Proprietary Notice
Patent information
Service mark information information
i
i
Trademark information
trotter report
Contact information
lm
Proprietary Notice
Patent information
Service mark information information
i
i
Trademark information
trotter report
Contact information
lm
Table of Contents Proprietary Notice .................................................. ............................................................................ .......................... 2 Patent information...................... information .............................................. ............................................... .............................. ....... 2 Service mark information ............................................ ................................................................ .................... 2 Trademark information ............................................ ................................................................... ......................... 2 Contact information ........................................... ................................................................... .............................. ...... 2
TABLE OF CONTENTS .......................................... ....................................................... ............. 3 DOCUMENT CONVENTIONS ............................................ ............................................ 10 HOT KEYS ............................................ ........................................................ ............ 10 1 1.1
INTRODUCTION ............................................ .......................................................... .............. 15 Setting up ................................................. ......................................................................... ............................ .... 15
1.2 Documentation........................................................ Documentation................................ ..................................... ............. 17 1.2.1 PIPESIM
1.3
PIPESIM overview PIPESIM overview ................................................ ................................................................ ................ 19
1.4
File Management.................................. Management......................................................... ................................ ......... 25
1.5
Security ................................................ ......................................................................... ................................ ....... 26
1.6
New features ........................................................................ 28
1.7
Schlumberger Support Services ........................................ 28
1.8
What to do next.................................................................... 28
2
MODEL OVERVIEW .................................................... 31
2.1
Steps in building a model ................................................... 31
2.2
Starting PIPESIM .................................................................. 31
2.3
Units System ........................................................................ 31
2.4
Fluid data.............................................................................. 32
2.5
Model components overview.............................................. 35
2.6
Flow correlation ................................................................... 40
2.7
Run an operation ................................................................. 40
2.8
Saving & Closing PIPESIM.................................................. 41
2.9
How to build models............................................................ 41
3 3.1
FLUID & MULTIPHASE FLOW MODELING ...............52 Black Oil ............................................................................... 52
3.2
Compositional...................................................................... 60
3.3
Pressure Drop Calculation.................................................. 65
3.4
References ........................................................................... 80
4
RESERVOIR, WELL & COMPLETION MODELING ... 87
4.1
Vertical Completions ........................................................... 87
4.2
Horizontal Completions ...................................................... 91
4.3
Multiple Layers / Completions.......................................... 103
4.4
Artificial Lift........................................................................ 104
4.5
Tubing................................................................................. 105
4.6
Chokes................................................................................ 106
4.7
Heat transfer....................................................................... 113
4.8
Reservoir Depletion........................................................... 113
4.9
References ......................................................................... 115
5
FIELD EQUIPMENT ................................................... 119
5.1
Compressor........................................................................ 119
5.2
Expander ............................................................................ 120
5.3
Single Phase Pump ........................................................... 121
5.4
Multiphase Boosting ......................................................... 121
5.5
Separator ............................................................................ 135
5.6
Re-injection point .............................................................. 135
5.7
Heat Transfer...................................................................... 135
5.8
References ......................................................................... 135
6
OPERATIONS ............................................................ 139
6.1
Check model ...................................................................... 139
6.2
No operation....................................................................... 139
6.3
Run model .......................................................................... 140
6.4
System Analysis ................................................................ 140
6.5
Pressure Temperature profile........................................... 140
6.6
Flow correlation matching ................................................ 140
6.7
Wax Prediction................................................................... 141
6.8
Nodal Analysis ................................................................... 141
6.9
Artificial Lift Performance ................................................. 142
6.10
Gas Lift Design & Diagnostics ......................................... 145
6.11
Horizontal well analysis .................................................... 148
6.12
Reservoir tables................................................................. 148
6.13
Network analysis ............................................................... 149
6.14
Production Optimization ................................................... 149
6.15
Field Planning .................................................................... 150
6.16
Multi-lateral well analysis.................................................. 155
6.17
Post processor................................................................... 155
6.18
References ......................................................................... 156
7
CASE STUDIES ......................................................... 159
7.1
Pipeline & facilities Case Study – Condensate Pipeline 161
7.2
Well Performance Case Study – Oil Well Design............ 175
7.3 Network Analysis Case Study – Looped Gas Gathering Network ...................................................................................... 7-184
7.4
Optimization .................................................................... 7-194
7.5
Field Planning ................................................................. 7-194
7.6
Multi-lateral...................................................................... 7-194
8
INDEX......................................................................8-194
Document conventions edit/copy PIPESIM
THIS PAGE LEFT BLANK INTENTIONALLY
PIPESIM Hot File
PIPESIM
Simulation
Windows
Tools
Editing/General
Keys
M
1 Introduction Schlumberger’s PIPESIM
1.1 Setting up PIPESIM ESI
• • • •
• • • • • • • 1.1.1.2 Check the PIPESIM package PIPESIM • PIPESIM • PIPESIM • PIPESIM • PIPESIM • PIPESIM
• •
1.1.1.3 Make backup copies
1.1.1.4 Read the additional notes document
2000
1.1.2 Running setup
PIPESIM
• • • • • • • • • • • • 1.1.3 Changing Options after quitting setup
1.2 Documentation 1.2.1 PIPESIM additional documentation PIPESIM
1.2.1.1 Artificial lift Performance curve
2000
1.2.1.2 User Defined Multiphase flow correlation PIPESIM 1.2.1.3 OpenLink PIPESIM
1.2.1.4 PVT file format PIPESIM 1.2.1.5 Sentinel LM Security PIPESIM
PIPESIM 1.2.2 Case Studies PIPESIM 1.2.3 Online Help
• • • 1.2.3.1 Help contents
2000
PIPESIM
1.3.1 Modules PIPESIM
• • • • • • 1.3.1.1 Pipeline & Facilities
• • • • 1.3.1.2 Well Performance analysis
• • • • • • • • • • 2000
1.3.1.3 Network analysis module
• • • • • • • 1.3.1.4 Production Optimization (GOAL)
2000
• • • • • 1.3.1.5 Multi-lateral wells (HoSim)
2000
1.3.1.6 Field Planning (FPT)
• • • • • 1.3.2 Options
1.3.2.1 Compositional option
• • 2000
• • • • • • • • • • • • • • • • • • • • • • • • • • 1.3.2.2 OLGAS 2000
2000
1.3.2.3 ECLIPSE 100
1.3.2.4 ECLIPSE 300
1.3.2.5 MBAL
1.4 File Management PIPESIM
• • • Input data (*.BPS, *.BPN, *.PGW, *.FPT,*.HSM)
Output data (*.OUT, *.SUM)
Transfer files (*.PLT, *.PLC, *.PWH, *.PBT, *.TNT, *.PST) PIPESIM PVT table (*.PVT)
PIPESIM
2000
Database files (*.MDB)
• • • Units file (*.UMF)
1.5 Security PIPESIM
1.5.1 Stand-alone security (dongle)
Dongle Utility.
2000
PIPESIM PIPESIM
1.6 New features Release Notes
1.7 Schlumberger Support Services PIPESIM
Center United Kingdom
Tel
America
1.8 What to do next
New users
•
PIPESIM
• Existing users
•
2000
THIS PAGE LEFT BLANK INTENTIONALLY
2000
2
Model Overview
2.1 Steps in building a model PIPESIM
• • • • • • • • • • • • • • 2.2 Starting PIPESIM PIPESIM files/Schlumberger/PIPESIM>.
2.3 Units System
• •
PIPESIM PIPESIM
PIPESIM 2.4 Fluid data PIPESIM
PIPESIM
• • • • • • • • • • •
2.4.1 Black Oil
2000
PIPESIM
PIPESIM
•
PIPESIM
• • • • • • • • 2.4.2 Compositional PIPESIM
2000
• Measured Properties; • • • • Critical Property • • • • PIPESIM 2.4.3 Steam PIPESIM
2.5 Model components overview PIPESIM
• • • • PIPESIM
Pipeline & facilities module Component Type Description
2000
Well Performance module Component Type
Description
PIPESIM
Network module Component Type
2000
Description
2.5.1 Model & Component limitations
• • • • • • • • • • • • • • • • • • • • • • • PIPESIM
• • • • • • • • • 2.6 Flow correlation
• • •
2.7 Run an operation
2000
2.8 Saving & Closing PIPESIM PIPESIM
2.9 How to build models PIPESIM PIPESIM
PIPESIM
• • • • • • • • • • • • • 2.9.1 Fluid calibration 2.9.1.1 Black Oil
• • • • • •
PIPESIM
2.9.1.2 Compositional
• • • • • • • • • • • 2.9.2 Pipeline & facilities
• • • • • PIPESIM
2.9.2.1 Correlation matching
• • • 2000
• • • •
2.9.2.2 Pressure/Temperature profile
• • • • • • • 2.9.2.3 Equipment/Flowline sizing (1 parameter)
• • • • • • • 2.9.2.4 Equipment/Flowline sizing (Multiple parameter)
• • • • • PIPESIM
• • • • 2.9.2.5 Multiphase booster design
• • • • • • • • • • • PIPESIM • • • • • • • •
2000
2.9.3 Well Performance
• • • • • • • • •
PIPESIM 2.9.3.1 Correlation matching
•
• • • 2.9.3.3 Pressure/Temperature profile
• • • • • • • 2.9.3.4 Equipment/Tubing sizing (1 parameter)
• • • • • • • 2.9.3.5 Equipment/Tubing sizing (Multiple parameter)
• • • • • • • • 2000
• 2.9.3.6 Artificial Lift analysis
• • • • • • 2.9.3.7 Well performance curves for GOAL
• • • • • • •
2.9.3.8 Well performance curves for Network Solver
• • • • • •
PIPESIM
2.9.3.9 Reservoir Tables
• • • • • •
2.9.3.10
Horizontal completion length
• • • • • 2.9.3.11
Gas Lift Rate v's Casing head pressure
• • • • • • 2.9.4 Network Analysis 2.9.4.1 Fluid properties
2000
2.9.4.2 Boundary Conditions
• • •
• • • • • • PIPESIM
• • • • • • 2.9.4.3 Network model
• • • • • 2.9.5 Production Optimization c
• • • • • • • • • • • 2.9.6 Field
• • • • • • • • • • • • •
2.9.7 Multi-lateral
• • • • •
PIPESIM
3
Fluid & Multiphase Flow Modeling PIPESIM
3.1 Black Oil Fluid properties can be predicted by black-oil correlations that have been developed by correlating gas/oil ratios for live crude’s with various properties, such as oil and gas gravities. The selected correlation is used to predict the quantity of gas dissolved in the oil at a particular pressure and temperature.
3.1.1 Lasater
3.1.1.1 Bubble point pressure Step 1:
Step 2:
Step 3: 2000
Step 4:
3.1.1.2 Solution gas
3.1.2 Standing
3.1.2.1 Bubble point pressure Step 1: Step 2:
3.1.2.2 Solution gas
3.1.2.3 Oil formation volume factor - saturated systems Step 1: Step 2:
3.1.3 Vazques and Beggs
3.1.3.1 Bubble point pressure
3.1.3.2 Solution gas
3.1.3.3 Oil formation volume factor - saturated systems
3.1.3.4 Oil formation volume factor - undersaturated systems
3.1.4 Glasø
3.1.4.1 Bubble point pressure and solution gas
3.1.4.2 Oil formation volume factor - saturated systems
3.1.4.3 Oil formation volume factor - undersaturated systems
3.1.5 Coning
BJA BJA
BJA BJA
BJA
3.3.3.3 Beggs & Brill Original
horizontal and inclined pipes
3.3.3.4 Beggs & Brill Original, Taitel Dukler map
3.3.3.5 Beggs & Brill Revised
3.3.3.6 Beggs & Brill Revised, Taitel Dukler map
3.3.3.7 Brill & Minami
3.3.3.8 Duns & Ros
vertical flow
3.3.3.9 Duns & Ros, Taitel Dukler map
3.3.3.10
Govier & Aziz
gas and condensate
3.3.3.11 Gray
vertical flow in gas and condensate systems which are predominantly gas phase
3.3.3.12
Hagedorn & Brown
small diameter vertical conduits
BJA
3.3.3.13
Hagedorn & Brown, Duns & Ros map
3.3.3.14
Lockhart & Martinelli
3.3.3.15
Lockhart & Martinelli, Taitel Dukler map
3.3.3.16
Mukherjee & Brill: Note
two-phase inclined flow
3.3.3.17 NOSLIP Correlation NOSLIP
MOODY
3.3.3.18
Note
OLGA-S 2000 Steady State
3.3.3.19
Orkiszewski
in vertical pipe
3.3.3.20
Shell SIEP Correlations
• • 3.3.3.21
Shell SRTCA Correlations
• • • • • 3.3.3.22
GRE Mechanistic Model BP
3.3.4 Horizontal Multiphase Flow Correlations
3.3.4.1 Baker Jardine Revised gas-condensate pipelines with a no-slip liquid volume fraction of lower than 0.1
BJA BJA
BJA
3.3.4.2 Beggs & Brill Original BBO
BJA
horizontal and inclined pipes
3.3.4.3 Beggs & Brill Original, Taitel Dukler map
3.3.4.4 Beggs & Brill Revised
3.3.4.5 Beggs & Brill Revised, Taitel Dukler map
3.3.4.6 Brill & Minami:
3.3.4.7 Dukler, AGA + Flanigan horizontal and inclined two phase flow of gas-condensate gathering systems
3.3.4.8 Dukler , AGA + Flanigan (Eaton holdup)
3.3.4.9 Duns & Ros, Taitel Dukler map BJA vertical flow
3.3.4.10
Lockhart & Martinelli
3.3.4.11
Lockhart & Martinelli, Taitel Dukler map
3.3.4.12
Mukherjee & Brill Note
two-phase inclined flow
3.3.4.13 NOSLIP Correlation NOSLIP
MOODY
3.3.4.14
Note
OLGA-S 2000 Steady-State:
3.3.4.15
Oliemans large
diameter condensate pipelines
3.3.4.16
Xiao two-
phase flow in horizontal and near horizontal pipelines
3.3.4.17
Shell SIEP Correlations
• 3.3.4.18
Shell SRTCA Correlations
• • • • • 3.3.4.19
GRE Mechanistic Model BP
3.4 References
J. Cdn. Pet. Tech.
Oil & Gas Journal
Trans. AIME
J. Pet. Tech.
J. Pet. Tech. et al. SPEJ Two-Phase Flow in Pipes
The Technology of Artificial Methods
Trans.
23
et al.
Trans.
JPT
Oil and Gas J.
56
J. Pet. Tech. Well Performance
J. Pet. Tech. et al. Handbook of Natural Gas Engineering
Trans.
et al.
Trans.
Chem. Eng. Prog.
45
JPT
Int. J. of Multiphase Flow SPE J. Prod. Eng.
JPT
The Flow of Homogeneous Fluids Through Porous Media
J. Pet. Tech.
Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems
Drill. and Prod. Prac.
Trans.
AICHE J.
Drill. and Prod. Prac.
THIS PAGE LEFT BLANK INTENTIONALLY
4
Reservoir, Well & Completion Modeling PIPESIM
• • • • • • • • 4.1 Vertical Completions
4.1.1 Liquid Reservoirs 4.1.1.1 Fetkovich / Normalized back pressure
4.1.1.2 Jones
4.1.1.3 Pseudo-Steady state / Darcy µ
µ
4.1.1.4 (Straight line) Well productivity Index
4.1.1.5 (Straight line) Well productivity Index (with Vogel correction below bubble point)
4.1.1.6 Vogel
4.1.1.7 Hydraulic Fracture
4.1.1.8 Multi-rate tests
• multi-point • Isochronal
• • 4.1.2 Gas and Gas Condensate Reservoirs 4.1.2.1 Back pressure / C and n
4.1.2.2 Forchheimer
4.1.2.3 Jones
4.1.2.4 Pseudo-Steady state / Darcy µ
µ
4.1.2.5 (Straight line) Well productivity Index
4.1.2.6 Hydraulic Fracture 4.1.2.7 Multi-rate tests
• • • •
4.2 Horizontal Completions
•
Thin reservoirs
•
Heterogeneous reservoirs
•
Reduce water/gas coning
•
Vertical permeability
4.2.1 Effect of Pressure Drop on Productivity
toe heel
Figure 4.1
ρ
µ ≥
Figure 4.2
• • •
•
∆ α
•
•
4.2.2 Single Phase Pressure Drop
. x10 −5 ) fm ρ q 2 L / d 5 ∆ p = (114644
∆ ρ
q g
= 15320
( p12
− p2 2 ) d 16 / 3 γ g TZL
γ
4.2.3 Multiphase Pressure Drop
4.2.4 Inflow Production Profiles
Figure 4.3 4.2.5 Steady-State Productivity
• •
•
∇
Figure 4.4
0.007078k h h∆ p /(
qh = ln[
a + a 2 − ( L / 2 )2 L/2
o
Bo )
] + (h / L)ln[
a = (L / 2 )[0.5 + 0. 25 + (2reh / L) 4 ]0.5
∆
µ
qh =
0.007078k h h∆p /( r ln[ eh ] (L / 4)
k eff =
k v k h
o
Bo )
h ] 2rw
k h
h= h
k v
0.007078k h h∆p /(
qh = ln[
β =
o
Bo )
2 2 2 − ( L / 2 )2 (βh / 2 ) + β δ ]+ ( β h / L)ln[ ] L /2 2rw
a + a2
k h k v
δ
rw,eff = rw exp(-s)
rw,eff =
reh (L / 2 ) a[1+
1− ( L / 2a )2 ]+[(β h / rw )](β h / L)
4.2.6 Pseudo-Steady State Productivity
qv
=
qv =
kh∆p / 1412 .
o
Bo
ln [2.2458 A / (C A Rw 2 )] + s + sm
kh∆p / 141.2 o Bo r ln[( e )-0.75] rw
s CA = ln[ C A,ref / C A ]
+ Dqv
• • •
qh =
0. 007078b k x k z ∆p /( ln[
A1 rw
o
Bo )
]+ lnC H -0.75+ s R
4.2.7 Solution Gas-Drive IPR
qo q o,max
=[1-V(
p wf pR
)-(1-V)(
4.2.8 Horizontal Gas Wells
• •
p wf pR
) 2 ]n
m( p) = 2
p
∫
0
p µ z
dp
2
2
0.007027k h h(p e - p wf ) qh = r ln[ e ]µ ZT rw,eff
µ
2
qh = [ln[
D=
2
0.007027kh(p r - p wf ) re rw
] - 0. 75 + s + s m + s ca - c + Dq h ]µ ZT
2. 222 x10 -15 ( γ g k a hβ ) 2
µ pwf rw h p -1.1045
β = 2.73x1010 k a
-1.201
β = 2.33x1010 k a
µ µ β γ
4.3 Multiple Layers / Completions PIPESIM
• • • • •
PIPESIM
4.4 Artificial Lift
• • •
PIPESIM 4.4.1 Gas Lift
PIPESIM
PIPESIM
4.4.2 ESP Lift
PIPESIM
• • • • •
• • •
4.5 Tubing
• • • • • • •
4.6
Chokes
• •
4.6.1 Ashford-Pierce
qo
. Cd e2αβ = 351
α = ( Bo
+ F wo )
−1
2
n nn−1 − − + − × + + T z R R 1 e 198 . 6 p 1 e γ 0 . 000217 γ R F γ ( ) ( ) [ 0 1 1 s 1 g s wo w ] n − 1 β = −1 T1 z 1 n 198 . 6 + R − R e ( ) s [γ 0 + 0.000217γ g R + F woγ w ] p 1
1
2
γ γ γ Assumptions:
• • • • •
Choke size (64th in.)
4.6.2 Omana
N qL
−3.49 3.19 0.657 1.8 = 0263 . N ρ N Pl Qd N D
C
ρ N qL = 184 . q Lo L σ L N ρ =
ρ G
1.25
ρ L
N pl = 174 . × 10−2 P 1
q Lo
1 ρ Lσ L
1
Qd
=
N D
= 120872 . Dc
1 + R 1
. = 1953 × 10−3 (σ L )
−1.245
ρ L σ L
(ρ L )
1.545
(1 + R ) 1
−0.657
1.8
( Dc ) ( ρ G )
−3.49
( P 1 )
3.19
ρ σ
4.6.3 Gilbert, Ros, Baxendall, Achong and Pilehvari
q Lo
= aP 1 (GOR) −b d c
Correlation
A
B
c
4.6.3.1 PDVSA modification
q Lo
= (aP 1 (GOR) −b d c )− e PIPESIM
4.6.4 Poettmann-Beck
0.4513( R11 + 0.766) q = . . 0 V1 (1 + 0.5m1 ) R11 + 05663 . 5.61 ρ Lo + 0.0765γ G (GOR) 88992 Ac
o o
R11
=
92736 . P 1
(
0.00504T1 z1 ( GOR) P1 Bo
0
− ( R s )1
)
m1
1
=
1
1 + R
1 1
V 1
=
ρ G ρ 1 L
m1 ρ L
γ
ρ
4.6.5 Mechanistic Correlation,
∆ pTP = ∆p L λ L + ∆pG λ G 2 ρ L q L ∆ p L = 2 g c 144 C L Ac ∆ pG
q G = 2 g c 144 YCG Ac ρ L
2
2 d 2 p − p1 Y = 10 . − 0.41 + 0.35 (1 / K ) 2 d 1 p1
C =
C d
d 1− 1 d 2
∆ pTP
4
C = ∆p L 1 + λ G dL YC dG
2 − 1
d 1 4 qm ∆ p L = ρ L 1 − 2 d 2 8083d1 C dL
λ λ qL qG Ac p1 p2 ρ
4.6.6 API 14-B Formulation
λ ρ ∆ pTP
C = ∆p L 1 + λ G dL YC dG
2 − 1
d 1 4 qm ∆ p L = ρ N 1 − 2 d 2 8083d1 C dL
1121 . ∆ p tp = ∆p L 1 + λ G 2 − 1 Y
4
∆ p L = ρ N
d q m 1− 1 . d 12 d 2 687055
λ qm
∆ ∆
ρ N
4.7 Heat transfer
4.8 Reservoir Depletion PIPESIM
4.8.1 Volume Depletion Reservoirs
∆ p = p i − p
G p
=G−
G Ei
E
E
. = 3537
p
=
Z
p ZT
G p 1 − Z i G
p i
4.8.2 Gas Condensate Reservoirs
4.9 References
JPT
Journal of Petroleum Technology, SPE Reservoir Engineering
Fundamentals of Reservoir Engineering
JPT
World Oil
J. Pet. Tech.
Horizontal Well Technology
Chem. Eng. Prog.
45
JPT The Flow of Homogeneous Fluids Through Porous Media
World Oil
5 Field Equipment 5.1
Compressor
• • • • •
Adiabatic Route
Polytropic Route
Mollier Route (compositional cases only)
5.2
Expander
• • • • •
Adiabatic Route
Polytropic Route
Mollier Route (compositional cases only)
5.3
Single Phase Pump
• • • • •
5.4
Multiphase Boosting
Traditional Approach The incoming fluid is separated in its constituent gas and liquid phases. The separated liquids are pumped up to the required pressure and exported via the liquid export line. Separated gas is compressed up to the required pressure and exported via the gas export line. Alternative Approach The incoming fluid is separated in its constituent gas and liquid phases. The separated liquids are pumped up to the required pressure and separated gas is compressed up to the required pre ssure, before the two p has es are recombined and exported via a multiphase export line. Multiphase Boosting The incoming fluid is directly boosted up to the required pressure without separation of the gas and liquid phase s, a nd expor ted via a m ult iph ase export line.
Production System Analysis
Outflow curve
THP curve
Production System Analysis
Outflow curve - No boosting
Outflow curve - Boosting 20 bar
THP curve
5.4.1 Multiphase Boosters – Positive Displacement Type
5.4.2 Twin Screw Type Multiphase Boosters
Twin Screw Multiphase Pump - Performance C urve (valid for GVF=0%, p1=1 bara) r e w ] o p W t f k [ a h S
e ] t a / r h 3 w m o l [ F
Pump differential pressure [bar]
Twin Screw Multiphase Pump - Performance C urve (valid for GVF=85%, p1=1 bara) r e w ] o p W t f k [ a h S
e ] t a / r h 3 w m o l [ F
Pump differential pressure [bar]
5.4.3 Progressing Cavity Type Multiphase Boosters
PIPESIM
5.4.4 Multiphase Boosters – Dynamic Type
5.4.5 Helico-Axial Type Multiphase Boosters
e r u s s e r p l a i t n e r e f f i d r e t s o o B
Helico-axial type multiphase booster - Performance curve (valid for given GVF, p -suction and fluid density)
Best efficiency line Maximum booster differential pressure pressure
e l i n P D . a x M M i n i m u m s p e e d
8 0 % s p e e d
9 0 % s p e e d
M a x i m u m s p e e d
Total volumetric flow rate at suction
5.4.6 Contra-Rotating Axial Type Multiphase Booster
Figure 5-11 Contra-rotating axial (CRA) compressor
PIPESIM
5.4.7 Alternative approach PIPESIM.
5.5
Separator
5.6 Re-injection point
• • • 5.7 Heat Transfer 5.8 References
THIS PAGE LEFT BLANK INTENTIONALLY
6
Operations PIPESIM
• • • • • • • • • • • • • • • • • • • • • • • • 6.1 Check model
6.2 No operation
2000
6.3 Run model
6.4 System Analysis
Pressure/Temperature Profiles
6.5 Pressure Temperature profile
6.6 Flow correlation matching
2000
6.7 Wax Prediction PIPESIM
6.8 Nodal Analysis PIPESIM
Inflow Outflow
2000
6.9.1 Well Performance Curves
6.9.2 Optimization module performance curves GOAL
GOAL
6.9.2.1 Well head chokes
GOAL
2000
Wellhead Choke Manifold
Flowline Wellhead
Well
GOAL
GOAL
• • • GOAL
2000
GOAL
6.10 Gas Lift Design & Diagnostics PIPESIM
PIPESIM
6.10.1
Check for Gas Lift instability
2000
:
• •
C1 = F 1.
F 1
=
2 − r v − 1 + F 3. . F c µv µ v r v
B f . ρ g. q 2 go . J
(C
D
Ap Y
)
2 v
.Va . q fo
F c
r (2 − r v ) (C D Ap Y ) ch 2 + (C D A pY ) v 2 . ch µ ch = r (2 − r ) (C D Ap Y ) v 2 . ch µ v ch
r v
=
P to P co
2000
µ v
=
( zT ) t ( zT ) c
r ch
=
P co P m
C2
rv r v = F 1. − 1 + µ v F c
F 3
=
µ ch
(q ( ρ
=
fo
+ q go ). At
f
− ρ g ). g
( zT ) c ( zT ) m
.
P to q fo
ρ ρ µ SUBSCRIPTS
• • • •
GOAL)
2000
WP loet Alulg 0P A 1 3 - A L li c ehn s ead tn a ti 9 o: BJA in house
P I P E S IM
P I P E S IM
(K-
fo r W in d o w s © B a k e r J a rd in e & A ss o c ia te s
6.11 Horizontal well analysis PIPESIM's
6.12 Reservoir tables
2000
• • • • •
6.13 Network analysis
• • • 6.14 Production Optimization
• 2000
•
PIPESIM.
•
•
GOAL 6.15 Field Planning
6.15.1
Dynamic Eclipse link
2000
PROS:
• • • CONS:
• • • • Capabilities:
• • • Limitations:
• •
2000
6.15.2
Look-up tables Sample decline curve
PROS:
•
Cumulative liquid production [mmstb]
• • • CONS:
• 2000
PROS:
• • CONS:
• Capabilities:
• • Limitations:
• •
6.15.4
Event handling
• • • • •
2000
FPT 6.16 Multi-lateral well analysis HoSim 6.17 Post processor
• • PIPESIM • • • • • • PIPESIM 6.17.1
Graphical plots PIPESIM.
• • • • • • • • •
2000
6.17.2
Tabular data PIPESIM
6.17.3
Onscreen data
6.18 References
2000
THIS PAGE LEFT BLANK INTENTIONALLY
2000
7
Case Studies PIPESIM
• • • • • • • • • • • • • •
7.1 Pipeline & facilities Case Study – Condensate Pipeline
7.1.1 Task 1. Develop a Compositional Model of the Hydrocarbon Phases
-
PIPESIM
"Add>>" Petroleum Fractions Add to composition>>
Component Selection Phase Envelope
7.1.2 Task 2. Identify the Hydrate Envelope
-
Phase Envelope
Add>>
7.1.3 Task 3. Select a Pipeline Size
-
operations/pressure-temperature profiles…
7.1.4 Task 4. Determine the Pipeline Insulation Requirement
-
-
operations/pressure-temperature profiles
7.1.5 Task 5. Screen the Pipeline for Severe Riser Slugging
-
setup/define output...
operations/pressure-temperature profiles
reports/view output
7.1.6 Task 6. Size a Slug Catcher
-
reports/view summary
7.1.7 Data Available Layout:
Boundary Conditions:
Pure Hydrocarbon Components:
Petroleum Fraction:
Aqueous Component:
Pipeline Sizes Available:
Pipeline Data:
Pipeline Insulation Study Data:
Data for Risers 1 and 2:-
7.2 Well Performance Case Study – Oil Well Design
7.2.1 Task 1. Develop a Calibrated Blackoil Model
-
PIPESIM
OK plot PVT data
7.2.2 Task 2. Develop a Well Inflow Performance Model
-
7.2.3 Task 3. Select a Tubing Size for the Production String
-
-
operations/systems analysis
7.2.4 Data Available Reservoir Conditions:
Stock Tank Oil Properties:
Bubble Point Properties:
Blackoil Calibration Data:
Deviation Survey:
Minimum Pressure Allowed at the Wellhead:
Multiphase flow correlation
Production Strings Available:
Drill String Test:
Production plan obtained from reservoir simulation:
7.3 Network Analysis Case Study – Looped Gas Gathering Network
7.3.1 Task 1. Build a Model of the Network
-
PIPESIM
edit/copy
edit/paste
setup/compositional...>
export
setup/compositional...> import
edit/copy
edit/paste
↑
7.3.2 Task 2. Specify the Network Boundary Conditions
-
-
Setup/boundary conditions
7.3.3 Task 3. Solve the Network and Establish the deliverability
-
setup/options/network iterations
7.3.4 Data Available Layout:
Completion and Tubing Data:
Pure Hydrocarbon Components (Wells 1 & 2):
Petroleum Fraction (Wells 1 & 2):
Aqueous Component (Wells 1 & 2):
Pure Hydrocarbon Components (Well 3):
Petroleum Fraction (Wells 3):
Aqueous Component (Well 3):
Data for Looped Gathering Lines (B1, B2, B3, and B4):
Data for Deliver Line (B5):
Boundary Conditions:
7.4 Optimization
7.5 Field Planning
7.6 Multi-lateral
8 Index
Analyse artificial lift requirements
Back pressure IPR See
C and n IPR
Create GOAL curves Create reservoir tables
Find the optimal completion length
Perform a Nodal Analysis Darcy IPR See Set boundary conditions Fetkovich,liquid IPR Jones gas, IPR Jones liquid, IPR
Forchheimer gas, IPR
Multi-rate tests gas IPR