kVAh Metering Basics Ashok Hattangady
Director Technology Development, Conzerv Systems Pvt Ltd, Bangalore, India
1
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
kVA
kVA is already widely in use:
2
kVA Demand PF Penalties. PF = kW / kVA Sizing of Transformers and Distribution
Any wrong definitions are detrimental and must be corrected, irrespective of billing kVAh directly
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Principle of kVA Eg. Motor Load needs 100kVAR of Reactive Energy 141 kVA 0.7 PF
~ 100 100 kW kVAR
100 kVA 1 PF
~ 100 kW
3
09/20/06
Reactive Energy supplied by Source
Reactive Energy supplied by Capacitor
© Copyright 1986-2005, ConZerv Proprietary & Confidential
M 141 kVA 0.7 PF
M 100 141 kVA kVAR 0.7 PF
Smart Energy Management
Spectral Constituents of kVA V A kW, kVAR, S D
Distortion
kVA- U 4
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Apparent
Smart Energy Management
Effect of D on kVA, PF
V
Consider the Rectifier Waveform- PCs, UPS, CFL etc S (Vector) kVA gives a PF of 1.00 U (Apparent) kVA gives a PF of 0.5
A
5
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Vector Constituents of kVA 1Φ Q Reactive kVAR
S Phasor kVA = + P2 + Q2 U Apparent kVA = + P 2 + Q2 + D2 = Vrms × A rms P Active kW
D Distortion kVA 6
09/20/06
Polarity kept same as Q, not W per IEEE 100
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
IEEE 100
Six kVAs One Apparent Power (U) Uarith = 3ph Arithmetic kVA = V1A1+ V2A2+ V3A3
F
Fictitious kVA
S Phasor kVA = + P2 + Q2
= Q 2 + D2
U Apparent kVA = + P 2 + Q2 + D2 = Vrms × A rms
= ± U2 − S 2 D Distortion kVA
N Nonreactive kVA = P 2 + D2
7
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
3Φ Apparent Power U 2
2
P3 + Q3 + D3 2
2
P2 + Q2 + D2 2
2
2
2
2
P1 + Q1 + D1 U3 φ = 8
09/20/06
( P1 + P2 + P3 ) 2 + ( Q1 + Q2 + Q3 ) 2 + ( D1 + D2 + D3 ) 2
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Vector & Scalar Addition Example: How far has your Taxi gone?
4 km
5 km “as the crow flies” 3 km Vector Add
7 km “the fare you pay” Scalar Add 9
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Apparent kVA (U) vs Arithmetic kVA 3ph V1A1
Arithmetic Scalar UArith = U1 + U2 + U3 = V1A 1 + V2 A 2 + V3 A 3
V2 A 2
Note that V2A2 & V3A3 are positive (no sign)
V3A3
Apparent
Vector addition in 3D
U3φ = ( P1 + P2 + P3 ) + ( Q1 + Q2 + Q3 ) + ( D1 + D2 + D3 ) 2
10
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
2
Smart Energy Management
2
Apparent kVA (U) vs Arithmetic kVA 3ph Arithmetic Scalar UArith = U1 + U2 + U3 = V1A 1 + V2 A 2 + V3 A 3
Apparent
Vector addition in 3D
U3φ = ( P1 + P2 + P3 ) + ( Q1 + Q2 + Q3 ) + ( D1 + D2 + D3 ) 2
11
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
2
Smart Energy Management
2
Apparent kVA (U) vs Arithmetic kVA 3ph
3ph Apparent kVA =
U3φ = ( P1 + P2 + P3 ) + ( Q1 + Q2 + Q3 ) + ( D1 + D2 + D3 ) 2
2
2
3ph Arithmetic kVA = 2 1
2 1
2 1
2
2
2
2
2
UArith = P + Q + D + P2 + Q2 + D2 + P3 + Q3 + D3 = U1 + U2 + U3 = V1A 1 + V2 A 2 + V3 A 3 12
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
2
kVAh Integration
kVAh (over intervals of time) = …. = U1 + U2 + U3 2 1
2 1
2 1
2
2
2
2
= P + Q + D + P2 + Q2 + D2 + P3 + Q3 + D3 But Derived kVAh = kWh2 + kVARh2
is much smaller
= ( P1 + P2 + P3 ) 2 + ( Q1 + Q 2 + Q3 ) 2 13
2
09/20/06
2 1
2
2
= P + P2 + P3 + 2P1P2 + 2P1P3 + 2P2P3 .... © Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
2
Apparent kVA (U) vs Arithmetic kVA
Apparent kVA includes Wh, PF, THD revenue
Arithmetic kVA in addition includes “Unbalance” revenue
14
a “Vector” quantity, but always Positive
a Scalar quantity
Uarith ≥ U ≥ S. Uarith is higher than U especially for Delta loads with unbalance
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Apparent kVA (U) vs Arithmetic kVA
• Traditional Billing
kWh
PF
• Apparent kVAh
kWh
PF
THD
• Arithmetic kVAh
kWh
PF
THD
» kWH + PF Penalty
» + THD
» + THD + Unbalance
15
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Unbalance Smart Energy Management
Apparent kVA (U) vs Arithmetic kVA
Unbalance Penalization with Arithmetic kVA
Placing a single Line-Line Load (resistor) creates maximum Unbalance Uarith is 15.5% more than W, PF=0.866
Arithmetic kVA penalizes Unbalance
16
Vb
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Vr Vy
Smart Energy Management
Apparent kVA (U) vs Arithmetic kVA 3ph
Arith kVA, kVAh, Demand- insensitive to
17
CT Polarity PT, CT Phase Shift errors Phase Sequence Better accuracies can be achieved. Tariff meter need show only V, A, Freq, Arith kVA, Arith kVAh, Arith kVA Dmd
But Apparent kVA is degraded by these
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Apparent kVA in Delta HT Systems
kVA (S), PF in Delta systems do not fully measure Harmonic energy with
18
Non-sinusoidal Waveforms Unbalanced Voltage Vectors / Loads A limitation today in HT kVA Demand and PF values
In Meter, compute on equivalent Star vectors
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Applications
19
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Expected Growth Of Electric Energy Demand GWh/Yr 4000 3500
150% Growth
3000 2500 2000 1500
Rest of World
1000 500 0 20
09/20/06
Asia 1995
© Copyright 1986-2005, ConZerv Proprietary & Confidential
300% Growth 2020
Smart Energy Management
Electricity Cost Rising Fastest in India 6 Steam 5 4
Coal
Electricity
Cost in India. Normalised to 1988
3 2 1 1988 21
09/20/06
1990
1992
© Copyright 1986-2005, ConZerv Proprietary & Confidential
1995
1998
Smart Energy Management
2001
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 22 09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
S. Africa.
Sweden.
Canada.
Norway.
Newzealand.
Finland.
Denmark.
S.Korea.
Australia.
Israel.
US Cents / kWh
Greece.
USA.
Netherlands.
France.
Ireland.
UK.
Spain.
Belgium.
Portugal.
Italy.
Austria.
Germany
India
Japan.
Power Costs Worldwide
2.5 MW supply, 40% Load
Electricity Usage in India Motors 75% Industrial + Agricultural
Arc Furnaces Others 1% 6% Electrolysis 5% 23
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Lighting 13%
Smart Energy Management
Sector – wise % Consumption Others Industrial Agricultre Domestic
Normalized % : India Source: Annual Report on the Working of SEBs, Planning Commission, June 2001
21.8
19.3
17 31
50.8
41.9 32
18.4 9 24
25.9 13
1984 © Copyright 1986-2005, ConZerv Proprietary & Confidential 1989
09/20/06
20
1999 Smart Energy Management
Applications
Arithmetic kVA
Apparent kVA
25
Domestic (1ph) and Commercial billing Simplicity in meeting the cost of service
09/20/06
Industrial and Grid metering Not possible for 1ph services Available in the meters?
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Applications
26
Arithmetic kVA is suitable for Domestic and Commercial billing with simplicity in meeting the cost of service Apparent kVA is probably better suited to Industrial and Grid metering. It would simplify billing if available in the meters. It is also more suitable for Energy Balancing than Arithmetic kVA.
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
27
Arithmetic kVA Insensitive to CT Polarity, Phase shift error, phase sequence. Not Vector kVA Import / Export? kVA Polarity Star only, not Delta Energy Balancing when PF Caps added KVA Demand Includes PF, Harmonics, Unbalance
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
“Cost of Service” Indicator
kWh + PF Penalty
kVAh Metering
Includes PF penalty.
Arithmetic kVAh Metering
28
Historic origin of kWh
09/20/06
Includes unbalance penalty. True cost of service
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
KVA Measurement
29
09/20/06
2D VA
Arith VA
3D VA
Pythogoras √(W2+VAR2)
Europe VA1+VA2+VA3
√(W +VAR2+D2)
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Ideal 2
Smart Energy Management
Correct kVA Steps already known
For 2E: Convert from Delta to Star
Then, VA is given by: U3 φ =
( P1 + P2 + P3 )
2
+ ( Q1 + Q 2 + Q3 ) + ( D1 + D2 + D3 ) 2
Polarity of D = Polarity of VAR, not W
30
IEEE 100
09/20/06
VAR must be directly calculated not from VA
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
2
kVA Test Case 1
Unbalance Penalization with Arithmetic kVA
Placing a single Line-Line Load (resistor) creates maximum Unbalance Uarith is 15.5% more than W, PF=0.866
Arithmetic kVA penalizes Unbalance
31
Vb
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Vr Vy
Smart Energy Management
KVA Test Case 2 (UPS)
32
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Unbalanced kVA 2D VA
Arith VA
3D VA
CBIP √(W2+VAR2)
Europe VA1+VA2+VA3
Ideal √(W2+VAR2+D2)
R
536.6
1200
1200
Y
452.4
1364
1364
B
268.3
600
600
3 Phase
1257
3164
2191
Phase
33
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management
Unbalanced PF 2D
Arith
3D
CBIP
Europe
Ideal
R
- 0.999
- 0.447
- 0.447
Y
- 0.853
- 0.283
- 0.283
B
0.999
0.447
0.447
3 Phase
- 0.947
- 0.544
+ 0.376
Phase
34
09/20/06
© Copyright 1986-2005, ConZerv Proprietary & Confidential
Smart Energy Management