10
KATA PENGANTAR
Puji dan syukur penulis panjatkan atas Kehadirat Tuhan Yang Maha Esa yang telah memberi petunjuk dan kekuatan sehingga penulis dapat menyelesaikan makalah ini yang berjudul "AGITASI DAN MIXING".
Penulis menyadari sepenuhnya bahwa susunan dan materi yang terkandung di dalam makalah ini belumlah sempurna. Untuk itu saran dan kritik yang sifatnya membangun selalu penulis harapkan dengan senang hati dari semua pihak demi kesempurnaan makalah ini.
Insya Allah makalah ini dapat membawa pemahaman dan pengetahuan bagi kita semua tentang tata cara pengolahan limbah plastik sebagai modal pembelajaran dalam mata kuliah pengolahan limbah pabrik kimia.
Malang, 07 Mei 2014
Penulis
DAFTAR ISI
KATA PENGANTAR i
DAFTAR ISI ii
BAB I PENDAHULUAN 3
1.1. Latar Belakang 3
1.2. Tujuan 3
1.3 Rumusan Masalah 3
BAB II PEMBAHASAN 4
2.1 Pengadukan 4
2.3 Jenis-Jenis Pengaduk 4
2.3.1 Pengaduk Jenis Baling-Baling (Propeller) 4
2.3.2 Pengaduk Dayung (Paddle) 5
2.3.3 Pengaduk Turbin 5
2.3.4 Pengaduk Helical-Ribbon 6
2.4 Posisi Sumbu Pengaduk Dan Pola Aliran 7
2.5 Kecepatan Pengaduk 8
2.5.1 Kecepatan putaran rendah 8
2.5.2 Kecepatan Putaran Sedang 8
2.5.3 Kecepatan Putaran Tinggi 8
2.6 Jumlah Pengaduk 9
2.7 Kebutuhan Daya Pengaduk 9
2.7.1 Bilangan Reynold 9
2.7.2 Bilangan Fraude 10
2.8 Pencampuran (Mixing) 10
2.9 Laju dan Waktu Pencampuran 12
DAFTAR PUSTAKA 14
BAB I PENDAHULUAN
1.1. Latar Belakang
Pengadukan (agitation) adalah pemberian gerakan tertentu sehingga menimbulkan reduksi gerakan pada tersebut mempunyai pola sirkulasi. Akibat yang ditimbulkan dari operasi pengadukan adalah terjadinya pencampuran (mixing) dari satu atau lebih komponen yang teraduk. Ada beberapa tujuan yang ingin diperoleh dari komponen yang dicampurkan, yaitu membuat suspensi, blending, dispersi dan mendorong terjadinya transfer panas dari bahan ke dinding tangki.
Pada industri kimia seperti proses katalitik dari hidrogenasi, pengadukan mempunyai beberapa tujuan sekaligus. Pada bejana hidrogenasi gas hidrogen disebarkan melewati fasa cair dimana partikel padat dari katalis tersuspensi. Pengadukan juga dimaksudkan untuk menyebarkan panas dari reaksi yang dipindahkan melalui cooling coil dan jaket.
Contoh lain pemakaian operasi pengadukan dalam industi adalah pencampuran pulp dalam air untuk memperoleh "larutan" pulp. Larutan pulp yang sudah cukup homogen disebarkan ke mesin pembuat kertas menjadi lembaran kertas setelah proses filtrasi vakum dan dikeringkan.
1.2. Tujuan
Mencampur dua cairan yang saling melarut
Melarutkan padatan dalam cairan
Mendispersikan gas dalam cairan dalam bentuk gelembung
untuk mempercepat perpindahan panas antara fluida dengan koil pemanas dan jacket pada dinding bejana
Menggambarkan pola aliran yang dibentuk oleh pengaduk dalam tangki.
Menggambarkan pola aliran dalam berbagai kecepatan putaran pengaduk.
Menentukan daerah rezim aliran dalam operasi pengadukan.
1.3 Rumusan Masalah
1. bagaimana bentuk pola aliran yang dibentuk oleh berbagai pengaduk dalam tangki.
2. Bagaimana bentuk pola aliran dalam berbagai kecepatan putaran pengaduk
BAB II PEMBAHASAN
2.1 Agitsi (Pengadukan)
Pengadukan adalah operasi yang menciptakan terjadinya gerakan dari bahan yang diaduk seperti molekul- molekul, zat-zat yang bergerak atau komponennya menyebar (terdispersi).
gambar 1. (Dimensi sebuah Tangki Berpengaduk)
Dimana : C = tinggi pengaduk dari dasar tangki
D = diameter pengaduk
Dt = diameter tangki
H = tinggi fluida dalam tangki
J = lebar baffle
W = lebar pengaduk
2.3 Jenis-Jenis Pengaduk
Secara umum, terdapat tiga jenis pengaduk yang biasa digunakan secara umum, yaitu pengaduk baling – baling, pengaduk turbin, pengaduk dayung dan pengaduk.
2.3.1 Pengaduk Jenis Baling-Baling (Propeller)
Ada beberapa jenis pengaduk yang biasa digunakan. Salah satunya adalah baling-baling berdaun tiga.
Gambar 5. Pengaduk jenis Baling-baling (a), Daun Dipertajam (b), Baling-baling kapal (c)
Baling-baling ini digunakan pada kecepatan berkisar antara 400 hingga 1750 rpm (revolutions per minute) dan digunakan untuk cairan dengan viskositas rendah.
2.3.2 Pengaduk Dayung (Paddle)
Berbagai jenis pengaduk dayung biasanya digunakan pada kesepatan rendah diantaranya 20 hingga 200 rpm. Dayung datar berdaun dua atau empat biasa digunakan dalam sebuah proses pengadukan. Panjang total dari pengadukan dayung biasanya 60 - 80% dari diameter tangki dan lebar dari daunnya 1/6 - 1/10 dari panjangnya.
Gambar 6. Pengaduk Jenis Dayung (Paddle) berdaun dua
Pengaduk dayung menjadi tidak efektif untuk suspensi padatan, karena aliran radial bisa terbentuk namun aliran aksial dan vertikal menjadi kecil. Sebuah dayung jangkar atau pagar, yang terlihat pada gambar 6 biasa digunakan dalam pengadukan. Jenis ini menyapu dan mengeruk dinding tangki dan kadang-kadang bagian bawah tangki. Jenis ini digunakan pada cairan kental dimana endapan pada dinding dapat terbentuk dan juga digunakan untuk meningkatkan transfer panas dari dan ke dinding tangki. Bagaimanapun jenis ini adalah pencampuran yang buruk. Pengaduk dayung sering digunakan untuk proses pembuatan pasn kanji, cat, bahan perekat dan kosmetik.
2.3.3 Pengaduk Turbin
Pengaduk turbin adalah pengaduk dayung yang memiliki banyak daun pengaduk dan berukuran lebih pendek, digunakan pada kecepatan tinggi untuk cairan dengan rentang kekentalan yang sangat luas. Diameter dari sebuah turbin biasanya antara 30 - 50% dari diamter tangki. Turbin biasanya memiliki empat atau enam daun pengaduk. Turbin dengan daun yang datar memberikan aliran yang radial. Jenis ini juga berguna untuk dispersi gas yang baik, gas akan dialirkan dari bagian bawah pengadukdan akan menuju ke bagian daun pengaduk lalu tepotong-potong menjadi gelembung gas.
Gambar 7. Pengaduk Turbin pada bagian variasi.
Pada turbin dengan daun yang dibuat miring sebesar 45o, seperti yang terlihat pada gambar 8, beberapa aliran aksial akan terbentuk sehingga sebuah kombinasi dari aliran aksial dan radial akan terbentuk. Jenis ini berguna dalam suspensi padatan kerena aliran langsung ke bawah dan akan menyapu padatan ke atas. Terkadang sebuah turbin dengan hanya empat daun miring digunakan dalam suspensi padat. Pengaduk dengan aliran aksial menghasilkan pergerakan fluida yang lebih besar dan pencampuran per satuan daya dan sangat berguna dalam suspensi padatan.
Gambar 8. Pengaduk Turbin Baling-baling.
2.3.4 Pengaduk Helical-Ribbon
Jenis pengaduk ini digunakan pada larutan pada kekentalan yang tinggi dan beroperasi pada rpm yang rendah pada bagian laminer. Ribbon (bentuk seperti pita) dibentuk dalam sebuah bagian helical (bentuknya seperti baling-balling helicopter dan ditempelkan ke pusat sumbu pengaduk). Cairan bergerak dalam sebuah bagian aliran berliku-liku pada bagiam bawah dan naik ke bagian atas pengaduk.
Gambar 9. Pengaduk Jenis (a), (b) & (c) Hellical-Ribbon, (d) Semi-Spiral
2.4 Posisi Sumbu Pengaduk Dan Pola Aliran
Pada umumnya proses pengadukan dan pencampuran dilakukan dengan menempatkan pengaduk pada pusat diameter tangki. Posisi ini memiliki pola aliran yang khas. Pada tangki tidak bersekat dengan pengaduk yang berputar ditengah, energi sentrifugal yang bekerja pada fluida meningkatkan ketinggian fluidapada dinding dan memperendah ketinggian fluida pada pusat putaran. Pola ini biasa disebut dengan pusaran dengan pusat pada sumbu pengaduk. Pusaran ini akan menjadi semakin besar seiring dengan peningkatan kecepatan putaran yang juga meningkatkan turbulensi dari fluida yang diaduk. Pada sebuah proses dispersi gas-cair, terbentuknya pusaran tidak diinginkan. Hal ini disebabkan pusaran tersebut bisa menghasilkan dispersi udara yang menghambat dispersi gas ke cairan dan sebaliknya.
Gambar 3. (Posisi Center dari sebuah Pengaduk yang menghasilkan Vortex
Salah satu upaya untuk menghilangkan pusaran ini adalah dengan merubah posisi sumbu pengaduk. Posisi tersebut berupa posisi sumbu pengaduk tetap tegak lurus namun berjarak dekat dengan dinding tangki (off center) dan posisi sumbu berada pada arah diagonal (incline). Perubahan posisi ini menjadi salah satu variasi dalam penelitian yang dilakukan. Viskositas dari cairan adalah salah satu dari beberapa faktor yang mempengaruhi pemilihan jenis pengaduk.
Gambar 10. Pola aliran yang dihasilkan oleh jenis-jenis pengaduk yang berbeda, (a) Impeller,
(b) Propeller, (c) Paddle dan (d) Helical ribbon
Indikasi dari rentang viskositas pada setiap jenis pengaduk adalah :
Pengaduk jenis baling-baling digunakan untuk viskositas fluida di bawah Pa.s (3000 cP)
Pengaduk jenis turbin bisa digunakan untuk viskositas di bawah 100 Pa.s (100.000 cp)
Pengaduk jenis dayung yang dimodifikasi seperti pengaduk jangkar bisa digunakan untuk viskositas antara 50 - 500 Pa.s (500.000 cP)
Pengaduk jenis pita melingkar biasa digunakan untuk viskositas di atas 1000 Pa.s dan telah digunakan hingga viskositas 25.000 Pa.s. Untuk viskositas lebih dari 2,5 - 5 Pa.s (5000 cP) dan diatasnya, sekat tidak diperlukan karena hanya terjadi pusaran kecil.
2.5 Kecepatan Pengaduk
Salah satu variasi dasar dalam proses pengadukan dan pencampuran adalah kecepatan putaran pengaduk yang digunakan. Variasi kecepatan putaran pengaduk bisa memberikan gambaran mengenai pola aliran yang dihasilkan dan daya listrik yang dibutuhkan dalam proses pengadukan dan pencampuran. Secara umum klasifikasi kecepatan putaran pengaduk dibagi tiga, yaitu : kecepatan putaran rendah, sedang dan tinggi.
2.5.1 Kecepatan Putaran Rendah
Kecepatan rendan yang digunakan berkisar pada kecepatan 400 rpm. Pengadukan dengan kecepatan ini umumnya digunakan untuk minyak kental, lumpur dimana terdapat serat atau pada cairan yang dapat menimbulkan busa. Jenis pengaduk ini meghasilkan pergerakan batch yang empurna dengan sebuah permukaan fluida yang datar untuk menjaga temperatur atau mencampur larutan dengan viskositas dan gravitasi spesifik yang sama.
2.5.2 Kecepatan Putaran Sedang
Kecepatan sedang yang digunakan berkisar pada kecepatan 1150 rpm. Pengaduk dengan kecepatan ini umumnya digunakan untuk larutan sirup kental dan minyak pernis. Jenis ini paling sering digunakan untuk meriakkan permukaan pada viskositas yang rendah, mengurangi waktu pencampuan, mencampuran larutan dengan viskositas yang berbeda dan bertujuan untuk memanaskan atau mendinginkan.
2.5.3 Kecepatan Putaran Tinggi
Kecepatan tinggi yang digunakan berkisar pada kecepatan 1750 rpm. Pengaduk dengan kecepatan ini umumnya digunakan untuk fluida dengan viskositas rendah misalnya air. Tingkat pengadukan ini menghasilkan permukaan yang cekung pada viskositas yang rendah dan dibutuhkan ketika waktu pencampuran sangat lama atau perbedaan viskositas sangat besar.
2.6 Jumlah Pengaduk
Penambahan jumlah pengaduk yang digunakan pada dasarnya untuk tetap menjaga efektifitas pengadukan pada kondisi yang berubah. Ketinggian fluida yang lebih besar dari diameter tangki, disertai dengan viskositas fluida yang lebih besar dann diameter pengaduk yang lebih kecil dari dimensi yang biasa digunakan, merupakan kondisi dimana pengaduk yang digunakan lebih dari satu buah, dengan jarak antar pengaduk sama dengan jarak pengaduk paling bawah ke dasar tangki. Penjelasan mengenai kondisi pengadukan dimana lebih dari satu pengaduk yang digunakan dapat dilihat dalam tabel 1.
Tabel 1. Kondisi untuk Pemilihan Pengaduk
2.7 Kebutuhan Daya Pengaduk
Dalam mencari kebutuhan daya pengaduk dapat menggunakan bilangan dibawah ini.
2.7.1 Bilangan Reynold
Bilangan tak berdimensi yang menyatakan perbandingan antara gaya inersia dan gaya viskos yang terjadi pada fluida. Sistem pengadukan yang terjadi bisa diketahui bilangan Reynold-nya dengan menggunakan persamaan 3.
dimana :
Re = Bilangan Reynold
ρ = dnsitas fluida
µ = viskositas fluida
Dalam sistem pengadukan terdapat 3 jenis bentuk aliran yaitu laminer, transisi dan turbulen. Bentuk aliran laminer terjadi pada bilangan Reynold hingga 10, sedangkan turbulen terjadi pada bilangan Reynold 10 hingga 104 dan transisi berada diantara keduanya.
2.7.2 Bilangan Fraude
Bilangan tak berdimensi ini menunjukkan perbandingan antara gaya inersia dengan gaya gravitasi. Bilangan Fraude dapat dihitung dengan persamaan berikut :
dimana :
Fr = Bilangan Fraude
N = kecepatan putaran pengaduk
D = diameter pengaduk
g = percepatan grafitasi
Bilangan Fraude bukan merupakan variabel yang signifikan. Bilangan ini hanya diperhitungkan pada sistem pengadukan dalam tangki tidak bersekat. Pada sistem ini permukaan cairan dalam tangki akan dipengaruhi gravitasi, sehingga membentuk pusaran (vortex). Vorteks menunjukkan keseimbangan antara gaya gravitasi dengan gaya inersia.
2.8 Mixing (Pencampuran)
Pencampuran adalah operasi yang menyebabkan tersebarnya secara acak suatu bahan ke bahan yang lain dimana bahan-bahan tersebut terpisah dalam dua fasa atau lebih. Proses pencampuran bisa dilakukan dalam sebuah tangki. Faktor-faktor yang mempengaruhi proses pengadukan dan pencampuran diantaranya adalah perbandingan antara geometri tangki dengan geometri pengaduk, bentuk dan jumlah pengaduk, posisi sumbu pengaduk, kecepatan putaran pengaduk, penggunaan sekat dalam tangki dan juga properti fisik fluida yang diaduk yaitu dan. Oleh karena itu, perlu tersedia seperangkat alat tangki berpengaduk yang bisa digunakan untuk mempelajari operasi dari pengadukan dan pencampuran tersebut. Pencampuran terjadi pada tiga tingkatan yang berbeda yaitu :
Mekanisme konvektif : pencampuran yang disebabkan aliran cairan secara keseluruhan (bulk flow).
Eddy diffusion : pencampuran karena adanya gumpalan - gumpalan fluida yang terbentuk dan tercampakan dalam medan aliran.
Diffusion : pencampuran karena gerakan molekuler.
Ketiga mekanisme terjadi secara bersama-sama, tetapi yang paling menentukan adalah eddy diffusion. Mekanisme ini membedakan pencampuran dalam keadaan turbulen dengan pencampuran dalam medan aliran laminer. Secara khusus, proses pengadukan dan pencampuran digunakan untuk mengatasi tiga jenis permasalahan utama, yaitu :
Untuk menghasilkan keseragaman statis ataupun dinamis pada sistem multifase multikomponen.
Untuk memfasilitasi perpindahan massa atau energi diantara bagian-bagian dari sistem yang tidak seragam.
Untuk menunjukkan perubahan fase pada sistem multikomponen dengan atau tanpa perubahan komposisi.
Aplikasi pengadukan dan pencampuran bisa ditemukan dalam rentang yang luas, diantaranya dalam proses suspensi padatan, dispersi gas-cair, cair-cair maupun padat-cair, kristalisasi, perpindahan panas dan reaksi kimia. Kapasitas tangki yang dibutuhkan untuk menampung fluida menjadi salah satu pertimbangan dasar dalam perancangan dimensi tangki. Fluida dalam kapasitas tertentu ditempatkan pada sebuah wadah dengan besarnya diameter tangki sama dengan ketinggian fluida. Rancangan ini ditujukan untuk mengoptimalkan kemampuan pengaduk untuk menggerakkan dan membuat pola aliran fluida yang melingkupi seluruh bagian fluida dalam tangki.
Persamaan (1) merupakan rumus dari volume sebuah tangki silinder. Sehingga salh satu pertimbangan awal untuk merancang alat ini adalah dengan mencari nilai dari diameter yang sama dengan tangki untuk kapasitas fluida yang diinginkan dalam pengadukan dan pencampuran. Diameter tangki ditentukan dengan persamaan (2). Tangki dengan diamter yang lebih kecil dibandingkan ketinggiannya memiliki kecendrungan menambah jumlah pengaduk yang digunakan.
dengan D = t
Rancangan dasar dimensi dari sebuah tangki berpengaduk dengan perbandingan terhadap komponen-komponen yang menyusunnya ditunjukkan pada gambar 1. Hubungan dari dimensi pada gamba 1 adalah :
Geometri dari tangki dirancang untuk menghindari terjadinya yaitu daerah dimana fluida bisa digerakkan oleh aliran pengaduk. Geometri dimana terjadinya biasanya berbentuk sudut ataupun lipatan dari dinding dindingnya.
2.9 Laju dan Waktu Pencampuran
Waktu pencampuran (mixing time) adalah waktu yang dibutuhkan sehingga diperoleh keadaan yang homogen untuk menghasilkan campuran atau produk dengan kualitas yang telah ditentukan. Sedangkan laju pencampuran (rate of mixing) adalah laju dimana proses pencampuran berlangsung hingga mencapai kondisi akhir. Pada operasi pencampuran dalam tangki berpengaduk, waktu pencampuran ini dipengaruhi oleh beberapa hal :
Yang berkaitan dengan alat, seperti :
Ada tidaknya baffle atau cruciform vaffle
Bentuk atau jenis pengaduk (turbin, propele, padel)
Ukuran pengaduk (diameter, tinggi)
Laju putaran pengaduk
Ledudukan pengaduk pada tangki, seperti :
*Jarak pengaduk terhadap dasar tangki
*Pola pemasangan :
- Center, vertikal
- Off center, vertical
- Miring (inclined) dari atas
- Horisontal
Jumlah daun pengaduk
Jumlah pengaduk yang terpasang pada poros pengaduk
Yang berhubungan dengan cairan yang diaduk :
Perbandingan kerapatan atau densitas cairan yang diaduk
Perbandingan viskositas cairan yang diaduk
Jumlah kedua cairan yang diaduk
Jenis cairan yang diaduk (miscible, immiscible)
Faktor-faktor tersebut dapat dijadikan variabel yang dapat dimanipulasi untuk mengamati pengaruh setiap faktor terhadap karakteristik pengadukan, terutama tehadap waktu pencampuran.
DAFTAR PUSTAKA
Djauhari, A., 2002,"Peralatan Kontak dan Pemisah Antar Fasa ", Diktat Kuliah, hal 55-59, Teknik Kimia Politeknik Negeri Bandung.
Buku Petunjuk Praktikum Satuan Operasi, 2004 "Agitasi dan Pencampuran" Jurusan Teknik Kimia, Politeknik negeri Bandung
McCabe, W. L., Smith, J.C. and Harriot, P., 1993, "Unit Operation of Chemical Engineering" 5 rd., hal 257- 260, McGraw-Hill, Singapore