2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
S e c t t i o n A [ 4 5 m a r k s ] A n s w e r a l l q u e s t i o n s i n t h i s s e c t i o n . 2 1 . F i n d t h e s e t v a l u e s o f x f o r w h i c h 1 − 3 x > . x 2 . ( a ) G i v e n t h a t y = l o g 2 x a n d l o g
y
2
2
x − l o g
x
8 + lo g
2
2
k
+ k l o g
+ k y + 2 k − 3 = 0 .
( b ) S o l v e t h e e q u a t i o n 2
2 x + 1
= 3 ⋅2
x
− 1 .
[ 5 m x
a r k s ]
4 = 0 , s h o w t h a t [ 3 m
a r k s ]
[ 4 m
a r k s ]
− 4 ⎞ ⎟ 3 . G i v e n t h a t M 2 1 5 4 ⎟ . F i n d t h e m a t r i x N – 6 M 1 4 1 6 ⎠⎟ s h o w t h a t M ( N – 6 M ) = k I w h e r e k i i s a n i n t e g e r a n d I i s a 3 × 3 m a t r i x . ⎛ 2 ⎜ = 0 ⎜ ⎜ − 1 ⎝
0
− 1 ⎞ ⎛ 1 5 ⎟ ⎜ 1 ⎟ a n d N = ⎜ − 1 ⎜ − 4 2 ⎠⎟ ⎝
,P E N A N G
− 1
S t a t e t h e v a l u e o f k a a n d h e n c e f i n d t h e i n v e r s e o f m a t r i x M . 4 . S o l v e t h e f o l l o w i n g s y s t e m
o f lin e a r e q x – 2 2 y y + + z z = = 2 x x + y y – – 3 z z = = 4 x x – 7 y y + + z z = =
[ 7 m
u a t i o n s u s i n g G a u s s i a n e l i m i n a t i o n : 0 5 [ 8 m – 1
a n d
a r k s ]
a r k s ]
5 . T h e f u n c t i o n s f f a n d g a a r e d e f i n e d a s :
f : x → g : x →
x x ≥ 0 3 l n x x > 0
( a ) S k e t c h t h e g r a p h o f f a n d s t a t e w h e t h e r f − 1 e x i s t . G i v e a r e a s o n f o r y o u r a n s w e r . ( b ) F i n d g − 1 a n d s t a t e i t s d o m a i n . ( c ) F i n d t h e c o m p o s i t e f u n c t i o n f g − 1 a n d s t a t e i t s r a n g e .
[ 9 m
a r k s ]
− 7 x + 8 [ 4 m a r k s ] i n p a r t i a l f r a c t i o n s . 2 ( x + 2 ) ( 1 − 3 x ) ( b ) T h e r e m a i n d e r o b t a i n e d w h e n 3 x 3 + m x 2 − 4 x − 2 i s d i v i d e d b y x + 1 i s t w i c e t h e r e m a i n d e r o b t a i n e d w h e n t h e s a m e e x p r e s s i o n i s d i v i d e d b y x − 2 . F i n d t h e v a l u e
6 . ( a ) E x p r e s s
o f m m .
6 x
2
[ 5 m
a r k s ]
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 2
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
S e c t t i o n B [ 1 5 m a r k s ] A n s w e r a n y o n e q u e s t i o n i n t h i s s e c t i o n . 7 . R r F ( ( S l F
e l a t i v e t o a f i x e d o r i g i n O , t h e p o i n t s A A , B a n d C h h a v e p o s i t i o n v e c t o r s g i v e n b = 5 i – 2 jj + 3 k , c = 4 i + jj – 2 k e s p e c t i v e l y b y a = 2 i + 3 jj – k , in d (i) t h e l e n g t h o f A B , c o r r e c t t o 3 s i g n i f i c a n t f i g u r e s , i i ) a n g l e B A C , c o r r e c t t o t h e n e a r e s t d e g r e e , i i i ) t h e a r e a o f t r i a n g l e A B C , c o r r e c t t o 3 s i g n i f i c a n t f i g u r e s . h o w t h a t , f o r a l l t h e r e a l v a l u e s o f t h e p a r a m e t e r t , t h e p o i n t P w i t h p o s i t i o n v e c t o r i e s o n t h e l i n e t h r o u g h A a n d B . [ 1 5 m a r k s ] i n d p s u c h t h a t O P i s p e r p e n d i c u l a r t o A B .
8 . T h e p o i n t s A A a n d B h a v e p o s i t i o n v e c t o r s 3 i + r e l a t i v e t o t h e o r i g i n O . T h e p o i n t C i i s o n t h e 2 O O A . T h e p o i n t D i i s o n O B p r o d u c e d a n d i s s t h a t OO C X D i s a p a r a l l e l o g r a m . S h o w t h a t t h e F i n d ( i ) i n t h e f o r m r = u + t v , t h e e q u a t i o n s o f t h (ii) th e p o s itio n v e c to r o f th e p o in t o f in te rs e ( i i i ) t h e a n g l e B A X . ( i v ) t h e a r e a o f t h e p a r a l l e l o g r a m O C X D .
2 jj + k a n l i n e O A p p u c h t h a t B l i n e A X i s
d i + ro d u D = p a ra
2 jj + 3 k , r c e d a n d is O B . T h e p lle l to th e
e s p s u c o in v e c
e c t i v e l y , h t h a t A C = = t X i s s u c h t o r i + jj + k .
e l i n e A X a n d C D . c t i o n b e t w e e n t h e l i n e s A A X a n d C D . [ 1 5 m
a r k s ]
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 3
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
A N S W E R S C H E M E S M J K J I T S I N − S T P M T r i a l E x a m m i n a t i o n 2 0 1 2 M a r k i n g s c h e m e f o r M a t h e m a t i c s T P a p e r 1
N o 1
S e c t t i o n A [ 4 5 m a r k s ] o r k i n g / A n s w e r
W
1 − 3 x x >
2 x
P a r t i a l m a r k s
, x ≠ 0 y
y = 1 − 3 x
G ra p h : V
s h a p e 1 ( , 0 ) : D 3 R e c ip r o c D
y = 3 x − 1
• A ( 1 , 2 ) y =
1
2
T o t a l m a r k s 5
& 1
a l : 1
x
P o in t A
: B 1
x
0 1 1 3
T h e s e t o f v a l u e s o f x i s { x x | x ∈ R , x < 0 o r x > 1 } .
A n s : M 1 A 1
O R 1 − 3 x >
2 x
, x ≠ 0
⇔ 1 − 3 x > 1 − 3 x −
2 x
× ( − 1 ) ,
x
o r 1 − 3 x < −
2 x
M 1
> 0
x − 3 x 2 − 2 x
2
> 0
3 x 2 − x + 2 x
< 0
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 4
2 0 1 2 T R IA L S T P M
B A H A R U
3 x 2 − x + 2 = 3 ( x 2 −
2 ( a )
x
M A T H E M A T IC S T
S M J K
lo g
2
x −
2
x − l o g lo g lo g
2 2
8 x
x
8 + lo g
+ k lo g
2
2
k
+ k l o g ⎛ lo g
x
4 = 0
4 ⎞ ⎟ = 0 l o g x 2 ⎝ ⎠
2 2 + k ⎜
2
⎛ 2 ⎞ + k + k ⎜ ⎟ = 0 , y ⎝ y ⎠ l o g 2 8 = l o g 2 2 3 = 3 , l o g 2 4 = l o g 2 2 2 = 2 y 2 − 3 + k y + 2 k = 0 y 2 + k y + 2 k − 3 = 0 y −
,P E N A N G
) + 2
3 1 1 = 3 ( x − ) 2 − 3 ( − ) 2 + 2 6 6 1 1 1 = 3 ( x − ) 2 + 1 > 0 6 1 2 S i n c e 3 x 2 − x + 2 > 0 ⇒ x < 0 2 1 − 3 x < − , x ≠ 0 x 2 1 − 3 x + < 0 x x − 3 x 2 + 2 < 0 x 3 x 2 − x − 2 × ( − 1 ) , > 0 x ( 3 x + 2 ) ( x − 1 ) > 0 x L e t 3 x + 2 > 0 , x − 1 > 0 , x > 0 2 x > − , x > 1 , x > 0 3 u s e n u m b e r l i n e , … 2 − < x < 0 o r x > 1 3 ∴ t h e s e t o f v a l u e s o f x i s { x x | x ∈ R , x < 0 o r x > 1 } G i v e n t h a t y = l o g 2 x lo g
J IT S IN
3
M 1 ( e i t h e r )
A 1
A 1 A 1 3
M
1 ( c h a n g i n g b a s e )
M
1 ( s u b s t . c o r r e c t y y , l o g 2 8 = 3 , l o g 2 4 = 2 )
A 1
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 5
2 0 1 2 T R IA L S T P M 2 ( b )
B A H A R U
M A T H E M A T IC S T
J IT S IN
,P E N A N G
2 x + 1
= 3 ⋅ 2 x − 1 . 2 ( 2 x ) 2 − 3 ⋅ 2 x + 1 = 0 ( 2 ⋅ 2 x − 1 ) ( 2 x − 1 ) = 0 T h e n 2 ⋅ 2 x − 1 = 0 a n d 2 2
S M J K
2 x =
1
4 M
x
2
2 2 x = 2 − 1 x = − 1
M 1 ( f a c t o r i z e ) A 1 ( b o t h )
− 1 = 0
x
1 ( q u a d r a t i c f o r m )
= 1
2 x = 2 0 x = 0
A 1 ( b o t h )
∴ x = − 1 , 0 3
G iv e n th a t M
⎛ 1 5 ⎜ N – 6 M = − 1 ⎜ ⎜ − 4 ⎝ ⎛ 3 ⎜ = ⎜ − 1 ⎜ 2 ⎝
⎛ 2 ⎜ = 0 ⎜ ⎜ − 1 ⎝ − 1 1 5 4
− 1 3
− 2
0 2 1
− 1 ⎞ ⎛ 1 5 ⎟ ⎜ 1 a n d N = − 1 ⎟ ⎜ ⎟ ⎜ − 4 2 ⎠ ⎝
− 4 ⎞ ⎟ 4 ⎟ – 6 1 6 ⎠⎟ 2 ⎞ ⎟ − 2 ⎟ 4 ⎠⎟
⎛ 2 ⎜ 0 ⎜ ⎜ − 1 ⎝
0 2 1
− 1 ⎞ ⎟ 1 ⎟ 2 ⎠⎟
0 2 ⎞ − 1 ⎞ ⎛ 3 − 1 ⎛ 2 ⎜ ⎟ ⎜ ⎟ M ( N – 6 M ) = 0 2 1 − 1 3 − 2 ⎜ ⎟ ⎜ ⎟ ⎜ − 1 1 ⎟ ⎜ 2 ⎠ ⎝ 2 4 ⎠⎟ − 2 ⎝ ⎛ 1 0 0 ⎞ ⎛ 4 0 0 ⎞ ⎜ 0 4 0 ⎟ = 4 ⎜ 0 1 0 ⎟ = ⎜ ⎜ ⎟ ⎟ ⎜ ⎟ ⎜ 0 0 4 ⎟ ⎝ ⎠ ⎝ 0 0 1 ⎠ ∴ M ( N – 6 M ) = 4 I s h o w n = 4 ∴ k =
− 1 1 5 4
− 4 ⎞ ⎟ 4 . ⎟ 1 6 ⎠⎟
M
7
1
A 1
M
1
A A
1 1
M
1
M (N
– 6 M ) = 4 I N − 6 M M ( ) = I 4
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 6
2 0 1 2 T R IA L S T P M − 1
∴ M
=
1 4
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
( N − 6 M )
2 ⎞ − 1 ⎛ 3 ⎟ 1 3 2 = − − ⎟ 4 ⎜⎜ − 2 4 ⎠⎟ ⎝ 2 1 1 ⎞ ⎛ 3 − ⎜ 4 4 2 ⎟ ⎜ ⎟ 1 3 1 = ⎜ − − ⎟ ⎜ 4 4 2 ⎟ ⎜ 1 ⎟ 1 ⎜⎜ 1 ⎟ ⎟ − 2 ⎝ 2 ⎠ 1 ⎜
4
A 1
G i v e n t h a t x x – 2 2 y y + + z = = 0 2 x x + y y – – 3 z z = = 5 4 x x – 7 y y + + z = = – 1
⎛ 1 ⎜ ⎜ 2 ⎜ 4 ⎝
− 2 1
− 7
R R
2 3
3
0 ⎞
1
⎟ − 3 5 ⎟ 1 − 1 ⎠⎟
B 1
− 2
+ ( − 2 R 1 ) → R 2 + ( − 4 R 1 ) → R 3
⎛ 1 ⎜ ⎜ 0 ⎜ 0 ⎝
− 2
↔ R 3
⎛ 1 ⎜ ⎜ 0 ⎜ 0 ⎝
− 2
+ ( − 5 R 2 ) → R 3
⎛ 1 ⎜ ⎜ 0 ⎜ 0 ⎝
R
R
8
2
5 1
1 5
1 0
0 ⎞
1
⎟ − 5 5 ⎟ − 3 − 1 ⎠⎟ 1
1 ( o n e o p e r a t i o n ) 1 ( o n e o p e r a t i o n )
0 ⎞
⎟ − 3 − 1 ⎟ 5 ⎠⎟ − 5 1
0 ⎞
⎟ − 3 − 1 ⎟ 1 0 1 0 ⎠⎟
[ e c h e l o n f o r m T h u s ,
M M
M 1 A 1 ( o n e o p e r a t i o n )
]
1 0 z = = 1 0 … … . . ( 1 ) y – – 3 z z = = – 1 … … . . ( 2 ) x – 2 y y + + z = = 0 … … … ( 3 )
A 1
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 7
2 0 1 2 T R IA L S T P M fro m
B A H A R U
( 1 ) ,
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
z = = 1
s u b s t . z = = 1 i n t o ( 2 ) , y y – – 3 ( 1 ) = – 1 y = = 2 s u b s t . z = = 1 a n d y = = 2 i n t o ( 3 ) , x x – 2 ( 2 ) + ( 1 ) = 0 x = 3
M
1
T h e r e f o r e , x = 3 , y = = 2 a n d z = = 1 A 1 5 ( a )
G i v e n t h a t f : x →
2
x x ≥ 0
y f ( x ) = x
x
0 S in c e a n y h o riz y = f(x ) a t o n ly o n e f u n c tio n a s f − 1 e x i s t b e c a u o n e , a n d d e fin e 5 ( b )
G r a p h : D 1
t a l l i n e y = k f o r k ≥ 0 c u t s t h e g r a p h B 1 e p o i n t , t h e r e f o r e y = f ( x ) i s o n e t o c h f − 1 e x i s t s . f o r t h e g i v e n d o m a i n f ( x ) i s o n e t o d f o r a l l v a l u e s o f x . o n o n s u s e
g ( x ) = 3 l n x , D g = ( 0 , ∞ ) , R g = ( − ∞ , ∞ ) L e t y = g − 1 ( x )
∴
∴ g
x = g ( y ) ) = 3 l n y x l n y = 3 − 1
x
f g
− 1
M
1
A 1
( x ) = e 3
D o m a i n o f g − 1 ( x ) = R g = { x x | x ∈ ℜ } 5 ( c )
3
A 1
4
x
( x ) = f ( e ) 3
M
1
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 8
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
x
= e 3 A 1 A 1
x
= e 6 , T h e r a n g e o f f g 6 ( a )
6 x
L e t
( x
2
D f g − 1 = { x | x ∈ R } − 1
A 1
( x ) i s { y y : : y > > 0 }
A B x + c − 7 x + 8 ≡ + 2 x + 2 + 2 ) (1 − 3 x ) 1 − 3 x
4
2
+ 2 ) + ( 1 − 3 x ) ( B x + C ) 2 ⎛ ⎛ 1 ⎞ 2 ⎞ 1 ⎛ 1 ⎞ ⎛ 1 ⎞ S u b s t . x = , 6 ⎜ ⎟ − 7 ⎜ ⎟ + 8 = A ⎜ ⎜ ⎟ + 2 ⎟ ⎜ ⎝ 3 ⎠ ⎟ 3 ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ ⎠ 2 7 ⎛ 1 ⎞ − + 8 = A ⎜ + 2 ⎟ 3 3 ⎝ 9 ⎠ 2
6 x
− 7 x + 8 ≡ A (x
M
2
1 9
1 9 A 3 9 A = 3
1
A 1
=
M
1
C o m p a r i n g c o e f f i c i e n t s o f x 2 , 6 = A − 3 B − 3 B = 3 B = − 1 C o m p a r in g th e c o n s ta n t te r m
∴
6 ( b )
3 x
6 x ( x
3
2
: 8 = 2 A + C C = 2
− 7 x + 8 3 ( − x + 2 ) ≡ + 2 x + 2 + 2 ) (1 − 3 x ) 1 − 3 x 2
A 1
+ m x 2 − 4 x − 2
h e n x = – 1 , f ( − 1 ) = 3 x 3 + m x
5
W
2
− 4 x − 2 = 3 ( − 1 ) 3 + m ( − 1 ) 2 − 4 ( − 1 ) − 2
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 9
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
= − 3 + m + 4 − 2 = − 1 + m h e n x = 2 , f ( 2 ) = 3 x 3 + m x
S M J K
J IT S IN
,P E N A N G
B 1
W
f(– 1 ) − 1 + m − 1 + m − 2 9
2
− 4 x − 2 = 3 ( 2 ) 3 + m ( 2 ) 2 − 4 ( 2 ) − 2 = 2 4 + 4 m − 8 − 2 B 1 = 4 m + 1 4
m = −
1 1
A 1
7
N o
7
M M
= 2 f ( 2 ) = 2 ( 4 m + 1 4 ) = 8 m + 2 8 = 7 m m 2 9
S e c t t i o n B [ 1 5 m a r k s ] o r k i n g / A n s w e r
W
P a r t t i a l m a r k s
( i ) A B = b − a = ( 5 i – 2 jj + 3 k ) – ( 2 i + 3 jj – k ) = 3 i – 5 jj + 4 k L e n g t h o f A B = 3 2 + ( − 5 ) 2 + 4 2
M
1
M
1
T o t a l m a r k s 1 5
= 5 0 = 7 . 0 7 u n i t s ( 3 s i g . f i g . )
A 1
( i i ) A C
= c − a
= ( 4 i + jj – 2 k ) – ( 2 i + 3 jj – k ) = 2 i – 2 jj – k
L e n g t h o f A C =
2
2
+ 2
2
B 1
+ 1 2
= 3
c o s ∠ B A C =
=
A B
A C
A B ⋅ A C
( 3 i − 5 j + 4 k ) ⋅ ( 2 i − 2 j − k )
1
M
1
(
=
5 0 ) ( 3 ) 6 + 1 0 − 4
M
1 5
2
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 1 0
2 0 1 2 T R IA L S T P M
B A H A R U 4
=
2
=
5
M A T H E M A T IC S T 2
J IT S IN
,P E N A N G
A 1
5
2
S M J K
∴ ∠ B A C = 5 6 ( n e a r e s t d e g r e e ) �
( i i i ) A r e a o f ∆ A B C
1
=
2
A B
A C
⎛ 2 2 ⎞ 5 0 ) ( 3 ) 1 − ⎜ ⎜ 5 ⎟ ⎟ ⎝ ⎠
(
2 1
= 5
M
1
1 7
2 ( 3 )
2 3
=
s i n ∠ B A C 2
1
=
5
3 4 2 = 8 . 7 5 ( 3 s i g . f i g . )
A 1
O R
i
j
k
3
− 5
4
2
− 2
− 1
( i i i ) A B × A C =
= ( 5 + 8 ) i – ( – 3 – 8 ) j j + ( – 6 + 1 0 ) k = 1 3 i + 1 1 jj + 4 k A r e a o f ∆ A B C
= = =
1 2 1 2
A B × A C 1 3
2
+ 1 1 + 4 2
2
M
1
3 0 6
2 = 8 . 7 5 ( 3 s i g . f i g . )
A 1
A v e c t o r e q u a t i o n o f t h e l i n e p a s s i n g t h r o u g h A a a n d B i s g i v e n b y
M 1 r = ( 2 i + 3 jj – k ) + λ ( A B ) = ( 2 i + 3 jj – k ) + λ ( 3 i – 5 jj + 4 k ) = ( 2 + 3 λ ) i + ( 3 – 5 λ ) j j + ( – 1 + 4 λ ) k p = ( 2 + 3 t ) i + ( 3 – 5 t ) j j + ( – 1 + 4 t ) k A 1 T h i s h a s t h e f o r m g i v e n f o r t h e p o s i t i o n v e c t o r o f P . T h e r e f o r e , f o r a l l v a l u e s o f t , P l i e s o n t h e l i n e
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 1 1
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
J IT S IN
,P E N A N G
t h r o u g h A a n d B . O R p = ( 2 + 3 t ) i + ( 3 – 5 t ) j j + ( – 1 + 4 t ) k p = 2 i + 3 jj – k + t ( 3 i – 5 jj + 4 k ) . . . ( 1 ) s i n c e p = a + t A B o r s in c e p s a t i A a n d T h e re A a n d
O A s fie s B fo fo re B .
= 2 i + th e v e r a ll v f o r a ll
3 jj – k a c to r e q u a lu e s o f v a lu e s
n d A B = ( 3 i – 5 jj + 4 k ) , a t i o n o f t h e l i n e p a s s e s t h r o u g h t . o f t , P l i e s o n t h e l i n e t h r o u g h
F o r O P t o b e p e r p e n d i c u l a r t o A B ,
O P ⋅ A B = 0 [ ( 2 + 3 t ) i + ( 3 – 5 t ) j j + ( – 1 + 4 t ) k ] ⋅ [ 3 i – 5 jj + 4 k ] = 6 + 9 t t – – 1 5 + 2 5 t – – 4 + 1 6 t = = – 1 3 + 5 0 t t = = t = = ∴ p = ( 2 + 0 . 7 8 ) i + ( 3 – 1 . 3 ) j j + ( – 1 + 1 . 0 4 ) k = 2 . 7 8 i + 1 . 7 jj + 0 . 0 4 k
8 .
D •
M
1
0 0 A 1 0 M 1 0 . 2 6 A 1
1 5
• X
1 B • 1 O •
•
1 A
2
• C
⎛ 3 ⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ G i v e n O A = 2 , O B = 2 ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ 3 ⎠
A X
= A C + C X = 2 O A + 2 O B = 2 ( O A + O B )
M
1
A 1
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 1 2
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
+ 1 ⎞ ⎟ + 2 ⎟ = 2 + 3 ⎠⎟
⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎜ ⎟ ⎜ ⎟ ⎜ = 2 [ ⎜ 2 ⎟ + ⎜ 2 ⎟ ] = 2 ⎜ 2 ⎜ ⎟ ⎜ ⎟ ⎜ 1 ⎝ ⎝ 1 ⎠ ⎝ 3 ⎠ ⎛ ⇒ A X i s p a r a l l e l t o ⎜⎜ ⎜ ⎝
⎛ 4 ⎞ ⎜ ⎟ ⎜ 4 ⎟ = 8 ⎜ 4 ⎟ ⎝ ⎠
S M J K
⎛ 1 ⎞ ⎜ ⎟ ⎜ 1 ⎟ ⎜ 1 ⎟ ⎝ ⎠
J IT S IN
,P E N A N G
A 1
1 ⎞
⎟
1 ⎟ . ( S h o w n ) 1 ⎠⎟ B 1
⎛ 3 ⎜ ( i ) E q u a t i o n o f A X : r = ⎜ 2 ⎜ 1 ⎝ C D = O D − O C = 2 O B − ⎛ 2 ⎞ ⎛ ⎜ ⎟ ⎜ = ⎜ 4 ⎟ − ⎜ ⎜ 6 ⎟ ⎜ ⎝ ⎠ ⎝
⎞ ⎛ 1 ⎞ ⎟ + λ ⎜ 1 ⎟ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎠ ⎝ 1 ⎠ 3 O A 9 ⎞ ⎛ − 7 ⎞ ⎟ ⎜ ⎟ 6 = − 2 ⎟ ⎜ ⎟ ⎟ ⎜ 3 ⎠ ⎝ 3 ⎠⎟ ⎛ 2 ⎞ ⎛ − 7 ⎞ ⎜ ⎟ ⎜ ⎟ ∴ E q u a t i o n o f C D : : r = ⎜ 4 ⎟ + µ ⎜ − 2 ⎟ ⎜ 6 ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ 3 ⎠
( ii) A t p o in t o f in te r s e c tio n 3 + λ = 2 − 7 µ ⇒ λ + 2 + λ = 4 − 2 µ ⇒ λ + 1 + λ = 6 + 3 µ ⇒ λ − ( 1 ) – ( 2 ) : 5 µ = − 3 ⇒
⎛ 3 + λ ⎞ ⎜ ⎟ , 2 + λ = ⎜ ⎟ ⎜ 1 + λ ⎟ ⎝ ⎠ 7 µ = − 1 … 2 µ = 2 … 3 µ = 5 …
µ = −
M
⎛ 2 − 7 µ ⎞ ⎜ ⎟ 4 − 2 µ ⎜ ⎟ ⎜ 6 + 3 µ ⎟ ⎝ ⎠ … … …
1
A 1
M
1
M
1
(1 ) (2 ) (3 )
3 5
⎛
3 ⎞ 1 6 F r o m ( 1 ) , λ = − 1 − 7 ⎜ − ⎟ = 5 ⎝ ⎠ 5 1 6 C h e c k ( 3 ) , L H S = λ − 3 µ = − 3 5
⎛
3 ⎞ − ⎜ ⎟ = 5 = R H S ⎝ 5 ⎠
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 1 3
2 0 1 2 T R IA L S T P M
B A H A R U
M A T H E M A T IC S T
S M J K
⎛ 3 1 ⎞ ⎜ 5 ⎟ ⎜ ⎟ 2 6 ⎟ ∴ p o s i t i o n v e c t o r o f p o i n t o f i n t e r s e c t i o n i s ⎜ ⎜ 5 ⎟ ⎜ ⎟ 2 1 ⎜⎜ ⎟ ⎟ ⎝ 5 ⎠ ⎛ 1 − 3 ⎜ ( i i i ) A B = O B − O A = 2 − 2 ⎜ ⎜ 3 − 1 ⎝
⎛ − 2 ⎞ ⎛ − 1 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ 0 2 0 = = ⎟ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ 2 ⎠ ⎝ 1 ⎠ ⎞
⎛ − 1 ⎜ 0 ⎜ ⎜ 1 A B ⋅ A X ⎝ c o s ∠ B A X = = 1 + 1 A B A X − 1 + 1
=
2
3
⎞ ⎟ ⎟ ⎟ ⎠
J IT S IN
,P E N A N G
A 1
⎛ 1 ⎞ ⎜ ⎟ ⋅ ⎜ 1 ⎟ ⎜ ⎟ ⎝ 1 ⎠ 1 + 1 + 1
M
1
M
1
A 1
= 0
∴ ∠ B A X = 9 0
�
i
j
k
( i v ) O C × O D = 9 6 2
=
3
4
6
3 4
6
6 i −
9
3 2
6
j +
2
9
6 k 4
= ( 3 6 – 1 2 ) i –– ( 5 4 – 6 ) j j + ( 3 6 – 1 2 ) k = 2 4 i –– 4 8 jj + 2 4 k a r e a o f t h e p a r a l l e l o g r a m O C X D
2 4
1
M
1
= O C × O D
=
M
2
A 1
+ ( − 4 8 ) + 2 4 2
2
= 3 4 5 6 = 5 7 . 7 9
9 5 4 / 1 * T h i s q u e s t i o n p a p e r i s C O N F I D E N T I A L u n t i l t h e e x a m i n a t i o n i s o v e r . C O N F I D E N T I A L * 1 4