Home
Add Document
Sign In
Register
Metode Invers Operator (2) Beserta Contoh Soal
Home
Metode Invers Operator (2) Beserta Contoh Soal
Metode Invers Operator...
Author:
Ledib Aprilansi
31 downloads
415 Views
145KB Size
Report
DOWNLOAD .PDF
Recommend Documents
Metode Invers Operator (2) Beserta Contoh Soal
Metode Invers OperatorDeskripsi lengkap
Contoh Soal Peluang Beserta Jawaban
Deskripsi lengkap
Contoh Soal Peluang Beserta Jawaban
Full description
Contoh Soal Metode CROSS
Contoh Soal Metode Pelaksanaan
Metode PelaksanaanDeskripsi lengkap
Contoh Soal Metode Pelaksanaan
Metode Pelaksanaan
Contoh Soal Metode Clapeyron
silakan donload contoh no. 2Deskripsi lengkap
Contoh Soal Metode Clapeyron
silakan donload contoh no. 2Full description
Metode Analisa ABC Dan VEN Beserta Contoh
hgddtyuuu
SOAL Matriks Invers
Soal invers matriksFull description
Soal 2 metode simplek
Soal 2 metode simplek linierFull description
Contoh Soal APBN Dan APBD Beserta Jawabannya
ye
Soal 2 metode simplek
Soal 2 metode simplek linierFull description
Contoh Soal Metode Iterasi Jacobi
Contoh-contoh soal metode iterasi jacobiDeskripsi lengkap
Contoh Soal Pengetahuan Umum Beserta Kunci Jawaban
soal dan kunci jawabanFull description
Contoh Soal Matematika BAB Peluang Beserta Jawaban
Contoh Soal Fungsi Turunan Beserta Jawaban
Full description
Contoh soal metode analisa gravimetri.docx
Contoh Soal Pengetahuan Umum Beserta Kunci Jawaban
soal dan kunci jawabanDeskripsi lengkap
contoh-soal-pengetahuan-umum-beserta-kunci-jawaban.pdf
Contoh Soal APBN Dan APBD Beserta Jawabannya
ye
Contoh Soal Pengetahuan Umum Beserta Kunci Jawaban
Full description
contoh-soal-pengetahuan-umum-beserta-kunci-jawaban.pdf
Contoh Soal APBN Dan APBD Beserta Jawabannya
yeDeskripsi lengkap
METODE INVERS OPERATOR
Persamaan diferensial linier orde tinggi non homogen dengan koefisien konstan adalah, (an D n
+ ... + a1 D + a% y = r ( x L( D y = r ( x
Penyelesaian umum dari persamaan diferensial diatas adalah y = yh + yp. Dengan metode invers operator solusi yp diberiken oleh : y p
=
1
r ( x
L ( D
Kasus n=1
Untuk n = 1, penyelesaian khusus PD (D – y = r(!, diberikan oleh : y p
=
1 D − λ
∫
r ( x = e λ x e − λ x r ( x dx
Kasus n=2
Untuk n = ", penyelesaian khusus PD (D –
(D –
2
y = r(!,
1
diberikan oleh : y p
= =
1 r ( x ( D − λ " ( D − λ 1 1 D − λ "
=e
λ " x
∫
e λ 1 x e − λ 1 x r ( x dx
∫ e [e ∫ e − λ " x
λ 1 x
− λ 1 x
]
r ( x dx dx
#e$ara umum penyelesaian khusus dari PD berbentuk, '( D − λ n ( D − λ n
− 1...( D − λ " ( D − λ 1 & y = r ( x L ( D y = r ( x
adalah, y p
= = =
1 r ( x ( D − λ n ( D − λ n − 1...( D − λ " ( D − λ 1 1 ( D − λ n ( D − λ n
− 1...( D − λ "
1 ( D − λ n ( D − λ n
− 1...( D − λ
∫
e λ 1 x e − λ 1 x r ( x dx
∫
(
e λ " x e − λ " x e
λ 1 x
∫ e
− λ 1 x
)
r ( x dx dx
Dengan mengintegralkan sebagian demi sebagian, fungsi penyelesaian khusus yp diberikan oleh,
y p = e
λ n x
∫
e
− λ n x
... e λ "
x
∫
e
− λ " x
e λ 1
x
∫
e
− λ 1 x
r ( x dx dx ...dx
)ontoh : )arilah penyelesaian umum PD, y″ – *y’ + *y = e 2x ln! tau, (D2 – *D + *y = e 2x ln! -aab #olusi homogen PD/ : y ″ – *y + *y = % (D2 – *D + *y = % P0
: 2 – * + * = %, D2 – *D + * = % (D – "(D – " = %
P0 : D1 = D2 = " Penyelesaian #olusi y h yh
= c1e " x + c" xe" x
#olusi yp y p
= = = =
1 ( D − "( D − " 1 D − " 1 D − " 1 D − "
∫ e ∫ ln xdx
e " x e e " x
e " x ln x
− " x
" x
ln xdx
e " x ( x ln x − x
= e " x ∫ e − " x 'e " x ( x ln x − x& dx = e " x ∫ ( x ln x − x dx = e " x x " ln x − x " * " 1
-adi, solusi PD y
1 = c1e " x + c" xe " x + e " x x " ln x − x " * "
)ontoh : )arilah penyelesaian umum PD, (D2 – D + "y = e 2x $os "! -aab #olusi homogen PD/ : (D2 – *D + *y = % : D2 – D + " = %
P0
(D – 1(D – " = % P0 : D1 = 1, D2 = " #olusi y h y h
= c1e x + c" e " x
#olusi yp y p
= =
y p
= = = = = =
1 ( D
"
− D + "
e " x $os " x
1 e " x $os " x ( D − 1( D − "
1 D − 1 1 D − 1 1 D − 1 1 " 1 " 1 "
∫ ∫ $os " xdx
e " x e −" x e " x $os " xdx e " x
1 sin " x "
e " x
∫ ∫ e
e x e − x (e " x sin " x dx e x
x
sin " x dx
1 e x (−" $os " x + sin " x 2
e x
-adi, solusi PD y
= c1e x + c"e " x +
1 1%
e " x (sin " x − " $os " x
)ontoh )arilah penyelesaian umum PD, (D! – 2D2 + 3D – *y= (13+1"!e 2x -aab S"lusi yh
PD /, (D! – 2D2 + 3D – *y= % D! – 2D2 + 3D – * = %
P0
P0, (D – 1(D – "(D – " = % D1 =1, D2=D2 = " #olusi yh y h
= c1e x + c" e " x + c xe " x
#olusi yp y p
= =
1 ( D − " ( D − 1 "
1 ( D − "
"
(13 + 1" x e " x
∫
e x e − x (13 + 1" x e " x dx
#olusi yp y p =
= = =
1 ( D − "
x
1 ( D − " 1 ( D − "
x
(13 + 1" x dx
e
"
e x '(4 + 1" xe x &
1 ( D − "
∫ e
"
∫
e " x e − " x e " x (4 + 1" x dx e " x (4 x + 4 x "
= e " x ∫ e −" x e " x (4 x + 4 x " dx = e " x ( x " + " x #olusi umum PD x " " x y = c1e + (c" + c x + x + " x e
×
Report "Metode Invers Operator (2) Beserta Contoh Soal"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close