mise en jeu dans la charge et conclure en étudiant le signe de cette puissance en fonction de , sur le fonctionnement générateur ou récepteur du dipôle «charge ». P' c et donner sa valeur maximale. 5- Calculer le facteur de puissance f' p 3 V eff i' eff fournie par le réseau en fonction de Veff et et R . 3- En déduire les valeurs efficaces Iceff et UCeff . .
Exercice 3
A- Un pont redresseur à diodes PD3 comporte six diodes supposées parfaites. Il est alimenté par un système de tensions triphasé équilibré de fréquence 50Hz. Le pont PD3 est connecté en A et B à un récepteur dont l’inductance est supposée suffisamment élevée pour que le courant c dans le récepteur puisse être considéré comme parfaitement constant. 1- Représenter graphiquement la forme de la tension redressée Uc aux bornes du récepteur. Dessiner également la forme du courant iD1 dans la diode D1 et du courant iR dans dans le fil de ligne R . 2- Montrer que la valeur moyenne
A D1
D2
D3
Th'1
UD1 iD1
R
Uc
iR
S
V1
Th'3
iTh'1 U'c
S'
V'1
T
V2
iR'
R'
Th'2 UT h1
T'
V'2
V'3
V3 D4 N
Dr. F.Bouchafaa 2011/2012
D5
Th'4
D6
N'
B
12
Th'5
Th'6 B'
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
TD N°06 3 ème Année ELT/LGE
ELECTRONIQUE DE PUISSANCE GRADATEUR
Exercice 1
Pour réaliser une commande en puissance réglable dans la résistance chauffante R f f du four, on utilise un gradateur monophasé. La tension d’alimentation du montage est V e(t)=Veff 2 sin t de valeur efficace 220V, de période T=20ms. La première impulsion de gâchette a lieu à l’instant t0 pour Th1 et à l’instant (t0+T/2) pour Th2. L’angle de retard à l’amorçage = t0 est commandé par la tension continue U C appliquée au circuit de commande. On considère que l’angle varie linéairement des 0 à radiants lorsque UC varie de 10V à 0. 1- Etablir Etablir l’expre l’expressio ssionn de de en fonction de UC. Th1 2- On considère considère que UC=2,5V, déterminer puis t0. (t) et UTh(t). 3- Représenter en concordance concordance des temps les tensions Ve(t), URf (t) UTh i Th1? 4- Quelle est est la tension tension inverse supportée par le thyristor thyristor Th ic On considère que UC=10V, donner l’expression de la puissance =20Ω . fournie à la résistance chauffante R f f . On donne R f f =20Ω Ve(t) Pour = t0 quelconque ( 0 < < ), montrer que la puissance Th2 URf R f f Uc fournie peut se mettre sous la forme suivante: Commande 2 α sin2 α P V eff (1 ) R f
π
2π
UC=2.5V. 5- Calculer la puissance P pour U Exercice 2
Le gradateur de tension, circuit utilisé de façon très répondue pour l’éclairage, correspond au schéma représenté sur la figure précédente. Le thyristor Th1 est commandé de façon synchronisé avec la tension d’alimentation et ce avec un angle de Th2 est commandé avec un angle de retard valant + 0. retard 0. Le thyristor Th 1- Représenter la tension de sortie du montage montage UC( ) pour un angle d’amorçage 0=60°. 2- Quelle Quelle est est la valeur valeur moyenn moyennee
Va
Exercice 3
RAZ RAZ
Commande Numérique
Synchrone
On donne le schéma d'un gradateur monophasé débitant sur une charge résistive pure. On donne donne Veff =30V, f=50Hz et R =10 . = 45°. V2(t) et UC(t). 1-Représenter V i 2- Déterminer l’expression de UCeff en fonction de Veff et et V ( ). 3- Tracer la courbe UCeff ( 4- Déterminer la puissance P dans la résistance R en fonction de et Pmax. Pmax en fonction de Veff et R . 5- Exprimer P 6- Tracer la courbe P ( ).
G2
Th1
i2
Dr. F.Bouchafaa 2011/2012
13
V2
G1 K1
UT h Tr
1
1
K2 K1 G1
ic
K2 G2
Th2
Uc
R
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
TD N°06 3 ème Année ELT/LGE
ELECTRONIQUE DE PUISSANCE GRADATEUR
Exercice 4
Th1
G
UT h
ic
i On donne figure 1 le schéma d'un gradateur monophasé débitant sur une charge résistive pure. Les thyristors sont amorcés avec un R Th2 Uc retard angulaire 0 = t0 = /2 par rapport aux passages à zéro de Ve(t) =220V et R=10 . la tension Ve(t). On donne Veff =220V Figure Figure 1 1- Donner en les justifiant, les intervalles de conduction des deux thyristors et le chronogramme de l'intensité ic(t) du courant dans la résistance R . 2- Pour la valeur particulière 0= /2, exprimer simplement la puissance active moyenne
Exercice 5
A.1- CHARGE RESISTIVE: On considère le montage représenté figure 1 où U est une tension sinusoïdale Ve(t) de valeur efficace: Veff =380V et de fréquence f =50Hz. On pose: Ve( )=Veff 2 sin avec = t. Le gradateur G est formé de deux thyristors que l’on suppose parfaits. La charge est constituée par une
Th1 à t = = et le thyristor Th Th2 à t = + résistance R=10 . On amorce le thyristor Th 3
1- Représenter les tensions Uc et UTh dans l'intervalle [0,2 ]. 2- Que vaut la valeur moyenne de la tension Uc? 3- Exprimer la valeur efficace Uceff en fonction de et Veff 4- Calculer la puissance dissipée dans R pour pour = /3.
Th1 i
UT h
G ic R
Th2 Uc A.2- CHARGE INDUCTIVE Ve(t) L La charge est maintenant inductive (figure 2). Avec R =10 ; Figure 2 L =55,1mH. On amorce le thyristor Th Th1 lorsque t = . 5- Etablir l'équation différentielle vérifiée par ic ic quand Th1 est amorcé. 6- On rappelle que la solution de cette équation différentielle est la somme d'un terme exponentiel 1.e-t/ , et d'un terme sinusoïdal V 2 sin( t ) où Z R 2 L2ω2 est l'impédanc l'impédancee de la charge charge à la pulsation pulsation et Z L ω . Donner l'expression de . est défini par tan R 7- En utilisant la condition ic=0 au moment où on amorce Th1, exprimer c1 en fonction de V, Z, , , et . 8- En déduire l'expression de ic en fonction du temps. 9- Pour la résolution de cette question, on prendra = /3 rad. 10- Montrer que ic se réduit au terme sinusoïdal dont on calculera la valeur efficace. 11- Représenter la tension Uc et le courant ic dans l'intervalle [ , + ]. 12- On amorce Th 2 lorsque t= + . Montrer que l'on peut déduire des résultats précédents les expressions de la tension Uc et du courant ic dans l'intervalle [ + , 2 + ]. Représenter alors la tension Uc et le courant ic dans cet intervalle. 13- Que vaut la tension UTh? Dr. F.Bouchafaa 2011/2012 MEL502 / LGE604 14
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE HACHEUR
TD N°07 3 ème Année ELT/LGE
Exercice 1 ic
L'induit du moteur est alimenté par une tension continue U0=275V, L H par l'intermédiaire d'un hacheur, selon le schéma ci-contre. U0 1-Quel composant électronique peut- on utiliser pour réaliser Dr Uc(t) H? l'interrupteur H MCC 2- Quel est le rôle de l'inductance L? 3- Le moteur fonctionne en régime de conduction continue: que signifie l'expression "conduction continue ou ininterrompue"? 4- A l'aide d'un oscilloscope bi courbe, on relève les variations de la tension U et celles du courant i en fonction du temps t: U (V) C
iC(A)
300 250 16 200
14
150
12 10 8
100
6 4
50
2
t(ms) 0
2
4
6
8
10
14 12 14
16
18
20
22
0
t(ms) 2
4
6
8
10
14 12 14
16
20
18
22
4.1- Dessiner le schéma de branchement de l'oscilloscope permettant de visualiser simultanément Uc et ic. 4.2- Déterminer la valeur du rapport cyclique . 4.3- Calculer la valeur moyenne
iM L H
U0 On donne le schéma de principe d'un convertisseur électronique Dr Uc(t) pour l'induit d'un moteur à courant continu: MCC La tension V est supposée parfaitement continue U0 = 24V. UM L symbolise une bobine de résistance nulle. Le courant IM est supposé continu, d'intensité IM = 50A, constante. H fermé H ouvert aT=2 ms H est commandé périodiquement L'interrupteur H périodiquement T=5 ms 1- Calculer la fréquence de fonctionnement du hacheur. 0 t aT T 2- Rappeler la définition du rapport cyclique et calculer sa valeur. 3- Donner le schéma de branchement d'un oscilloscope permettant de visualiser les variations de U M et I M en fonction du temps. Tracer l'allure de UM(t) et IM(t) sur une période, en précisant les échelles. 4- Calculer la valeur moyenne < UM > de la tension UM aux bornes de l'induit sachant que la valeur moyenne de 1? Quel est l'intérêt la tension aux bornes de la bobine est nulle. Entre quelles limites varie
Dr. F.Bouchafaa 2011/2012
15
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE HACHEUR
TD N°07 3 ème Année ELT/LGE
Exercice 3
L’alimentation de l’induit du moteur est assurée par l’ensemble de batteries précédent délivrant la tension notée U0, associé à un hacheur série comprenant: - Un interrupteur électronique unidirectionnel H à fonctionnement périodique de période T et de rapport 1); H est fermé de 0 à T et ouvert de T à T; cyclique (0 - Une diode Dr supposée parfaite; une bobine lissant parfaitement le courant i(t), dont la valeur moyenne sera notée I =IM, dans l’induit du moteur 1- Compléter la figure en plaçant convenablement les éléments cités précédemment. 2- On choisit =0,75; avec U0=192V; représenter sur une période, la tension VAB =f(t) et montrer que VAB = . U0. Quel appareil (type et fonction) vous permet de mesurer cette grandeur? 3-Etablir une relation entre VAB , IM , E (f.é.m. du moteur), et la résistance d’induit R 4- Le moteur est étudié sous tension d’induit variable mais à couple utile constant; - l’intensité est alors constante et égale à I M =135A;la f.é.m. E s’écrit E = kn ( E en Volts; n en tr/min; k est est une constante) ; et la résistance d’induit R=0,1 . 5-Montrer que k=87.10-3 V/tr/min pour =0,75 et n=1500 tr/min . Compléter le tableau ci dessous. iM
30 VAB (en V) 30
A Dr U0
MCC
UM
B
50
100 0,75
E(en V)
Exercice 4
Pour assurer les variations de vitesse, le moteur est alimenté par une source continue U 0 =275V et un hacheur; le schéma du montage est donné à la figure 1. Le transistor H se comporte comme un interrupteur commandé périodiquement; ses états successifs sont précisés par le diagramme figure fi gure 2. La période de fonctionnement est T =0,4ms. La diode de roue libre Dr est ouvert lorsque H est passant, fermé lorsque H est bloqué. La bobine de lissage L=11,55mH en série avec le moteur limite les variations du courant ic(t) qui évolue entre les deux valeurs Imin et IMax autour d'une valeur moyenne
16
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE HACHEUR
TD N°07 3 ème Année ELT/LGE
6- On démontre que l'ondulation du courant ic(t) qui circule dans le moteur est donnée par la relation: Δic
I Max
I min
U 0T . α . (1 L
α)
Pour le point de fonctionnement B , le courant absorbé est =6,8A; le rapport cyclique est =0,3. Calculer ic corre corresp spon onda dant nt à ce fonc fonctio tionn nnem emen ent. t. En dédu déduir iree les les vale valeur urss de Imin et IMax. Trac Tracer er les les cour courbe bess représentatives des variations de V(t) et de ic(t). Préciser les états de H et de Dr. iH
L
iC
H
Etat de H Passant
t
Bloqué 0
iC(A) (A)
Dr
U0
V
MCC
UM
Imax
Figure 2
Imoy
Δi
Imin
Fi ure 1 t 0
a
T
T
Exercice 5
On utilise un hacheur survolteur pour produire une tension continue de 10V à partir d’une tension de 5V. On a relevé les formes d’ondes de la tension VL et du courant iL. 1- Calculer Calculer le temps temps de cond conductio uctionn (ton) de l’IGBT (IRF3205). Déduire la valeur de l’inductance L. 2- Tracer Tracer en fonction fonction du du temps: temps: - Les tensions UH aux bornes de l’ IGBT (IRF3205) et VC aux bornes du condensateur. C (ic). - Les courants traversants le transistor l’ IGBT(IRF3205) (iH), la diode D (iD) et le condensateur C 3- Calculer la puissance dissipée dans la charge résistive R . UD iD
iL
U0=5V
D
iH
VL
H
iR
UH
Dr. F.Bouchafaa 2011/2012
Vc
ic
C 500µF
R
UR =10V
17
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique TD N°08 3
ème
Année
ELT/LGE
ELECTRONIQUE DE PUISSANCE ONDULEUR
Exercice 1
Le schéma de principe d'un onduleur autonome est donné par la figure ci-contre. Les deux interrupteurs K 1 et K 2 sont commandés électroniquement. électroniquement. T étant la période de commande; 0 < t < T/2: K 1 est fermé et K 2 est ouvert; Pour 0 E1 K1 T/2 < t < T : K 1 est ouvert et K 2 est fermé. Pour T/2 La charge est purement résistive: R =50 . Les sources de tension continue E1 = E2 =40V. Charge 1- Représenter la tension Uc(t) aux bornes de la charge et le courant ic(t) dans la charge. Uc(t) 2- Calculer les valeurs efficaces Uceff et Iceff E2 K2 3- En déduire la puissance P dissipée dans la charge. 5- Quelle est la valeur moyenne
H1 E=15V
Un onduleur autonome comporte 2 interrupteurs Hl et H2 supposés parfaits, et sont Charge i commandés périodiquement. 1- Citer les composants é permettant de réaliser les interrupteurs Hl et H2. Uc(t) 2-L'onduleur débite sur une charge résistive: E=15V H Entre 0 et e t T/2 T/ 2: H l est ouvert; H2 est fermé. T /2 et T : H2 est ouvert; Hl est fermé. Entre T/2 2.1- Quelle est la valeur de Uc pendant période et représenter, l'oscillogramme de la tension Uc. 3- L'onduleur alimente un u n moteur asynchrone as ynchrone monophasé. monophasé. 3.1- Quel paramètre de fonctionnement du moteur règle-t-on quand on fait varier la période T de la commande des interrupteurs H1, et H2? Citer une autre application d'un onduleur autonome. c
2
Exercice 3 Étude de l'onduleur de tension en commande "Pleine
onde"
Il a pour fonction de générer un système triphasé de tensions Van, Vbn, Vcn dont l'amplitude et la fréquence soient réglables. Le schéma de puissance simplifié est donné à la figure 1. E est la f.é.m de la source de tension continue parfaite qui alimente l'onduleur. La technique permettant l'élaboration des ordres de commande des interrupteurs dépend de la fréquence désirée pour le moteur et sont donnés sur le document n°1. Seul ce fonctionnement particulier est étudié. IK1 VK1 K2
K1
Moteur asynchrone
K3
a ia
E
N
b c
K’1 Figure 1
K’2
K ’3
o
1- Représenter Vao(t), Vbo(t), Vco(t) sur le document n°1. 2- Le moteur ayant un fonctionnement équilibré défini par Van+Vbn+Vcn=0, montrer que Dr. F.Bouchafaa 2011/2012
18
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE ONDULEUR
TD N°08 3
ème
Année
ELT/LGE
Van=(1/3)[2Vao-V bo-Vco] et représenter Van(t) sur le document n°2. 3- La forme d'onde i a(t) du courant dans la phase a étant donné (i a(t) est assimilé à son fondamental), K 1. En spécifiant les contraintes en tension et représenter les grandeurs i K1(t) et VK1(t) relatives à l'interrupteur K K 1, et donner une structure possible. courant au niveau de l'interrupteur K 4- Le développement en série de Fourier de la tension Van(t) donne un fondamental Van1(t) d'amplitude Van1max = (2E/ ). 220V. Calculer la valeur à donner à E pour que la valeur efficace Van1 du fondamental ait pour valeur 220V 5- En partant partant de la forme d'onde établie établie à la question question 2 du paragrap paragraphe he consacré consacré à la forme d'onde, d'onde, calculer la valeur efficace Van de la tension Van(t). Comparer les valeurs Van et Van1. Exercice 4
Principe de fonctionnement d'un Onduleur à commande décalée
La période de l'onduleur est T =20ms. La forme de la tension Uc aux bornes de la charge qu'alimente l'onduleur ainsi que celle de l’intensité du courant qui traverse la charge sont dessinées sur le document. On vous demande: K4
K1 D1
H1
H4
D4
Uc ic
E
R
D2
D3
H2
K3
Figure 1
K2
H3
1- D’hachurer les phases de fermeture de chaque interrupteur K et et d'indiquer les éléments passants. 2- Préciser les différentes phases de fonctionnement (roue libre, transfert d'énergie). 3- Calculer la fréquence f de de l'onduleur. 4- Montrer que la valeur efficace de Uc a pour expression Uc =
E 1-2
T
( est l'instant de mise en conduction
de l'interrupteur commandé Hl (voir le document). =230V, calculer la valeur maximale Ûc de Uc. 5- Pour un retard =T/6 et pour une valeur efficace Uceff =230V Uc(t)[V] E t(ms)
0 t2
t1
ic[A]
t(ms)
K1 D1 K2
Dr. F.Bouchafaa 2011/2012
19
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE ONDULEUR
TD N°08 3
ème
Année
ELT/LGE
Document – n°1
K1
K’1 K2
K’2
Interrupteurs en conduction
K’2
’
Vao E
t
0
V bo E
T/2
T t
0 Vco
E t
0
T/2
T
Comm Command ande e des des inte interru rru teurs teurs “
leine leine ond onde e ” - ra
ort ort c cli cli ue = 0.5
Document Document – n°2
0
T /2
T
K1
K’1
K’2 K3
K2 K’3
Interrupteurs en conduction
K’2 K3
Van E 2/3E E/3 0 -E/3
T/12
T /2
T
T /2
T
-2/3E -E VK1 E
iK1
2/3E E/3 0 -E/3
T/12
-2/3E -E
Exercice 6
Onduleur à 4 transistors (commande décalée).
Pour réaliser l’alimentation à fréquence et tension variables du moteur asynchrone, on utilise un onduleur. L’onduleur, dont le schéma de principe est donné par la figure 1, est donc monophasé et alimente un enroulement du moteur. La tension Uc aux bornes de la bobine est représentée dans la figure 2. Le courant ic traversant la bobine peut être considéré comme sinusoïdal de pulsation . Les graphes Uc et ic en fonction de = t sont représentés dans la figure 3. 1- La valeur valeur efficac efficacee de de Uc , U ceff =220V. Calculer la valeur de la tension continue d’alimentation E. 2- Indiq Indiquer uer sur sur le figure figure,, entre 0 et 2 , en suivant le modèle proposé pour T 1 et T2, T 3 et T 4, les intervalles pendant lesquels les diodes sont traversées par un courant. 3- Indiquer les différentes phases phases de fonctionnement.(Alimentation, fonctionnement.(Alimentation, Roue Roue libre,Récupération). libre,Récupération). Dr. F.Bouchafaa 2011/2012
20
MEL502 / LGE604
Université Université des Sciences et de Technologie Houari Boumediene Faculté d’Electronique et d’Informatique d’Informatique
ELECTRONIQUE DE PUISSANCE ONDULEUR
TD N°08 3
ème
Année
ELT/LGE
E
Uc(t)[V] ic(t)[A]
-E
Fi ure 2 H1 H2 H3 H4 D1 D2
Fi ure 3
D3
Exercice 7
D4
L'onduleur permet d'alimenter à fréquence et tension variables le MAS. Par souci de simplification, l'étude ne portera que sur une phase du réseau. L’onduleur est présenté comme suit (figure 1), - La tension Uc aux bornes de la charge inductive, le courant ic dans la charge inductive. 1- Les intervalles de conduction des 4 interrupteurs interrupteurs commandés commandés sont indiqués par un trait gras sur la figure 2; en déduire les intervalles de conduction des quatre diodes D1, D2, 3 , D4 sur cette figure. 2- Indiquer sur la figure 2 les différentes phases de fonctionnement (alimentation, récupération, roue libre). Uc
E
T
0
-E
T 2 Figure 2
H2 H3 H4 D1 D2 D3 D4
Dr. F.Bouchafaa 2011/2012
21
MEL502 / LGE604