A. LENS LENSA A POSIT POSITIF IF Utuk Bayangan Yang Diperbesar • Data Hasil Per!baan S + + S
"#$
"#$ *( +&,) ++
&'' () ('
S ⋅ S %
S %
S
"#$ +& *-,) )*
&. 1enentukan 1enentukan 2esala3an 2esala3an 4elati5 4elati5 S + + S & 6 &'' # 6 & # & × ∆S + S & 6 nst bangku !ptik &
6
KR
×
',& 6 ',') # 6 ',''') # ∆ s + s %& × &''7 s + s%&
6
',''') &
× &''7
6 7
6 ',') )ΑΡ 6
" S + S %& ± ∆S + S & $
"&,'''' ± ',''')$
6
#
S + + S 6 () # 6 ',() # & ∆S +
S
×
6
nst bangku !ptik
& 6
KR
×
',& 6 ',') # 6 ',''') # ∆ s + s% × &''7 s + s%
6 ',''') ',()
× &''7
6 7
" S + S % ± ∆S + S $
6 ',') 0ΑΡ 6 "(,)'' ± ','')$&' −& 6 #
S + S + 6 (' # 6 ',( # & ∆S +
S +
6
×
nst bangku !btik
"#$ &()+ &)/,&-0-
& 6
KR
×
',& 6 ',') # 6 ',''') # ∆ s + s%+ × &''7 s + s%+
6 ',''') ',(
× &''7
6 7
6 ',')) ΑΡ
" S + S %+ ± ∆S + S + $
60 "(,''' ± ','')$&' −& 6 #
S &
6 *( # 6 ',*( # & ∆S &
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s&
s&
× &''7
6
KR
',''') ',*(
× &''7
6 6','/7 6 0 AP "*,('' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S
6 +&,) # 6 ',+&) # & ∆S
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s
s KR
× &''7
6 ',''') ',+&)
× &''7
6 6',&)(7
6 0 AP
" S
± ∆S $
"+,&)' ± ','')$&'
−&
6
#
S +
6 ++ # 6 ',++ # & ∆S +
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s+
s+
× &''7
6
KR
',''') ',++
× &''7
6 6',&)&7 6 0 AP " S +
"&,)&' ± ','')$&' −&
± ∆S + $
6
#
S %&
6+& # 6 ',+& #
& ∆S &
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆ s &
s&
24
× &''7
6 ',''') ',+&
× &''7
6 6 ',&*& 7 6 0 AP
( S
% &
%
± ∆S &
)
"+,&'' ± ','')$&' −&
6
#
S %
6*-,) # 6 ',*-) #
& ∆S
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
s 24
× &''7
6 ',''') ',*-)
× &''7
6 6 ','/+ 7 6 0 AP
( S
%
%
± ∆S
)
"*,-)' ± ','')$&'
−&
6
#
S % +
6)* # 6 ',)* #
& ∆S +
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
+
s+
24
× &''7
6 ',''') ',)*
× &''7
6 6 ','-( 7 6 0 AP
( S
%
+
%
± ∆S +
)
"),*'' ± ','')$&' −&
6 %
S.S
#
&
6 &()+ # 6 &(,)+ #
& ∆S ⋅ S %&
6
Nst Bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆S .S &
SS %&
24
× &''7
6 ',''') &(,)+
× &''7
6 6','')7 6* AP
( S .S
% &
)
%
± ∆S .S &
"&(,)+'' ± ',''')$
6 %
#
S.S
6 &)/,- # 6 &,)/- #
& ∆S ⋅ S %
6
Nst Bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆S .S %
SS
24
× &''7
6 ',''') &,)/-
× &''7
6
6',''+(7 6* AP
( S .S
%
%
± ∆S .S
)
"&,)/-' ± ',''')$
6 %
#
+
S.S
6 &-0-# 6 &-,0- #
& ∆S ⋅ S %+
6
Nst Bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆S .S + %
SS +
24
× &''7
6 ',''') &-,0-
× &''7
6 6',''/7 6* AP
( S .S
%
%
"&-,0-'' ± ',''')$
± ∆S .S + $
+
6
#
2. .Tabel Hasil Per3itungan " S ± ∆S $
S + S %± ∆S + S % $
" "
# "&,'''' ± ',''')$ "(,)'' ± ','')$&'
" S %± ∆S % $
#
#
"*,('' ± ','')$&' −&
"(,''' ± ','')$&'
" S ⋅ S %± ∆S ⋅ S % $
−&
"+,&'' ± ','')$&'
# "&(,)+'' ± ',''')$
−&
"+,&)' ± ','')$&' −&
"*,-)' ± ','')$&' −&
" &,)/-' ± ',''')$
"&,)&' ± ','')$&' −&
"),*'' ± ','')$&' −&
"&-,0-'' ± ',''')$
−&
+. 8ra5ik Hubungan Antara "S 9 S$ :an "S.S$ # %
∆(
&(,)+
S.S
&,)/ ∆
( S.S;$
&-,0',( ',()
&''
#
Dari pa:a • Interpretasi gra5ik
∆
Dala# gra5ik :i atas perbesaran yang lebi3 besar a:ala3 ∆(
S9S;$ • 1enentukan 5!kus lensa p!siti5
%
( S.S
) Dari pa:a
∆
%
(
(
S.S
)
%
6
S.S
(
%
<
)
&
S.S
" &,)/ − &(,)+$ = ,'0
6 ∆(
%
#
)
S9S
" S + S % $
+ " S +
S % $&
6 6 ',() = & 6 < ',') #
(
. % ∆ s s ∆ " S +
F
)
S % $
6 ,'0 − ',')
6
6 < 0',- #
& ∂ "∆" S ⋅ S % $$
×
6
NsT gra5ik
&
×
6
',& 6',') ## 6 ','''') #
∆ F
(
F
)
', '''') , '0
+
(
)
', '''') −', ')
6
( ','''''''''* ) + ( ',''''&) =
√ 0,00001
6
6 ',''+ # ∆ F
F
∆
F
× F
6 6 ',''+ > < 0',6 < ',&0 # ∆ F
F 24
× &''7
6 − ',&0 − 0',-
× &''7
6 6 ',+ 7 6 0 AP
"−0',-''' ± −',&0$
" F ± ∆F $
6 •
1enentukan kuat lensa p!siti5
1
&'' F
Ρ
6
&'' − 0',-
6
6 < ,0) #
∆Ρ
∆ F
Ρ
F
6 − ',&0 − 0',-
× &''7
6
6 ',+ # ∆Ρ Ρ
∆Ρ
Κ R
× Ρ
6 6 ',+ > = ,0) 6 < /,+) # ∆ p × &''7 Ρ
6 − /,+) − ,0)
× &''7
6 6 +'' 76& AP "Ρ ± ∆Ρ $
" −,0) ± −/,+)$ 6
#
Untuk Bayangan Yang Diperkeil &. Data Hasil Pengamatan
" S 9 S’ "#$ &'' () ('
S ⋅ S %
S "#$
S %
( *+,) )/
/& &,) 0+
"#$
. Menentukan Kesalahan Relatif S + S & 6 &'' # 6 & # & × ∆S + S & 6 nst bangku !ptik &
6
×
',& 6 ',') # 6 ',''') # ∆ s + s%&
s + s%&
KR
× &''7
6
',''') & 6
× &''7
"#$ ')( &+*),) 0)&
7
6 ',') )ΑΡ
6 "&,'''' ± ',''')$
" S + S %& ± ∆S + S & $ 6
#
S + S 6 () # 6 ',() #
& ∆S +
S
×
6
nst bangku !ptik
&
×
6
',& 6 ',') # 6 ',''') # ∆ s + s%
s + s%
KR
× &''7
6 ',''') ',()
× &''7
6 7
6 ',') 0ΑΡ 6 "(,)'' ± ','')$&' −&
" S + S % ± ∆S + S $ 6 S + S +
6 (' # 6 ',( #
& ∆S +
S +
×
6
nst bangku !btik
& 6
×
',& 6 ',') # 6 ',''') # ∆ s + s%+
s + s%+
KR
× &''7
6 ',''') ',(
× &''7
6 7
6 ','))
ΑΡ
60 "(,''' ± ','')$&' −&
" S + S % + ± ∆S + S + $ 6
#
S &
6 ( # 6 ',( #
& ∆S &
×
6
nst bangku !pti
& 6
×
',& 6 ',') # 6 ',''') # ∆S &
S &
Κ R
× &''7
6 ',''') ',(
× &''7
6 6 ',&/ 7 "0 AP$
" ,('' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S
6 *+,) # 6 ',*+) #
& ∆S
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s
s
24
× &''7
6 ',''') ',*+)
× &''7
6 6 ','/(7 6 0 AP
" S
± ∆S $
"*,+)' ± ','')$&'
6
−&
#
S +
6 )/ # 6 ',)/ #
& ∆S +
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s+
s+
× &''7
6
KR
',''') ',)/
× &''7
6 6','-/7 6 0 AP " S +
± ∆S + $
"),/'' ± ','')$&'
−&
6
#
S %&
6/& # 6 ',/& #
& ∆S &
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆ s &
s&
24
× &''7
6 ',''') ',/&
× &''7
6 6 ','/' 76 0 AP
( S
%
&
%
± ∆S &
)
"/,&'' ± ','')$&' −&
6
S %
6&,) # 6 ',&) #
& ∆S
6
×
Nst bangku !ptik
#
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
× &''7
s 24
6 ',''') ',&)
× &''7
6 6 ',+ 7 6 0 AP
( S
%
%
± ∆S
)
" ,&)' ± ','')$&' −&
6
#
S %+
60+ # 6 ',0+ #
& ∆S +
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
+
× &''7
s+
24
6 ',''') ',0+
× &''7
6 6 ',& 7"0 AP$
( S
%
+
%
± ∆S +
)
" 0,+'' ± ','')$&'
−&
6 %
#
&
S.S 6 ')( # 6 ',)( #
& ∆S ⋅ S %&
6
Nst Bangku !pti
& 6
×
',& #
6',') # 6 ',''') # %
∆S .S &
SS %&
24
6
× &''7
',''') ',)(
× &''7
6
6',''07 6* AP
( S .S
% &
)
%
± ∆S .S &
"',)('' ± ',''')$
6 %
#
S.S
6 &+*),+ # 6 &+,*)+ #
& ∆S ⋅ S %
6
Nst Bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆S .S
SS %
24
× &''7
6 ',''') &+,*)+
× &''7
6 6',''+/7 6* AP
( S .S
%
%
± ∆S .S
)
"&+,*)+' ± ',''')$
6 %
#
+
S.S
6 0)& # 6 0,)& #
& ∆S ⋅ S %+
6
Nst Bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆S .S + %
SS +
24
× &''7
6 ',''') 0,)& 6
× &''7
6',''7 6* AP
( S .S
%
+
%
"&-,0-'' ± ',''')$
± ∆S .S + $
6
#
+. Tabel hasil perhitungan " S + S %±∆S + S % $
"
" S ± ∆S $
# "&,'''' ± ',''')$ "(,)'' ± ','')$&'
" S %±∆S % $
#
#
" ,('' ± ','')$&' −& "*,+)' ± ','')$&'
−&
" S ⋅ S %±∆S ⋅ S % $
−&
"/,&'' ± ','')$&'
−&
",&)' ± ','')$&'
−&
"&+,*)+' ± ',''')$ "&-,0-'' ± ',''')$
"),/'' ± ','')$&' −& "0,+'' ± ','')$&'
"(,''' ± ','')$&' −
&
S + S %
0. Grafik Hubungan Antara "
# "',)('' ± ',''')$
−&
S ⋅ S %
$
:an "
$
# ',)( ∆" S ⋅ S % $
&+,*)+ ∆" S + S % $
&-,0(' •
()
&''
#
Interpretasi gra5ik ∆
Dala# gra5ik :i atas perbesaran yang lebi3 besar a:ala3
%
( S.S
∆(
S9S;$ • 1enentukan 5!kus lensa p!siti5 %
∆(
(
S.S
6
%
)
S.S
( <
%
)
&
S.S
"&+,*)+ − ',)($ = −*,(+/
6 ∆
(
%
# 6 < ','*(/+ #
)
S9S
" S + S % $
+ " S +
S % $&
6 6 ',() = & 6 < ',') #
(
. % ∆ s s ∆ " S +
F
6
)
S % $
Dari pa:a
− ','*(+/ − ',')
6
6 &,+-/0 #
& ∂ "∆" S ⋅ S % $$
×
6
NsT gra5ik
&
×
6
',& 6',') ## 6 ','''') #
∆ F
(
F
)
' , '''') − ' , '*(+/
+
(
)
' , '''') − ' , ')
6
( ',''''''''''')) + ( ',''''&) =
√ 0,00001
6
6 ',''+ # ∆ F
F
∆
F
× F
6 6 ',''+ > &,+-/0 6 < ',''0&* #
∆ F
F 24
× &''7
6 ',''0&* &,+-/0
× &''7
6 6 ',''( 7 6 * AP
"&,+-/0 ± −',''0&*$
" F ± ∆F $
6 •
#
1enentukan kuat lensa p!siti5 &'' F
Ρ
6 &'' &,+-/0 6
6 ',''/ #
∆Ρ
∆ F
Ρ
F
6 ',''0&* &,+-/0
6
6 ',''( # ∆Ρ Ρ
∆Ρ
× Ρ
6 6 ',''( > ',''/ 6 ',''& # ∆ p × &''7 Ρ
Κ R
6 ',''& ',''/
× &''7
6 6 ','( 7 " AP$
"/, ± ,&$&' −+
"Ρ ± ∆Ρ $
6
#
B. LENSA GABUNGAN
Untuk
:6) # &. Tabel Hasil Penghitung &
S "#$ &) ' ) +'
2.
&
S "#$ 0' 0) )' ))
%
S "#$ &) +(,) 0' +(,-
%
S "#$ &) &0,) &) &0,-
Menentukan Kesalahan Relatif
" S & ± ∆S & $
" S "#$
± ∆S $
" S %± ∆S % $
" S & %± ∆S & % $
"#$ −& "0,''' ± ','')$&'
"&,)'' ± ','')$&'
",''' ± ','')$&' −&
"0,)'' ± ','')$&' −&
"+,()' ± ','')$&'
",)'' ± ','')$&' −&
"),''' ± ','')$&' −
"0,''' ± ','')$&' −&
"&,)'' ± ','')$&'
−&
&
"#$
"#$ −&
−&
"&,)'' ± ','')$&'
"&,0)' ± ','')$&' −& "&,)'' ± ','')$&'
"+,''' ± ','')$&'
−&
"),)'' ± ','')$&'
−&
"+,(-' ± ','')$&'
−&
−&
−&
"&,0-' ± ','')$&' −&
S &
6 &) # 6 ',&) #
& ∆S &
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s&
s&
24
× &''7
6 ',''') ',&)
× &''7
=
6',++ 7
6 0 AP
"&,)'' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S &
6 ' # 6 ', #
& ∆S &
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s&
s&
24
× &''7
6 ',''') ',
× &''7
6 6',) 7 6 0 AP ",''' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S &
6 ) # 6 ',) #
& ∆S &
×
6
nst bangku !pti
& 6
×
',& 6 ',') # 6 ',''') #
∆ s&
× &''7
s&
24
6 ',''') ',)
× &''7
=
6', 7 "0 AP$ ",)'' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S &
6 +' # 6 ',+ #
& ∆S &
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s&
× &''7
s&
24
6 ',''') ',+
× &''7
6 6',&/ 7 6 0 AP "+,''' ± ','')$&' −&
" S & ± ∆S & $ 6
#
S
6 0' # 6 ',0 # & ∆S
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s
s KR
× &''7
6 ',''') ',0
× &''7
6 6',&)7 6 0 AP
" S
"0,''' ± ','')$&' −
± ∆S $
&
6
#
S
6 0) # 6 ',0) # & ∆S
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') #
∆ s
s
24
× &''7
6 ',''') ',0)
× &''7
6 6',&&7 6 0 AP "0,)'' ± ','')$&' −&
"S ± ∆S $
6
#
S
6 )' # 6 ',) # & ∆S
×
6
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s
s
24
×&''7
6 ',''') ',)
× &''7
6 6',&7 6 0 AP
" S
± ∆S $
"),''' ± ','')$&'
6
−&
#
S
6 )) # 6 ',)) # & ∆S
6
×
nst bangku !pti
&
×
6
',& 6 ',') # 6 ',''') # ∆ s × &''7 s 6
24
',''') ',))
× &''7
6 6','(7 6 + AP "),)'' ± ','')$&' −&
"S ± ∆S $
6
#
S %&
6&) # 6 ',&) #
& ∆S &
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆ s &
× &''7
s&
24
6 ',''') ',&)
× &''7
6 6 ',++ 7 6 0 AP
( S
%
&
%
± ∆S &
)
"&,)'' ± ','')$&' −&
6
#
S %&
6+(,) # 6 ',+() #
& ∆S &
×
6
Nst bangku !pti
& 6
×
',& #
6',') # 6 ',''') # %
∆ s &
× &''7
s&
24
6 ',''') ',+()
× &''7
6 6 ',&+ 7 6 0 AP
( S
%
&
%
± ∆S &
)
"+,()' ± ','')$&'
6
−&
#
S %&
60' # 6 ',0' #
& ∆S &
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # %
∆ s &
× &''7
s&
24
6 ',''') ',0'
× &''7
6 6 ',&) 7 6 0 AP
( S
%
&
%
± ∆S &
)
" 0,''' ± ','')$&' −&
6
#
S %&
6+(,- # 6 ',+(- #
& ∆S &
×
6
Nst bangku !pti
& 6
×
',& #
6',') # 6 ',''') #
%
∆ s &
× &''7
s&
24
6 ',''') ',+(-
× &''7
6 6 ',&+ 7 6 0 AP
( S
%
&
)
%
± ∆S &
"+,(-' ± ','')$&' −&
6
#
S %
6&) # 6 ',&) #
& ∆S
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
s 24
× &''7
6 ',''') ',&)
× &''7
6 6 ',++ 7 6 0 AP
( S
%
%
± ∆S
)
"&,)'' ± ','')$&'
−&
6
#
S %
6&0,) # 6 ',&0) #
& ∆S
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
s 24
× &''7
6 ',''') ',&0) 6
× &''7
6 ',+) 7 6 0 AP
( S
%
%
± ∆S
)
"&,0)' ± ','')$&' −&
6
#
S %
6&) # 6 ',&) #
& ∆S
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
s 24
× &''7
6 ',''') ',&)
× &''7
6 6 ',++ 76 0 AP
( S
%
%
± ∆S
)
"&,)'' ± ','')$&'
−&
6
#
S %
6&0,- # 6 ',&0- #
& ∆S
×
6
Nst bangku !pti
&
×
6
',& #
6',') # 6 ',''') # ∆ s
%
s 24
× &''7
6 ',''') ',&0-
× &''7
6 6 ',+0 7
6 0 AP
( S
%
%
± ∆S
)
"&,0-' ± ','')$&'
−&
6
#
" S &
+
S & % $
. 8ra5ik Hubungan Antara
:an
S & %
S &
"#$ &) ' ) +'
S & "#$
+
"S&.S&$ #
S & %
"
&) +(,) 0' +(,-
&&(0
" S & ⋅ S & % $
$ # )
+' )(,)
&)*',+
*)
&'''
*(,-
&&(0
# •
∆ " S & ⋅ S & % $
&''' &),*' •
∆ " S + S & % $
) #
&)
'
)
(
%
+'
F & •
1enentukan F!kus Lensa
(
∆(
S&.S&$ 6
S&.S&$ <
&
S&.S&
"&)*',+ − )$ = &++),+
6 ∆
(
%
S&9S&
# 6 &,++) #
) 6 "S&9S&$ = S&
6 )(,) = &) 6 00,) # 6 ',00) #
(
)
∆ " S & +
S & % $
∆ s& . s& %
F&
6 &,++) ',00)
6
6+#
& ∂ "∆" S & ⋅ S & % $$
6
×
NsT gra5ik
& 6
×
',& 6',') ## 6 ','''') #
∆ F &
(
F &
)
', '''') &, ++)+
+
(
)
' , '''') ', 00)
6
( ','''''''''''' ) + ( ','''&) =
√ 0,0001
6
6 ','& # ∆ F &
F &
∆
F&
× F &
6 6 ','& > + 6 < ','+ # ∆ F &
× &''7
F &
24
6 ','+ +
× &''7
6
6&7 6 AP
"+,'' ± −','+$
" F & ± ∆F & $
6 •
#
1enentukan kuat lensa p!siti5 "P&$ &'' F &
Ρ
6
&
&'' +
6
6 +,++ #
∆Ρ &
∆ F &
Ρ &
F &
6 ','+ +
6
6','& # ∆Ρ & Ρ &
∆Ρ
&
× Ρ &
6 6 ','& > +,++ 6 ','++ #
∆ p& Ρ &
Κ R
× &''7
6 ','+ +,++
× &''7
6 6 ','& 7 ") AP$
"+,+'' ± ','++$
"Ρ & ± ∆Ρ & $
6
#
" S
+
S % $
0. 8ra5ik Hubungan Antara
" S ⋅ S % $ :an "S9S$ #
S %
S
"#$ 0' 0) )' ))
"#$ &) &0,) &) &0.*''
)) )(,) *) *(,-
#
*),) ∆ " S ⋅ S % $
/)' •
∆" S + S % $
-&0 0'
0)
)'
))
#
F •
"S.S$ #
1enentukan F!kus Lensa P!siti5 ∆
(
( S.S$
6
( S.S$ <
% &
S.S
"*),) − *''$ = ),)
6 ∆(
%
S9S
# 6 ',)) #
) 6 "S9S$& = S 6 )) = 0' 6 &) # 6',&) #
(
)
∆ " S +
S % $
∆ s . s %
F
6
*'' *),) /)' -&0
',)) ',&)
6
6 +,) #
& ∂ "∆" S ⋅ S & % $$
×
6
NsT gra5ik
&
×
6
',& 6',') ## 6 ','''') #
∆ F
(
F
)
' , '''') ', ))
+
(
)
' , '''') ' ,&)
6
( ',''''()) + ( ','''+) =
√ 0,0004
6
6 ',' # ∆ F
F
∆
F
× F
6 6 ',' > +,) 6 < ','/ # ∆ F
F
24
× &''7
6 ','/ +,)
× &''7
6 67 6 AP
"+,)',','/ $
" F ± ∆F $
6 •
#
1enentukan kuat lensa p!siti5 "P$ &'' F
Ρ
6 &'' +,)
6
6 -,* #
∆Ρ
∆ F
Ρ
F
6
','/ +,)
6
6 ',' # ∆Ρ Ρ
∆Ρ
× Ρ
6 6 ',''+ > +,++ 6 ','& # ∆ p × &''7 Ρ
Κ R
6 ','& +,++
× &''7
6 6 & 7 " AP$ "+,++ ± ','&$
"Ρ ± ∆Ρ $
6
#
C. KESIMPULAN
&. Lensa #erupakan ben:a bening yang :ibatasi !le3 :ua bi:ang yang sala3 satu atau bi:ang berbentuk ekung. . Lensa terbagi atas :ua #aa# yaitu lensa e#bung atau lensa k!n?ergen :an lensa e#bung atau lensa :i?ergen. +. Berbe:a :engan er#in lensa ti:ak :apat #enentukan a3aya tapi 3anya :apat #e#antulkan a3aya. D. KEMUNGKINAN KESALAHAN
&. 2eti:aktelitian praktikan :ala# #eli3at bayangan pa:a layar. . 2eti:aktelitian praktikan :ala# #engukur @arak antara lensa :engan layar. +. 1aster peng!la3an ti:ak @elas.