Problemas Resueltos Estabilidad de Sistemas de Potencia
1
Estabilidad de Sistemas de Potencia
1) Un generador sincrónico capaz de desarrollar 500 MW de potencia, potencia, opera a un ngulo de potencia de !"# $%unto puede incrementarse de repente la potencia del e&e sin p'rdida de estabilidad( P0 Pma+ sen0 500 sen ! )*,) MW
P Pma+ sen1 -a condición para mantener la estabilidad es. 1 / 1 P
1
0
/ Pm+
d Pm+ m
1
1
sen d
0
m
sen d P
d
1
1 Pm+ sen11 0 Pm+ cos 0 cos 1 / Pm+ cos 1 cos m Pm+ sen1m 1 gualando las reas, obtenemos. Pm+ sen11 0 Pm+ cos 0
cos 1 Pm+ cos 1 cos m Pm+ sen1m 1 sen11 0 cos 0 cos 1 cos 1 cos m sen1 m 1 sen 1 1 0 cos 0 cos 1 cos 1 cos m sen 1 m 1 0
Reemplazando m 1 2 cos 1 cos 1 3 sacando actor com4n sen1 1 0 sen1 cos 1 cos 0 0 , en donde. 0 3 cos 0 0,** .
1 sen1 cos 1 0,** 0 , aplicando alg4n m'todo num'rico, se obtiene. 1 50 , con este 6alor calculamos. P Pma+ sen1 500 sen 50 ! MW siendo la 6ariación de la potencia. P P P0 ! )*,) 1 MW /) 7eterminar la carga m+ima adicional 8ue puede tomar de repente, sin p'rdida de estabilidad, una l9nea de transmisión de : ; &< por ase, las tensiones en ambos e+tremos son 1/ => 3 en el e+tremo receptor ?a3 una carga de 10 MW#
En el e+tremo receptor, la cur6a de potencia es similar a la del problema anterior
@1@
Problemas Resueltos Estabilidad de Sistemas de Potencia
/
10 A, MW por ase, 3 la potencia m+ima por ase. P0
Pma+
>S >R :
1/ 1/ <
!0 MW
3 siendo P0 Pma+ sen 0 , se obtiene el 6alor de A, 0 arc sen 0,05/ rad !0
7el problema anterior sabemos 8ue 1 0 sen1 cos 1 cos 0 0 3 reemplazando. ,0* 1 sen1 cos 1 0,**! 0 , con lo 8ue 1 A<,! 3 la 6ariación de la potencia. P Pm+ sen1 P0 !0 sen A<,! A, 5<1,)< MW por ase, 3 la potencia total. PB 5<1,)< 1<15 MW ) Un generador sincrónico se conecta a una barra ininita 3 suministra 0,A5 pu de su capacidad m+ima# Ccurre una alla 3 la reactancia entre generador 3 l9nea se con6ierte en A 6eces su 6alor de antes de la alla# -a potencia 8ue se puede entregar despu's de interrumpir la alla es de <0D del 6alor m+imo original# 7eterminar el ngulo cr9tico de interrupción de la alla#
1 0,A5 Pm+ c 0 0,/5 Pm+
c
sen d
0
1 0,A5 Pm+ c 0 0,/5 Pm+ cos 0 cos c / 0,< Pm+
m
c
sen d 0,A5 Pm+ m c
/ 0,< Pm+ cos c cos m 0,A5 Pm+ m c -a estabilidad se da cuando. 1 / 0,A5 c
0 0,/5 cos 0 cos c 0,< cos c cos m 0,A5 m c @/@
Problemas Resueltos Estabilidad de Sistemas de Potencia
Cperando 8ueda. cos c 0 0,555 cos 0 1,555 cos m m , siendo 0,A5 A0 m 3 0,A5 Pm+ 0,< Pm+ sen 0,< m 1!0 A0 1A0 /,AA rad # Bambi'n. 0,A5 Pm+ Pm+ sen 0 0 arc sen 0,A5 /),
0,A)< 0,555 cos /),, de seis polos 3 50 F: es de /00 MG# -a entrada a la m8uina es de /5 MW cuando entrega //,5 MW# %alcular la potencia de aceleración 3 la aceleración# -a Potencia acelerante es. Pa Pi Pe /5 //,5 /,5 MW El momento angular. M M
/EF E F MG seg# )0 1!0 el'c
50 A MG seg# 0,0// , en radianes. 1!0 50 el'c
M 0,0//
MG seg MG seg# 1,/) rad rad elec 1!0elec
Hinalmente, la aceleración Pa Pi Pe M
/
d dt /
/
d dt /
d/ dt
/
, es.
Pa /,5 M 1,/)
MW rad 1,*!A seg seg/ MG rad
5) Si la aceleración de la m8uina del problema anterior permanece constante durante 10 ciclos# $%ul es el ngulo de potencia al inal de los 10 ciclos( Si se integra la aceleración con respecto a t, se obtiene la 6elocidad angular.
1,*!A dt 1,*!A t %1 , como 0 cuando t 0 , %1 0 , si se integra
nue6amente se obtiene el ngulo de potencia. 1,*!A t dt
1,*!A / t %/ , /
en este caso, cuando t 0 , 0 # Por lo tanto. 0,**/ t / 0 @@
Problemas Resueltos Estabilidad de Sistemas de Potencia
A
1 0,/ seg 50 sen 0 //,5 50 sen 0 0 /<,
50 Fz, el tiempo re8uerido para llegar a 10 ciclos es. t10 10 Siendo. P Pm+
tanto. 0,**/ 0,// 0,A)< 0,5 /!,)5 ) El generador del problema A tiene una tensión de 1,/ pu, se conecta a una barra ininita por medio de una l9nea de reactancia 0, pu# Un cortocircuito trisico ocurre en la l9nea ?asta 8ue operan los interruptores del circuito 3 la reactancia entre el generador 3 la barra se con6ierte en 0,A pu# %alcular el ngulo cr9tico de interrupción de la alla# ntes de la alla. Pm+
1,/ 1 A o1 0,
dems. 1 A sen 0 1 0 rc sen 1A,A! 0,/5 rad A 7urante la Halla. Pm+ 0 7espu's de la alla. Pm+
1,/ 1 o1 0,A
m
En el grico 6emos. 1 1 c 0 3 / sen d 1 m c # c Para mantener la estabilidad. 1 / , o sea.
c 0 cos m cos c m c 3 cos c
m 0 cos m
1 sen 1*,A< 3 m 1!0 1)0,A /,! rad , reemplazando. /,! 0,/5 cos 1)0,5 cos c 0,0*! c *5,! <) plicando el m'todo Ipaso a pasoJ, graicar la cur6a de aceleración para la m8uina del problema anterior# El 6alor por unidad del momento angular, basado en la especiicación de la 1 A A,A 10 A o 1 m8uina es. M 1!0 50 -a potencia acelerante inicial, Pa 0 , es igual a la mitad de la potencia
@A@
Pa0
Pi Pe
1 0
0,5 / / En donde Pe es la potencia el'ctrica entregada durante la alla Ken este caso. cero)# -a ecuación de la aceleración mecnica se puede escribir. acelerante inmediatamente despu's de la alla.
Problemas Resueltos Estabilidad de Sistemas de Potencia
d/ dt /
0
Pa 0 M
0,5 A,A 10 A
11/5
seg/
5
#
-a 6ariación del ngulo de potencia en el 1" inter6alo, tomando un t 0,05 seg es. r 1 0 t 11/5 0,05 5),/5
r 1 0 5),/5 5),/5
3
seg -a 6ariación del ngulo de potencia para el 1" inter6alo ser. 1 r 1 t 5),/5 0,05 /,!1 , siendo. 1 0 1 1A,A! /,!1 1<,/*
seg
Segundo nter6alo. Pa1 1 0 1
1
1 A,A 10 A
//50
seg/
r / //50 0,05 11/,5
seg
r / r 1 r / 5),/5 11/,5 1)!,<5
seg/
/ r / t 1)!,<5 0,05 !,AA / 1 / 1<,/* !,AA /5,< %omo no ?a3 6ariación de la potencia acelerante, el 6alor de r i cte para todos los inter6alos sucesi6os, o sea. Bercer nter6alo.
r r / r 1)!,<5 11/,5 /!1,/5
seg/
r t /!1,/5 0,05 1A,0) / /5,< 1A,0) *,<* %uarto nter6alo.
r A r r A /!1,/5 11/,5 *,<5
seg/
A r A t *,<5 0,05 1*,)* A A *,<* 1*,)* 5*,A! Luinto nter6alo.
r 5 r A r 5 *,<5 11/,5 50),/5 5 r 5 t 50),/5 0,05 /5,1 5 A 5 5*,A! /5,1 !A,<* @5@
seg/
Problemas Resueltos Estabilidad de Sistemas de Potencia
Se+to nter6alo.
r ) r 5 r ) 50),/5 11/,5 )1!,<5
seg/
) r ) t )1!,<5 0,05 0,*A ) 5 ) !A,<* 0,*A 115,< %on los resultados obtenidos, se puede graicar la cur6a de aceleración 1/0,00
115,<
115,00 110,00 105,00 100,00 *5,00 *0,00 !5,00
!A,<*
!0,00 <5,00 <0,00 )5,00 )0,00
5*,A!
55,00 50,00 A5,00 A0,00
*,<*
5,00 0,00 /5,00
/5,<
/0,00 15,00 10,00 5,00 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,0 0 , , , ,/ 0 ,/ 0 ,/ 0 ,/ 0 , , ,/ 0 , , , , , , , , , , , ,1 0 , , 0 1 / A / ) < / * 1 0 1 1 1 / 1 1 A 1 5 1 ) 1 < ! 1 * / 5 / ! / * 0 1 /
Entrando en el grico con el ngulo cr9tico de interrupción de la alla. c *5,! , podemos obtener el tiempo cr9tico de actuación del interruptor, en este caso. t c 0,/)A seg 50 Fz, se debe liberar la alla antes de. 0,/)A 50 1 ciclos#
@@