6/4.25 6/4.77 18/3.09 26/2.57 26/2.73 18/3.47 26/2.89 30/2.69 18/3.77 24/3.27 26/3.14 30/2.92 18/4.14 24/3.58 26/3.44 30/3.20 18/4.47 24/3.87 26/3.72 30/3.46 24/4.03 26/3.87 30/3.61 30/3.61 36/3.38 18/4.78 24/4.14 26/3.97 30/3.70 30/3.70 24/4.23 26/4.07 24/4.39 26/4.21 30/3.92 36/3.77 45/3.38 24/4.62 54/3.08 26/4.44 30/4.14
1/1.33 1/1.68 1/2.12 1/2.61 1/2.38 1/2.67 1/3.30 1/3.00 1/3.37 1/3.78 1/4.25 1/4.77 1/3.09 7/2.00 7/2.12 1/3.47 7/2.25 7/2.69 1/3.77 7/2.18 7/2.44 7/2.92 1/4.14 7/2.39 7/2.67 7/3.20 1/4.47 7/2.58 7/2.89 7/3.46 7/2.69 7/3.01 7/3.61 19/2.16 1/3.38 1/4.78 7/2.76 7/3.09 7/3.70 19/2.22 7/2.82 7/3.16 7/2.92 7/3.28 19/2.35 1/3.77 7/2.25 7/3.08 7/3.08 7/3.45 19/2.48
Overall Dia.
ASTM B232
Calculated Sectional Area
mm
AL. MM2
3.99 5.04 6.36 6.53 7.14 8.01 8.24 9.00 10.11 11.34 12.75 14.31 15.45 16.28 17.28 17.35 18.31 18.83 18.85 19.62 19.88 20.44 20.70 21.49 21.77 22.40 22.35 23.22 23.55 24.22 24.19 24.51 25.27 25.24 23.66 23.90 24.84 25.15 25.90 25.90 25.38 25.76 26.32 26.68 27.43 26.39 27.03 27.72 27.72 28.11 28.96
8.34 13.30 21.18 21.12 26.69 33.59 33.54 42.41 53.52 67.33 85.12 107.22 134.98 134.87 152.19 170.22 170.55 170.50 200.93 201.56 201.34 200.90 242.31 241.58 241.65 241.27 282.47 282.31 282.59 282.07 306.13 305.83 307.06 307.06 323.02 323.01 323.07 321.84 322.56 322.56 337.27 338.26 363.27 361.93 362.06 401.86 403.77 402.33 402.33 402.56 403.84
ST ST.. MM 2
1.39 2.22 3.53 5.35 4.45 5.60 8.55 7.07 8.92 11.22 14.19 17.87 7.50 21.99 24.71 9.46 27.83 39.78 11.16 26.13 32.73 46.88 13.46 31.40 39.19 56.30 15.69 36.60 45.92 65.82 39.78 49.81 71.65 69.62 8.97 17.95 41.88 52.49 75.26 73.54 43.72 54.90 46.88 59.15 82.41 11.16 27.83 52.15 52.15 65.44 91.78
9
Rated Electric Strength Resistance
Approx. Weight AL. kg/km
22.9 36.5 58.1 58.0 73.3 92.2 92.1 116.4 146.9 184.9 233.7 294.4 372.4 374.0 422.0 469.7 472.9 473.9 554.4 558.8 558.2 558.4 668.5 669.8 670.0 670.6 779.4 782.7 783.5 784.0 848.8 848.0 853.4 853.4 891.2 891.2 895.8 892.4 896.5 896.5 935.1 937.9 1007.2 1003.5 1006.3 1108.8 1119.5 1115.5 1115.5 1116.1 1122.4
ST ST.. kg/km
ACSR kg/km
10.8 17.2 27.5 41.6 34.6 43.6 66.5 55.0 69.4 87.3 110.4 139.0 58.3 171.8 193.0 73.6 217.4 311.1 86.8 204.1 255.7 366.5 104.7 245.3 306.1 440.2 122.1 285.9 358.7 514.6 310.7 389.1 560.2 544.9 69.8 139.6 327.1 410.0 588.5 575.6 341.5 428.8 366.2 462.0 645.0 86.8 217.4 407.4 407.0 511.1 718.3
33.7 53.8 85.6 99.6 107.9 135.8 158.6 171.4 216.3 272.2 344.1 433.4 430.8 545.7 615.0 543.2 690.3 784.9 641.2 762.9 813.9 924.9 773.3 915.1 976.1 1110.8 901.5 1068.6 1142.2 1298.6 1159.5 1237.0 1413.7 1398.4 961.0 1030.8 1222.9 1302.4 1485.0 1472.1 1276.6 1366.7 1373.4 1465.5 1651.3 1195.6 1336.9 1522.9 1522.5 1627.3 1840.8
kg
341 540 846 1067 1042 1289 1651 1613 1987 2401 3006 3787 3118 5113 5756 3932 6414 7867 4500 6646 7380 9205 5346 7793 8846 10787 6232 9000 10263 12611 9772 11019 13140 13571 6258 7126 10299 11429 13803 14306 10752 11979 11554 12867 15651 7582 10029 12651 12775 14269 17441
ohm/km
3.43035 2.14992 1.35011 1.35389 1.07124 0.85118 0.85251 0.67422 0.53430 0.42468 0.33594 0.26669 0.21288 0.21410 0.18974 0.16881 0.16931 0.16978 0.14301 0.14327 0.14342 0.14409 0.11859 0.11953 0.11950 0.11997 0.10173 0.10229 0.10219 0.10262 0.09433 0.09442 0.09427 0.09427 0.08896 0.08896 0.08938 0.08972 0.08974 0.08974 0.08562 0.08537 0.07949 0.07978 0.07995 0.07151 0.07152 0.07177 0.07177 0.07173 0.07168
PATEL WIRE INDUSTRIES
AMERICAN STANDARD 6201-T 81 ALUMINIUM ALLOY CONDUCTOR - (AAAC) Code Word
AKRON ALTON AMES AZUZA ANAHEIM AMHERST ALLIANCE BUTTE CANTON CAIRO DARIEN ELGIN FLINT GREEL Y GREELY
Conductor Size of ACSR With Equal Dia. CM (AWG)
6 4 2 1/0 2/0 3/0 4/0 266,800 336,400 397,500 477,000 556,500 636,000 795,000
ASTM B399
AL.
Overall Dia.
No./mm
mm
7/1.68 7/2.12 7/2.67 7/3.37 7/3.78 7/4.25 7/4.77 19/3.26 19/3.66 19/3.98 19/4.36 19/4.71 37/3.59 37/4.02
5.04 6.36 8.01 10.11 11.34 12.75 14.31 16.30 18.30 19.90 21.80 23.55 25.13 28.14
10
Calculated Sectional Area mm2
15.52 24.71 39.19 62.44 78.55 99.30 125.09 158.59 199.90 236.38 283.67 331.04 374.53 469.62
Weight kg/Km
42.8 68.1 108.1 172.1 216.6 273.8 344.9 437.2 551.1 651.7 782.1 912.7 1032.6 1294.8
Calculated Electric Resistance ohm/Km
2.1587 1.3556 0.8546 0.5365 0.4264 0.3373 0.2678 0.2112 0.1676 0.1417 0.1181 0.1012 0.0894 0.0713
Rated Strength Kg
503 801 1270 2024 2438 3082 3883 4980 6011 7108 8530 9955 11020 13818
PATEL WIRE INDUSTRIES
AMERICAN STANDARD TYPE OF COATING “A”
ASTM 498-69
Inch-pound units Nominal wire diameter
Minimum stress at 1% extension
Minimum Ultimate Tensile strength
Minimum elongation in 10 inch (254 mm)
inch
lb/inch2
lb/inch2
percent
190000 185000 180000 170000
210000 205000 205000 200000
3.5 4.0 4.5 4.5
kp/mm2
kp/mm2
0.0500-0.0899 0.0900-0.1199 0.1200-0.1399 0.1400-0.1899
Metric units mm
1.270-2.283 2.286-3.045 3.048-3.553 3.556-4.822
134 130 127 120
percent
148 144 144 141
3.5 4.0 4.5 4.5
Tolerance on nominal diameters of wires Tolerance
Nominal diameter
minus
plus
plus
inch
inch
mm
0.0500-0.0749 0.0750-0.1199 0.1200-0.1399 0.1400-0.1899
1.270-1.902 1.905-3.045 3.048-3.553 3.556-4.822
minus mm
0.015 0.002 0.003 0.004
0.001 0.002 0.002 0.003
0.038 0.051 0.076 0.102
0.025 0.051 0.051 0.076
Minimum weight of coating Minimum weight of zinc coating of uncoated wire surface
Nominal diameter inch
of/ff2
mm
0.500-0.0599 0.0600-0.0749 0.0750-0.0899 0.0900-0.1039 0.1040-0.1199 0.1200-0.1399 0.1400-0.1799 0.1800-0.1899
1.270-1.521 1.524-1.902 1.905-2.283 2.286-2.639 2.642-3.045 3.048-3.553 3.556-4.569 4.572-4.822
g/m2
0.60 0.65 0.70 0.75 0.80 0.85 0.90 1.00
183 198 214 229 244 259 274 305
MANDREL SIZE FOR ADHERENCE TEST Nominal wire diameter inch
mm
Ratio of mandrel diameter to wire diameter
Density at 20ºC 7.78 g/cm3 0.281 lb/in3
mm
0.0500-0.0899
1.270-2.283
3
0.0900-0.1399
2.286-3.553
4
0.1400-0.1899
3.556-4.822
5
11
PATEL WIRE INDUSTRIES
12
PATEL WIRE INDUSTRIES
GEMINI JUPITER LEO LIBRA MARS MERCURY MOON NEPTUNE PLUTO SATURN TAURUS TRITON URANUS VENUS VIRGO
Code name
26,61 43,97 54,29 78,18 122,15 175,90 195,98 249,04 331,56 413,23 531,97 645,67 799,54 1064,48 2286,72
Equival. copper area mm 2 7/1,75 7/2,25 7/2,50 7/3,00 7/3,75 7/4,50 7/4,75 19/3,25 19/3,75 37/3,00 19/4,75 37/3,75 61/3,25 61/3,75 91/4,50
Stranding and wire diameter mm
ALL ALUMINIUM CONDUCTOR - (AAC)
5,25 6,75 7,50 9,00 11,25 13,50 14,25 16,25 18,75 21,00 23,75 26,25 29,25 36,75 49,50
Overall diameter mm 16,84 27,83 34,36 49,48 77,31 111,33 124,04 157,62 209,85 261,54 336,69 408,65 506,04 673,72 1447,529
Aluminium area mm2 46 76 94 136 213 307 342 435 579 722 929 1128 1397 1859 3995
Mass kg/km 3400 5010 5980 8260 12500 17800 19800 26000 34000 43700 53700 66200 83400 109000 232000
Ultimate tensile strength newtons 347 511 610 843 1276 1816 2020 2653 3469 4459 5480 6755 8510 11122 23673
Breaking load kg 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
52400 52400 52400 52400 52400 52400 52400 49650 49650 48250 49650 48250 46200 46200 46200
61000 61000 61000 61000 61000 61000 61000 59650 59650 58600 59650 58600 57570 57570 57570
1,7003 1,0286 0,8332 0,5786 0,3703 0,2572 0,2308 0,1825 0,1371 0,1102 0,0854 0,0706 0,0571 0,0429 0,0200
120 160 180 220 300 370 390 460 550 620 730 820 940 1130 1710
5000 5000 5000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1000 1000 1000
Standard drum length m
AS 1531 - Part 1 Coefficient DC Initial Final modulus of linear modulus resistance Current expansion of elasticity of elasticity at 20° C rating N/mm2 /C°10 -6 ohms/km N/mm2 Amps
AUSTRALIAN STANDARD
13
PATEL WIRE INDUSTRIES
234,14 337,18 458,92 606,90 712,27 826,07 948,29
GRAPE LEMON LIME MANGO ORANGE OLIVE PAWP AW WPA 14,25
7,50 9,00 10,50 9,00 9,75 10,50 11,25
2,50 3,00 3,75 4,80
42,75
17,50 21,00 24,50 27,00 29,25 31,50 33,75
7,50 9,00 11,25 14,30
956,91
147,26 212,06 288,63 381,70 447,97 519,54 596,41
29,45 42,41 66,27 106,32
DiamAlueter over Overall minium diamarea steel mm eter mm mm2
121,21
Equival. copper area mm2
11,48 23,42 44,95 70,25
Code name
QUINCE RAISIN SULTANA WALNUT
34,36 49,48 67,35 49,48 58,07 67,35 75,55
4,91 7,07 11,04 14,07
Steel area mm2
407,91 587,41 799,51 1057,31 1240,88 1439,13 1652,06
80,99 116,23 182,24 292,38
Aluminium
1078,12 2650,64
181,62 261,54 355,98 431,18 506,04 586,89 671,96
34,36 49,48 77,31 120,39
Total area mm2
679,70 978,80 1332,25 1448,69 1700,21 1971,87 2251,93
119,58 171,80 269,01 403,39
Total
962,41 3613,05
271,79 391,39 532,74 391,38 495,33 532,74 599,87
38,59 55,57 86,77 111,01
Steel
Mass kg/km
3/4/1,75 3/4/2,50 4/3/3,00 4/3/3,75
Stranding and wire diameter mm * * * *
5,25 7,50 9,00 11,25
7,22 14,73 28,27 44,18
DiamAlueter over Overall minium diamarea steel mm eter mm mm2 9,62 19,63 21,21 33,13
Steel area mm2 16,84 34,36 49,48 77,31
Total area mm2
19,78 38,99 77,46 121,05
Aluminium
75,61 154,29 166,71 260,40
Steel
Total 95,39 193,28 244,17 381,45
Mass kg/km
AS 1220 - Part 1
289000
65000 90800 122000 119000 138000 159000 185000
10700 15000 22900 35500
29410
6633 9265 12449 12143 14082 16224 18878
1092 1531 2337 3622
20,0
18,4 18,4 18,4 19,9 19,9 19,9 20,0
19,3 19,3 19,3 19,9
46100
56100 54300 53400 47600 47100 46800 47100
51900 50200 49000 49000
72300
83400 83400 83400 73200 73200 73200 72300
80400 80400 80400 76700
12700 24400 28300 43900
1296 2490 2888 4480
13,9 13,9 15,2 15,2
-
133760 133760 122000 122000
3,9377 1,9295 1,0048 0,6431
1380
445 558 676 795 877 960 1040
163 204 269 361
1000
2000 2000 2000 2000 2000 2000 1000
3000 3000 3000 1000
79 115 167 220
3000 3000 3000 3000
Current Standard rating drum Amps length m
AS 1220 - Part 1 Initial Final Coefficient modulus modulus Ultimate DC of tensile Breaking of linear resistance of load expansion elasticity elasticity at 20°C strength N/mm2 N/mm 2 ohms/km kg /C°10-6 newtons
0,0302
0,1962 0,1363 0,1001 0,0757 0,0645 0,0556 0,0485
0,9742 0,6766 0,4330 0,2699
Initial Final DC Ultimate Coefficient modulus modulus Standard of resistance Current drum tensile Breaking of linear of rating length load expansion elasticity elasticity at 20°C strength kg newtons /C°10-6 N/mm2 N/mm2 ohms/km Amps m
AUSTRALIAN STANDARD (EXTRA STRONG CONSTRUCTIONS)
6/1/2,50 6/1/3,00 6/1/3,75 6/4,75 & 7/1,60 30/7/2,50 30/7/3,00 30/7/3,50 54/7/3,00 54/7/3,25 54/7/3,50 54/3,75 & 19/2,25 54/4,75 & 19/2,85
Stranding and wire diameter mm
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
1521,49
46,83 67,43 105,37 169,05
ALMOND APPLE BANANA CHERRY
PEACH
Equival. copper area mm 2
Code name
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
AUSTRALIAN STANDARD
14
PATEL WIRE INDUSTRIES
Equival. copper area mm2 9,0 14,8 18,2 26,2 41,0 59,0 65,8 83,6 111,0 138,7 178,6 216,8 268,4 357,4 769,8
Code name
AGATE AMETHYST DIAMOND EMERALD GARNET JADE JASPER OP AL OPAL PEARL RUBY RUTILE SAPPHIRE SPINEL TOP AZ OPAZ ZIRCON 7/1,75 7/2,25 7/2,50 7/3,00 7/3,75 7/4,50 7/4,75 19/3,25 19/3,75 37/3,00 19/4,75 37/3,75 61/3,25 61/3,75 91/4,50
Stranding and wire diameter mm 5,25 6,75 7,50 9,00 11,30 13,5 14,3 16,3 18,8 21,0 23,8 26,3 29,3 33,8 49,5
Overall diameter mm
ALL ALUMINIUM ALLOY CONDUCTORS - (AAAC)
16,84 27,83 34,36 49,48 77,31 111,3 124,0 157,6 209,8 261,5 336,7 408,7 506,0 673,7 1447,3
Aluminium area mm2 46 76 94 135 211 304 339 433 577 720 925 1125 1400 1863 4003
Mass kg/km 4724 7800 9630 13900 21700 31200 34800 44200 58800 73300 94400 114500 141800 189000 406000
Ultimate tensile strength newtons 480 790 980 1420 2210 3180 3550 4510 6000 7500 9630 11730 13770 18300 41430
Breaking load kg
AS 1531 - Part 2
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
52400 52400 52400 52400 52400 52400 52400 49650 49650 48250 49650 48250 46200 46200 46200
61000 61000 61000 61000 61000 61000 61000 59650 59650 58600 59650 58600 57570 57570 57570
1,952 1,18 0,958 0,665 0,426 0,296 0,265 0,210 0,158 0,127 0,0982 0,0811 0,0650 0,0490 0,0230
106 147 167 209 276 346 371 430 513 588 689 776 889 1056 1630
3000 3000 2500 2500 2000 1000 1000 2000 2000 2000 1000 2000 2000 2000 1000
Standard Coefficient DC Initial Final drum modulus of linear modulus resistance Current length expansion of elasticity of elasticity at 20° C rating m /C°10 -6 ohms/km Amps N/mm2 N/mm2
AUSTRALIAN STANDARD
BRITISH STANDARD TYPE OF WIRE H9
BS 2627 / 1970 Tensile strength minimum
Specified diameter Over mm
Up to and including inch
mm
1.25 0.0492 1.50 1.50 0.0590 1.75 1.75 0.0689 2.00 2.00 0.0787 2.25 2.25 0.0886 2.50 2.50 0.0984 2.75 2.75 0.1083 3.00 3.00 0.1181 3.25 3.25 0.1280 3.50 3.50 0.1378 3.75 3.75 0.1476 4.25 4.25 0.1673 5.00 2 1 hbar = 10 N/mm = 1450.38 lb/in2
inch
0.0590 0.0689 0.0787 0.0886 0.0984 0.1083 0.1181 0.1280 0.1378 0.1476 0.1673 0.1969
Before stranding hbar
19.3 18.8 18.4 18.0 17.6 17.2 16.9 16.5 16.4 16.2 16.0 15.9
Tolerances on nominal diameters of wires:±1%
ib/in2
After stranding hbar
27,992 27,267 26,687 26,107 25,527 24,946 24,511 23,931 23,786 23,496 23,206 23,061
18.3 17.9 17.5 17.1 16.7 16.3 16.0 15.7 15.6 15.4 15.2 15.1
ib/in2
26,542 25,962 25,382 24,801 24,221 23,641 23,206 22,771 22,626 22,336 22,046 21,901
Resistivity at 20ºC max: 28.264 ohm.mm2/km max: 17.002 ohm.CM/foot Density at 20ºC 2.703 g/cm3 0.097652 lb/in3
15
PATEL WIRE INDUSTRIES
BRITISH STANDARD Metric units
BS 3242/1970
Standard Diameter
Cross sectional area of Standard wire diameter
Weight
mm
mm2
kg/km
2.34 2.54 2.95 3.30 3.48 3.53 3.76 4.65
4.301 5.067 6.835 8.553 9.511 9.787 11.10 16.98
Standard resistance at 20°C
Minimum breaking load for Standard diameter wire
ohm/km
11.61 13.68 18.45 23.09 25.60 26.42 29.98 45.85
7.557 6.414 4.755 3.800 3.417 3.321 2.927 1.914
N
1270 1490 2020 2520 2810 2890 3280 5010
Inch pound units inch
0.0921 0.1000 0.1161 0.1299 0.1370 0.1390 0.1480 0.1831 1mm2 1N 1 kg/km 1 mm
sq. inch
lb/100 °yd
0.00666 0.00785 0.01059 0.01326 0.01474 0.01517 0.01721 0.02632
23.40 27.58 37.19 45.55 51.79 53.26 60.44 92.43
ohm/100 °yd
6.910 5.862 4.346 3.473 3.123 3.035 2.675 1.750
lb
285.46 334.91 454.04 566.42 631.61 649.59 737.25 1126.10
= 0.00155in2 = 0.224771 lb = 2.01591 lb/1000 yd = 0.03937 in
Tolerance on standard diameters of all wires ±1%
Minimum tensile strength before and after stranding 29.5 hbar
Elongation : Minimum ultimate elongation on 250 mm (9.84) in length 3.5% before or after stranding
42801 lb/in2
Resistivity at 20ºC max: 32.5 ohm.mm2/km max: 19.58775 ohm.CM/foot Density at 20°C 2.70 g/cm3 0.09747 lb/in3
16
PATEL WIRE INDUSTRIES
17
PATEL WIRE INDUSTRIES
MIDGE APHIS GNAT WEEVIL MOSQUITO LADYBIRD ANT FL Y FLY BLUEBOTTLE EARWIG GRASSHOPPER CLEGG WASP BEETLE BEE CRICKET HORNET CATERPILLAR CHAFER SPIDER COCKROACH BUTTERFL Y BUTTERFLY MOTH DRONE LOCUST CENTIPEDE MAYBUG SCORPION CICADA TARANTULA BULL
Code name
14,19 16,13 16,13 19,35 22,58 25,81 32,26 38,71 45,16 48,39 51,61 58,06 64,52 64,52 80,64 96,77 96,77 112,90 129,00 145,20 161,30 193,50 225,80 225,80 258,10 258,10 290,30 322,60 387,10 483,90 527,87
Equival. copper area mm2 7/2,06 3/3,35 7/2,21 3/3,66 7/2,59 7/2,79 7/3,10 7/3,40 7/3,66 7/3,78 7/3,91 7/4,17 7/4,39 19/2,67 7/4,90 7/5,36 19/3,25 19/3,53 19/3,78 19/3,99 19/4,22 19/4,65 19/5,00 37/3,58 19/5,36 37/3,78 37/4,09 37/4,27 37/4,65 37/5,23 64/4,25
Stranding and wire diameter mm 6,18 7,24 6,63 7,91 7,77 8,37 9,30 10,20 10,98 11,34 11,73 12,51 13,17 13,35 14,70 16,08 16,25 17,65 18,90 19,95 21,10 23,25 25,00 25,06 26,80 26,46 28,63 29,89 32,55 36,61 38,25
Overall diameter mm
ALL ALUMINIUM CONDUCTOR - (AAC)
23,33 26,44 26,85 31,56 36,88 42,80 52,83 63,55 73,65 78,55 84,05 95,60 105,95 106,38 132,00 157,95 157,62 185,95 213,22 237,57 265,75 322,66 373,06 372,44 428,72 415,22 486,11 529,84 628,34 794,87 865,36
Aluminium area mm2 64 73 74 86 101 117 145 174 202 216 231 262 291 293 362 434 435 513 588 652 731 888 1027 1030 1180 1145 1340 1460 1733 2191 2400
Mass kg/km 4340 4340 4860 5130 6360 7250 8770 10400 12000 12700 13600 15400 17000 18200 21000 25100 26000 30300 34500 38300 42700 51500 59400 60600 68200 67200 78200 85000 100000 126000 139000
Ultimate tensile strength newtons 442 442 495 523 648 739 894 1060 1220 1290 1390 1570 1730 1860 2140 2560 2650 3090 3520 3900 4350 5250 6060 6180 6950 6850 7970 8660 10200 12800 14200
Breaking load kg
BRITISH STANDARD
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
52400 50000 52400 60000 52400 52400 52400 52400 52400 52400 52400 52400 52400 49650 52400 52400 49650 49650 49650 49650 49650 49650 49650 48250 49650 48250 48250 48250 48250 48250 46200
61000 69000 61000 69000 61000 61000 61000 61000 61000 61000 61000 61000 61000 59650 61000 61000 59650 59650 59650 59650 59650 59650 59650 58600 59650 58600 58600 58600 58600 58600 57570
1,2271 1,0810 1,0662 0,9078 0,7763 0,6690 0,5419 0,4505 0,3887 0,3644 0,3406 0,2995 0,2702 0,2704 0,2169 0,1813 0,1825 0,1547 0,1349 0,1211 0,1083 0,0892 0,0771 0,0774 0,0671 0,0694 0,0593 0,0544 0,0459 0,0363 0,0334
Coefficient DC Initial Final modulus of linear modulus resistance expansion of elasticity of elasticity at 20° C /C°10 -6 ohms/km N/mm2 N/mm2
139 154 152 172 185 203 231 259 284 296 308 334 356 358 408 456 457 506 551 589 632 713 779 779 849 833 918 967 1070 1230 1300
Current rating Amps
BS-215 (Part 1): 1970
18
PATEL WIRE INDUSTRIES
64,52
80,65
80,65
HYENA
LEOP ARD LEOPARD
COYOTE
80,65 96,77 112,90 129,00 145,20 161,30 193,50 225,80 225,80 225,80 258,10 258,10 290,30 290,30 322,60
6,45 12,90 16,30 19,35 22,58 25,81 32,26 38,71 38,71 45,16 45,16 48,39 51,61 58,06 64,52 64,52
MOLE SQUIRREL GOPHER WEASEL FOX FERRET RABBIT MINK SKUNK BEAVER HORSE RACCOON OTTER CAT HARE DOG
TIGER WOLF LYNX PANTHER LION BEAR GOAT SHEEP ANTELOPE BISON DEER ZEBRA ELK CAMEL MOOSE
Equival. copper area mm 2
Code name Stranding Diam- Overall Alueter diameter minium and wire mm area diameter over steel (Std.) mm2 mm mm 6/1/1,50 1,50 4,50 10,60 6/1/2,11 2,11 6,33 20,98 6/1/2,36 2,36 7,08 26,25 6/1/2,59 2,59 7,77 31,61 6/1/2,79 2,79 8,37 36,68 6/1/3,00 3,00 9,00 42,41 6/1/3,35 3,35 10,05 52,88 6/1/3,66 3,66 10,98 63,13 12/7/2,59 7,77 12,95 63,22 6/1/3,99 3,99 11,97 75,02 12/7/2,79 8,37 13,95 73,36 6/1/4,09 4,09 12,27 78,83 6/1/4,22 4,22 12,66 83,92 6/1/4,50 4,50 13,50 95,43 6/1/4,72 4,72 14,16 104,98 6/4,72 4,71 14,15 104,98 +7/1,57 7/4,39 5,79 14,57 105,95 +7/1,93 6/5,28 5,25 15,81 131,37 +7/1,75 26/2,54 5,73 15,89 131,74 +7/1,91 30/7/2,36 4,72 16,52 131,23 30/7/2,59 7,77 18,13 158,06 30/7/2,79 8,37 19,53 183,41 30/7/3,00 9,00 21,00 212,06 30/7/3,18 9,54 22,26 238,27 30/7/3,35 10,05 23,45 264,42 30/7/3,71 11,13 25,97 324,31 30/7/3,99 11,97 27,93 375,11 54/7/2,97 8,91 26,73 374,11 54/7/3,00 9,00 27,00 381,70 30/7/4,27 12,81 29,89 429,60 54/7/3,18 9,54 28,62 428,88 30/7/4,50 13,50 31,50 477,13 54/7/3,35 10,05 30,15 475,96 54/7/3,53 10,59 31,77 528,49 20,06
16,84
20,48
1,77 3,50 4,37 5,27 6,11 7,07 8,81 10,52 36,88 12,50 42,80 13,14 13,99 15,90 17,50 12,70
Steel area mm 2
30,62 36,88 42,80 49,48 55,60 61,70 75,67 87,53 48,50 49,48 100,24 55,60 111,33 61,70 68,51
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
161,85 194,94 226,20 261,54 293,86 326,12 399,98 462,63 422,60 431,18 529,84 484,48 588,46 537,66 596,99
151,80
148,21
126,43
12,37 24,48 30,62 36,88 42,80 49,48 61,70 73,65 100,10 87,53 116,16 91,97 97,91 111,33 122,48 117,69
Total area mm 2
362 438 507 586 659 730 896 1040 1040 1060 1190 1186 1318 1314 1466
365
360
290
29 58 72 87 101 117 145 173 175 205 203 217 231 262 288 288
Aluminium
240 289 335 388 436 483 593 692 383 391 792 435 872 483 536
157
132
160
14 27 34 41 48 55 69 82 290 97 335 103 110 124 137 106
Steel
Mass kg/km
602 727 842 974 1095 1213 1489 1730 1420 1450 1980 1621 2190 1797 2002
522
492
450
43 85 106 128 149 172 214 255 465 302 538 320 341 386 425 394
Total
BRITISH STANDARD
58700 69200 79300 90800 101000 112000 136000 157000 117000 119000 179000 133000 199000 147000 162000
47300
42200
41900
4780 8020 9610 11450 13100 15200 18500 21900 52900 25900 60700 27200 28900 32800 36000 34700
Ultimate tensile strength newtons
5980 7050 8080 9260 10300 11400 13900 16000 11900 12100 18200 13600 20300 15000 16500
4820
4300
4270
487 818 990 1160 1340 1530 1890 2230 5390 2640 6190 2770 2950 3340 3670 3540
18,43 18,43 18,43 18,43 18,43 18,43 18,43 18,43 19,91 19,91 18,43 19,91 18,43 19,91 19,91
19,54
19,54
18,93
19,31 19,31 19,31 19,31 19,31 19,31 19,31 19,31 15,84 19,31 15,84 19,31 19,31 19,31 19,31 19,92
56900 55700 54900 54300 53900 53600 53100 52900 47700 47600 52800 47300 52700 47000 46700
51900
47800
52400
65000 54600 52700 51500 50700 50200 49500 49100 71900 48800 71000 48700 48700 48500 48500 48800
83400 83400 83400 83400 83400 83400 83400 83400 73200 73200 83400 73200 83400 73200 73200
76000
76300
82200
80400 80400 80400 80400 80400 80400 80400 80400 108000 80400 108000 80400 80400 80400 80400 76400
0,2202 0,1828 0,1576 0,1363 0,1213 0,1093 0,0891 0,0770 0,0773 0,0757 0,0673 0,0674 0,0606 0,0607 0,0547
0,3035
0,2184
0,2697
2,7062 1,3677 1,0933 0,9077 0,7822 0,6766 0,5426 0,4546 0,4571 0,3825 0,3939 0,3640 0,3419 0,3007 0,2733 0,2733
420 470 520 560 610 650 730 800 790 800 870 860 930 920 980
420
410
360
87 130 150 170 190 210 240 260 270 290 300 300 310 340 360 360
Initial Final DC Breaking Coefficient modulus modulus resistance of of at 20°C Current of linear load elasticity elasticity ohms/km rating expansion kg N/mm2 N/mm2 (Std.) Amps /C°10 -6
BS-215 (Part 2): 1970
19
PATEL WIRE INDUSTRIES
ACACIA ALMOND CEDAR 35 FIR HAZEL PINE 70 WILLOW 80 90 OAK 100 MULBERRY ASH ELM POPLAR 225 SYCAMORE UP AS UPAS 350 YEW
Code name
13 16 19 22 25 32 38 45 48 51 58 63 63 80 96 112 119 143 161 192 224 254
Equival. copper area mm2 7/2,08 7/2,34 7/2,54 7/2,77 7/2,95 7/3,30 7/3,61 7/3,91 7/4,04 7/4,19 7/4,45 7/4,65 19/2,82 19/3,18 19/3,48 19/3,76 37/2,87 37/3,05 37/3,23 37/3,53 37/3,81 37/4,06
Stranding and wire diameter mm 6,24 7,02 7,59 8,31 8,85 9,90 10,83 11,73 12,12 12,57 13,35 13,95 14,10 15,90 17,40 18,80 20,09 21,35 22,61 24,71 26,67 28,42
Overall diameter mm
ALL ALUMINIUM ALLOY CONDUCTORS - (AAAC)
23,79 30,10 35,47 42,18 47,84 59,87 71,65 84,05 89,73 96,52 108,9 118,9 118,7 150,9 180,7 210,9 239,4 270,3 303,2 362,1 421,8 479,0
Aluminium area mm2 65 82 97 115 131 164 196 230 246 264 298 325 326 415 497 580 658 745 835 997 1162 1319
Mass kg/km 6690 8440 9960 11860 13430 16820 20200 23630 25200 27060 30400 33330 33330 42350 50690 59220 67350 75780 85000 101670 118430 134510
Ultimate tensile strength newtons 682 861 1016 1210 1370 1716 2060 2410 2570 2760 3100 3400 3400 4320 5170 6040 6870 7730 8670 10370 12080 13720
Breaking load kg
BRITISH STANDARD
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
52500 52400 52400 52400 52400 52400 52400 52400 52400 52400 52400 52400 49650 49650 49650 49650 48250 48250 48250 48250 48250 48250
61000 61000 61000 61000 61000 61000 61000 61000 61000 61000 61000 61000 59650 59650 59650 59650 58600 48600 58600 58600 58600 58600
1,39 1,10 0,934 0,785 0,692 0,553 0,462 0,394 0,369 0,343 0,306 0,279 0,280 0,221 0,184 0,158 0,139 0,123 0,110 0,0921 0,0791 0,0696
Coefficient DC Initial Final modulus of linear modulus resistance expansion of elasticity of elasticity at 20° C /C°10 -6 ohms/km N/mm2 N/mm2
133 153 169 189 204 235 262 290 302 316 339 359 359 416 467 513 551 600 643 718 789 853
Current rating Amps
BS-3242 : 1970
BRITISH STANDARD BS EN 50189:2000
Properties of ST1A Wires
o
Density at 20 C Coefficient of linear expansion Modulus of elasticity o Resistivity at 20 C
3
7.78 kg/dm -6 -1 11.5 x 10 K 207000 N/mm2 192 nΩ m
Steel Wires also available in ST2B, ST3D, ST4A, ST5E and ST6C.
20
PATEL WIRE INDUSTRIES
CANADIAN STANDARD CSA C-49/1965 Minimum ultimate tensile stress
Nominal wire diameter
Before stranding
inch
mm
0.0501-0.0600 0.0601-0.0700 0.0701-0.0800 0.0801-0.0900 0.0901-0.1000 0.1001-0.1100 0.1101-0.1200 0.1201-0.1400 0.1401-0.1500 0.1501-0.1600 0.1601-0.2100 0.2101-0.2200
1.27-1.52 1.53-1.77 1.78-2.20 2.03-2.28 2.29-2.54 2.55-2.79 2.80-3.04 3.05-3.55 3.56-3.80 3.81-4.06 4.07-5.33 5.34-5.59
Ib/in2
29000 28500 28000 27500 27000 26000 25500 25000 24500 24000 24000 23500
N/mm2
199.95 196.50 193.05 189.60 186.16 179.26 175.82 172.37 168.92 165.47 165.47 162.03
After stranding Ib/in2
27,550 27,075 26,600 26,125 25,650 24,700 24,225 23,750 23,275 22,800 22,800 22,325
Ib/in2
Ultimate Elongation in 10 inches (250 mm) Before After Stranding Stranding percent
189.95 186.67 183.40 180.12 176.85 170.30 167.03 163.75 160.47 157.20 157.20 153.93
1.2 1.3 1.4 1.5 1.5 1.5 1.6 1.7 1.8 1.9 2.0 2.1
0.7 0.8 0.9 1.0 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6
1 lb/in2=6.894757x10-3 N/mm2 Tolerances on nominal diameter of wire: max. ±0.0010 inch ±0.00254 mm
Resistivity at 20ºC max: 28.264 ohm.mm2/km max: 17.002 ohm.CM/foot Density at 20ºC 2.703 g/cm3 0.097652 lb/in3
21
PATEL WIRE INDUSTRIES
22
PATEL WIRE INDUSTRIES
Equival. copper area mm2 13.30 16.77 21.15 26.67 33.62 42.41 53.50 67.43 85.01 95.59 107.21 126.69 152.01 159.38 177.40 202.70 288.01 239.00 253.39 278.71 304.09 329.29 354.72 380.02 405.41 437.72 456.01 481.42 506.71
Code name
ROSE LIL Y LILY IRIS PANSY POPPY ASTER PHLOX OXLIP DAISY PEONY TULIP CANNA COSMOS ZINNIA DAHLIA ORCHID VIOLET PETUNIA ARBUTUS ANEMONE MAGNOLIA BLUEBELL MARIGOLD HAWTHORN NARCISSUS COLUMBINE CARNATION GLADIOLUS COREOPSIS 7/1.96 7/2.20 7/2.47 7/2.77 7/3.12 7/3.50 7/3.93 7/4.41 7/4.96 19/3.19 19/3.38 19/3.67 19/4.02 19/4.12 19/4.34 37/3.33 37/3.53 37/3.61 37/3.72 37/3.90 37/4.08 37/4.24 61/3.43 61/3.55 61/3.67 61/3.78 61/3.89 61/3.99 61/4.10
Stranding and wire diameter mm
ALL ALUMINIUM CONDUCTOR - (AAC)
21.12 26.61 33.54 42.18 53.52 67.35 84.91 106.92 135.25 151.85 170.48 200.99 241.15 253.30 281.08 322.24 362.11 378.71 402.14 442.00 483.74 522.42 563.65 603.78 645.29 684.55 724.97 762.72 805.36
mm2
mm 5.88 6.60 7.41 8.31 9.36 10.50 11.79 13.23 14.88 15.95 16.90 18.35 20.10 20.60 21.70 23.31 24.71 25.27 26.04 27.30 28.56 29.68 30.87 31.95 33.03 34.02 35.01 35.91 36.90
Aluminium area
Overall diameter
58.00 73.00 92.10 116 147 185 233 294 371 419 470 554 665 699 775 891 1000 1050 1110 1220 1340 1440 1560 1670 1790 1900 2010 2110 2230
kg/km
Mass
4020 4830 5860 7150 8870 11000 13700 17100 21600 25100 27900 32600 38900 40700 45100 52900 59000 61600 65200 71400 77800 83900 92200 98400 105000 111000 117000 123000 130000
Ultimate tensile strength newtons 410 492 597 729 904 1120 1400 1740 2200 2560 2840 3320 3970 4150 4660 5390 6010 6280 6650 7280 7930 8550 9400 10000 10700 11300 11900 12500 13300
kg
Breaking load
CANADIAN STANDARD
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
52400 52400 52400 52400 52400 52400 52400 52400 52400 49650 49650 49650 49650 49650 49650 48250 48250 48250 48250 48250 48250 48250 46200 46200 46200 46200 46200 46200 46200
61000 61000 61000 61000 61000 61000 61000 61000 61000 59650 59650 59650 59650 59650 59650 58600 58600 58600 58600 58600 58600 58600 57570 57570 57570 57570 57570 57570 57570
1.3555 1.0759 0.8535 0.6787 0.5349 0.4251 0.3372 0.2678 0.2117 0.1894 0.1687 0.1431 0.1193 0.1136 0.1023 0.0895 0.0796 0.0761 0.0717 0.0652 0.0596 0.0552 0.0513 0.0479 0.0448 0.0422 0.0399 0.0379 0.0359
Final DC Coefficient Initial modulus resistance of linear modulus expansion of elasticity of elasticity at 20° C N/mm2 ohms/km /C°10 -6 N/mm2
130 150 170 200 230 270 310 360 410 450 480 531 590 610 650 710 770 790 820 870 910 960 1000 1050 1100 1130 1170 1200 1240
Amps
Current rating
C 49 - 1965
23
PATEL WIRE INDUSTRIES
152.00 152.00
152.00 152.00
159.40
PELICAN FLICKER
HEN HAWK
HERON
85.01 95.60 95.60
WAXWING PIPER OSTRICH
107.20 126.70 126.70 126.70
85.01
OWL
MERLIN CHICADEE LARK IBIS
42.41 53.49 67.43 85.01
QUAIL PIGEON PENGUIN PARTRIDGE
107.20 107.20
5.26 6.63 8.37 10.55 13.30 16.77 21.15 26.67 36.62
WREN WARBLER TURKEY THRUSH SWAN SWALLOW SP ARROW SPARROW ROBIN RAVEN
ORIOLE LINNET
Equival. copper area mm 2
Code name
6/1/3.78 6/1/4.25 6/1/4.77 26/2.57 +7/2.00 6/5.36 +7/1.79 18/1/3.09 30/7/2.54 26/2.73 +7/2.12 30/7/2.69 26/2.89 +7/2.25 18/1/3.47 18/1/3.77 30/7/2.92 26/3.14 +7/2.44 18/1/4.14 24/3.58 +7/2.39 30/7/3.20 26/3.44 +7/2.68 30/7/3.28
6/1/1.33 6/1/1.50 6/1/1.68 6/1/1.89 6/1/2.12 6/1/2.38 6/1/2.67 6/1/3.00 6/1/3.37
Stranding and wire diameter mm
9.84
9.60 8.04
4.14 7.17
3.47 3.77 8.76 7.32
8.07 6.75
3.09 7.62 6.31
5.36
3.78 4.25 4.77 6.00
1.33 1.50 1.68 1.89 2.12 2.38 2.67 3.00 3.37
22.96
22.40 21.80
20.70 21.49
17.37 18.87 20.44 19.88
18.83 18.31
15.47 17.78 17.28
253.49
241.27 241.65
242.31 241.58
170.22 200.93 200.90 201.34
170.50 170.55
134.98 152.01 152.19
135.39
53.52 67.33 85.12 107.22 134.87
10.11 11.34 12.75 14.31 16.28 16.09
8.34 10.60 13.30 16.83 21.18 26.69 33.59 42.41
3.99 4.50 5.04 5.67 6.36 7.14 8.01 9.00
DiamAlueter over Overall minium diamarea steel mm eter mm mm2
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
59.15
56.30 39.49
13.46 31.40
9.46 11.16 46.88 32.73
39.78 27.83
7.50 35.47 24.71
17.62
8.92 11.22 14.19 17.87 21.99
1.39 1.77 2.22 2.81 3.53 4.45 5.60 7.07
Steel area mm 2
312.64
297.57 281.13
255.77 272.99
179.68 212.09 247.77 234.07
210.28 198.39
142.48 187.48 176.90
153.00
62.44 78.55 99.30 125.09 156.87
9.73 12.37 15.52 19.64 24.71 31.14 39.19 49.48
Total area mm 2
702
668 669
669 668
470 555 557 557
472 472
373 421 421
372
147 185 234 295 373
22.90 29.20 36.60 46.30 58.30 73.40 92.40 117
Aluminium
468
445 312
106 248
74.40 87.90 371 259
315 220
59 280 195
139
70.20 88.30 112 141 174
10.90 13.90 17.40 22.10 27.80 35.00 44.10 55.60
Steel
Mass kg/km
1170
1110 981
775 916
544 643 928 816
787 692
432 701 616
511
217 273 346 436 547
33.80 43.10 54.00 68.40 86.10 108 137 173
Total
CANADIAN STANDARD
108000
103000 84300
53800 75600
38300 44900 86300 71000
74200 61200
30800 66900 55200
43600
18700 23300 29300 36800 49800
4100 4780 5600 6700 8080 9850 12100 15000
11000
10500 8590
5480 7710
3900 4580 9820 7240
7560 6240
3140 6820 5630
4440
1910 2380 2990 3750 5080
418 487 571 683 824 1000 1230 1530
18.43
18.43 19.36
21.44 19.91
21.44 21.44 18.43 19.38
18.43 19.37
21.44 18.43 19.38
19.90
19.31 19.31 19.31 19.31 19.37
19.31 19.31 19.31 19.31 19.31 19.31 19.31 19.31
Ultimate Break- Coefficient of linear ing tensile strength load expansion /C°10 -6 kg newtons
53700
53900 49500
40700 47300
41300 41000 54500 50100
55300 50900
41900 55900 51500
47800
49400 49000 48600 48500 52400
71100 65000 60500 57000 54500 52600 51200 50200
83400
83400 77100
66200 73900
66200 66200 83400 77000
83400 77100
66200 83400 77000
76500
80400 80400 80400 80400 77100
80400 80400 80400 80400 80400 80400 80400 80400
Final Initial modulus modulus of of elasticity elasticity N/mm2 N/mm 2
0.1140
0.1198 0.1195
0.1189 0.1195
0.1686 0.1427 0.1438 0.1434
0.1695 0.1692
0.2126 0.1901 0.1897
0.2119
0.5361 0.4261 0.3371 0.2676 0.2140
3.4423 2.7062 2.1574 1.7046 1.3548 1.0750 0.8541 0.6766
630
610 610
600 610
480 530 550 540
490 490
420 460 460
420
240 270 320 370 420
75 87 100 120 130 150 180 210
DC resistance Current rating at 20°C ohms/km Amps
C 49 - 1965
24
PATEL WIRE INDUSTRIES
192.80 202.70
DUCK ROOK
212.30 228.00
228.00
228.00 253.40
253.40
253.40
253.40 278.70 286.80 304.00
GULL REDWING
STARLING
CROW TERN
MALLARD
DRAKE
CONDOR CRANE CANARY RAIL
202.70 212.30
192.80
TEAL
GOOSE FLAMINGO
192.80
SQUAB
202.70
192.80
PEACOCK
GROSBEAK
177.40 177.40
EAGLE DOVE
202.70
177.40 177.40
OSPREY PARAKEET
EGRET
Equival. copper area mm2
Code name
18/1/4.47 24/3.87 +7/2.58 30/7/3.46 26/3.72 +7/2.89 24/4.03 +7/2.69 26/3.87 +7/3.01 30/3.61 +19/2.16 54/7/2.69 24/4.14 +7/2.76 30/3.70 +19/2.22 26/3.97 +7/3.09 54/7/2.76 24/4.20 +7/2.82 54/7/2.82 30/3.92 +19/2.35 26/4.21 +7/3.28 54/7/2.92 45/3.38 +7/2.25 30/4/.14 +19/2.48 26/4.44 +7/3.45 54/7/3.08 54/7/3.23 54/7/3.28 45/3.70 +7/2.47
Stranding and wire diameter mm
9.24 9.69 9.84 7.41
10.35
12.40
8.76 6.75
9.84
8.46 11.75
8.28 8.46
9.27
11.10
8.07 8.28
10.80
9.03
8.07
10.38 8.67
4.47 7.74
Diameter over steel mm
27.76 29.11 29.51 29.59
28.11
28.96
26.28 27.00
26.68
25.38 27.43
24.84 25.38
25.15
25.90
24.21 24.82
25.25
24.54
24.21
24.22 23.55
22.33 23.22
402.33 442.47 456.28 483.84
402.56
403.84
361.62 403.77
361.93
337.27 362.06
323.07 337.27
321.84
322.56
306.89 323.07
307.06
305.83
306.13
282.07 282.59
282.47 282.31
AluOverall minium diamarea eter mm mm2
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
52.15 57.36 59.15 33.54
65.44
91.78
46.88 27.83
59.15
43.72 82.41
41.88 43.72
52.49
73.54
39.78 41.88
69.62
49.81
39.78
65.82 45.92
15.69 36.60
Steel area mm2
454.49 499.83 515.43 517.39
468.00
495.62
408.49 431.60
421.08
380.99 444.47
364.95 380.99
374.34
396.11
346.68 364.95
376.68
355.64
345.92
347.89 328.50
298.17 318.90
Total area mm2
1120 1230 1260 1340
1110
1120
1000 1120
1000
935 1000
895 932
891
894
851 893
851
847
846
781 782
780 780
Aluminium
412 453 468 265
517
728
371 220
468
346 654
331 346
415
583
315 331
552
394
315
520 363
124 289
Steel
Mass kg/km
62500 87300
6370 8900
94400
9620
97500 9940 99200 10100
1530 1680 1730 1610
125000 137000 141000 117000
12700 14000 14400 11900
1630 137000 14000
1850 170000 17300
1370 113000 11500 1340 98700 10100
1470 124000 12600
1280 106000 10800 1650 154000 15700
1230 102000 10400 1278 103000 10500
1310 111000 11300
1480 139000 14200
1170 1224
1400 132000 13500
1240 105000 10700
1161
19.91 19.91 19.91 21.11
19.38
18.50
19.91 21.12
19.36
19.91 18.49
19.91 19.91
19.37
18.49
19.91 19.91
18.50
19.37
19.91
18.43 19.38
21.44 19.91
47500 47200 47100 42400
48400
53400
47800 42900
48600
48100 53800
48300 46500
48800
54200
48600 46500
54400
48900
46700
53400 49000
40500 46800
73200 73200 73200 66700
77000
81900
73200 66600
77100
73200 81900
73200 73800
77100
81900
73200 73800
81800
77100
73900
83400 77000
66200 73800
0.0718 0.0653 0.0634 0.0598
0.0717
0.0716
0.0799 0.0718
0.0798
0.0857 0.0798
0.0895 0.0856
0.0897
0.0896
0.0942 0.0894
0.0941
0.0944
0.0943
0.1024 0.1021
0.1018 0.1023
830 880 900 920
830
840
780 830
780
740 790
720 740
730
730
700 720
710
700
700
670 670
660 670
Current rating Amps
C 49 - 1965 Initial Final DC Ultimate Break- Coefficient modulus modulus resistance ing of linear tensile of of strength load expansion elasticity elasticity at 20°C kg /C°10 -6 newtons N/mm2 N/mm2 ohms/km
1300 119000 12100 1150 97400 9930
904 1069
Total
CANADIAN STANDARD
25
PATEL WIRE INDUSTRIES
456.00
481.40
481.40
506.70
506.70
567.00
NUTHATCH
PARROT
LAPWING
FALCON
CHUKAR
456.00
BOBLINK
PLOVER
430.70
405.40
BITTERN
MARTIN
380.00
GRACKLE
430.70
380.00
BUNTING
DIPPER
354.70
FINCH
405.40
329.40 354.70
CURLEW BLUEJAY
PHEASANT
305.00 329.40
Equival. copper area mm2
CARDINAL ORTLAN
Code name
54/7/3.38 45/3.85 +7/2.57 54/7/3.52 45/4.00 +7/2.66 54/3.65 +19/2.19 45/4.14 +7/2.76 54/3.77 +19/2.27 45/4.27 +7/2.85 54/3.90 +19/2.34 45/4.40 +7/2.92 54/4.02 +19/2.41 45/4.53 +7/3.02 54/4.14 +19/2.48 45/4.65 +7/3.10 54/4.25 +19/2.55 45/4.77 +7/3.18 54/4.36 +19/2.62 84/3.70 +19/2.22
Stranding and wire diameter mm
11.10
13.10
9.54
12.75
9.30
12.40
9.06
12.05
8.76
11.70
8.55
11.35
8.28
10.95
10.56 7.98
10.14 7.71
40.69
39.24
38.15
38.25
37.21
37.21
36.25
36.17
35.18
35.36
34.16
33.99
33.07
32.84
31.65 31.98
30.38 30.81
903.18
806.23
804.15
766.06
764.20
726.92
725.27
685.39
684.24
645.08
644.40
602.79
605.76
565.03
525.50 565.49
484.53 523.87
DiamAlueter over Overall minium area diamsteel mm eter mm mm2
55.60
97.03
52.83
91.78
50.14
86.67
46.88
81.71
44.66
76.89
41.88
71.57
68.12 38.90
62.81 36.31
Steel area mm2
73.54
102.43
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
976.72
908.66
859.75
863.09
817.04
818.70
775.41
772.06
731.12
726.79
689.06
679.68
647.64
636.60
593.62 604.39
547.33 560.18
Total area mm2
2497
2230
2220
2120
2110
2010
2010
1900
1890
1790
1780
1670
1680
1570
1460 1560
1340 1450
Aluminium
583
813
440
770
418
728
396
687
371
648
353
610
331
568
539 308
497 287
Steel
Mass kg/km
3080
3040
2660
2890
2530
2740
2410
2590
2260
2440
2130
2280
2010
2138
2000 1870
1840 1740
Total
CANADIAN STANDARD
233000 23800
246000 25100
190000 19400
234000 23900
181000 18500
222000 22600
172000 17500
210000 21400
162000 16500
199000 20300
154000 15700
187000 19100
145000 14800
176000 17900
161000 16400 135000 13800
149000 15200 126000 12800
20.85
19.96
21.12
19.97
21.12
19.97
21.12
19.97
21.13
19.97
21.11
19.95
21.12
19.97
19.91 21.13
19.91 21.11
Ultimate Break- Coefficient ing tensile of linear strength load expansion kg /C°10 -6 newtons
43600
46400
41600
46400
41600
46500
41700
46700
41700
46900
41900
47100
41900
47300
46700 42000
46900 42200
67500
72300
66700
72300
66700
72200
66700
72300
66500
72300
66700
72300
66700
72300
73200 66600
73200 66700
0.0321
0.0359
0.0359
0.0377
0.0378
0.0398
0.0399
0.0422
0.0422
0.0448
0.0449
0.0480
0.0478
0.0512
0.0550 0.0513
0.0597 0.0552
1300
1300
1300
1200
1200
1200
1200
1100
1100
1100
1100
1100
1100
1100
980 1000
930 970
Final Initial DC modulus modulus resistance Current of of rating at 20°C elasticity elasticity 2 ohms/km Amps N/mm 2 N/mm
C 49 - 1965
CANADIAN SIZES ALL-ALUMINIUM ALLOY CONDUCTOR - (AAAC) Area
Stranding Overall and wire diameter diameter
Weight
Nominal breaking load
Maximum resistance at 20ºC
kg/km
kgf
ohm/km
Copper Equivalent
Aluminium AWG or MCM
Total Area
C 49 - 1965
mm2
AWG or MCM
mm2
MCM
mm2
mm
mm
8
8.4
10
5.3
19
9.5
7/1.32
3.96
26
295
3.416
7
10.6
9
6.6
24
12.0
7/1.48
4.44
33
370
2.710
6 5
13.3
8
8.4
30
15.2
7/1.66
4.98
41
470
2.148
16.8
7
10.6
38
19.1
7/1.86
5.58
52
590
1.703
4
21.2
6
13.3
48
24.1
7/2.09
6.27
66
745
1.352
3
26.7
5
16.8
60
30.4
7/2.35
7.05
83
940
1.0720
2 1
33.6
4
21.2
76
38.3
7/2.64
7.92
105
1185
0.8494
42.4
3
26.7
95
48.3
7/2.96
8.88
132
1495
0.6742
1/0
53.5
2
33.6
120
61.0
7/3.33
9.99
166
1885
0.5344
2/0
67.4
1
41.4
152
76.8
7/3.74
11.22
210
2375
0.4238
3/0 4/0
85.0
1/0
53.5
192
97.0
7/4.20
12.60
265
3000
0.3355
107.2
2/0
67.4
241
122.3
7/4.72
14.15
334
3780
0.2666
4/0
107.2
2/0
67.4
241
122.3
19/2.86
14.30
335
3780
0.2678
266.8
135.2
3/0
85.0
304
154.1
19/3.21
16.05
423
4765
0.2125
300 336
152.0
189
95.6
342
173.4
19/3.41
17.05
475
5360
0.1889
170.5
4/0
107.2
384
194.4
19/3.61
18.05
533
6010
0.1684
397.5
201.4
250
126.7
453
229.7
19/3.92
19.60
629
7100
0.1423
477
241.7
300
152.0
544
275.7
19/4.30
21.50
756
8530
0.1187
500 556.5
253.3
315
159.4
570
288.8
37/3.15
22.05
796
8930
0.1187
282.0
350
177.3
635
321.5
37/3.33
23.31
885
9930
0.1026
636
322.3
400
202.7
725
367.4
37/3.56
24.92
1012
11350
0.0895
715.5
362.5
450
228.0
816
413.5
37/3.77
26.39
1140
12775
0.0795
750 795
380.0
472
239.2
856
433.7
37/3.86
27.02
1195
13400
0.0758
402.8
500
253.4
907
459.4
37/3.98
27.86
1266
14200
0.0714
814.5
443.1
550
278.7
997
505.2
37/4.16
29.12
1391
15625
0.0650
26
PATEL WIRE INDUSTRIES
CANADIAN STANDARD TYPES OF CORE WIRES SW AND MW
CSA C-49/1965
Inch-pound units Nominal wire diameter inch
0.0500-0.0599 0.0600-0.0749 0.0750-0.0899 0.0900-0.1039 0.1040-0.1199 0.1200-0.1399 0.1400-0.1799 0.1800-0.1899
Ultimate T ensile Tensile strength Before After stranding ib/inch2
190000 190000 190000 190000 190000 190000 190000 190000
180500 180500 180500 180500 180500 180500 180500 180500
Ultimate Elongation in 10 inch Before After stranding
Stress at 1% elongation under load
Weight of zinc
percent
lb/inch2
oz/ft 2
170,000 170,000 170,000 165,000 165,000 160,000 160,000 160,000
0.60 0.65 0.70 0.75 0.80 0.85 0.90 1.00
N/mm2
g/m2
1172 1172 1172 1138 1138 1103 1103 1103
183 198 214 229 244 259 275 305
4.0 4.0 4.0 4.5 4.5 5.0 5.0 5.0
3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5
Ratio mandrel diameter to wire diamter for adherence test
3 3 3 4 4 4 5 5
1inch = 25.4 mm 1 lb/in2 = 6.894757x10-3 N/mm2 1 oz/ff2 = 305.152 g/m2
Metric units mm
1.270-1.521 1.524-1.902 1.905-2.283 2.286-2.639 2.642-3.045 3.048-3.553 3.556-4.569 4.572-4.823
N/mm2
N/mm2
1310 1310 1310 1310 1310 1310 1310 1310
1244.5 1244.5 1244.5 1244.5 1244.5 1244.5 1244.5 1244.5
percent
4.0 4.0 4.0 4.5 4.5 5.0 5.0 5.0
3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5
Tolerance on nominal diameter of wires Inch units
Metric units
Nominal diameter
Tolerance minus plus
Nominal diameter
inch
inch
mm
0.0500-0.0749 0.0750-0.1199 0.1200-0.1399 0.1400-0.1899
0.0015 0.0020 0.0030 0.0040
0.0010 0.0020 0.0020 0.0030
1.270-1.902 1.905-3.045 3.048-3.553 3.556-4.823
27
Tolerance minus plus mm
0.0381 0.0508 0.0762 0.1016
3 3 3 4 4 4 5 5
Density at 20ºC 7.78 g/cm3 0.281 lb/in3
0.0254 0.0508 0.0508 0.0762
PATEL WIRE INDUSTRIES
FRENCH STANDARD NF C 34-120/1976 Ultimate elongation in 2000 mm (7..87 in)
Minimum ultimate tensile stress
Nominal wire diameter mm
inch
1.50 d≤1.75 1.75 1.50≤d 1.75 d≤2.00 2.00 1.75≤d 2.00 ≤d≤2.25 2.00≤ 2.25 ≤d≤2.50 2.25≤ 2.50 2.75 2.50≤d≤2.75 2.75 d≤3.00 3.00 2.75≤d 3.00 d≤3.25 3.25 3.00≤d 3.25 d≤3.50 3.50 3.25≤d 3.50 d≤3.75 3.75 3.50≤d 3.75 d≤4.25 4.25 3.75≤d 4.25 d≤4.50 4.50 4.25≤d
0.0590≤d≤0.0689 0.0689≤d≤0.0787 0.0787≤d≤0.0886 0.0886≤d≤0.0984 0.0984≤d≤0.1083 0.1080≤d≤0.1181 0.1181≤d≤0.1279 0.1279≤d≤0.1378 0.1378≤d≤0.1476 0.1476≤d≤0.1673 0.1673≤d≤0.1772
Before stranding
After stranding
hbar
hbar
18.82 18.42 18.03 17.64 17.25 16.86 16.56 16.37 16.17 15.97 15.88
lb/in2
27340 26716 26150 25585 25019 24453 24018 23742 23453 23162 23032
lb/in2
17.84 17.54 17.15 16.76 16.37 15.97 15.68 15.58 15.39 15.19 15.09
25,875 25,440 24,874 24,308 23,743 23,162 22,742 22,597 22,321 22,031 21,886
Before Stranding %
After Stranding %
1.00 1.20 1.50 1.50 1.75 2.00 2.00 2.00 2.00 2.50 2.50
0.50 0.70 1.00 1.00 1.25 1.50 1.50 1.50 1.50 2.00 2.00
1 hbar = 1450.3806 lb/in2
TOLERANCES ON NOMINAL DIAMETERS OF WIRES Nominal diameter mm
inch
d≤2.50 2.50
d≤0.0984
d≥2.50 2.50
d≥0.0984
Resistivity at 20ºC max: 28.264 ohm.mm2/km max: 17.002 ohm.CM/foot
Tolerance
±0.025 mm ±0.000984 in ±1%
Density at 20ºC 2.703 g/cm3 0.097652 lb/in3
TORSION STREES (BEFORE STRANDING) Torsion twist
Length
25 12
100xd 50xd
BENDING TEST (BEFORE STRANDING) Nominal wire diameter mm
1.50 d≤1.75 1.75 1.50≤d 1.76 d≤2.00 2.00 1.76≤d 2.00 d≤2.25 2.25 2.00≤d 2.25 d≤2.50 2.50 2.25≤d 2.50 d≤2.75 2.75 2.50≤d 2.75 d≤3.00 3.00 2.75≤d 3.00 d≤3.25 3.25 3.00≤d 3.25 d 3.50 3.25≤d≤3.50 3.50 d 3.75 3.50≤d≤3.75 3.75 d≤4.25 4.25 3.75≤d 4.25 d≤4.50 4.50 4.25≤d
28
Bending Bending radius mm
10 9 8 8 11 11 10 10 9 9 8
5 5 5 5 10 10 10 10 10 10 10
PATEL WIRE INDUSTRIES
FRENCH STANDARD NF C 34-125/1976 Nominal wire diameter mm
inch
2.00 0.0787 2.10 0.0827 2.25 0.0886 2.50 0.0984 2.61 0.1027 2.80 0.1102 3.15 0.1240 3.45 0.1358 3.47 0.1366 3.55 0.1398 3.60 0.1417 3.72 0.1465 4.00 0.1575 4.24 0.1669 1hbar = 1450.3726 lb/in2
Minimum tensile strength hbar
32.4
31.9
lb/in2
46992
462
Ultimate Elongation on 200 mm (7.874 in) Before After stranding %
Bending test
mm
%
4
4
Bending radius
Bending
inch
5
5
0.1968
4
5
0.1968
8
10
0.3937
7
10
0.3937
7
15
0.5906
3.5
3.5
Resistivity at 20ºC before stranding 32.800 ohm.mm2/km 19.729 ohm.CM/foot is the maximum value permitted and 32.500 ohm.mm2/km 19.549 ohm.CM/foot which shall be used for calculation.
Tolerance on nominal diameters of wire ±1% if d≥2.5 mm (0.0984 in) ±0.025 mm (9.842x10-4 in) if d≤2.50 mm (0.0984 in) -1% in case of centre wire +7%
After stranding above values may be: 33.100 ohm.mm2/km 19.910 ohm.CM/foot and 32.800 ohm.mm2/km 19.729 ohm.CM/foot
Density at 20ºC 2.700 kg/cm3 0.097543 lb/in3
29
PATEL WIRE INDUSTRIES
FRENCH STANDARD ALL ALUMINIUM CONDUCTOR - (AAC) Nominal area
Stranding and wire diameter
Overall Diameter
NFC : 34120
Approx. weight
mm2
mm
mm
kg/km
27.8 34.4 43.1 54.6 75.6 93.3 117 148 188 228 238 288 366 475 604 710
7x2.25 7x2.50 7x2.80 7x3.15 19x2.25 19x2.50 19x2.80 19x3.15 19x3.55 37x2.80 37x2.86 37x3.15 37x3.55 61x3.15 61x3.55 91x3.15
6.75 7.50 8.40 9.45 11.25 12.50 14 15.75 17.75 19.60 20.02 22.05 24.85 28.35 31.95 34.65
77 95 118 150 209 258 324 410 520 633 650 799 1016 1324 1680 1950
30
Nominal breaking load
kg 465 576 725 863 1220 1510 1840 2270 2880 3510 3630 4310 5470 6860 8720 10220
Maximum dc resistance at 20ºC
ohm/km 1.03 0.833 0.665 0.526 0.382 0.309 0.247 0.195 0.153 0.127 0.122 0.100 0.0792 0.0612 0.0481 0.410
PATEL WIRE INDUSTRIES
31
PATEL WIRE INDUSTRIES
CANNA 37.7 CANNA 59.7 CANNA 75.5 CANNA 93 CANNA 116.2 CANNA 147.1 CROCUS 147.1 CANNA 181.6 CANNA 228 CROCUS 228 CANNA 288 CROCUS 288 CROCUS 297 CROCUS 412 CROCUS 612 CROCUS 865 CROCUS 1185
Code name
28.27 37.70 47.71 59.0 94.25 119.28 119.28 147.26 184.72 184.72 233.8 233.8 221.67 325.72 506.97 717.83 956.66
MM2
Aluminium
9.42 21.99 27.83 34.3 21.99 27.83 27.83 34.26 43.10 43.10 54.55 54.55 75.54 85.95 104.79 104.06 227.82
MM2
Steel
Area
37.69 59.69 75.54 93.3 116.24 147.11 147.11 181.62 227.82 227.82 288.35 288.35 297.21 411.67 611.8 865.4 1185
MM2
Total
17.8 23.7 30.0 36.2 59.3 75.0 75.0 92.6 116.2 116.2 147 147 139 205 319 451 602
MM2 9/2.0 12/2.0 12/2.25 12/2.5 30/2.0 30/2.25 30/2.25 30/2.5 30/2.8 30/2.8 30/3.15 30/3.15 36/2.8 32/3.6 20/4.24 66/3.72 66/3.47
MM 3/2.0 7/2.0 7/2.25 7/2.5 7/2.0 7/2.25 7/2.25 7/2.5 7/2.8 7/2.8 7/3.15 7/3.15 19/2.25 19/2.4 19/2.65 19/3.15 37/2.8
MM
Stranding and Equivalent wire diameter copper area Steel Aluminium
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
8.3 10.0 11.25 12.50 14.0 15.75 15.75 17.5 19.6 19.6 22.05 22.05 22.45 26.4 32.2 38.1 44.7
MM
Overall diameter
78 104 130 136 260 329 329 406 510 510 647 647 620 912 1404 2002 2668
KG/KM
Aluminium
FRENCH STANDARD
77 172 218 269 172 218 218 269 338 338 427 427 598 681 837 1172 1810
KG/KM
Steel
Weight
155 276 348 405 432 547 547 675 848 848 1074 1074 1218 1593 2241 3174 4478
KG/KM
Total
1570 3110 3916 5226 4227 5302 6067 6383 7862 9177 9789 1153 14225 17294 23198 32519 47865
KG
Nominal breaking load
1.02 0.765 0.605 0.485 0.306 0.243 0.243 0.197 0.157 0.157 0.1225 0.1225 0.1305 0.0890 0.0566 0.0405 0.0303
OHM/KM
Maximum dc resistance at 20ºC
CANNA 37.7 CANNA 59.7 CANNA 75.5 CANNA 93 CANNA 116.2 CANNA 147.1] CROCUS 147.1 CANNA 181.6 CANNA 228 CROCUS 228 CANNA 288 CROCUS 288 CROCUS 297 CROCUS 412 CROCUS 612 CROCUS 865 CROCUS 1185
Code name
NFC 34120 : 1976
FRENCH STANDARD ALL-ALUMINIUM ALLOY CONDUCTOR - (AAAC) Code name
ASTER 22 ASTER 34.4 ASTER 54.6 ASTER 75.5 ASTER 117.0 ASTER 148 ASTER 181.6 ASTER 228 ASTER 288 ASTER 366 ASTER 570 ASTER 851 ASTER 1144 ASTER 1600
Equivalent copper area
Stranding and wire diameter
mm2
mm
12 18.8 29.8 41.3 63.9 80.9 99.2 124.5 157.6 200.1 311.6 464.8 624.9 872.1
7/2.0 7/2.5 7/3.15 19/2.25 19/2.8 19/3.15 37/2.5 37/2.8 37/3.15 37/3.55 61/3.45 91/3.45 91/4.0 127/4.0
Approx. overall diameter
mm 6.0 7.5 9.45 11.25 14.0 15.75 17.5 19.6 22.05 24.85 31.05 37.95 44.0 52.0
NFC 34-125 : 1976 Total area
Weight
Nominal breaking load
mm2
kg/km
kgf
21.99 34.36 54.55 75.54 117.0 148.1 181.6 227.8 288.3 366.2 370.2 850.7 1143.5 1595.9
32
60 94 149 208 322 407 500 627 794 1009 1574 2354 3164 4425
722 1129 1792 2481 3842 4864 5963 7481 9468 12022 18722 27390 36974 51638
Maximum dc resistance at 20ºC
Code name
ohm/km 1.497 0.9580 0.6034 0.4379 0.2827 0.2234 0.1825 0.1455 0.1150 0.09053 0.05827 0.03915 0.02912 0.02069
ASTER 22 ASTER 34.4 ASTER 54.6 ASTER 75.5 ASTER 117.0 ASTER 148 ASTER 181.6 ASTER 228 ASTER 288 ASTER 366 ASTER 570 ASTER 851 ASTER 1144 ASTER 1600
PATEL WIRE INDUSTRIES
FRENCH STANDARD NFC 34-120/1976 Minimum stress at 1% extension
Nominal diameter
Type N+
Type R+
mm
inch
hbar
lb/in
hbar
2.00 2.25 2.40 2.50 2.65 2.80 3.15
0.0788 0.0886 0.0945 0.0984 0.1043 0.1102 0.1240
100.5
145763
125.5
182,023
97,5
141412
125,5
182,023
2
lb/in2
1 hbar = 1450.3806 lb/in2 +Note:
Type of wires N = normal
Ultimate tensile strength min. 117.6 hbar 170565 lb/in2
Type of wires R = reinforced
156.8 hbar 227420 lb/in2 d≤3.15 mm (0.1240 in) 151.9 hbar 220313 lb/in3 d≥3.15 mm (0.1240 in)
if and if Tolerances on nominal diameter of wires: ±2% if d≥2.00 mm (0.0788 in) ±0.04 mm (0.001575 in) if d≤2.00 mm (0.0788 in) -2% in case of centre wire +8%
MINIMUM ELONGATION ON 200 MM (7.874 IN) Density at 20°C 7.800 kg/m3 0.28179 lb/in3
Nominal diameter d mm
d≤2.10 2.10 d≥2.10 2.10
Before Stranding After Stranding Type N Type R Type N Type R
(inch)
%
%
(0.0827) (0.0827)
3.5 4.0
3.25 3.5
3.0 3.5
2.75 3.0
WEIGHT OF ZINC
Nominal diameter d mm (inch)
1.6 d≤1.8 1.8 1.6≤d 1.8 d≤2.2 2.2 1.8≤d 2.2 d≤2.7 2.7 2.2≤d 2.7 d≤2.8 2.8 2.7≤d 2.8 d≤3.5 3.5 2.8≤d
0.0630≤d≤0.0709 0.0709≤d≤0.0866 0.0866≤d≤0.1063 0.1063≤d≤0.1102 0.1102≤d≤0.1378
Heavy Coating Minimum Minimum weight of 1 minute of zinc dips g/dm2
oz/ft 2
2.00 2.15 2.30 2.30 2.45
0.655 0.705 0.754 0.754 0.803
2 2 1/2 3 3 3 1/2
Semi-heavy Coating Minimum Minimum weight of 1 minute of zinc dips g/dm2 oz/ft2
1.60 1.75 1.90 2.05 2.05
0.524 0.573 0.623 0.672 0.670
1 1/2 2 2 2 1/2 2 1/2
1 g/dm2 = 0.327706 oz/ft2
33
PATEL WIRE INDUSTRIES
GERMAN STANDARD TEIL 5/1981
DIN 48 200
Nominal wire diameter mm
inch
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
0.0590 0.0689 0.0787 0.0886 0.0984 0.1082 0.1181 0.1279 0.1378 0.1476 0.1575 0.1673 0.1772
Minimum ultimate tensile stress
Nominal Area
Before stranding in
2
mm
2
1.77 2.41 3.14 3.98 4.91 5.94 7.07 8.30 9.62 11.04 12.57 14.19 15.90
0.00277 0.00375 0.00487 0.00617 0.00761 0.00921 0.01096 0.01286 0.01491 0.01711 0.01948 0.02199 0.02465
N/mm
2
193 188 184 181 177 173 169 166 164 162 160 160 159
ib/in
2
After stranding N/mm2
27985 27260 26680 26245 25665 25085 24505 24070 23780 23490 23200 23200 23055
183 179 176 172 168 164 160 157 156 154 152 152 151
ib/in2
26.535 25,955 25,520 24,940 24,360 23,780 23,200 22,765 22,620 22,330 22,040 11,040 21,895
1 N/mm2 = 145.04 lb/in2 (PSI) Note :
For wire of intermediate diamter, the minimum ultimate tensile stress shall be the same as that for the next large diameter listed
TOLERANCES ON NOMINAL DIAMETERS OF WIRES Nominal diameter
Tolerance
mm
mm
1.50-3.00 3.25-4.50
Resistivity at 20ºC max: 28.264 ohm.mm2/km max: 17.002 ohm.CM/foot Density at 20ºC 2.700 kg/dm3 0.097652 lb/in3
±0.03 ± 0.04
34
PATEL WIRE INDUSTRIES
GERMAN STANDARD TEIL 6/1981
DIN 48 200
Nominal wire diameter mm
1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Ultimate T ensile stress Tensile Before After stranding min.
Nominal area
inch
mm2
0.0590 0.0689 0.0787 0.0886 0.0984 0.1082 0.1181 0.1279 0.1378 0.1476 0.1575
1.77 2.41 3.14 3.98 4.91 5.94 7.07 8.30 9.62 11.04 12.57
in2
N/mm2
0.00274 0.00374 0.00487 0.00617 0.00761 0.00921 0.01096 0.01298 0.01491 0.01711 0.01955
294
Resistance at 20°C max calculated
lb/in2
ohm/km/1000 yd
42631
18.53 13.64 10.44 8.25 6.68 5.52 4.64 3.95 3.41 2.97 2.61
16.94 12.47 9.55 7.54 6.11 5.05 4.24 3.61 3.12 2.71 2.39
Weight (2.7 kg/dm2) calculated kg/km
lb/1000
4.8 6.5 8.5 10.7 13.3 16.0 19.1 22.4 26.0 29.8 33.9
9.67 13.10 17.13 21.00 26.81 32.25 38.50 25.15 52.41 60.07 68.33
1N/mm2 = 145.04 lb/in2 1 mm = 0.03937 in 1 kg/km = 2.01591 lb/1000 yd Note: For wire of intermediate diameter the tolerance shall be the same as that for next diameter listed.
TOLERANCES ON NOMINAL DIAMETER OF WIRES Nominal diameter mm
Tolerance
inch
mm
inch
1.50-3.00
0.590-0.1881
±0.03
±1.1811x10-3
3.25-4.00
0.1279-0.1575
±0.04
±1.5748x10-3
Elongation on 200 mm (7.874 in) length 4% with each wire
Resistivity at 20ºC max: 32.790 ohm.mm2/km max: 19.73 ohm.CM/foot Density at 20ºC 2.70 kg/dm3 0.097543 lb/in3
35
PATEL WIRE INDUSTRIES
GERMAN STANDARD ALL ALUMINUM CONDUCTOR - (AAC) Nominal Area
Calculated Area
mm2
No. & Diameter of Wires No./mm
16 25 35 50 50 70 95 120 150 185 240 300 400 500 625 800 1000
7/1.7 7/2.1 7/2.5 7/3.0 19/1.8 19/2.1 19/2.5 19/2.8 37/2.25 37/2.5 61/2.25 61/2.5 61/2.89 61/3.23 91/2.96 91/3.35 91/3.74
15. 24. 34. 49. 48. 65. 93. 117. 147. 181. 242. 299. 400. 499. 626. 802. 999.
mm2
89 25 36 48 36 82 27 0 1 6 5 4 1 8 2 1 74
DIN : 48201
Approx. Overall Diameter mm
Approx. Weight kg/km
Calculated Breaking Strength kg
5.1 6.3 7.5 9.0 9.0 10.5 12.5 14.0 15.7 17.5 20.2 22.5 26.0 29.1 32.6 36.8 1.1
44 67 94 135 133 181 256 322 406 501 670 827 1105 1381 1733 2219 2766
290 425 585 810 860 1150 1595 1910 2570 3105 4015 4850 6190 7600 9690 12055 14845
GERMAN
Approx. Weight
Calculated Breaking Strength
mm2
kg/km
kg
15.89 24.25 34.36 49.48 48.36 65.82 93.27 117.0 147.1 181.6 242.5 299.4 400.1 499.8 626.2 802.1 999.7
5.1 6.3 7.5 9.0 9.0 10.5 12.5 14.0 15.7 17.5 20.2 22.5 26.0 29.1 32.6 36.8 41.1
44 67 94 135 133 181 256 322 406 501 670 827 1105 1381 1733 2219 2766
450 690 980 1410 1380 1875 2660 3335 4190 5175 6910 8535 11400 14245 17845 22860 28490
Calculated Area
mm2
No./mm
7/1.7 7/2.1 7/2.5 7/3.0 19/1.8 19/2.1 19/2.5 19/2.8 37/2.25 37/2.5 61/2.25 61/2.5 61/2.89 61/3.23 91/2.96 91/3.35 91/3.74
16 25 35 50 50 70 95 120 150 185 240 300 400 500 625 800 1000
DIN : 48201
Approx. Overall Diameter mm
Number & Diameter of Wires
1.8018 1.1808 0.8332 0.5786 0.5950 0.4372 0.3085 0.2459 0.1960 0.1588 0.1192 0.09650 0.07221 0.05852 0.04625 0.03602 0.02897
STANDARD
ALL ALUMINIUM ALLOY CONDUCTOR - (AAAC) Nominal Area
Calculated D.C. Resistance at 20ºC Ω /km
36
Calculated D.C. Resistance at 20ºC Ω /km
2.0910 1.3703 0.9668 0.6714 0.6905 0.5073 0.3579 0.2854 0.2274 0.1842 0.1383 0.1120 0.0838 0.0671 0.0537 0.0419 0.0336
PATEL WIRE INDUSTRIES
GERMAN STANDARD ALUMINUM CONDUCTOR STEEL REINFORCED - (ACSR) Nominal Area (AL ./ST .) (AL./ST ./ST.) mm2
16/2.5 25/4 35/6 44/32 50/8 50/30 70/12 95/15 95/55 105/75 120/20 120/70 125/30 150/25 170/40 185/30 210/35 210/50 230/50 240/40 265/35 300/50 305/40 340/30 380/50 385/35 435/55 450/40 490/65 550/70 560/50 680/85
Number & Diameter Calculated Area of wires Aluminum Steel Aluminum Steel No./mm No./mm mm2 mm 2
6/1. 8 6/2. 25 6/2. 7 14/2. 0 6/3. 2 12/2. 33 26/1. 85 26/2. 15 12/3. 2 14/3. 1 26/2. 44 12/3. 6 30/2. 33 26/2. 7 30/2. 7 26/3. 0 26/3. 2 30/3. 0 24/3. 5 26/3. 45 24/3. 74 26/3. 86 54/2. 68 48/3. 0 54/3. 0 48/3. 2 54/3. 2 48/3. 45 54/3. 4 54/3. 6 48/3. 86 54/4. 0
1/1. 8 1/2. 25 1/2. 7 7/2. 4 1/3. 2 7/2. 33 7/1. 44 7/1. 67 7/3. 2 19/2. 25 7/1. 9 7/3. 6 7/2. 33 7/2. 1 7/2. 7 7/2. 33 7/2. 49 7/3. 0 7/2. 33 7/2. 68 7/2. 49 7/3. 0 7/2. 68 7/2. 33 7/3. 0 7/2. 49 7/3. 2 7/2. 68 7/3. 4 7/3. 6 7/3. 0 19/2. 4
15 .3 23 .8 34 .3 44 48 .3 51 .2 69 .9 94 .4 96 .5 105 .7 121 .6 122 127 .9 148 .9 171 .8 183 .8 209 .1 212 .1 230 .9 243 263 .7 304 .3 304 .6 339 .3 382 386 434 .3 448 .7 490 .3 550 561 .7 678 .8
2 .55 4 5 .7 31 .7 89 .6 29 .8 11 .4 15 .3 56 .3 75 .5 19 .8 71 .3 29 .8 24 .2 40 .1 29 .8 34 .1 49 .5 29 .8 39 .5 34 .1 49 .5 39 .5 29 .8 49 .5 34 .1 56 .3 29 .5 63 .6 71 .3 49 .5 86
37
Approx. Overall Diameter mm
5.4 6.8 8.1 11 .2 196 11 .7 11 .7 13 .6 16 17 .5 15 .5 18 16 .1 17 .1 18 .9 19 20 .3 21 21 21 .9 22 .4 24 .5 24 .1 25 27 26 .7 28 .8 28 .7 30 .6 32 .4 32 .2 36
DIN : 48204 Approx. Weight kg/km
62 97 140 372 1710 378 284 383 712 891 494 901 591 605 794 746 850 981 877 987 1002 1236 1160 1180 1453 1344 1653 1561 1866 2092 1954 2570
Calculated Calculated Breaking D.C. Resistance at Strength 20ºC kg Ω /km
595 920 1265 4500 0.5946 4380 2680 3575 7935 10845 4565 10000 5760 5525 7675 6620 7490 9390 7310 8640 8305 10700 9940 9290 12310 10480 13645 12075 15310 17060 14895 21040
1.8793 1.2027 0.8352 0.6573 0.5643 0.4130 0.3058 0.2992 0.2736 0.2374 0.2346 0.2259 0.1939 0.1682 0.1571 0.1380 0.1363 0.1249 0.1188 0.1094 0.09487 0.09490 0.08509 0.07573 0.07478 0.06656 0.06434 0.05896 0.05259 0.05139 0.04260
PATEL WIRE INDUSTRIES
GERMAN STANDARD TEIL 3/1977 TYPE ST-IIII Nominal diameter mm
inch
1.35-1.75 1.76-2.74 2.75-3.49 3.50-4.95
0.0531-0.0689 0.0693-0.1079 0.1083-0.1374 0.1378-0.1949
DIN 48200 Minimum Ultimate tensile stress
Minimum stress at 1% elongation
Before stranding
N/mm
N/mm
lb/in
2
2
1180
171145
1140 1100
165343 159512
2
1310 up to 1520
lb/in
2
190,000 up to 220,458
After stranding N/mm2
lb/in2
1250 1250 1250 1250
181,297 181,297 181,297 181,297
1 N/mm2 = 145.03806 lb/in2 1 mm = 0.03937 in
TOLERANCES ON NOMINAL DIAMETER ON WIRES Nominal diameter mm
1.35-1.75 1.76-2.74 2.75-3.49 3.50-4.95
Tolarances plus and minus
inch
mm
0.0531-0.0689 0.0693-0.1079 0.1083-0.1374 0.1378-0.1949
0.035 0.040 0.050 0.060
inch
Density at 20°C 7.8 kg/dm3 0.28179 lb/in3
1.378x10-3 1.575x10-3 1.968x10-3 2.362x10-3
Minimum weights of zinc coating and tests for uniformity of zinc coating Nominal diameter mm
inch
1.35-1.55 1.56-1.75 1.76-2.24 2.25-2.74 2.75-3.05 3.06-3.49 3.50-4.00 over-4.00
0.0531-0.0610 0.0614-0.0689 0.0693-0.0882 0.0886-0.1079 0.1083-0.1200 0.1205-0.1374 0.1378-0.1575 over 0.1575
Minimum weight of zinc coating g/m2
oz/ft 2
190 200 210 230 240 250 260 275
0.623 0.655 0.688 0.754 0.786 0.819 0.852 0.901
Minimum number of 1 minute dips
2 2 2 1/2 3 3 3 1/2 3 1/2 4
1 g/m2 = 3.27695x10-3 oz/ft2
38
PATEL WIRE INDUSTRIES
INDIAN STANDARD ALL ALUMINIUM CONDUCTORS - (AAC) Nominal Aluminium
IS398 (Part 1): 1996
Stranding and Wire Diameter
Sectional Area
(1) mm2
(2) mm
(3) mm2
(4) mm
25
7/2.21
26.85
6.63
50
7/3.10
52.83
9.30
100
7/4.39
106.0
13.17
150
19/3.18
150.9
15.90
240
19/3.99
237.6
300
19/4.65
322.7
Approxi- Approximate mate Overall Mass Dia
(5) kg/km
Calculated Resistance at 20ºC Max
Approximate Calculated Braking Load
(6) ohms/km
(7) kN
74
1.096
4.52
145
0.5525
8.25
290
0.2752
15.96
415
0.1942
23.28
19.95
654
0.1235
35.74
23.25
888
0.09107
48.74
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR) Nominal Stranding and Aluminium Wire Diameter
Sectional Area of Aluminium
Total Sectional Area
IS398 (Part 2): 1996
Approximate Approximate Overall Mass Diameter
Calculated Resistance at 20ºC Max
Approximate Calculated Breaking Load
Aluminium
Steel
(1) mm2
(2) mm
(3) mm
(4) mm2
(5) mm2
(6) mm
(7) kg/km
10
6/1.50
1/1.50
10.60
12.37
4.50
43
2.780
3.97
18
6/1.96
1/1.96
18.10
21.12
5.88
73
1.618
6.74
20
6/2.11
1/2.11
20.98
24.48
6.33
85
1.394
7.61
30
6/2.59
1/2.59
31.61
36.88
7.77
128
0.928 9
11.12
50
6/3.35
1/3.35
52.88
61.70
10.05
214
0.552 4
18.25
(8) Ohm/km
(9) kN
80
6/4.09
1/4.09
78.83
91.97
12.27
319
0.371 2
26.91
100
6/4.72
7/1.57
105.0
118.5
14.15
394
0.279 2
32.41
150
30/2.59
7/2.59
158.1
194.9
18.13
726
0.187 1
67.34
200
30/3.00
7/3.00
212.1
261.5
21.00
974
0.139 0
89.67
400
42/3.50
7/1.96
404.1
425.2
26.88
1281
0.073 11
88.79
420
54/3.18
7/3.18
428.9
484.5
28.62
1621
0.068 68
130.32
520
54/4.13
7/3.53
528.5
597.0
31.77
1998
0.055 95
159.60
560
42/4.13
7/2.30
562.7
591.7
31.68
1781
0.052 31
120.16
39
PATEL WIRE INDUSTRIES
INDIAN STANDARD ALL ALUMINIUM ALLOY CONDUCTORS - (AAAC) SI No.
Actual Stranding Area and Wire Dia
(1)
mm2 (2)
mm (3)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
15 22 34 55 80 100 125 148 173 200 232 288 346 400 465 525 570 604 642 695 767
3/2.50 7/2.00 7/2.50 7/3.15 7/3.81 7/4.26 19/2.89 19/3.15 19/3.40 19/3.66 19/3.94 37/3.15 37/3.45 37/3.71 37/4.00 61/3.31 61/3.45 61/3.55 61/3.66 61/3.81 61/4.00
Approx. Overall Dia
Approx. Mass
mm (4) 5.39 6.00 7.50 9.45 11.43 12.78 14.45 15.75 17.00 18.30 19.70 22.05 24.15 25.97 28.00 29.79 31.05 31.95 32.94 34.29 36.00
IS398 (Part 4): 1994 Approx. Calculated Breaking Load
Calculated Maximum Resistance at 20ºC
kg/knm (5)
ohms/km (6)
40.15 60.16 94.00 149.20 218.26 272.86 342.51 406.91 474.02 549.40 636.67 794.05 952.56 1101.63 1280.50 1448.39 1573.71 1666.00 1771.36 1919.13 2115.54
2.3040 1.5410 0.9900 0.6210 0.4250 0.3390 0.2735 0.2290 0.1969 0.1710 0.1471 0.1182 0.0984 0.0829 0.0734 0.0651 0.0598 0.0568 0.0534 0.0492 0.0446
kN (7) 4.33 6.45 10.11 16.03 23.41 29.26 36.64 43.50 54.54 58.66 68.05 84.71 101.58 117.40 136.38 146.03 158.66 167.99 178.43 193.25 213.01
ALUMINIUM CONDUCTORS, GALVANIZED STEELREINFORCED FOR EXTRA HIGH VOLTAGE (ACSR) Nominal Aluminium Area
Stranding and Wire Diameter Aluminium
Steel
Sectional Area of Aluminium
IS398 (Part 5): 1992
Total Sectional Area
Approx Overall Diameter
Approx Max
(1)
(2)
(3)
(4)
(5)
(6)
(7)
mm
mm
mm
mm
mm2
mm
kg/km
520 560 690
54/353 42/4.13 42/4.57
7/3.53 7/2.13 7/2.54
528.5 562.7 688.9
597.0 591.7 724.4
31.77 31.68 35.04
2 004 1 787 2 187
Calculated Approx Resistance Breaking at 20°C Load Max Min (8)
(9)
Ω/km
0.005 52 0.051 99 0.042 42
kN
161.20 120.16 146.87
NOTES 1.
Mass of the conductor mentioned in col 7 is different from the mass of the corresponding conductor in other parts of this standard due to the difference in mean lay ratio specified in this part of the standard.
2.
Resistance of the conductor mentioned in col 8 is different from the values specified for the corresponding conductors in other parts of this standard due to the following factors: a) Lower values of resistivity; b) Difference in mean lay ratio; and c) Difference in tolerance on the nominal diameter of aluminium wire.
40
PATEL WIRE INDUSTRIES
49
PATEL WIRE INDUSTRIES
15,6 24,3 36,6 62,9 99,4 171,0 203,5 262,0 332,6 431,8 548,3
Equival. copper area mm 2 7/2,12 7/2,65 7/3,25 7/4,26 19/3,25 19/4,26 19/4,65 37/3,78 37/4,26 61/3,78 61/4,26
Stranding and wire diameter mm 6,42 8,03 10,15 12,91 16,92 21,52 23,49 26,73 30,12 34,36 38,73
Overall diameter mm
12,8 16,0 22,4 25,8 32,3 38,5 64,0 64,0
96,4 161 262 404
* 21/3,5 * 26/4,4 * 37/6,1 * 42/7,1 * 53/8,8 * 63/11 105/17 105/14
158/37 264/62 429/56 662/84
*Standard British Sizes
Equival. copper area mm2
Code name
6/1/2,11 6/1/2,36 6/1/2,79 6/1/3,00 6/1/3,35 6/1/3,66 6/1/4,72 6/4,72 +7/1,57 30/7/2,59 30/7/3,35 54/7/3,18 54/3,95 +19/2,37
Stranding and wire diameter mm
7,77 10,05 9,54 11,85
2,11 2,36 2,79 3,00 3,35 3,66 4,72 4,71 18,31 23,69 28,91 35,94
6,33 7,16 8,45 9,09 10,15 11,09 14,30 14,29 158 264 429 662
20,9 26,3 36,7 42,4 52,9 63,1 105 105
Diameter Overall Aluover diameter minium mm area steel (max) mm2 mm
68 106 159 273 434 745 888 1145 1454 1891 2402
Mass kg/km 4120 6120 8820 14600 23400 38800 46200 59900 75600 96600 122000
Ultimate tensile strength newtons 420 624 899 1490 2390 3960 4710 6110 7710 9850 12440
Breaking load kg 23 23 23 23 23 23 23 23 23 23 23
Coefficient of linear expansion /C°10-6
36,9 61,7 55,6 83,8
3,5 4,4 6,1 7,1 8,8 10,5 17,5 12,7
Steel area mm 2
195 326 484 746
24,5 30,6 42,8 49,5 61,7 73,7 122 118
Total area mm2
436 729 1185 1826
58 72 100 117 145 173 288 292
Aluminium
290 485 436 663
27 34 48 55 69 83 137 102
Steel
85 106 148 172 214 255 425 394
Total
726 1214 1621 2489
Mass kg/km
52400 52400 52400 52400 49650 49650 49650 48250 48250 46200 46200
61000 61000 61000 61000 59650 59650 59650 58600 58600 57570 57570
1,182 0,756 0,503 0,293 0,196 0,108 0,0909 0,0708 0,0558 0,0431 0,0339
Initial DC Final modulus resistance modulus of elasticity of elasticity at 20° C ohms/km N/mm2 N/mm 2 144 190 247 343 457 640 713 833 967 1130 1300
Current rating Amps
3000 2500 2500 1500 2000 1500 1000 1000 1000 1000 1000
Standard drum length m
69250 111400 131900 205500
7710 9610 13150 15200 18400 22500 36540 32640
7060 11350 13400 20940
786 979 1340 1550 1880 2300 3720 3300
18,43 18,43 19,91 19,96
19,31 19,31 19,31 19,31 19,31 19,31 19,31 19,92
55700 53600 47300 49600
54600 52700 50700 50200 49500 49100 48500 48800
83400 83400 73200 72300
80400 80400 80400 80400 80400 80400 80400 76400
0,186 0,111 0,0687 0,0445
1,395 1,116 0,798 0,690 0,553 0,463 0,278 0,278
470 650 860 1123
130 150 190 210 240 260 360 360
2000 2000 1500 1000
3000 3000 2500 1500 1500 1500 1500 2000
Final Initial DC Standard Ultimate Break- Coefficient modulus modulus ing of of resistance Current drum tensile of linear load rating length strength expansion elasticity elasticity at 20°C kg 2 2 m newtons /C°10-6 N/mm N/mm ohms/km Amps
SOUTH AFRICAN STANDARD
24,7 38,6 58,1 99,8 157,6 270,8 322,7 415,2 527,4 684,6 869,4
Aluminium area mm2
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
*Standard British Sizes † Standard Canadian Sizes
25 39 58 100 *158 271 *323 *415 *527 †685 *869
Code name
ALL ALUMINIUM CONDUCTOR - (AAC)
SOUTH AFRICAN STANDARD
COMPACTED CONDUCTOR ALL-ALUMINIUM CONDUCTORS - (AAC)
BRITISH SIZES Compacted all-aluminium conductors
CANADIAN SIZES Compacted all-aluminium conductors
Equi- Overall Weight Maximum Nominal Aluminium valent diameter dc breaking area copper resistance load area at 20ºC
mm2
mm
23.39
14.19
26.84
mm
Aluminium area
AWG
kg/km
ohm./km
kgf
5.64
63.5
1.227
408
3
26.65
6.05
16.13
6.07
73.4
1.064
468
2
33.61
36.90
22.59
7.14
101.2
0.7741
617
42.90
25.81
7.70
117.1
0.6658
706
1
52.77
32.26
8.53
144.3
0.5412
846
63.68
38.71
9.37
174.1
0.4487
1010
50
mm2
Overall Weight Maximum Nominal diameter dc breaking resistance load at 20ºC
mm
kg/km
ohm/km
kgf
73.5
1.074
515
6.81
92.7
0.8514
637
42.39
7.65
116.8
0.6752
774
1/0
53.48
8.59
147.5
0.5351
939
2/0
67.42
9.65
185.9
0.4245
1184
PATEL WIRE INDUSTRIES
51
PATEL WIRE INDUSTRIES
mm2
16.13
19.35
25.81
32.26
38.71
26.32
31.68
41.94
52.26
63.03
16.13
19.35
25.81
32.26
26.32
31.68
41.94
52.26
12.26
16.13
20.65
19.81
26.32
33.87
200 per cent type
12.90
21.16
140 per cent type
12.90
21.16
100 per cent type
mm2
51.42
40.26
30.32
69.81
55.94
42.19
35.16
28.19
73.55
61.10
48.97
36.97
30.71
24.65
mm2
4.724
4.216
3.658
4.724
4.216
3.658
3.353
2.997
3.658
3.353
2.997
2.591
2.362
2.108
mm
8.026
7.163
6.223
9.820
8.788
7.620
6.985
6.248
9.982
9.144
8.179
7.061
6.452
5.766
mm
225.2
182.5
136.9
281.8
225.7
169.7
140.9
112.6
254.5
213.8
170.6
127.5
106.2
84.3
kg/km
0.856
1.096
1.442
0.544
0.680
0.911
1.096
1.376
0.454
0.544
0.680
0.911
1.098
1.376
ohm/km
2325
1958
1489
2815
2325
1744
1468
1117
2172
1877
1550
1163
979
744
kgf
Total Diameter Overall Weight Maximum Nominal EquiAluminium valent area of of steel diameter dc breaking area of Condresistance load core copper conductor uctor at 20ºC area
BRITISH SIZES Compacted ACSR
67.42
2/0
42.39 53.48
1/0
21.16 26.65
4 3
200 per cent type
33.61 1
26.65
3 2
21.16
4
140 per cent type
42.39 53.48
33.61
2 1
26.65
1/0
21.16
3
mm2
4
100 per centype
AWG
Aluminium area
CANADIAN SIZES Compacted ACSR
40.84
32.39
71.35
56.58
44.84
35.55
28.26
78.65
62.39
49.48
39.23
31.10
24.71
mm2
4.247
3.785
4.770
4.247
3.785
3.371
3.002
3.785
3.371
3.002
2.672
2.380
2.118
mm
7.468
6.706
9.855
8.788
7.823
6.909
6.172
10.414
9.246
8.255
7.341
6.553
5.791
mm
216.8
172.1
337.8
267.9
212.3
168.2
133.4
321.9
255.5
202.4
160.2
127.5
100.7
kg/km
1.267
1.598
0.6315
0.7970
1.0040
1.2675
1.598
0.5010
0.6315
0.7970
1.004
1.267
1.598
ohm/km
2102
1671
2951
2356
1878
1506
1232
2424
1941
1583
1266
1023
832
kgf
Total Diameter Overall Weight Maximum Nominal area of of steel diameter dc breaking conductor crore of Condresistance load uctor at 20ºC
ALUMINIUM CONDUCTOR STEEL REINFORCED - (ACSR)
COMPACTED CONDUCTOR
MODULI OF ELASTICITY AND COEFFICIENTS OF LINEAR EXPANSION Average values Type of conductors and number of strands
Metric units Modulus of elasticity Initial
Final N/mm2
Metric units Coefficient of linear expansion x10 -6/°C
Modulus of elasticity Initial
Final
x10-3lbs/in2
Coefficient of linear expansion x10 -6/F°
AAC 1 3 7 19 37 61 91 AAAC 1 7 19 37 61 91 ACSR 1+6 1+7 1+8 1+18 4+3 7+6 7+7 7+8 7+10 7+12 7+14 7+18 7+22 7+24 7+26 7+30 7+42 7+45 7+48 7+54 19+14 19+16 19+30 19+54 HSCuC 7 19 37 61 91
50014 45111 41188 36285 31381 28439 26478
68646 61782 59821 58840 57859 56879 53936
60801 54917 52956 50995 49033 45110
68647 62763 61782 60801 59820 53936
63743 68647 79434 45110 112776 54917 62763 68647 81395 93163 9806 44130 50995 54917 60801 63743 39227 43149 46091 50014 93163 102970 59821 46091
78453 83357 96105 65705 132390 71589 74531 86299 97086 101989 103950 64724 69627 72569 75511 76492 60801 62763 64724 66685 99047 114738 72569 62763
96963 88245 86289 80316 76300
110815 102970 102970 98066 93163
23.0
23.0
19.2 17.8 16.9 21.2 13.8 19.5 18.6 17.6 16.4 15.6 15.4 21.6 20.2 20.0 19.2 17.8 21.3 20.8 20.2 19.3 15.4 14.2 17.6 19.3
17.0
52
7300 6500 6000 5300 4600 4100 3800
10000 9000 8700 8500 8400 8200 7800
8800 8000 7700 7400 7100 6500
10000 9100 9000 8800 8700 7800
9200 10000 11150 6500 16400 8000 9100 10000 11800 13500 14200 6400 7400 8000 8800 9200 5700 6300 6700 7300 13500 14900 8700 6700
11400 12100 13900 9500 19200 10400 10800 12500 14100 14800 15100 9400 10100 10500 11000 11100 8800 9100 9400 9700 14400 16600 10500 9100
14100 12800 12500 11600 11100
16000 14900 14900 14200 12500
12.8
12.8
10.7 9.9 9.4 11.8 7.7 10.8 10.3 9.8 9.1 8.7 8.6 12.0 11.2 11.1 10.7 9.9 11.8 11.6 11.2 10.7 8.6 7.9 9.8 10.7
9.4
PATEL WIRE INDUSTRIES
NON-RETURNABLE WOODEN DRUMS
Dimensions for Non-returnable Wooden Drums Drum No.
Flange Dia.
Barrel Dia.
(L) mm
(M)mm
Traverse (N)mm
ReinforBarrel Flange Lag cing Thickness Thickness Width Thickness Plate mm (T) mm (b) mm (a) mm (P) mm
Barrel Bolts Dia. mm
No.
Shipping Volume m3
24-12
610
356
305
35
16
13
30
51
13
4
0.17
27-12
686
356
305
35
16
13
30
51
13
4
0.227
28-16
711
356
405
35
16
13
30
64
13
4
0.283
30-16
762
356
406
35
16
13
30
64
13
4
0.34
32-16
813
356
406
45
19
19
30
64
13
4
0.396
32-20
813
356
508
45
19
19
30
64
16
4
0.453
34-18
864
432
457
45
19
19
30
64
16
4
0.482
Note: Conductors can be supplied in steel drums as well. Please contact us for details.
53
PATEL WIRE INDUSTRIES
NON-RETURNABLE WOODEN DRUMS Drum No.
Flange Dia. (L) mm
ReinforNON-RETURNABLE WOODEN DRUMS Barrel Flange Barrel DIMENSIONS Dia. TraverseFOR Lag cing Thickness Thickness Thickness Width Plate mm (T) mm (b) mm (a) mm (N)mm (P) mm (M)mm
Barrel Bolts Dia. mm
No.
Shipping Volume m3
36-20
914
432
508
45
19
19
30
64
16
4
0.567
40-18
1016
457
457
51
19
25
37
76
16
4
0.653
40-20
1016
457
508
51
19
25
37
76
16
4
0.736
44-20
1118
558
508
51
19
25
37
76
16
4
0.878
46-24
1168
584
610
51
19
25
37
89
16
4
1.105
48-24
1219
584
610
51
19
25
37
89
16
5
1.22
48-28
1219
584
711
51
19
25
45
89
16
5
1.42
54-28
1372
609
711
57
25
38
45
89
16
5
1.79
54-28
1372
660
711
57
25
38
45
89
16
5
1.79
58-28
1473
711
711
57
25
38
45
89
16
5
2.04
60-28
1524
711
711
57
25
38
45
89
16
5
2.15
60-32
1524
711
812
57
25
38
45
89
16
5
2.44
64-32
1626
711
812
57
25
38
45
89
19
6
2.72
64-32
1626
812
812
57
25
38
45
89
19
6
2.72
66-32
1676
711
812
57
25
38
45
89
19
6
2.95
68-32
1727
711
812
57
25
38
45
89
19
6
2.12
68-38
1727
762
965
57
25
38
51
102
19
6
3.63
72-38
1829
762
965
76
25
38
51
102
19
6
4.16
76-38
1930
914
965
76
25
45
51
102
22
6
4.62
Note: Conductors can be supplied in steel drums as well. Please contact us for details.
GENERAL INFORMATION ON REEL HANDLING Use blocks on both sides
Use crane or forklift
Don’t lay flat.
54
Don’t roll in opposite direction
Don’t drop drum
PATEL WIRE INDUSTRIES
APPENDIX 1. Wire Guages Diameter
Guage B.W .G B.W.G .G..
5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 -
A.W .G A.W.G .G..
S.W .G .W.G .G..
mm.G.
4/0 3/0 2/0 0 1 2 3 4 5 6
7/0 6/0 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 -
12 10 9 8 7 6.5 6.0 5.5 5.0 4.5 -
mil
mm
500 472.4 464 460 454 432 425 409.6 400 393.7 380 372 364.8 354.3 348 340 324.9 324 315 300 289.3 284 276 275.6 259 257.6 255.9 252 238 236.2 232 229.4 220 216.5 212 204.3 203 196.9 192 181.9 180 177.2 176 165 162
12.700 12.000 11.786 11.684 11.532 10.973 10.795 10.404 10.160 10.000 9.652 9.449 9.266 9.000 8.839 8.636 8.250 8.230 8.000 7.620 7.348 7.214 7.010 7.000 6.579 6.544 6.500 6.401 6.045 6.000 5.893 5.827 5.588 5.500 5.385 5.189 5.156 5.000 4.877 4.621 4.572 4.500 4.470 4.191 4.115
Aluminium wire weight
Sectional area CM
250,000 223,162 215,296 211,600 206,100 186,624 180,600 167,772 160,000 155,000 144,400 138,384 138,079 125,528 121,104 115,600 105,560 104,976 99,225 90,000 83,694 80,660 76,176 75,955 67,080 66,358 65,485 63,504 56,640 55,790 53,824 52,624 48,400 46,872 44,944 41,738 41,210 38,770 36,864 33,088 32,400 31,400 30,976 27,220 26,244
55
in2
0.1964 0.1753 0.1691 0.1662 0.1619 0.1466 0.1419 0.1318 0.1257 0.1217 0.1134 0.1087 0.1045 0.09859 0.09512 0.09079 0.08291 0.08245 0.07793 0.07069 0.06573 0.06335 0.05983 0.05966 0.05269 0.05212 0.05143 0.04988 0.04449 0.04382 0.04227 0.04133 0.03801 0.03681 0.03530 0.03278 0.03237 0.03045 0.02895 0.02599 0.02545 0.02466 0.02433 0.02138 0.02061
mm2
kg/km
126.7 113.1 109.1 107.2 104.4 94.56 91.52 85.03 81.07 78.54 73.17 70.12 67.42 63.62 61.36 58.58 53.49 53.19 50.27 45.60 42.41 40.87 38.60 38.48 33.99 33.63 33.18 32.18 28.70 28.27 27.27 26.66 24.52 23.72 22.77 21.15 20.88 19.63 18.68 16.77 16.42 15.90 15.70 13.80 13.30
342.1 305.4 294.6 289.4 281.9 255.3 247.1 229.6 218.9 212.1 197.6 189.3 182.0 171.8 165.7 158.2 144.4 134.6 135.7 123.1 114.5 110.3 104.2 103.9 91.77 90.80 89.59 86.89 77.49 76.33 73.63 71.98 66.20 64.04 61.48 57.11 56.38 53.00 50.30 45.28 44.33 42.93 42.39 37.26 35.91
PATEL WIRE INDUSTRIES
APPENDIX Guage B.W .G B.W.G .G..
9 10 11 12 13 14 15 16 17 18 Note:
A.W .G A.W.G .G..
S.W .G .W.G .G..
mm.G.
mil
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18 -
4.0 3.5 3.2 2.9 2.6 2.3 2.0 1.8 1.6 1.4 1.2 -
160 157.5 148 144.3 144 137.8 134 128.5 128 126 120 116 114.4 114.2 10 9 10 4 102.4 101.9 95 92 90.74 90.55 83 80.81 80 78.74 72 71.96 70.87 65 64.08 64 62.99 58 57.07 56 55.12 50.82 49 48 47.24 45.26
mm
4.064 4.000 3.759 3.665 3.658 3.500 3.404 3.264 3.251 3.200 3.048 2.046 2.906 2.900 2.769 2.642 2.600 2.588 2.413 2.337 2.305 2.300 2.108 2.053 2.032 2.000 1.829 1.828 1.800 1.651 1.628 1.626 1.600 1.473 1.450 1.422 1.400 1.291 1.245 1.219 1.200 1.500
Aluminium wire weight
Sectional area
Diameter CM
25,600 24,806 21,900 20,822 20,736 18,989 17.960 16,512 16,384 15,876 14,400 13,456 13,087 13,042 11,880 10,816 10,486 10,384 9,025 8,464 8,234 8,199 6,889 6,530 6,400 6,200 5,184 5,178 5,023 4,225 4,106 4,096 3,968 3,364 3,257 3,136 3,038 2,583 2,401 2,304 2,232 2.048
in2
mm2
kg/km
0.02011 0.01948 0.01720 0.01635 0.01629 0.01491 0.01410 0.01297 0.01287 0.01247 0.01131 0.01057 0.01028 0.01024 0.008331 0.008495 0.008246 0.008156 0.007088 0.006648 0.006467 0.006439 0.005411 0.005129 0.005027 0.004869 0.004072 0.004067 0.003945 0.003318 0.003225 0.003217 0.003116 0.002642 0.002558 0.002463 0.002386 0.002029 0.001886 0.001810 0.001753 0.001608
12.97 12.57 11.10 10.55 10.52 9.621 9.098 8.368 8.302 8.042 7.297 6.818 6.632 6.605 6.020 5.481 5.309 5.262 4.573 4.289 4.172 4.155 3.491 3.309 3.243 3.142 2.627 2.624 2.545 2.141 2.081 2.075 2.011 1.705 1.650 1.589 1.539 1.309 1.217 1.167 1.131 1.037
35.02 33.94 29.97 28.49 28.40 25.98 24.57 22.59 22.42 21.71 19.70 18.41 17.91 17.83 16.25 14.80 14.33 14.21 12.35 11.58 11.26 11.22 9.426 8.934 8.756 8.483 7.093 7.085 6.872 5.781 5.619 5.603 5.430 4.604 4.455 4.290 4.155 3.534 3.286 3.151 3.054 2.800
Aluminum wire weight: kg/km = mm2 x 2.7 g/cm3 B.W.G.: Birmingham (Stub’s) Iron Wire Gauge A.W.G.: American Wire Gauge (Brown & Sharp Wire Gauge) S.W.G.: British Standard Wire Gauge mm.G.: Milimeter Gauge
56
PATEL WIRE INDUSTRIES
CONVERSION FACTORS English and Metric Weights and Measures Multiply
By
To Obtain
LENGTH - English Miles Mills Inches Inches Inches Feet Feet Feet (Thousands of) Yards Miles
LENGTH - Metric Millimeters Millimeters Centimeters Centimeters
Meters Meters Meters Kilometers Kilometers
AREA - English Square miles Square miles
Circular miles Circular miles Circular miles Square inches Square inches Square inches Square inches Square feet Suqre yards
AREA - Metric Square millimeters Square millimeters Square centimeters Square meters Square meters
VOLUME - English Cubic inches Cubic feet
Quarts (Liquid U.S.) Gallons (U.S.)
VOLUME - Metric Cubic centimerers Cubic meters Liters Liters
WEIGHT - English Ounches Pounds (Av.) Pounds (Av.) Tons (short) Tons (long)
. 001 . 0254
inches millimeters
1000. 25. 40 2. 54
miles millimeters centimeters
30. 48 . 3048 . 3048 . 69144 1. 6093
centimeters meters kilometers meters kilometers
39. 37 . 03937 . 3937 . 032808
miles inches inches feet
39. 37 3. 2808 1. 0936 3280. 83 . 62137
inches feet yards feet miles
1. 2732 . 000001
circular miles square miles
. 7854 . 0000007854 . 0005067
square miles square inches square millimeters
1,00,000. 1,273,240. 645. 16 6. 4516
square miles circular miles square millimeters square centimeters
. 09290 . 8361
square meters square meters
1973. 52 . 00155 . 155 10. 7638 1. 19599
circular mills square inches sqare inches square feet square yards
16. 38716 . 028317
cubic centimeters cubic meters
. 9463 3. 7854
liters liters
. 06102 35. 3145
cubic inches cubic feet
1. 05668 . 26417
quarts (Liquid U.S.) U.S. Gallons
28. 3495 453. 59 . 45359
grams grams kilograms
907. 9 1016. 05
kilograms kilograms
57
PATEL WIRE INDUSTRIES
CONVERSION FACTORS English and Metric Weights and Measures Multiply
By
To Obtain
WEIGHT - Metric Grams Grams Kilograms Kilograms Kilograms Kilograms
. 03527 . 002205
ounces pounds
35. 274 2. 2046 . 001102 . 0009842
ounces pounds tons (short) tons (long)
MISCELLANEOUS - English Pounds per 1000 feet Pounds per mile Pounds per square inch Pounds per square inch
1. 48816 . 28185
kilograms per kilometer kilograms per kilometer
. 0007031 . 0731
kilograms per sq. millimeter kilograms per sq. centimeter
Pounds per cubic inch
27. 68
grams oer cubic centimeter
Feet per second Feet per second Miles per hour
18. 288 1. 09728 1. 60935
meters per minute kilometers per hour kilometers per hour
Ohms per 1000 feet Ohms per mile
3. 28083 . 62137
ohms per kilometer ohms per kilometer
Decibels per 1000 feet Decibels per mile Decibels
3. 28083 . 62137 8. 686
decibels per kilometer decibels per kilometer nepers
. 67197 3. 54795
pounds per 1000 ft. pounds per mile
MISCELLANEOUS - Metric Kilograms per kilometer Kilograms per kilometer Kilograms per square millimeter Kilograms per square centimeter
1422. 34 14. 2234
pounds per square inch pounds per square inch
Grams per cubic centimeter
. 03613
pounds per cubic inch
Meters per minute Kilometers per hour Kilometers per hour
. 05468 . 91134 . 62137
feet per second feet per second miles per hour
Ohms per kilometer Ohms per kilometer
. 3048 1. 6093
ohms per 1000 feet ohms per mile
Decibels per kilometer Decibels per kilometer Nepers
. 3048 1. 6093 . 1153
decibels per 1000 feet decibels per mile decibels
TEMPERA TURE TEMPERATURE °Fahrenheit °Centigrade
5/9(°F-32) 9/5°C+32
°Centigrade °Fahrenheit
58
PATEL WIRE INDUSTRIES
DESIGN AND LAYOUT DATA DC Circuit Characteristics Ohm’s Law: E E=IR I= R= R E = voltage impressed on circult (volts) I = current flowing in cricuit (ampheres) R = circuit resistance (ohms)
I=
In direct current curcuits, electrical power is equal to the product of the voltage and current:
power (watts) voltage (volts) current (amperes) resistance (ohms)
The instantaneous values of an alternating current current or voltage vary from zero to a maximum value each half cycle. In the practical formulae which follow, the “effective value” of currnet and voltage is used, defined as follows: effective value = 0.707 x maximum instantaneolus value
Impedance: Imedance is the total opposition to the low of alternating current. It is a function of resistance, capacitive reactance and inductive reactance. The following formulae relate these circuit properties:
XL XC Z C L R π
= = = = = = =
XC =
1 2πfC
2
Z = R 2 + (XL - X C )
inductive reactance (ohms) capacitive reactance (ohms) frequency (cycles per second) capacitance (farads) inductance (henrys) resistance (ohms) 3.14
I=
E Z
Z=
E=
P I X PF
PF =
P E X I
Three-Phase Circuits, Balanced Star or WYE I = IP
E 3
IN = I = IP = E = EP =
=
E= 3Ep =1.73Ep
E = 0.577E 1.73
current in netural (amperes) line current per phase (amperes) current in each phase winding (amperes) voltage, phase to phase (volts) voltage, phase to neutral (volts)
Three-Phase Circuits, Balanced Delta I = 1.732 x IP
IP =
1 3
= 0.577 X I
E=EP
Power: Balanced 3-wire, 3-phase circuit, Delta or wye E2 unity power factor (PF = 1.0): Efor IP = 1.732 x E x I R
I=
P 3E
=
0.577xP F
E=
P 3 xi
=
0.577xP I
P = total power (watts) for any load: P=1.732 x E x L x PF VA = 1.732 x E x I
Ohm’s Law for AC Circuits E=IxZ
KW = KVA X PF
P = E X I x PF P = power (watts)
Ep =
AC Circuit Characteristics
XL = 2πfL
P E X PF
IN = O
P=EI=I2R= P = E = I = R=
EI KW = 1,000 PF
KVA =
E I
Power FFactor actor Power factor of a circuit or system is the ratio of actual power (watts) to apparent power (volt-amperes), and is equal to the cosine of the phase of the circuit: actual power watts KW R = = = PF = apparent power volts x amperes KVA Z
P 0.577 x P = PF x 1.73 x I PF x I P 0.577 x P E= = PF x 1.73 x E PF x E P 0.577 x P PF = = 1.73 x I x E IxE I=
VA =apparent power (volt-amperes) P = actual power (watts) E = line voltage (volts) phase to phase I = line current (amperes)
KW = kilowatts KVA = kilovolt-amperes = volt-amperes x 1,000 PF = power factor (expressed as decimal)
Power Loss : any AC or DC circuit
Single - Phase Circuits
P = I2R I =
P P R= 2 I R P = power heat loss in circuit (watts) I = effective current in conductor (amperes0 R = conductor resistance (ohms)
59
PATEL WIRE INDUSTRIES
ALTERNATION CURRENT FORMULAE To Find
Value Known
Amperes I
Hp
Amperes I
Kw
Amperes I
Kw
Kilowatts Input Kw
SYSTEM Direct Current
746 Hp E x eff
I=
746 Hp E x eff x pf
1000 Kw E
I=
1000 Kw E x pf
I=
I=
Single-Phase
I= Kw =
IxE 1000
Horse-power Output
I x E x eff 746
Hp =
I = = Line current in amperes = = Line-to-line volts. E K W = = Input in kilowatts. K v a = = Input in kilovolt - ampheres H P = = Output in horse power
746 Hp 2 x E x eff x pf
I x E x pf 1000
Kw =
1000 Kva 2E
1000 Kw 1.73 x E x pf
I=
I x 2 x pf 1000
1000 Kva 1.73E
I x E x 1.73 x pf 1000 I x E x 1.73 Kva= 1000
Kw =
Kva=
I x E x 2 x eff x pf 746
746 Hp 1.73 x E x eff x pf
I=
IxEx2 1000 I x E x 2 x eff x pf Hp = 746
IxE 1000
ire Two -Phase -Four W wo-Phase -Phase-Four Wire
I=
1000 Kw 2 x E x pf
I =
I=
Kva= Hp =
I=
1000 Kva E
Kw =
KilovoltsAmperes Kva
Two -Phase -Four W ire wo-Phase -Phase-Four Wire
Hp =
I x E x 1.73 x eff x pf 746
e f f == Efficiency in decimals. p f = = Power factor in decimals In two-phase, three-wire, balancec curcuits, the amperes in the common conductor are 1.41 times that in either of the other two.
SYSTEM DIAGRAMS
I = Line Current. E = Voltage, Line-to-line. I n = Netural Current. (Based on balanced circuits)
FORMULAE FOR DETERMINING AMPERES IN AC CIRCUITS E= I=
I=
I=
I=
E R E 2
R + XL
2
E 2
R + XC
2
=
E Z
=
E Z
E R2 +(XL - XC )2
E RXL
=
E Z
=
E Z
R AZ I E XL =
E Z
= = = = =
Resistance in ohms. Impedance in ohms. Current in amperes Pressure in volts Inductive reactance in ohms = 2pfl
1 X C = Condensive reactance in ohms = 2πfl
f = Frequency in cycles per second. L = Inductance in Henrys. C = Capacitance in Farads.
R2 + XL2 I=
E RXC R2 + XC 2
60
PATEL WIRE INDUSTRIES
DESIGN CALCULATIONS FOR TRANSMISSION LINES The factors involved in designing the Overhead Transmission Lines is too much complicated and requires a detailed study. The designers and engineers are to determine the Line Voltage, Voltage Drop, Power Loss, Power Factor, inductance, capacitance, corona loss, mechanical characteristics of the line and then to determine the suitable conductor size with its constructions. And for the reference some brief Line formulae are given below for their consideration:
LINE CONST ANTS CONSTANTS ANTS::
COUNTRY 1.
A. INDUCTANCE i)
ACING C. SP SPA The spacing of the conductors is decided by taking into consideration both the electrical and mechanical characteristics of the conductors. Due to these varied factors which are different for different lines and places the spacing has no definite rule. The following formulae are in practice in the different sectors of the world;
General
For a two-wire single phase overhead line, where s=spacing of conductors in meters r= radius of conductor in meters then the inductance L= (1+ 4 loge s /r )x10-7 henries per metre s
-7
= 4 log e /r x 10
ii)
approx. for wide spacings.
FORMULAE
V2 inches 2000 where c = constant = 0.75 for copper and ACSR = 1.0 for AAC; d= Sag in metres V=Line Voltage in KV. - C d+
2. Netherlands
V Cm. 1.25 where ∅= deflection of insulator string.
3. Sweden
- 6.5 d + 0.7 V Cm.
7.5 (Sag+Length of string) x s in O +
= 14.8 x 10-4 log10 s /r henries/metre.
4. Czecholovakia -25+V+ 7 d Cm.
For a three-phase line with symmetrically spaced conductors.
5. Poland
- 10 d +
6. Germany
- 7.5 d +
7. Italy
- 10 d +1.2 V Cm.
8. U.S.A.
- 0.76V+ 3.26 d inches.
9. France
- 0.8 d+Length of the String in metres
1 di L 2 dt where L= inductance of any plain of conductors taken together. i = current and t=temperature rise. E.M.F. induced in any conductor =
iii) For a three-phase line with unsymmetrically spaced conductors, inductive drop in line conductor can be obtained as detailed below: When: A,B and C = line conductors. a,b and cm = distances of B to C, C to A and A to B respectively. Considering Line conductor A the Inductive drop = ( 1 - 2 Log r)xωI x10-7 henries / metre. e A 2 = 2 logec x ωIB x10-7 henries / metre. = 2logeb xωIC x 10-7 henries / metre. ACIT ANCE B. CAP CAPA CITANCE i) For a two-wire single phase overhead line, 1.94x10-10 C= log s -r Farads / mile 10 r
ii) For a three-phase line on, 1. Equilateral Spacing The line to line capacitance 1.94x10-8 Farads / mile log10 s r The line to neutral capacitance of A,
C=
CN1=
3.88x10-8 log10 rs
Farads / mile
2. Unsymmetrical Spacing
3.88x10-8 x 1 Farads/mile. C= log10 sr
V Cm. 1.5 V Cm. 1.5
V metres. 150 LINE CALCULATIONS A. SHORT SINGLE-PHASE LINE +
VO =[(V+2RI Cosφ+x I sinφ)2 +(x I Cosφ-2RI sinφ) 12 V= line voltage at receiving end in volts. I = line current in amperes Cos φ = power factor. R = resistance per conductor in ohms per mile X = reactance of the loop formed by the two conductors in ohms per mile = Lω (where L = 14.8 x 10-4 log10 rs henries per mile) B. SHORT THREE-PHASE LINE The calculations for three-phase line is quite identical to that of single phase line wherein the inductance per phase is equal to onehalf of the inductance of the loop formed by the two conductors which we have seen previously.
CURRENT CARRYING CAP ACITY CAPA The Continuous carrying capacity of a conductor is entirely dependable on the conductor temperature rise above the ambient temperature. The Safe maximum operating temperature for bare conductor is limited since the temperature affects on the mechanical characteristics of the overhead lines. Subject to investigations on fittings performance, continuous operations at 75°C (167°F) is considered safe from any deterioration in strength of the conductor. Higher temperature operation is admissible depending on certain conditions.
VIBRA TION OF CONDUCT ORS VIBRATION CONDUCTORS The disturbances of transmission line conductors as a result of wind action have of recent years come to be recognised as a
61
PATEL WIRE INDUSTRIES
serious cause of interruption to service. Consequently, much time and expense have been expended by power companies and manufacturers in studying the causes and effects of those disturbances, and providing remedies. Three rather distinct types of disturbances of vibratory character have been observed and recorded in transmission line conductors regardless of the conductor material.
DANCING Another type of conductor vibration which has come to be known as “Dancing” is a low frequency, large amplitude oscillation of the conductors in which the points of support move with respect to each other longitudinally. Such oscillations, although of comparatively rare occurrence, have been observed and recorded. They are usually started by the lift-drift effect of the wind on irregular sections of ice or snow clinging to the conductor. The tremors produced by the wind action become amplified by the sympathetic action of the insulator strings and the supporting poles of towers. Sometimes the vertical oscillations of spans several hundred feet long have amounted to as much as 15 or 20 feet. The wind velocity in such causes is usually fairly high, that is, around 25 to 30 miles per hour. As yet no practical remedies for preventing dancing have come into general use. All kinds of conductors are subjected to this type of disturbance. A special form of dancing is sometimes produced when a heavy load of ice or snow falls off from a span. In such cases the conductor springs upward due to its own elasticity. If the ends of such a span are dead-ended the violence of the uplift of the conductor is not great and the disturbance dies away more rapidly than if the span is supported by suspension insulator strings, in which case the adjoining spans take up the motion and transmit the oscillations to the towers. As a result such a disturbance sometimes throws a complete line into violent oscillations for a considerable distance. Dancing and “Steel-Jump” do not materially damage conductor or any other part of the line as a rule except for the fact that the conductors may come together causing short circuits and possibly damaging or even burning off the conductors. Just as in the case of dancing no reliable preventive for damage due to “Steel-Jump” has been produced. However, the same device which would limit the dancing. Effect would also be of service in reducing the effects due to “Steel-Jump”.
RESONANT VIBRA TION VIBRATION Resonant vibration occurs in a conductor span without appreciable change of its length and therefore the points of support of the span remain practically stationary. These vibration occur in the form of standing loops with nodes between them. The frequency of these vibrating loops is high although the wind velocity which products them is low, that is, from 2 or 3 miles per hour upto a maximum of 12 to 15. Under these conditions the wind velocity is frequently uniform and steady over a considerable area and, indeed, these effects usually occur only at times when the air is not turbulent. Such conditions occur in the late evening through the night and the early morning. When resonant vibration occurs occasional cases of fatigue breaks of conductor strands at points of support have been experienced with all kinds of conductors. At the present time it is generally accepted that fatigue break is a progressive fracture following the natural planes of cleavage between crystals. The characteristic appearance of such a fracture, therefore, is sharp (i.e. without necking down) and exposes the natural crystalline structure of the material. It is also accepted that such fractures of Conductor strand at points of support may be produced by resonant vibration. This produces a rapid bending of the conductor up and down through a small amplitude, which, in turn, produces a rapid alteration of stress at the top and bottom of the conductor. For many years it was common practice to armour conductors at points of support by means of wrapping of Flat Armour Wire. This prevented abrassion of conductors, and tended to decrease the bending stresses due to vibration. Further experience and demonstration have developed the idea of protective armour to a much greater extent.
CY CL ONIC GYRA TION CYCL CLONIC GYRATION Still another form of violent disturbance of transmission line conductors has been found due to localised rarified conditions of the air or partial vacuum produced in the neighbourhood of the conductors by reason of extremely high velocities of a cyclonic character near the line. Such wind action has been known to lift the conductors bodily and when the action of gravity has thus been neutralized the conductors are free to move in any lateral direction in obedience to the whim of the wind. This produces such violent and wild gyrations of the conductors that it is very easy for them to come together and arc. Any remedy to be effective in such cases requires a careful study of the local conditions in each case.
The most simple and efficient reinforcement is found in the use of Armour Rods. This armour consists of a spiral layer of round rods surrounding the conductor for a short distance. The attachment of the conductor to its support is made in the middle of this armoured length. As this provides, at the support, a stranded conductor of much larger diameter than the actual conductor the resistance to bending is correspondingly greater; whereas, the energy to be absorbed by this bending is only that collected in the span conductor itself. Expressed in other terms, armour rods increase the resisting moment of the conductor. This not only reduces stress by distributing the bending but also strengthens the cable in the region of maximum bending stress.
CORONA When an alternative potential difference is supplied across two conductors whose spacing is large as compared to their diameter and the p. d. is increased then a point is reached when a faint luminous glow of blush colour appears along the length of the conductors at the same time a hissing sound is heard. This bluish discharge is known as Corona. Corona is always accompanied by the production of Ozone which is readily detected because of its characteristic odour. If the p.d. is further increased then the glow and hissing both increase in intensity till a spark over between the conductors takes place due to the break down of air insulation. If the conductor are smooth and polished, the Corona glow is uniform along their lengths but if there are any roughness they will be picked up by relatively brighter illumination. In case of conductors with a spacing shorter as compared to their diameters sparking may take place without any visible glow. Corona occurs when the electrostatis stress in the air around the conductors exceeds 30 kv. maximum / cm. or 21 kv. R. M. S./cm. The effective disruptive critical voltage to neutral is given by the relation.
Although primarily a reinforcement, armour rods also have damping effect. Comparative records indicate that they reduce amplitude of vibration by from 10% to 20%. A contingent advantage of considerable value is the protection of the cable from flashover burns. The resonant vibration problem has been attacked from still another angle, i.e. by damping devices whose object is to prevent the occurrence of resonant vibration. Practical damping was first accomplished by the Stock-bridge Damper which consists of resiliently supported weights with a suitable clamp for attachment to the conductor. The action of the damper is to absorb continuously the energy of the incipient vibrations imparted to the conductor by the wind, thus preventing the building up of amplitude. Since this input of energy varies directly as the amplitude a properly designed and located damper has very little work to do. The dimensions and proper application of Stockbridge dampers have been determined and perfected for all conductor sizes by extensive field and laboratory investigations.
62
PATEL WIRE INDUSTRIES
vc = where, = Mo D r δ
= = =
21.1 Mor δ x 2.3 log 10 D/r kv.
The method described here is developed for conditions of loading whether is still air or wind, and is applicable to conductor of any material.
Irregularity factors which takes into account the surface conditions of conductor. Distance between wire centres in cm. Radius of conductor in cm. Air density factor.
1. First calculate the horizontal wind loading P in lbs. per ft. on the conductor, from the formula: P=
The value of is given by
3.92b 273+ t b = Barometric pressure in cm. of Hg. t = Temperature °C. when, b = 76 and t = 25°C, δ = 1 =
where d= diameter of conductor in ins. R = radial thickness of ice in ins. 2. Calculate the ice loading. Assuming that the ice coating weighs 57 lbs./ft.3 the weight in pounds per ft. of conductor of the ice deposit is given by:
IRREGULARITY FACTOR Polished Wire Weathered Wire 7-Strand Conductors More than 7-Strands
... ... ... ...
Horizontal wind loading per sq. ft. of Projected Area x (d+2R) 12
1.0 0.93 to 0.98 0.83 to 0.87 0.9 (approx.)
1.246 R (d+R) 3. Calculate the total weight W of the loaded conductor per ft. in lbs. from: W = ω+ ice loading
CORONA POWER Formation of Corona is always accompanied by a dissipation of energy. This loss will have some effect on the efficiency of the line but will not have any appreciable effect on the line regulation. This loss is affected both by atmospheric and line conditions. Soon after the critical voltage is reached the Corona loss increases as the square of the excess voltage. The loss for voltage of v.kv to neutral is given by the following impirical relation,
where ω = weight, per foot in pounds of conductor alone. 4. Calculate the loading factors q1 and q 2 for the two conditions of the load from:
q=
(f +25) (r) P = 241 (v - Vc)2 x105 kw / km. δ (D)
P2 + W 2 ω
q 2 is the loading factor under the required conditions of loading and in still air with no ice (which is the most usual condition) q2 = 1.
Where f is the frequency of the a.c. in cycles / sec. Various methods are employed for limiting the incidence of Corona but one of the most effective is by increasing the overall diameter and thereby the surface area per unit length of the conductor. This is of course automatically achieved upto a certain point by the employment of A.C.S.R. Conductors. In extreme cases, however, it becomes necessary to adopt other means such as increasing the distance between conductors employing expanded or hollow conductors of large diameter, or by the use of more than one conductor per phase.
When specified worst loading conditions are given as a superimposed load which is a function of the conductor diameter, say n, then, q=
nd + ω ω
5. Calculate constant K from the expression:
CORROSION PROTECTION
k = f1 -
The high resistance of Aluminium to atmospheric corresion, and the use of galvanised steel wire for A.C.S.R. Conductors, to a great extent prevent trouble arising from corrosion but additional protection can be secured by oiling and greasing. On the infrequent occasion when corrosion does occur it can be grouped into two classes, namely, internal and external. Internal corrosion between the galvanised steel and the adjacent aluminium wires can be eliminated to a great extent by suitable grease protection. If this precaution is not taken the corrosion will spread to the outside and it is this phenomenon which is responsible for the mistaken impression in some quarters that the corrosion starts on the outside of the conductors. Exposure conditions vary with the direction and velocity of the prevailing wind, the concentration of the salt in the atmosphere where the line is erected near the sea, the amount of rainfall, and the degree of tightness of the aluminium wires round the steel core in the case of A.C.S.R. It is now the general practice of the Company to added protection to both steel cored and homogenous conductors by an internal application of special grease or oil if asked for.
12δ 2q12E
... (1)
24 f12
where, f1 Specified maximum stress of the conductor in lbs / in2 for the worst weather conditions or for the superimposed loading conditions corresponding to q1. I = Span length in feet. E = Modulus of Elasticity in lb / sq. in δ = Weight per foot of conductor per sq. in of cross-section Note: δ = 1.17 for Aluminium Wires. = 1.18 to 1.20 for All Aluminium conductors depending on the size. = 1.40 to 2.10 for ACSR Conductors. 6. The stress f2 under the loading conditions corresponding to q2 is found by solving the equation:
12 δ 2q22E ... (2) 24 where α = Co-efficient of linear expansion. f22[f 2 -(K - α tE)] =
SA G CALCULA TION SAG CALCULATION The sag allowed in a conductor at the time of erection must be such that under given loading conditions a specified maximum tension is not exceeded. These conditions may be wind and ice; wind alone or an empirical loading stated in terms of the conductor diameter.
t=
63
Difference in temperature between two sets of conditions.
PATEL WIRE INDUSTRIES
7.
The sag is then calculated from expression: Sag=
12 δq2 Sag = .. 8f2
(3)
if T1, and T2 = Total tension in the conductors under the conditions of loading represented by q1 and q2 respectively, and λ = EA, where A is the total area of cross-section. Then, 12 q12ω 2λ
-(1a)
24T12
T22 [T2 - (K - α tλ )]=
12 ω 2 q22 λ . 24
.(3a)
To illustrate the method of calculating the sags and tensions in over-head conductors, one numerical example is given. To example is illustrated the method calculating the sag from the alternative loading conditions quoted in terms of the conductor diameter. Example: To determine the sag is still air at 122°F for a 0.175 sq. in. section copper conductor and also for the equivalent ACSR Conductor on a 900 ft. span length such that at 22°F the tension in the conductor does not exceed 75% of the breaking strength, when subjected to a superimposed vertical load in lb. per ft. of 3.5 (a constant n). x the conductor diameter. The ACSR Conductor of 0.75 sq. in. copper equivalent is 30/.110” Aluminium and 7/ .110” Steel type ‘LYNX’.
The equations may also be expressed in terms of the total tension in the conductors as follows:
K = T1 -
12 q 2 ω . 8 T2
.(2a)
COPPER
A.C.S.R.
Stranding = 7/.180”
Stranding = 30/.110”-Aluminium, 7/110”-Steel.
E = 18x106 lb/sq. in
E=13.31x106 lb./sq.in.
a = 9.92 x 10-6 per °F.
a=10.24 x 10-6 per °F
δ =3.93
δ=1.62
Diameter = 0.540” Weight per foot run = ω = 0.698 lbs.
Daimeter = d=0.770”
Total weight per foot;
Weight per foot run = ω = 0.571 lbs.
W =nd+ω
Total Weight per foot:
= (3.5 x 0.54) + 0.698
W=nd+ω=(3.5x 0.77)+0.571 = 3.266
= 2.588 q1 = W/w = 3.71
q1=W/w=5.72
q2 = 1
q2=1 Breaking Strength = 17530 lbs. (from B.S.S.-215)
Breaking Strength = 9920 lb. (from B.S.S. = 125)
75% x Breaking Strength = 13150 lbs.
75% x Breaking Strength = 7440 lbs
Area of Cross-section = 0.3515 sq. in
Area of Cross-section = 0.178 sq. in.
Maximum Working Stress:
7440 = 41,750 lbs./sq. in. Maximum Working Stress: f1= 0.178 K = f1 -
(12 δ 2 q12 E) 24 f12
= f1 =
= -32,350
K = f1 -
t = 100°F. atE = 9.22 x 10-6 x 100 x 18 x 106 = 16580. F2
2
(12 δ 2 q12 E) 2412
=11,100
t=100°F
12 δ q22 E [f2 - (K - a tE)] = 24
αtE=10.24x10-6x100x13.3x106=13630
f22(f2+48930)=9.37x1012
f22 [f2-(K-a tE)]=
f2=12350 lbs./sq. in. Sag =
13150 = 37,500 lbs./sq in. 0.5515
12 δ q2 =32.2 ft. 8 f2
12 δ 2 q22 E 24
f22(f2+2530)=1.15 x 1012 f2=9800 lbs./sq. in.
Sag=
12δq2 =16.75 ft. 8f2
The comparison of sags in this example emphasises one of the advantages of A.C.S.R. Conductors over copper Conductor in the overhead Power Transmission System.
64
PATEL WIRE INDUSTRIES
GLOSSARY A
Bunch Strand : Any number of conductor strands twisted together in one direction with the same lay length is form a stable assembly. Braider : A machine used to apply a woven fiberous or metallic braid over a cable. Brake Wire : Wires used in the manufacture of both home and truck trailers to supply current to the electrical brake system Building Wire : Commercial wires used in the building trades. Bunched : A term applied to a number of wires twisted together in one Stranding direction operation without any regard to their geometric arrangement.
Abrasion Resistance : The ability of a material to resist prolonged surface wear by friction. Accelerated Aging Test : A test in which defined conditions such as voltage, temperature, etc to which a cable or material is subjected are increased in magnitude above normal operating values to obtain observable deterioration in a reasonable period of time and thereby provide a relative measure of the probable cable or material life under operating voltages, temperature, etc. Admittance – The reciprocal of impedance. Aging: (Also called precipitation hardening) - The hardening of a metal involving a fine dispersion of rejected solute from a supersaturated solid solution. Natural Aging: The age-hardening process that occurs slowly at roomt emperature. Artificial Aging: The age-hardening process that employs a slightly elevated temperature to achieve a controlled fine dispersion of percipitates. Alive : Electrically connected to a source of voltage of a potentially hazardous or Lethal level. Alloy: A combination of two or more metals for the purpose of modifying properties of one of the metals. Alternating Current : An electric current that continually reverses its direction giving a definite plus and minus wave form at fixed intervals. The frequency of the change in flow is expressed in cycles per second (Hertz or Hz) Aluminium Conductor Material : CSA recognition for use in building wire applications. Aluminium Conductor Steel Reinforced : A stable conductor assembly of aluminium wires stranded around a steel core. Ambient Temperature: The temperature of a medium such as gas or liquid surrounding an object. American Wire Gauge : A North American standard system used for designating conductor diameter. Ampacity : The maximum permitted current for a conductor in accordance With defined rules and operating conditions. Ampere : Unit of measurement of electrical current. Anneal : The process of controlled heating and cooling of a metal to achieve predetermined characteristics such as tensile strength and elongation. Anodizing : (also called an anodic oxidation) - A process for artificially thickening the layer of aluminum oxide on the surface of aluminum, sometimes as much as 0.001 inches thick.
C Cable : Either a stranded conductor with insulation with or without other coverings (single-conductor cable), or a combination of conductors insulated from one another (multiple conductor cable). Capacitance : That property of a system of conductors and dielectrics which permits the storage of electricity when a potential difference exists between the conductors. Its value is expressed as the ratio of a quantity of electricity to a potential difference. Certified Test Report : A report providing actual test data on a cable Tests are Normally conducted by the Quality Control Department to confirm that the product being shipped conforms to specifications. Circuit Breaker : A device designed to open and close a circuit by non-automatic means and to open the circuit automatically on a predetermined over current without damage to itself when properly applied within its rating. Circular Mil : A unit of cross-sectional area, commonly used to express the area of conductor which is the area of a circle 001 inches in diameter. Coaxial Cable : A cable configuration having two cylindrical conductors with Coincidental axes, such as, conductor with a tubular shield surrounding the conductor and insulated from it. Code, Installation : A document, usually enforced by legislation which determines the installation rules for products in locations where the general public may legitimately be present, in the interest of public safety. Coefficient of Expansion : The fractional change in dimension of a material given a unit change in temperature. Cold Flow : Permanent deformation of a material due to a mechanical force. Composite Cable : One containing more than one type of gauge size of conductors (e.g. power and control conductors in one assembly.) Concealed : Rendered permanently inaccessible by the structure or finish of the building. Concentric – Lay Cable : A multiple conductor cable composed of helically laid Around a core, which are collectively connected to the neutral point of an electrical system. Concentric Stranding: A central wire surrounded by one or more layers of helically wound strands in a round stable geometric arrangement. Concentricity : The measurement of the location of the centre of the conductor with respect to the geometric centre of the surrounding insulation. Conductivity : A term used in describing the capability of a conductor to carry Electric current. Usually expressed as a percent of a soft copper conductor which is defined as being 100% conductive. Conductor : A wire or stable assembly of wires of long length relative to its cross-section suitable for carrying electrical current. Combination of Unilay Conductor : A central core wire surrounded by a layer of six helically laid wires of the same diameter as the core wire with a helically laid outer layer containing six smaller wires alternated between six wires of the same diameter as the wires in the layer underneath. Both layers have a common length and direction of lay.
B Bare Conductor : A conductor not covered with insulating material. Bending Radius :Radius of curvature that a cable can be safely bent through without any adverse effects on mechanical and insulating properties. Bobbins : Metal spools used for taking up drawn wire and subsequently used for payout packages in cabling and stranding equipment. Bonding : A low impedance path obtained by permanently joining all non-current carrying metal parts to assure electrical continuity and having the capacity to conduct safely and current likely to be imposed on it. Bonding Conductor : A conductor which connects the non-current carrying metal parts of electrical equipment. raceways, or enclosure to the service equipment or system grounding conductor. Braid : A fibrous or metallic group of filaments interwoven in cylindrical shape to form a covering over one or more wires. Branch Circuit :That portion of a wiring installation between the final overcurrent device protecting the circuit and the outlets.) Breakdown Voltage : The short time voltage at which the insulation between two energized conductors breaks down from an insulating to a conducting state.
65
PATEL WIRE INDUSTRIES
Composite Conductor : A composite conductor consists of two or more strands of different metals such as aluminium and steel or aluminium and steel or aluminium and aluminium alloy i.e. ACSR ACAR,AWAC. Conventional Concentric Conductor : A conductor constructed with a central Core surrounded by one or more layers of helically laid wires. The direction of Lay is reversed in successive layers and generally with an increase in length of lay for successive layers. Conductor Shield : An extrusion of semi-conducting material over the conductor to provide a smooth interface with the insulating for even distribution of electrical stress. Corona : A discharged due to ionization of air around a conductor due to a potential gradient exceeding a certain critical value. Creep :The dimensional change with time of a material under a mechanical load. Crimp : Act of compressing (deforming) a connector barrel around a cable in order to make an electrical connection. Cross-linked : inter-molecular bonds produced between long chain molecules in a polymeric material to increase molecular size by chemical or electron bombardment means which changes the material from thermoplastic to thermoset. Crosstalk : Signal interference between nearby conductor caused by pickup of stray energy. Current : The rate of transfer of charge. Practical unit is the ampere which represents the transfer of one Coulomb per second. Cut through Resistance : The ability of a material to withstand cutting from a sharp edge under pressure. C : Centigrade or Celsius. Calibration : The process of setting a measurement instrument by use of standards . Compact Conductor : A concentric stranded conductor which after stranding and on subsequent layers in a multiple layered cable, is passed through a closing die or roller die to reduce the diameter approximately 10% thus eliminating the normal interstices in the cable. Compressed Conductor : A concentric stranded conductor which after stranding or on subsequent layers of a multiple layered conductor is passed through a die to reduce the overall diameter approximately 3%. Corrosion : The process of result of a material being eaten or worn away, usually by chemical reaction. Cross Sectional Area : The area of an object exposed by cutting it perpendicular to its longitude plane. Cu : Copper. Current Carrying Capacity : The current a conductor of a given size is Capable safely without exceeding its own temperature limitations at a defined set of conditions. CW : Copperweld.
Direct Current : An electrical current which flows in one direction only. Disconnect : A device group of devices, or other means whereby the conductors of a circuit can be opened i.e. disconnected from their source of supply. Duty : A characteristic of an electrical service that describes the degree of regularity of the load overtime. Continuous Duty : A duty of the load which is substantially constant over prolonged time. Short time Duty : A duty of the load which is substantially constant for a short and defined time. Intermittent Duty : A duty of the load having defined periods of Load and no-load. Load and rest and Load no load and rest Periodic Duty : A Duty of the load in which the load conditions are regularly recurrent. Varying Duty : A duty of the load having loads over intervals of time both of which are subject to wide variation. Die : A device used in the drawing of the wire that element through which the wire is drawn to achieve a predetermined diameter. A mold used to form a plastic compound around a wire or cable. Dielectric : A material with good electrical insulating character insulating medium. Dielectric Strength : A term used to define the degree of insulating Characteristics possessed by a dielectric. Dip Process : The process of covering a surface by means of dipping It into or through a molten bath of the coating material. This may be followed by dippings or baths in other solutions and/or materials to produce desired results. Direct Current Resistance : The resistance offered by a circuit to the flow of direct current. Direction of Lay : See Lay Direction. Drain Wires : A number of small gauge bare wires applied concentrically about the insulation shield of a high voltage cable for the purpose of a fault current return path. Drawing : The process of reducing a cylindrical rod or wire to a desired diameter by pulling the wire through a die or series of dies thus stretching the wire. Draw Feed : Stock Rod or wire that is subsequently drawn to a smaller size. Duplex Cable : A cable composed of two conductors twisted together usually one insulated and one bare neutral.
E Earth : British terminology for zero reference “ground”. Eccentricity : Like concentricity, a measure of the centre of a conducts location with respect to the circular cross-section of the insulation. Expressed as a percentage of displacement of the one circle within the other. Elastomer : A rubber like substance. Any material that will return to its original dimensions after being stretched or distorted. Electrical Metallic Tubing : A raceway of circular cross-section intended to contain electrical conductors for the purpose of mechanical and electrical protection having thinner wall section than rigid metal conduit of equivalent nominal trade size and assembled in the field without the use of threaded components. Electrical Nonmetallic Tubing : A nonmetallic raceway of circular cross-section. Electrode : A conductor through which a current enters or leaves a electrolytic Cell, arc furnace, vacuum tube, gas discharge tube or other non metallic meterial Electrolysis : The production of chemical changes by passage of current through an electrolyte. Electromagnetic Field : See magnetic field. EMI : Electromagnetic interference. Unwanted parasitic electromagnetic waves Capable of affecting the operation of communication and single circuits and devices. Electromotive Force : That force which determines the flow of electricity a difference of electric potential. Electroplate : The term used to indicate the application of a metallic coating on a Surface by means of electrolytic action.
D Dead when applied to electrical equipment : The current carrying parts of Electrical equipments are free from any electrical connection to a source of voltage and from electrical charge and does not have a voltage different from that of earth. Decibel (db) Unit to express difference of power level. Used to express power gain in amplifiers or power loss in passive circuits or cables. Derating Factor : A factor used to reduce the rated ampacity of a conductor to correct for environments other than that for which the rated ampacity was established. Dielectric : A material with good electrical insulating characteristics. Dielectric Constant (K) : The radio of the capacitance of a condensor with dielectric between the electrodes to the capacitance when air is between the Electrodes. Also called permitivity and specific inductive capacity (SIC). Dielectric Strength : An insulation rating in terms of its ability to withstand electrical stress. Dielectric Test. : A test carried out to establish the dielectric strength of an insulation.
66
PATEL WIRE INDUSTRIES
Electrostatic Shield : A metallic envelope around a voltage source intended to control electrostatic fields. Elongation : The increase in length of material stressed in tension. Equal load sharing : An even distribution of current between the parallel cables in a power circuit. Equilay : See Unilay More than one layer of helically laid wires with the length of the lay the same for each layer. EC : Electrical conductor (electrical grade aluminium – now known as Alloy 1350) Electromagnetic : Magnetism caused by the flow of an electric current.
Heat Shock : A test to determine the resistance of a material to damage by applied mechanical force following exposure to a high temperature of specified magnitude. Henry (H) An electrical unit denoting the inductance of a circuit in which a current varying at the rate of one ampere per second produces an electromotive force of one volt. Hertz.(Hz) A unit of frequency. Hygroscopic : A material capable of absorbing moisture from the air Harness : An assembly of conductors grouped and bound together in a fixed configuration to be used as circuitry or a given application i.e.Automotive wiring harness aircraft wiring harness. Helix : A spiral winding. Hot Working : Deformation of the metal at a high enough temperature to prevent strain hardening. Warm Working : “Hot working” at a low enough temperature to retain some strain hardening; used in EC rolling to obtain rod tensile strengths above 12ksi. HV : High Voltage. Hybird Cable : A multiconductor cable containing two or more types of cable and/or metal.
F Farad (F) : A unit of electric capacitance. The capacitance of a capacitor which when charged with one coulomb, gives a difference of potential of one volt. Fatigue Resistance : Resistance of material to fracture due to the application of cyclical stresses. Feeder : Any portion of an electrical circuit between the service box or other source of supply and the branch circuit overcurrent protective device. Ferrous : Composed of and/or containing iron. A ferrous metal may exhibit magnetic characteristics (e.g. Steel armour). Frequency : The number of repetitive cycles of altemating current or voltage in one second. F : Fahrenheit
I Impact Strength : The resistance of a cable component to damage due to the dropping of a weight onto the component under gravity. Impedance : The total opposition of a circuit to the flow of current with applied altermating voltage. Impulse Voltage : A transient surge of voltage of unidirectional polarity high magnitude and short duration measured in microseconds. Impulse Strength : The electrical stress at which the breakdown of insulation occurs when exposed to a voltage impulse. Impulse Test : An insulation test in which the voltage applied is an impulse voltage of specified wave shape and duration. Inductance : A magnetic property of a circuit or circuit element that opposes a change in current flow expressed in henrys. Inhibitor (Corrosion) : A material which prevents or delays oxidation and other action on a connector surface. Insulator : A component of such low electrical conductivity that the flow of current through it can usually be neglected. Interstices : In cable construction the space valley or void left between or around the cabled conductors. Intrinsically Safe : Any spark or themal effect that may occur in normal use or under any conditions of fault likely to occur in practice is incapable of causing an ignition of the prescribed flammable gas vapour or dust. Ionization : The act of splitting into or producing ions usually in air under conditions of electric stress. ISO 9000 : ISO quality Assurance Program. ID : Internal Diameter. IACS : International Annealed Copper Standard. Impedance : The apparent resistance to flow of an alternating current generally expressed in ohms. Individual Strand Diameter : The diameter of an individual strand of a stranded Wire.
G Galling : Surface damage when two materials slide against each other, resulting in localized welding of high spots. Typically refers to Al or cu sticking in wire drawing dies and the resultant drawn wire damage. Gauge : See American Gauge. Ground (GND) A connection to earth obtained through a grounding electrode. Grain Refining : The practice of adding an insoluble particle to molten metal, such as TiB2 to aluminum, to produce a small grain size in the cast bar structure. Grounded : Connected effectually with the general mass of the earth through a grounding path of sufficiently low impedance and having an ampacity sufficient at all times, under the most severe conditions which are liable to arise in practice. to prevent any current in the grounding conductor from causing a harmful voltage to exist. between the grounding conductors and neighbouring exposed conducting surface which are in good contact with the earth or between the grounding conductors and neighbouring surfaces of the earth itself Grounding : A permanent continuous conducting path to the grounding electrode sufficient to carry fault currents imposed on the path for the required duration to limit the voltage rise at any point on the path to a safe level and to facilitate the Safe operation of overcurrent protective devices in the circuit. Grounding Conductor : The conductor which connects noncurrent-carrying metal of service equipment and the neutral point at the service to the ground electrode. Grounding Electrode : A buried metal water-piping system or metal object or device buried in or driven into the ground so as to make intimate contact there With to which a grounding conductor is electrically and mechanically connected. Gauge : A term used to denote the physical size of a wire See American Wire gauge. Galvanizing : A coating of some metal part (usually steel or iron) with zinc by dipping or electroplating. Generator : A machine used to change mechanical energy into electrical energy GIGA-Hertz : One billion hertz (109HZ) equal to 1 KMC (1000 megacycles)
J Jumper : A short length of conductor used to make connection between terminals or other conducting components of electrical equipment. Jacket : A covering put around an insulated conductor for the purpose of protection and/or resistance. Junction box : A box used in an electrical circuit to enclose and permit access of electrical connection.
H
K
Hard Drawn Wire : Wire that has not been heat-treated after drawing.
Kcmil : Thousands circular mil.a unit of area used to describe electrical conductor (see circular mil). Kilowatt : A unit of electrical power equal to one thousand watts. KCM : 1000 circular mils (see Circular Mil)
67
PATEL WIRE INDUSTRIES
KV : Kilovolt (1000 volts). KVA : Kilovolt ampere (1000 volt x amperes). KWH : Kilowatt Hours (1000 watt hours).
O Ohm : A unit of electrical resistance the resistance of a circuit in which a potential difference of one volt produces a current of one ampere. Ohm’s Law : Current I in terms of electromotive force E and resistance R given by equation I = E/R. Operating Temperature : Temperature an insulation is capable of operating at continuously without risk of damage. Outlet :A point in the wiring installation at which current is taken to supply Utilization equipment. Overcurrent Device : Any device capable of automatically opening an electric circuit under both predetermined overload and shortcircuit conditions either by fusing of metal or by electro-mechanical means. Overlap (Overlay) The amount the trailing edge laps over the leading edge of a spiral tape wrap. Overload Device : A device which will provide overcurrent protection under overload but not necessarily short-circuit conditions. Overloaded Temperature : Temperature above the temperature rating of the insulation. Overpotential : A voltage above the normal operating voltage of a device or circuit. Oxidation : The process of uniting a compound with oxygen usually resulting in unwanted surface degradation of the material or compound. OAW : Overall width OD : The overall diameter of a circle, including conductor(s) insulations(s), jacket (if used) and concentric neutral (if used)% Oscilloscope : Test instrument for showing visually the changes in a varying current by displaying the corresponding voltage wave form on a fluorescent screen. Ozone : Form of oxygen produced by discharge into air. Chemical symbol 03.
L Lay : The distance taken to complete one revolution of helically laid cable Components measured along the longitudinal axis of a cable. Life Cycle : The life of a cable or component when exposed to an environment either in service or under defined test condition. Line Voltage : The portential difference between two lines of a three phase alternative current circuit. Line Wire : A suspended or aerial distribution conductor either bare or protected from the environment by means of a covering. Loss : Energy dissipated without accomplishing useful work. Loss Factor : The product of the dissipation and dielectric constant of an insulating material. Lug : Termination usually crimped or soldered to the conductor with provision for bolting on to terminal. Lay Direction : The direction in which the members of a cable are applied the direction of the twist normally referred to as left hand ”S” or right hand “Z”. The direction in which the strands diverge from an observer when looking perpendicular to a cable end. Line Voltage : The voltage existing in a phase conductor in an electrical circuit either phase to ground (neutral) or phase to phase.
M Magnet Wire : Insulated wire or rectangular strip intended for use in windings on motor transformer and other coils for electromagnetic devices. Magnetic Field : The region surrounding a magnet or currentcarrying conduct through which magnetic forces act. Magnetic Flux : The flow of magnetic energy across or through a surface (real or imaginary). Master Alloy (also called hardener) : An alloy containing at least some of the base (i.e. aluminum) and one or more added elements for use in making alloying additions to molten aluminum. Microwave : A short electromagnetic wave with a wave length usually less than 30 cm. Modulus of Elasticity : The ratio of stress to strain in a material that is elastically deformed. Metual Capacitance : Capacitance between two conductors when all other conductors including ground are connected together. Magnetic Field : The region within which a body or current experiences magnetic force. Messenger : A bare cable used for its strength characteristics to support power conductors and insulated power cables. A messenger can be used as a conductor, partial conductor or non-conductor. Micrometer : An instrument used for measuring diameter usually in thousandths of an inch. Mil : One one thousand of an inch. Milivolt : One one thousand of a volt. MKS : Meter-kilogram-second. Modulus of Elasticity : The ratio of stress to strain in an elastic material.
P Parallel Conductors : Two or more conductors of like phase so as to share the phase current in power circuits so as to permit the use of smaller conditions. Percent Conductivity : Conductivity of a metal expressed as a percentage of the International annealed copper standard (%IACS). Permittivity Preferred term for dielectric constant. pH : The measure of the acidity or alkalinity of a substance neutrally being at pH 7. Acid solutions are under 7 alkaline solutions over 7. Pitch : See Lay. Pitch Diameter : The diameter of a circle passing through the centre of the conductors in any layer of a multi-conductor cable. Pulling Eye : A device fastened to a conductor or cable to which a hook may be attached in order to pull the cable. PAC : Pre assembled aerial cable. Package : An object used for accumulating and dispensing wire and cable for further processing or end use. A few of the more popular types of packages are reels, bobbins, spools, stems, and coils. Pay-Off : The process of feeding a cable or wire from a bobbin, reel or other packages. Also a device used for paying out wire or cable into a piece of equipment or machinery. Peak Voltage : The maximum instantaneous voltage of an electrical circuit. Pitch Diameter: The diameter of a circle passing through the center of the conductors in any layer of a multi-conductor cable. Prototype : Original design or first operating model. Proximity Effect : The phenomena of non uniform current distribution over the cross-section of a conductor caused by the variation of the current in an adjoining conductor. PSI : Pound per square inch.
N National Electri Code : Installation code governing electrical installations in the United States. Neutral Point : That point or terminal of a polyphase alternating current circuit which is at a potential such that the potential difference between it and each of the other terminals of the same circuit are approximately equal in magnitude and in phase displacement. NEC : National Electrical Code. Neutral Conductor : In multiphase circuits the conductor used to carry unbalanced current and in single phase system the conductor used for a return current path, Nominal (NOM) : The preferred size or weight that is specified or indicated for a certain cable element.
Q Quadruplex Cable : A Cable composed of four conductors twisted
68
PATEL WIRE INDUSTRIES
Specific Inductive Capacity : See Dielectric Constant. Strand : One of the wires of any stranded conductor. Stranded Conductor : A conductor composed of a group of wires or of any combination of groups of wires assembled into a stable configuration. Surface Resistivity : The resistance of a material between two opposite sides of a unit of its surface. Systems : An electrical energy source derived from its own distinct transformers or bank of transformers or generators or other sources. Sag- (conductor) : The vertical distance between a suspended conductor and an imaginary straight line connecting the points of suspension. Sag may be measured at the mid point between the suspensions, the lowest point of the conductor or at any specified point. Short Circuit : Loads which occur during fault conditions and are characterized by very heavy current flow. Solid Conductor : A solid conductor is a conductor consisting of a single wire. Spacer Cable : A distribution cable designed to be used in conjunction with insulating spacers which maintain conductor spacing in overhead line installations. This cable is considered uninsulated and installed likewise but the covering on the conductors does allow for conductor close proximity and reduce faults due to the touching of tree limbs. Square Mil : The area of a square one mil by one mil. Supersaturated Solution : A liquid or solid solution in which the amount of solute retained in solution is greater than the equilibrium amount.
together usually three insulated and a bare neutral. Quench : Rapid colling in water to retain compounds in a supersaturated solid solution after the solution heat treatment (usually considered part of the solution heat-treatment process).
R Rated Voltage : That maximum voltage at which an electrical components is permitted to operate for extended periods without undue degradation or safety hazard. Reactance – Capactive : That part of the impedance of an alternating current which is due to capacitance inductive. That part of the impedance of an alternating current circuit which is due to inductance. Redraw : The consecutive drawing of wire through a series of dies to reach a desired wire size. Reel Drum Diameter : Diameter of the drum (or hub) of the reel. Reel Flange Diameter (Reel Height) Diameter of the reel flanges. Reel Traverse : Width of space between reel flanges. Reel Width : Overall width of reel. Rod : The solid round metallic form of aluminium or copper from which to draw wire. Rope Strand Conductor : A conductor composed of a centre group of twisted strands surrounded by one or more layers of similar groups of twisted strands. Reel : A revolvable flanged device made of wood and/or metal which is used for winding flexible metal wire or cable. Resilient : The property of a substance to return to its original configuration after release of an applied force. Resistance : The property of an electric circuit which determines for a given current the rate at which electric energy is converted into heat and has a value such that the current squared multiplied by the resistance gives the power converted. Resistive Conductor : A conductor used for its high electric resistance characteristics. Rod : The solid round metallic form of copper and aluminium which is the most effective shape from which to draw wire. Rope lay Cable : A concentric stranded cable designed for flexibility with its individual members made up of strands which are either concentric stranded or bunched. RPM : Revolutions per minute. Rupture : That point at which a material exceeds its elastic limit and physically Comes apart as opposed to yield strength elongation etc.
T Temper : The cold-work and heat-treat condition of aluminum alloy (usually identified by a suffix following the four-digit alloy designation). Temperature Coefficient of Resistance : The fractional change of resistance of a material per degree of temperature change. Temperature Rating : The maximum temperature at which an insulating material may be used in continuous operation without loss of its desired properties (i.e.operating. overload short circuit). Tensile Strength : The greatest longitudinal force required to rupture a material. Tensile Stress : Tensile force divided by the cross sectional area to which it is applied. Terminal : A terminal is any fitting on an item of electrical equipment intended for making a convenient electrical connection to conductors. Thermal Aging : Loss of mechanical properties due to exposure to an elevated condition or a programmed series for prescribed periods of time. Thermal Cutout : A device affording protection from excessive current but not necessarily short-circuit protection and containing a heating element in addition to and effecting a fusible member which opens the circuit. Thermal Endurance : The time at a selected temperature for an insulating material or system of material to deteriorate to some predetermined level of electrical mechanical or chemical performance under prescribed conditions of test. Thermal Expansion (Coefficient of) : The fractional linear change in dimensions of material for a unit change in temperature. Tolerance : A specified allowance for deviation from a standard nominal or given dimension weight or property. Transformer : A piece of equipment capable of changing voltage in an alternating current system. Transmission Line : A high voltage arrangement of bare conductor together with the mechanical and electrical support systems which interconnect the main generating stations with the subtransmission or primary distribution transformers of an electrical system. Transmission Loss : A term used to denote a decrease or loss in power during the transmission of energy from one point to another. Tree Wire : A conductor with an abrasion resistant outer covering
S Scalping : Removing defective areas from an ingot before hotworking. Sealed (Filled)Strand : A conductor to which a material has been added to the interstitial spaces of a stranded conductor to prevent the longitudinal penetration of water. Seam : A defect referring to an unbonded fold or lap on the surface of the rod, which appears as a crack; usually the result of defects in casting or rolling that have not bonded shut. Sector Cable : A multiple conductor cable in which the cross section of each conductor is approximately the sector of a circle. Segmental Conductor : A stranded conductor consisting of two or more stranded conducting elements each element having approximately the shape of the sector of a circle assembled to give a substantially circular cross-section. Segregation : A localized concentration of alloying elements or harmful impurities in the cast bar and resultant rod or wire. Inverse Segregation : The condition when the high concentration of impurities is on the surface of the cast bar. Solid Conductor : A conductor consisting of a single wire rod or bar. Solution Heat Treatment : Heating to a temperature and for a time sufficient to take all, or the majority of, dispersed soluble elements into solution. A prerequisite to artificial aging. Specific Gravity : The density (mass per unit volume) of any material divided by that of water at a standard temperature.
69
PATEL WIRE INDUSTRIES
usually nonmetallic and intended for use on overhead lines passing through trees. Two Phase Current : Current delivered through two pairs of wires for a three wire system with a phase difference between the currents in the two pairs. T : Thermoplastic TA : Thermoplastic and asbestos insulated switch board wire 90 degree C. Take-Up : The process of accumulating wire or cable onto a reel, bobbin, or some other type of package. Also refers to the device utilized for pulling wire or cable through a piece of equipment or machine. Test Reports : The permanent records made by a wire manufacturer of the test performed on a batch of wire to a specification. Thermal Aging : Exposure to a given thermal condition or a programmed Series of conditions for pre-described periods of time. Thermal Expansion : The expansion of a material when subjected to heat. Thermal Rating : Then maximum and/or minimum temperature at which a material will perform its function without undue degradation. Thermal Resistance of a Cable : The resistance offered by the insulation to the flow of heat from the conductor(s) to the sheath. Thermal Shock : The resulting characteristics when a material is subjected to rapid and wide range changes in temperature in an effort to discover its ability to withstand heat and cold. True Concentric : A true concentric stranding or twisting cable is when each Successive layer has a reversed direction of lay from the preceding layer
U Ultraviolet Degradation : The loss of mechanical properties caused by long time exposure of a material to ultraviolet rays such as are present in natural sunlight. Unilay Conductor : Conductor constructed with a central core surrounded by more than one layer of helically laid wires all layers having common length and direction of lay. UL : Underwriters Laboratory standards and test that wire must meet in order to receive UL approval. Ultraviolet Degradation : The degradation caused by long time exposure of material to sunlight or other ultraviolet rays containing radiation. Undirectional Conductor: Conductor constructed with a central core surrounded by more than one layer of heilically laid with all layers having a common direction of lay with increase in length of lay for each successive layer.
V Volt : A unit of electromotive force and potential difference. Voltage : The term most often used in place of electromotive force potential potential difference or voltage drop to designate electric pressure that exists between two points and is capable of producing a flow of current when a closed circuit is connected between the two points. Voltage Drop : A voltage loss occuring between any two points in a power circuit due to impedance. Voltage, Extra-Low : Any voltage up to and including 30V. Voltage Low : Any voltage from 31 upto aand including 750 V. Voltage High : Any voltage over 750V. Voltage Rating : The highest RMS voltage between two conductors of a circuit that is permitted to be continuously applied to a cable. Volume Resistivity : The electrical resistance between opposite faces of uniform Unit cube of insulation material commonly expressed in ohms-centimeter.
W Watt: Unit of power or work done at rate of one joule per second or rate of work Represented by current of one ampere under a pressure of one volt (volt ampere). Wave length : The distance measured in the direction of propagation of a repetitive electrical pulse or wave –form between two successive points that are characterized by the same phase or waveform. Weather Resistance : The ability of a conductor to withstand environmental Conditions. Wicking : The longitudinal transmission of a liquid in a wire or cable component due to capillary action. Wire Guage : See American Wire Gauge. Work Hardening (also called strain hardening or cold working) : The increase in hardness that accompanies room temperature plastic deformation in a metal, such as drawing, caused by the multiplication and pinning of dislocations in the metal lattice. Wrapping : The method of insulating wire by serving insulating tapes around a conductor. Wrought Product : Product that has been mechanically worked by such processes as rolling, extruding, forging, etc.
Y Yield Strength : The minimum stress at which a material will start to permanently deform under mechanical load.
70
PATEL WIRE INDUSTRIES
NOTES
72
PATEL WIRE INDUSTRIES
NOTES
73
PATEL WIRE INDUSTRIES