Purification de l’eau dans l’industrie
Enrico Riboni
Remerciements Ce livre est issus des cours Pr Pratiqu atiques es et ´economie economie de la purification purification de l’eau l’eau dans l’industrie organis´es es par p ar la Fondation Suisse pour la Recherche Re cherche en Microtechnique. Ces Ce s cours de formation continue s’adressent a` des praticiens de l’industrie. Tout comme ces cours, le pr´esent esent livre ne s’adresse donc pas a` des personne per sonness ayant d´ej` ej` a des connaissances connaissances approfondies en chimie de l’eau ou en traitement de l’eau, mais a` des ing´enieurs enieurs et techniciens technic iens ayant des de s bases techniques techniqu es g´en´ en´erales erale s mais m ais pas de connaissan conna issances ces particuli` part iculi`eres eres concernant l’eau : ce livre constitue une introduction a` ce domaine. Je tiens a` remercier Monsieur Fischer, Directeur de la Fondation Suisse pour la Recherc cherche he en Microte Microtech chniq nique, ue, qui m’a permis permis de faire faire ces cours cours et m’a encourag encourag´´e a` les am´eliorer elio rer conti c ontinuel nuellem lement. ent. Mes remerciements vont aussi a` tous les participants des cours de purification de l’eau de la Fondation Suisse pour la Recherche en Microtechnique depuis 1997, qui, par leurs avis et propositions d’am´elioration elioration du cours nous ont permis p ermis d’am´eliorer eliorer le cours et ont donc une part de m´erite erite significative pour ce qui est de la qualit´e du pr´esent esent ouvrage.
L’auteur Ing´ In g´enie en ieur ur m´ecan ec anic icie ien n dipl di plˆ om´ oˆm´e de l’Ecol l’E colee Polytechn Polyt echnique ique F´ed´ ed´erale era le de Lausan Lau sanne, ne, Enrico Enr ico Riboni a acquis sont exp´ erience erience de traitement traitement de l’eau d’abord en travaillan travaillantt comme chef de projet pro jet aupr`es es d’un grand bureau d’ing´enieurs-conseils, enieurs-conseils, puis comme responsable de la filiale Europe Europ e et Moyen-Orient Moyen-Orient d’un fabriquant de mat´eriel eriel de traitement de l’eau pour l’industrie (Osmonics). (Osmon ics). Enrico Riboni est actuellement act uellement g´erant erant de ozone.ch (Boudry, Suisse). Suisse ). Cette soci´ soc i´et´ et´e propose prop ose des services servic es d’ing´enieurs-con enieu rs-conseil seil et des produits pro duits innovants pour le traitement de l’eau et l’utilisation de l’ozone.
Disp Di spon oniibili bilit´ t´ e Ce manuel est disponible gratuitement en t´el´ el´echargement echargement en format PDF a` partir du site de ozone.ch : http htt p ://www.o :/ /www.ozone. zone.ch. ch. La version imprim´ee ee peut pe ut ˆetre etre obtenue contre une participation forfaitaire aux frais d’impression et d’envoi de CHF 100.00 (Suisse) EUR 70.00 7 0.00 (Union Europ´ Euro p´eenne). eenne ). Format : classeur class eur A4, A4 , noir et blanc. b lanc. Conditions Condi tions sp´eciales eciale s pour clients de ozone.ch et ceux qui ont particip´ parti cip´e a` un cours FSRM sur la purification de l’eau sur demande.
Copyright c Enrico Enric o Riboni, Rib oni, Ch´ezard-Saintezar d-Saint-Mart Martin, in, Suisse, Suiss e, 1997-2008. 1997- 2008. Le manuel peut peu t ˆetre etre utilis´e librement librement pour un usage en enseignement enseignement,, entreprise entreprise et en cadre priv´e. e. Il ne peut en aucun auc un cas ˆetre etr e propo pro pos´ s´e a` la vente, sauf par Enrico Riboni, ozone.ch et la Fondation Suisse pour la Recherche en Microtechnique.
ozon oz one. e.ch ch S` arl ar l
i
http://www.ozone.ch
Table des mati` eres
I. Introduction et rappels
1
1. Introduction 1.1. L’eau : aussi omnipr´esente que m´econnue . . . . . . . . . . . . . . . . . . 1.2. Rappel historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3. Tendances actuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 2 4 5
2. Introduction `a la chimie de l’eau 2.1. Qu’est-ce que l’eau ? . . . . . . . . . . . . . . . . 2.2. Les classes de polluants . . . . . . . . . . . . . . . 2.3. Une classification alternative . . . . . . . . . . . . 2.3.1. Polluants primaires . . . . . . . . . . . . . 2.3.2. Polluants secondaires . . . . . . . . . . . . 2.3.3. Polluants tertiaires . . . . . . . . . . . . . 2.3.4. Les traces . . . . . . . . . . . . . . . . . . 2.3.5. Composants non permanents . . . . . . . . 2.4. Les unit´es de mesure . . . . . . . . . . . . . . . . 2.4.1. Unit´es de mesure des substances dissoutes 2.4.2. Unit´es de mesure des solides en suspension 2.4.3. Duret´e . . . . . . . . . . . . . . . . . . . . 2.5. pH, acides et bases . . . . . . . . . . . . . . . . . 2.6. Oxydo-r´eduction . . . . . . . . . . . . . . . . . . 2.7. Conductivit´e de l’eau . . . . . . . . . . . . . . . . 2.8. Dissolution et pr´ecipitation . . . . . . . . . . . . . 2.9. L’´equilibre calco-carbonique de l’eau . . . . . . . 3. Les polluants dans l’eau 3.1. Introduction . . . . . 3.2. Calcium – Ca++ . . 3.3. Magn´esium – Mg++ . 3.4. Bicarbonate – HCO3 3.5. Fer – Fe++ , Fe+++ . 3.6. Silice – SiO2 . . . . . −
ii
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
6 6 6 8 8 8 8 9 9 10 10 11 12 13 14 14 14 15
. . . . . .
21 21 21 21 21 21 22
Table des mati` eres
3.7. Gaz carbonique – CO2 3.8. Chlore . . . . . . . . . 3.9. Trihalom´ethanes . . . 3.10. Que faut-il analyser ? .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
22 23 23 23
II. Les technologies de la purification de l’eau
26
4. Filtration et microfiltration 4.1. Quelques d´efinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. Filtration particulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1. Pourquoi filtrer ? . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2. Les m´ecanismes de filtration . . . . . . . . . . . . . . . . . . . 4.2.3. Classification des types de filtres . . . . . . . . . . . . . . . . 4.2.4. Filtres-presses . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5. Les filtres a` poche ou a` panier . . . . . . . . . . . . . . . . . . 4.2.6. Etude de cas : cons´equences de l’utilisation d’un filtre a` poche 4.2.7. Filtres a` cartouches lavables et filtres autonettoyants . . . . . 4.2.8. Filtres a` sable . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9. Etude de cas : filtres a` sables, r´etrolavage . . . . . . . . . . . . 4.2.10. Filtres `a cartouches consommables . . . . . . . . . . . . . . . 4.2.11. Le choix d’une technologie de filtration . . . . . . . . . . . . . 4.3. Microfiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1. D´efinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2. Types de cartouches filtrantes . . . . . . . . . . . . . . . . . . 4.3.3. Le choix de la cartouche filtrantes . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
27 27 28 28 28 31 32 32 32 34 34 38 38 43 44 44 44 44
. . . . . . .
46 46 46 46 49 54 57 59
5. Proc´ ed´es membranaires 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . 5.2. Osmose inverse . . . . . . . . . . . . . . . . . . . . 5.2.1. Principe de l’osmose inverse . . . . . . . . . 5.2.2. Equations fondamentales de l’osmose inverse 5.2.3. Exemples d’unit´es d’osmose inverse . . . . . 5.3. Ultrafiltration . . . . . . . . . . . . . . . . . . . . . 5.4. Nanofiltration . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
6. La maintenance des osmoseurs 6.1. Suivi des performances . . . . . . . . . . . . . . . . . . . . . 6.1.1. Param`etres a` enregistrer . . . . . . . . . . . . . . . . 6.1.2. Param`etres a` calculer sur la base des enregistrements 6.2. Nettoyage des membranes . . . . . . . . . . . . . . . . . . . 7. La d´ esinfection de l’eau
ozone.ch S` arl
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . .
60 . . . . 60 . . . . 60 . . . . 61 . . . . 62 65
iii
http://www.ozone.ch
Table des mati` eres
8. St´ erilisation U.V. 8.1. Principe et limites de la d´esinfection par ultraviolets . . . . . . . . . . . 8.1.1. Principe de fonctionnement . . . . . . . . . . . . . . . . . . . . 8.1.2. Limites de la st´erilisation par ultraviolet . . . . . . . . . . . . . 8.1.3. Longueur d’onde . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.4. Les lampe ultraviolet . . . . . . . . . . . . . . . . . . . . . . . . 8.2. Dimensionnement d’un st´erilisateur UV . . . . . . . . . . . . . . . . . . 8.2.1. Dose de rayonnement UVc . . . . . . . . . . . . . . . . . . . . . 8.3. Doses de rayonnement UV pour diff´erentes classes de micro-organismes 8.3.1. Exemples d’estimations de la dose n´ecessaire . . . . . . . . . . . 8.3.2. Biodosimetrie ou calcul ? . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
9. Chloration
76
10.Ozonisation 10.1. Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.1. D´esavantages de l’ozone . . . . . . . . . . . . . . 10.1.2. Avantages de l’ozone . . . . . . . . . . . . . . . . 10.1.3. Potentiels R´edox . . . . . . . . . . . . . . . . . . 10.1.4. Mat´eriaux r´esistants a` l’ozone . . . . . . . . . . . 10.2. Dosage d’ozone . . . . . . . . . . . . . . . . . . . . . . . 10.3. Syst`emes de m´elange ozone - eau . . . . . . . . . . . . . 10.3.1. Colonnes de contact et injecteurs Venturi . . . . . 10.3.2. Transfert de masse . . . . . . . . . . . . . . . . . 10.3.3. Conclusion sur la dissolution de l’ozone . . . . . . 10.3.4. Destruction de l’ozone r´esiduel en phase liquide . 10.3.5. Destruction de l’ozone r´esiduel en phase gazeuse . 10.3.6. Ozone : dimensionnement . . . . . . . . . . . . . 10.3.7. Ozone a` partir de l’oxyg`ene de l’eau . . . . . . . . 10.4. Mesure de l’ozone dans l’air . . . . . . . . . . . . . . . . 10.4.1. Colorim´etrie . . . . . . . . . . . . . . . . . . . . . 10.4.2. Sondes ´electrochimiques . . . . . . . . . . . . . . 10.4.3. Capteurs a` semiconducteurs . . . . . . . . . . . . 10.4.4. Analyseurs d’ozone . . . . . . . . . . . . . . . . . 10.4.5. Comparaison des m´ethodes . . . . . . . . . . . . 10.4.6. Etude de cas : mesure de l’ozone dans l’air . . . . 10.5. Mesure de l’ozone dans l’eau . . . . . . . . . . . . . . . . 10.5.1. M´ethodes disponibles . . . . . . . . . . . . . . . . 10.5.2. Colorim´etrie . . . . . . . . . . . . . . . . . . . . . 10.5.3. Mesure du potentiel R´edox . . . . . . . . . . . . . 10.5.4. Sondes ´electrochimiques . . . . . . . . . . . . . . 10.5.5. Capteurs a` semiconducteurs . . . . . . . . . . . . 10.5.6. Analyseurs d’ozone . . . . . . . . . . . . . . . . .
ozone.ch S` arl
66 66 66 66 67 67 68 68 70 72 73
iv
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
78 78 78 78 79 81 82 83 83 87 91 91 92 93 93 94 95 95 96 97 97 98 99 99 99 99 100 100 100
http://www.ozone.ch
Table des de s mati` mat i` eres ere s
11. 11 . S´ elec el ectio tion n d’un d’ une e m´ etho et hode de de d´ esin es infe fect ctio ion n 11.1. 11. 1. Crit` C rit`eres ere s de s´electi ele ction on de la m´ethod eth odee de d´esinfe esi nfecti ction on . . . . . . . . . . . . . 11.1.1. 11.1. 1. D´ebit ebit de l’installatio l’insta llation n. . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2. Micro-organismes a` ´elim el imin iner er . . . . . . . . . . . . . . . . . . . . . 11.1.3. Caract´eristiques eristiques de l’eau en sortie . . . . . . . . . . . . . . . . . . 11.1.4. Intervalle entre traitement et consommation . . . . . . . . . . . . 11.2. Quelques Quelques exemples exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1. Un syst`eme eme d’ozonisation compact et performant pour d´ebits ebits a` 3 partir de 1 m /h . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2. Une Une unit´ e de potabilisation potabilisation pour maison sans raccordement raccordement au r´eseau eseau d’eau potable pot able . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.3. 11.2.3. Un Un point point d’eau d’eau potable potable dans un endroit endroit qui n’est n’est pas reli´ reli´ e au r´esea es eau u ´elec el ectr triq ique ue . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.4. Installation de chloration de l’eau . . . . . . . . . . . . . . . . . . 11.2.5. Eau ultrapure, micro-´electronique electronique . . . . . . . . . . . . . . . . . .
103 10 3 103 10 3 103 10 4 104
12.Les biofilms 12.1. Importance des biofilms . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2. Qu’est-ce Qu’est-ce qu’un biofilm ? . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3. Les facteurs influen¸cant cant la formation et le d´eveloppement eveloppement des biofilm . 12.3.1. Temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.2. 12.3. 2. Vitesse Vitess e d’´ecoulement ecou lement . . . . . . . . . . . . . . . . . . . . . . . . 12.3.3. Espaces morts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.4 12. 3.4.. Barri` Bar ri`eres ere s antibac anti bact´ t´erienn eri ennes es . . . . . . . . . . . . . . . . . . . . . 12.4. Contrˆ ole ole des biofilms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5. D´esinfectio esinf ection n d’instal d’ installation lationss lors lor s de l’installat l’inst allation ion d’un d ’un st´ s t´erilisateur erilis ateur U.V . 12.5.1. Un cas particulier : les boucles de distribution d’eau ultrapure . 12.6. Biofilms et corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
107 107 107 107 10 7 10 8 108 108 108 109 110 111
. . . . . .
113 113 113 11 4 11 4 11 5 115
. . . . . .
117 117 11 7 117 119 119 11 9
13. 13 . L’eau L’ eau ozon´ ozo n´ ee ee 13.1. Pourquoi Pourqu oi l’eau ozon´ee ee ? . . . . . . . . . . . 13.2. Applications . . . . . . . . . . . . . . . . . 13.3. 13. 3. S´ecurit´ ecu rit´e lors lor s de l’emplo l’em ploii d’eau d’e au ozon´ ozo n´ee ee . . . 13.3.1 13. 3.1.. Probl` Pro bl`emes eme s sp´ecifiqu eci fiques es a` l’utilisatio l’util isation n 13.3.2. Effets de l’ozone . . . . . . . . . . . 13.3.3. Les mesures de pr´ecaution ecaution . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . d’eau ozon´ee ee . . . . . . . . . . . . . . . .
14.La distillation 14.1. Applications . . . . . . . . . . . . . . . . . . . . . 14.2. Principe Principe de fonctionnemen fonctionnementt . . . . . . . . . . . . 14.3. 14. 3. Qual Q ualit´ it´e de l’eau l’e au distill´ dis till´ee ee . . . . . . . . . . . . . . 14.4. Solutio S olutions ns pou pourr r´eduire eduir e la consommatio conso mmation n d’´energie ener gie 14.4.1. Effets multiples . . . . . . . . . . . . . . . 14.4.2. Thermocompression Thermocompression . . . . . . . . . . . . .
ozon oz one. e.ch ch S` arl ar l
v
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
104 10 4 106 10 6 10 6
http://www.ozone.ch
Table des mati` mat i` eres ere s
14.5. Limites de la distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
15. 15 . Pro Pr oc´ed´ ed ´ es es par ´ echa ec hang nge e d’io d’ ions ns 15.1. Introduction Introduction a` l’´echange echa nge d’ion d’io n . . . . . . . . . . . . . . . . . . . . . . . . 15.2. Adoucisseurs d’eau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 15 .3.. D´emin´ em in´eral er alis isat ation ion par pa r ´echan ech ange ge d’i d’ion onss . . . . . . . . . . . . . . . . . . . . . 15.3.1. Equations Equations fondamentales fondamentales . . . . . . . . . . . . . . . . . . . . . . . 15.3 15 .3.2 .2.. R´eg´ eg ´en´ en´erat er atio ion n des de s ´echa ec hang ngeu eurs rs d’io d’ ions ns `a 2 lits li ts . . . . . . . . . . . . . 15.3.3. Echangeur d’ions a` lit li t m´elan la ng´e . . . . . . . . . . . . . . . . . . . . 15.3.4 15. 3.4.. Pourquo Pour quoii l’ea l ’eau u est-ell est -ellee meilleu mei lleure re apr`es es un lit m´elang´ ela ng´e qu’a q u’apr` pr`es es un deux-li deux-lits ts ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.5. .5 . R´eg´en´eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4. Calcul Ca lcul des ´echangeurs echang eurs d’ions . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 15 .4.1 .1.. Prin Pr inci cip p es g´en´ en´erau er aux x . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.2. 15.4.2 . Qualit´e de l’eau obtenue obte nue par ´echange echange d’ions . . . . . . . . . . . .
121 121 122 122 122 124 124 124 124 125 125 125
16. Les antitartre anti tartress ´ electro ele ctromagn´ magn´etique eti quess 126 16.1. Passions Passion s et pol´emique emique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 16.2. Principe Principe de fonctionnemen fonctionnementt . . . . . . . . . . . . . . . . . . . . . . . . . 126 16.3. Limitations d’emploi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 17. Electro Ele ctrod´ d´ eionis eio nisatio ation n 17.1. Principe . . . . . . . . . . . . . . . . . . . . 17.2. Avantages et d´esavantages esavantages . . . . . . . . . . 17.2.1. Principaux avantages . . . . . . . . . 17.2.2. 17.2.2 . Principaux Princ ipaux d´esavantages esavantages . . . . . . . 17.3. Probl` Prob l`emes emes r´esultants esult ants d’aspects d’asp ects commerciau comme rciaux x 17.4. Etudes de cas . . . . . . . . . . . . . . . . . 17.4.1. L’osmoseur instable . . . . . . . . . . 17.4.2. 17.4.2 . Cellule Cellul e myst´erieuse erieu se . . . . . . . . . . 17.5. Situation Situation actuelle . . . . . . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
18. 18 . D´egaz eg azag age e 18.1. Applications . . . . . . . . . . . . . . . . . . . . 18.2. La technologie traditionelle : le d´ecarbonateur ecarbonat eur . 18.2.1. Principe . . . . . . . . . . . . . . . . . . 18.2.2. Le dimensionnement des d´ecarbonateurs ecarbonate urs 18.3. Les nouvelles technologies de d´egazage egazage . . . . . 18.3.1. Principe de fonctionnement . . . . . . . 18.3.2. Calcul . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . .
129 129 130 130 131 132 132 132 133 133
. . . . . . .
134 134 134 134 134 135 135 136
III. Concep Conceptio tion n et optimi optimisat sation ion de sys syst` t` emes emes de purific purificati ation on de l’eau 138
ozone.ch S` arl arl
vi
http://www.ozone.ch
Table des de s mati` mat i` eres ere s
19.Introduction 19.1. D´eroulement erou lement du projet pro jet . . . . . . . . . . . 19.2 19 .2.. D´elai el aiss . . . . . . . . . . . . . . . . . . . . 19.3. Caract´ Ca ract´eristiques eristiques de l’eau d’alimentation . . 19.3.1. Informations a` obtenir . . . . . . . 19.3.2. Etude de cas : chlore et membranes 19.4 19 .4.. Qualit Qua lit´´e d’ea d’ eau u n´eces ec essa sair iree . . . . . . . . . . 19.5. 19. 5. D´efiniti efin ition on de la qualit´ qua lit´e de l’eau l’e au n´ecessa ece ssaire ire 19.6. 19. 6. Quantit´ Qua ntit´e d’eau d’e au n´ecessa ece ssaire ire . . . . . . . . . . 19.7. 19. 7. Autres Autr es param` par am`etres etr es . . . . . . . . . . . . . 19.8 19 .8.. Conc Co ncep epti tion on du pro pr o c´ed´ ed´e . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
20. 20 . Sp´ecifi ec ifica cati tion on des de s princ pri ncip ipau auxx ´ el´ el´ements eme nts 20.1. Introducti Intro duction on aux sp´ecification ecific ationss . . . . . . . . . 20.2. Osmose inverse . . . . . . . . . . . . . . . . . 20.3. Echangeurs d’ions . . . . . . . . . . . . . . . . 20.4 20 .4.. G´en´ en´erat er ateu eurs rs d’oz d’ ozon onee . . . . . . . . . . . . . . 20.5. Distillateurs . . . . . . . . . . . . . . . . . . . 20.6. Electrod´ Elect rod´eionisation eioni sation . . . . . . . . . . . . . . . 20.7. Sp´ecification ecification des filtres et cartouches filtrantes 20.7.1. 20.7. 1. Cartouches Cart ouches de p´efiltration efiltr ation . . . . . . . 20.7.2. Cartouches de microfiltration . . . . . 20.7.3. D´ebits ebits : ordres de grandeur . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
21.Optimi 21. Optimisation sation de syst` emes emes existants exist ants 21.1 21 .1.. M´ M ´etho et hode de . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2. Osmoseurs : optimisation de la maintenance . . . . . . . 21.3. Cartouches filtrantes . . . . . . . . . . . . . . . . . . . . 21.4. Etude de cas : cartouche c artouche de pr´efiltration efiltration d’un osmoseur . 21.5. Osmoseur Osmos eur en pr´etraiteme etra itement nt d’´echange echange d’ion . . . . . . . . 21.6. 21. 6. Cap Capaci acit´ t´e des r´esines esi nes d’´echange echa ngeurs urs d’ions d’i ons . . . . . . . . .
ozon oz one. e.ch ch S` arl ar l
vii
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
139 139 140 141 14 1 141 142 143 143 144 144
. . . . . . . . . .
146 146 146 147 147 148 148 149 149 149 14 9
. . . . . .
150 150 150 150 150 151 152
http://www.ozone.ch
Table des figures 1.1. Le traitement de l’eau, un sujet a` la fronti`ere de plusieurs disciplines . . . 1.2. Les domaines du traitement de l’eau . . . . . . . . . . . . . . . . . . . .
3 3
2.1. La mol´ecule d’eau . . . . . . . . . . . . . . . . . . . . . . 2.2. Classification des impuret´es . . . . . . . . . . . . . . . . 2.3. Conductivit´e de l’eau en fonction de la concentration de (TDS). [12] . . . . . . . . . . . . . . . . . . . . . . . . . 2.4. Le gaz carbonique dans l’eau . . . . . . . . . . . . . . . . 2.5. Nomogramme de Langelier et Ryznard[12] . . . . . . . . 2.6. Interpr´etation de l’indice de Ryznar[12] . . . . . . . . . .
7 7
. . . . . . . . . . . . . . . . . . solides dissous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 16 18 20
3.1. Le CO2 dans l’eau, sous diff´erentes formes en fonction du pH . . . . . . .
23
Un filtre industriel pour d´ebits de plusieurs dizaines de m3/h . . . . . . . Interception directe ou criblage . . . . . . . . . . . . . . . . . . . . . . . Mouvement brownien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . La formation d’un gˆ ateau de filtration . . . . . . . . . . . . . . . . . . . Principe de fonctionnement d’un filtre a` poche . . . . . . . . . . . . . . . Changement d’une poche. Ces poches peuvent se casser, causant des d´egˆ ats importants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8. Filtre a` poche. Carter en plastique. . . . . . . . . . . . . . . . . . . . . . 4.9. Filtre autonettoyant. Principe de fonctionnement. Image : Filters Srl . . 4.10. Filtre autonettoyant. Photo : Filters Srl . . . . . . . . . . . . . . . . . . 4.11. Montage d’un filtre autonettoyant. Photo : Filters Srl . . . . . . . . . . . 4.12. Filtre `a sable a` pression. Photo : Osmonics . . . . . . . . . . . . . . . . . 4.13. Corps de filtres pour filtres a` cartouche. Photo : Osmonics . . . . . . . . 4.14. Cartouche a` fil bobin´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15. Cutoff , ou nettet´e du seuil de filtration . . . . . . . . . . . . . . . . . . . 4.16. Evolution de la perte de charge au cours de la vie d’une cartouche filtrante 4.17. Vue au microscope d’une membrane d’une cartouche de microfiltration absolue. Photo : GE Water . . . . . . . . . . . . . . . . . . . . . . . . . .
27 29 30 30 31 33
5.1. Le ph´enom`ene naturel osmose . . . . . . . . . . . . . . . . . . . . . . . 5.2. Un module spiral´e [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47 48
4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.
viii
33 35 36 36 37 37 39 40 41 42 45
Table des figures
5.3. Fabrication d’un module d’osmose inverse . . . . . . . . . . . . . . . . . 48 5.4. Membrane d’osmose inverse : le mod`ele avec pores. Image : Osmonics . . 49 5.5. Membrane d’osmose inverse : le mod`ele sans pores . . . . . . . . . . . . . 49 5.6. Repr´esentation sch´ematique d’un osmoseur . . . . . . . . . . . . . . . . . 50 5.7. Sch´ema d’un petit osmoseur industriel. Sch´ema : Osmonics . . . . . . . . 54 5.8. Exemple d’unit´e d’osmose inverse pour laboratoire. Photo : Electrolux . 55 5.9. Sch´ema de principe de l’unit´e montr´ee sur la figure 5.8 . . . . . . . . . . 55 5.10. Petit smoseur industriel, muni de membranes 4”. Photo : RO Ultratech . 56 5.11. Exemple de grand osmoseur industriel, muni de membranes 8”. Photo : GE Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.12. Exemple d’unit´e d’ultrafiltration au point d’utilisation [20] . . . . . . . . 57 5.13. Sch´ema d’une unit´e d’ultrafiltration au point d’utilisation [20] . . . . . . 58 5.14. Machine d’ultrafiltration pour la potabilisation de l’eau . . . . . . . . . . 58 6.1. Une machine pour nettoyer des membranes d’osmose inverse ou de nanofiltration. Photo : RO Ultratech . . . . . . . . . . . . . . . . . . . . . . .
64
8.1. Absorption du rayonnement ultraviolet par l’eau et par l’ADN . . . . . . 66 8.2. Comparaison des spectres d’´ emission d’une lampe basse pression et d’une lampe moyenne pression [13] . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.3. R´eduction du rayonnement ´emis au bout de 7 jours, en fonction de la duret´e 68 8.4. Dose de rayonnement U.V. n´ecessaire pour r´eduire de 99.99% divers microorganismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.5. Exemple de st´erilisateur U.V. [23] . . . . . . . . . . . . . . . . . . . . . . 74 9.1. Une pompe a` injection ou pompe doseuse. Photo : ozone.ch . . . . . . . .
77
10.1. L’ozone : un d´esinfectant plus puissant que le chlore [2] . . . . . . . . . . 10.2. Les principaux composants d’un syst`eme d’ozonisation de l’eau . . . . . . 10.3. G´en´eration d’ozone par d´echarge Corona. Principe . . . . . . . . . . . . . 10.4. Exemple de syst`eme de g´en´eration d’ozone . . . . . . . . . . . . . . . . . 10.5. principe de fonctionnement d’une colonne de contact . . . . . . . . . . . 10.6. Contacteur municipal : principe . . . . . . . . . . . . . . . . . . . . . . . 10.7. Injecteur Venturi : principe . . . . . . . . . . . . . . . . . . . . . . . . . 10.8. Syst`eme Venturi-R´eacteur-Cyclon : pilote de d´emonstration. Photo : GDT Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.9. Ensemble injecteur – r´eacteur – cyclon : principe . . . . . . . . . . . . . 10.10.Solubilit´e de l’ozone dans l’eau . . . . . . . . . . . . . . . . . . . . . . . 10.11.Efficacit´e de la dissolution de l’ozone dans l’eau . . . . . . . . . . . . . . 10.12.Comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.13.Concentration de bact´eries en plusieurs points d’une chaˆıne de potabilisation de l’eau [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.14.Exemple d’installation de destructeur catalytique d’ozone. Photo : ozone.ch 10.15.Syst`eme MembrelTM de production d’ozone a` partir de l’oxyg`ene de l’eau. Photo : Ozonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79 80 81 82 84 85 85
ozone.ch S` arl
ix
86 87 89 89 90 92 93 94
http://www.ozone.ch
Table des figures
10.16.D´etecteur d’ozone portable [23] . . . . . . . . . . . . . . . . . . . . . . . 96 10.17.D´etecteur d’ozone fixe dans armoire de protection [23] . . . . . . . . . . . 96 10.18.Analyseur d’ozone pour l’air ambiant. Photo : InUSA Corporation . . . . 98 10.19.D´etecteur d’ozone dissous a` capteur a` semiconducteur. Photo : ozone.ch 100 10.20.Principe de fonctionnement d’un analyseur d’ozone utilisant la loi de Henry . Dessin : InUSA Corporation . . . . . . . . . . . . . . . . . . . . . 101 10.21.Analyseur d’ozone `a mesure directe dans l’eau. Le capteur, a` travers lequel l’eau passe, est `a droite sur la photo. Photo : InUSA Corporation . . . . 1 0 2 11.1. Syst`eme compact d’ozonisation de l’eau [23] . . . . . . . . . . . . . . . . 105 11.2. Syst`eme de potabilisation d’eau de pluie pour maison isol´ee [23] . . . . . 1 0 5 12.1. Un biofilm. Le biofilm est form´e de micro-organismes, mais aussi par un r´eseau de polym`eres extra-cellulaires [21] . . . . . . . . . . . . . . . . . . 107 12.2. Contrˆ ole de biofilms [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.3. La corrosion favoris´ee par les biofilms. Principe [21] . . . . . . . . . . . . 112 13.1. Syst`eme portable de production d’eau ozon´ee [23] . . . . . . . . . . . . . 114 13.2. Syst`eme pour refroidissement a` l’eau (Hydrocooling ) de viande de poulet, avec eau ozon´ee. Image : GDT Corporation [23] . . . . . . . . . . . . . . 115 14.1. Sch´ema de principe d’un distillateur [9] . . . . . . . . . . . . . . . . . . 118 14.2. Principe de la thermocompression [2] . . . . . . . . . . . . . . . . . . . . 120 15.1. Sch´ema de principe d’un adoucisseur . . . . . . . . . . . . . . . . . . . . 123 16.1. Antitartre ´electromagn´etique . . . . . . . . . . . . . . . . . . . . . . . . . 128 17.1. Principe de l’´electrod´eionisation . . . . . . . . . . . . . . . . . . . . . . . 129 17.2. Principe de l’´electrod´eionisation(2) . . . . . . . . . . . . . . . . . . . . . 130 17.3. Exemple d’´elecrod´eionisateur . . . . . . . . . . . . . . . . . . . . . . . . . 131 18.1. Sch´ema de principe d’un d´ecarbonateur [8] . . . . . . . . . . . . . . . . . 18.2. Principe de fonctionnement d’une installation de d´egazage avec injecteur Venturi [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3. Efficacit´e d’un syst`eme de d´egazage a` Venturi [15] . . . . . . . . . . . . 18.4. Efficacit´e d’un syst`eme de d´egazage a` Venturi pour l’´elimination du radon [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
135 136 137 137
20.1. Petit concentrateur d’oxyg` ene. Photo : SeQual Corporation . . . . . . . . 148 21.1. Coˆ uts de production d’eau d´emin´eralis´ee en fonction de la min´eralisation totale de l’eau brute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 21.2. Capacit´e d’une r´esine en fonction de la quantit´e de r´eg´en´erant employ´e . 152
ozone.ch S` arl
x
http://www.ozone.ch
Liste des tableaux 2.1. Facteurs de conversion pour les ions les plus courants . . . . . . . . . . . 2.2. Conversion des degr´es de duret´e . . . . . . . . . . . . . . . . . . . . . . .
11 13
4.1. Quelques seuils de filtration usuels . . . . . . . . . . . . . . . . . . . . . .
28
5.1. Taux de rejets de diff´erents sels, relativement au NaCl . . . . . . . . . . .
52
6.1. D´ebits et volumes de solution de nettoyage recommand´es . . . . . . . . .
63
8.1. 8.2. 8.3. 8.4. 8.5. 8.6.
. . . . . .
70 71 72 72 72 73
10.1. Potentiels R´edox de quelques produits oxydants utilis´es dans l’industrie . 10.2. Demi-vie de l’ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3. Les m´ethodes de mesure de l’ozone dans l’air . . . . . . . . . . . . . . . .
79 80 98
Doses d’inactivation D10 pour quelques micro-organismes communs . . Doses de rayonnement UV pour l’inactivation de bact´eries . . . . . . . Doses de rayonnement UV pour l’inactivation de moisissures et spores . Doses de rayonnement UV pour l’inactivation d’algues et protozoa . . . Doses de rayonnement UV pour l’inactivation de virus . . . . . . . . . Doses de rayonnement UV pour l’inactivation de levures . . . . . . . .
13.1. Effets de l’ozone sur la sant´ e humaine . . . . . . . . . . . . . . . . . . . . 116
xi
Liste des tableaux
ozone.ch S` arl
xii
http://www.ozone.ch
Premi` ere partie . Introduction et rappels
1
1. Introduction 1.1. L’eau : aussi omnipr´ esente que m´ econnue L’eau est omnipr´esente dans l’industrie. Il n’y a pas de produit qui n’est pas au moins rinc´e avec de l’eau au cours de sa production, et l’eau est un composant essentiel de la production de bien des produits alimentaires et chimiques, par exemple. Les qualit´es thermodynamiques de l’eau en font un fluide caloporteur de choix : elle a une enthalpie d’´evaporation tr`es ´elev´ee et une chaleur sp´ecifique tr`es ´elev´ee ´egalement. Pourtant, le praticien confront´e a` la conception du syst`eme de traitement de l’eau pour l’industrie devait jusqu’`a pr´esent se tourner vers des ouvrages en anglais, par ailleurs souvent excellents, ou se r´esoudre a` utiliser des ouvrages en fran¸cais destin´es au traitement de l’eau potable. Cette situation n’´etant pas satisfaisante, j’ai entrepris l’´ecriture de cet ouvrage, sur la base du cours qui existe depuis 1997 aupr`es de la FSRM et des nouveaux cours avanc´es de la FSRM introduits en 2002. Le traitement de l’eau est un domaine a` la fronti` ere de plusieurs disciplines. La chimie joue un rˆ ole primordial, mais aussi la m´ecanique et, pour les installations d’une certaine importance, aussi le g´enie civil. La conception d’une nouvelle installation requiert en principe la collaboration d’au moins un chimiste et un ing´enieur en m´ecanique. Lorsqu’on parle de “traitement de l’eau”, on englobe en fait une s´ erie de disciplines tr`es diverses. Il y a en effet peu en commun entre une installation de potabilisation d’eau souterraine, qui est essentiellement un ouvrage de g´enie civil, et une petite installation de production d’eau ultrapure pour la micro´electronique, qui, si elle ne n´ecessite pas de g´enie civil, fait appel´e a` des technologie de pointe, des m´ethodes de mesures sophistiqu´ee et exige une maintenance tr`es soign´ee par ses op´erateurs. Le livre ne traite pas du sujet des eux us´ees. Le traitement des eaux us´ees industrielles fait appel en partie aux mˆemes technologies que la purification de l’eau, mais aussi a` de nombreuses autres techniques, comme les bior´eacteurs. Les aspects l´egaux sont souvent d´eterminants. Il en r´esulte qu’il est pratiquement impossible de les traiter dans le cadre d’un ouvrage traitant de la purification de l’eau. La grande majorit´e des utilisateurs d’eau dans l’industrie disposent d’eau potable. Le sujet du livre sera donc essentiellement la purification de l’eau potable pour la rendre utilisable dans les processus industriels. Dans de rares cas, l’industrie doit utiliser de l’eau non potable, provenant de forages, de la nappe phr´eatique ou de rivi`eres ou de lacs. Un chapitre sera consacr´e au traitement additionnels n´ecessaires si l’on emploie de l’eau encore a` potabiliser. Dans la plupart des cas, ces traitements sont assez simples.
2
´ ´ 1.1. L’EAU : AUSSI OMNIPR ESENTE QUE M ECONNUE
Figure
1.1.: Le traitement de l’eau, un sujet a` la fronti`ere de plusieurs disciplines
Figure
1.2.: Les domaines du traitement de l’eau
Comme le cours, ce livre est organis´e selon les lignes directrices suivantes : les deux premi`eres parties sont consacr´ees aux connaissances de bases n´ecessaires : la partie 1 est une introduction a` la chimie de l’eau. Il est en effet indispensable de comprendre le produits que nous allons traiter. Ensuite, une 2e partie, tr`es importante par le volume de ses pages, est consacr´ee aux technologies qui sont a` notre disposition pour le traitement
ozone.ch S` arl
3
http://www.ozone.ch
CHAPITRE 1. INTRODUCTION
de l’eau. Enfin, dans la 3e partie de l’ouvrage, nous mettrons en pratique les connaissances acquises pour la conception de nouvelles installation et l’analyse et l’optimisation d’installations existantes. Comme bien des branches industrielles, la purification de l’eau utilise des technologies parfois fort anciennes. Certaines, comme l’ozone, on connu un d´eveloppement rapide avant de retomber dans l’oubli, pour faire ensuite un retour en force a` une ´epoque tr`es r´ecente. D’autres, comme l’osmose, sont r´ecentes, ´etaient d’une utilisation assez complexe mais se se sont aujourd’hui popularis´ees. La 3e partie de l’ouvrages est consacr´ee a` la conception de nouvelles installations et l’optimisation d’installations existantes. Ces sujets sont trait´es du point de vue de l’utilisateur d’installation.
1.2. Rappel historique La s´edimentation date de l’antiquit´e classique : des documents en grec d´ecrivent des techniques employ´ees dans l’Egypte Ptol´ema¨ıque d´ej` a au 2e si`ecle avant notre ˆere. La filtration par tamisage avec un textile est encore plus ancienne : elle ´etait connue en Gr`ece au 5e si`ecle avant notre ˆere. Le filtre a` sable, qui est utilis´e aujourd’hui dans toutes les piscines et dans bien des applications industrielles est d’origine incertaine, mais il semble qu’il ´etait d´ej` a connu dans l’Egypte Ptol´ema¨ıque. En Europe, il est utilis´e e d`es le 17 si` ecle. Les filtres-presse sont un produit de la r´evolution industrielle : les premiers brevets datent de l’an 1800. Les technologies de d´esinfection de l’eau sont toutes beaucoup plus r´ecentes. En effet, il faut attendre les d´eveloppement de la biologie et l’apparition de la notion de microorganisme dans les ann´ees 1860 pour que la n´ecessit´e de d´esinfecter l’eau apparaisse. Pasteur aurait dit que nous buvons presque toutes nos maladies. Le chlore et l’ozone sont les premi`eres m´ethodes de d´esinfections utilis´ees, a` la fin du 19e et a` l’aube du 20e si`ecle. Les premiers brevets pour la st´erilisation UV datent aussi du d´ebut du 20e si` ecles. Malheureusement, l’Europe en 1918 dispose de nombreuses grandes usines de chlore, alors que la fin de la guerre cause un effondrement de la demande pour ce gaz. Le chlore est d´esormais bon march´e, et il devient le d´esinfectant de choix pour l’eau : la st´erilisation par rayonnement UV et l’ozonisation resteront confin´ee a` des applications de niche jusqu’aux ann´ees 1960. Les techniques de d´emin´eralisation par ´echanges d’ions sont plus r´ecentes. Le premier adoucisseur est mis en service en 1905. La premi`ere d´emin´eralisation totale date de 1937, en Angleterre : l’application est la production de la bi` ere. La cartouche filtrante jetable est aussi un produit des ann´ees 1930 . A l’´epoque, le grand fabriquant de cartouches jetable est la soci´et´e Sartorius, de G¨ ottingen, en Allemagne, qui existe encore aujourd’hui. A la fin de la guerre plusieurs ing´ enieurs de Sartorius seront amen´es aux USA o` u ils travailleront pour le d´epartement de la d´efense, avant de participer a` la fondation de la soci´et´e Millipore, qui est aujourd’hui l’un des g´eants mondiaux de la cartouche filtrante industrielle. L’osmose inverse a un d´eveloppement tr`es lent. Bien que le ph´enom`ene de l’osmose soit connu depuis la 2`eme moiti´e du 19e si`ecle, il faut attendre les ann´ees 1950 pour que
ozone.ch S` arl
4
http://www.ozone.ch
1.3. TENDANCES ACTUELLES
des installations d’osmose inverse soient r´ealis´ee a` l’´echelle du laboratoire. Les premi`eres installations industrielles datent des ann´ees 1960, et il faut attendre les ann´ees 1980 pour la technologie se g´en´eralise, d’abord aux USA puis en Europe.
1.3. Tendances actuelles Les ann´ees 1990 ont vu une baisse de prix des installations a` membrane (Osmose inverse) et des syst`emes d’ozonisation de l’eau, ce qui fait que ces technologies sont de plus en plus fr´equemment utilis´ees. Cette p´eriode a aussi vu des fournisseurs proposer des ´equipements standard, sur catalogue, a` des prix tr`es comp´etitifs aussi pour des d´ebits tr`es importants 1 . La 2e moiti´e des ann´ees 1990 a aussi vu l’apparition de membranes d’osmose inverse `a pression plus faible, qui ont r´eduit le coˆ ut d’exploitation des osmoseurs de 20 a` 30%, favorisant ainsi encore une fois cette technologie. Les technologies membranaires se sont impos´ees contre la d´emin´eralisation par ´echange d’ions. Un domaine ou l’´ echange d’ions se maintient actuellement est l’adoucissement de l’eau. Il existe une technologie membranaire, la nanofiltration, qui constitue une alternative potentielle a` l’adoucisseur. La technologie peine a` s’imposer au niveau des installations domestiques 2 , mais elle s’est fortement implant´ee dans l’industrie agroalimentaire 3 . La baisse des prix des membranes d’osmose inverse s’explique principalement par : • L’augmentation du volume de production • Le fait que longtemps les membranes en polyamides ´etaient l’apanage de la soci´ et´e
Filmtec 4 sur la base d’un brevet qui a ´et´e d´eclar´e public en 1993 5 : depuis 1994 d´ej`a, la concurrence est s´ev`ere dans le domaine des membranes. En pratique il est devenu essentiel de n´egocier les prix lors d’achats de membranes.
1. A titre d’exemple, un fabricant am´ericain, ´egalement repr´esent´e en Europe, propose sur catalogue des osmoseurs standard, construits en s´erie, pour des d´ebits allant jusqu’`a plus de 70 m3 /h 2. La soci´et´e allemande qui avait lanc´e le premier appareil domestique de nanofiltration a cess´e sa production en 1998. A notre connaissance aucune soci´et´e n’a encore repris le flambeau, mais cela ne saurait tarder 3. De nombreuses usine de Coca-Cola sont munies de syst`emes de nanofiltration pour adoucir l’eau, et permettre a` tous les habitant de la plan` ete de boire une boisson qui a le mˆeme goˆ ut 4. Filiale de Dow Chemical 5. La motif de la suspension de la protection accord´ ee `a Filmtec par son brevet ´etait le fait que les membranes en polyamide avaient ´et´es d´evelopp´ees pendant un pro jet financ´e par l’arm´ee US, et aux USA une invention r´esultant d’un d´eveloppement financ´e par l’argent public ne peut ˆetre prot´eg´ee par un brevet
ozone.ch S` arl
5
http://www.ozone.ch
2. Introduction ` a la chimie de l’eau 2.1. Qu’est-ce que l’eau ? Il est usuel de croire que l’eau est H2 O. Une description un peu plus pr´ecise de ce liquide pourrait ˆetre : l’eau, c’est H2 O plus une s´erie d’impuret´es. Le praticien du traitement de l’eau doit connaˆıtre ces impuret´es, leurs cons´equences sur les propri´et´es de l’eau, et aussi les unit´es de mesures employ´ees pour exprimer ces impuret´es afin de comprendre les analyses d’eau. Cet ouvrage s’adressant a` des praticiens de l’industrie, nous ne traiterons pas ici des m´ethodes d’analyse de l’eau, mais bien de l’interpr´etation des r´esultats d’analyses que nous pourrons obtenir de laboratoires. Les polluants de l’eau ayant des cons´equences directes sur les caract´ eristiques de l’eau, l’on utilise pour l’eau de nombreuses mesures. Nous ne d´ecrirons pas ici les m´ethodes d’analyse de l’eau, qui font l’objet de nombreux autres ouvrages, mais il est important pour pouvoir concevoir des syst`emes de traitement de l’eau et les utiliser de mani`ere optimale de bien comprendre les analyses d’eau, et la significations de grandeurs telles que le pH, le potentiel d’oxydo-r´ eduction, etc. L’eau est un fluide qui a des caract´eristiques tout a` fait remarquables : a l’´etat liquide • Sa densit´e est plus faible a` l’´etat solide qu’` • La tension de surface est tr`es ´elev´ee • On l’appelle parfois le solvant universel , car elle dissout plus de substances que tout autre fluide connu. • Sa chaleur de vaporisation ´elev´ ee, ce qui en fait un fluide caloporteur de choix Ces caract´eristiques sont dues a` la mol´ecule d’eau (voir figure 2.1). La mol´ecule d’eau est une mol´ecule mol´ecule polaris´ee. Ces mol´ecules tendent a` rester ensemble `a l’´etat liquide plus que d’autres fluides, ce qui explique la chaleur de vaporisation ´elev´ee. Elle tend aussi a` s´eparer les ions : il en r´esulte que l’eau est un excellent solvant. Le volume de l’eau augmente lorsqu’elle passe de l’´etat liquide a` l’´etat solide : elle est l’une des 3 seules substances connues dans la nature dans ce cas.
2.2. Les classes de polluants L’eau, de part sa nature de solvant universel, n’existe pratiquement pas sous forme de H2 O pure. L’on trouve litt´eralement de tout dans l’eau. Afin de pouvoir analyser les traitements de purification envisageables, il est indispensable dans un premier temps
6
2.2. LES CLASSES DE POLLUANTS
Figure
2.1.: La mol´ecule d’eau
de classifier les impuret´es. Il y a plusieurs mani`eres de classifier les impuret´es. L’int´erˆet d’une classification est ´evidemment conditionn´e par l’utilit´e de celle-ci pour d´efinir les traitements de purification applicables pour ´eliminer ces impuret´es.
Figure
2.2.: Classification des impuret´es
Les principales classes de polluants sont :
ozone.ch S` arl
7
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
• • • •
Les ´el´ements solubles : on pourra les ´eliminer par osmose inverse ou ´echange d’ions1 Les micro-organismes : on pourra les d´etruire par des m´ethodes de d´esinfection Les compos´es insolubles : il faudra pr´ecipiter ou filtrer Les composants organiques : ils constituent une nourriture pour d’´eventuelles bact´eries, il faudra donc les ´eliminer, en g´en´eral par oxydation ou par absorption sur charbon actif
2.3. Une classification alternative Une autre mani`ere de classifier est de parler de polluants primaires ou secondaires, en fonction de leur concentration habituelle dans l’eau.
2.3.1. Polluants primaires Les polluants primaires, dont la concentration dans l’eau d´epasse souvent les 5 ppm sont : • • • • • • •
Bicarbonate HCO3 Calcium Ca++ Chlorure Cl Magn´esium Mg++ Silice SiO2 Sodium Na+ Sulfate SO24
−
−
−
2.3.2. Polluants secondaires On d´efinit comme polluants secondaires ceux dont la concentration d´epasse souvent 0.1 ppm : • • • • • • •
Ammoniac NH3 Bore B+ 3 Fluor F Fer Fe++ Nitrate NO3 Potassium K+ Strontium Sr++ −
−
2.3.3. Polluants tertiaires Les polluants tertiaires sont ceux dont la concentration d´epasse souvent 0.01 ppm : • Aluminium 1. A noter que l’osmose inverse mais pas l’´echange d’ions ´eliminera aussi des composants solubles non ionis´es, comme par exemple le sucre et d’autres substances organiques en solution
ozone.ch S` arl
8
http://www.ozone.ch
2.3. UNE CLASSIFICATION ALTERNATIVE
• • • • • • • • •
Arsenic Baryum Bromide Cuivre Plomb Lithium Mangan`ese Phosphate Zinc
2.3.4. Les traces Les traces sont ces polluants dont la concentration est g´en´eralement inf´erieure a` 0.01 ppm : • • • • • • • •
Antimoine Cadmium Chrome Cobalt Mercure Nickel Etain Sn Titane Ti
2.3.5. Composants non permanents La concentration de nombreux composants de l’eau est soumise a` des changements dˆus au contact avec l’air, avec les mat´eriaux de r´ecipients et conduites, ou a` l’activit´e biologique. Il s’agit en particulier de :
Acidit´ e et alcalinit´e Produits de cycles biologiques Il s’agit en particulier des produits des cycles suivants : Cycle du carbone : CH4 , CO, CO2 , carbone organique Cycle de l’oxyg` ene : O2 , CO2 Cycle de l’azote : azote organique, NH3 , NO2 , NO3 R´eactions r´edox : En r´esultent 2 classes de produits : Oxydants , parmi lesquels il faut distinguer Naturels : O2 , S R´ esidus de traitement : Cl2 , CrO4 2 R´ educteurs : Naturels : organiques, Fe+2 R´ esidus de traitement : organiques, Fe+2 , SO2 , SO3 2 Radionucl´eides : essentiellement le Radon, qui est un probl`eme r´eel pour la sant´e humaine par exemple dans certaines r´egions de l’arc jurassien, mais pose rarement des probl`emes pour les applications industrielles de l’eau. −
−
−
−
ozone.ch S` arl
9
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
2.4. Les unit´ es de mesure L’eau est un produit complexe. il n’est donc pas ´etonnant que l’on utilise un nombre important d’unit´es de mesure pour d´ecrire ses caract´eristiques. Les unit´es de mesure g´en´eralement utilis´ees sont :
Mesure de concentrations : ppm, mg/l, grains pH : exprim´e sans dimension Potentiel r´ edox : exprim´e en mV Duret´e : exprim´ee g´en´eralement en degr´es S’y ajoutent diff´erents indices, tels que :
Indice de Langelier : clacul´e par une formule empirique. Il indique si l’on va avoir des pr´ecipitations ou si l’eau sera corrosive. Si cet indice est n´egatif, il y a tendance a` la corrosion. Si il est positif, il y a tendance a` la formation de tartre. Turbidit´e : Nephtelometric turbidity units ou NTU. SDI : Indice sp´ecialis´e, souvent sp´ecifi´e par les fabricants d’osmoseurs. P´en´ etration des UVc : un autre indice sp´ecialis´e, g´en´eralement exprim´e en % sur une lame d’eau de 1 cm.
2.4.1. Unit´ es de mesure des substances dissoutes Pour exprimer la concentration d’une substance dissoute dans l’eau, plusieurs unit´es sont utilis´ees. L’unit´e de concentration la plus courante est le mg/l , souvent exprim´ee par “ppm” (partie par million). Les indications en ppm peuvent induire en erreur : en principe, en traitement de l’eau, l’on parle de ppm massique, qui correspondent donc a` des mg/kg, soit mg/l pour l’eau. Il faut faire attention au fait que le monde de l’environnement exprime g´en´eralement les concentrations des polluants gazeux en ppm, mais il s’agit cette fois de ppm volumiques (ppmv). Quand ces deux mondes se rencontrent, comme cela est les cas par exemple dans les applications de lavage de fum´ees ou l’ozonisation de l’eau, les erreurs dues a` l’interpr´etation du terme “ppm” sont h´elas fr´equentes. Le Grain est une unit´e fr´equente dans la litt´erature anglo-saxonne : • 1grain = 1/7000lb • 1grain/gal US = 17.1mg/l
Les concentrations de polluants sont en g´en´eral indiqu´ees comme ion . Parfois, l’on rencontre le terme ”Comme CaCO3 ” utilis´e dans la litt´erature anglo-saxonne, cette unit´e qui comptabilise les charges ´electriques est pratique pour les calculs d’´equilibre ´electrique et d’´echange d’ions, mais est la source d’innombrables erreurs. L’int´erˆet de l’unit´e ppm comme CaCO3 est que la somme des concentrations des anions doit ˆetre ´egale a` la somme des concentrations des cations a` pH neutre. Cette unit´e est utile aussi le calcul de syst`emes d’´echange d’ions : l’on peut additionner les concentrations
ozone.ch S` arl
10
http://www.ozone.ch
´ DE MESURE 2.4. LES UNIT ES
des diff´erents ions et ainsi obtenir le total de ce que une r´esine ´echangeuse d’ions doit enlever de l’eau. Hormis ces deux cas il vaut mieux ne pas utiliser les ppm comme CaCO3 . Pour obtenir le facteur de conversion pour passer de la concentration comme ion `a la concentration comme CaCO3 , il faut diviser la masse molaire du carbonate de calcium par la ”masse ´equivalente”, qui est la masse molaire divis´ee par la valence. Cette unit´e est pratique pour exprimer la duret´e, c’est plus facile ensuite pour calculer la capacit´e de l’adoucisseur. Les chimistes utilisent aussi les unit´es mMol/l et mVal/l, qui expriment la quantit´e de mol´ecules - respectivement la quantit´e de charges ´electriques - contenues dans l’eau. Une Mole d’une substance a la meme masse en grammes que sa masse mol´eculaire relative. Un V al est ainsi une Mole divise par le nombre de charges ´electriques. mMol/l mVal/l Comme CaCO3
Ion
Ca++
40
20
2.50
Na+
23.5
23.5
23.5
Mg++
24.3
12.2
4.12
Cl
35.5
35.5
1.41
96
48
1.04
61
61
0.82
−
SO24
−
HCO3
−
Table
2.1.: Facteurs de conversion pour les ions les plus courants
2.4.2. Unit´ es de mesure des solides en suspension Les solides en suspension dans l’eau posent une s´erie de probl`emes importants a` l’utilisateur d’eau dans l’industrie. Si l’eau sert `a la production d’un produit, la qualit´e de celui-ci peut ˆetre affect´ee par les particules en suspension. D’autre par des ´el´ements du syst`eme de purifcation d’eau lui-mˆemˆe doivent g´en´eralement ˆetre prot´eg´es des solides en suspension : c’est le cas des pompes et des membranes des osmoseurs, par exemple. Pour r´eduire la quantit´e de solides en suspension l’on peut utiliser la filtration 2 et la clarification . En purification de l’eau, on utilise deux mesures diff´erentes de la quantit´e de solides en suspension dans l’eau a` traiter : le SDI Silt Density Index , et la turbidit´e.
SDI Le SDI (Silt Density Index) est un indice de colmatage. Il est important pour les applications de filtration tangentielle. Il est d´efini comme ´etant la r´eduction moyenne sur 15 minutes, en % par minute du d´ebit a` travers un filtre 0.45 µ m a` une pression 2. Voir page 27
ozone.ch S` arl
11
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
constante de 2.1 bar. il s’agit d’un param`etre am´ericain (ASTM Standard), cette origine est due au fait que les producteurs de membranes d’osmose inverse sont presque tous am´ericains ou japonais. S’il est impossible de l’obtenir, la turbidit´e peut ˆetre utilis´e, mais c’est un param`etre moins fiable pour pr´edire le risque d’entartrage des membranes. En cas de litige avec le fournisseur de membranes, cela peut ˆetre un probl`eme. Un laboratoire d’analyse devrait ˆetre capable de mesurer le SDI, mais ce n’est pas toujours le cas. Par contre, l’on trouve dans le commerce des kits pour la mesure du SDI. Le SDI doit imp´erativement ˆetre mesur´e sur place. Les valeurs du SDI peuvent ˆetres interpr´et´ees comme suit : • Inf´erieur a` 3 : pas `a peu d’entartrage de la membrane • Entre 3 et 5 : conditions normales d’utilisation • Sup´erieur a` 5 : entartrage excessif a` pr´evoir
En pratique, il faut consulter le fournisseur des membranes lors de l’installation de l‘osmoseur et lui demander quelle est la valeur limite acceptable du SDI pour ses membranes .
Turbidit´e En pratique, on peut s’attendre a` un entartrage excessif des membranes d’osmose inverse si la turbidit´e est sup´erieure a` 1 NTU. Et l’eau n’est consid´er´ee potable que si la turbidit´e est inf´erieure a` 1 NTU.
Comptage de particules Le comptage des particules est cher et rarement n´ecessaire. Il est utilis´e seulement apr`es une filtration, pour analyser ou comprendre un ph´enom`ene inexpliqu´e .
2.4.3. Duret´ e La duret´e est d´efinie comme la somme des concentrations des ions Calcium Ca++ et Magn´esium Mg ++ il faut ˆetre attentif au fait que la duret´e est g´en´eralement indiqu´ee en degr´es, et qu’il y a plusieurs degr´es de duret´e diff´erents :
1 Fran¸cais : 10 mg/l comme CaCO3 ◦
1 Allemand : 10 mg/l comme CaCO ◦
1 Anglais : 1 mg par gallon anglais comme CaCO3 ◦
1 US : 1 mg/l comme CaCO3 ◦
Pour une fois, nos amis am´ericains sont les plus logiques dans la d´efinition des unit´es. Le tableau 2.4.3 donne les facteurs de conversion entre ces diff´erentes unit´es.
ozone.ch S` arl
12
http://www.ozone.ch
2.5. PH, ACIDES ET BASES
France
UK
Allemagne
USA
1.43
1
0.8
14.3
1
0.7
0.56
10.0
1.79
1.25
1
17.9
0.1
10.07
0.056
1
Table
2.2.: Conversion des degr´es de duret´e
2.5. pH, acides et bases Equilibre chimique de l’eau H2 O H+ + OH
−
(2.1)
En fait : 2H2 O H3 O + OH
−
Ke = [H3 O+ ] × [OH ] −
(2.2) (2.3)
O`u Ke est la constante de dissociation de l’eau Ke = 10 14 mol/l `a 25 C −
◦
Nomenclature H+ : ion hydrog`ene OH
−
: ion hydroxyde
H3 O+ : ion hydronium H+ : il s’agit d’un radical, il est peu probable qu’il existe. En fait, ce que l’on trouverait dans l’eau serait plutˆ o t l’ion H3 O+ , mais en pratique, on utilise toujours H+ dans les calculs. Ke a ´et´e nomm´e ainsi pour honorer Mr. Kohrlausch, qui la mesura. Ke varie en fonction de la temp´erature.
D´efinitions : Un acide est un donneur d’ions H+ Une base est un accepteur d’ionsH+ Un acide fort est compl`etement dissoci´e dans l’eau Un acide faible est partiellement dissoci´e dans l’eau
ozone.ch S` arl
13
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
De mani`ere analogue, une bases partiellement dissoci´ee sera dite faible, une compl`etement dissoci´ee forte.
Acides et bases faibles Exemples d’acides :
Acides forts : HCl, HBr Acides faibles : Acide carbonique H2 CO3 , Sulfurique H2 SO4 (K 2 = 0, 012) L’acide sulfurique est un acide fort quand a` son premier hydrog`ene. C’est le seul acide polyprotique fort.
2.6. Oxydo-r´ eduction Un oxydant est une substance qui peut accepter des ´electrons. Les oxydant r´eagissent avec les r´educteurs. Pour toute oxydation, il y a une r´ e duction. On parle donc de r´eactions d’oxydo-r´eduction . On distingue les potentiels normaux de chaque substance et le potentiel r´edox d’une solution.
Potentiels normaux : mesur´es avec une concentration de 1 mol/kg d’eau, avec ´electrode du mˆeme m´etal, par rapport a` un gaz a` un bar et une ´electrode de platine Potentiel d’une solution : potentiel d’une ´electrode de platine dans la solution par rapport a` une ´electrode standard
2.7. Conductivit´ e de l’eau L’eau th´eorique, sans aucune impuret´e, a une conductivit´e faible. Sa r´esistivit´e est de 18.3 MΩ × cm. La conductivit´e de l’eau est environ proportionnelle a` la concentration totale de solides dissous.
2.8. Dissolution et pr´ ecipitation Les diff´erents sels min´eraux se dissolvent dans l’eau. Il s’agit d’une r´eaction en ´equilibre, comme par exemple : NaCl Na+ + Cl
(2.4)
−
CaSO4 Ca++ + SO4
(2.5)
Na2 SO4 2Na+ + SO4
(2.6)
−−
−−
CaCl2 Ca++ + 2Cl−
ozone.ch S` arl
14
(2.7)
http://www.ozone.ch
´ 2.9. L’ EQUILIBRE CALCO-CARBONIQUE DE L’EAU
Figure
2.3.: Conductivit´e de l’eau en fonction de la concentration de solides dissous (TDS). [12]
Si l’on concentre une solution satur´ee, l’on cause donc une pr´ecipitation.
2.9. L’´ equilibre calco-carbonique de l’eau Un cas de r´eaction a` l’´equilibre particuli`erement important en purification de l’eau est celui de de la pr´ecipitation de calcaire, CaCO3 . La dissolution ou la pr´ecipitation du calcaire dans l’eau est r´egie par une s´erie de r´eactions a` l’´equilibre qui impliquent aussi le gaz carbonique. C’est pourquoi l’on parle de l’´equilibre calco-carbonique de l’eau . Le gaz carbonique est en partie sous forme ionique dans l’eau : CO2 + H2 O H2 CO3 H+ + HCO3
(2.8)
HCO3 H+ + CO3
(2.9)
−
et −
−−
Le carbonate de calcium est sous forme de ions : CaCO3 Ca++ + CO3
−−
ozone.ch S` arl
15
(2.10)
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
Figure
2.4.: Le gaz carbonique dans l’eau
Dans les conditions habituelles, le CO3 r´eagit presque enti`erement pour former du HCO3 , ce qui explique que l’on trouve des quantit´es consid´erables de calcaire dissous dasn l’eau sous forme de Ca(HCO3 )2 . Si l’on combine les r´eactions inverses on a : −−
−
Ca++ + 2HCO3 CO2 + H2 O + CaCO3 ↓ −
(2.11)
Le Ca(HCO3 )2 pr´ecipite et entartre conduites, chaudi`eres, etc. Plusieurs param`etres influencent les ´equilibres des ´equations ci-dessus. Il en r´esulte qu’il n’est pas trivial de d´eterminer si une eau est agressive, ou au contraire causera des d´epˆots. Il ne faut en aucun cas accepter les affirmations simplistes que l’on entend trop souvent - malheureusement parfois aussi prononc´ees par des professionnels - du type l’eau adoucie est corrosive, ou l’eau dure cause des d´epˆots de tartre. Mˆeme une eau adoucie peut causer des pr´ ecipitations si on la concentre, ou si on change le pH ou la temp´erature. De mˆeme, une eau dure mais acide peut ˆetre corrosive. L’agressivit´e de l’eau, ou au contraire, sa tendance a` former des d´epˆ ots de tartre, sera fonction des param`etres suivants : • • • • •
La temp´erature L’alcalinit´e Le pH La duret´e La concentration totale de solides dissous
ozone.ch S` arl
16
http://www.ozone.ch
´ 2.9. L’ EQUILIBRE CALCO-CARBONIQUE DE L’EAU
Plusieurs mod`eles permettant de d´eduire l’agressivit´e de l’eau ont ´et´es ´elabor´es, et peuvent ˆetres utilis´es sous forme de graphiques (nomogrammes)[8] ou de programmes de calcul[20]. Ces diff´erents mod`eles donnent parfois des r´esultats diff´erents. Les graphiques des 2 pages suivantes sont extraits de [12] : l’avantage de ce nomogramme et du graphique annexe est que il permet en un calcul de proc´eder a` l’´evaluation du caract`ere corrosif ou non de l’eau selon 2 mod`eles de calcul (Ryznar et Langelier). Le nomogramme est d’autre part relativement simple a` utiliser.
ozone.ch S` arl
17
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
Figure
2.5.: Nomogramme de Langelier et Ryznard[12]
Mode d’emploi du nomogramme de Langelier et Ryznard 1. Tracer la droite de Ts a` Ca et marquer le point o` u elle croise la droite T-1 2. Tracer la droite de Alk (alcalinit´e) a` t (temp´erature) et marquer le point o` u elle croise la droite T-2 3. Tracer une droite de transfert T-1 a` T-2 entre les deux points marqu´es 4. Lire la valeur sur l’´ echelle pHs et tirer une droite depuis cette valeur a` l’´echelle pHa. Lire les valeurs sur les ´echelles L et R 5. Interpr´etation des deux indices : si L est positif, formation de tartre. R : tartre si inf´erieur a` 6.5, corrosion si sup´erieur a` 6.5 Ces indices peuvent aussi ˆetres calcul´es.
ozone.ch S` arl
18
http://www.ozone.ch
´ 2.9. L’ EQUILIBRE CALCO-CARBONIQUE DE L’EAU
Calcul des indices de Langelier et de Ryznar L’indice de Langelier LSI est d´efini comme suit : LSI = pH − pH s
(2.12)
pH s = (9.3 + A + B) − (C + D)
(2.13)
Avec : • pH : pH mesur´e • pH s : pH ` a saturation
pH s peut ˆetre estim´e par :
Avec : A=
log10 (T DS ) − 1 10
(2.14)
B = −13.12 × log10 (T + 273) + 34.55
(2.15)
C = log10 (Durete) − 0.4
(2.16)
D = log10 (Alcalinite)
(2.17)
L’indice de Ryznar est d´efini par : RSI = 2 × pHs − pH
ozone.ch S` arl
19
(2.18)
http://www.ozone.ch
` LA CHIMIE DE L’EAU CHAPITRE 2. INTRODUCTION A
Figure
ozone.ch S` arl
2.6.: Interpr´etation de l’indice de Ryznar[12]
20
http://www.ozone.ch
3. Les polluants dans l’eau 3.1. Introduction Nous passons ici en revue les polluants principaux, et les probl`emes qu’ils posent dans les syst`emes de purification d’eau industriels.
3.2. Calcium – Ca++ Le calcium est le composant principal de la duret´e. Il est le r´esultat de la dissolution de roches calcaires par l’eau. Il cause des pr´ecipitations, et l’on peut l’´eliminer en adoucissant l’eau. On en trouve g´en´eralement 2 a` 200 ppm dans l’eau, plus souvent 100 ppm ou plus. Le calcaire est le CaCO3 . En fait, il est rare que ce soit un seul composant qui pr´ecipite.
3.3. Magn´ esium – Mg++ On trouve typiquement 10 a` 50 ppm de magn´ esium dans l’eau, mais il pose moins de probl`emes que le calcium car il est plus soluble. Il repr´esente en g´en´eral environ 1/3 de la duret´e de l’eau.
3.4. Bicarbonate – HCO− 3 Le bicarbonate HCO3 est le r´esultat de la dissolution dans l’eau du CO2 produit par des bact´eries −
3.5. Fer – Fe++, Fe+++ Le fer est pr´esent sous forme ionique dans toutes les eaux souterraines, donc pratiquement toutes les eaux potables . Il cause l’entartrage de membranes d’osmose inverse, et est donc g´en´eralement a` ´eliminer dans les syst`emes de purification d’eau industriels
21
CHAPITRE 3. LES POLLUANTS DANS L’EAU
M´ ethodes d’´ elimination Oxydation avant un filtre ` a sable : avec de l’ozone ou du chlore 1 Filtration par m´ edia filtrant : des filtres contenant du sable vert, ou du BIRM permettent d’enlever le fer de l’eau, qui s’accumule dans le filtre sous forme d’oxyde. Ces produits catalyse la r´eaction d’oxydation du fer. En principe ils n´ecessitent une a´eration de l’eau avant le filtre et ne fonctionnent que dans une plage pr´ecise de pH.
3.6. Silice – SiO2 On distingue la silice neutre, la silice collo¨ıdale et la silice activ´ee. La silice est neutre a` pH neutre. A pH ´elev´e, elle est en partie activ´ee : − H+ + H SiO SiO2 + H2 O ← → 3 4
−
(3.1)
On parle de silice collo¨ıdale quand la silice se combine avec des mol´ecules organiques. On a souvent de la silice collo¨ıdale dans l’eau qui a pour origine le squelette d’algues. La silice pose un probl`eme au niveau des chaudi`eres et des turbines. La meilleure m´ethode pour l’´ eliminer est l’osmose inverse, qui permet d’en ´eliminer plus du 99% le la silice activ´ee et de la silice collo¨ıdale. L’´echange d’ion n’enl`eve pas la silice collo¨ıdale. La silice n’´ etant que en partie sous fomr ionique, on ne peut pas d´etecteur un changement de la concentration de silice dans l’eau sur la base de la conductivit´ e : mˆeme une eau a` conductivit´e tr`es faible peut contenir une concentration significative de silice.
3.7. Gaz carbonique – CO2 Le CO2 peut ˆetre dans l’eau sous forme de ion ou sous forme libre. La part des diff´erentes formes de CO2 d´epend du pH de l’eau. Le CO2 libre peut poser des probl`emes dans un syst`eme de traitement de l’eau : en particulier, comme il n’est pas arrˆet´e par l’osmose inverse il peut ´epuiser rapidement la r´esine d’un ´echangeur d’ions qui serait plac´e en aval d’un osmoseur. Et il peut affecter la conductivit´ e de l’eau. La meilleure fa¸con de l’´eliminer est de proc´eder a` un d´egazage a` bas pH. Si la chaˆıne de traitement de l’eau inclut un osmoseur on peut, dans les limites de la solubilit´e du calcaire 2 , convertir le CO2 en bicarbonate en injectant de la soude en amont de l’osmoseur. Le bicarbonate ´etant un ion, il ne traverse pas la membrane de l’osmoseur. 1. Voir page 76 2. En pratique cette solution n’est envisageable que si l’osmoseur est pr´ec´ed´e d’un adoucisseur
ozone.ch S` arl
22
http://www.ozone.ch
3.8. CHLORE
Figure
3.1.: Le CO2 dans l’eau, sous diff´erentes formes en fonction du pH
3.8. Chlore Sous forme Cl (ion chloride) le chlore n’est pas dangereux 3 . La limite habituelle de 250 mg/l est justifi´ee par des raisons de goˆ ut. Il ne pose pas non plus de probl`emes aux installations ou conduites. L’ion chloride est arr`et´e par les osmoseurs et les ´echangeurs d’ions. La mol´ecule de chlore, Cl2 , passe a` travers les membranes des osmoseurs et les ´echangeurs d’ions. −
3.9. Trihalom´ ethanes • • • •
HCCl3 HCCl2 Br HCClBr2 HCBr3
Les trihalom´ethanes r´esultent de la r´eaction de d´ebris organiques avec le chlore ou le brome. ils causent des cancers. Il n’y a pas de m´ethode efficaces de les ´eliminer. Il faut donc ´eliminer les pr´ecurseurs, donc ´eviter d’utiliser le chlore.
3.10. Que faut-il analyser ? Lorsque l’on demande une analyse de l’eau au distributeur d’eau potable, l’on obtient trop souvent une analyse bact´eriologique ainsi que des mesures de certains param`etres tels le pH et la salinit´e totale, mais pas une analyse chimique compos´e par compos´e. Le but des ces analyses en bien sˆ ur de d´eterminer si une eau est potable. Notre objectif est par contre de d´eterminer quel traitement d’eau employer pour nos proc´ed´es : il est donc 3. Il n’a pas non plus d’effet d´esinfectant
ozone.ch S` arl
23
http://www.ozone.ch
CHAPITRE 3. LES POLLUANTS DANS L’EAU
normal que les besoins en termes d’analyse de l’eau seront diff´erents. Que faut-il analyser, dans le cadre de la conception ou d’une optimisation d’un syst`eme de purification de l’eau industriel ? La r´eponse d´epend en partie du type d’´equipement que l’on pr´evoit d’installer, mais en pratique, il est utile de connaˆıtre : • Cations : • Les composants de la duret´e : • Calcium Ca++ • Magn´esium Mg++ • Sodium Na+ • PotassiumK+ • Anions : • Les composants de l’alcalinit´e 4 : • Bicarbonate HCO3 • Carbonate CO3 • Ion Hydroxyle OH • Sulfate SO4 • Chloride Cl • Fluoride F • Nitrate NO3 • Autres param`etres : • Temp´erature • pH • Salinit´e totale (TDS) • Coefficient de p´en´etration aux UVc 5 • SDI 6 −
−−
−
−−
−
−
−
En outre, les ions suivants peuvent avoir un impact significatif, surtout sur les installations a` membrane (les osmoseurs par exemple) : • Cations : • Fer Fe++ ouFe+++ • Mangan`ese Mn++ • Aluminium Al+3 • Baryum Ba++ • Strontium Sr++ • Cuivre Cu++ • Zinc Zn++ • Anions : • Silice SiO2 • Sulfide S2 • Phosphate PO4 2 −
4. Les concentrations de ces composants sont li´ ees : si l’on connaˆıt le pH la la concentration de bicarbonates, l’on peut calculer la concentration de carbonate et d’ion hydroxyle 5. Si l’on songe `a installer un st´erilisateur U.V. 6. Si l’on songe `a installer un osmoseur
ozone.ch S` arl
24
http://www.ozone.ch
3.10. 3.10. QUE FAUT FAUT-IL -IL ANAL ANALYSER ?
Pour pouvoir p ouvoir concevoir conc evoir la chaˆ chaˆıne de traitement et dimensionner approximativement un syst`eme eme typique typ ique de d e purifica pu rification tion de l’eau l’e au industri ind ustriel el il faut f aut imp´ i mp´erativement erati vement avoir au moins mo ins les informations suivantes suivantes sur la qualit´e de l’eau disponible : • • • • • •
Du ret´ Dure t´e tota to tale le Concentration de bicarbonate pH Sali Sa linit nit´´e tot t otal alee Temp´ Temp´erat er atur uree Concentration des compo´es es pouvant poser p oser probl`emes emes dans le produit fini
En pratique, pratique, ces donn donn´´ees ees sont suffisantes pour concevoir concevoir et dimensionner dimensionner un petit syst`eme eme de traitement de l’eau. Les incertitudes seront palli´ees ees par un surdimensionnement ´eventuel eventuel du syst`eme.Pour eme.Pou r des syst`emes emes de dimensions dimen sions importante impo rtantess7 les potentiels potentiels d’´economie econ omie justifient justifi ent largeme la rgement nt le coˆ ut ut d’´eventuel event uelles les analyse ana lysess supp s uppl´ l´ementai eme ntaires res..
7. Pour des investissements i nvestissements sup´erieurs erieurs a` environ CHF 5’000.00
ozon oz one. e.ch ch S` arl ar l
25
http://www.ozone.ch
Deux Deuxi` i` eme part partie . Les technologies de la purification de l’eau
26
4. Filtra Filtratio tion n et microfilt microfiltrat ration ion
Figure
4.1.: Un filtre industriel industr iel pour p our d´ebits ebits de plusieurs dizaines diza ines de m3 /h
4.1. 4.1 . Quelques Quel ques d´ efinitio efini tions ns Par filtration on entend en principe une m´ethode ethode pour ´eliminer eliminer des impuret´es es de l’eau en la faisant passer a` travers t ravers un m´edia edia filtrant. Aujourd’hui, Aujourd ’hui, la filtration regroupe un grand nombre de technologies, dont les technologies de filtrations membranaires qui permette per mettent nt mˆeme eme de d´emin´ emin´eraliser erali ser l’eau. Mais il faut f aut prendre prend re garde aux confusions confu sions : souso uvent, l’on parle en langage courant de filtration particulaire en l’appelant filtration . La filtration particulaire particulaire regroupe l’ensemble des m´ethodes ethodes de filtration filt ration permettant d’enlever de l’eau les particules pa rticules d’une taille sup´erieure erieure a` environ un µ m, m, alors que la filtration inclut l’ensemble l’ense mble des m´ethodes ethodes de traitement tr aitement de l’eau o` ou` l’on fait passer l’eau `a travers un m´edia edia filtrant, filtra nt, donc don c aussi aus si par exemple exemp le l’osmose l’o smose inverse, qui qu i est une m´ethode etho de physique phys ique de d´emin´ emi n´eralis era lisati ation on de l’eau. l’ea u.
27
CHAPITRE 4. FILTRATION ET MICROFILTRATION
Mat´ e riel ` a prot´ e ger
Seuils de filtration usuels
Conduites, e´changeurs de chaleur
Typiquement 50 a` 90 µm
Pompe
Quelques dizaines de µ m
Adoucisseur, ´echangeur d’ions
5 a` 25 µ m
Membrane d’osmose inverse
5 µ m
Membrane d’ultrafiltration
5 a` 25 µ m
Table
4.1.: Quelques seuils de filtration usuels
4.2. Filtration particulaire La filtration particulaire et la microfiltration utilisent des mat´ eriels semblables et ob´eissent a` des r`egles semblables. On distingue de mani`ere un peu artificielle la filtration particulaire, qui concerne les seuils de filtration de 1 µ m ou plus, et la microfiltration qui concerne les seuils de filtration inf´erieurs au micron. un justification de cette distinction est la diff´erence de prix des cartouches : une cartouche de microfiltration coˆ ute environ 10 fois plus cher qu’une cartouche de filtration particulaire.
4.2.1. Pourquoi filtrer ? G´en´eralement, tout syst`eme de purification de l’eau dans l’industrie comprend une premi`ere ´etape de filtration particulaire. Pourquoi ? Mˆeme lorsqu’il n’y a pas d’exigence quand a` l’absence de particules dans le produit fini, une filtration est n´ecessaire pour prot´eger le mat´eriel de purification de l’eau, qu’il s’agisse de pompe, de r´esines ´echangeuses d’ions ou de membranes d’osmose inverse. Quel est le seuil de filtration a` choisir ? Cette information fait partie des sp´ecifications fournies par le producteur du mat´eriel a` prot´eger. Des seuils typiques sont cit´es dans le tableau 4.1.
4.2.2. Les m´ ecanismes de filtration Le fonctionnement d’un filtre est en partie contre-intuitif. Pour comprendre ce que l’on observe dans la pratique, il est essentiel de savoir comment un filtre fonctionne, autrement dit de comprendre les m´ ecanismes de filtration . Il y a 4 m´ ecanismes de filtration fondamentaux : 1. L’interception directe ou criblage 2. Le mouvement brownien
ozone.ch S` arl
28
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
3. L’adsorption 4. Le Bridging ou formation de gˆ ateau de filtration
L’interception directe Le m´ecanisme de l’interception directe est facile a` comprendre intuitivement. Il est illustr´e par la figure 4.2 `a la page 29.
Figure
4.2.: Interception directe ou criblage
Le mouvement brownien Mˆeme lorsque un ´ecoulement est laminaire, les particules en suspension dans l’eau ont un mouvement en partie al´eatoire. Le m´ecanisme de la filtration r´esultant du mouvement brownien est illustr´e par la figure 4.3 `a la page 30.
L’adsorption L’importance de ce ph´enom`ene est variable, en fonction du type de particules et de la mati`ere du m´edia filtrant.
Le Bridging ou formation de gˆ ateau de filtration La formation du gˆ ateau de filtration joue un rˆ ole tr`es important dans le fonctionnement des filtres a` sable.
ozone.ch S` arl
29
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
Figure
4.3.: Mouvement brownien
Figure
4.4.: Adsorption
Conclusions sur les m´ ecanismes de filtration Les m´ecanismes de filtration autres que l’interception directe nous permettent de comprendre des aspects observ´es du comportement de filtres, en particuliers, pour ce qui est des filtres que l’on utilise en purification de l’eau :
ozone.ch S` arl
30
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
Figure
4.5.: La formation d’un gˆ ateau de filtration
• La qualit´ e de la filtration ´evolue au cours de la vie d’un filtre : par exemple les filtres
a` sables filtrent assez mal pendant leurs premi`eres heures de fonctionnement, mais la qualit´e de la filtration s’am´eliore grˆ ace a` la formation du gˆateau • Le filtre arrˆetera des particules aussi de dimensions inf´ erieures a` son micronage. Cela grˆ ace aux m´ecanismes de formation de gˆ ateau, au mouvement brownien, et a` l’adsorption • Les performances d’un filtre sont difficiles a ` pr´evoir, car elles d´ependent d’un grand nombre de facteurs qui affectent ces diff´erents m´ecanismes de filtration
4.2.3. Classification des types de filtres Il existe d’innombrables technologies pour s´eparer les particules solides d’une taille de 1 mm ou plus de l’eau. Or, dans plus de 90% des cas, un filtre a` cartouche, ´eventuellement pr´ec´ed´e d’un filtre a` sable, est la solution optimale dans les applications de purification de l’eau. Il est toutefois important de connaˆıtre l’existence et les principaux avantages et inconv´ enients des autres solutions existantes. Face aux grand nombre de technologies de filtration qui sont a` la disposition du praticien, il est utile de tenter de les classifier. On distingue ainsi : ` la filtration de profondeur . Dans la filtration • La filtration de surface par opposition a de surface, les particules sont arrˆet´ees lorsque l’eau entre dans le m´edia filtrant, alors que dans la filtration de profondeur toute l’´epaisseur du m´edia est utilis´ee. • La filtration par ´el´ements consommables, par opposition aux ´el´ements non consommables. Jusqu’aux ann´ees 1980, l’essentiel de la filtration industrielle ´etait le fait
ozone.ch S` arl
31
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
d’´el´ements filtrants non consommables. Aujourd’hui, environ 80% de l’ensemble de l’eau filtr´ee l’est par des des syst`emes a` cartouches consommables, essentiellement car le prix des cartouches a baiss´e alors que le les coˆ uts de main d’œuvre augmentent. • Classification par objectif de filtration , en distinguant filtration de pr´etraitement et filtration de finition Dans les pages qui suivent, nous passerons en revue les diff´erents types de filtres employ´ es en purification industrielle de l’eau.
4.2.4. Filtres-presses Les filtres-presses assuraient le gros de la filtration industrielle jusqu’aux ann´ees ’80. Leur avantage principal ´etait le coˆ ut d’investissement r´eduit. Le d´esavantage ´etait par contre un coˆ ut de maintenance relativement ´elev´ee en particulier pour enlever les gˆ ateaux de filtration. Ce travail ´etait non seulement coˆ uteux en temps de main d’œuvre, mais aussi il s’agit d’un travail tr`es sale : il est difficile de trouver le personnel acceptant de faire ce travail. Ce probl`eme est r´esolu par les filtres-presses automatiques, mais ceux-ci sont chers a` l’achat, ce qui annule l’avantage No. 1 de cette technologie. Aujourd’hui, les filtres-presses ne sont pratiquement plus utilis´es pour la filtration de l’eau en entr´ee. Il sont par contre encore fr´equents dans le traitement des eaux us´ees et la filtration dans des proc´ed´es chimiques. Leur utilisation est justifi´ee par le fait que ces filtres produisent des “gˆ ateaux” de filtration assez secs : la quantit´e de d´echets produits est faible, ce qui est ´economiquement int´eressant lorsque le syst`eme de filtration produit des d´echets a` traiter comme d´echets sp´eciaux : cela est assez souvent le cas dans les eaux us´ees industrielles tr`es charg´ees : les filtres peuvent retenir des substances toxiques. Si l’on emploie pour une telle application un syst`eme de filtration a` ´el´ements consommables, l’on augmente bien entendu le volume de d´echets sp´eciaux, coˆ uteux a` ´eliminer.
4.2.5. Les filtres ` a poche ou ` a panier Ils sont ´economiquement int´eressants pour les eaux tr`es charg´ees en particules. Ils posent par contre un probl`eme s´erieux de fiabilit´e : il arrive qu’une poche ou un panier c`ede sous l’effet de la pression qui augmente lorsque le gˆ ateau de filtration se d´eveloppe, et l’on a donc un relachˆ age massif et soudain de particules dans l’eau trait´e, ce qui peut avoir des cons´equences catastrophiques sur le mat´eriel que le filtre est sens´e prot´eger.
4.2.6. Etude de cas : cons´ equences de l’utilisation d’un filtre ` a poche Une usine chimique avait la possibilit´e d’utiliser de l’eau provenant d’un puits situ´e dans l’usine pour pr´eparer de l’eau de proc´ed´e. L’eau ´etait partiellement d´emin´eralis´ee par une machine a` nanofiltration (voir page59). Pour prot´ eger les membranes, cette machine ´etait munie de cartouches filtrantes (voir page 38). Or l’eau du puits ´etait sablonneuse : il fallait donc changer souvent les cartouches : environ une fois toutes
ozone.ch S` arl
32
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
Figure
Figure
4.6.: Principe de fonctionnement d’un filtre a` poche
4.7.: Changement d’une poche. Ces poches peuvent se casser, causant des d´egˆ ats importants.
les deux semaines. Le coˆ ut ´etait assez mod´er´e, puisque cette entreprise achetait les cartouches directement chez un producteur en quantit´es importantes, mais par contre le personnel charg´e de ce travail s’´etait plaint de cette tˆ ache suppl´ementaire. Le responsable du projet se laissa convaincre par un vendeur de filtres a` poche que l’utilisation de cette
ozone.ch S` arl
33
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
technologie permettrait un changement de filtres tous les 6 mois environ. Au bout de environ 4 semaines, une poche se cassa. Le sable fut distribu´e dans les membranes de nanofiltration, qui durent ˆetres remplac´ees pour un coˆ ut de environ 30’000.00 EUR. Cela ne signifie ´evidemment pas qu’il faut renoncer a` l’utilisation de filtres `a poches filtrantes : il repr´esentent une solution ´economique, surtout pour des fluides tr`es charg´es. Il faut par contre pr´evoir un filtre a` cartouche en aval du filtre a` pour les applications o`u une rupture d’une poche filtrante aurait des cons´equences importantes.
4.2.7. Filtres ` a cartouches lavables et filtres autonettoyants Sous ces noms l’on trouve une tr`es grande vari´et´e de technologies, et souvent des nouveaux filtres autonettoyants sont pr´esent´ees comme la solution a` tous les probl`emes de filtration. Si ils pr´esentent un avantage en termes de coˆ uts de fonctionnement, il faut ˆetre conscient de leurs d´esavantages, qui limitent leurs applications : 1. Le coˆ ut d’investissement est g´en´eralement ´elev´e 2. Les filtres autonettoyants ont un seuil de filtration de quelques dizaines de mm, ce qui est insuffisant pour certaines applications, comme la pr´efiltration pour un osmoseur 3. L’installation est relativement complexe 4. Lors du nettoyage p´eriodique, ces filtres rejettent une eau fortement charg´ee en particules, qu’il est souvent impossible de conduire `a l’´egout sans un traitement particulier : cela complique encore l’installation L’image 4.10 montre assez bien a` quoi un filtre autonettoyant typique ressemble : il est beaucoup plus complexe, lourd, coˆ uteux qu’un filtre a` cartouche parce que il a en principe au moins un moteur ´electrique 1 qui actionne le dispositif de nettoyage, et un syst`eme pour l’eau de lavage. L’installation est donc beaucoup plus complexe que pour un filtre a` cartouche.
4.2.8. Filtres ` a sable On parle g´en´eriquement de filtres `a sable mˆeme si le m´edia filtrant n’est pas forc´ement du sable. Il peut aussi s’agir d’anthracyte ou de sable vert 2 , ou un autre m´edia filtrant. L’antracyte est plus l´eger que le sable proprement dit et fournit une couche de pr´efiltration. Le sable vert est un sable qui est recouvert d’une couche d’oxyde de mangan`ese et a la propri´et´e d’oxyder le fer dissous dans l’eau, et aussi le mangan`ese et l’hydrog`ene sulfureux. Une fois que ces impuret´es ont ´et´es oxyd´ees, elles tendent a` rester, par adsorption, dans ne sable vert. Les filtres avec une couche de sable vert permettent de r´eduire les concentrations de fer dissous, de mangan`ese dissous et d’hydrog`ene sulfur´e `a moins de 0.01 ppm. Les filtres a` sable contiennent aussi souvent du gravier. Celui-ci n’est en g´en´eral pas un m´edia filtrant, mais sert a` former une couche poreuse au fond du filtre. 1. Souvent 2 ou 3 moteurs 2. Galuconite
ozone.ch S` arl
34
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
Figure
4.8.: Filtre a` poche. Carter en plastique.
Les filtres a` sable sont g´en´eralement ´economiquement int´eressants pour des d´ebits de au moins quelques m3 /h d’eau tr`es charg´ee en particules. D’autres points importants `a connaˆıtre sur les filtres a` sable sont : • Le(s) m´ edia(s) choisi(s) d´etermine(nt) un d´ebit surfacique maximum. Ce d´ebit est
ozone.ch S` arl
35
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
Figure
4.9.: Filtre autonettoyant. Principe de fonctionnement. Image : Filters Srl
Figure
4.10.: Filtre autonettoyant. Photo : Filters Srl
d´etermin´e par le producteur du m´edia, pas par le fabricant du filtre. Il est raisonnable de demander au fabricant du filtre les sp´ecifications du m´edia employ´ e, et v´erifier que le d´ebit surfacique sp´ecifi´e par le fabricant du m´edia a ´et´e respect´e • Le gˆ ateau de filtration joue un rˆole important : au d´ebut, le filtre a` sable filtre
ozone.ch S` arl
36
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
Figure
4.11.: Montage d’un filtre autonettoyant. Photo : Filters Srl
Figure
4.12.: Filtre `a sable a` pression. Photo : Osmonics
assez mal, et au bout de quelques heures de fonctionnement l’efficacit´e de filtration s’am´eliore • Un r´etrolavage p´eriodique est n´ ecessaire. C’est une proc´edure automatique, qui dure environ 20 minutes. Le d´ebit est important, largement sup´erieur au d´ebit nominal
ozone.ch S` arl
37
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
du filtre. Il peut ˆetre fait avec de l’eau non filtr´ee. Le d´ebit de r´etrolavage est fix´e par les sp´ecifications du producteur du m´edia filtrant. Ici aussi, il est donc raisonnable de v´erifier que le constructeur du filtre a bien pr´evu un d´ebit de r´etrolavage conforme aux sp´ecifications du producteur de m´edia filtrant3 . Il faut pr´evoir au moins un r´etrolavage par semaine • Lorsque l’on ach`ete un filtre a` sable, on re¸coit le filtre, avec les sacs de m´ edias filtrants a` cˆote : il faut alors mettre les diff´erents m´edias filtrants dans le bon ordre dans le filtre : cela peut durer plusieurs heures • Lorsque le filtre a ` sable est en mat´ eriau composite, et qu’il faut mettre du gravier, l’on risque de l’endommager si l’on ne met pas de l’eau avant de mettre le gravier
Variantes des filtres ` a sables Un filtre a` sable peut ˆetre construit de 2 fa¸ cons :
Filtres ` a gravit´ e : peu utilis´es en applications industrielles, a` l’exception du cas de la filtration des eaux de surfaces. Leur d´ebit surfacique est plus faible Filtres ` a pression : ce sont g´en´eralement ceux que l’on trouve dans l’industrie. La photo 4.12 montre un tel filtre.
4.2.9. Etude de cas : filtres ` a sables, r´ etrolavage Un client utilisait des filtres `a sable pour de l’eau de lavage de pi`eces m´etallique. L’installateur des filtres avait mont´e le syst`eme de telle sorte que le d´ebit de r´etrolavage ´etait indentique au d´ebit de service des filtres. Margr´e des nettoyages hebdomadaires, la perte de charge des filtre restait sup´erieure ou ´egale a` environ 2.0 bar, alors qu’elle aurait dˆ u ˆetre de l’ordre de 0.5 bar. Nous avons conseill´e au client d’augmenter le d´ebit de r´etrolavage 4 , et de proc´eder aussi a` une injection d’air comprim´e pour casse le gˆateau de filtration qui s’´etait form´e au fil des mois. La perte de charge retomba en-dessous de 0.5 bar. Ensuite, les lavages r´eguliers avec un d´ebit de r´etrolavage de l’ordre de 160 % du d´ebit de service de filtres suffirent a` maintenir cette perte de charge aux alentours de 0.5 bar.
4.2.10. Filtres ` a cartouches consommables Les filtres a` cartouche repr´esentent le gros de la filtration en purification de l’eau dans l’industrie. On distingue 2 types de filtres a` cartouche :
Filtration absolue : enl`eve ”toutes” les particules de dimension sup´erieures au micronage 3. Notre exp´erience est que souvent cela n’est pas le cas 4. Ce qui ´etait possible sur cette installation, fort heureusement. Souvent une modification du d´ebit de r´ etrolavage peut exiger des modifications de tuyauterie
ozone.ch S` arl
38
http://www.ozone.ch
4.2. FILTRA FILTRATION TION PARTICULAIRE PARTICULAIRE
Figure
4.13.: Corps de filtres pour filtres a` cartouche. Photo : Osmonics
eve ”la plupart” des particules de dimension sup´erieures erieures au Filtration nominale : enl`eve micronage
La d´efinition efinition de l’expression l’expression ”toutes les particules” particules” varie selon les fabricants. fabricants. Certains consid`erent erent que une cartouche qui enl`eve eve plus de 99% des particules de dimension sup´erieures erieures au micronage est absolue, alors que d’autres limitent ce terme t erme aux cartouches qui enl`event event plus de 99.98% des particules de dimension sup´erieure erieure au micronage de la cartouche. Les L es cartouches cart ouches absolue sont toujours beaucoup plus ch`eres eres a` l’achat que les cartouches nominales. Un type de cartouche a` ´eviter eviter sont les cartouches cart ouches a` fil bobi bobin´ n´e, comme celle visible sur la figure 4.14 : constitu´ const itu´ees ees d’un fil enroul´ enrou l´e autour autou r d’une cage en plastique plast ique ou en m´etal, etal, elles ont toutes t outes des chenaux de passage entre les fils largement sup´erieurs erieurs au micronnage indiqu´e. e. Elles ont tout de mˆeme eme un certain effet filtrant en raison des ph´enom` enom`enes enes d’adsorption, mais ont une efficacit´ effic acit´e de filtration faible si on les compare aux cartouches de fibres thermosoud´ees. ees. En outre, out re, elles contiennent souvent des lubrifiants. On trouve souvent ces cartouches dans l’industrie. Leurs coˆ uts uts de production sont n´egligeables, egligeables, ce qui pousse certains fournisseurs a` continuer a` les vendre. Il va sans dire que l’utilisateur paye cher, cher , en termes ter mes de mat´eriel eri el non prot´ pro t´eg´ eg´e par la cartou car touche, che, les ´econom eco nomies ies r´ealis´ eal is´ees ees avec ces cartouches.
ozon oz one. e.ch ch S` arl ar l
39
http://www.ozone.ch
CHAPITRE 4. FILTRA FILTRATION TION ET MICROFILTRA MICROFILTRATION TION
Figure
4.14.: Cartouche a` fil b obin´ ob in´e
Effica Effi caci cit´ t´ e d’un d’ un filtre fil tre ` a cartou cart ouch che e L’efficacit´ L’effic acit´e d’un filtre est d´efinie efinie par : ε=
N 1 − N 2 N 1
(4.1)
Avec : • ε : efficacit´ efficac it´e du filtre • N 1 : nombre nombre de particu particules les de taille taille ´egale egale au seuil seuil de filtratio filtration n du filtre filtre que l’on l’on
trouve dans un volume d’eau donn´e avant le filtre nombre de particu particules les de taille taille ´egale egale au seuil seuil de filtratio filtration n du filtre filtre que l’on l’on • N 2 : nombre trouve dans un volume d’eau donn´e apr`es le filtre Certains fabricants ont o nt choisi de modifier la d´efinition efinition de N 1 et de N 2 , en d´ecidant eci dant que ces chiffres se rapportaient r apportaient au nombre de particules de taille t aille ´egale egale ou sup´ su p´erie er ieure ure au seuil de filtration du filtre. Bien sˆ ur ur cette d´efinition efinition leur permet d’annoncer des efficacit´es es plus ´elev´ees. Il n’y a pas de standard standard intern internatio ational nal reconn reconnu u concerna concernant nt la m´ ethode ethode a` employer pour mesurer cette efficacit´e. e. Des normes sont en e n pr´eparation eparation ou en consultation dans diff´erents erents pays, mais il n’y n ’y a pas de consensus conse nsus pr´evisible evisibl e a` court terme au niveau international.
ozone.ch S` arl arl
40
http://www.ozone.ch
4.2. FILTRA FILTRATION TION PARTICULAIRE PARTICULAIRE
Facteur Beta Le facteurβ facteurβ a ´et´ et´e cr´ee ee par un fabricant fabri cant de filtre, filtre , pou pourr faire plus scienI l est e st difficile difficil e de d e voir voi r un quelconque quelc onque int´erˆ erˆet et de ce facteur . Comme il est souvent tifique. tifique. Il utilis´ uti lis´e, e, il faut fau t tut de mˆeme eme conna con naˆˆıtre ıtr e sa d´efiniti efin ition on : β =
N 1 N 2
(4.2)
Ce qui est ´equivalent equivalent a` ´ecri ec rire re : 1−ε (4.3) ε D’autres fabricants l’utilisent aussi. La soci´et´ et´e qui a introduit ce facteur β vend des filtres a` prix ´elev´es. β =
Cutoff Un autre aspect qui d´efinit efinit en partie la qualit´e d’une cartouche filtrante est le Cutoff ou nettet´e du seuil de filtration .
Figure
4.15.: Cutoff , ou nettet´e du seuil de filtration
Les courbes de la figure 4.15 sont purement qualitatives. On peut se demander si il y a un avantage a` avoir un filtre qui n’arrˆ n’ arrˆete ete pas p as les particules parti cules plus petites que son seuil de filtration. Pour la plupart des applications oui, parce que la dur´ee ee de vie de la cartouche cart ouche est d´etermin´ eter min´ee ee par la capa capaci cit´ t´e de r´eten et enti tion on de celle-ci. La capacit´ capa cit´e de r´etention etentio n est e st le volume de particules part icules que la cartouche cart ouche peut peu t arrˆ a rrˆeter eter avant avant de devoir ˆetre etre chang´ee. ee. Il est es t clair cla ir que qu e l’on l’o n filtre filt re par p ar exemple ex emple de l’eau l’ eau a` 5 µ m, m, pour po ur prot´ pro t´eger ege r par exemple une pompe, p ompe, et que l’eau filtr´ee ee contient un grand nombre de particules d’un diam di am``etre et re inf´ in f´erie er ieur ur a` 5 µ m, m, une cartouche avec un seuil de filtration peu net aura — `a
ozon oz one. e.ch ch S` arl ar l
41
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
capacit´e de r´etention ´egale — une dur´ee de vie plus courte qu’une cartouche a` seuil de filtration net.
La vie d’une cartouche filtrante
Figure
4.16.: Evolution de la perte de charge au cours de la vie d’une cartouche filtrante
La figure 4.16 montre l’´evolution de la perte de charge d’une cartouche filtrante au cours de sa vie op´erationnelle : 1. Mise en service de la cartouche 2. La diff´erence de pression maximum sp´ecifi´ee par le fabricant est atteinte 3. Chute brutale de la diff´erence de pression Entre les points 1 et 2, la courbe est approximativement lin´eaire. Si on laisse la cartouche en service apr`es que la diff´erence de pression maximale prescrite par le fabricant a ´et´e atteinte, la diff´erence de pression augmente rapidement, jusqu’au point o` u elle est suffisante pour d´etruire la cartouche : la mati`ere est forc´ee a` travers les pores, le m´edia filtrant est irr´em´ediablement abˆım´e l’on observe alors une chute de la diff´erence de pression. On notera que la diff´erence de pression au point 1, donc a` l’installation de la cartouche, influence beaucoup la dur´ ee de vie de la cartouche. Si par exemple la diff´erence de pression maximum est de 2 bar, et l’on met la cartouche en service avec une diff´erence de pression initiale de 1 bar, la dur´ee de vie de la cartouche sera environ 56% plus faible que si l’on avait commenc´e a` utiliser la cartouche avec une diff´erence de pression de 0.2 bar. Un sous-dimensionnement d’une installation de filtration se paye donc en coˆ uts de cartouches de remplacement.
ozone.ch S` arl
42
http://www.ozone.ch
4.2. FILTRATION PARTICULAIRE
Facteurs influen¸cant la performance d’un filtre De nombreux facteurs li´es au fluide et aux particules en suspension dans le fluide influencent les performances d’un filtre, ce qui rend les comparaisons difficiles. Les facteurs suivants influencent la dur´ee de vie d’un filtre : • Caract´eristique des particules • Forme • D´ eformabilit´e : les particules d´eformables peuvent bien sˆ ur passer a` travers des
pores de diam`etre inf´erieur a` leur taille • Densit´e : un densit´e tr`es diff´erente de celle du fluide tend a` am´eliorer la qualit´e de la filtration • Quantit´ e : si il y a beaucoup de particules, il y a bien sˆ ur formation rapide d’un gˆateau de filtration • Caract´eristiques du fluide • Viscosit´e : une viscosit´e diff´erente implique une perte de charge diff´erente • Tension superficielle, qui affecte l’adsorption • Temp´ erature : elle peut avoir un effet sur le m´edia, surtout sur les plastique, et a un effet sur la viscosit´e du liquide. • D´ebit vitesse d’´ecoulement Ce nombre assez important de facteurs justifie un peu l’absence de standards reconnus par tous. Diff´erents fabricants effectuent donc les tests de dur´ee de vie et d’efficacit´e de leurs cartouches avec des particules diff´erentes, qui correspondent a` diff´erents standards.Pour l´e’efficacit´e, le test le plus employ´e et le AC Fine Test Dust (USA) . Il prescrit l’emploi de sable ramass´e dans une r´egion d´efinie d’un d´esert californien. Un grand fabricant de cartouches europ´een utilise pour ses essais de dur´ee de vie de l’OvomaltineTM , alors qu’il mesure l’efficacit´e de ses filtres avec des particules de Latex calibr´ees.
4.2.11. Le choix d’une technologie de filtration Le choix de la m´ethode de filtration d´epend essentiellement de la charge en particules de l’eau a` filtrer et du seuil de filtration voulu. Le choix de la m´ethode sur la base de ces crit`eres est illustr´e dans le tableau ci-dessous : Charge faible
Charge ´elev´ee
Charge tr`e s ´e lev´e e
1 `a 40 µm
Filtre a` cartouche
Filtre a` poche
Filtre a` poche, ´eventuellement en aval d’un filtre a` sable.
Plus de 40 µm
Filtre a` cartouche
Filtre a` poche ou filtre Filte a` sable ou filtre auto-nettoyant auto-nettoyant
ozone.ch S` arl
43
http://www.ozone.ch
CHAPITRE 4. FILTRATION ET MICROFILTRATION
4.3. Microfiltration Une cartouche de microfiltration. Photo : GE Water
4.3.1. D´ efinition On parle de microfiltration quand on utilise des cartouches au micronage inf´erieur au micron. En pratique, les micronnages utilis´es en purification de l’eau sont : • 0.2 µ m : suffisant pour arrˆeter les bact´eries • 0.05 a ` 0.1 µ m : souvent employ´es en micro´electronique
La microfiltration se fait pratiquement toujours avec des filtres a` cartouches consommables Il s’agit de filtration de surface avec des membranes pliss´ees.
4.3.2. Types de cartouches filtrantes On distingue le cartouches de microfiltration pour filtration nominale et celles pour filtration absolue. En g´en´eral les cartouches de filtration absolues utilisent des membranes avec des pores, alors que les membranes des cartouches de filtration nominale sont compos´ees de fibres. On peut tester l’int´egrit´e de certaines cartouches de microfiltration. Cela est utile pour des applications o` u la qualit´e de la filtration doit ˆetre d´emontr´ee et document´ee, comme par exemple dans l’industrie pharmaceutique. L’utilisateur est confront´e a` un v´eritable embarras du choix concernant la cartouche filtrante a` utiliser pour une application de micro-filtration. Les fabricants proposent un grand choix de mat´ eriaux de membrane, de seuils de filtration et de configuration des cartouches.
4.3.3. Le choix de la cartouche filtrantes Le processus de choix de la cartouches est compliqu´e par l’immensit´e du choix de cartouches filtrantes sur le march´e. Une fois l’objectif de la filtration d´efini, il faut prendre
ozone.ch S` arl
44
http://www.ozone.ch
4.3. MICROFILTRATION
Figure
4.17.: Vue au microscope d’une membrane d’une cartouche de microfiltration absolue. Photo : GE Water
le temps d’´etudier les fiches de sp´ecification des diff´erentes cartouches envisageables. Les fabricants exp´eriment´es fournissent des recommandations, en fonction de l’application, concernant le mat´eriau de la membrane a` utiliser. Ces cartouches ayant en g´en´eral des prix substantiels, il est important de choisir une configuration g´eom´etrique (dimensions, forme des extr´emit´es) courante, afin de pouvoir changer de mod`ele de cartouche si la cartouche choisie initialement ne donne pas satisfaction.
ozone.ch S` arl
45
http://www.ozone.ch
5. Proc´ ed´ es membranaires 5.1. Introduction Les proc´ed´es membranaires, ou de filtration par membrane, aussi appell´es de filtration tangentielle diff`erent de la filtration classique essentiellement par la pr´esence d’une sortie de concentrat : seulement une partie de l’eau passe a` travers le m´edia filtrant, une partie, appell´ee le concentrat , ne passe pas `a travers le m´edia filtrant et sert a` ´evacuer les impuret´es qui, en filtration classique, restent sur le m´edia filtrant.
5.2. Osmose inverse 5.2.1. Principe de l’osmose inverse Le ph´ enom` ene de l’osmose est connu depuis l’aube de la biologie : il existe dans la nature des membranes, qui ont la propri´et´e de laisser passer seulement l’eau, sans les sels qui y sont dissous. Lorsque une solution aqueuse est s´epar´ee de l’eau d´emin´eralis´ee par une telle membrane, comme dans la figure 5.1, il se produit un flux osmotique : de l’eau purifi´ee passe `a travers la membrane jusqu’`a ce que la diff´erence de pression a` travers la membrane atteigne une pression dite pression osmotique, fonction des sels dissous dans l’eau, et qu’il est possible de calculer. Il est clair que si l’on applique `a la solution aqueuse une pression sup´erieure a` sa pression osmotique, le flux osmotique sera invers´e et l’on produira de l’eau d´emin´eralis´ee : c’est l’osmose inverse. Les premi`eres membranes d’osmose inverse ´etaient en ac´etate de cellulose. Par la suite, l’on d´eveloppa des membranes en plastique 1 . On notera aussi que l’on ne peut imaginer faire passer la totalit´e de la solution aqueuse `a travers la membrane. En effet, les sels dissous ne passant pas a` travers la membrane, ils sont de plus en plus concentr´ es et la pression osmotique augmente. D’autre part, si l’on continuait a` concentrer, tˆ ot ou tard la limite de solubilit´e des diff´erents sels pr´esents dans l’eau serait atteinte et il y aurait des pr´ecipitations sur la membrane. Il en r´esulte que toutes les machines d’osmose inverse ont non seulement une entr´ee d’eau d’alimentation et une sortie d’eau d´emin´eralis´ee (dite aussi perm´eat ), mais aussi une sortie d’eau qui n’est pas pass´ee a` travers la membrane (on parle souvent de concentrat ). Ce concentrat 1. Les membranes d’osmose inverse en plastique sont g´en´eralement en polyamide
46
5.2. OSMOSE INVERSE
Figure
5.1.: Le ph´enom`ene naturel osmose
s’´ecoule tangentiellement `a la membrane, sans la traverser, et c’est cela qui donne le nom de filtration tangentielle aux technologies comme l’osmose inverse. Une fois le concept d’osmose inverse connu, il faut, pour r´ealiser des machines industrielles, placer une surface importante de membrane dans un volume aussi restreint que possible. De nombreuses configurations de modules d’osmose inverse ont ´et´es commercialis´es, mais actuellement la quasi-totalit´e du march´e est repr´esent´ee par les modules spiral´es. Comment fonctionne, au niveau microscopique, une membrane d’osmose inverse ? Cela n’est pas connu a` l’heure actuelle avec certitude. L’on sait que ces membranes existent dans la nature. L’on arrive a` produire ces membranes en plastique. mais leur fonctionnement exact est inconnu. Y a-t-il des pores ? Ce n’est pas certain. Une ´ecole de pens´ee affirme qu’il n’y a pas de pore, et que la pression au niveau de la membrane force l’eau a` passer en changeant de phase : l’on parle d’eau interstitielle. Une autre ´ecole de pens´ee affirme qu’il y des pores, mais cette ´ecole doit expliquer pourquoi l’on sait que les membranes d’osmose inverses sont perm´eables non seulement a` l’eau, mais aussi aux petites mol´ecules organiques. Pour expliquer ce ph´enom`ene, des mod`eles incluant des effets ´electrostatiques au niveau de la surface de la membrane ont ´et´es d´evelopp´es. La question de la pr´ esence ou de l’absence des pores est la question qui agite les milieux scientifiques qui travaillent sur les membranes depuis des d´ecennies. La question pourrait sembler futile, mais il n’en est rien. Elle montre que le ph´enom`ene de l’osmose inverse reste mal compris. Si on comprendrait mieux le m´ecanisme, il serait plus facile de pr´evoir les taux de rejet des diff´erents ions, et surtout, dans d’autres domaines de la technique, une compr´ehension des ph´enom`enes au niveau physique a en r`egle g´en´erale apport´e des avanc´ees importantes au niveau des performance des produits industriels.
ozone.ch S` arl
47
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
Figure
Figure
5.2.: Un module spiral´e [9]
5.3.: La fabrication d’un module d’osmose inverse. Photo : Osmonics
On peut donc se risquer a` faire le pronostic que les performances des membranes vont s’am´eliorer beaucoup dans les ann´ees ou d´ecennies a` venir.
ozone.ch S` arl
48
http://www.ozone.ch
5.2. OSMOSE INVERSE
Figure
5.4.: Membrane d’osmose inverse : le mod`ele avec pores. Image : Osmonics
Figure
5.5.: Membrane d’osmose inverse : le mod`ele sans pores
5.2.2. Equations fondamentales de l’osmose inverse Comme utilisateur ou concepteur d’installation, on n’a en principe jamais besoin de calculer un osmoseur. Toutefois il est important de connaˆıtre les ´equations qui r´egissent le fonctionnement des osmoseurs : cela nous permettra de mieux juger les offres et
ozone.ch S` arl
49
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
affirmations de fabricants, et aussi d’´evaluer le fonctionnement d’un osmoseur : les ´ecarts de d´ebits et de conductivit´e seront incompr´ehensibles si l’on ne connaˆıt pas les lois qui les r´egissent.
Quelques d´ efinitions Il est usuel de repr´esenter un osmoseur dans un sch´ema sous la forme d’un rectangle avec une diagonale qui repr´esente la membrane, comme dans la figure 5.6.
Figure
5.6.: Repr´esentation sch´ematique d’un osmoseur ou d’une membrane d’osmose inverse
Qe : d´ebit d’eau entrant dans l’osmoseur Q p : d´ebit perm´eat, ou d´ebit d’eau passant a` travers la membrane Qc : d´ebit de concentrat ce : concentration de solides dissous dans l’eau entrant dans l’osmoseur c p : concentration de solides dissous dans le perm´eat de l’osmoseur cc : concentration de solides dissous dans le concentrat de l’osmoseur
D´ ebit en fonction des pressions Qe = K T × [(P 1m − P 2m ) − (P osm1 − P osm2 )]
(5.1)
Avec : • Qe : d´ebit a ` travers la membrane • K T : constante donn´ ee par le fabricant de la membrane. La valeur de cette constante • • • •
varie avec la temp´erature. P 1m : pression moyenne en amont de la membrane P 2m :pression moyenne en aval de la membrane P osm1 :pression osmotique moyenne en amont de la membrane P osm2 : pression osmotique moyenne en aval de la membrane
ozone.ch S` arl
50
http://www.ozone.ch
5.2. OSMOSE INVERSE
En pratique on admet les approximations suivantes : P 1m =
1 × (P e + P c ) 2
(5.2)
P 2m = P p
(5.3)
P e ´etant la pression a` l’entr´ee de la membrane, P c la pression du concentrat et P p la pression du perm´eat. De la mˆeme fa¸con, on admet que : P osm1 =
1 × (P osme + P osmc ) 2
(5.4)
P osm2 = P osmp
(5.5)
P osme ´etant la pression osmotique de l’eau d’alimentation de l’osmoseur, P osmc la pression osmotique du concentrat et P osmp la pression osmotique du perm´eat. En pratique, P osmp P osme , donc P osm2 P osm1 , donc (P osm1 − P osm2 ) ≈ P osm1 L’on calcule donc en g´en´eral en utilisant P osm1 en lieu et place de (P osm1 − P osm2 ). Il faut par contre prendre garde a` ne pas confondre P osm1 avec P osme : la diff´erence peut ˆetre importante et conduire a` des erreurs importantes.
Estimation de la pression osmotique La pression osmotique est une fonction des solides dissous dans l’eau. En pratique l’on peut utiliser l’approximation suivante : P osm = T DS × 0.0008
(5.6)
TDS ´etant le total des solides dissous dans l’eau. Les unit´es utilis´ees ´etant : • [P osm ] = bar • [T DS ] = ppm
Rejet et recouvrement Pour l’utilisateur, un ”bon” osmoseur est un osmoseur qui r´eduira le plus possible la min´eralisation de l’eau et consommera le moins d’eau possible. Ces deux param`etres sont mesur´es par le taux de recouvrement et le taux de rejet :
D´efinitions : Taux de recouvrement : R =
Qp Qe
Taux de rejet (rejet) : Rej = 1 − avec C ec =
1 2
C p C ec
× (C e + C c )
ozone.ch S` arl
51
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
Effet de la temp´erature Corr(T ) = 1.03(T
−
25)
(5.7)
o`u T est la temp´erature de l’eau en degr´es Celcius. Le d´ebit d’une membrane ayant un d´ebit nominal QN `a 25 C sera a` une temp´erature T quelconque : ◦
Q(T ) = Corr(T ) × QN
(5.8)
Bilans Il est important de rappeler que les bilans de masse de l’eau et des solides dissous s’appliquent : Qe = Qc + Q p
(5.9)
Qe × C e = [Qc × C c ] + [Q p × C p ]
(5.10)
L’ensemble des ´equations permettent de faire les calculs courant concernant la performance de votre osmoseur, comme par exemple la qualit´e de l’eau a` la sortie, en connaissant le taux de rejet et la qualit´e de l’eau en entr´ee, ou bien les variations de performances a` attendre d’une variation de la qualit´e de l’eau, du taux de recouvrement, etc. D’autre part, il est essentiel de connaˆıtre ces ´equations pour ´evaluer l’efficacit´e de la maintenance d’un osmoseur.
Taux de rejet de diff´ erents sels Le taux de rejet d’une membrane ou d’un osmoseur est toujours donn´ e par les fabricants pour du NaCl. Bien sˆ ur l’eau comporte aussi d’autres sels dissous, et les taux de rejet peuvent varier fortement d’un sel a` l’autre. [4] donne a` la page 88 une liste compl`ete des taux de rejet des diff´erents sels. Nous citons ici quelques exemples dans le tableau 5.2.2 `a la page 52. Sel CaSO4 MgCL2 Ca(NO3 )2 Mg(NO3 )2 Table
Taux de passage (relativement au NaCl) 30% 60% 500% 500%
5.1.: Taux de rejets de diff´erents sels, relativement au NaCl
Les fabricants de membranes fournissent des programmes de calculs qui, utilisant ces taux de passage diff´erents pour chaque sel, calculent la concentration ion par ion dans le perm´eat pour une eau d’alimentation donn´ee. Au moins un fabricant [20] permet a` tout un chacun de t´el´echarger ce programme depuis son site Web.
ozone.ch S` arl
52
http://www.ozone.ch
5.2. OSMOSE INVERSE
Ordres de grandeur Taux de rejet, pour NaCl : Polyamide : 98 a` 99.7 % Ac´ etate de cellulose : 93 a` 98 %
Taux de recouvrement : Pour une membrane : 13 a` 20 % Pour une unit´e : 33 a` 75 % Dans une machine d’osmose inverse, l’on combine plusieurs membranes, et l’on peut aussi recycler une partie du concentrat, pour obtenir des taux de recouvrement beaucoup plus ´elev´es que les 13 a` 20% . Bien sˆur cela a pour corollaire que le taux de rejet d’une machine d’osmose inverse sera toujours plus bas que le taux de rejet d’une membrane seule. En pratique, les taux de rejet pour le NaCl d’un osmoseur seront de l’ordre de 95 `a 99%.
D´ ebits par membrane (` a environ 16 bar) : Mat´ e riau
Diam` e tre
Polyamide 4” Polyamide 8” Ac´etate de cellulose 4” Ac´etate de cellulose 8”
D´ e bit
0.25 m3 /h 1 m3/h 0.15 m/3 h 0.60 m/3 h
Les dimensions des membranes pour les osmoseurs industriels sont plus ou moins standardis´es : pratiquement tous les fabricants proposent des modules de diam`etre de 4” et de 8”, et d’une longueur de 40” (environ un m` etre). Par contre, pour les petits osmoseurs commerciaux ou de laboratoire, il existe un tr`es grand nombre de diam`etres de membranes (1.8”, 2”, 2.5”, etc.) et un choix presque infini de longueurs de modules. Pour les membranes en ac´etate de cellulose, le d´ebit varie avec le taux de passage : les membranes avec un taux de rejet ´elev´e ont un d´ebit plus faible.
Les mat´ eriaux de membranes d’osmose inverse : Mat´ eriaux
Polyamide
Rejet NaCl pH Rejet compos´es organiques Chlore Cl2 libre Temp´erature
98 a` 99.7 % 93 a` 98 % 3 a` 10 4 a` 8 > 150 masse mol. > 200 a` 250 masse mol. < 0.1 ppm > 0.2 ppm et < 2.0 ppm < 40 C < 40 C
ozone.ch S` arl
◦
Ac´ etate de cellulose
◦
53
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
Il existe des modules pour hautes temp´eratures avec des membranes en polyamide : pour la membrane elle-mˆeme, une temp´erature de l’eau jusqu’` a 90 C ne pose pas r´eellement un probl`eme, mais par contre le probl`eme est au niveau de la colle et des autres ´el´ements en plastique (tubes, grilles, joints) employ´ es pour la construction des modules. ◦
5.2.3. Exemples d’unit´es d’osmose inverse
Figure
5.7.: Sch´ema d’un petit osmoseur industriel. Sch´ema : Osmonics
Le sch´ema de la figure 5.7 est typique d’un petit osmoseur industriel. On remarque en particulier :
Le pr´ efiltre : il prot`ege les membranes des particules en suspension La pompe Les membranes : le concentrat sortant de 2 membranes alimente la 3emembrane. Le concentrat de cette derni`ere est en partie recycl´e Vannes de r´ eglage concentrat et recyclage : en ajustant ces deux vannes, l’on peut ajuster le taux de recouvrement de la machine
ozone.ch S` arl
54
http://www.ozone.ch
5.2. OSMOSE INVERSE
Figure
5.8.: Exemple d’unit´e d’osmose inverse pour laboratoire. Photo : Electrolux
Figure
ozone.ch S` arl
5.9.: Sch´ema de principe de l’unit´e montr´ee sur la figure 5.8
55
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
Figure
5.10.: Petit smoseur industriel, muni de membranes 4”. Photo : RO Ultratech
Figure
5.11.: Exemple de grand osmoseur industriel, muni de membranes 8”. Photo : GE Water
ozone.ch S` arl
56
http://www.ozone.ch
5.3. ULTRAFILTRATION
5.3. Ultrafiltration Comme l’osmose inverse, l’ultrafiltration est une technique de filtration tangentielle. Contrairement aux membranes d’osmose inverse, les membranes d’ultrafiltration n’enl`event aucun ion de l’eau. Les membranes d’ultrafiltration ont des pores : c’est incontestable, ils sont observables au microscope. il s’agit d’une technologie assez mˆ ure. Il y a un grand choix de mat´eriaux de membrane : polysulphone, polypropyl`ene, polyamide, ac´etate de cellulose, vinyle fluor´e, PVC, PVDF, etc. Le choix de configurations g´eom´etriques de membrane est aussi important. Les membranes dites spiral´ees ne repr´esentent qu’une minorit´e des membranes d’ultrafiltration, les membranes type ”fibres creuses” ´etant devenue les plus fr´equentes. On distingue en outre les fibres creuses filtrant l’eau de l’int´erieur vers l’ext´erieur, et celles filtrant l’eau de l’ext´erieur vers l’int´erieur. Ces derni`eres sont r´eput´ees plus durables car plus faciles a` r´etro-laver, mais aussi plus ch`eres car plus difficiles a` produire. L’utilisation principale de l’ultrafiltration dans l’industrie est la filtration au point d’utilisation dans les syst`emes de production d’eau ultrapure, surtout en pharmaceutique et en micro´electronique. depuis quelques ann´ees, l’on voit aussi des machines d’ultrafiltration destin´ees a` la potabilisation de l’eau. Les taux de recouvrement sont beaucoup plus ´elev´es en ultrafiltration que en osmose inverse : l’on parle g´en´eralement de environ 90% avec de l’eau de ville ou en potabilisation de l’eau, et plus de 95% en filtration de finition d’eau ultrapure. Ceci en employant des membranes spiral´ees. Les installations avec des membranes a` fibres creuses fonctionnent parfois a` pr` es de 100% de taux de recouvrement.
Figure
ozone.ch S` arl
5.12.: Exemple d’unit´e d’ultrafiltration au point d’utilisation [20]
57
http://www.ozone.ch
´ ES ´ MEMBRANAIRES CHAPITRE 5. PROC ED
--
Figure
Figure
5.13.: Sch´ema d’une unit´e d’ultrafiltration au point d’utilisation [20]
5.14.: Machine d’ultrafiltration pour la potabilisation de l’eau. Ce genre d’unit´e peut ˆetre utilis´e pour la potabilisation d’eau dont la turbidit´e varie. Photo : Osmo Asia Pacific
L’ultrafiltration s’est popularis´ee ces derni`eres ann´ees, essentiellement pour le traitement d’eau en entr´ee dont la turbidit´e est fortement variable au cours de l’ann´ee. Les prix varient fortement entre les fournisseurs. Les technologies tr`es diff´erentes rendent les comparaison de prix tr`es ardues.
ozone.ch S` arl
58
http://www.ozone.ch
5.4. NANOFILTRATION
5.4. Nanofiltration La nanofiltration enl`eve 30 a` 50 % des ions monovalents et plus de 90% des ions divalents. Cette caract´eristique fait de la nanofiltration une alternative int´ eressante a` la d´emin´eralisation partielle et a` l’adoucissement par ´echange d’ions. Il s’agit d’une technologie relativement jeune. Les ´ecarts de performances entre membranes non n´egligeables. Les membranes sont faites dans les mˆemes mat´eriaux que les membranes d’osmose inverse (polyamide et ac´etate de cellulose), et sont utilis´ees a` des pressions un peu plus basses que les membranes d’osmose inverse : des pressions de 8 `a 10 bar sont typiques. Au d´ebut de la nanofiltration, certains fabricants proposaient comme membranes de nanofiltration les ´ecarts de production de membranes d’osmose inverse. Depuis, la nanofiltration s’est impos´ee comme m´ethode de traitement de l’eau dans l’industrie, surtout comme alternative aux adoucisseurs pour des applications en agro-alimentaire, et des fabricants ont donc d´evelopp´e des membranes sp´ecifiques a` la nanofiltration. Jusqu’`a pr´esent, les facteurs suivants ont limit´e le d´eveloppement de la nanofiltration comme remplacement des adoucisseurs : • Le coˆ ut de l’eau rejet´ee (concentrat) 2 • Les coˆ uts d’investissement, beaucoup plus ´elev´es a` l’heure actuelle que pour un
adoucisseur a` ´echange d’ions La nanofiltration n’est donc utilis´ee que dans les situations o` u le fait que elle enl`eve aussi des bact´eries et des substances organiques et qu’il n’y a pas de saumure `a ´eliminer est un avantage.
2. L’on peut souvent augmenter le taux de recouvrement des machines `a nanofiltrations en injectant de l’acide dans l’eau d’alimentation. Cela r´ eduit bien sˆ ur les coˆ uts d’eau rejet´ ee, mais l’installation et sa maintenance deviennent alors plus complexes.
ozone.ch S` arl
59
http://www.ozone.ch
6. La maintenance des osmoseurs Notre exp´erience est que la maintenance des osmoseurs est trop souvent n´eglig´ee. Il en r´esulte une production d’eau de qualit´e inf´erieure a` celle que l’on pourrait obtenir, et une dur´ee de vie r´eduite des membranes. C’est pourquoi nous consacrons ici un chapitre s´epar´e a` ce sujet. Bien que ce chapitre se r´ef`ere sp´ecifiquement aux osmoseurs, tout ce qui y est dit est applicable aussi aux machines a` nanofiltration, et dans une certaine mesure aux machines `a ultrafiltration.
6.1. Suivi des performances La maintenance d’un osmoseur est plus simple que celle d’un ´echangeur d’ion par exemple. L’essentiel du travail de maintenance, a` l’exception d’op´erations assez sp´ecialis´ees mais peu fr´equentes comme le changement des membranes par exemple, peut ˆetre fait par le personnel de maintenance sans faire appel a` des fournisseurs ext´erieurs.
6.1.1. Param` etres ` a enregistrer [36] donne une liste des param`etres a` enregistrer – manuellement ou automatiquement – quotidiennement sur un osmoseur : • Pressions : • Pression avant le pr´efiltre • Pression apr`es le pr´efiltre et avant la pompe haute pression • Pression apr`es la pompe • Pression en sortie des membranes, cˆ ot´e concentrat • Pression du perm´ eat (si celle-ci est diff´erente de la pression atmosph´erique) • D´ebits : • Perm´eat • Concentrat • Conductivit´e : • Alimentation • Perm´eat C p • Concentrat C c • Temp´erature de l’eau d’alimentation
60
6.1. SUIVI DES PERFORMANCES
Ces param`etres ne sont pas en eux-mˆemes une mesure directe des performance de l’osmoseur. Comme nous l’avons vu au paragraphe 5.2.2, le d´ebit varie en fonction de la temp´erature par exemple et la qualit´e de l’eau produite varie en fonction de la la qualit´e de l’eau d’alimentation : or ces param`etres varient au cours du temps dans pratiquement toutes les installations. Il est donc essentiel de proc´eder a` quelques calculs a` partir des valeurs enregistr´ees.
6.1.2. Param` etres ` a calculer sur la base des enregistrements Taux de recouvrement en % : En principe ce taux ne devrait pas varier. Il peut varier au cours de l’ann´ee si la temp´erature de l’eau d’alimentation varie. Il faudrait alors utiliser les vannes permettant d’ajuster les d´ebits de concentrat et de recyclage D´ebit de perm´ eat ` a T= 25 C et P moy = P nominale : on parle souvent de normalisation du d´ebit . Comme nous l’avons vu plus haut, le d´ebit varie en fonction de la temp´erature de l’eau et de la diff´erence de pression a` travers la membrane. On ne peut donc comparer directement les d´ebits mesur´es. Si le d´ebit de perm´eat est rest´e constant alors que la temp´erature de l’eau a augment´e de 8 C par exemple, alors les performances se son d´egrad´es d’avantage que si a` temp´erature ´egale et a` une diff´erence de pression a` travers la membrane qui aurait l´eg`erement augment´e le d´ebit de perm´eat ´etait rest´e constant. Il faut donc calculer, avec les ´equations du paragraphe 5.2.2, de combien serait le d´ebit de perm´eat si la temp´erature restait constante ◦
◦
Conductivit´ e moyenne : C moy = Taux de rejet : Rej = 1 −
Calim+C c
2
C p C moy
Perte de charge, cˆ ot´e concentrat, ` a d´ ebit constant : la diff´erence entre la pression en aval de la pompe haute pression et la sortie du concentrat des membranes donne la perte de charge a` travers les membranes, cˆ ot´e concentrat. Ce param`etre est important, car il peut indiquer si il y a un entartrage important des membranes. Comme les d´ebits peuvent varier au cours du temps, il faut calculer la perte de charge a` d´ebit nominal. L’approximation suivante est utilisable en pratique [4] : ∆P norm = ∆P mesuree ×
2 × Qcnom + Q pnom 2 × Qc + Q p
(6.1)
Qcnom et Q pnom ´etant les d´ebits de concentrat et respectivement de perm´eat nominaux et ∆P mesuree ´etant la diff´erence de pression effectivement mesur´ee. Pour les d´ebits on peut aussi prendre les valeurs des d´ebits lors de la mise en service pour Qcnom et Q pnom . Nous avons maintenant 2 valeurs : le d´ebit de perm´eat a` 25 C (et P moy = P nominale ) et le taux de rejet des membranes qui refl` etent les performances de l’osmoseur, et une e 3 valeur, ∆P norm , qui est une mesure de l’´etat des membranes. Le taux de recouvrement doit ˆetre contrˆ ol´e pour v´erifier qu’il ne varie pas plus que quelques % au cours de l’ann´ee. Sur la base d’un tableau de chiffres, il est difficile de d´eterminer si l’on assiste a` une ◦
ozone.ch S` arl
61
http://www.ozone.ch
CHAPITRE 6. LA MAINTENANCE DES OSMOSEURS
´evolution ou si les diff´erences de valeurs sont dues a` la pr´ ecision des mesures. Il est donc conseill´e de tracer des graphiques donnant le d´ebit de perm´eat a` 25 C (et P moy = P nominale ) , le taux de rejet des membranes et ∆P norm. ◦
6.2. Nettoyage des membranes Il est in´evitable que apr`es un certain temps les performance d’un osmoseur diminuent. Il faut alors nettoyer les membranes. En r`egle g´en´erale, le nettoyage est ´economique par rapport au remplacement de membranes pour les membranes de 4” ou 8”, les petites membranes de 2 ou 2 1/2 ” de diam`etres ´etant tr`es bon march´e. De combien faut-il que les performances se d´egradent pour qu’un nettoyage soit justifi´e ? L’ensemble de la litt´erature et plusieurs fabricants 1 conseillent de nettoyer lorsque les performances se sont d´egrad´ees comme suit : 1. Le d´ebit de perm´eat a` 25 C et P moy = P nominale a baiss´e de 10 a` 15% ◦
2. ∆P norm a augment´e de 10 a` 15% 3. Le taux de rejet a baiss´e de 1 a` 2 % Les produits `a employer pour le nettoyage sont fonction de la nature du d´epˆ ot que l’on trouve sur la membrane. [4] affirme qu’il faut proc´eder a` une analyse de la nature du tartre que l’on trouve sur la surface de la membrane avant de choisir le produit nettoyant. Cette m´ethode implique que l’on extrait une membrane de la machine avant de proc´eder au premier nettoyage et qu’on la d´etruit pour effectuer un pr´el`evement : elle n’est donc ´economiquement d´efendable que si l’on utilise un osmoseur avec un grand nombre de membranes 2 , ce qui est rarement le cas des osmoseurs utilis´es dans l’industrie. En pratique, il est donc g´en´eralement pr´ef´erable de proc´eder par essais successifs. On trouve diff´erents type de d´epˆ ots sur les membranes des osmoseurs :
D´ epˆ ots inorganique : ils r´esultent de la concentration des diff´erents sels dissous dans l’eau et du changement de l’´equilibre calco-carbonique de l’eau. La meilleure fa¸con de l’enlever est d’utiliser une solution de nettoyage acide. D´ epˆ ots organiques : ils sont mieux enlev´es par des solutions basiques contenant un surfactant. Sulfates : si des traces de baryum, de strontium ou de calcium sont pr´esentes dans l’eau et l’on utilise une injection d’acide sulfurique pour l’ajustement du pH en amont de l’osmoseur, des d´epˆots de sulfates (de baryum, de strontium, de calcium) peuvent se former. Un nettoyage avec de l’EDTA peut ˆetre tent´e, mais il faut en g´en´eral changer les membranes. 1. Pas tous les fabricants. Il faut ˆetre conscients que certains fabricants d’osmoseurs ignorent compl`etement la probl´ematique du nettoyage des membranes 2. Plus de 20 membranes environ
ozone.ch S` arl
62
http://www.ozone.ch
6.2. NETTOYAGE DES MEMBRANES
Table
Diam`etre
D´ebit max.
Vol. solution par e´l´ement
4”
40 l/min
20 litres
8”
120 l/min
80 litres
6.1.: D´ebits et volumes de solution de nettoyage recommand´es
Biofilms : ils sont mieux enlev´es par des solutions basiques, avec un pH de au moins 11, contenant un surfactant.
Sp´ ecification des produits de nettoyage Les fabricants de membranes donnent des sp´ecifications des produits a` employer pour les diff´erents types de nettoyages (acide, croissance biologique, etc.). Ces sp´ecifications font g´en´eralement appels a` des produits que l’on trouve facilement en droguerie ou aupr`es d’un distributeur de produits chimiques, comme l’acide nitrique, l’EDTA, etc. Il arrive que des fournisseurs d’installations d’osmose inverse proposent des produits nettoyant prˆets, g´en´eralement a` des prix prohibitifs. Notre exp´erience est que en g´en´eral il n’est pas ´economique de les utiliser. Il existe aussi des cartouches que l’on place a` la place de la cartouche filtrante de l’osmoseur, et qui relarguent une solution nettoyante lorsque l’eau les traverse. Cette solution est tr`es pratique et ´economique pour les petits osmoseurs (jusqu’`a environ 3 m3 /h).
Quel produit utiliser ? En pratique, dans environ 80% des cas, la baisse des performances est due essentiellement a` des d´epˆ ots inorganiques. Il est donc pr´ef´erable de commencer par un nettoyage acide. Si les r´esultats sont insuffisants, proc´eder alors a` un nettoyage avec une solution basique, puis a` un 2e nettoyage acide, car si il y a un biofilm, il et probable que sous celui-ci se trouve un d´epˆ ot de substances inorganiques.
Proc´ edure de nettoyage Il faut laisser la solution nettoyante recirculer dans la machine pendant au moins 30 minutes [4]. Il faut imp´erativement ouvrir la vanne de concentrat pour ´eviter une mont´ee excessive de la pression en amont de la membrane. Le tableau 6.1 donne les d´ebits maximums a` pr´evoir et les volumes minimums de solution nettoyante n´ecessaires pour la proc´edure. Selon la conception de l’osmoseur, il peut ˆetre impossible de faire circuler une solution de nettoyage dans celui-ci. Dans ce cas, l’on peut faire appel a` certains fournisseurs qui effectuent le nettoyage de membranes hors site. Il faut toutefois faire attention au fait que si la membrane s`eche, elle n’est plus utilisable : son transport peut donc poser
ozone.ch S` arl
63
http://www.ozone.ch
CHAPITRE 6. LA MAINTENANCE DES OSMOSEURS
probl`eme. Il existe aussi sur le march´e des machines pour nettoyer les membranes. Leur utilisation est ´economique si l’on a un parc de plusieurs osmoseurs en service.
Figure
6.1.: Une machine pour nettoyer des membranes d’osmose inverse ou de nanofiltration. Photo : RO Ultratech
ozone.ch S` arl
64
http://www.ozone.ch
7. La d´ esinfection de l’eau Il existe actuellement 5 m´ethodes courantes pour la d´esinfection de l’eau dans l’industrie : 1. La chloration de l’eau 2. La st´erilisation par les rayons U.V. 3. L’ozonisation 4. La microfiltration 5. L’ultrafiltration La distillation n’est plus utilis´ee que dans des cas exceptionnels, comme l’industrie pharmaceutique. Elle sera tout de mˆeme trait´ee s´epar´ement, dans le chapitre 14 `a la page 117. La chloration et la st´erilisation par UVc sont des m´ethodes tr`es simples a` mettre en œuvre, alors que l’ozonisation est plus complexe, mais aussi plus int´eressante. La microfiltration est int´ eressante uniquement dans des cas tr`es particuliers en raison des ses coˆ uts ´elev´es de fonctionnement. L’ultrafiltration est utilis´ee depuis longtemps en micro´electronique pour la st´erilisation finale au point d’utilisation et est utilis´ee aussi en eau potable. La destruction des biofilms est trait´ee dans le chapitre 12 `a la page 107.
65
8. St´ erilisation U.V. 8.1. Principe et limites de la d´ esinfection par ultraviolets 8.1.1. Principe de fonctionnement Le principe de la st´erilisation de l’eau par ultraviolet est tr`es simple : on ´eclaire l’eau avec des rayons UVc, qui ont un effet germicide par destruction des mol´ecules d’ADN.
Figure
8.1.: Absorption du rayonnement ultraviolet par l’eau (traitill´e) et par l’ADN (trait continu) [13]
8.1.2. Limites de la st´ erilisation par ultraviolet Par sa simplicit´e et son efficacit´e, la st´erilisation par ultraviolet est une solution tr`es attrayante. Il faut toutefois aussi ˆetre conscients des limites de cette technologie :
La st´ erilisation par ultraviolet inactive mais n’´ elimine pas physiquement les bact´eries : les bact´eries restent dans l’eau sous forme de particules inactives. Dans beaucoup
66
´ 8.1. PRINCIPE ET LIMITES DE LA D ESINFECTION PAR ULTRAVIOLETS
d’applications, cela ne pose pas de probl`emes, mais dans certains cas, comme en micro-´electronique, par exemple, il faut combiner la st´erilisation par ultraviolet avec la microfiltration ou l’ultrafiltration pour ´eliminer les particules que sont devenues les bact´eries inactiv´ees par le st´erilisateur U.V. de l’eau utilis´ee pour laver les Wafers par exemple. a pr´esentent en aval du st´erilisateur Pas d’effet r´ emanent : si des bact´eries sont d´ej` UV, elles resterons actives. La st´erilisation U.V. n’a donc absolument aucun effet sur les biofilms
8.1.3. Longueur d’onde Longueur d’onde utilis´ee pour st´eriliser l’eau est de : 254 nm. A 185 nm l’ultraviolet produit de l’ozone, dans l’eau et dans l’air : m´ethode pour produire l’ozone, de moins en moins utilis´ee, sauf pour des tr`es petits g´en´erateurs d’ozone. Par contre, a` 254 nm, le rayonnement ultraviolet d´etruit l’ozone : il s’agit de la seule m´ethode fiable pour d´etruire l’ozone. Elle est d´ecrite en d´etail a` la page 91.
8.1.4. Les lampe ultraviolet Il existe plusieurs types de lampes ultraviolet. Pour le traitement de l’eau, on distingue les lampes basse pression et moyenne pression .
Figure
8.2.: Comparaison des spectres d’´emission d’une lampe basse pression et d’une lampe moyenne pression [13]
La lampe est g´en´eralement au centre de l’´ecoulement. Il faut ˆetre attentif a` ne pas acheter st´erilisateurs qui utilisent des lampes faites sp´ecialement sur mesure pour le
ozone.ch S` arl
67
http://www.ozone.ch
´ CHAPITRE 8. ST ERILISATION U.V.
Figure
8.3.: R´eduction du rayonnement ´emis au bout de 7 jours, en fonction de la duret´e [24]. Ce graphique confirme que l’entartrage du quartz est un d´esavantage important en cas d’utilisation de lampes moyenne pression
st´erilisateur : apr`es quoi, l’on est otage de l’installateur qui ne se prive pas, souvent de vendre tr`es cher les lampes de remplacement.
8.2. Dimensionnement d’un st´ erilisateur UV 8.2.1. Dose de rayonnement UVc En pratique, le dimensionnement se fait en g´en´eral sur la base des normes applicables pour la st´ erilisation de l’eau potable. Celles-ci prescrivent une dose de rayonnement germicide, dose qui varie d’un pays a` l’autre :
Plusieurs pays europ´ eens
1
: 25 mJ/cm2
Suisse : 40 mJ/cm2 Il faut donc toujours pr´eciser la dose de rayonnement germicide demand´ee lors d’un appel d’offre. Les st´erilisateurs U.V. sont aussi souvent utilis´es comme destructeurs d’ozone r´esiduel dans l’eau. Pour d´etruire l’ozone, il faut un dosage de rayonnement germicide beaucoup plus ´elev´e que pour l’inactivation de bact´eries 2 . 1. Dont la France et l’Italie. La Belgique elle prescrit 30 mJ/cm2 2. Voir le point 10.3.4 `a la page 91
ozone.ch S` arl
68
http://www.ozone.ch
´ 8.2. DIMENSIONNEMENT D’UN ST ERILISATEUR UV
Figure
8.4.: Dose de rayonnement U.V. n´ecessaire pour r´eduire de 99.99% divers microorganismes. Les barres claires montrent la dose en pr´esence de lumi`ere r´eactivant les micro-organismes, les barres pleines montrent la dose en l’absence de lumi`ere r´eactivant les micro-organismes [24]
L’eau peut ˆetre plus ou moins perm´eable aux rayons UVc. Pour dimensionner un st´erilisateur UV, le fabricant aura donc besoin, en plus du d´ebit d’eau a` traiter, du coefficient de transmission aux UVc de XX% sur une lame d’eau de 1 cm . Les doses mentionn´ees dans les normes pour la potabilisation de l’eau sont adapt´ees pour la grande majorit´e des cas, mais pas tous. Il faut des doses beaucoup plus ´elev´ees pour ´eliminer des cellules d’algues et des moisissure, et aussi pour certains virus rares. Le coefficient de transmission admis par les fabricants qui donnent un d´ebit dans leurs catalogues sont g´en´eralement de l’ordre de 80 a` 98%, selon les fabricants. Cette diff´erence fait que des st´erilisateurs U.V. standard peuvent sembler ˆetre moins chers que un mod`ele pr´evu pour le mˆeme d´ebit d’une autre marque, alors que en fait le d´ebit est tout simplement donn´e pour un coefficient de p´en´etration des UVc diff´erent. Il est donc important de comparer des offres calcul´ees sur la base de coefficients de transmission aux UVc de XX% sur une lame d’eau de 1 cm et non des chiffres tir´es de catalogues.
ozone.ch S` arl
69
http://www.ozone.ch
´ CHAPITRE 8. ST ERILISATION U.V. Table
8.1.: Doses d’inactivation D10 pour quelques micro-organismes communs D10 en mJ/cm2
Micro-organisme
Escherichia Coli
3.0
Pseudomonas Auroginosas
5.0
Staphyllococcus Aureus
2.18
Moisissures
30 a` 300
Algues
300 a` 600
La dose de rayonnement UVc n´ecessaire est fonction du micro-organisme a` ´eliminer. L’on trouve dans la litt´erature des tableaux donnant les Doses D10 pour divers microorganismes. Cette dose est d´efinie comme suit :
Dose D10 : dose de rayonnement UVc qui permet d’inactiver 90.0% des micro-organismes pr´esents Une fois D10 connue, l’on peut calculer facilement la dose n´ecessaire pour inactiver des pourcentages plus ´elev´es de micro-organismes : • Pour 99.0% : 2 × D10 • Pour 99.9% :3 × D10 • Pour 99.99% (=100%) :4 × D10
Le tableau 8.1 donne des valeurs de D10 pour les micro-organismes les plus communs : L’on trouve dans la litt´erature des valeurs de D10 diff´erentes d’une publication a` l’autre. Des laboratoires ayant affect´e les mˆemes mesures ont trouv´es des r´esultats parfois assez diff´erents. En pratique, cela signifie qu’il faut consid´erer ces valeurs comme indicatives, et en aucun cas dimensionner une installation sans un coefficient de s´ecurit´e significatif par rapport aux valeurs de D10 3 trouv´ees dans la litt´erature. Les tableaux qui suivent donnent les valeurs deD1000 pour un grand nombre de microorganismes[8].
8.3. Doses de rayonnement UV pour diff´ erentes classes de micro-organismes Les algues sont un probl`eme fr´equent en Suisse. Une part non n´egligeable de notre eau potable provient d’eau de surface, en particuliers des lacs. Les cellules d’algues sont plus r´esistantes que les bact´erie aux aux traitements de d´esinfection, ce qui fait que les doses D1000 sont g´en´eralement beaucoup plus ´elev´ees pour les algues que pour les bact´eries et les virus. 3. Ou de D100 ou D1000 ,d’ailleurs
ozone.ch S` arl
70
http://www.ozone.ch
´ 8.3. DOSES DE RAYONNEMENT UV POUR DIFF ERENTES CLASSES DE MICRO-ORGANISMES
Micro-organisme Dose D1000 en mJ/cm2 Bacillus anthracis 8,700 B. enteritidis 7,600 B. Megatherium sp. (vegatative) 2,500 B. Megatherium sp. (spores) 52,000 B. paratyphosus 6,100 B. subtilis (vegatative) 11,000 B. subtilis (spores) 58,000 Clostridium tetani 22,000 Corynebacterium diphtheria 6,500 Eberthella typhosa 4,100 Escherichia coli 7,000 Leptospira interrogans 6,000 Micrococcus candidus 12,300 Micrococcus sphaeroides 15,400 Mycobacterium tuberculosis 10,000 Neisseria catarrhalis 8,500 Phytomonas tumefaciens 8,500 Proteus vulgaris 6,600 Pseudomonas aeruginosa 10,500 Pseudomonas fluorescens 6,600 Salmonella enteritidis 7,600 Salmonella paratyphi 6,100 Salmonella typhimurium 15,200 Salmonella typhosa (Typhoide) 6,000 Sarcina lutea 26,400 Serratia marcescens 6,200 Shigella dysenteriae (Dysenterie) 4,200 Shigella paradysenteriae 3,400 Spirillum rubrum 6,160 Staphylococcus albus 5,720 Staphylococcus aureus 6,600 Streptococcus hemolyticus 5,500 Streptococcus lactis 8,800 Streptococcus viridans 3,800 Vibrio cholerae 6,500 Table 8.2.: Doses de rayonnement UV pour l’inactivation de bact´ eries
ozone.ch S` arl
71
http://www.ozone.ch
´ CHAPITRE 8. ST ERILISATION U.V.
Table
Micro-organisme Dose D1000 en mJ/cm2 Aspergillus flavus 99,000 Aspergillus glaucus 88,000 Aspergillus niger 330,000 Mucor racemosus A 35,200 Mucor racemosus B 35,200 Oospora lactis 11,000 Penicillium digitatum 88,000 Penicillium expansum 22,000 Penicillium roqueforti 26,400 Rhizopus nigricans 220,000 8.3.: Doses de rayonnement UV pour l’inactivation de moisissures et spores
Table
Micro-organisme Dose D1000 en mJ/cm2 Chlorella vulgaris (algue) 22,000 Oeufs de Nematodes 92,000 Paramecium 200,000 8.4.: Doses de rayonnement UV pour l’inactivation d’algues et protozoa
Table
Micro-organisme Dose D1000 en mJ/cm2 Virus : Bacteriophage (E. coli) 6,600 Virus Hepatitis 8,000 Virus Influenza 6,600 Virus Polio 6,000 Rotavirus (diarh´ees) 24,000 Tobacco mosaic 440,000 8.5.: Doses de rayonnement UV pour l’inactivation de virus
8.3.1. Exemples d’estimations de la dose n´ ecessaire Escherichia Coli L’on veut assurer l’absence de bact´eries f´ecales (Escherichia Coli) de l’eau. Quelle dose faut-il pr´evoir ? R´eponse : Il faut une dose suffisant pour r´eduire le nombre d’UFC de 99.99%, ce qui est consid´er´e en pratique comme une r´eduction de 100%. Il faut une dose ´egale `a 4 fois D10 , ou 2 fois D1000 soit : Dose = 6 × 2 = 12 mJ/cm2
ozone.ch S` arl
72
(8.1)
http://www.ozone.ch
´ 8.3. DOSES DE RAYONNEMENT UV POUR DIFF ERENTES CLASSES DE MICRO-ORGANISMES
Table
Micro-organisme Dose D1000 en mJ/cm2 Virus : Baker’s yeast 8,800 Brewer’s yeast 6,600 Common yeast cake 13,200 Saccharomyces cerevisiae 13,200 Saccharomyces ellipsoideus 13,200 Saccharomyces sp. 17,600 8.6.: Doses de rayonnement UV pour l’inactivation de levures
Un cas particulier : les lampes plongeantes dans les r´ eservoirs L’on rencontre assez souvent dans l’industrie des lampes U.V. plongeantes dans des r´eservoir : il s’agit de lampes monoculot dont une partie plonge dans du liquide stock´e. A priori l’id´ee semble s´eduisante : l’on ins`ere pour un coˆ ut tr`es limit´e une lampe a` ultraviolet dans un r´eservoir existant, ou de toute fa¸ con pr´evu dans l’installation, et l’on obtiendrait un st´erilisateur UV bon march´e. H´elas, ces lampes en g´en´eral favorisent plus qu’elles n’empˆechent la croissance de bact´ eries. Le motif en est le coefficient de p´en´etration des UVc discut´e pr´ec´edemment. Ce coefficient est g´en´eralement inf´erieur `a celui de la lumi`ere visible. Il en r´esulte que d`es que l’on s’´eloigne de la lampe de plus de quelques dizaines de centim`etres dans le r´eservoir, l’on ne trouve plus que un rayonnement n´egligeable d’UVc, alors que un rayonnement significatif de lumi`ere dans le spectre visible est mesurable. Cette lumi`ere favorise la croissance des bact´eries. D’autre part, les lampes U.V. plongeantes am`enent de l’´energie thermique au r´eservoir, autrement dit chauffent l’eau, rendant ainsi le milieu plus propice a` la croissance de bact´eries.
8.3.2. Biodosimetrie ou calcul ? Une difficult´e suppl´ementaire pour le praticien qui doit acqu´erir un st´erilisateur U.V. et qui doit ´evaluer les offres de divers fournisseur est donn´ ee par le fait que les divers fabricant dimensionnent leurs syst`emes de mani`ere diff´erente. Nous avons vu que la r´eduction de la concentration de micro-organismes est fonction de la dose de rayonnement germicide. Or, il est clair que les particules d’eau qui traversent un st´ erilisateur ne re¸coivent pas toutes la mˆ eme dose de rayonnement. La question se pose donc de savoir comment le fabricant d´etermine la dose de rayonnement fournie par son appareil pour le d´ebit et le coefficient de p´en´etration aux UVc qui lui auront ´et´es indiqu´es. Les fournisseurs de st´erilisateurs proc`edent selon 3 m´ethodes diff´erentes :
Calcul de la dose moyenne : c’est la m´ethode traditionnelle, encore trop souvent employ´ ee : on mesure la dose sur la base du rayonnement moyen calcul´e a` l’int´erieur du st´erilisateur et on la multiplie par le temps de r´esidence moyen d’une particule d’eau, qui est tout simplement le volume du st´erilisateur divis´e par le d´ebit. La m´ethode est simple, mais discutable, dans la mesure o` u l’on peut imaginer que les
ozone.ch S` arl
73
http://www.ozone.ch
´ CHAPITRE 8. ST ERILISATION U.V.
Figure
8.5.: Exemple de st´erilisateur U.V. [23]
bact´eries ne sont pas forc´ement distribu´es de mani`ere uniforme dans l’eau, et donc le calcul donnera des r´esultats diff´erents de mesures sur l’installation.
Mesure pas biodosim´etrie : l’on mesure le taux de survie de bact´eries dont les valeurs D10, D100 etc. sont connues : sur cette base l’on calcule la dose de rayonnement effective fournie par la st´erilisateur. Cette m´ethode a un immense d´esavantage : son coˆ ut 4 . Il s’agit en effet d’essais complexes, et il y a peu d’installations dans le monde pouvant les r´ealiser.[13] d´ecrit en d´etail la proc´edure de la mesure par biodosim´etrie. Calcul de la dose minimum : Avec les moyens de calculs actuels, ils est possible de d´eterminer le parcours la plus d´efavorable du point de vue de la dose de rayonnement a` travers un st´erilisateur U.V. Le fabricant qui emploi cette m´ethode indiquera dans ses sp´ecifications que l’appareil a ´et´e calcul´e sur la base d’un rayonnement germicide de (par exemple) 40 mJ/cm2 au point le plus d´efavorable de l’appareil . Cette m´ethode conduit a` un surdimensionnement de l’appareil, mais ´evite les coˆ uts ´elev´es de la biodosim´etrie, ce qui permet d’avoir des st´erilisateurs U.V. plus ´economiques que ceux dimensionn´es par biodosim´etrie. 4. La SSIGE affirme que ces essais ne peuvent ˆetres effectu´ es que en Autriche si ils doivent ˆetres et´e Suisse de l’Industrie du Gaz et des Eaux), et que l’essai d’un appareil reconnus par la SSIGE (Soci´ coˆ ute entre 40’000.00 et 60’000.00 Francs Suisses
ozone.ch S` arl
74
http://www.ozone.ch
´ 8.3. DOSES DE RAYONNEMENT UV POUR DIFF ERENTES CLASSES DE MICRO-ORGANISMES
Il est donc important lors des comparaison d’offres de plusieurs fournisseurs de savoir comment chaque st´erilisateur propos´e est calcul´e. Les st´erilisateurs calcul´es par biodosim´etrie seront toujours plus chers a` performances ´egales, puisque le coˆ ut de cette mesure tr`es coˆ uteuse doit ˆetre amorti par la vente des appareils.
ozone.ch S` arl
75
http://www.ozone.ch
9. Chloration Principe Le principe de fonctionnement de la chloration est d’une extrˆ eme simplicit´ e : l’on injecte du chlore dans l’eau avec une pompe pour injection ou un injecteur Venturi, et l’on attend que le chlore agisse. La chloration est tr`es peu employ´ ee en purification de l’eau dans l’industrie, essentiellement en raison du probl`eme insoluble pos´e par le r´esidu de chlore et de d´eriv´es chlor´es pr´esents dans l’eau d´esinfect´ee.
Dosage du chlore On consid`ere qu’il y a d´esinfection de l’eau si la concentration fois le temps de contact respecte les valeurs suivantes : • 0.5 ppm × 30 minutes pour chlore libre • 0.2 ppm × 15 minutes pour le dioxyde de chlore Certaines industries peuvent avoir des exigences particuli`eres. Ainsi, l’industrie des boissons utilise un dosage r´esiduel de 10 ppm, avec un temps de contact de 2 heures au minimum. Combien de chlore faut-il donc injecter ? Le dosage sera : DT ot = DRes + DCons
(9.1)
Avec : • DT ot : dosage total • DRes : concentration r´esiduelle • DCons : consommation imm´ ediate de chlore par l’eau [ppm]
La consommation sera d´etermin´ee par l’oxydation des mati`eres organiques et des composants dissous que le chlore oxydera, c’est a` dire essentiellement le fer et le mangan`ese. La quantit´e de chlore n´ecessaire a` l’oxydation du fer et du mangan`ese est simplement le dosage stoechiom´etrique pour l’oxydation du fer et du mangan`ese pr´esents dans l’eau. Par contre, la consommation pour l’oxydation de la mati`ere organique ne peut qu’ˆetre estim´ee : elle sera de l’ordre de 3 a` 5 fois la DCO. On ne peut pas pr´evoir quelle portion de la mati`ere organique sera effectivement oxyd´ ee. Il est donc judicieux de dimensionner les installations en pr´evoyant une injection de chlore calcul´ee sur la base de 4 a` 5 fois la DCO, tout en sachant que la consommation effective pourrait ˆetre nettement plus faible.
76
Figure
ozone.ch S` arl
9.1.: Une pompe a` injection ou pompe doseuse. Photo : ozone.ch
77
http://www.ozone.ch
10. Ozonisation 10.1. Principe L’ozone O3 est une vari´et´e allotropique de l’oxyg`ene O2 .L’ozone est g´en´eralement per¸ cu comme une int´ eressante alternative au chlore. Par rapport au chlore, l’ozone pr´esente des d´esavantages mais aussi et surtout des avantages d´ecisifs pour l’utilisation dans l’industrie.
10.1.1. D´ esavantages de l’ozone Investissement plus ´ elev´e : l’expression usine `a gaz est certainement appropri´ee dans le cas de l’ozonisation, puisque ce gaz est produit sur place : il en r´ esulte que le coˆ ut d’exploitation est r´eduit par rapport `a des syst`emes o` u l’on doit acheter le d´esinfectant, par contre l’installation est in´evitablement plus complexe et plus coˆuteuse. Syst`eme plus complexe : L’ozone doit ˆetre produit, puis dissous dans l’eau, le gaz r´esiduel doit ˆetre extrait de l’eau, etc. Le syst`eme r´esultant est in´evitablement plus complexe a` installer et a` utiliser qu’une pompe a` injection de chlore, par exemple. Il n’y a pas de membranes r´ esistantes ` a l’ozone : cela pose un probl`eme a` certaines industries particuli`eres, comme l’agro-alimentaire, qui veulent en g´en´eral d´esinfecter l’ensemble de la chaˆıne de traitement : si un osmoseur est pr´evu, cela est possible avec le chlore en choisissant une membrane en ac´etate de cellulose par exemple, alors que c’est effectivement impossible avec l’ozone. Consommation en ´ energie plus ´ elev´ ee, puisque l’ozone est produit par d´echarge ´electrique
10.1.2. Avantages de l’ozone Ces d´esavantages sont compens´es par une s´erie d’avantages qui rendent l’ozone tr`es int´ eressant dans nombre d’applications industrielles :
Pas de d´ eriv´es dangereux, contrairement au chlore Ne reste pas dans l’eau, redevient de l’oxyg` ene : il est donc utilisable par exemple pour le traitement d’eau ultrapure, ce qui n’est pas le cas du chlore Pas de stockage de produits dangereux
78
10.1. PRINCIPE
Oxydation tr`es compl`ete Se d´ ecompose ou s’enl`eve facilement
10.1.3. Potentiels R´ edox L’ozone est le plus puissant des oxydants utilisables en traitement de l’eau. Le tableau 10.1 montre les potentiels R´edox de produits oxydants employ´es dans l’industrie : il montre que l’ozone est l’oxydant le plus fort. R´ eactif
Potentiel R´ edox
Ozone 2.07 Peroxyde d’hydrog`ene 1.17 Chlore (gaz) 1.36 Oxyg`ene 1.23 Table
10.1.: Potentiels R´edox de quelques produits oxydants utilis´es dans l’industrie
En pratique, cela signifie que des compos´es qui ne sont pas oxyd´es par le chlore le seront par l’ozone, et ceux qui sont oxyd´es par le chlore et l’ozone seront oxyd´ es beaucoup plus rapidement par l’ozone. Les micro-organismes sont d´etruits par oxydation, ce qui fait que l’ozone est un d´esinfectant beaucoup plus puissant que le chlore. Cela se traduit par des temps de contact plus courts pour obtenir le mˆeme r´esultat, comme cela est visible dans la figure 10.1.
Figure
ozone.ch S` arl
10.1.: L’ozone : un d´esinfectant plus puissant que le chlore [2]
79
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Milieu Demi-vie Gaz Env. 20 minutes Eau, pH = 6.0 Env. 20 minutes Eau, pH = 7.0 Env. 15 minutes Eau, pH = 8.0 Env. 5 minutes Instable Table 10.2.: Demi-vie de l’ozone
Figure
10.2.: Les principaux composants d’un syst`eme d’ozonisation de l’eau
Instabilit´e de l’ozone Demi-vie : p´eriode pendant laquelle la concentration d’ozone diminue de moiti´e. Syst` emes d’ozonisation En g´en´eral, l’attention se concentre sur le g´en´erateur, qui n’est qu’une partie du syst`eme et moins que le 50% des investissements. Les autres composants principaux d’un syst`eme d’ozonisation sont visibles sur la figure 10.1.3. Nous examinerons dans les pages qui suivent les diff´erents composants mentionn´es a` la figure 10.1.3.
Principe de la production d’ozone : La foudre a inspir´e les g´en´erateurs d’ozone. Ce principe est utilis´e dans les g´en´erateurs d’ozone dit `a d´echarge corona, qui repr´esentent la quasi-totalit´e des g´en´erateurs d’ozone utilis´es en purification de l’eau. Ce principe est illustr´e par la figure 10.3
ozone.ch S` arl
80
http://www.ozone.ch
10.1. PRINCIPE
Figure
10.3.: G´en´eration d’ozone par d´echarge Corona. Principe
Plus la fr´equence des d´echarges ´electriques entre les ´electrodes est ´elev´ees, plus la concentration d’ozone produit sera ´elev´ee. Les g´en´erateurs d’ozone a` fr´equence standard (50 Hz) peuvent atteindre des concentrations d’ozone de 1.5 a` 2.5 % avec de l’air et de 3 a` 4 % avec de l’oxyg`ene. Les g´en´erateurs d’ozone a` moyenne fr´equence (200 - 400 Hz) peuvent eux atteindre 4 a` 6 % d’ozone avec de l’air, 6 `a 12 % avec de l’oxyg` ene. Aujourd’hui, en traitement de l’eau, l’on emploie pratiquement plus que des g´en´erateurs `a fr´equences moyenne.
10.1.4. Mat´ eriaux r´ esistants ` a l’ozone Il faut ˆetres attentifs au fait que l’ozone est tr`es agressif et il y a donc peu de mat´eriaux r´esistants a` l’ozone :
Mat´ eriaux r´ esistants ` a l’ozone en phase gazeuse • • • •
Verre T´eflon (PTFE, PFA, PVDF) Aciers Inox Probl`eme potentiel : soudures
Mat´eriaux r´ esistants ` a l’ozone en phase liquide • Aciers inox • PVC
ozone.ch S` arl
81
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Figure
• • • •
10.4.: Exemple de syst`eme de g´en´eration d’ozone
B´eton Plexiglas T´eflon (PTFE, PFA, PVDF) Verre
Etanch´eit´ e (joints) Le choix de mat´eriaux pour les joints d’´etanch´eit´e et aussi restreint : • KalrezTM • KynarTM • T´eflon (PTFE, PFA, PVDF) • VitonTM
10.2. Dosage d’ozone Comme pour le chlore, il faut respecter une valeur minimum de concentration fois temps de contact pour d´esinfecter l’eau. Avec l’ozone , il est admis que cette valeur est de : 0.4 ppm au bout de 4 minutes . Cela signifie que l’on peut aussi utiliser une dose plus faible mais un temps de contact plus important (par exemple 0.2 ppm au bout de
ozone.ch S` arl
82
http://www.ozone.ch
` ´ 10.3. SYST EMES DE M ELANGE OZONE - EAU
2 minutes) ou inversement augmenter la concentration : il faut que le produit du temps de contact par la concentration reste constant.
10.3. Syst`emes de m´ elange ozone - eau 10.3.1. Colonnes de contact et injecteurs Venturi Alors que la technologie des g´en´erateurs d’ozone a fait des progr`es remarquables au cours de la derni`ere d´ecennie, l’on est parfois surpris de constater que les technologies employ´ees pour transf´erer l’ozone de la phase gazeuse a` la phase liquide ont peu ´evolu´e. Pourtant, comme nous l’avons rappel´e plus haut, ce syst`eme est important, au point que des auteurs d´efinissent le syst`eme de m´elange de l’ozone avec l’eau ”La partie la plus importante dans une installation d’ozonisation de l’eau”. La plupart des syst`emes actuellement install´es fonctionnent selon le principe de ”Diffusion de bulles” : l’on diffuse, par des ´el´ements poreux, des bulles de m´elange ozone plus air dans un flux d’eau. Pendant que les bulles montent vers la surface, le transfert de masse de l’ozone s’op`ere. Les syst`emes selon ce principe prennent la forme de colonnes de contact ou de contacteurs. La figure 10.5 montre le principe de fonctionnement d’une colonne de contact. L’eau coule a` contre-courant des bulles d’air et ozone qui s’´el`event dans le liquide. L’efficacit´e de transfert de masse (ETM= masse d’ozone dissous dans l’eau au cours du transfert divis´ee par la masse d’ozone introduite dans la colonne) augmente avec la hauteur de la colonne. Si l’on augmente la hauteur de la colonne, l’efficacit´e du transfert augmente, donc le d´ebit d’ozone a` produire devient plus faible. Il y a donc une hauteur utile ´economiquement optimale, qui est en g´en´eral d’environ 4,5 a` 4,7 m, et correspond a` une efficacit´e de transfert de masse de l’ordre de 67 a` 70%. Le diam`etre de la colonne est donn´e par la vitesse maximale d’´ecoulement d’eau, a` respecter si l’on veut ´eviter l’entraˆınement de bulles d’air en aval. Celle-ci est de l’ordre de 0,24 a` 0,25 m/s. L’ozone est dispers´e dans le bas de la colonne par des diffuseurs poreux. La figure 10.6 illustre le principe de fonctionnement d’un contacteur, typique pour les applications de traitement d’eau potable. Les plus volumineuses de ces unit´es permettent d’atteindre une efficacit´e de transfert de masse de l’ozone de l’ordre de 80% a` 90%. Elles ont le d´esavantage de repr´esenter des investissements importants. L’on trouve parfois dans la pratique des contacteurs sous-dimensionn´es par rapport au d´ebit d’eau `a traiter. Ce sous-dimensionnement r´esulte en un entraˆınement de bulles de gaz a` l’aval du contacteur, ce qui peut poser des probl`emes a` des clients industriels utilisant l’eau pour des proc´ed´es, et peut aussi susciter la m´efiance des consommateurs d’eau potable. La figure 10.7 illustre le principe de fonctionnement du m´elangeur a` tube Venturi. Le tube Venturi prend son nom de l’”Effet Venturi”, qui dit que, si la section d’´ecoulement diminue, alors la pression diminue aussi. Cela s’explique ais´ement par les ´equations de Bernoulli et l’´equation de continuit´e :
ozone.ch S` arl
83
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Figure
10.5.: principe de fonctionnement d’une colonne de contact
Equation de Bernoulli : si l’on n´eglige les pertes de charge entre les points 1 et 2 : v12 v22 + P 1 = + P 2 2 2
(10.1)
Avec : • : masse volumique de l’eau • vi : vitesse d’´ecoulement au point i • P i :pression au point i
Equation de continuit´ e: v1S 1 = v2 S 2
(10.2)
Avec : S i : section de la conduite au point i Des deux ´equations ci-dessus, on d´eduit que la pression au point le plus ´etroit du
ozone.ch S` arl
84
http://www.ozone.ch
` ´ 10.3. SYST EMES DE M ELANGE OZONE - EAU
Figure
10.6.: Contacteur municipal : principe
Figure
10.7.: Injecteur Venturi : principe
Venturi (point 2) sera inf´erieure a` la pression `a l’entr´ee du Venturi (point 1) de : v12 S 1 ∆P = P 2 − P 1 = ( ) × [( )2 − 1] 2 S 2
(10.3)
On peut donc ais´ ement dimensionner le Venturi (en particulier le rapport S ) pour S obtenir un pression au point 2 qui soit inf´erieure a` la pression atmosph´erique, donc avoir un effet d’aspiration sur une entr´ee gaz, que l’on place au point le plus ´etroit du Venturi. Ceci permet d’aspirer et m´elanger avec l’eau le m´elange d’ozone et d’air. 1 2
ozone.ch S` arl
85
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Le m´elangeur a` tube Venturi est bien sˆ u r de la solution la plus compacte pour le m´elange proprement dit. La totalit´e du gaz inject´e est entraˆın´ee a` l’aval du m´elangeur. Le transfert de l’ozone de la phase gazeuse a` la phase liquide se fait en aval du m´elangeur, dans un r´eservoir (r´eacteur) pr´evu a` cet effet. Un temps de contact de l’ordre de 12 a`15 secondes est suffisant pour obtenir une efficacit´e de transfert de masse de l’ozone de 90% ou plus. Les dimensions d’un r´eacteur sont donc toujours tr`es inf´erieures a` celles d’une colonne de contact ou d’un contacteur conventionnel. L’on peut se demander d`es lors pourquoi les m´elangeurs a` tube Venturi n’ont pas encore remplac´e les autres syst`emes dans toutes les applications. La principale raison qui pousse encore aujourd’hui des concepteurs d’installations a` ne pas choisir des injecteurs Venturi est le probl`eme des gas entraˆın´es. Alors que, au sortir d’une colonne de contact, l’eau contiendra bien de l’ozone dissous, mais pas de bulles de gaz, les bulles de gaz sont tout naturellement entraˆın´ees a` l’aval apr`es le r´eacteur, et un syst`eme de d´egazage doit ˆetre con¸cu et dimensionn´e s´epar´ement. Le r´esultat est souvent un syst`eme de d´egazage non-optimis´e, du point de vue coˆ ut et encombrement, ou alors des bulles de gaz dans l’eau qui atteignent les consommateurs. Les concepteurs d’installations sont depuis longtemps a` la recherche d’une solution ´economique pour l’´elimination des gaz entraˆın´es. L’on trouve aujourd’hui dans le commerce d’unit´es de d´egazage fonctionnant selon le principe du cyclon (Voir figure 10.8). L’id´ee de combiner ces d´egazeurs avec un ensemble m´elangeur Venturi plus r´eacteur est donc assez logique. Nous nommerons dans la suite de cet article une telle combinaison ”Unit´e de gazage – r´eaction – d´egazage” ou ”Combinaison Venturi – R´eacteur – Cyclon”.
Figure
10.8.: Syst`eme Venturi-R´eacteur-Cyclon : pilote de d´emonstration. Photo : GDT Corporation
Des essais pilotes sur des applications fr´ equentes de l’ozone en traitement de l’eau
ozone.ch S` arl
86
http://www.ozone.ch
` ´ 10.3. SYST EMES DE M ELANGE OZONE - EAU
potable ont ´et´es effectu´es dans plusieurs villes des USA. Les essais et leurs r´esultats sont d´ecrits plus loin dans l’article. La figure 10.9 montre le principe de fonctionnement des unit´es de gazage-r´eaction-d´egazage utilis´ees pour ces essais pilotes.
Figure
10.9.: Ensemble injecteur – r´eacteur – cyclon : principe
10.3.2. Transfert de masse Comme expliqu´e plus haut, l’efficacit´e de transfert de masse (ET M ) est le param`etre qui d´ecrit l’efficacit´e d’un syst`eme de m´elange eau-ozone. Cette efficacit´e est d´efinie comme suit : ET M =
M dissous M gaz
(10.4)
M dissous ´etant la masse d’ozone dissous dans l’eau et M gaz ´etant la masse d’ozone dasn le flux gazeux provenant du g´en´erateur d’ozone pendant une unit´e de temps donn´ee Le principe de fonctionnement d’un ensemble Venturi - R´eacteur - Cyclon pour l’ozonation de l’eau a ´et´e d´ecrit plus haut. La question est maintenant de savoir quels pa-
ozone.ch S` arl
87
http://www.ozone.ch
CHAPITRE 10. OZONISATION
ram`etres affectent ET M dans un tel syst`eme, et quelles doivent ˆetre les valeurs de ces param`etres pour obtenir des valeurs suffisantes d’ET M . Intuitivement, l’on comprend que le transfert de masse augmentera lorsque le temps o`u les deux phases sont en contact augmentera. Nous nommerons le temps de contact des deux phases T c, qui sera : Tc =
V eau + V melange V reacteur
(10.5)
Avec : • V eau : d´ebit d’eau • V gaz : d´ebit de gaz m´elang´e avec l’eau • V reacteur : volume du r´eacteur Le transfert de masse de l’ozone de la phase gazeuse a` la phase liquide r´esulte de la diff´erence entre la solubilit´e de l’ozone dans l’eau et la concentration d’ozone d´ej` a pr´esente dans l’eau [2]. Or, la solubilit´e d’un gaz dans l’eau augmente avec la pression. Ceci r´esulte directement de la Loi de Henry, qui dit que la solubilit´e d’un gaz dans un liquide est proportionnelle a` la pression partielle PA de ce gaz dans la phase gazeuse : Loi de Henry : P A = H × C A
(10.6)
Avec : • P A : Pression partielle du gaz A dans la phase gazeuse • H : Constante de Henry pour le gaz A • C A : Concentration du gaz A dans la phase liquide
Il est donc clair que, en augmentant la pression, on augmente la solubilit´e, donc par l`a mˆeme le transfert de masse. La figure 10.10 montre l’effet de la pression partielle et totale sur la solubilit´e de l’ozone (calcul´ee a` partir de la loi de Henry). La figure 10.3.2 montre le r´esultats de mesures de l’efficacit´e du transfert de masse obtenues avec les valeurs suivantes : Pression relative a` la sortie de l’injecteur : 1,7 `a 2,3 bar Concentration massique d’ozone en phase gazeuse : 10 Temps de contact : 12 s Ratio d´ebit volumique de la phase gazeuse divis´e par le d´ebit volumique de la phase liquide : VV gl = 0, 1 • Temp´erature de l’eau : 8 C • • • •
◦
La courbe montre que l’efficacit´e ETM varie entre 87% et 95%. Ces r´esultats ont ´et´es obtenus avec un Venturi fourni par la soci´et´e Mazzei Corporation, USA. Des Venturi d’autres fabricants devraient donner des r´esultats semblables, mais pas forc´ement ´egaux. Le Venturi est un ´el´ement peu coˆ uteux d’un syst`eme de m´elange eau-ozone, et pour cette raison, l’on investit g´en´eralement peu de temps dans le choix du Venturi. Or il se peut que le transfert de masse soit plus ou moins bon avec un Venturi d’une marque donn´ee. Nous ne pouvons donc que recommander aux concepteurs
ozone.ch S` arl
88
http://www.ozone.ch
` ´ 10.3. SYST EMES DE M ELANGE OZONE - EAU
Figure
Figure
10.10.: Solubilit´e de l’ozone dans l’eau
10.11.: Efficacit´e de la dissolution de l’ozone dans l’eau
d’installations de demander a` leur fournisseurs de m´elangeurs Venturi des donn´ees sur l’efficacit´e de transfert de masse a` attendre de leur produit, et les param`etres n´ecessaires pour atteindre cette efficacit´e. Il est possible d’obtenir des efficacit´es beaucoup plus ´elev´ees en augmentant le temps de r´etention ou en r´eduisant la concentration d’ozone. Par exemple, l’on a obtenu des
ozone.ch S` arl
89
http://www.ozone.ch
CHAPITRE CHAPITRE 10. 10. OZONISA OZONISATION
efficac ffic acit it´´es es ET M de plus de 99% lorsque, les autres param`etres etres restant inchang´es, es, on a utilis´ utilis´e des concentrations concentrations massiques d’ozone dans la phase gazeuse comprises entre 3% et 5 Le ratio VV gl a ´egalement egale ment un impact important. impo rtant. On a constat´ const at´e que ET M augmentait lorsque l’on diminue VV gl . Ceci s’explique par le fait que des rations VV gl faible fai bless r´esulte esu ltent nt en des bulles bulles de gaz plus plus petites, petites, donc la surface surface s´ eparant eparant les deux phases est plus plus importante, proportionnellement au volume de la phase gazeuse La figure 10.12 montre la diff´erence eren ce de dimensions dimens ions entre une unit´e de m´elange elang e traditradi tionnelle fonctionnant sur le principe de la diffusion de bulles (une colonne de contact) et une unit´ uni t´e de gazage gaz age - r´eactio eac tion n - d´egazag ega zage. e.
Figure
10.12.: Comparaison
Le dessin 10.12 montre, a` la mˆeme eme ´echelle, echelle, deux installatio insta llations ns hypoth´ hypot h´etiques etique s qui ont ´et´ et´es es dime di mens nsio ionn´ nn´ees ee s sur su r les le s hypot hyp oth` h`eses es es suivant su ivantes es : • • • •
D´ebit ebit d’eau : 30 m3 /h Hauteur utile de la colonne de contact : 4,7 m Hauteur totale de la colonne de contact = Hauteur utile plus 60 cm Diam`etre etre de la colonne colon ne : d´etermin´ eter min´e par la vitesse vitess e d’´ecoulement ecou lement de l’eau qui ne doit pas d´epasser epass er 0,24 m/s
La section de la colonne sera donc d’environ 1. 1.17 m2 ,son ,so n diam` dia m`etre etr e int´erieur eri eur sera ser a don doncc d’environ 122 cm, nous admettrons un diam`etre etre ext´erieur erieur d’environ 132 cm. • Ratio V g / V l pour po ur l’u l’unit´ nit´e de gazage gaz age - r´eactio eac tion n - d´egazag ega zagee : 10 • Temps de contact contac t dans le r´eacteur eacte ur de l’unit´e de gazage gazag e - r´eaction eacti on - d´egazage egaz age : 12 s,
le volume du r´eacteur eacteur est donc de 110 litres.
ozone.ch S` arl arl
90
http://www.ozone.ch
` ´ 10.3. 10.3. SYST SYST EMES DE M ELANGE OZONE - EAU
• Pour les dimensions du Venturi et du s´ eparateur eparateur a` cyclon cyc lon,, nou nouss nou nouss r´ef´ ef´erons ero ns aux
donn´ees ees de fournisseu four nisseurs rs de ces unit´es, es, et obtenons obten ons : • Pour le Venturi : diam` etres etres d’entr´ee ee et sortie de l’eau : 110 mm, longueur environ 66 cm (Source : catalogue Mazzei) • Pour le s´ eparateur eparateur cyclon : diam` diam`etre etre 44 cm, hauteur 109 cm (Source : catalogue catalogue GDT) La diff´erence erence de dimensions est assez spectaculaire. spectaculaire . La diff´erence erence en coˆ uts d’investissements est aussi importante. Nous ne ferons pas ici une comparaison des coˆ uts d’investissements, car il y a bien sˆ ur ur une diff´erence erence importante d’un fournisseur a` l’autre. Les coˆuts uts de mainten mai ntenanc ancee m´eriter eri teraie aient nt ´egalem ega lement ent une ´etude etu de d´etaill´ eta ill´ee. ee. Ils sont beauc be aucoup oup plus plu s faibles faible s pour p our un ensemble e nsemble Venturi - R´eacteur eact eur - Cyclon Cycl on que qu e pour p our un syst` sy st`eme eme a` diffusion de bulles. Le motif en est le caract`ere ere turbulent de l’´ecoulement ecoulement dans un ensemble Venturi - R´eacteur eact eur - Cyclon, Cyc lon, qui ´evite evite la format f ormation ion de tartr t artre, e, qu’ils q u’ils soient de nature natur e min´ mi n´erale erale ou organique. Ceci n’est n ’est pas pa s le cas des d es syst`emes emes a` diffusion de bulles, o` u l’´ecoule eco ulement ment lamilam inaire de l’eau, n´ecessaire ecess aire pou pourr ´eviter evite r l’entraˆınement ınement de bulles, bulles , est propice propi ce a` la formation de tartre.
10.3.3. 10.3.3. Conclusion Conclusion sur la dissolution dissolution de l’ozone A notre avis avis il n’y a aucune raison de ne pas utiliser utiliser un syst` syst`eme eme autre d’un injecteur Venturi pour dissoudre l’ozone dans l’eau. Il n’y a aucune raison technique ou ´economique economique de continuer a` utiliser des syst`emes emes avec une colonne de contact et des diffuseurs poreux.
10.3.4. Destruction de l’ozone r´ esiduel esiduel en phase liquide Sauf exceptions 1 il faut ´eliminer eliminer l’ozone dans la phase liquide liquide avant avant d’utiliser d’utiliser l’eau d´esinfect´ee.
Charbon actif : il se consomme peu a` peu et en fin de vie relˆache ache des particules. Anthracyte : utilis´e essentiellement dans les piscines et les parcs zoologiques UV : la m´ethode ethode la plus ch` ere, ere, mais aussi la plus sˆ ure. ure. C’est de loin la m´ethode ethode plus utilis´ees ees dans l’industrie l’indus trie R´ eaction eaction avec iodide ou bromide : la r´eaction eaction avec des iodides et bromide produit du iode ou brome libre, qui agit comme d´esinfectant esinfectant r´esiduel esiduel a` la place du chlore. Cette Cett e m´ethode etho de employ´ em ploy´ees ees pour p our les l es piscines pis cines,, mais est pratiq p ratiquement uement inutilisable inutilisa ble pour p our les applications applications industrielles industrielles Le filtre a` charb ch arbon on actif act if est tr`es es souvent sou vent employ´ emp loy´e pour p our l’´elimin eli minati ation on de l’ozon l’o zonee r´esidue esi duell en potabili po tabilisatio sation n de l’eau. l’eau . H´elas, elas, le charbo cha rbon n actif, actif , outre a` ˆetre et re tr`es es effica effi cace ce p our ou r l’´ l ’´elim el imina inati tion on de l’ozone, fournit fou rnit aussi a ussi un milieu poreux p oreux tr`es es favorable a` la croissance de bact´eries. eries. Ce ph´enom` enom`ene ene est trop souvent ignor´e en potabilis pot abilisation ation de l’eau, mais est bien d´emontr´ emontr´e 1. Comme par exemple le lavage lavage de Wafers Wafers a` l’eau ozon´ee ee dans l’industrie l’indu strie micro´electronique, electron ique, o` u l’on veut avoir de l’ozone r´esiduel esiduel dans l’eau pour son effet d´esinfectant esinfect ant
ozon oz one. e.ch ch S` arl ar l
91
http://www.ozone.ch
CHAPITRE CHAPITRE 10. 10. OZONISA OZONISATION
par plusieurs ´etudes. etudes. La figure 10.13 montre bien ce ph´enom` enom`ene. ene. du point de vue de la microbiologie : une installation coˆ uteuse d’ozonisation et charbon actif aboutit a` un uteuse maintient du nombre de bact´eries, eries, ce qui n’est bien sˆ sur ˆ pas l’objectif de ce traitement.
Figure
10.13.: Concentration de bact´eries eries en plusieurs points d’une chaˆ chaˆıne de potabilisation de l’eau [25] [25]
10.3.5. Destruction de l’ozone r´ esiduel esiduel en phase gazeuse Il existe 3 types typ es de destructeurs couramment employ´es es dans d ans l’industrie l’industr ie :
Filtres Filtre s ` a charbon actifs : Autrefois Autre fois souvent utilis´es, es, il pr´esentent esente nt le d´efaut efaut majeur ma jeur de chauffer et peuvent s’enflammer. Ils sont a` proscrire. eduite a` Destructeurs Thermiques : Au-dessus de 350 C, la demi-vie de l’ozone est r´eduite environ 5 ms. Destructeur Destructeurss thermocatalyt thermocatalytiques iques : Il existe des catalytes qui permettent p ermettent de d´etruire etruire l’ozone lorsque la temp´erature erature est port´ee ee au-dessus de environ 150 C. Les destructeurs fonctionnant fonctionnant selon ce principe sont obsol`etes etes depuis l’apparition de catalytes talyt es d´etruisant etru isant l’ozone l’ozon e a` temp´erature erature ambiante, mais ils sont pourtant encore fr´eque eq uemm mment ent utili ut ilis´ s´es es et bon bo n march´ ma rch´e a` a` l’achat Destructeurs catalytiques : Ce sont aujourd’hui aujourd’hui les plus ´economiques economiques lorsque l’on tient compte des frais fr ais de fonctionnement. Ils fonctionnent fonct ionnent avec des m´elanges elanges d’oxydes ◦
◦
ozone.ch S` arl arl
92
http://www.ozone.ch
` ´ 10.3. SYST EMES DE M ELANGE OZONE - EAU
m´etalliques (en g´en´eral MnO2 et CuO). Ils sont en g´en´eral chauff´es a` environ 60 C pour pr´evenir l’accumulation d’eau condens´ee dans le catalyte. ◦
Figure
10.14.: Exemple d’installation de destructeur catalytique d’ozone. Photo : ozone.ch
10.3.6. Ozone : dimensionnement Le dimensionnement d’un syst`eme d’ozonisation est assez simple. De mani`ere analogue au chlore, on a : DT ot = DRes + DCons
(10.7)
Avec : • DT ot : dosage total • DRes : concentration r´esiduelle • DCons : Consommation imm´ ediate d’ozone par l’eau [ppm]
Il faut imp´erativement tenir compte de l’efficacit´e de transfert de masse (ET M ) pour ensuite choisir le g´en´erateur d’ozone.
10.3.7. Ozone ` a partir de l’oxyg`ene de l’eau La production d’ozone directement a` partir de l’oxyg`ene de l’eau est une solution s´eduisante mais pas ´economique. Le motif en est l’enthalpie de r´eaction ´elev´ee pour passer de l’eau a` l’ozone :
ozone.ch S` arl
3H2 O −→ O3 : ∆H = 249 kcal/mol
(10.8)
3 O2 −→ O3 : ∆H = 34 kcal/mol 2
(10.9)
93
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Figure
10.15.: Syst`eme MembrelTM de production d’ozone a` partir de l’oxyg`ene de l’eau. Photo : Ozonia
Il en r´esulte une consommation d’´energie tr`es importante pour la production d’ozone : • 10 a ` 20 kWh/kg d’ozone a` partir de l’oxyg`ene ` 50 kWh/kg d’ozone a` partir de l’air 2 • 20 a • environ 60 kWh/kg a ` partir de l’eau !
On trouve tout de mˆeme des appareils produisant l’ozone a` partir de l’oxyg`ene de l’eau dans des installations de l’industrie pharmaceutique. Ceux qui les emploient justifient leur choix avec l’argument que c’est la seule m´ ethode pour s’assurer que des microorganismes ne sont pas introduits dans l’eau a` partir de l’air. L’argument ne survit pas `a une analyse : le gaz que l’on m´elange dans l’eau est pass´e a` travers un g´en´erateur d’ozone, c’est a` dire dans une zone occup´ee par des d´echarges ´electriques dans l’air : aucun micro-organisme ne survit dans cet environnement.
10.4. Mesure de l’ozone dans l’air L’ozone ´etant un gaz agressif, les appareils de mesure de l’ozone sont relativement coˆuteux. L’instrumentation d’une installation d’ozonisation peut repr´ esenter une part importante de l’investissement total, donc il est important de la choisir en ´etant inform´e des options disponibles. Souvent la mesure de l’ozone dans l’air est n´eglig´ee lors de la conception d’une installation, alors que les cons´equences d’une exposition a` des concentrations d’ozone ´elev´ees sont importantes (voir page 115). Il existe 4 m´ethodes couramment employ´ ees pour la mesure de l’ozone dans l’air. • Colorim´etrie • Sondes ´electrochimiques 2. Fourchette de valeur assez large, car couvre beaucoup de technologies
ozone.ch S` arl
94
http://www.ozone.ch
10.4. MESURE DE L’OZONE DANS L’AIR
• Capteurs a` semiconducteur • Analyseurs d’ozone
10.4.1. Colorim´etrie Pour la mesure de l’ozone dans l’air, ce type de mesure a pris la forme de tubes contenant un r´eactif. Il faut faire passer dans le tube un volume d’air sp´ecifi´e, apr`es quoi l’on peut lire sur une ´echelle la concentration d’ozone. En pratique, l’on trouve sur le march´e des tubes a` utiliser avec des pompes volum´etriques manuelles ou ´electriques. Si l’on utilise d´ej`a une telle pompe pour mesurer d’autres gaz, alors l’investissement pour pouvoir mesurer aussi l’ozone est faible. Par contre, chaque mesure est ch`ere. D’autres limitations de cette m´ethode sont :
Le manque de pr´ ecision : il est difficile de faire mieux que environ +/- 30% Le temps : une mesure prend quelques minutes. Si la concentration d’ozone a atteint un niveau dangereux, l’op´erateur peut d´ej` a avoir souffert des cons´equences de la concentration ´elev´ee avant d’avoir pu la mesurer La difficult´ e : les op´erateurs font souvent des erreurs de manipulation du tube, qui conduisent a` des mesures erron´ees
10.4.2. Sondes ´ electrochimiques Les sondes ´electrochimiques contiennent un ´electrolyte, s´epar´e de l’air par une membrane s´elective. Ces d´etecteurs dominaient le march´e de la d´etection de l’ozone dans l’air ambiant avant l’apparition des capteurs a` semiconducteurs. Ils sont aujourd’hui encore utilis´es, bien qu’ils pr´esentent des d´esavantages importants par rapports aux nouveaux capteurs a` semiconducteurs, qui sont aussi plus ´economiques :
Sensibilit´e ` a d’autres gaz : leur principe de fonctionnement fait qu’ils mesurent en fait la concentration de tous les gaz oxydants. En purification de l’eau, le gaz qui pose probl`eme est le chlore. Les d´etecteurs a` sonde ´electrochimique sont souvent plus sensibles a chlore que a` l’ozone 3. N´ ecessit´ e de remplacer le catalyte : Le catalyte peut ˆetre sous forme de solution aqueuse (donc liquide) ou de gel. Dans ce dernier cas, il faut en g´en´eral remplacer la sonde tous les 1 a` 2 ans. Une sonde ´electrochimique a un coˆ ut de l’ordre de 5 a` 10 fois sup´erieur a` celui d’un capteur a` semiconducteur. Lorsque le catalyte est une solution aqueuse, ce qui est g´en´eralement le cas, le coˆ ut est essentiellement caus´e par la main d’œuvre n´ecessaire pour remplacer le catalyte. 3. Autrement dit, la pr´ esence de par exemple 0.1 ppm de chlore gazeux dans l’air ambiant donnera une mesure d’ozone sup´erieure `a 0.1 ppm, mˆ eme si il n’y a pas du tout d’ozone dans l’air
ozone.ch S` arl
95
http://www.ozone.ch
CHAPITRE 10. OZONISATION
10.4.3. Capteurs ` a semiconducteurs Les capteurs a` semiconducteurs utilisent une pi`ece de mat´eriau semiconducteur dont les caract´eristiques ´electriques (en pratique : la r´esistance ´electrique) varient en fonction de la concentration d’ozone dans l’air. Initialement, au d´ebut des ann´ees 1990, ces d´etecteurs ´etaient aussi sensibles aux autres gaz oxydants. Les capteurs actuels sont munis de couches protectrices s´electives qui diminuent cette sensibilit´e, ce qui les rend aujourd’hui tr`es sup´erieur aux sondes ´electrochimiques.
Figure
Figure
ozone.ch S` arl
10.16.: D´etecteur d’ozone portable [23]
10.17.: D´etecteur d’ozone fixe dans armoire de protection [23]
96
http://www.ozone.ch
10.4. MESURE DE L’OZONE DANS L’AIR
10.4.4. Analyseurs d’ozone Les analyseurs d’ozone mesurent la concentration d’ozone en utilisant la loi de BeerLambert , qui permet de d´eterminer la concentration d’ozone en fonction de l’absorption de rayonnement ultraviolet sur une distance connue : C =
ln ( lloi ) X × L
Avec : • • • • •
C : Concentration d’ozone lo : Intensit´e du rayonnement UV avant l’absorption li : Intensit´e du rayonnement UV apr`es l’absorption X : Constante : coefficient d’absorption de l’ozone L : Longueur sur laquelle il y a absorption
L’utilisation de l’absorption de rayonnement ultraviolet pr´esente de nombreux avantages :
Pas de consommables : Seule la lampe UV doit ˆetre remplac´ee une fois toute les quelques ann´ees equation de Beer-Lambert, la seule inconnue est la concenPas d’´etalonnage : dans l’´ tration d’ozone. D`es sa mise en servie l’instrument mesure la concentration d’ozone correctement
Pas d’interf´erences des autres polluants Temps de r´ eponse inf´ erieur ` a une seconde : la r´eponse imm´ediate est un avantage important pour les applications concernant la s´ecurit´e ou le r´eglage d’installations Les analyseurs d’ozone ont un seul d´efaut qui peut en limiter l’utilisation : le prix . Un analyseur d’ozone a un prix d’achat environ 10 a` 12 fois sup´erieur a` celui d’un d´etecteur `a capteur a` semiconducteur. Les analyseurs haut de gamme peuvent ˆetres ´equip´es de syst`emes pour la mesure en plusieurs points, ce qui peut r´eduire la diff´erence de prix avec une mesure par capteur a` semiconducteur a` environ un facteur de 3 a` 4. Ce suppl´ement de prix par rapport aux autres syst`emes de mesure se comprend ais´ement : l’appareil est beaucoup plus pr´ecis, mais aussi beaucoup plus complexe a` construire.
10.4.5. Comparaison des m´ ethodes Au vu de cette comparaison, il semble ´evident que sauf exception, il faut pr´ef´erer l’utilisation d’analyseurs a` absorption d’U.V. si le budget le permet, et sinon utiliser des capteurs a` semiconducteurs. Les sondes ´electrochimiques et les tubes ne devraient plus ˆetres utilis´es.
ozone.ch S` arl
97
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Figure
10.18.: Analyseur d’ozone pour l’air ambiant. Photo : InUSA Corporation
M´ethode Colorim´etrie Electrochimie Capteurs Absorption U.V. Investissement Faible Moyen Mod´er´e Elev´e Coˆuts maintenance Elev´es Moyens Tr`es faibles Limit´es Pr´ecision Env. 30% Env. 30% Env. 15% 1% Interf´erences Elev´ees Elev´ees Faibles Inexistantes Table 10.3.: Les m´ ethodes de mesure de l’ozone dans l’air
10.4.6. Etude de cas : mesure de l’ozone dans l’air Un distributeur d’eau a continu´e a` utiliser des tubes pour la mesure colorim´etrique de l’ozone jusqu’en 2001. Ce distributeur avait plusieurs stations d’ozonisation de l’eau. Chacune ´etait ´equip´ee de d´etecteurs fixes. En cas d’alarme donn´e par un d´etecteur fixe, une ´equipe d’intervention p´en´etrait dans le bˆ atiment munie de ”tubes”. Etant donn´e le temps n´ecessaire pour r´ealiser une mesure avec les tubes, les employ´es du groupe d’intervention revˆetaient des respirateurs avant d’entrer dans le bˆ atiment, et ensuite mesuraient p´eriodiquement la concentration d’ozone En 2001, ce distributeur a ´equip´e ses ´equipes d’intervention de d´etecteurs portables du type illustr´e a` la figure 10.16. Le prix d’achat de ces d´etecteurs a ´et´e amorti en quelques semaines, car ils ont permis des ´economies a` deux niveau :
Gains de temps : L’´equipe d’intervention ne doit plus revˆetir les respirateurs avant d’entrer dans le bˆ atiment : les interventions ´etant plus rapide, les pertes de production dues a` des fuites d’ozone sont plus faibles et les coˆ uts de main d’œuvre
ozone.ch S` arl
98
http://www.ozone.ch
10.5. MESURE DE L’OZONE DANS L’EAU
sont r´eduits puisque l’´equipe peut travailler plus vite.
Economies de tubes : chaque mesure avec les tubes coˆ ute. Ces coˆ uts ont bien sˆ ur disparu lors de la mise en service des d´etecteurs a` capteur a` semiconducteurs En outre, bien sˆ ur, la satisfaction au travail du personnel des ´equipes d’intervention s’est am´elior´ee, puisque le port de respirateurs est tr`es d´eplaisant.
10.5. Mesure de l’ozone dans l’eau 10.5.1. M´ ethodes disponibles Pour la mesure de l’ozone dans l’eau, les m´ethodes a` disposition sont : • • • • •
Colorim´etrie Mesure du potentiel R´edox Sonde ´electrochimique Capteurs a` semiconducteurs Analyseurs d’ozone (absorption d’U.V.)
10.5.2. Colorim´etrie La m´ethodes est connue sous le nom de m´ethode indigo et a ´et´e d´evelopp´ee en Suisse (EAWAG). En pratique, l’on utilise des kits disponibles aupr` es des fournisseurs de mat´eriel de laboratoire. Le r´esultat est obtenu soit par un photom`etre, soit en comparant la couleur de la solution avec des couleurs de r´ef´erence sur un disque. La m´ethode est pr´ecise, et sert de r´ef´erence aux autres m´ethodes de mesure. Par contre, elle n’est pas simple `a mettre en œuvre pour des personnes qui n’ont pas une formation de laborantin ou de chimiste. L’utilisation de la m´ethode par comparaison visuelle des couleurs est aussi limit´ee par la qualit´e de la vue de l’op´erateur et donc inutilisable par environ 20% de la population. En outre les mesures sont assez coˆ uteuse, puisque l’on consomme du r´eactif.
10.5.3. Mesure du potentiel R´ edox L’ozone ´etant un oxydant puissant, le potentiel R´edox de l’eau varie en fonction de la concentration de celui-ci. Comme il existe sur le march´e un grand choix d’appareils de mesure du potentiel r´edox, il est envisageable de les utiliser pour la mesure de l’ozone. Le d´efaut principal de la m´ethodes est que des variations de la qualit´e de l’eau faussent la mesure : la m´ethode n’est donc applicable que si la qualit´e de l’eau reste constante. En outre, a` la mise en servie de l’installation il fut ´etalonner la mesure r´edox : en pratique, il faut proc´eder a` une s´erie de mesures avec une autre m´ethode (analyseur ou colorim´etrie, par exemple) pour tracer une courbe donnant la concentration d’ozone en fonction du potentiel r´edox pour l’eau que l’on traite.
ozone.ch S` arl
99
http://www.ozone.ch
CHAPITRE 10. OZONISATION
10.5.4. Sondes ´ electrochimiques Les sondes ´electrochimiques contiennent un ´electrolyte, s´epar´e de l’eau par une membrane s´elective. L’on mesure un courant ´electrique entre deux ´electrodes plac´ees de part et d’autre de la membrane. La mesure est beaucoup plus pr´ecise que avec une sonde R´edox, mais la dur´ee de vie de la membrane est limit´ee, et en g´en´eral la plage de mesure de ces sondes est limit´ee.
10.5.5. Capteurs ` a semiconducteurs Un premier d´etecteur d’ozone dissous utilisant un capteur a` semiconducteur pour la mesure de l’ozone dissous est arriv´e sur le march´e fin 2001. Cet appareil ne permet de mesurer que l’ozone contenu dans un ´echantillon et ne permet pas des mesures en ligne [29].
Figure
10.19.: D´etecteur d’ozone dissous a` capteur a` semiconducteur. Photo : ozone.ch
10.5.6. Analyseurs d’ozone Les analyseurs d’ozone utilisent l’absorption du rayonnement U.V. selon la loi de BeerLambert, expliqu´ee a` la page 97, pour mesurer la concentration d’ozone dans l’eau. Il existe deux type d’analyseurs pour la mesure de l’ozone dissous dans l’eau :
Analyseurs ` a mesure directe dans l’eau : Un tel analyseur est visible sur la figure 10.21. Dans ces appareils, un rayon U.V. traverse une longueur connue d’eau contenant de l’ozone. L’absorption du rayonnement U.V. donne la concentration d’ozone.
ozone.ch S` arl
100
http://www.ozone.ch
10.5. MESURE DE L’OZONE DANS L’EAU
Analyseurs utilisant la loi de Henry : ces analyseurs utilisent une colonne de d´egazage pour extraire l’ozone de l’eau. La concentration d’ozone est mesur´ee dans l’air, et on en d´ eduit la concentration d’ozone dans l’eau par la loi de Henry (voir paragraphe 10.3.2). Le principe de fonctionnement d’un tel analyseur est visible sur la figure 10.20. L’avantage des analyseurs utilisant la loi de Henry est qu’ils peuvent ˆetre utilis´e aussi si l’eau est sale, alors que les appareils a` mesure directe dans l’eau sont en principe r´eserv´es a` des applications sur de l’eau d´ej` a trait´ee.
Figure
10.20.: Principe de fonctionnement d’un analyseur d’ozone utilisant la loi de Henry . Dessin : InUSA Corporation
ozone.ch S` arl
101
http://www.ozone.ch
CHAPITRE 10. OZONISATION
Figure
10.21.: Analyseur d’ozone a` mesure directe dans l’eau. Le capteur, a` travers lequel l’eau passe, est `a droite sur la photo. Photo : InUSA Corporation
ozone.ch S` arl
102
http://www.ozone.ch
11. S´ election d’une m´ ethode de d´ esinfection 11.1. Crit` eres de s´ election de la m´ ethode de d´ esinfection On choisit un type de d´esinfection en tenant compte de plusieurs crit`eres :
11.1.1. D´ ebit de l’installation Pour de petites installations, l’investissement n´ecessaire pour la chloration ou l’ozonisation rend ces m´ethodes peu rentables. De plus, chloration et ozonisation n´ecessitent des connaissances techniques car on travaille avec des produits dangereux. On choisira donc, pour des petites installations de pr´ef´erence la st´erilisation U.V., qui est simple a` mettre en œuvre et ´economique. La microfiltration est ´economique pour les tr`es petits d´ebits. Ils conviennent pour un usage irr´egulier. La microfiltration peut ˆetre combin´ee a` la st´erilisation U.V..
11.1.2. Micro-organismes ` a ´eliminer L’ozone est un oxydant puissant qui poss`ede la plus large gamme d’application. Il poss`ede une forte activit´e virulicide. De plus, il est aussi efficace contre les protozoaires, contrairement aux compos´es chlor´es. Les U.V. sont tr`es efficaces mais certaines algues et moisissures n´ecessitent des doses d’exposition tr`es importantes. La microfiltration est inefficace contre les virus, car leur taille est plus petite que les pores du filtre.
11.1.3. Caract´ eristiques de l’eau en sortie La microfiltration et la st´erilisation U.V. n’ajoute aucun ´el´ement ext´erieur a` l’eau. Dans le cas des U.V., les produits issus de la lyse des bact´eries changent l´eg`erement la composition de l’eau. L’ozone ajout´e a` l’eau change temporairement ses caract´eristiques mais il se d´ecompose peu a` peu en oxyg`ene mol´eculaire. Le chlore laisse des d´eriv´es dans l’eau, dont certains pr´esentent un toxicit´e que l’on connaˆıt encore mal.
103
´ ´ ´ CHAPITRE 11. S ELECTION D’UNE M ETHODE DE DESINFECTION
11.1.4. Intervalle entre traitement et consommation Lorsque l’eau est trait´ee au niveau du consommateur, toutes les m´ethodes sont applicables. Si l’eau doit par contre attendre avant d’ˆetre consomm´ee (r´eseau de distribution ou r´eservoir), il faut que l’eau reste potable durant un certain temps. Dans ce cas, il faut ´eviter d’utiliser les U.V. car les bact´eries peuvent redevenir actives dans certaines conditions, mˆeme sans contamination ext´erieure. L’ozone et la microfiltration sont utilisables, pour autant qu’il n’y ait pas de contamination apr`es traitement. Le chlore poss`ede un effet r´emanent qui garantit une d´esinfection dans le r´eseau, jusqu’au point de consommation. C’est pourquoi le chlore est employ´ e dans pratiquement tous les r´eseaux de distribution d’eau potable.
11.2. Quelques exemples 11.2.1. Un syst` eme d’ozonisation compact et performant pour d´ebits ` a partir de 1 m3/h L’ozone est produit a` l’´etat gazeux a` partir d’air ou d’oxyg` ene. Il faut ensuite le dissoudre dans l’eau, ce qui se fait traditionnellement en injectant des bulles dans le fond d’un bassin. Ce syst`eme est peu efficace et n´ecessite beaucoup de place. Il existe actuellement des syst`emes beaucoup plus petites et performants. Un syst`eme complet d’ozonisation GDT tient par exemple sur une surface de 60 × 60 cm. Il est compos´e d’une pompe, d’un injecteur Venturi, d’un r´eacteur, et du s´eparateur cyclon. Il permet de dissoudre un grande quantit´e d’ozone dans l’eau en utilisant un minimum de place. La pression r´egnant dans le r´eacteur permet d’augmenter le transfert de l’ozone dans l’eau, par rapport a` un syst`eme traditionnel qui fonctionne a` pression atmosph´erique. Il est ainsi possible de produire de l’eau avec une grande concentration d’ozone, qui peut servir a` d´esinfecter des canalisations, a` nettoyer et d´esinfecter des denr´ees alimentaires.
11.2.2. Une unit´ e de potabilisation pour maison sans raccordement au r´ eseau d’eau potable Le syst`eme id´eal consiste a` associer un filtre combin´ e particulaire (5 µ m), qui ´elimine les particules de l’eau. On ajoute aussi un filtre a` charbon actif , qui permet d’´eliminer de l’eau les mati`eres organiques responsables du mauvais goˆ ut et des odeurs, Ensuite, on pr´evoit un st´erilisateur U.V., qui ´elimine virus, bact´eries et champignons. On obtient ainsi un petite unit´e compl`ete, avantageuse et simple d’utilisation qui garantit une eau de bonne qualit´e au consommateur. Il est ainsi possible de potabiliser une eau de citerne, dans les endroits qui ne sont pas reli´e au r´eseau d’eau potable. Les eaux de citerne contiennent fr´equemment des poussi`eres, des bact´eries f´ecales, des mati`eres organiques, issus du passage de l’eau de pluie sur le toit et les chenaux.
ozone.ch S` arl
104
http://www.ozone.ch
11.2. QUELQUES EXEMPLES
Figure
Figure
11.1.: Syst`eme compact d’ozonisation de l’eau [23]
11.2.: Syst`eme de potabilisation d’eau de pluie pour maison isol´ee [23]
ozone.ch S` arl
105
http://www.ozone.ch
´ ´ ´ CHAPITRE 11. S ELECTION D’UNE M ETHODE DE DESINFECTION
11.2.3. Un point d’eau potable dans un endroit qui n’est pas reli´ e au r´eseau ´ electrique En associant des filtres successifs, on obtient un petit syst`eme de potabilisation qui n´ecessite peu d’investissement. On pr´evoit un filtre particulaire (5 µ m), un filtre a` charbon actif, et finalement un microfiltre en c´eramique (0.2 µ m) pour ´eliminer les bact´eries de l’eau.
11.2.4. Installation de chloration de l’eau Le chlore est principalement utilis´e pour traiter l’eau potable municipale. Ces qualit´es de r´emanence en font une tr`es bonne solution lorsque l’eau est achemin´e dans un syst`eme de distribution, o` u il existe des sources de contamination. En pr´evoyant une dose de chlore assez grande, on garantit une eau de qualit´e jusque chez le consommateur. En pr´evoyant une d´esinfection initiale par l’ozone ou les U.V, puis en ajoutant une petite dose de chlore pour prot´eger l’eau dans le r´eseau de distribution, on arrive a` diminuer les d´esavantages li´es au chlore (mauvais goˆ ut, pr´esence de d´eriv´es chlor´es).
11.2.5. Eau ultrapure, micro-´ electronique L’eau ultrapure est bact´eriologiquement instable. Il faut donc imp´erativement la st´eriliser. De plus, les bact´eries ont une taille suffisamment importante pour causer des taches sur les Wafers. Pour l’eau ultrapure, l’on place donc g´en´eralement sur la boucle de distribution un st´erilisateur U.V. suivi d’un microfiltre a` 0.2 µ m. En outre, l’on proc`ede `a des st´erilisations p´eriodiques avec de l’eau ozon´ee. Souvent, l’on ajoute en plus une st´erilisation au point d’utilisation par ultrafiltration ou microfiltration.
ozone.ch S` arl
106
http://www.ozone.ch
12. Les biofilms 12.1. Importance des biofilms Plus de 99% des bact´eries pr´esentes dans un syst`emes de distribution d’eau sont dans des biofilms et ne flottent pas librement dans l’eau. Quand on fait un analyse bact´eriologique de l’eau d’eau, on d´etecte que du moins de 1% des bact´eries pr´esentes dans la conduite ou le syst`eme. Ces bact´eries peuvent provenir de relargages du biofilm.
12.2. Qu’est-ce qu’un biofilm ? On imagine en g´en´eral les biofilms comme ´etant un simple entassement de bact´eries sur une surface. En fait, il s’agit de structures complexes dans lesquelles les micro-organismes sont int´egr´es, et qui les prot`egent de la p´en´etration de d´esinfectants [21].
Figure
12.1.: Un biofilm. Le biofilm est form´e de micro-organismes, mais aussi par un r´eseau de polym`eres extra-cellulaires [21]
12.3. Les facteurs influen¸cant la formation et le d´ eveloppement des biofilm 12.3.1. Temps Les biofilms peuvent se former tr`es rapidement. Des exp´eriences ont montr´e que des bact´eries communes dans l’eau comme les pseudomonas aeruginosa peuvent adh´erer a`
107
CHAPITRE 12. LES BIOFILMS
une surface d’acier inoxydable ´electropolie au bout de 30 secondes [21]. Toutefois, les temps typiques de formation de biofilms sont plutˆo t de l’ordre de quelques heures a` quelques semaines. On en d´eduit qu’il est n´ecessaire de mettre en place les barri`eres antibact´eriennes d`es la mise en service d’une installation. Il est illusoire de penser que l’on peut mettre en eau un syst`eme en esp´erant que au cours de quelques heures il n’y aura pas assez de passage de bact´ eries pour qu’un biofilm se forme.
12.3.2. Vitesse d’´ ecoulement Mˆeme si l’´ecoulement est turbulent, il y a toujours une sous-couche laminaire dans la couche limite de l’´ecoulement, sous-couche dont l’´epaisseur varie de quelques dizaines a` quelques centaines de microns. Un rin¸cage n’´elimine pas le biofilm dans cette ´epaisseur. L’´epaisseur de la sous-couche limite est en principe l’´epaisseur maximum d’un biofilm classique (form´e essentiellement de bact´eries). Les couches d’algues peuvent par contre atteindre des ´epaisseurs de plusieurs dizaines de cm. Il n’est pas inhabituel, en Suisse, o` u une part importante de l’eau provient des lacs, de trouver des conduites de distribution d’eau d´emin´eralis´ee ou ultrapure compl`etement obstru´ees par les algues. Si l’´ecoulement dans une conduite est laminaire, rien n’empˆeche aussi un biofilm classique d’occuper a` terme l’ensemble de la section d’une conduite. Il faut donc imp´erativement dimensionner les r´eseaux de distribution d’eau ultrapure sur la base d’un ´ecoulement turbulent. En premi`ere approximation, on planifie le syst`eme en pr´evoyant une vitesse d’´ecoulement de a` 1.7 a` 2.3 m/s.
12.3.3. Espaces morts Souvent l’on trouve des boucles de distribution avec une vitesse d’´ecoulement ´elev´ees, mais des espaces morts : des T´es, des brusques changements de diam`etre, etc. Il est ´evident que ce genre d’espaces sans ´ecoulement turbulent seront le lieux o` u se d´evelopperont des biofilms.
12.3.4. Barri` eres antibact´ eriennes Il est clair que le biofilm ne peut commencer a` se d´evelopper que si des bact´eries arrivent dans le syst`eme. La pr´esence d’une barri`ere antibact´erienne comme un osmoseur, ou un st´erilisateur U.V. peut fortement retarder l’apparition, puis le d´eveloppement du biofilm. Les r´eseaux d’eau d´emin´eralis´ee aliment´es par de l’eau d´emin´eralis´ee uniquement par ´echange d’ions ne sont pas munis de barri`ere contre les bact´eries : le d´eveloppement de biofilms est donc favoris´e.
12.4. Contrˆ ole des biofilms La figure 12.2 montre que la vitesse de p´en´etration du chlore dans un biofilm est lente : dans l’exp´erience a` laquelle cette image se r´ef`ere, le chlore avait p´en´etr´e seulement de
ozone.ch S` arl
108
http://www.ozone.ch
´ 12.5. DESINFECTION D’INSTALLATIONS LORS DE L’INSTALLATION D’UN ´ ST ERILISATEUR U.V
100 µ m a` l’int´erieur du biofilm. ces exp´eriences confirment ce qui avait ´et´e observ´e dans la pratique : la destruction de biofilms avec du chlore (en pratique de l’eau de javel) prend au moins 8 heures, et g´en´eralement plus. C’est ce qui se pratique lors de l’installation de st´erilisateurs U.V. comme barri`eres contre les L´egionelles. Il semble aussi, d’apr`es l’´etat actuel des connaissances, le temps de contact a plus d’importance pour la destruction de biofilms que la concentration, et les temps de contact doivent ˆetre tr`es longs.
Figure
12.2.: Contrˆ o le de biofilms [21]
Le processus de destruction de biofilm devrait ˆetre beaucoup plus rapide avec l’ozone : cela semble logique, puisque les temps de contact pour la d´esinfection de l’eau sont aussi beaucoup plus courts avec l’ozone. Cette observation est confirm´ee par la pratique industrielle, mais doit ˆetre confirm´ee par la recherche.
12.5. D´ esinfection d’installations lors de l’installation d’un st´erilisateur U.V La proc´edure de d´esinfection ci-dessous est tir´e de [35]. Elle n’est pas d´emontr´ee scientifiquement , c’est a` dire qu’elle ne s’appuie pas sur une recherche syst´ematique avec analyses des biofilms, mais est bas´ee sur des exp´eriences pratiques et sur la litt´erature publi´ee concernant les biofilms. On ne peut pas surestimer l’importance du temps de contact, autrement du temps de r´esidence de l’eau chlor´ee dans les conduites.
ozone.ch S` arl
109
http://www.ozone.ch
CHAPITRE 12. LES BIOFILMS
Proc´edure ` a suivre Si une installation est d´esinfect´ee pour la premi`ere fois, et a 10 ans ou plus, l’on conseille de r´ep´eter l’op´eration apr`es environ 48 heures. Il est possible, dans des cas rares et surtout dans les installations anciennes, que apr`es la d´esinfection une odeur d´esagr´eable persiste dans l’eau pendant quelques jours `a environ 2 semaines. Cette odeur n’est pas dangereuse pour la sant´e. 1. Eteindre le st´erilisateur U.V. 2. Fermer la vanne du corps de l’un des pr´efiltres (ou du pr´efiltre). 3. Ouvrir le (ou un) pr´efiltre. Enlever la cartouche. Remplir la coupe d’eau de javel puis la remonter et ouvrir la vanne du pr´efiltre 1 4. Faire couler de l’eau a` chaque robinet et douche jusqu’` a ce que l’odeur de chlore soit perceptible a` chaque robinet. R´ep´eter les points 2 et 3 si n´ecessaire, jusqu’` a environ 4-5 fois. 5. Laisser reposer 10 heures (minimum 8 heures) sans consommer d’eau2 6. Remonter la cartouche filtrante (fermer la vanne du corps de filtre, ouvrir le corps de filtre, ins´erer la cartouche filtrante, refermer le corps de filtre, ouvrir la vanne du corps de filtre 7. Remettre en marche le st´erilisateur U.V. 8. Rincer l’installation (ouvrir les robinets) jusqu’` a ce que l’odeur de chlore disparaisse L’eau est maintenant potable.
12.5.1. Un cas particulier : les boucles de distribution d’eau ultrapure Les boucles de distributions habituellement employ´ees dans l’industrie pharmaceutique et en micro´electronique constituent un cas particulier car d’une part la qualit´e d’eau requise interdit l’utilisation du chlore et d’autre part les exigence en mati`ere de microbiologie sont particuli`erement ´elev´ees. D’apr`es les paragraphes pr´ec´edents, il apparaˆıt qu’il est pratiquement impossible de se d´ebarrasser compl`etement des biofilms dans les conduites. On peut tout de mˆeme r´eduire fortement leur relargage des bact´eries, donc r´eduire leur ´etendue, leur volume, leur ´epaisseur, avec des mesures pratiques. Il n’y a pas de normes particuli`eres pour les boucles de distribution d’eau ultrapure. Les directives suivantes sont utilisables en pratique [34] : 1. Cette proc´edure est cit´ee telle quelle de [35]. Elle aboutit a` un surdosage de chlore, ce qui n’est g´en´eralement pas un probl`eme pour les petites installations. Pour une grande installation (plusieurs m3 de conduites), il est bien sˆ ur pr´ef´erable d’utiliser une pompe `a injection pour doser le chlore 2. Certains recommandent plutˆ ot 24 a` 48 heures
ozone.ch S` arl
110
http://www.ozone.ch
12.6. BIOFILMS ET CORROSION
Fr´equence : Il est habituel de d´ esinfecter les boucles de distribution d’eau ultrapure au moins une fois par an avec de l’eau oxyg´ en´ee ou de l’ozone, et plus souvent si des bact´eries sont d´etect´ees dans l’eau. Le chlore n’est pratiquement plus employ´ e, essentiellement en raison de son pouvoir d´esinfectant trop faible face aux biofilms, et de ses produits d´eriv´es. Quel que soit le produit utilis´e, il faut purger la boucle apr`es d´esinfection.
Concentrations et dur´ ees : Avec l’eau oxyg´en´ee, il est usuel d’utiliser des concentrations tr`es ´elev´ees, de l’ordre de 5%, et de faire circuler l’eau contenant le peroxyde d’hydrog`ene pendant 12 heures. Il faut donc diluer d’un facteur 6 l’eau oxyg´ en´ee commerciale L’ozone ´etant un d´esinfectant beaucoup plus puissant, il est usuel d’utiliser une concentration entre 0.4 et 2.0 ppm, et de faire circuler l’eau ozon´ee pendant 2 a` 6 heures Il faut imp´erativement v´erifier que les mat´eriaux des conduites de votre boucle sont r´esistants au d´esinfectant que vous voulez employer. Un probl`eme fr´equent est celui pos´e par l’ABS : les fournisseurs de syst`emes de tuyauteries et les installateurs sanitaires tendent a` promouvoir l’ABS comme alternative au PVC. L’ABS pr´esente l’avantage d’une plus grande r´esistance aux chocs, et l’avantage th´eorique 3 de ne pas d´egager du chlore en cas d’incendie, mais il n’est pas r´esistant a` l’ozone. Choisir l’ABS, c’est donc renoncer au plus puissant des moyens de contrˆ ole des biofilms.
Mat´eriel ` a utiliser Eau oxyg´en´ee : en g´en´eral on peut employer le r´eservoir-tampon de la boucle pour pr´eparer la solution. Si ce n’est pas le cas, ou si l’on ne veut d´esinfecter que une partie de la boucle, utiliser une unit´e de d´esincrustation Ozone : Utilisez une unit´e de production d’eau ozon´ee mobile ou fixe Pr´ ecautions ` a prendre : Pr´evoir des by-pass pour tout ´el´ement de la boucle ne supportant pas le d´esinfectant employ´e. Les r´esines ´echangeuses d’ions doivent toujours ˆetre by-pass´ees.
12.6. Biofilms et corrosion La figure 12.3 montre comment le biofilm, grˆ a ce a` la diversit´e des bact´eries qu’il contient, peut constituer une v´ eritable pile ´electrochimique et causer la corrosion de conduites. L’augmentation de la rugosit´e des conduites par la corrosion aboutit a` des 3. Avantage purement th´eorique, parce que en pratique l’on trouve des mat´eriaux en plastiques contenant du chlore dans les constructions dans des ´el´ements tels que isolations, cadres de fenˆetres, etc. qui repr´esentent des quantit´es de plastique g´en´eralement beaucoup plus importantes que l’ensemble des conduites d’eau
ozone.ch S` arl
111
http://www.ozone.ch
CHAPITRE 12. LES BIOFILMS
couches limites laminaires plus ´epaisses, ce qui favorise encore la croissance des biofilms. L’utilisation de conduites en mat´ eriaux autres que plastiques ou acier inoxydable est donc a` proscrire.
Figure
ozone.ch S` arl
12.3.: La corrosion favoris´ee par les biofilms. Principe [21]
112
http://www.ozone.ch
13. L’eau ozon´ ee 13.1. Pourquoi l’eau ozon´ ee ? L’eau ozon´ee est un d´esinfectant trop peu connu, mais qui gagne en popularit´e dans l’industrie depuis quelques ann´ees. Les motifs de ces gains en popularit´e sont essentiellement :
La possibilit´e technique donn´ee par les g´ en´erateurs ` a haute concentration La recherche de substituts du chlore , le chlore restant un produit dangereux a` stocker et a` manipuler
Avantages : Les avantages de l’ozone comme substitut du chlore ont ´et´es discut´es au chapitre10. • D´ esinfectant puissant • Ne laisse pas de r´esidus • Pas de stockage
Lorsque l’on parle d’eau ozon´ee, l’on parle de concentrations d’ozone beaucoup plus ´elev´ees que lors d’applications de d´esinfection de l’eau : alors que pour la d´esinfection de l’eau on emploie des dosages pouvant atteindre dosage 2 a` 3 g/m3 , on parle d’eau ozon´ee pour des concentrations d’ozone de l’ordre de 10 a` 15 g/m3, voire 20 g/m3. L’eau ozon´ee est un d´esinfectant puissant, produit sur place a` coˆ ut r´eduit, et, ´etant donn´e que l’ozone est instable, elle ne pose pas de probl`emes pour son ´elimination apr`es utilisation. Elle est donc la solution pour toutes les situations o` u l’on veut d´esinfecter sans laisser de traces.
13.2. Applications Ozonisation de l’eau Flux partiel : on utilise une partie de l’eau pour produire un d´esinfectant qu’on m´elange avec le reste de l’eau Lavage de pi`eces m´ etalliques Lavage de Wafers : en micro´electronique : important car une bact´erie est une particule ole des biofilms (voir page 107) Lavage de r´ eservoirs, conduites : contrˆ
113
´ CHAPITRE 13. L’EAU OZON EE
Lavage de bouteilles, fˆ uts, murs et sols de caves : ces applications gagnent de l’importance dans l’industrie du vin, qui a pouratnt une r´eputation de conservatisme. Ceux qui visitent les caveaux a` Napa, en Californie, sont g´en´eralement surpris ne ne pas voir de champignons sur les murs des caves, caves o` u l’on ne sent pas du tout l’odeur caract´etistiques de ces pi`eces humides en sous-sol : le motif en est que `a Napa l’utilisation de l’eau ozon´ee pour le nettoyage des caves s’est g´en´eralis´e d´ej`a a` la fin des ann´ eess 1990. Les r´esultats sont des caves plus propres, et des ´economies importantes, en particulier au niveau des fˆ uts : avant l’introduction de l’eau ozon´ee, l’on jetait 1/4 a` 1/3 des fˆ uts chaque ann´eee : on peut d´esormais en sauver le 100% grˆ ace au lavage avec l’eau ozon´ee Lavage de l´ egumes, fruits, poissons Production de glace ozon´ee employ´ee pour la conservation d’aliments
Figure
13.1.: Syst`eme portable de production d’eau ozon´ee [23]
13.3. S´ ecurit´e lors de l’emploi d’eau ozon´ee 13.3.1. Probl`emes sp´ecifiques ` a l’utilisation d’eau ozon´ee Par rapport a` une installation classique d’ozonisation de l’eau, une installation de production d’eau ozone pose des probl`emes sp´ecifiques : evitablement des personnes a` proximit´e de l’eau ozon´ee • Il y a in´ • On utilise des concentrations d’ozone ´elev´ees Les effets de l’ozone sur l’organisme humain sont d´ecrits dans la section suivante.
ozone.ch S` arl
114
http://www.ozone.ch
´ ´ LORS DE L’EMPLOI D’EAU OZON EE ´ 13.3. S ECURIT E
Figure
13.2.: Syst`eme pour refroidissement a` l’eau (Hydrocooling ) de viande de poulet, avec eau ozon´ee. Image : GDT Corporation [23]
13.3.2. Effets de l’ozone L’ozone est moins dangereux que le chlore, puisque on ne le stocke pas. Il reste n´eanmoins un gaz irritant et toxique, donc il faut ˆetre conscient des risques d’une exposition a` l’ozone. Ceux-ci sont d´ecrits dans le tableau 13.3.2.
13.3.3. Les mesures de pr´ ecaution Pour utiliser l’eau ozon´ee sans danger, il faut prendre des pr´ecautions :
Mat´eriaux r´esistants ` a l’ozone : cet aspect semble ´evident, mais est souvent n´eglig´e. Il est critique surtout pour la phase gazeuse 1 D´ etecteur d’ozone contrˆ olant l’air en continu : de tels d´etecteurs sont aujourd’hui 2 bon march´e 1. Voir page 81 pour une liste de mat´eriaux r´esistants a` l’ozone 2. L’on recontre souvent des installations industrielles sans d´etecteurs d’ozone surveillant l’air am-
ozone.ch S` arl
115
http://www.ozone.ch
´ CHAPITRE 13. L’EAU OZON EE Concentration
Effet
0.01 a` 0.04 ppm Odeur en-dessous de 0.05 ppm Aucun danger (consensus) 0.1 ppm L´eg`eres irritations plus de 0.1 ppm, exposition prolong´ee Maux de tˆete, fonction pulmonaire affect´ee si activit´e physique (r´eversible) Fonction pulmonaire affect´ee < 0.6 ppm, 2 heures 1.5 ppm, 2 heures Toux s`eche, douleurs dans la cage thoracique 9 ppm, intermittent Facult´e de discernement affect´ee d`es 10 ppm Pneumonie grave, danger de mort, perte de conscience d`es env. 15 min. Table
13.1.: Effets de l’ozone sur la sant´ e humaine
Transfert de masse efficace : avec un syst`eme Venturi-R´eacteur-Cyclon, l’on dissous facilement plus de 95% d’ozone. Il ne faut donc pas accepter des syst`emes avec des efficacit´es de transfert de masse plus faible. S´ eparation des phases avant utilisation : si l’on ne fait pas cette s´eparation, l’on aura des bulles de gaz au niveau du bac ou de l’appareil de lavage. Cela posera des probl`emes de s´ecurit´e pour le personnel. Bulles d’ozone dans l’eau et humains sont tout simplement incompatibles. Dans les contacteurs municipaux, personne n’est `a cˆot´e du bassin, l’on peut donc avoir des bulles d’ozone dans l’eau. Lorsque l’on produit de l’eau ozon´ee pour le lavage, il est essentiel de pr´evoir un cyclon pour l’extraction des bulles de gaz Contrˆ ole de la phase gazeuse : le gaz contenant l’ozone r´esiduel doit ˆetre conduit a` travers un destructeur catalytique d’ozone r´esiduel Destruction de l’ozone r´ esiduel en phase liquide : imp´eratif, sinon on d´etruit les conduites d’eau us´ee, qui en g´en´eral ne sont pas r´esistantes a` l’ozone. Cette destruction peut se faire avec un simple filtre au charbon actif. Sortie azote du concentrateur d’oxyg` ene dans la mˆ eme pi`ece : une erreur aussi classique que dangereuse consiste a` placer le concentrateur d’oxyg`ene dans une pi`ece s´epar´ee de celle o` u a lieu le lavage. Avec le temps, la concentration d’oxyg` ene dans l’air augmente dans le local de lavage. Cela augmente le risque d’incendie, et peut causer des symptˆ omes semblables a` l’ivresse chez les op´erateurs A´eration appropri´ ee de la pi` ece : c’est a` dire avec une sortie en bas, puisque l’ozone est plus lourd que l’air. biant : le fait qu’une entreprise ou une collectivit´e pr´ef`ere mettre en danger la vie de ces collaborateurs qu’investir une somme de l’ordre du millier de francs suisses pour les prot´eger est d’autant plus difficile `a comprendre que le prix de tels d´etecteurs ne repr´ esente qu’un pourcentage faible de l’investissement total.
ozone.ch S` arl
116
http://www.ozone.ch
14. La distillation 14.1. Applications La distillation de l’eau est une tr`es vieille m´ethode de traitement de l’eau, qui remonte `a l’antiquit´ e. De nos jours, elle est de moins en moins utilis´ee, essentiellement pour pour des raisons de coˆ ut. La consommation ´electrique est ´elev´ee, ce qui signifie que les coˆ uts de fonctionnement sont tr`es ´elev´es. Et l’investissement est important pour les installations de taille significative. Aujourd’hui, cette m´ethode n’est plus utilis´ee que dans l’industrie pharmaceutique et les laboratoires. La distillation reste la m´ethode pour la production des injectables : les normes europ´eennes exigent que lors de la production d’eau pour injectables la derni`ere ´etape de traitement soit la distillation. Hors industrie pharmaceutique, l’on trouve des distillateurs dans les laboratoires : un petit distillateur aliment´e en eau potable repr´esente un investissement limit´e — moins de 5’000.00 Francs suisses en g´en´eral . La maintenance de ces appareil est simple, ce qui fait qu’ils sont int´ eressants si l’on consomme peu d’eau.
14.2. Principe de fonctionnement Le principe de fonctionnement de la distillation est tr`es simple : l’on fait ´evaporer l’eau, puis on la condense. L’eau est en mˆeme temps d´emin´eralis´ee et d´esinfect´ee. G´en´eralement les distillateurs sont des appareils assez fragiles, employ´es pratiquement uniquement en laboratoire et dans l’industrie pharmaceutique.
14.3. Qualit´ e de l’eau distill´ee Souvent l’on imagine que l’eau distill´ee repr´esente le nec plus ultra de l’eau purifi´ee. Cela n’est pas le cas. Une s´erie de facteurs influencent la qualit´e de l’eau distill´ee :
Chicanes, ´ el´ements de coalescence : ces ´el´ements permettent de r´eduire la quantit´e de gouttelettes entraˆın´ees avec la vapeur. Les distillateurs ne donnent pas tous la mˆeme qualit´e d’eau. La vitesse verticale de la vapeur est d´eterminante pour la qualit´e de l’eau produite : une vitesse basse r´eduit la quantit´e de particules et autres impuret´es entraˆın´ees par la vapeur, ce qui permet d’obtenir de l’eau de meilleure qualit´e.
117
CHAPITRE 14. LA DISTILLATION
Figure
14.1.: Sch´ ema de principe d’un distillateur [9]
Mat´ eriaux de construction : les verre est employ´e pour les distillateur en laboratoire laboratoire. La production d’eau pour injectables pr´ esuppose l’emploi d’acier inoxydable. La distillation est populaire dans l’industrie pharmaceutique car elle reste le meilleur moyen d’´eliminer les pyrog`enes.
Qualit´es d’eau atteignables Eau d’alimentation Vitesse R´esistivit´e distillat MΩ/cm Potable Basse 0.5 `a 1.0 Potable Elev´ee A ´eviter D´emin´eralis´ee Basse 4 a` 18.3 D´emin´eralis´ee Elev´ee 2 a` 18.3
ozone.ch S` arl
118
http://www.ozone.ch
´ ´ 14.4. SOLUTIONS POUR REDUIRE LA CONSOMMATION D’ ENERGIE
Les distillateurs `a basse vitesse permettent d’obtenir l’eau distill´ee sans d´emin´eraliser avant. Les qualit´es d’eau produites restent assez loin de l’eau a` 18 MΩ/cm (max th´eorique 18.3 MΩ/cm) requise par l’industrie micro´electronique.
14.4. Solutions pour r´ eduire la consommation d’´ energie Il y a deux technologies pour r´eduire la consommation d’´energie des distillateurs : • La thermocompression • L’utilisation d’effets multiples
14.4.1. Effets multiples L’´energe consomm´ee par un distillateur diminue lorsque le nombre d’effets augmente selon l’´equation suivante : Energie =
K N
(14.1)
Dans laquelle : • L’Energie : souvent donn´ ee en kg de vapeur par kg de condensat • K est une constante qui d´epend du distillateur, dont la valeur est de l’ordre de 1.1 `a 1.2. • N est nombre d’effets du distillateur
Economie d’´energie : Nombre d’effets 1 2 3 4
Energie 100% 55% 39% 32%
14.4.2. Thermocompression Cette m´ethode n’est ´economique que pour de tr`es grands d´ebits. Les syst`emes de distillation d’eau de mer utilisent g´en´eralement la thermocompression. Nous ne l’´etudierons donc pas en d´etail ici.
14.5. Limites de la distillation L’eau pure ´etant tr`es corrosive, le choix de mat´eriaux de construction est limit´e. En pratique, l’on trouve des distillateurs en acier inoxydable et en titane. Dans l’industrie
ozone.ch S` arl
119
http://www.ozone.ch
CHAPITRE 14. LA DISTILLATION
Figure
14.2.: Principe de la thermocompression [2]
pharmaceutique, o` u le souci primordial est la croissance des bact´eries, l’on emploie l’acier inoxydable. La n´ecessit´e d’employer du m´etal limite l’emploi de la distillation. En effet, il est impossible de produire de l’eau destin´ee a` l’industrie micro´electronique en utilisant des appareils en m´etal. Il faudrait utiliser du plastique inerte come le T´eflon, ce qui en pratique n’est pas possible. Cela explique que l’on n’utilise pas la distillation en micro´electronique.
ozone.ch S` arl
120
http://www.ozone.ch
15. Proc´ ed´ es par ´ echange d’ions
15.1. Introduction ` a l’´echange d’ion Le terme ´echange d’ions regroupe un ensemble de technologie assez diverses, qui ont pour point commun d’utiliser des r´esines qui ont la propri´et´e d’avoir des adh´esions pr´ef´erentiel les connues : un ion adh`ere plus ou moins a` la r´esine : cette propri´et´e permet de construire des syst`emes o` u l’on ´echange des ions contre d’autres de mani`ere cibl´ee afin de changer la propri´et´e de l’eau. Les ions que l’on veut relarguer dans l’eau sont apport´es `a la r´esine lors de la r´eg´en´eration de celle-ci. Selon la r´esine et le produit r´eg´en´erant choisi, l’on obtient des syst`emes aux propri´et´es diff´erentes :
Les adoucisseurs permettent d’enlever le calcium et le magn´esium de l’eau Les ´ echangeurs d’ions proprement dits permettent de remplacer les ions pr´esent dans l’eau avec des ions H+ et OH , ce qui permet de d´emin´eraliser l’eau. −
Adh´esion pr´ef´ erentielle ` a la r´esine ´ echangeuse d’ions : Cations Fer Aluminium Calcium Magn´esium Potassium Sodium Protons
Anions Fe Phosphate PO34 Al+ Sulfate SO24 3 Ca2+ Nitrate NO3 2+ Mg Nitrite NO2 K+ Chlorure Cl + Na Bicarbonate HCO3 + H Silice SiO2 Hydroxyde OH 3+
−
−
−
−
−
−
−
Les ions au d´ebut de chaque liste adh`erent le plus a` la r´esine. C’est cette adh´esion pr´ef´erentiel le qui permet aux ´echangeurs d’ions de d´emin´eraliser l’eau.
121
´ ES ´ PAR ECHANGE ´ CHAPITRE 15. PROC ED D’IONS
15.2. Adoucisseurs d’eau Equations fondamentales Adoucissement 2RNa + MgSO4 → R2 Mg + Na2 SO4
(15.1)
2RNa + Ca(HCO3 )2 → R2Ca + 2NaHCO3
(15.2)
R´ eg´ en´ eration De l’eau sal´ee (saumure) est amen´ee au contact de la r´esine ´echangeuse d’ions : R2Ca + 2NaCl → 2RNa + CaCl2
(15.3)
C’est la vanne multivoies (ou tˆete) de l’adoucisseur qui se charge des r´eg´en´erations p´eriodiques de la r´esine en aspirant de la saumure.
15.3. D´ emin´ eralisation par ´ echange d’ions 15.3.1. Equations fondamentales Pour d´emin´eraliser l’eau, les ´echangeurs d’ions emploient 2 types de r´esine : anionique et cationique.
Cations D´emin´ eralisation : la neutralit´e ´electrique doit ˆetre respect´ee : les cations (+ ) sont remplac´es par des ions hydrog`ene, alors que les anions ( ) remplac´es par des ions hydroxyde. Les ions hydrog`ene et hydroxyde r´eagissent et donnent de l’eau. Dans la premi`ere ´etape de la d´emin´eralisation, les cations sont remplac´es par des ions hydrog`ene : le ph de l’eau baisse. −
RH + NaCl → RNa + HCl
(15.4)
2RH + CaSO4 → R2Ca + H2SO4
(15.5)
R´ eg´ en´ eration : se fait avec de l’acide : 2X + H2 SO4 → 2RH + X2SO4
ozone.ch S` arl
122
(15.6)
http://www.ozone.ch
´ ´ ´ 15.3. DEMIN ERALISATION PAR ECHANGE D’IONS
Figure
15.1.: Sch´ ema de principe d’un adoucisseur
Anions D´emin´eralisation ROH + HCl → RCl + H2O
(15.7)
2ROH + H2SO4 → RSO2 + 2H2 O
(15.8)
RCl + NaOH → ROH + NaCl
(15.9)
R´ eg´ en´ eration
ozone.ch S` arl
123
http://www.ozone.ch
´ ES ´ PAR ECHANGE ´ CHAPITRE 15. PROC ED D’IONS
15.3.2. R´ eg´ en´ eration des ´ echangeurs d’ions ` a 2 lits La r´eg´en´eration peut se faire a` co-courant ou a` contre-courant . La r´eg´en´eration a` contre-courant donne une meilleure qualit´e d’eau et permet d’´economiser jusqu’` a 10% de r´eg´en´erant (` a dosage ´elev´e).
15.3.3. Echangeur d’ions ` a lit m´ elang´ e Dans un ´echanger d’ions a` lit m´elang´e, les 2 r´esines sont m´elang´ees dans une seule colonne. Le syst`eme de r´eg´en´eration de la r´esine est plus complexe. Par contre, la qualit´e de l’eau obtenue est meilleure.
15.3.4. Pourquoi l’eau est-elle meilleure apr` es un lit m´ elang´ e qu’apr` es un deux-lits ? Les r´eactions d’´echange d’ions sont des r´eactions a` ´equilibre. Les substances ne r´eagissent pas compl`etement, mais seulement jusqu’au point d’´equilibre entre la d´eionisation et la r´eg´en´eration. Durant la d´eionisation, la r´esine ´echangeuse de cations lib`ere de l’acide. Dans un ´echangeur a` 2 lits, cet acide est `a disposition pour la r´eaction en sens inverse (r´eg´en´eration). Dans un lit m´elang´e, l’acide lib´er´ee est tout de suite neutralis´e et enlev´e par une boule de r´esine ´echangeuse d’anions a` proximit´e. De mˆeme, la soude produite par la r´esine anionique est tout de suite neutralis´ee et enlev´ee par une boule de r´esine cationique a` proximit´e. Donc, dans un lit m´elang´e, la contre-r´eaction ne se produit pas, a` d´efaut de r´eactants. L’´equilibre n’est pas atteint avant la d´eionisation presque compl`ete de l’eau. Du point de vue conceptuel, un lit m´elang´e peut aussi ˆetre d´ecrit comme une s´erie infinie d’´echangeurs a` deux lits.
15.3.5. R´eg´en´ eration Etant donn´e que deux r´esines l’une devant ˆetre r´eg´e´en´er´ee avec de la soude et l’autre avec de l’acide sont m´elang´ees, la r´eg´en´eration d’un ´echangeur d’ions a` lit m´elang´e est une op´eration plus d´elicates que la r´eg´en´eration d’´echangeurs a` 2 lits. La dur´ee d’une s´equence de r´eg´en´eration et aussi plus longue : de l’ordre de 4 heures, contre environ 2 pour un ´echangeur a` 2 lits et moins de 2 heures pour un adoucisseur.
Phases de la r´eg´ en´ eration d’un lit m´elang´ e 1. R´etrolavage : enl`eve les particules et permet la stratification des r´esines 2. Adjonction de soude sur toute la r´esine : cette op´eration augmente la diff´erence de densit´e entre les deux r´esines 3. R´etrolavage : permet de peaufiner la stratification des r´esines 4. Adjonction de soude et d’acide, avec sortie a` mi hauteur, `a la limite entre les deux r´esines
ozone.ch S` arl
124
http://www.ozone.ch
´ 15.4. CALCUL DES ECHANGEURS D’IONS
5. Lavage, avec sortie a` mi hauteur, a` la limite entre les deux r´esines 6. M´elange de la r´esine avec de l’air comprim´e 7. Lavage co-courant pour stabiliser la r´esine 8. Remise en service Certains fabricants proposent des variantes de ce cycle.
15.4. Calcul des ´ echangeurs d’ions 15.4.1. Principes g´ en´eraux Le calcul d’un ´echangeur d’ions se base sur 2 param`etres : • Le d´ebit maximum • La capacit´e n´ecessaire entre deux r´eg´en´erations
Le d´ebit d´etermine une section ou un volume minimum de r´esine, alors que la capacit´e d´etermine le volume minimum de la r´esine. La capacit´e de la r´esine et les d´ebits surfaciques maximum admissibles sont donn´es par fabricants de r´esine. Il est raisonnable de demander aux fournisseurs la fiche de sp´ ecification du fabricant de la r´esine, et de v´erifier que l’´echangeur d’ions a ´et´e dimensionn´e en conformit´e avec les sp´ecifications du fournisseur de r´esine.
15.4.2. Qualit´ e de l’eau obtenue par ´ echange d’ions La qualit´e de l’eau que l’on peut obtenir en aval d’un ´echangeur d’ions d´epend du type d’´echangeur :
Adoucisseur : 0 a` 5 ppm de calcium comme CaCO3 Echangeur d’ions, 2 lits : 1% de salinit´e r´esiduelle pour co-courant. Contre-courant jusqu’`a 1 MΩ Echangeur d’ions, lits m´ elag´e : un ´echangeur permet d’atteindre une r´esistivit´e de l’eau de 1 a` 15 MΩ. L’emploi d’un deuxi`eme ´echangeur a` lit m´elang´e en aval permet de d´epasser les 18 MΩ.
ozone.ch S` arl
125
http://www.ozone.ch
16. Les antitartres ´ electromagn´ etiques 16.1. Passions et pol´emique Il est impossible de mentionner les antitartres ´electromagn´etiques a` un praticien du traitement de l’eau sans d´eclencher les passions les plus vives. Alors que certains lancent des regards incr´edules a` celui qui explique qu’il utilise un adoucisseur — Vous utilisez encore les adoucisseurs ? m’a lanc´e une fois un entousiaste des antitartres alors que nous discutions de l’alimentation d’une chaudi`ere a` vapeur — alors que les d´etracteurs de ces appareils aiment se lancer dans de longues diatribes sur l’impossibilit´e physique du fonctionnement des antitartres. Le nombre d’´ etudes publi´ees sur ces appareils est beaucoup moins important que pour d’autres technologies de traitement de l’eau. D’apr`es [17], cela peut s’expliquer en partie par le fait que cette technologie fut initialement d´evvelopp´ee surtout en Russie, et en Occident l’on tend a` ˆetre sceptique concernant toute technologie provenant de l’Est. Pourtant plusieurs ´etudes ont montr´e l’efficacit´e de ces appareils depuis les ann´ ees 1950 [31] [32]. Plusieurs ´etudes ont ´et´es publi´ees au cours des ann´ees 1990 concernant l’utilisation des antitratres ´electromagn´etiques pour les eaux us´ees [17] [30]. D’autre part il y a aussi des ´etudes r´ealis´ees sur des bancs d’essai qui ont montr´e que les antitartres test´ es n’avaient aucun effet sur l’eau, comme par exemple [33].
16.2. Principe de fonctionnement Ces appareils permettent la stabilisation du calcium dans l’eau, du moins d’apr`es ceux qui les proposent. L’explication ci-dessous est tir´ee de la documentation d’un fabricant1 Sous l’effet d’un champs ´electromagn´etique induit, des microcristaux de carbonate de calcium sont form´es et restes en suspension dans l’eau. Les appareils antitartres ´electroniques, proc´ed´e RIMEAU, provoquent, sous l’effet d’un champ ´electrique impulsionnel induit, la collision des ions Ca+ 2 et CO3 pr´esents dans les eaux calcifiantes, la formation de microcristaux de carbonate de calcium CaCO3 . Ceux-ci ainsi form´es, restent en suspension dans la veine d’eau et se comportent en ”germes de cristallisation” fixant d’autres ions encore libres. Ainsi ces germes grossissent en aval de l’appareil −
1. RIME SA, Chabeuil, France
126
16.3. LIMITATIONS D’EMPLOI
durant leur s´ejour dans les canalisations. Ils n’ont aucune tendance a` s’incruster ni dans les canalisations, ni dans les installations ni dans les appareils `a prot´eger. 1. Une fois l’eau trait´ee, les ions Ca++ et HCO3 se fixent pr´ef´erentiellement sur les germes de CaCO3 g´en´er´es par l’appareil, au lieu de former de nouveaux cristaux sur les parois des canalisations (o` u des ph´enom`enes ´electrochimiques peuvent conduire a` une ´el´evation locale de pH de l’eau, la rendant ainsi tr`es fortement entartrante). Les installations sont donc prot´eg´ees contre de nouveaux d´epˆ ots de calcaire incrustant, et les microcristaux seront v´ehicul´es a` travers l’installation jusqu’` a leur sortie lors de soutirages −
2. Un d´etartrage g´en´eral de toutes les parois m´etalliques est induit par ces appareils qui d´etachent le calcaire incrust´e sur les vieilles installations n’ayant pas ´et´e prot´eg´ees. Cette action est progressive ; il demeure cependant un fin voile blanchˆatre protecteur constitu´e d’ions positifs naturellement attir´es par les parois m´etalliques (` a caract`ere ´electron´egatif ). Ce voile isole et rend ´electropositive la paroi en contact avec l’eau. Ceci contribue a` la long´evit´e de l’installation en limitant les effets de la corrosion.
Description Une s´erie de bobinages moul´es autour de la chambre de traitement dans laquelle circule l’eau a` traiter re¸coit en permanence des impulsions ´electriques d´elivr´ees par le g´en´erateur ´electronique, a` une tension et une fr´ equence d´etermin´ees. Un champ impulsionnel se trouve ainsi transmis par induction dans la veine d’eau a` traiter. Ce traitement agit sans ´electrolyse puisqu’il n’y a pas de courant dans la veine d’eau. Une ´energie optimale est ainsi transmise aux particules dissoutes qui sont porteuses d’une charge ´electrique a` l’´etat naturel (Ca++ , CO3 ). A chaque impulsion de traitement est oppos´ee une impulsion d’autonettoyage qui garantie l’absence de tout d´epˆ ot dans la chambre de traitement, ce qui assure le fonctionnement sans entretien et sans visite p´eriodique. −−
16.3. Limitations d’emploi Le principal d´efaut des antitartres ´electromagn´etiques est l’impossibilit´e de v´erifier de mani`ere sˆ ure et simple si ils fonctionnent r´eellement : on ne peut pas simplement mesurer la duret´e de l’eau sortant de l’appareil, comme avec un adoucisseur. On ne peut que les employer dans les situations o` u une pr´ecipitation de calcaire n’aura pas de cons´equences catastrophiques.
ozone.ch S` arl
127
http://www.ozone.ch
´ ´ CHAPITRE 16. LES ANTITARTRES ELECTROMAGN ETIQUES
Figure
ozone.ch S` arl
16.1.: Antitartre ´electromagn´etique. Image : RIME SA
128
http://www.ozone.ch
17. Electrod´ eionisation 17.1. Principe L’´electrod´eionisation est pratiquement l’inverse de l’osmose inverse. Des ´electrodes attirent les ions `a travers des membranes. Il y aussi un concentrat , comme pour l’osmose inverse, mais peu (5-10%). La qualit´e d’eau obtenue est excellente : meilleure que celle obtenue avec un ´echangeur a` deux lits, mais pas tout a` fait aussi bonne que avec un lit m´elang´e.
Figure
17.1.: Principe de l’´electrod´eionisation. Image : E-Cell Corporation
La figure 17.1 illustre le fonctionnement de l’´electrod´eionisation : 1. L’eau d’alimentation est distribu´ee dans les diff´erentes cellules 2. Une diff´erence de potentiel ´electrique est appliqu´ee a` travers la cellule. Des mol´ecules d’eau pr´esentes dans la chambre ”D” sont s´epar´ee en ions hydrog`ene et ions hydroxyle
129
´ CHAPITRE 17. ELECTROD EIONISATION
3. Les ions hydrog`ene et hydroxyle sont amen´es par force ´electrostatique dans la chambre ”C”. La production continuelle de ces ions r´eg´en`ere en continu les lits de r´esine ´echangeuse 4. Les ions pr´esents dans l’eau sont absorb´es par la r´esine ´echangeuse d’ions et migrent dans la chambre ”C”. 5. Dans la chambre ”C”, les ions hydrog` ene et hydroxyle se combinent pour former de l’eau 6. 90% a` 95% de l’eau entrant dans la cellule sort de la cellule `a travers la chambre ”D” sous forme d’eau d´emin´eralis´ee 7. Le concentrat est recircul´e, comme souvent dans les osmoseurs 8. le concentrat peut ˆetre r´einject´e en d´ebut de chaˆıne de traitement
Figure
17.2.: Principe de l’´electrod´eionisation expliqu´e par un client de E-Cell. Image : Osmonics
17.2. Avantages et d´ esavantages 17.2.1. Principaux avantages Compar´e a` un syst`eme d’´echange d’ions, l’´electrod´eionisation apporte les avantages suivants :
Elimine le besoin d’acide et soude : il n’y a pas `a reg´en´erer de r´esines comme avec un ´echangeur d’ions Fonctionnement continu : pas d’interruptions pour les r´eg´en´erations
ozone.ch S` arl
130
http://www.ozone.ch
´ 17.2. AVANTAGES ET D ESAVANTAGES
Figure
17.3.: Exemple d’´elecrod´eionisateur pour 6 m3 /h. Dimensions 117 × 134 × 214 cm. Puissance ´electrique maximum 68 kW. Image : E-Cell Corporation
17.2.2. Principaux d´ esavantages Consomme de l’eau en continu, environ 5 a` 10% de l’eau d’alimentation. Cela est tou jours beaucoup plus que la consommation d’eau lors de la r´eg´en´eration de r´esines d’un ´echangeur a` lit m´elang´e. N’arrˆete pas : silice, particules, bact´eries, mol´ecules organiques Prix d’achat : `a d´ebit ´egal, un ´elecrod´eionisateur coˆ ute environ 2 fois plus qu’un ´echangeur d’ions a` lit m´elang´e Remplacement des modules : il faut ´echanger les modules au bout de 3 a` 5 ans. Part importante du prix de l’appareil (variable) R´ echauffement de l’eau : un ´elecrod´eionisateur chauffe l’eau de environ 2 a` 3 C. Cela peut constituer un probl`eme dans les installations sur des boucles de distribution : l’eau devient plus chaude, donc plus propice aux bact´eries ◦
N´ecessit´ e de r´egler la conductivit´ e : le principe de l’´elecrod´eionisateur fait qu’il faut que l’eau ait une certaine conductivit´e. Si l’on emploie de l’eau trop d´emin´eralis´ee, donc isolante, l’´elecrod´eionisateur ne peut fonctionner. Il faut donc r´egler la conductivit´e de l’eau a` une valeur donn´ee par le fournisseur des cellules 1 1. Le principal fabricant de cellules sp´ecifie une conductivit´e de l’eau en entr´ee de environ 20 µS/cm
ozone.ch S` arl
131
http://www.ozone.ch
´ CHAPITRE 17. ELECTROD EIONISATION
17.3. Probl` emes r´ esultants d’aspects commerciaux L’´electrod´eionisation fut longtemps un brevet de la soci´et´e US-Filter (Aujourd’hui int´egr´ee dans Vivendi Waters). Lorsque le brevet est tomb´e dans le domaine public au d´ebut des ann´ees 1990, plusieurs soci´et´es ont commenc´e a` produire des ´electrod´eionisateurs. La technologie ´etant difficile a` maˆıtriser, une seule soci´et´e a acquis une part de march´e importante : il s’agit de E-Cell, filiale de General Electrics. E-Cell produit essentiellement les cellules, laissant a` des int´egrateurs le soin de construire la machine compl`ete. Pour pouvoir proposer une machine avec une cellule E-Cell, l’int´egrateur doit d’abord acheter une licence E-Cell et suivre une formation assez coˆ uteuse. Les int´egrateurs avec licence E-Cell sont donc tr`es motiv´es a` vendre un grande nombre d’´electrod´eionisateurs, Cette situation cause aussi un autre probl`eme, que peu de clients remarquent : l’´eletronique de puissance d’un ´electrod´eionisateur est tr`es complexe : la plupart des clients d’E-Cell ach` etent donc leur ´electronique de puissance aux USA, chez E-Cell. Cela peut poser un probl`eme en cas de pannes, puisque ces ´electrod´eionisateurs sont ´equip´es de de composants d’´electronique de puissance am´ericains aux normes NEMA, que l’on ne trouve pas ou difficilement en Europe : la panne peut donc ˆetre prolong´ee par manque de pi`eces de rechange.
17.4. Etudes de cas 17.4.1. L’osmoseur instable Convaincue par un fournisseur d’´electrod´eionisateurs, une soci´et´e qui alimentait sa chaudi`ere a` vapeur avec une chaˆıne de traitement qui comprenait un osmoseur suivi d’un ´echangeur d’ions a` lit m´elang´e a remplac´e ce dernier par un ´elecrod´eionisateur. Au bout de quelques jours la qualit´e de l’eau a empir´e : la conductivit´e de l’eau augmentait, puis p´eriodiquement s’am´eliorait pour ensuite empirer. Somm´e de l’expliquer, le fournisseur de l’´elecrod´eionisateur a commenc´e a` noter la qualit´e de l’eau provenant de l’osmoseur, et, constatant que la valeur de conductivit´e de l’eau mesur´ee variait entre 11 et 13 µS/cm, le fournisseur a expliqu´e au client que le probl`eme ´etait dˆ u a` l’osmoseur qui serait ”instable”. Il en suivi des ´echanges de correspondance assez houleux entre le fournisseur de l’osmoseur et l’utilisateur, puisque le fournisseur de l’osmoseur pr´etendait que l’osmoseur fonctionnait et que d’une part les variations de conductivit´e ´etaient imputables a` la pr´ecision du conductivim`etre et que d’autre part aucune sp´ecification ne mentionnait que l’osmoseur devait produire une eau dont les variations de conductivit´e devaient ˆetres inf´erieures au µS/cm. Finalement, apr`es plusieurs mois, le fournisseur de l’´elecrod´eionisateur obtint du client qu’il enl`eve l’osmoseur de l’autre fournisseur et le remplace par un osmoseur livr´e par le fournisseur de l’´elecrod´eionisateur. Cette op´eration repr´esenta un investissement de plusieurs dizaines de milliers de francs. la qualit´e de l’eau produite par l’´elecrod´eionisateur continua a` varier. Finalement, pour pouvoir continuer a` faire fonctionner la chaudi`ere, le client changea la valeur de seuil
ozone.ch S` arl
132
http://www.ozone.ch
17.5. SITUATION ACTUELLE
de conductivit´e d´eclenchant l’alarme ”conductivit´e” de l’alimentation de la chaudi`ere de 1 µS/cm a` 3 µS/cm.
17.4.2. Cellule myst´ erieuse Une soci´et´e de micro´electronique avait choisi l’´electrod´eionisation sur la base du coˆ ut d’investissement. Un fournisseur de mat´ eriel de traitement d’eau proposait un nouvel ´elecrod´eionisateur, avec des cellules d’´electrod´eionisation de fabrication propre. Au bout de 6 mois de fonctionnement, les cellules d’´electrod´eionisation se bloqu`erent. Au d´emontage, l’on constata qu’il s’agissait de d´epˆ ots organiques : la cellule fut remplac´ee. L’´episode se r´ep´eta 4 fois a` distance de 6 mois, apr`es quoi le fournisseur accusa l’utilisateur d’utiliser une eau ”sp´eciale” 2 . Finalement, des mesures furent prises pour empˆecher que des bact´eries p´en`etrent dans l’´elecrod´eionisateur : un filtre 0.2 µm fut plac´e a` l’entr´ee de l’appareil, qui pourtant ´etait plac´e directement en aval d’un osmoseur. Environ 6 mois apr`es, la cellule dut a` nouveau ˆetre chang´ee. Cette fois une cellule diff´erente fut employ´ee, et le probl`eme n’est plus r´eapparu depuis.
17.5. Situation actuelle En l’´etat actuel du march´e et de la technologie, l’electrod´eionisation est une solution int´eressante si
Le fournisseur de l’´ elecrod´eionisateur fournit l’ensemble de l’installation : pour ´eviter les conflits entre fournisseurs du type de ceux d´ecrits dans les ´etudes de cas ci-dessus Il est impossible ou difficile de stocker des produits toxiques Manque de place : l’´elecrod´eionisateur est moins encombrant en g´en´eral qu’un ´echangeur d’ions ´equivalent, et en plus il n’est pas n´ecessaire de pr´evoir un syst`eme de neutralisation des eaux de r´eg´en´eration
2. Il ne pouvait pas lui reprocher le dysfonctionnement de l’osmoseur, puisque c’est lui qui l’avait fourni aussi
ozone.ch S` arl
133
http://www.ozone.ch
18. D´ egazage 18.1. Applications Il peut ˆetre n´ecessaire d’enlever de l’eau un ou plusieurs des gaz suivants : • • • •
Gaz carbonique CO2 Radon Hydrog`ene sulfur´e H2 S Oxyg`ene O2
En pratique, plus de 90% des applications de d´egazage dans l’industrie concernent le CO2 .
18.2. La technologie traditionelle : le d´ ecarbonateur 18.2.1. Principe Les d´ecarbonateurs sont g´en´eralement de v´eritables zoos de bact´eries.
18.2.2. Le dimensionnement des d´ecarbonateurs L’efficacit´e d’un d´ecarbonateur est fonction de sa hauteur. H log c1 − log c2 = K Q Avec : • • • • •
c1 : concentration de CO2 `a l’entr´ee c2 : concentration de CO2 `a la sortie H : hauteur Q : d´ebit d’eau K : constante, d´epend de la construction de la colonne
En pratique, il s’agit g´en´eralement de colonnes de 3 a` 4 m de hauteur.
134
(18.1)
´ 18.3. LES NOUVELLES TECHNOLOGIES DE D EGAZAGE
Figure
18.1.: Sch´ema de principe d’un d´ecarbonateur [8]
18.3. Les nouvelles technologies de d´ egazage 18.3.1. Principe de fonctionnement L’utilisation de syst`emes d’a´eration et de d´egazage bas´es sur les injecteurs Venturi se g´en´eralise depuis la fin des ann´ees 1990 [15]. Le principe de fonctionnement d’une combinaison Venturi - R´eacteur - Cyclon utilis´ee pour le d´egazage est le suivant : • Le Venturi m´elange les phases gazeuses et liquides en dispersant des bulles d’air
dans un ´ecoulement d’eau fortement turbulent • Dans le r´eacteur, a lieu le transfert de masse des gaz ou produits volatiles ind´esirables de la phase liquide (eau) a` la phase gazeuse (bulles d’air). Le caract` ere turbulent de l’´ecoulement de l’eau assure une r´epartition assez uniforme des gaz et produits volatiles ind´esirables dans chacune des deux phases, acc´el´erant ainsi le transfert de masse • Le s´ eparateur cyclon s´epare les deux phases. Ce principe est illustr´e par la figure 18.2. Les avantages de la combinaison Venturi - Cyclon par rapport au syst`emes traditionnels sont fondamentalement les mˆemes que ceux illustr´es pour l’ozonisation : encombrement r´eduit, investissement moins ´elev´e, coˆ uts de maintenance plus faibles. L’aspect maintenance est encore plus important pour les colonnes de d´egazage que pour l’ozonisation. En effet, les probl`emes de croissances bact´erielles sont relativement fr´equents dans les colonnes de d´egazage, alors qu’ils sont absents des combinaisons Venturi - Cyclon,
ozone.ch S` arl
135
http://www.ozone.ch
´ CHAPITRE 18. DEGAZAGE
Figure
18.2.: Principe de fonctionnement d’une installation de d´egazage avec injecteur Venturi [15]
en raison du caract`ere turbulent de l’´ecoulement.
18.3.2. Calcul D’apr`es [15], l’efficacit´e d’un syst`eme de d´egazage utilisant un venturi est essentiellement une fonction du rapport entre le d´ebit de gaz et le d´ebit d’eau : plus celui-ci est ´elev´e, plus l’efficacit´e est ´elev´ee. La courbe 18.3 permet de calculer l’efficacit´e de l’enl`evement du CO2 d’un tel syst`eme. La temp´erature a aussi une influence sur l’efficacit´e des syst`emes de d´egazage, comme cela est illustr´e par la courbe a` la figure 18.4. En pratique, lors de la sp´ecification d’un syst`eme de d´egazage, il faudra donc indiquer aux fournisseurs : • • • •
Quel est le gaz dont il faut r´eduire la concentration La concentration initiale du gaz La concentration a` atteindre La temp´erature de l’eau a` traiter
ozone.ch S` arl
136
http://www.ozone.ch
´ 18.3. LES NOUVELLES TECHNOLOGIES DE D EGAZAGE
Figure
Figure
18.3.: Efficacit´e d’un syst`eme de d´egazage a` Venturi [15]
18.4.: Efficacit´e d’un syst`eme de d´egazage a` Venturi pour l’´elimination du radon [15]
ozone.ch S` arl
137
http://www.ozone.ch
Troisi` eme partie . Conception et optimisation de syst` emes de purification de l’eau
138
19. Introduction Cette partie traite des aspects pratiques concernant la conception d’installation et l’optimisation d’installations existantes. Nous aborderons les aspects suivants : M´ ethodologie : comment proc´eder pour la conception d’une installation D´ eroulement d’un projet typique Sp´ecifications : les points dont il faut tenir compte pour les diff´erents ´el´ements du syst`eme Les possibilit´es d’optimisation d’une installation existante seront trait´es dans chapitre s´epar´e.
19.1. D´ eroulement du projet
La conception d’un syst`eme de traitement de l’eau est une d´emarche de conception de proc´ed´e. Nous n’´etudierons pas ici le d´etail de la conception de chaque ´el´ement du syst`eme de traitement d’eau – de l’osmoseur, par exemple – car ce travail sera fait par le fournisseur de l’appareil. Nous examinerons le processus de conception de la chaˆıne de traitement du point de vue de l’utilisateur ou de l’int´ egrateur de syst`eme. La plupart des ´el´ements du syst`emes seront disponibles sur le march´e, souvent comme produits standard sur catalogue.
139
CHAPITRE 19. INTRODUCTION
19.2. D´ elais Il est importants d’ˆetre conscients de d´elais n´ecessaires a` la mise en place d’un syst`eme de traitement de l’eau. Un tel syst`eme ne s’improvise pas. Mon exp´erience est que ces d´elais sont g´en´eralement sous-´evalu´e : il en r´esulte des achats erratiques d’´equipements, qui conduisent a` la mise en service d’un syst`eme ne correspondant pas pleinement aux besoins des utilisateurs.
D´ elais typiques : Obtention des donn´ ees de base : 4 a` 8 semaines Conception du proc´ed´ e : 2 `a 3 semaines, y compris quelques it´erations Etablissement des sp´ ecifications : quelques jours Recherche des fournisseurs : 2 a` 4 semaines Obtention des offres : 2 a` 4 semaines Examen des offres, discussion des offres avec les fournisseurs : 2 a` 4 semaines Processus de d´ ecision interne ` a l’entreprise : variable D´ elais de livraison 2 a` 16 semaines Mise en service : 1 semaine max., sauf pharmacie et micro´electronique En pratique, le d´elai total de mise en place d’un syst`eme de purification de l’eau est de l’ordre de 15 a` 40 semaines. Notre exp´erience est que le plus grand facteur de retards est le processus de d´ecision interne. Nous avons aussi trop souvent fait l’exp´erience d’utilisateurs qui imposent des d´elais trop courts aux fournisseurs pour les offres : le r´esultat est que le client obtint trop peu d’offres, ou des prix peu avantageux.
Recherche de fournisseurs : il ne faut pas craindre d’acheter du mat´eriel ´etranger. La plupart des fabricants de mat´eriel ne sont pas en Suisse, et tous les fabricants suisses se fournissent de composants a` l’´etranger. Notre avis est que cela ne vaut pas la peine de payer un prix suppl´ementaire pour le Made in Switzerland pour ce qui est du traitement de l’eau. Cela d’autant plus que le mat´eriel propos´e comme Made in Switzerland souvent n’est que un Private Label 1 . Il y a une grande diff´erence de d´elais selon que l’on ach`ete du mat´eriel standard ou sur mesure. En pratique, l’on trouve sur le march´e du mat´eriel standard jusqu’` a environ 70 m3 /h, et beaucoup de choix jusqu’` a environ 40 m3 /h 1. Dans toutes les branches industrielles l’on trouve des produits venus par un ”fabricant” qui en fait ne fait que coller son ´etiquette sur un produit achet´ e ailleurs. Dans le cas particulier du traitement de l’eau cela est tr` es fr´ equent : le march´ e est petit, et il y a peu de fournisseurs des composants fondamentaux comme les membranes ou les lampes U.V. par exemple
ozone.ch S` arl
140
http://www.ozone.ch
´ 19.3. CARACT ERISTIQUES DE L’EAU D’ALIMENTATION
19.3. Caract´ eristiques de l’eau d’alimentation 19.3.1. Informations ` a obtenir Le principe de base est de concevoir le syst`eme en fonction de la ”pire” eau possible. En pratique, cela signifie qu’il faut avoir :
Eaux souterraines : demander une analyse et l’avis d’un hydrog´eologue. De telles expertises on un coˆ ut, mais elles sont essentielles. Par exemple pour un projet o`u une usine devait pomper de l’eau souterraine a` relativement faible distance pr`es d’un fleuve, l’hydrog´eologue avait dit que duret´e et salinit´e diminueraient, mais charge en bact´ eries augmenterait. Cela a permis de concevoir une installation assez diff´erente de celle qui aurait ´et´e pr´evue sur la base de la seule analyse de l’eau Eaux de surface : analyse et avis d’un hydrologue sur les variations saisonni`eres Eau potable : obtenir les analyses du service des eaux (commune) l’eau communale : un r´eseau, des r´eservoirs, plusieurs sources, souvent m´elange eau surface / eau souterraine. Eau de puits : les utiliser affecte les ´ecoulement souterrains, donc la qualit´e de l’eau. Eau potable : quelques recommandations : • Demander les analyse de chaque source - station - point d’alimentation • Se m´ efier d’affirmations telles que : • ”Notre eau est conforme a` l’OSEC” (Ordonnance sur les substances ´etrang`eres et les composants) • ”Il n’y a pas de chlore dans l’eau, puisque nous utilisons l’ozone” . Il y a bien sˆur toujours du chlore dans l’eau potable. • ”Toute l’eau qui arrive chez vous vient de la source X” • ”Votre eau contient 34% d’eau de la source 1 et 66% de la source 2” • ”Radon ? Il n’y a pas de radon dans notre eau” • Insister ! • Obtenir une lettre si possible
19.3.2. Etude de cas : chlore et membranes Dans une ville de l’arc jurassien, une soci´et´e avait install´e deux petits osmoseurs en s´erie pour produire environ 1 m3 /h d’eau pour des bains de traitement de surface. Ils disent avoir obtenu l’assurance par t´el´ephone que l’eau potable fournie par la ville ne contient pas de chlore. Il d´ecida donc d’´ economiser en n’installant pas de filtre a` charbon actif. Au bout de 6 mois, la conductivit´e de l’eau en aval du premier osmoseur avait doubl´e. Au bout de 2 ans, la conductivit´e en aval du premier osmoseur avait tellement augment´e que l’eau fournie par le 2eosmoseur ´etait d’une qualit´e qui n’´etait plus suffisante pour l’utilisation pr´evue, et les membranes du premier osmoseur ont dˆ u ˆetre chang´ees. Des analyses faite par l’entreprise de l’eau re¸cue de la ville ont montr´e
ozone.ch S` arl
141
http://www.ozone.ch
CHAPITRE 19. INTRODUCTION
que l’eau contenait 0.1 a` 0.2 ppm de chlore libre, ce qui est suffisant pour fortement acc´el´erer le vieillissement des membranes.
Eau potable : autres informations
Outre l’analyse chimique, il faudrait savoir aussi :
• Pression : peut varier de mani` ere importante • Temp´erature • D´ ebit disponible. ce param`etre est rarement un probl`eme, mais il vaut mieux le
d´ecouvrir avant de r´ealiser l’investissement. • SDI (rarement fourni), si l’on pr´ evoit d’utiliser un osmoseur • P´en´etration des UVc si l’on envisage l’installation d’un st´erilisateur U.V.
19.4. Qualit´ e d’eau n´ ecessaire La qualit´e de l’eau n´ecessaire d´epend ´evidemment de l’usage. Il s’agit souvent d’un probl`eme difficile, car le praticien se trouve souvent confront´e a` des utilisateurs de l’eau qui r´eclament la meilleure qualit´e possible ou encore l’eau comme elle a toujours ´et´e, sans pr´eciser leurs demandes. il est essentiel de mettre en question les affirmations des utilisateurs de l’eau sur la qualit´e qu’ils r´eclament, et aussi de refuser les sp´ecifications impossibles ou impossibles `a mesurer. equipements, la qualit´e de • Si le but du traitement de l’eau est la protection d’´
l’eau sera sp´ecifi´e par le fabricant du mat´eriel a` prot´eger. C’est le cas le plus simple que l’on puisse rencontrer. • Si la purification de l’eau est n´ecessaire pour assurer la qualit´ e du produit fini, comme c’est souvent le cas dans l’industrie chimique et l’agro-alimentaire, alors la qualit´e de l’eau est a` d´efinir par les concepteurs du proc´ed´e et le responsables de la qualit´e. il n’y a pas de recette simple pour d´eterminer la qualit´e de l’eau a` fournir. • Pour les eaux de rin¸ egle g´en´erale des essais sont n´ecessaires. On peut cages, en r` toutefois citer quelques points de rep`ere : enager : eau adoucie • Eau de lave-vaisselle m´ • Eau de rin¸cage en fin de tunnel de lavage de voiture : eau osmos´ee, max. 40 ppm de salinit´e totale • Eau de lavage de Wafers en micro´el´ectronique : eau 18 MΩ × cm • Eaux de rin¸cage de pi`eces en traitement de surface : cela peut ˆetre de l’eau osmos´ee ou de l’eau non trait´ee, selon la pi`ece et le proc´ed´e employ´e. Il n’y a pas de r`egle g´en´erale • Certaines industries ont des normes , ce qui simplifie bien sˆ ur le choix de la qualit´e d’eau a` produire. C’est notamment le cas de la micro´electronique et de l’industrie pharmaceutique
ozone.ch S` arl
142
http://www.ozone.ch
´ ´ DE L’EAU N ECESSAIRE ´ 19.5. DEFINITION DE LA QUALIT E
19.5. D´ efinition de la qualit´ e de l’eau n´ ecessaire En pratique on peut proc´eder par ´etapes comme suit pour d´efinir la qualit´e d’eau n´ecessaire : 1. Est-ce que le but du traitement est de prot´eger un appareil ou machine ? Si oui, se r´ef´erer aux sp´ecifications du fournisseur 2. Est-ce que il existe une norme pour notre industrie ? Parmi les branches pour lesquelles il y a des normes, il faut citer la micro´electronique et la pharmaceutique 3. Est-ce que l’eau doit ˆetre employ´ee pour un proc´ed´e de lavage ? Si oui, des essais sont recommand´es 4. Est-ce que l’eau fera partie du produit fini ? Dans ce cas, les concepteurs de proc´ed´e du produit, et les responsables de la qualit´e doivent d´efinir les sp´ecifications de l’ingr´edient ”eau”.
Etude de cas : sp´ ecifications inv´erifiables Extraits d’une sp´ecification r´eelle d’un syst`eme pour la micro´electronique : 1. ”Les ´echangeurs d’ions devront ˆetres con¸cus de mani`ere a` ce qu’il soit impossible qu’il y ait une croissance de bact´eries” 2. ”Z´ero particules de plus de 0.05 microns apr`es la filtration finale” Le point 1 est techniquement impossible a` r´ealiser : l’´echangeur d’ions est un milieux poreux, donc a` priori propice aux croissances de bact´eries. C’est pourquoi l’on pr´evoit, en micro´electronique, des syst`emes de d´esinfection en aval des ´echangeurs d’ions. Le point 2 est quand a` lui r´ealisable, mais impossible a` v´erifier avec du mat´eriel industriel disponible dans le commerce. On s’expose donc a` des conflits insolubles.
19.6. Quantit´ e d’eau n´ ecessaire Il est important de d´efinir les diff´erents param`etres : • Consommation moyenne • Consommation maximum, dur´ee • Heures par jour – jours par semaine
La question n’est pas triviale ! Mais elle est souvent sous-estim´ee. On arrive souvent `a la conclusion qu’il faut pr´evoir un stockage de l’eau purifi´ee. L’eau stock´ee sert aussi, pendant des phases d’arrˆet ´eventuelles dus au lavage ou la r´eg´en´eration d’un filtre `a sable ou d’un adoucisseur, ou au lavage de l’osmoseur. La r´eg´en´eration d’un ´echangeur d’ions n´ecessite une grande quantit´e d’eau. S’il n’y a pas une configuration duplex (1 en fonctionnement, 1 en r´eg´en´eration ou standby), il faut toujours pr´evoir un assez grand stockage d’eau d´emin´eralis´ee ou osmos´ee. Si un osmoseur est utilis´e, en g´en´eral, il faut un petit stockage, car le d´ebit n’est pas variable.
ozone.ch S` arl
143
http://www.ozone.ch
CHAPITRE 19. INTRODUCTION
19.7. Autres param` etres D’autres param`etres importants ont souvent n´eglig´es : voici une br`eve checklist pour v´erifier que aucun param`etre n’est oubli´e :
Place disponible : souvent un crit`ere majeur Accessibilit´e : essentiel pour la maintenance. V´erifier la place n´ecessaire pour le remplacement des membranes des osmoseurs et des lampes U.V. des st´erilisateurs par exemple Charge admissible du sol Eaux us´ees : capacit´ e disponible : cela peut interdire certaines solutions. C’est un probl`eme surtout dans les zones industrielles Exigences concernant instrumentation et contrˆ ole ` a distance Stocks de mati` eres dangereuses (Chlore) : dans certaines entreprises, le fait de devoir stocker des mati`eres dangereuses comme le chlore, ou bien les acides et soude n´ecessaires pour la r´eg´en´eration d’´echangeurs d’ions pose un probl`eme insoluble. Dans d’autres entreprises, comme par exemple la micro´electronique, qui stocke g´en´eralement ces mati`eres pour ses proc´ed´es de production, ce stockage ne pose aucun probl`eme Conception int´egr´ ee : souvent plusieurs niveaux de qualit´e d’eau sont requis a` l’int´erieur d’une mˆeme usine : la m´ethodologie de conception de tels syst`emes pourrait faire l’objet d’une s´eminaire ou d’un livre entier. Voir [37].
19.8. Conception du proc´ ed´e M´ ethodologie Un proc´ed´e de traitement de l’eau comprendra g´en´eralement : • Pr´etraitement • Proc´ed´e de traitement ou purification principal • Finition
En pratique, la chronologie de la conception sera : 1. Traitement principal 2. Pr´etraitement 3. Finition Le pr´esent manuel devrait vous permettre de choisir les proc´ed´es appropri´es. Les listes ci-dessous permettent un premier choix des proc´ed´es a` employer.
ozone.ch S` arl
144
http://www.ozone.ch
´ E ´ 19.8. CONCEPTION DU PROC ED
Proc´ed´ es de pr´etraitement Filtre ` a sable : enlever les particules de taille importante Charbon actif : ´elimination du chlore et des compos´es organiques Adoucisseur : enlever les ions divalents, pr´evenir le tartre Injection d’acide ou de base : r´eglage du pH Injection de m´ etabisulfite de sodium : ´elimination du chlore Filtre ` a cartouche : ´elimination de particules en suspension Ultrafiltration : ´elimination de certaines substances organiques et de silice collo¨ıdale Chlore : pr´ecipitation du fer, d´esinfection Choix du proc´ed´e principal Osmose inverse : ´elimine particules, bact´eries, pyrog`enes, compos´es organiques, ions Nanofiltration : ´elimine particules, bact´eries, ions divalents, r´eduit la concentration d’ions monovalents Echange d’ions : ´elimine ions, silice activ´ee, CO2 U.V : inactive les bact´eries Ozone : ´elimine bact´eries, pr´ecipite le fer Proc´ed´ es de finition Echangeur d’ions ` a lit m´elang´ e : Diminue les solides dissous, silice et CO 2 r´esiduels Microfiltration : ´elimine particules et bact´eries Ultrafiltration : ´elimination de bact´eries, pyrog`enes, particules, collo¨ıdes, certains compos´es organiques Electrod´eionisation : diminue les solides dissous, silice et CO2 r´esiduels
ozone.ch S` arl
145
http://www.ozone.ch
20. Sp´ ecification des principaux ´ el´ ements 20.1. Introduction aux sp´ ecifications Dans ce chapitre nous nous proposons de fournir des checklists de points desquels il faut ternir compte lors de la sp´ecification de diff´erents ´el´ements de syst`emes de traitement de l’eau.
20.2. Osmose inverse • • • • • • • • •
Unit´es test´ees avec eau en usine, membranes mont´ees Demander calcul de la qualit´e d’eau obtenue Pompe centrifuge 1 Examiner la disposition des membranes propos´ee par le fournisseur. Le d´ebit par membrane ne devrait pas exc´eder 90% du d´ebit nominal de la membrane Place : ne pas oublier la place pour sortir les membranes ! Pr´evoir une unit´e de nettoyage 2 , eventuellement rin¸cage automatique a` l’eau `a chaque arrˆet de l’osmoseur Cartouches : demander prix des cartouches de remplacement ! Le micronnage conseill´e est de 5 µ m nominal Demander une offre pour un set de membranes de rechange Mat´eriaux : • Membranes : polyamide, sauf n´ ecessit´e absolue d’utiliser l’ac´etate de cellulose • Ne pas utiliser les membranes basse pression comme membrane ”haut d´ ebit” • Cartouches filtrantes : polypropyl`ene, a` densit´e progressive • Corps de membrane : en acier inox 3
1. Sauf pour les petites installations de moins de de environ 500 l/h. Des entreprises s´ erieuses vendent des syst`emes avec pompes volum´etriques : cette solution est a` ´eviter en raison des pulsations de pression qui abiment les membranes rapidement 2. Cette unit´e de doit pas forc´ement pas forc´ement ˆetre fournie par le fabricant de l’unit´e d’osmose inverse.Il est fr´equent de trouver des osmoseurs sans syst`eme de nettoyage. Dans ces cas, les fournisseurs proposent g´en´eralement un service coˆ uteux de nettoyage par leurs soins. 3. Il faut ´eviter les corps de membrane en plastique, qui d’apr`es notre exp´erience commencent vite `a avoir des fuites. Les corps de membrane en fibre de verre tendent `a se d´eformer avec le temps, ce qui
146
20.3. ECHANGEURS D’IONS
• Conduites : inox pour conduites haute pression. Plastique inerte (PVC ou tuyaux
flexibles) pour conduites basse pression, sauf cas particulier (industrie pharmaceutique ou micro´electronique, qui utilisent inox, propyl` ene ou PVDF pour le perm´eat)
Instrumentation reccomand´ ee Au minimum : • Alarme temp´erature • Alarme basse pression a` l’entr´ee • D´ebit concentrat et perm´eat • Pression perm´eat • Pression diff´erentielle du pr´efiltre • Electrovanne en entr´ ee, fermeture si la machine n’est pas en service • Conductibilit´e du perm´eat (sauf petites unit´es) Les instruments et accessoires suivants sont utiles mais g´en´eralement pas indispensables • Vannes d’´echantillonnage du perm´eat • Indication du pH de l’eau d’alimentation, de pr´ef´erence avec alarme
20.3. Echangeurs d’ions R´eg´en´eration automatique Conduites et vannes en PVC Capacit´e suffisante pour que la r´eg´en´eration n’interrompe pas la production ! Lits m´elang´es : demandez a` savoir les pourcentages en volume des r´esines anionique et cationique • Instrumentation : • Pression amont/aval • D´ebit • R´esistivit´e aval • • • •
20.4. G´ en´ erateurs d’ozone Notre exp´erience est que la solution la plus ´economique est g´en´eralement : • G´en´erateur d’ozone a` fr´equence moyenne • Aliment´e avec un concentrateur d’oxyg`ene 4 • Concentration d’ozone. de l’ordre de 6 a` 10% peut poser des probl`emes lors de remplacement de membranes, surtout si il y a plusieurs membranes dans un seul corps de membrane 4. Par exemple SeQualTM
ozone.ch S` arl
147
http://www.ozone.ch
´ ´ EMENTS ´ CHAPITRE 20. SP ECIFICATION DES PRINCIPAUX EL
• M´elange eau-ozone par Venturi, s´ eparation des phases par cyclon et r´eaction dans
la conduite • R´eglage : en fonction du d´ebit • Pr´evoir une d´ etection des fuites avec alarme
Figure
20.1.: Petit concentrateur d’oxyg` ene. Photo : SeQual Corporation
20.5. Distillateurs Il est important de sp´ecifier au fournisseur la qualit´e d’eau disponible.
Mat´eriaux : Verre : tr`es fragiles, on le les trouve que dans les laboratoires Acier inoxydable : standard pharmaceutique Cuivre avec couche d’´ etain : ´economiques, mais adapt´esseulement a` l’usage en laboratoire. Titane : imbattable du point de vue de la r´esistance a` la corrosion • Filtre a ` air cˆot´e distillat, avec syst`eme de vannes pour eau pharmaceutique eglage du niveau de l’eau par vanne ou overflow • R´ • Instrumentation n´ ecessaire : • Conductivit´e distillat • Alarme niveau d’eau (distillateurs ´electriques)
20.6. Electrod´ eionisation L’´electrod´eionisation a longtemps ´et´e le monopole d’une entreprise, US Filter 5 , qui avait br´evett´e le proc´ed´e. Suite a` l’expiration du brevet, la 2`e moiti´e des ann´ees 1990’ a vu la prolif´eration de nouveaux fournisseurs de syst`epmes d’´electrod´eionisation, dont certains sont propos´es a` des prix inf´erieurs a` ceux d’un ´echangeur a` lit m´elang´e. Notre 5. Aujourd’hui filiale du groupe Vivendi
ozone.ch S` arl
148
http://www.ozone.ch
´ 20.7. SP ECIFICATION DES FILTRES ET CARTOUCHES FILTRANTES
exp´erience est que certains de ces fournisseurs ne maˆıtrisent pas r´eellement la technologie et livrent des installations tr`es peu fiables. Nous avons ainsi v´ecu le cas d’une installation o`u les cellules d’´electrod´eionisation ont ´et´e remplac´ees 4 fois pendant l’ann´ee de garantie. Actuellement, il nous semble que les deux fournisseurs dignes de confiance pour les cellules d’´electrod´eionisation sont US Filter et E-Cell. E-Cell fournit ses cellules a` un grand nombre de fabricants. Il nous paraˆıt donc raisonnable en l’´etat actuel du march´e de n’utiliser que des ´electrod´eionisateurs muni de cellules de l’une de ces deux marques.
20.7. Sp´ ecification des filtres et cartouches filtrantes 20.7.1. Cartouches de p´ efiltration • Pr´ ef´erer corps de filtre en acier inox, sauf pour les corps de filtre monocartouche • Cartouches : 5 µm, en polypropyl`ene a` densit´e progressive • D´ ebit : pour avoir une perte de charge initiale de 0.1 a` 0.2 bar
20.7.2. Cartouches de microfiltration • Utiliser de pr´ef´erence des cartouches dont on peut tester l’int´egrit´e • 0.2 µm : suffit pour arr`eter les bact´eries • Corps de filtre en plastique inerte ou acier inox
20.7.3. D´ ebits : ordres de grandeur • 1 m3 /h par cartouche 10” pour pr´ efiltration 3 • 0.5 m /h pour microfiltration
ozone.ch S` arl
149
http://www.ozone.ch
21. Optimisation de syst` emes existants 21.1. M´ ethode Alors qu’il est assez simple de d´efinir une m´ethode g´en´erale de conception de syst`emes de traitement de l’eau, il est plus difficile de d´efinir une m´ethodologie g´en´erale pour les syst`emes existants, tant la vari´et´e de syst`emes rencontr´es est grande. Nous donnons ici quelques exemples de cas d’optimisation ´economique de syst`emes industriels existants, esp´erant qu’ils pourront stimuler l’imagination des lecteurs.
21.2. Osmoseurs : optimisation de la maintenance Notre exp´erience est que souvent la maintenance es osmoseurs est n´eglig´ee. Il en r´esulte un surcoˆ ut en terme de performances non optimales de l’osmoseur et en terme de dur´ee de vie des membranes. Nous recommandons donc de r´ealiser la maintenance des osmoseurs selon les directives du chapitre 6 `a la page 60.
21.3. Cartouches filtrantes Lors de la construction d’une installation, le prix des cartouches filtrantes ne repr´esente qu’une part n´egligeable de l’investissement total. Par contre, lors du fonctionnement du syst`eme, les cartouches peuvent repr´esenter une part importante des coˆ uts de consommables de l’installation. Il faut surveiller de pr`es deux aspects : la fr´equence de changement des cartouches filtrantes, et le prix des cartouches. Il est tr`es fr´equent qu’il soit avantageux ´economiquement de prot´eger une cartouche ”ch`ere” — comme par exemple une cartouche de microfiltration — avec une cartouche plus ´economique de filtration nominale a` par exemple 1 ou 5 µ m.
21.4. Etude de cas : cartouche de pr´ efiltration d’un osmoseur Une soci´et´e de micro´electronique utilisait un petit osmoseur produisant environ 0.2 m3/h aliment´e directement avec l’eau du r´eseau. Initialement cet osmoseur ne fonctionnait que occasionnellement. Par la suite, la production de la soci´et´e passa du stade de prototypes
150
´ ´ 21.5. OSMOSEUR EN PR ETRAITEMENT D’ ECHANGE D’ION
et pr´es´ eries au stade de production normale, et l’osmoseur devait fonctionner en permanence. Il apparut qu’il fallait changer la cartouche filtrante toutes les deux semaines, pour un prix de plus de CHF 200.00 par cartouche. Un bref calcul de la capacit´e du charbon actif compris dans la cartouche montra que l’on pouvait, du point de vue de la capacit´e du charbon actif, garder une cartouche pendant environ 2 mois. Une cartouche nominale de 5 µm fut install´ee en amont de l’osmoseur, pour un investissement total de environ CHF 250.00. Maintenant, l’on proc`ede a un remplacement de la cartouche 5 µm environ 2 fois par an, pour un prix unitaire de environ CHF 10.00, alors que la cartouche combin´ee au charbon actif n’est plus chang´ee que une fois tous les deux mois.
21.5. Osmoseur en pr´ etraitement d’´ echange d’ion L’on trouve fr´equemment dans l’industrie et dans les laboratoires les bouteilles ´echangeuses d’ions, utilis´ees pour d´emin´eraliser de l’eau provenant directement du r´eseau. Il s’agit d’´echangeurs d’ions a` lit m´elang´e qui n’ont pas de syst`eme de r´eg´en´eration des r´esines : la r´eg´en´ eration se fait alors en externe, chez un fournisseur. Ou bien l’on remplace p´eriodiquement les r´esines. Dans un cas particulier, le laboratoire d’une usine d´epensait environ CHF 500.00 par mois en remplacement de r´esines. En investissant CHF 5000.00 dans un petit osmoseur de laboratoire, ces frais ont ´et´es divis´e par 20.
Figure
21.1.: Coˆ uts de production d’eau d´emin´eralis´ee en fonction de la min´eralisation totale de l’eau brute
ozone.ch S` arl
151
http://www.ozone.ch
` CHAPITRE 21. OPTIMISATION DE SYST EMES EXISTANTS
21.6. Capacit´ e des r´ esines d’´echangeurs d’ions Les ´echangeurs d’ions sont souvent surdimensionn´es. Il en r´esulte des potentiels d’´economie important, d’autant plus que la capacit´e d’une r´esine r´eg´en´er´ee n’est pas lin´eaire en fonction de la quantit´e de r´eg´en´erant employ´e.
Figure
21.2.: Capacit´e d’une r´esine en fonction de la quantit´e de r´eg´en´erant employ´e
ozone.ch S` arl
152
http://www.ozone.ch
Bibliographie [1] Les traitements de l’eau , Claude Cardot, Ellipses Edition, Paris, 1999, ISBN 2-72985981-0. Ce livre donne de bonnes connaissances de base, surtout sur les technologies employ´ ees en potabilisation de l’eau et pour le traitement des eaux us´ees. [2] Handbook of water purification ed. Walter Lorch, Ellis Horwood Ltd. Passe les technologie en revue, et pr´esente les particularit´es du traitement de l’eau dans plusieurs industries. Un classique. Plus informatif que pratique. [3] Wasseraufbereitung , Prof. Dr. Ing. Klaus Hancke, VDI Verlag, 1994. Tr`es complet en ce qui concerne la chimie de l’eau et l’´echange d’ions. Ne contient pratiquement aucune information concernant la d´esinfection et les technologies membranaires, ce qui est assez d´ecevant. [4] Reverse Osmosis - A Practical Guide for Industrial Users, Wes Byrne, Tall Oaks Publishing, 1995. R´epond pratiquement a` toute question que l’on peut avoir sur l’osmose inverse. [5] Ozone in Water Treatment , Bruno Langlais, David A. Reckhow, Deborah R. Brink, Lewis Publishers, 1991, ISBN 0-87371-474-1 : la r´ef´erence sur l’ozone [6] Les applications innovantes des techniques membranaires dans l’industrie, R´eseau NOVELEC (EDF), 1993 [7] Les traitement de l’eau , Claude Cardot, Ellipses Edition, Paris, 1999, ISBN 2-72985981-0 [8] M´emento technique de l’eau , Degr´emont, ´ed. Lavoisier, Paris. Connu comme ”la bible de Degr´emont”. Complet, traite aussi de la potabilisation de l’eau et des eaux us´ees. Surtout utile pour ses formules et graphiques sur la chimie de l’eau et l’hydraulique. Disponible Online `a http ://www.degremont.com [9] Osmonics Pure Water Handbook Bonne introduction aux diff´erentes technologies de purification de l’eau. [10] Le manuel de l’eau ´edit´e par NALCO. Une alternative a` la ”bible” de Degr´emont [11] Water, the Universal Solvent . Edit´e par NALCO. Bonne introduction a` la chimie de l’eau [12] Permutit Water and Waste Water Treatment Handbook . L’´editeur (Permutit USA) ayant disparu, cet excellent recueuil de chiffres est devenu dificile a` trouver. [13] Ultraviolet Applications Handbook , Bolton, James R., Ph.D, Bolton Photosciences Inc.,Ayr, Canada, 2001. Web : http ://www.boltonuv.com. Malgr´e son titre, il s’agit
153
Bibliographie
essentiellement d’un manuel sur les bases th´eoriques de la st´erilisation par ultraviolet. [14] La filtrazione dei fluidi , ´edit´e par FILTERS srl, Scalenghe, Italie. En italien [15] Nouvelles technologies pour l’ozonisation et le d´egazage, Riboni, Enrico, Overbeck, Paul, Gaz Eau Eaux us´ ees, mai 1997 [16] Eaux de process. Quand la d´esinfection est n´ecessaire, Riboni, Enrico, Environnement et Technique, octobre 2002 [17] Elektromagnetische Wasserbehandlung — Falstudien in Abwasseranlagen und Trinkwasser-Anwendungen . Bundesamt f¨ ur Umwelt, Wald und Landschaft (BUWAL), 1999. Cette publication disponible aupr`es de l’administration f´ed´erale suisse r´esulte d’une th`ese faite a` l’Ecole Polytechnique de Zurich et repr´esente l’´etude la plus extensive sur des essais d’antitartres ´electromagn´etiques r´ealis´es en conditions r´eelles a` ce jours. [18] La Page de l’Eau : http ://www.ozone.ch/gasandwater/pageeau/ . Page de liens maintenue a` jour par l’auteur. [19] http ://www.degremont.com avec ”Le m´emento technique de l’eau” en ligne. [20] http ://www.osmonics.com : grande quantit´e d’articles sur diff´erentes applications des technologies membranaires [21] Biofilms Online : http ://www.biofilmsonline.com/ : informations et liens sur les biofilms [22] Center for Biofilm Engineering : http ://www.erc.montana.edu/ : informations et liens sur les biofilms [23] Site Web de ozone.ch : http ://www.ozone.ch : informations, liens, catalogue en ligne, publications a` t´el´echarger en format PDF [24] Ultraviolet (UV) Disinfection in Drinking Water Treatment in North America Malley, James P. Jr, Ph.D, WaterTECH Conference, Sydney, Australia, Avril 2000. Disponible sur le site http ://www.iuva.org [25] Survival of Bacteria After Ozonation , Lee, JiYoung et Deininger, Rolf A., Ozone Science and Engineering, Volume 22, Number 1, 2000 [26] High Efficiency In-Line Pressurized Ozone Contacting With The GDT TM Process Mazzei, Angelo, Overbeck, Paul, pr´esent´e a` International Ozone Association Annual Conference, Berlin, avril1997 [27] Mass Transfer of High Concentration Ozone With High Efficiency Injectors and Degassing Separators, Mazzei, Angelo L., pr´esent´e a` International Ozone Association Annual Conference, Cambridge, Massachusetts, novembre 1995 [28] Battling Biofilms : Costerton, J.W. and P.S. Stewart, Scientific American, 285(1) :74-81 (2001) [29] Measurement of Dissolved Ozone, Kilham, Larry B., Water Conditioning and Purification, January 2002, pages 34-35
ozone.ch S` arl
154
http://www.ozone.ch