STPM Maths T Sem 1 Trial 2014 P1 Port Dickson AnswerFull description
Trial paper of Maths T STPM 2014 Sem 1(2013) SIGSFull description
Answer Maths T STPM 2014 Sem 1 Trial SMJK Jit Sin
Trial paper of Maths T STPM 2014 Sem 1(2013) SIGSFull description
DOMAIN & RANGE OF A FUNCTION
Maths T STPM Sem 1 Model QuestionFull description
syllabus of maths t stpm
Full description
NEGERI SEMBILAN
Sumber : http://smjknh.edu.my/2014/09/07/2014trial/ Manfaatkan sebaik2nya Soalan Percubaan Kedah Pahang 2014 untuk membantu peningkatan optimum pencapaian calon dalam peperiksaan SPM 2014…Full description
Sumber : http://smjknh.edu.my/2014/09/07/2014trial/ Manfaatkan sebaik2nya Soalan Percubaan Kedah Pahang 2014 untuk membantu peningkatan optimum pencapaian calon dalam peperiksaan SPM 2014…Full description
STPM Math T Term 2 Trial 2015 SMKDMFull description
mmate
STPM Mathematics T
SKEMA SOALAN TRIAL PENGAJIAN AM P1 2016 - PAHANG
2011 PAPER 2
STPM Physics sem 1 Thermodynamics
If you would like to have the copy in MS Word, do send an email to [email protected]
cape maths
Sumber : http://smjknh.edu.my/2014/09/07/2014trial/ Manfaatkan sebaik2nya Soalan Percubaan Kedah Pahang 2014 untuk membantu peningkatan optimum pencapaian calon dalam peperiksaan SPM 2014…Full description
3 .
( i ) 4 2 6
5 0 4 − 3 − 4 1
( i i )
( c )
S t a t e t h e v a l u e o f
( b )
x 2 + x 3 + z 5 = y 2 − 4 z =
3
1 2 3
0 5 4 − 3 − 4 1
[ 2 m a r k s ]
[ 4 m a r k s ]
a S n d o l v A e − t h . 1 e f o l l o w i n g 3 x s y + s t 4 e y m = o f z l + i n 1 e a r e q u a t i o n s b y m e t h o d o f m a t r i c e s t h a t i n v o l v e s A
( a )
F i n d A −
1
b y u s i n g t h e m e t h o d o f e l e m e n t a r y r o w o p e r a t i o n s .
T h e m a t r i x A
=
2 1 3
5 0 4
− 3 − 4 1
h a s a n i n v e r s e A
M a t r i x P i s i n v e r t i b l e i f P ≠
0 w h e r e
P
i s t h e b e d c e a t u e r s m e i n 2 1 3 a n 5 0 4 t o f − 3 − P 1 . 4 −
1
D e t e r m i n e t h e r a n g e o f v a l u e s o f x s o t h a t t h i s e x p a n s i o n i s v a l i d .
( b ) E x p r e s s ( 2 x ) 4 1 +
3 x
[ 6 m a r k s ]
( b ) m G i a v x e i m n u t h m a t v t h a l e u f e u o n f c b t i . o n g
∑ 0 1 3
0
(
−
r
3
r − 1
, g i v e y o u r a n s w e r i n t h e s t a n d a r d f o r m A
o f i n c r e a s i n g p o w e r o f x i n c l u d i n g t h e t e r m o f x . 3
1 0 .
1 .
)
i n t h e f o r m
= −
[ 3 m a r k s ]
r = 1
−
2 . ( a ) E v a l u a t e
o
f ( x ) i s d e f i n e d , f i n d t h e m i n i m u m v a l u e o f a a n d t [ h 3 e m a r k s ]
×
1 0 n .
[ 3 m a r k s ]
( a )
d B e y f i n f n e i d d i n g t h e v a l u e s o f g ( 1 ) a n d g ( 3 ) , e x p l a i n w h y t h e i n v e r s e f u n c t i o n g ( 1 x [ ) 2 i m s a n r o k t s ]
6 .
( b ) ( b −
a ) × ( c
F i n d :
( a ) a • b
−
a )
T
h = e − p i o + i c
4 j − 4 k r e s p e c t i v e l y .
n t s A , B a n d C h a v e p o s i t i o n v e c t o r s a = +
i j + 2 k , b =
3 i + 2 j + 4 k a n d [ 3 m a r k s ]
[ 1 m a r k ]
g f : : x x
a a
x 2 – 4 x ,
x + 4 ,
∈ ∈ ℜ ℜ
x x
, , x a ≤
≤
T h e f u n c t i o n s f a n d g a r e d e f i n e d b y :
F o r t h e h y p e r b o l a , s t a t e t h e e q u a t i o n s o f t h e a s y m p t o t e s .
[ 6 m a r k s ]
A n s w 2 e S 0 r e 1 a c 4 l t l i 1 q o u n P e A A s t i [ H o n 4 A s 5 N m G i n a t r h k 9 i s 5 s 4 ] / s 1 e c t i o n
4 x ≤ b ,
5 . a S s k y e m t c p h t o t h t e e s c o u f r t h v e e s h 4 y x 2 p e + r 9 b o y l 2 a . = 3 6 a n d 4 x 2 – y2 = 4 o n t h e s a m e a x e s , s h o w i n g c l e a r l y t [ h 4 e m a r k s ]
C O N F I D E N T I A L *
S h o w t h a t t h e t w o c u r v e s 4 x 2 + 9 y 2 = 3 6 a n d 4 x 2 – y 2 = 4 h a v e t h e s a m e f o c .i
H e n c e , s i m p l i f y
( 3 +
i ) . 5
( b ) θ E x i p s r t h e e s s a t h r g e u c m o e m n t p l o e f x t h n e u m c b o m e p r l e x 3 n + u i m i n b t h e e .r f o r m r ( c o s θ +
[ 5 m a r k s ]
i s i n θ ) , w h e r e r i s t h e m o d u l u s a n d
4 . ( a ) G i v e n p ( 1 + 5 i ) – 2 q = 3 + 7 ,i f i n d t h e v a l u e s o f p a n d q i f p a n d q a r e b o t h r e a l n u m [ b 3 e m s r . a r k s ]
C O N F I D E N T I A L *
2
8 . ( d ) i F s i n d r t h e 2 2 1 p o = s 1 i t 1 i o . n v e c t o r o f t h e p o i n t P w h e r e l m e e t s t h e p l a n e .
( c ) F i n d a n e q u a t i o n o f t h e p l a n e c o n t a i n i n g O a n d l .
π
[ 4 m a r k s ]
w h o s e e q u a t i o n
[ 4 m a r k s ]
( b ) t o F i n d l . t h e p o s i t i o n v e c t o r o f A , t h e f o o t o f t h e p e r p e n d i c u l a r f r o m t h e o r i g i n O [ 4 m a r k s ]
( a ) S h o w t h a t l l i e s i n t h e p l a n e w h o s e e q u a t i o n i s
H e n c e o r o t h e r w i s e , s o l v e t h e e q u a t i o n c o t θ
( c ) P r o v e t h a t c o t θ −
t a n θ =
2 c o t 2 θ .
−
t a n θ =
1 2 f o r 0 o
≤ θ ≤
3 6 0 . o [ 3 m a r k s ]
[ 4 m a r k s ]
[ 3 m a r k s ]
t h e r a n g e 0 <
x
< 2 π
H e n c e , s t a t e t h e m a x i m u m v a l u e o f c o s x
c o r r e c t t o t w o d e c i m a + l 2 p s l i a n c e x s . a s w e l l a s t h e c o r r e s p o n d i n g v a l u [ 5 e o m f a x r i k n s ]
( b ) E x p r e s s c o s x +
2 s i n x i n t h e f o r m
R s i n ( x + α
) w h e r e R i s p o s i t i v e a n d 0
< α < 2 π
.
7 . ( a ) I T f h Q e ( p x ) o l h y n a s o m a i q a u l a Q d ( r x a ) t i i s c d f e a c f i t n o e r d ( x b ² y + 5 Q ( ) x a ) n = d a x ³ z + e m r o x o ² f + – 5 2 x , – f i n n d . t h e v a l u e s o f m a n d n . [ 3 m a r k s ]
C O N F I D E N T I A L *
A n s w e r a S n y e c
o t i n o e n q B u
e 1 s [ t i 5 o m n a i n r k t s h ] i s s e c t i o n