s
Operating Instructions
Synchronous generator
s Operating manual: Project code: Fenirol
Edition: Type: 1DT 4138-8ADO2-Z
Contract-No.: 1219294 Documentation List:
Works Order No.: 178553
Register No.
Document
1.
Technical data Electrical data
Text of dimension drawing
TK.930276-1219294 Page 5
2.
Drawings
Generator description
TK.930276-1219294
Dimensions drawing Instrument wiring diagram
(07 2070 0023) 577287 A 577291
Shaft calculation drawing Rotor withdrawal Generator foundation
2 132 z294w/A 592481 573436A
3.
Reports
Quality inspection certificate
4.
Instructions and Additional documents a) Synchronous generator b) Logbook c) Brushless exciter d) Anti-condensation heating e) Air-to-Water Cooler f) Cooler-Coiltech, Operation and Maintenance instruction g) Cooling data h) Cooler dimension i) Drawing of DE- Bearing - EFZLK 22k-250H7 j) Drawing of NDE- Bearing - EFZLQ 22k-225H7 k) Drying of Windings l) Bolt tightening torques m) Slide Bearing Type EF RH-EFZEI-E-10.00 n) Slide Bearing Type EF RH-EFZWI-E-10.00 o) Lubricants for Slide Bearings Recommendation RH-2005 p) List of recommended spare parts
s Revision Page
Revised
Rev.
s
Dimension Drawing Text
Type W.-No. Contract-No. Code Drawing-No.
: : : : :
1DT 4138-8ADO2-Z 178553 1219294 FENIROL TK.930276-1219294
s CONTENTS 1.
Technical data .................................................................................................................................... 5 1.1 Electrical data ............................................................................................................................. 5 1.2 Degree of protection ................................................................................................................... 6 1.3
2. 3. 4.
Weights ....................................................................................................................................... 6 Text part - legend............................................................................................................................... 7 Operation of cooler ............................................................................................................................ 9 Temperature monitoring devices ..................................................................................................... 10
5. 6. 7. 8.
Machine monitoring......................................................................................................................... 11 Shaft end .......................................................................................................................................... 12 Direction of rotation......................................................................................................................... 13 Foundation load ............................................................................................................................... 14
9. 10. 11.
Rating plate ...................................................................................................................................... 15 Outlet box ........................................................................................................................................ 16 Sleeve bearing - DE ......................................................................................................................... 17
12. Sleeve bearing - NDE ...................................................................................................................... 18 13. Oil lubrication inlet.......................................................................................................................... 19 14. Axial bearing clearance ................................................................................................................... 20 15. Rotary rectifier - brushless excitation components.......................................................................... 21 16. 17. 18.
Anti-condensation heater ................................................................................................................. 22 Shaft earthing................................................................................................................................... 23 External earthing ball point and earth terminals.............................................................................. 24
19. 20. 21. 22.
Thermal expansion........................................................................................................................... 25 Displacement ................................................................................................................................... 25 Relative vibration sensor PROXPAC 330800 type Bently Nevada .............................................. 26 Shaft vibration monitoring system................................................................................................... 27
23. Lifting instruction ............................................................................................................................ 28 24. Service covers .................................................................................................................................. 29 25. Outdrawal space for heat exchanger................................................................................................ 30 26. Protection against corosion.............................................................................................................. 31
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 4
s 1. Technical data 1.1 Electrical data Rated output Rated voltage Rated current Power factor
SN UN IN
: : : :
12 500 kVA 6 600 V 1 093 A 0.8
Rated frequency Rated speed Excitation current Excitation voltage
f nN IFN UFN
: : : :
50 1 500 413 149
Exciter: Excitation current
IFRG : 9,5 UFRG : 62
Excitation voltage
A*) V*)
Type of construction Cooling method
: IM 1005 : IC81W
Ambient temperature Necessary volume of cooling air Losses to dissipate Thermal class
: : : :
Stator winding temperature rise (res. method) Xd’’ saturated value
: acc.to Th.-Cl. F : 16,5 %*)
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Hz min-1 A*) V*)
Notice
Date
Name
s
40 8,5 272 F
°C m3/s kW
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 5
s 1.2 Degree of protection Machine
: IP 54 EN60034-5
Terminal
: IP 54 EN60034-5
1.3 Weights Total weight
: 31 000
kg
Rotor complete Cooler top housing Moment of inertia rotor cpl. (Shaft drawing No. 2 132 z573w/A )
: 9 150 : 2 200 : 1 007
kg kg kg.m2
*) Calculated values Dynamic analysis and check of the shafting acc. to VDI-3840 recommended. Transient torques and shaft calculation data will be supplied on request.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 6
s 2. Text part - legend Machine parts listed in the following text are supplied by SEM Siemens Electric Machines s.r.o., unless otherwise stated. 1 Cooler housing There is a flexible connection between the Cooler housing and the Stator frame. Their dynamic behaviors are different. Any rigid connection between them is not allowed (for example water piping connected to the Cooler and to the Stator frame) 2 Closed circuit cooler see page 9 Type: Quantity: Cooling data: 3
QLKE-234-110-3-2-4-23-3-8-X X= 0,15 mm fins. 2 Register 2
DE-bearing EFZLK 22-250
see page 17
Lubricants see recommendation of manufacturer Renk
see register 4
Axial bearing clearance
see page 20
4
NDE-bearing EFZLQ 22-225 Floating bearing.
see page 18 see register 4
5
Outlet box
see page 16
6
Anti-condensation-heater Terminal diagram
see page 22 see register 2
7
Leakage-water detector
see page 11
Type: Quantity:
GEA 11 19 1259 01 2
8
Leakage-monitoring Type: RM4 LA32 MW Quantity: 1
9
Centre of gravity
10 Covers on servicing openings 11 External earthing ball point Quantity: 2
see page 24
12 Grounding terminal
see page 24
13 Aux. terminal box for anti-condensation heater, exciter, thermometers. Terminal diagram see register 2 14 Lifting lugs for lifting complete machine. For lifting a suitable lifting beam must be used. Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
see page 28 W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 7
s 15 Exciter Type: 1JG3300-8HV06-Z Terminal diagram
see page 21 see register 2
16 Vent plug 17 Water drain plug 18 Bearing temperature sensors. Each bearing has 1 double resistance thermometer 2xPT100 Type
DE: 2PT100/B-235X6S-G1/2-3/0-N NDE: 2PT100/B-250X6S-G1/2-3/0-N
Manufacturer Terminal diagram Location PT100s are lead out into aux. terminal box.
Fa. Dosch see register 2 see page 11
19 Foundation load
see page 14
20 Cold-air resistant thermometer Type: 2xPT 100 Quantity: 2 Location Terminal diagram
see page 11 see register 2
21 Hot-air resistant thermometer Type: 2xPT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 1 Location see page 11 Terminal diagram see register 2 22 Slot resistance thermometer in stator winding Type: PT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 9 Setting see page 10 Location see page 11 Terminal diagram see register 2 23 Foundation screws M 56 Quantity: 8 24 Oil lubrication inlet
see page 19
25 DE shaft end
see page 12
26 Earthing of shaft
see page 23
27 Water inlet 2 ½”ANSI B16,5; 150LB 28 Water outlet 2 ½”ANSI B16,5; 150LB 29 Vibration monitoring
see page 26,27 Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 8
s 3. Operation of cooler Air-water single-tube cooler Water-cooler data: Water cooler composed of Cooler resistance (water side) Max. operating gauge pressure
: 2 : 0,8 : 6
Elements bar bar
Required water flow rate: 1 cooler operation 2 coolers operation at a water inlet temperature of Water outlet temperature
: : : :
m3 / h m3 / h °C °C
Connection flange for cooling water Core tubes Cooling fins Tube plates water side Tube plates air side Water boxes Side walls
: 2 ½”ANSI B 16,5; 150LB : CuNi10Fe : Al : CuZn38SnAl : CuZn38SnAl : CS + Rilsan : CS galvanized
22,7 33,7 32 39
To obtain noise-damping and vibration isolation it is necessary to use expansion-joints for cooler connection.
In case of one cooler failure, it is necessary to reduce generator power output to 50% of nominal power.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 9
s 4. Temperature monitoring devices Slot resistance thermometer in stator winding Position in Stator core viewed from drive end. Thermometer in slot 3 is located at top of the stator core. Arrangement clockwise
No. 1 2 3 4 5 6 7 8 9
Thermometer with connection 2:1 – 2:3 2:4 – 2:6 2:7 – 2:9 2:10 – 2:12 2:13 – 2:15 2:16 – 2:18 2:19 – 2:21 2:22 – 2:24 2:25 – 2:27
in slot 3 15 27 39 51 63 57 69 9
in phase U V W U V W U V W
Temperature limits. Max. continuous operating temperature
Sensor
Terminal Quantity
Type
Location
Max. continuous operating temperature
Stator winding
XT2
9
PT 100
Stator core slots
145°C
Bearings
XT3
2
2xPT 100
Bearing shell
95 °C
Cold air
XT7
2
2xPT 100
Cooler housing
45°C
Hot air
XT7
1
2xPT 100
Cooler housing
78°C
Leakage sensor
XT5
2
GEA 11 19 1259 01
Cooler housing
-
Guide values for adjustment of tripping temperatures: 1. Switch point (Warning) 5 K above the measured max. operating temperature. 2. Switch point (Cut out) 10 K above the measured max. operating temperature.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 10
s 5. Machine monitoring
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 11
s 6. Shaft end Type of flange: K-31310-2 MODEL LS3
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 12
s 7. Direction of rotation
Direction of rotation facing drive end. The generator is only suitable for CLOCKWISE direction of rotation. Connection of the system phases in the positive sequence to the machine terminals U1 V1 W1.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 13
s 8. Foundation load Peak torque produced by maximum asymetric short-circuit currents Stosskurzschlussfaktor
2k Mn M(2k) max
ωN Tg T(2k)
8,4
The following applies for the three-phase generator Mn=9,55*Sn/n Für den Drehstromgenerator gilt Sn in [kVA] Peak torque produced by maximum asymetric short-circuit currents Mn*2k Max. Stosskurzschlussmoment The vibration caused by maximum asymetric short-circuit currents can be calculated from the following equation Die Stosskurzschlussschwingung verläuft nach der Gleichung
668,64 kNm *
Angular frequency of the system Netzfrequenz Time constant of d.c. component Zeitkonstante des Gleichstromgliedes Time constant of initial asymetric short-circuit current Zeitkonstante des Stosskurzschlusswechselstromes
0,199
s
0,365
s
371,46 kN Force produced by the machine weight Gewichtskraft durch das Eigengewicht Foundation load Fundamentbelastung Foundation load Fundamentbelastung
A B
+F+G/2 -F+G/2
The foundation is to be calculated and constructed ba the civil-engineering contractor. Transfer of vibration from adjacent machine sets to be prevented by an adequate design of the foundation. Die Berechnung und Ausführung des Fundamentes ist Angelegenheit der ausführenden Baufirma. Eine Schwingungsübertragung vonNachbaraggregaten muss durch entsprechende Fundamentgestal tung vermieden werden.
kN
523,4
kNm
-219,3 kNm
*
By neglection of fadeout process. Bei Varnachlässigung des Abklingvorganges.
STATIC LOAD
DYNAMISCHE BELASTUNG
RUHENDE BELASTUNG
Siemens Electric Machines s.r.o Notice
304,1
DYNAMIC LOAD
Datum: 15.12.2008 Name: KOLÁŘ
Stat.
kNm
[1/s]
Fmax =± G
79,6
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 14
s 9. Rating plate
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 15
s 10. Outlet box
Cable outlet of each phase is provided by 2 cables SIAF 150, 13,8 kV.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 16
s 11. Sleeve bearing - DE Suplier Bearing type Size Oil viscosity grade
: Renk : EFZLK : 22-250 : ISO VG 46
Power dissipation Flow rate Min. oil inlet temperature Max. allowed oil inlet temperature
: 4,1 kW : 14 l/min : -4 °C : 45 °C
Min. pressure in oil supply pipe : 1, 5 Bar Max. pressure in oil supply pipe : 6 Bar Oil reservoir capacity : 23 l Lubrication by oil circulation and with oil ring lubrication. Bearing is shipped without oil. Axial clearance see page 20. Lubricant - see recommendations by bearing manufacturer. The bearing is insulated. Insulation of the drive end bearing is bridged with stranded copper conductor. The generator shall only be driven while being bridged.
Lubrication for sleeve bearings Forced lubrication
Flow rate:
14 l/min
Viscosity of oil(ISO VG)
46
Oil reservoar capacity
23 l
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 17
s 12. Sleeve bearing - NDE Supplier Bearing type Size Oil viscosity grade
: Renk : EFZLQ : 22-225 : ISO VG 46
Power dissipation Flow rate Min. oil inlet temperature Max. allowed oil inlet temperature
: 3,5 kW : 5 l/min : -4 °C : 45 °C
Min. pressure in oil supply pipe : 1, 5 Bar Max. pressure in oil supply pipe : 6 Bar Oil reservoir capacity : 23 l Lubrication by oil circulation and with oil ring lubrication. Bearing is shipped without oil. Lubricant - see recommendations by bearing manufacturer. The bearing is insulated. Insulation of the NDE bearing may not be bridged.
Lubrication for sleeve bearings Forced lubrication
Flow rate:
5 l/min
Viscosity of oil(ISO VG)
46
Oil reservoar capacity
23 l
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 18
s 13. Oil lubrication inlet 1. Throttle valve
Type: VRFB 90°, Fa. Hydrocom
2. Oil-flow meter
Type: DKM/A-1/24 MS G3/4”, Fa. Meister
with minimal flow contact 3. Shut-off valve
EMIL01C, Fa. MTC
4. Pressure gauge
MGN63R006, Type: 304G, 0-6 Bar
5. Oil inlet
Flange class 150 ANSI B16,5-3/4”
6. Hydrostatic inlet
Hydrostatic connection G ¼”
7. Oil outlet
Flange class 150 ANSI B16,5-2”
Lubricant oil circuit
Terminals from Oil-flow meter switch are lead out into aux. terminal box.
Hydrostatic values DE
NDE
Starting pressure Operation pressure
8,5 Mpa (85 Bar) 5 Mpa (50 Bar)
Starting pressure Operation pressure
8 Mpa (80 Bar) 4,5 Mpa (45 Bar)
Oil flow
0,8 l/min
Oil flow
0,8 l/min
ON/OFF speed limit(cold) ON/OFF speed limit(warm)
40 rpm 90 rpm
ON/OFF speed limit(cold) ON/OFF speed limit(warm)
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
40 rpm 90 rpm
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 19
s 14. Axial bearing clearance
All measurements are in mm.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 20
s 15. Rotary rectifier - brushless excitation components
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 21
s 16. Anti-condensation heater Quantity Type
:1 : DEW 8,5-400-380/1000W/3Y
Voltage No. of phases Power rating
: 380 V / 50 Hz :3 : ca. 1000 W
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 22
s 17. Shaft earthing
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 23
s 18. External earthing ball point and earth terminals
Type:
754 200 DIN VDE 0683-1, DIN 48088-1 Ø 20 mm
Earthing ball points are placed on the both side of the generator. Earthing ball point is galvanized – Do not paint!!
Earth protective terminals are placed in diagonal corners of the generator.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 24
s 19. Thermal expansion
Vertical development ∆ l = 0,34 mm Horizontal development ∆ h = 0,54 mm
20. Displacement
Vertical displacement sx = 0,064 mm Horizontal displacement sy = 0,086 mm Note: Values are calculated for rated operation conditions.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 25
s 21. Relative vibration sensor PROXPAC 330800 type Bently Nevada
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 26
s 22. Shaft vibration monitoring system Manufacturer Type shaft vibration DE Type shaft vibration NDE
: : :
Bently Nevada 330880-16-15-061(154mm)-03(M20)-02 330880-16-15-066(168mm)-03(M20)-02
Recommended values for the set points: 1. operating data (alarm) (max.80 µ p.t.p.) 2. operating data (trip) (max.110 µ p.t.p.) The amplitude of oscillation which is measured at normal operation Operating data: measured value at normal operation
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 27
s 23. Lifting instruction
The lifting capacity of the beam must be min 32 tons.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 28
s 24. Service covers Service cover no.1 dismantle in case of maintenance of rectifier or for cold air temperature detector exchange. Service cover no. 2 dismantle for hot air detector exchange and cover no. 3 for cold air detector exchange. Do not use for emergency cooling !
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 29
s 25. Outdrawal space for heat exchanger
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 30
s 26. Protection against corosion
Total thickness
:
Number of coats Primary coat
: :
Top coat
:
Inside 30 µm
Outside 60 µm
1 30 µm Colour RAL 3012 -
2 30 µm Colour RAL 3012 30 µm Colour RAL 7002
Tolerance per coat
:
±10 µm
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 31
s
Operating instructions
Synchronous Generator
G 3~ Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov
s Dear customers,
Now you become the owners of a synchronous generator produced by the Siemens Electric Machine, s.r.o. It is a product of the company with many-years' tradition that was produced on the basis of operational experience by a team of experts and skilled workers and which incorporates the latest know-how and advanced technology. We produce the series of synchronous generators with power output from about 20 to 12 000 kVA, LV and HV options for all usual applications. We will fulfil your special demands on a generator for special use or arrangement.
Team of company employees
Product documentation v3.5.a 2-032 (21/2/05)
page 2/31
s Contents page 1 Generally 1.1 1.2 1.3
Significant (relevant) safety terms...................................................................... 6 General safety information................................................................................. 6 Type marking of generators...............................................................…............ 8
2 Description 2.1 2.2 2.3 2.4 2.5
Technical description, variants........................................................................... Electric characteristics....................................................................................... Use.... ..............................................................................................……....... Warranties......................................................................................................... Standards.............................................................................................……......
9 10 11 11 11
3 Transport and storage 3.1 3.2 3.3
Safety recommendations.................................................................................... 12 Storage conditions.... ................................................................................. 13 Inspection during storage time........................................................................... 13
4 Installation and operation 4.1 4.2 4.3 4.4 4.5
Safety recommendations.................................................................................... Preparation........................................................................................................ Electric installation............................................................................................ First start up and operation.. ................................................................. Diagnostics of defects ……………..............................................................
14 14 17 18 22
5 Maintenance 5.1 5.2 5.3 5.4
Safety recommendations.................................................................................... Inspection of insulation condition...................................................................... Cleaning............................................................................................................ Bearing maintenance........................................................................................
25 25 26 26
6 Disassembly and regressive assembly 6.1 6.2
Dismantling (disassembling)............................................................................... 27 Regressive assembly (assembly)......................................................................... 27
7 Regulation 7.1 7.2 7.3 7.4 7.5
General description, principle of regulation........................................................ Range of voltage regulation............................................................................... Regulation accuracy.......................................................................................... Dynamic state of voltage................................................................................... Parallel operation..............................................................................................
Product documentation v3.5.a 2-032 (21/2/05)
28 29 29 29 30
page 3/31
s page 8 Neutral point 8.1
Generally....................................................................................................... 31
9 Generator disposal after lifetime expiration ................................... 31
List of enclosures
Enclosed
Enclosure No. 1: Technical data………………………..….. Enclosure No. 2: Machine name plate…………………...… Enclosure No. 3: Direction of rotation………………….…. Enclosure No. 4: Load of foundation by generator…….…. Enclosure No. 5: List of bearings with relubricating plan… Enclosure No. 6: Operational logbook of generator ……… Enclosure No. 7: Voltage regulators ……………………….. Enclosure No. 8: Regulator VAR/Power factor…………... Enclosure No. 9: Regulator RÜW 10……………………… Enclosure No. 10: Test certificate…..……………………… Enclosure No. 11: Connection diagram…………………… Enclosure No. 12: Dimensions drawing……………………
Product documentation v3.5.a 2-032 (21/2/05)
page 4/31
s 1. Generally Herein submitted operational instructions refer only to standard type. Possible dissimilarities from standard model (special models) are described in enclosures or supplements of operational instructions. NOTICE: Contents of operational instructions and production documentation is not the part of previous or current agreements promises or juridical relations or is not to change above mentioned. All obligations of SIEMENS result from existing purchase contract that also contains complete and valid delimitation of warranties. These contractual warranty contracts are neither limited nor extended by elaboration of these instructions and documentation.
Danger Electric machines are operational devices to be used in industrial heavy-current machinery. In the course of operation these operational devices have dangerous voltage, conductive bare parts, moving or rotating parts. Therefore they can cause the worst injuries or damage to properties in case of inadmissible removing of covers, unprofessional handling, incorrect manipulating or insufficient maintenance. Therefore the workers responsible for safety operation of a device have to secure the following: - only qualified operators have to be authorised to attend these machines - these operators and the others must always have submitted operational instructions and the other production documentation at their disposal in the course of all corresponding operations and have to adhere to this documentation consistently. - unqualified people are forbidden to operate the machines and keep in their surrounding.!!!
Product documentation v3.5.a 2-032 (21/2/05)
page 5/31
s 1.1 Significant (relevant) terms Warning terms such as DANGER, WARNING, CAUTION and RECOMMENDATION which are mentioned in this operational instructions are used to inform about danger or extraordinary information that require special marking. DANGER means that in case a person does not adhere to it, his life can be jeopardised or he may cause damage to property. WARNING means that in case a person does not adhere to it, he may induce difficult injury or cause damage to property. CAUTION means hat in case a person does not adhere to it, he may induce an injury or cause damage to property. RECOMMENDATION means that there are extraordinary and special technical connections that are not obvious even for experts. Regardless, it is also necessary to adhere to recommendations that are not specially emphasized, regarding transport, operation and maintenance as well as technical data (which are given in operational instructions, production documentation and on the machine itself) to prevent breakdown which can either directly or indirectly induce difficult injuries of people or cause damage to property. Qualified staff are operators who were in charge of safety of device, who are able to perform all necessary activities and at the same time recognize and prevent possible danger. These operators have to perform above mentioned as the result of their education, experience, previous training as well as acquiring knowledge of standards, provisions, regulations, safety of work and working relations. Above all qualification of staff providing service and maintenance has to correspond to the laws concerning work on heavy-current devices of a particular country which the device is operated in. Besides, knowledge of provisions of first aid and local rescue devices is necessary as well. Concerning work on heavy-current devices, restriction of employing unqualified people is determined in e.g. VBG 4 or ČSN 33 2000-4-41 or IEC 364-4-443.
1.2 General safety information Herein mentioned machines are parts of heavy-current devices for industrial extent of use. They are produced in compliance with corresponding and acknowledged technical regulations. WARNING: It is supposed that basic planned operations with a device as well as all operations concerning transport, assembly, installation, launching, maintenance and repairs will be performed by qualified staff or checked by responsible experts. Product documentation v3.5.a 2-032 (21/2/05)
page 6/31
s Concurrently it is necessary to take the following into consideration: - Technical data and data of admissible use (assembly connection terms, environmental terms and operational terms), which are, among others, stated in a catalogue, in operational instructions, orders, name plates and in the other technical documentation. - General establishing and safety provisions. - Local provisions and requirements which are specific for the device. - Qualified use of tools, lifting and transport devices. - Use of personal protective devices. - Duty of responsible people to take part in training on safety of employees in accordance with SAFETY PROVISIONS as well as keeping to the laws of a country in which the device is operated. Above all the laws, concerning protection of environment, handling with waste, safety use of substances that are dangerous for lives or environment e.g. cleaners, lubricants, adhesives, varnishes etc. Detailed information about these special products can be found in a “list of safety data” provided by producers or importer of a product. Operational instructions cannot contain all detailed information concerning different construction variants and cannot take into consideration every possible occurrence of installation, operation or maintenance owing to the loss of lucidity. Therefore operational instructions designed for qualified operators (see above mentioned) contain such recommendations that are necessary if a machine is used in accordance with provisions in the extent of industrial operation. If there are special requirements concerning nonindustrial area (e.g. protection against dangerous touch of children fingers and so on), these conditions have to be secured on the device by means of supplementary protective provisions. If there are any discrepancies, especially missing information which specify a product, sales department of SIEMENS is in charge of providing necessary explanation. Concerning this matter we ask you to mention mainly type and production number of a machine, please. Concerning planning, assembly, launching and service we recommend using the promotion and services of appropriate service centre of SIEMENS. RECOMMENDATIONS: Other detailed information concerning general works e.g. checking of delivered coils (damages which can be caused during transport), long term storage and preserving of machines, checking of footing, connection stretching, erection (setting) and (seating), levelling of a machine and others could be found in our “Assembly materials” or (newly) in “Operational instructions”. These materials could be obtained in SIEMENS sales department. Product documentation v3.5.a 2-032 (21/2/05)
page 7/31
s 1.3 Type marking of generators
1FC2 353-4SB40-Z Rotating electric machine
1
Synchronous machine
F
Basic design Water cooler design Air cooler design Military design
C J Q R
Low voltage, output up to 3 MVA 2 Low voltage, output above 3 MVA 3 Middle and high voltage 4 Axial height
180 mm 225 mm 280 mm 355 mm 450 mm 560 mm 630 mm 710 mm 800 mm
18 22 28 35 45 56 63 71 80
Power size
1 2 3 .
Number of poles 4 6 8 10 12
4 6 8 10 12
Product documentation v3.5.a 2-032 (21/2/05)
page 8/31
s 2. Description 2.1 Technical description, variants Machines of type 1FC2 are three-phase synchronous generators for low voltage with a rotor with protruding poles in brushless design. They consist of alternative current generator (main machine) and exciter with rotating rectifier. Rotors of main machine and exciter together with rotating rectifier and fan are situated on one shaft. Parts that are used for voltage regulation can be found in terminal box. One construction unit consists of above mentioned parts, welded cover and bearings. Main machine has got a rotor with protruding poles. Three-phase winding is brought out on four terminals and connected in a star. The star is brought out. Rotor is equipped with damper winding to improve dynamic stability of asymmetric load. Exciter is an alternative generator with outer poles with steady exciter winding in stator. Rotor alternating winding feeds winding in the winding of main machine by means of rotating rectifier. Rotating rectifier is a diode module connected in a three-phase bridge that is equipped with overvoltage protection. Basic mechanical design is represented by two-bearing design with degree of protection IP 23 and feet that are pulled out. There are other variants such as footing-flange, onebearing or other designs. Bundle of stator sheets is pressed into a solid welded box and it secured to prevent round moving. It is possible to adjust the height of footings towards generator axis. Generator rotor is a compact part of the machine with damper cage (amortiser) in magnet field. It is excited by means of integrated exciter. Stator of exciting machine (exciter) is situated in bearing shield on the non-drive-end. Bearing shields are produced of qualitative grey cast iron, may be welded. Rectifier and protective varistor are attached outside the machine on NS – side (front side). This solution can enable their easy replacement. In special designs it is situated even inside of the machine. There is a through system of cooling in the machine, which is optimal. Fans are made of aluminium up to axial height of 350 mm. Welded constructions are used for higher axial heights. Protective coverage is secured with ribbed sheets in the places where the air comes in and out. If generator operates in dusty areas, it can be equipped with a filter on the side where the air comes in. There is an option of supplying generators equipped with higher degree of protection than IP 23, and with water cooler or air cooler. Spacious terminal box is situated on the upper part of generator stator box. It contains all equipment that is needed for connection and operation of generator, including regulator. Terminals are arranged on 6-terminal bars. There is also an option of equipping a generator with thermal sensors in stator winding and bearings. Standard design of generator is supplied without drilled openings for outlet cables. There is an option of supplying inlet cable necks with PG – screw joints.
Product documentation v3.5.a 2-032 (21/2/05)
page 9/31
s 2.2 Electric characteristics 2.2.1. Output and raise of the temperature Determined output that is stated on the name plate is intended for long-term operation with symmetrical load, prescribed frequency and voltage, power factor cosϕ = 0,8 to 1,0, ambient air temperature up to 40o C and altitude of machine location up to 1000 m. Simultaneously, the machine is used in compliance with temperature class F, if need H according to IEC 60034-1.
2.2.2. Short-term current overload Machines can bear short-term overload without harmful effect in compliance with the following table: Tab.2.3.a Current overload I/In
1,10
1,15
1,30
t
1h
25 min
6 min
1,5 15s
3,0 5s
Above mentioned overload can occur only rarely and must be followed by running of machine for at least one hour at reduced output or at most at determined output.
2.2.3. Voltage Machines are standardly supplied with a star connection for voltage of 400 V at 50 Hz, or 450 V at 60 Hz (according to machine name plate). ATTENTION!! Machines that were supplied for voltage of 400V at 50 Hz, cannot be operated at voltage of 450 V and 60 Hz.
2.2.4. Shape of a voltage curve Time behaviour of terminal voltage during idle running and during symmetrical linear load is virtually sinusoid with upper frequency response according to ISO 8528, part 1, and at most 5 % of difference from the fundamental oscillation.
2.2.5. Asymmetric load Asymmetric load according to IEC 60034-1 article 22 Maximum I2 / IN for permanent operation 0,08 Maximum ( I2 / IN )2.t operation during breakdowns 20
2.2.6. Short-circuit current During symmetrical three-phase short-circuit the value of short-time short-circuit current makes minimally triple of nominal current. Short-circuit current must be switched off by 5 s. Product documentation v3.5.a 2-032 (21/2/05)
page 10/31
s 2.2.7. Radio interference elimination Generators correspond to interference elimination degree according to IEC 60034-1.
2.2.8. Currents in star neutral points If star neutral points of generators are connected mutually or with neutral points of transformers and appliances directly, then transient currents with triple determined frequency could appear in conductor among neutral points. To prevent thermal jeopardy of generators, transient currents should not exceed 50 % of nominal current of generator. Higher currents should be reduced outside of device by means of current limiting choke or similar devices.
2.3 Use Generators are used in land central offices and in naval shipboard networks for long-term or reserve operation. They can be driven by combustion engines, gas of water turbines or electromotors. They can run individually, parallelly with similar device or it is possible to connect them to public network.
2.4 Warranties Warranties refer to adhering of operational instructions and permissible operational terms. If these provisions are not adhered, it can result in refusing of warranty claims. During claim or with spare parts order it is necessary to provide factory (production) number and if need other data stated in output name plate. The user is obliged to keep the operational log, and he can dismantle the generator only if approved by the producer otherwise the producer shall be released from the obligations under its warranty. During the warranty and after the warranty period, the user must not make any external and internal intervention in the machine design.
2.5 Standards Generator design corresponds to standards IEC 60034-1 and also DIN EN 60034 (VDE 0530-1). If required, generators can meet requirements of other standards and regulations.
Product documentation v3.5.a 2-032 (21/2/05)
page 11/31
s 3 Transport and storage 3.1 Safety recommendation ! WARNING. During any lifting or transport of an aggregate it is necessary to use only openings that are provided for lifting and transportation, gripping lugs or pins in foundation plate! Lifting should be performed at four axially symmetrical places at least (see picture 3a). Aggregates must not be lifted hanging on individual parts of a machine! Existing accessory lifting lugs e.g. on bearing shields, cooler superstructure etc. are provided only for lifting of these individual parts of the machine. Lifting capacity of applied lifting device should be taken into consideration! Lifting devices should be chosen with respect of the weight of machine. Appropriate guiding of ropes should be used with possible superstructures or extension.
Picture 3a. Transport of machine
Product documentation v3.5.a 2-032 (21/2/05)
page 12/31
s 3.2 Storage conditions Generator and accessories must be professionally stored before installation. They must be protected from humidity, harmful environmental conditions and from other strange influences. If generator is placed in a transport box, it must be removed out of it before storage. Storage areas must be clean, dry, closed and protected from tremors. Temperature should not drop bellow 5oC.
3.3 Inspection during storage If storage takes more than 3 months, insulation resistance and preservative coats must be inspected. If the value of insulation resistance drops down bellow the value determined in point 4.3.1, table 1, generator must be desiccated immediately. You are obliged to record the start/end date of the storage period including all activities performed with the generator during this period to the operational log of the generator.
Product documentation v3.5.a 2-032 (21/2/05)
page 13/31
s 4 Installation and operation
4.1 Safety recommendation ! WARNING Strictly adhere to ”General safety information”, please. In paragraph 1.2 of this Instructions, recommendations concerning admissible use of machine and recommendations concerning required professional knowledge that is necessary while operating heavy-current machinery. Coverings must not be opened during operation (see also paragraph 5). Covers prevent from touching of active or rotating parts or they are necessary for right routing of air and effective cooling . For safety reasons, the machine can be started until the coupling is inserted at the free shaft end or after dismantling the key at the free shaft end. No higher speeds cannot be adjusted because this is ensured by right designed controlling and checking of speeds. The only admissible speeds are these that are given according to output name plate.
4.2. Preparation 4.2.1 General inspection of machine Generator must be properly inspected prior to erection (installation) with the aim to find out if there are any damages caused during transport or storage. Any imperfections that are found out must be reported to a supplier or transport company and must be professionally repaired. Remove preservative coating from metal surfaces (feet, flange, free end, etc.) prior to machine seating and installation. Insulation resistance must be inspected. Record the data measured to the operational log. 4.2.2 Locating Generator must be located in the way that terminal box, bearings and accessories could be easily approachable. 4.2.3 Installation Generator must be placed on a solid foundation without any vibrations. Machine feet must stand on flat metal base. If need, contact surface must be carefully laid under to prevent deformation of stator body.
Product documentation v3.5.a 2-032 (21/2/05)
page 14/31
s When installed, it is recommended that the increase of the axial height of the loaded generator must be taken into account. The increase of the axial height is affected by the heat machine use (its classification), the method of ventilation, the generator size, etc. The most suitable way is to operate the drive until the steady operational temperature regime is achieved, then to switch off the machine and to make the axial height correction. The informative calculation of the above-mentioned increase can be done from the following formula: Height increase [µm] = 0.312 x vertical foot distance from the shaft axis. Keep a record in the operational log.
4.2.4 Cooling Space, in which generator is situated, must be sufficiently large and aired. Generator cannot suck warm air from other machine. For continuous operation, it is necessary to provide a steady cooling air ventilation with a volume rate of 0.55 m3s-1 for each 100 kW. ATTENTION Temperature on surface parts of electric machines (stator housing, shields) can reach over 100oC, therefore possibility of touching these surfaces must be prevented. At the same time it is forbidden to put or attach any parts that are temperature sensitive such as normal leads or parts of electronic equipment.
4.2.5 Coupling Flexible connections must be used to connect generator and driving machine mechanically. The coupling must transmit only torsion moment from driving machine that must get rid of impact peaks that are produced especially by combustion engines. Further, it must attenuate all axial and radial vibrations of driving machine. Coupling must be dynamically balanced, it itself must not be a source of any undesirable forces and vibrations.
Shaft extensibility Due to motor heat dilatation the free end may extend to the clutch by 0.0012 fold motor stator length Shaft extension (mm) = 0.0012 x stator length (mm) That extension should be considered in motor clutch system design. For additional information see Annex, or contact us.
Product documentation v3.5.a 2-032 (21/2/05)
page 15/31
s Prior to assembly of connection on the generator shaft, preservative coat must be removed and the shaft should be slightly varnished with oil. Concerning actual assembly of a installation on the shaft, it is recommended to use assembly jig that will fit in a thread in generator shaft. If need, installation can be heated in oil bath with a temperature of up to 100oC. Installation must not be pulled on shaft by force. When pulling down the connection from the shaft, it is necessary to use pulling jig.
Coupling of a set must be adjusted by means of two indicators or another appropriate device according to picture 4.2.5. Tolerance that is determined by a producer of connection should be reduced as much as possible because every slightest defect will cause disproportionate increase of burden on bearings and coupling. Check the coupling during the steady operational temperature regime, and record the parameters to the operational log.
Picture 4.2.5: Points of measurement
4.2.6 Securing of mechanical position The right position of installed and fixed generator to the foundation must be secured in such a way that set axial alignment will not be changed in the course of operation. Feet must be plugged in into the foundation.
Product documentation v3.5.a 2-032 (21/2/05)
page 16/31
s 4.3 Connection 4.3.1 Insulation resistance of winding Insulation resistance of stator winding must be measured prior to launching a new generator or in generator that was out of operation for longer period of time. In winding without defects the resistance must not drop bellow the values given in table 4.3.1. ! WARNING The terminals have partly dangerous voltage and it is dangerous to touch them during or just after measurement. If there is a possibility of connecting network line being under voltage, make sure that network line cannot be connected during measurement. Table 4.3.1.
V
Insulation resistance at winding temperature 25ºC MOhm
Insulation resistance at winding temperature 75ºC MOhm
> 1000 1500
30 50
1,0 1,7
Nominal voltage
Measuring direct voltage V 500 1) 500
1)
the lowest measuring voltage 100V
It takes about 1 min. to reach final value of insulation resistance. If a measured value of resistance is bellow determined value, generator must be dried out. Increased temperature of winding by 10oC results in decrease of value of insulation resistance by a half. If the temperature of winding drops bellow 5oC, measured value of insulation resistance must not be considered as to be ready for connection because this may result in false conclusions. Record the values measured to the operational log. 4.3.2 Desiccation The simplest method of desiccation is a dry area with 80oC clean warm air and with exhaust. Generator does not have to be disassembled. Concerning generators with high protection e.g. IP 54, the parts that secure protection must be disassembled. Time of desiccation depends on the degree of humidity. The other desiccation methods: - short-circuit operation at IN with foreign exciter - warming up by means of direct current Insulation resistance must be measured during desiccation. At the start it will drop down quickly and then it will raise again. Desiccation is finished when insulation resistance reaches corresponding value. If insulation resistance of generator is not improved after longer period of desiccation, then the low value is not caused by humidity in stator. There must be another defect. Record to the operational log that the drying has been done. Product documentation v3.5.a 2-032 (21/2/05)
page 17/31
s Only qualified professionals can carry out cable lead to generator and its connection to switching and protective apparatus. And they have to adhere to valid regulations and standards. Cables must be thoroughly connected, and can stress connection terminals neither in tension nor in bending. Connection cables are connected in compliance with connection diagrams that can be found on inner side of terminal box cover. Terminal bolt must be properly tightened so as not to warm up and loose due to resistance during operation. Terminal box must be closed after the connection is finished. 4.3.3 Safeguarding Generator must be well protected by means of regressive protection to prevent dangerous operational situations and overcurrent defects. Generators must be safeguarded in compliance with nominal current that is determined in output name plate.
4.4 Launching and operation 4.4.1 Installation Prior to launching a driving machine, the following must be checked: - Generator load must be disconnected - Insulation resistance must be kept at least to minimal value - Safety regulations concerning operation of aggregate must be adhered - Protective wire must be connected When the check is over the whole aggregate can be launched according to operational instructions designed for the whole set. In case that the machine is not put out of operation for more than 3 months, only a short visual inspection is sufficient before the connection starts. 4.4.2 Change of rotating direction Change of rotating direction is possible only in generators equipped with a fan that can rotate in both directions. Change of direction is performed by switching over the terminals k and l of current transformer (picture 7.1.a). Change of rotating direction is accompanied with the change of phase sequence on the main terminals. Rotating direction cannot be changed in generators that have got only one-way fan. The fan must be exchanged.
Product documentation v3.5.a 2-032 (21/2/05)
page 18/31
s 4.4.3 Operation ! WARNING If any changes occur that are different from normal operation (higher input, temperature or vibrations, unusual noise or smells, reaction of control devices etc.), it means that function is damaged. Maintenance staff must be called immediately to prevent breakdowns that can directly or indirectly jeopardize people or that can cause damage to property.
IN CASE OF ANY DOUBTS, IMMEDIATELY DISCONNECT APPROPRIATE DRIVING MECHANISM Generator is able to be excited itself. But the following must be taken into consideration: - Required terminal voltage in the extent of UN ± 5% or according to technical specification can be set by external potentiometer after nominal revolutions are reached. - Generator can be fully loaded after nominal speeds are reached The following operational data must be checked again: - Current, generator cannot be overloaded - Symmetry of load of individual phases - Frequency - Increase of temperature in bearings, cooling of machine and mechanical operation To prevent resonance, take heed of the following: own electromechanical frequencies of generator must not be in accordance with mechanical exciting frequencies of driving machine. 4.4.4 Check of operation The function of generator must be continuously observed during operation so as to avoid a breakdown. Its course must be recorded in generator operational logbook, especially the changes that are unusual in the course of normal operation. Any found imperfections must be repaired immediately. Above all, generator must be clean, must be secured in accordance with the data on output name plate, running must be centred without vibrations, perfect condition of bearings and good tightening of connection terminals. During generator operation ventilation openings must not be covered in any way. If a generator was out of operation for longer period, insulation resistance of winding, condition of lubrication in bearings, tightening of terminal bolts and mechanical connection with driving machine must be inspected prior to putting the machine into operation.
Product documentation v3.5.a 2-032 (21/2/05)
page 19/31
s Intervals of preventive inspections Preventive inspection I. is carried out regularly in the course of common operation of the machine after 500 operational hours from the beginning. The inspection consists of: a) b) c) d)
Inspection of cleanliness of cooling surfaces of machine. Measurement of stator winding insulation resistance. Inspection of bearings operation if needed. Inspection of function of additional equipment if needed.
Any found imperfections must be repaired prior to putting the machine into operation. Preventive inspection II. is carried out regularly after 5000 operational hours from the beginning. The inspection consists of: a) b) c) d) e) f) g) h)
Inspection of cleanliness of cooling surfaces of machine. Measurement of stator winding insulation resistance. Measurement of rotor winding circuit insulation resistance. (measuring voltage is 500 V) Measurement of voltage, current, temperature, bearings and oscillations. Inspection of bearings operation. Inspection of connection to the net and tightening of terminal bolts. Inspection of tightness of terminal box cover. Inspection of function of additional equipment.
Any found imperfections must be repaired prior to putting the machine into operation. Preventive inspection III. is carried out regularly after 15000 operational hours from the beginning. The inspection consists of: a) b) c) d) e) f) g)
Thorough cleaning. Thorough inspection. Reparation of any imperfections. Bearings relubrication. Assembly according to the instructions. Measurements. Tests.
Any found imperfections must be repaired prior to putting the machine into operation. All inspections must be recorded in the generator operational logbook. 4.4.5 Putting out of operation
Product documentation v3.5.a 2-032 (21/2/05)
page 20/31
s Loading must be disconnected before generator is put out of operation. Next steps should follow operational instructions prescribed for the whole set. 4.4.6 Operational log The operational log serves for recording all events that relate to operation, maintenance and revisions of the generator. Keep the records starting from the storage period before putting the generator into operation. Record the current number of the operational hours to the "Operational hours" box starting from the first commissioning. Record also all events that are related to winding insulating resistance, drying, and record parameter values (e.g. voltage, current, bearing temperature, vibration, etc.) during both the commissioning and normal operation. The operational log is also used to record the results of all inspections and revisions. All machine modifications, part replacement, faults of generator, accessories, switching and breaking elements including their replacement are recorded to the operational log. Moreover, emergency events are also recorded (e.g. overload, short circuit, etc.) even if no generator failure occurred. The record in the operational log may refer to another document in which the activity is evidently recorded.
Product documentation v3.5.a 2-032 (21/2/05)
page 21/31
s 4.5. Diagnostics of defects 4.5.1. Mechanical cause
Excessive noise
Axial vibration
Radial vibration
Bearings are overheated Excessive temperature of generator
Scratchy noise
Breakdown
•
Contact of rotor or shaft with solid parts of machine appears Limited access of air, excessive amount of dust in winding, dust in cooler ducts Polluted or blocked air filter (if it is equipped)
•
Cooler function gets worse (goes for design with watercooler)
• •
Remedy precaution
Find and eliminate cause Perform check of access of air, pollution of winding, check cooler Filter exchange, if need to clean Clean cooler with regards to operational instructions, check amount of cooling medium, vent cooler Contact producer and require balancing
•
Unbalance on rotor
• •
Unbalance in coupling Transfer of vibration from linked machine
•
•
Badly fixed generator in foundation or changes in foundation
Level machine, check foundation, and tightening of generator
•
•
Resonance with foundation
Strengthen foundation
•
Lack of lubricant in bearing
Check amount of lubricant in bearing
•
Bearing is overloaded
Check tightening, levelling and clamping of machine
Damaged or badly worn out bearing
Perform exchange
•
Product documentation v3.5.a 2-032 (21/2/05)
Possible cause
Rebalancing Check of linked machine
page 22/31
s 4.5.2 Electric cause
Current and voltage drifting
Outside control device with no function
Generator voltage > 1,1 UN cannot be set by means of control device
Generator voltage app.0,1 UN (remanent voltage)
UN cannot be set by means of potenciometer VOLT
Generator voltage < UN
Breakdown
• • • •
•
Too high number of speeds Too low number of speeds Oscillation of number of speeds
Check speeds of drive Check speeds of drive Check speeds of drive Check diodes, exchange diode module Exchange varistor or diodes Check wires Check wires from auxiliary winding to regulator (terminals X3-X4,voltage app 180200 V) Exchange fuse
Defective varistor or diodes Break in circuit
• •
Break in regulator feeding
•
Defect on fuse F1
•
Break in exciting circuit •
•
•
Defective voltage regulator
•
Stability potentiometer reset
Frequency potentiometer reset
• •
Product documentation v3.5.a 2-032 (21/2/05)
Remedy precaution
Defect on rotating rectifier •
•
Possible cause
Check wires from regulator to exciter Exchange regulator New adjustment of potentiometer, stability according to operational instructions of regulator New adjustment of potentiometer, frequency according to operational instructions of regulator
•
Breakdown in circuit of planned values, short-circuit in leads
Eliminate short-circuit
•
Breakdown in circuit of planned values, interruption in leads
Eliminate interruption
During operation of potentiometer of planned values bridge 6-7 is missing
Input bridge 6-7 or attach external potentiometer with planned value
page 23/31
s Electric cause – follow-up
Fluctuation of output
Part of winding is overheated
Overheating
Difference of voltage among individual phases
Uneven load distribution during parallel operation
Generator voltage < UN
Breakdown
•
Remedy precaution
Overload Break of outer wires
• • • • • • • •
Product documentation v3.5.a 2-032 (21/2/05)
Possible cause
Reduce load Check outer wires Measure winding and insulation Short-circuit of stator winding resistance, consult producer and repair Overload Reduce load Uneven load Adjust load Measure winding and insulation Short-circuit of stator winding resistance, consult producer and repair Fluctuation of turning moment Check driving machine In generator equipped with statics Potentiometer of statics is reset module-set potentiometer of statics according to operational instructions Break or short-circuit of lead Eliminate short-circuit, in case of a from statics current transformer break check current transformer T1 to statics A2
page 24/31
s 5 Maintenance 5.1 Safety recommendation ! WARNING Pay heed to strict adhering to “General safety information” in paragraph 1.2 of these instructions. Unconditionally pay heed to necessary professional knowledge that must be acquired while operating in heavy-current machinery. Before any work on machines is started, make sure that machine or unit is disconnected in accordance to regulations. This applies especially for opening of protective covers. Pay heed not only to main current circuits but also to possible supplementary auxiliary current circuits. This especially applies to heater in the course of stoppage of machine. There are “5 safety regulations’’ (e.g. according to EN 50110-1): - disconnection - securing that prevents new connection - make sure that machine is disconnected - earthing and short-circuit connection (for voltage above 1000 V), - block or cover (close) neighbouring active parts. NOTICE: Cross-section drawings and or detailed drawings that are a part of instructions, usually contain useful information on technical construction of normal machines and constructional groups. This information can be appreciated by experts and should be taken into consideration in a certain way. ATTENTION Special designs and constructional variants can differ from normal projections as far as technical details are concerned. We are here to solve any potential uncertainty, please, contact us and provide us with type and production number of a machine. Other possibility is to contact directly SIEMENS service centre and have maintenance works performed by the centre. WARNING. Any works that are performed on generator must be carried out on disconnected machine, apart from relubrication of bearings. In that particular case it is necessary to adhere to safety instructions. If the works are performed on the parts of machine or accessories under current , make sure that generator is always separated from the network. At the same time check if these parts are not under voltage. Protective wire must always be connected.
5.2 Inspection of insulation condition Condition of generator insulation must be inspected during every maintenance and prior to putting into operation in case of longer period of a shut down.
Product documentation v3.5.a 2-032 (21/2/05)
page 25/31
s 5.3 Cleaning Generator and its accessories must be kept in clean condition. Cleaning must be carried out in dependence on operational requirements. The best way of cleaning is to use clean and dry pressed air (most 200 kpa). Collecting dust decreases cooling capacity and increases raise of temperature of machine. If generator is fitted with a filter in the inlet spot of cooling air, then it must be cleaned regularly. Cleaning intervals depend on conditions of ambient surrounding in which generator operates. Degree of contamination can be assessed in dependence on increase of temperature of stator winding which is normally equipped with resistance thermometer (concerning designs with a filter). Filter is disassembled and blown with pressed air. Keep a record of cleaning in the operational log. ! WARNING Pay heed to suitable exhaust and personal protective aids (protective goggles, filter, respirator etc.) in the course of pressure cleaning! When chemical cleaners are used, please, adhere to warning and safety recommendations that are stated in appropriate list of safety data (see paragraph 1.2). Chemical cleaners must be applicable for machine parts, especially parts made of plastics.
5.4 Bearing maintenance 5.4.1 Antifriction bearings Generator antifriction bearings are filled with lubricating grease and ready for operation. Generators are provided with bearings including relubrication equipment and grease amount regulator. Bearing type together with lubricant used are given complementary rating plate at each lubrication point. Relubrication intervals, if any, are given in Annex. Grease amount must be regularly checked in antifriction bearings and exchange, if necessary. New grease is to be filled during the preventive inspection III., no later than after 3 years. During maintenance the bearing part must be cleaned and new grease filled. Keep a record of additional lubrication in the operational log. 5.4.2 Sliding bearings Maintenance of sliding bearings is specified in manufacturer’s Manual which is enclosed. Take care of the following: - a regular oil exchange at specified intervals, - checks of screwed joints, - checks of temperature sensors.
Product documentation v3.5.a 2-032 (21/2/05)
page 26/31
s 6 Disassembly and regressive assembly 6.1 Disassembly Disassembly can be carried out only in clean dustless and dry environment. Prior to actual disassembly, plate of cable inputs must be removed. Open terminal box and release exciting cables and wire of bearing thermometer. Release the bolts (01), and then it is possible to remove the cover of rotating rectifier. Exchange of three-phase bridge or varistor can be carried out, then.. Release the bolts 02) and (03), and then it is possible to pull down bearing covers by means of pulling device and thread openings in bearing shields. Afterwards, a check or bearing exchange can be carried out. Once the stator is removed, winding of stator and rotor of main and exciting machine can be inspected.
Picture 6.2 a: Generator longitudinal cross-section
6.2 Regressive assembly (assembly) Regressive assembly of generator is carried out as a reversed sequence of steps. Appropriate tools must be used in the course of regressive assembly to prevent any violent force. If a generator differs from basic design e.g. different arranging of feet with two bearings, disassembly and regressive assembly can differ. Variants equipped with air filter, air watercooler, with different design of protection degree than IP 23, with special shape or mechanical design are provided with complementary supplements enclosed to operational instructions. Keep a record of dismantling in the operational log. Product documentation v3.5.a 2-032 (21/2/05)
page 27/31
s 7 Regulation 7.1 General description, regulation principle Regulation is performed to keep constant terminal voltage of main machine independently of load and power factor. Apart from this voltage regulator measures voltage of generator and compares it with adjusted required value. Exciting winding of exciting machine gets necessary direct current by means of regulation body of voltage regulator that is fed by means of auxiliary winding that is inserted into the main machine stator. Threephase winding of exciting machine feeds magnet wheel of main machine through rotating rectifiers. Overvoltage protection (varistor) limits arising voltage peaks to tolerable values. Generators are standardly equipped with voltage regulator AEC 63-7, pic. 7.1.a., or with power factor regulator (option) cos ϕ SCP 250 G , pic. 7.1.b. (producer Basler Electric Company). Voltage regulators in compact design are resistant against humidity and vibrations. Selfexcitation of generator is secured by sufficiently high remanence in stator of exciting machine.
L1 L2 L3
RIGHT ROTATION
L2 L1 L3
LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)
SUPPLY CONNECTION
A1
VOLTAGE REGULATOR
F1
FUSE
G1
MAIN MACHINE
G2
EXCITER MACHINE
H
AUXILIARY WINDING
T1
CURRENT TRANSFORMER FOR DROP COMPENSATION
U
VARISTOR
V2
ROTATING RECTIFIERS
1
JUMPER FOR OPERATION 50 Hz OR 60 Hz
1
PROPOJKA 50/60 Hz
CONNECTION OF AN EXTERNAL POTENTIOMETER
Picture 7.1 a: Diagram of regulator without regulation cos ϕ
Product documentation v3.5.a 2-032 (21/2/05)
page 28/31
s SUPPLY CONNECTION
L1 L2 L3 L2 L1 L3
A1
VOLTAGE REGULATOR
A2
COS ϕ REGULATOR
F1
FUSE
G1
MAIN MACHINE
G2
EXCITER MACHINE
H
AUXILIARY WINDING
R1
VOLTAGE SETTING POTENTIOMETER
S1
SWITCH
RIGHT ROTATION LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)
-FOR COS ϕ REGULATION : OPEN
-UNIT COS ϕ REGULATION : CLOSED T1
CURRENT TRANSFORMER FOR DROP COMPENSATION
T2
CURRENT TRANSFORMER 1/5A
U
VARISTOR
V2
ROTATING RECTIFIERS
1
JUMPER FOR OPERATION 50 Hz OR 60 Hz
Picture 7.1 b: Diagram of regulator with regulation cos ϕ
7.2 Range of voltage regulation Terminal voltage can be adjusted in the range of ±5,0% of nominal voltage by means of potentiometer that is situated on regulator. There is an option of supplying external potentiometer designed for remote control. Optionally it can be supplied with motor control.
7.3 Regulation accuracy Static accuracy of regulation is ±1% in the range from running without load up to full load as well as during constant output and change of revolutions of up to ±5,0%. Other information about regulation accuracy on demand.
7.4 Dynamic states of voltage Temporary drop of voltage that occurs during connection of full load with power factor cos ϕ makes normally up to 20%. This value depends on generator size. Time of reregulation makes about 1,5 - 2 s and depends on the size of regulator.
Product documentation v3.5.a 2-032 (21/2/05)
page 29/31
s 7.5 Parallel operation Synchronous generators 1FC2 are suitable for parallel operation with another generator and network. In the course of parallel operation, distribution of active load is determined by driving machines. To secure uniform distribution of active load, regulators of revolutions of parallely working driving machines must be adjusted at the same characteristics. They can even be equipped with electronic load regulator. Concerning parallel operation, generators are equipped with static regulator to secure good distribution of reactive load. Inclination (gradient) of reactive current characteristics can be changed by means of adjusting of resistance in static regulator. Statics is set by producer to a value of about 6% - possible range of adjustment is 10%. This adjustment enables voltage swing up to ±2,5% in parallel operation of network without exceeding maximum reactive generator current. If higher line voltage swing appears, it is necessary either to increase statics or and to regulate terminal voltage by means of power factor regulator.
Product documentation v3.5.a 2-032 (21/2/05)
page 30/31
s 8 Neutral wire 8.1 Generally In the course of parallel operation of generators amongst themselves or with the line, differential currents can appear as the result of distribution harmonic oscillation of 3rd order. Differential currents are added to phase currents and can result in inadmissible raise of temperature of generators. Neutral current must not exceed 50% of nominal current. If currents are higher, it is necessary to adopt suitable remedies concerning limitation e.g. current limiting choke.
9 Generator disposal after lifetime expiration After expiration of the generator lifetime it is user’s responsibility to dispose it ecologically. It is recommended to use the service of an authorized company. It is necessary to disassemble the generator and separate individual materials. The machine disposal may produce environment-demanding waste, such as grease or insulation material remaining. For machine ecological disposal including unexpended parts of the machine (e.g. packing materials - plastic, wood, metal) obey the legal regulations in force in particular country.
Product documentation v3.5.a 2-032 (21/2/05)
page 31/31
s Enclosure
Operational logbook Operational logbook of generator
Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Sheet 1 Name
Signature
page 1/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 2 Signature
page 2/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 3 Signature
page 3/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 4 Signature
page 4/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 5 Signature
page 5/5
RG-Erregermaschine Brushless exciter Betriebsanleitung / Instructions
Beschreibung
Description
Aufbau
Construction
Die RG-Erregermaschine, ausgeführt als Außenpolgenerator, ist eine bürstenlose Erregereinrichtung. Der Läufer der Erregermaschine ist auf der Welle der Hauptmaschine angeordnet, während der Ständer an der Hauptmaschine befestigt wird. Eine statische Hilfserregereinrichtung, die an anderer Stelle beschrieben ist, erregt über einen Spannungsregler das Feld des Außenpolgenerators. Der in der Läuferwicklung fließende Drehstrom wird in dem mitrotierenden Gleichrichterrad von Siliziumdioden gleichgerichtet und über die Erregerleitung der Erregerwicklung der Hauptmaschine zugeführt.
The exciter, designed as stationary-field generator, is of the brushless type. The exciter rotor is on the main machine shaft, and the stator is secured to the main machine itself.
Da sich die Erregermaschine innerhalb der Hauptmaschine befindet, benötigt sie keine Gehäuseabdeckung. Läufer Der Läufer ist auf einen Wellenstumpf der Hauptmaschine aufgeschrumpft und in Umfangsrichtung durch eine Passfedern gesichert. Die Läufernabe ist als Blechpaket ausgeführt. Die in die Nuten des Blechpaketes eingelegte Läuferwicklung ist eine dreiphasige Drehstromwicklung in Sternschaltung. Sie ist als Einschicht-Wicklung aus isoliertem Cu-Draht mit mehreren parallelen Leitern ausgeführt. Die Schaltenden der Einzelspulen liegen auf der A-Seite und sind mit den auf der gleichen Seite befindlichen Sammelringen W, U und V verbunden. Zur Sicherung gegen Fliehkräfte ist auf jedem Wickelkopf eine Bandage angeordnet Die Läuferwicklung ist mit Epoxydharz imprägniert.
As the exciter is situated inside the main machine, it needs no casing.
D1973/7-74 0106
A static auxiliary excitation unit described separately, is used for exciting the field of the external-pole via a voltage regulator. The three-phase current flowing in the rotor winding is rectified by silicon diodes in the rotating rectifier and fed into the field winding of the main machine through the excitation line of the field winding of the main machine.
Rotor The rotor is shrunk onto the shaft of the main machine and secured in the circumferential direction by a feather key. The rotor hub is designed as laminated core. The three-phase rotorwinding, inserted in the slots of the laminated core, is connected in star. It is a onelayer winding of insulated copper wire with multiple parallel conductors. The free ends of the individual windings are arranged at the D end and connected to the W, U and V and neutral bus rings arranged on the same side. The winding overhangs are provided with bandings to afford protection against centrifugal forces. The rotor winding is impregnated with epoxy resin.
Seite/Page 1
s Ständer Der Ständer der RG-Erregermaschine besteht aus einem gewalzten Jochring mit über Rippen angeschweißtem Flansch. Im Jochring befinden sich die durch Schrauben befestigten Pole mit der Erregerwicklung. Auf jeden Pol ist eine Spule aus isoliertem Cu-Draht gewickelt, die mit Harz verfestigt ist. Die Polspulen sind in Reihe geschaltet, wobei die Schaltenden der Nordpole gekreuzt und die der Südpole ungekreuzt ausgeführt sind. Die Enden der Erregerwicklung sind an eine Reihenklemme angeschlossen. Der Erregermaschinenständer wird im Gehäuse der Hauptmaschine mit Sechskantschrauben befestigt und zentriert. Belüftung Die RG-Erregermaschine ist im Kaltluftstrom der Hauptmaschine angeordnet. Öffnungen im Läuferblechpaket lassen die Kühlluft durch die Läufernabe strömen. Gleichrichterrad Der Gleichrichterteil befindet sich auf dem Gleichrichterrad und enthält je nach Höhe des Maschinenstromes drei oder sechs Diodeneinbausätze. Diodeneinbausätze Jeder Dioden-Einbausatz besteht aus einem mit Kühlrippen versehenen Leichtmetallkörper und enthält eine Siliziumdiode, die durch eine Spannkappe gehalten wird und deren Einbaulage die Polarität bestimmt. Da die Kühlkörper unter Spannung stehen, sind sie isoliert an der Läufernabe befestigt. Die Verbindung zwischen den Kontaktbolzen, den Siliziumdioden und den Gleichstromsammelringen erfolgt durch längsliegende Anschlusswinkel. Die Gleichstromsammelringe, an denen die Teile des Varistor-Schutzwiderstandes befestigt sind, sind isoliert auf der A-Seite des Gleichrichterrades angeschraubt. Varistoren Als Schutz der Gleichrichter gegen energiereiche Überspannungen in Störungsfällen ist ein spannungsabhängiger Widerstand eingebaut. Dieser Schutzwiderstand besteht aus sechs oder zwölf Varistorscheiben, die parallel zwischen dem Plus- und Minussammelring angeordnet sind. Jede Varistorscheibe wird von einer zentralen, isolierten Schraube gehalten. Der elektrische Kontakt zu den Sammelringen wird auf jeder Seite durch weichgeglühte Kupferscheiben hergestellt.
D1973/7 Seite/Page2
Stator The Stator frame of the brushless exciter consists of a rolled yoke ring with welded-on mounting feet. The pole pieces carrying the exciter winding are screwed to the in-side of the yoke ring. The coils wound on the pole pieces are of insulated copperwire and impregnated with resin. They are connected in series in such a way that the end leads of the north poles are crossed over, while those of the south poles are uncrossed. The exciter winding end leads are taken to a terminal block. The exciter frame is secured with hexagonal-head screws directiy to the main machine and locked with tapered pins. Ventilation The brushless exciter is arranged in the cool air flow of the main machine. Openings in the laminated rotor core allow the cooling air to flow through the rotor hub Rotating rectifier The rectifier section is located on the rotating rectifier and contains three or six diode assemblies, depending on machine current magnitude. Diode assemblies Each diode assembly consists of a light metal heat sink with cooling ribs and includes two silicon diodes that are fitted by means of clamping caps and arranged according to polarity. As the heat sinks are live, they are fitted to the rotor hub using insulated elements. The connection between the contact pins of the silicon diodes and the DC bus rings is established via longitudinally arranged connecting angles. The DC bus rings carry the components of the protective varistor and are fastened to the rotating rectifier at the D-end using insulating screws. Varistors The rectifier bridge is protected against such highenergy overvoltages as may occur in the event of faults by a voltage-dependent resistor consisting of six or twelve varistor disks arranged in parallel between the positive and negative bus ring. Each varistor disk is secured by a central insulating screw. The electrical connection to the bus rings is established on either side by two soft-an-nealed copper disks.
s Wartung
Maintenance
Die RG-Erregermaschine ist im wesentlichen wartungsfrei. Es empfiehlt sich, die Maschine in gewissen Zeitabständen auf Staubablagerungen zu kontrollieren und bei Bedarf, vor allem im Bereich der Kühlkörper, zu reinigen. Es genügt dafür Ausblasen der Maschine mit Pressluft (max. 4 bar). Die Demontage des Erregermaschinen-Ständers erfolgt gemeinsam mit dem BS-Gehäuse der Hauptmaschine. Dazu sind zunächst die Kabelverbindungen zu trennen. Das Gehäuse ist axial zu demontieren und dann auf die Gehäusewand zu legen. Der Ausbau des Erregerständers geschieht nach lösen der Sechskantschrauben, in senkrechter Richtung. Bei einem eventuell erforderlichen Abziehen von Läufer und Gleichrichterrad von der Hauptmaschinenwelle, sind vor dem Erwärmen der Naben mit einem Schweißbrenner, alle Diodeneinbausätze sowie die Gleichstromsammelringe auszubauen. Zum Aufschrumpfen können der komplett montierte Erregermaschinenläufer und das Gleichrichterrad in einem geeigneten Ofen erwärmt werden, wobei mit Rücksicht auf die Halbleiterbauelemente eine Ofentemperatur von 100 C° nicht überschritten werden darf. Zum Ausbau der Dioden sind die betroffenen Kontaktverbindungen sowie die Spannkappen der Einbausätze zu lösen. Die einzelnen Dioden können dann entnommen werden.
The brushless exciter requires only a minimum of maintenance. It is advisable to inspect the machine for dust deposits at suitable internals and to clean it if necessary, above all the heat sinks. It will be sufficient for this purpose to blow out the machine with compressed air at a pressure of not more than 4 bar. Dismantling of the exciter machine Stator is achieved by removing the N end. housing of the main machine. Firstly, disconnect the cable joints, lift the housing axial upwards and rest it on the housing panel. To remove the exciter Stator vertically, remove the screws.
HINWEIS Beim Einbau neuer Dioden auf alle damit in Verbindung stehenden Kontaktflächen, in dünner Schicht Kontaktöl (zB. Electrolube 2X, Produkt der Fa. Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 UlmLehr), gleichmäßig auftragen. Anzugsmoment der Schrauben M6 an den Spannkappen 8 Nm. Schrauben über Kreuz anziehen. Für die Wartungsarbeiten an der Erregermaschine ist der Bedienungsdeckel des BS-Gehäuses abzunehmen. Die genannten Teile und deren Befestigungselemente sind dann für die Montage zugänglich. Fehlersuche bei Diodenausfall Fehlerhafte Dioden können mittels eines Gleichspannungs-Durchgangsprüfers (z.B. AVΩ-Multizet) ausfindig gemacht werden. Es sei jedoch darauf hingewiesen, dass eine derartige Messung wegen der niedrigen Mess-Spannung je nach Wahl des Messbereiches am Instrument, besonders in Durchlassrichtung, sehr unterschiedliche Werte liefert und nur für einen größenordnungsmäßigen Vergleich der Widerstände in Sperr- und Durchlassrichtung geeignet ist.
If the rotor is to be removed from the shaft of the main machine, detach all the diode assemblies and DC bus rings before the hub is heated by means of a welding torch. Before shrink titling, heat up the completely assembled rotor in a suitable oven and take care that a temperature of 100 °C is not exceeded so that the semiconductor elements are not damaged. To remove a diode assembly, undo the associated contact screws as well as the clamping caps of the assemblies. The individual diodes can then be withdrawn from the rotor. NOTE When fitting new diodes, apply a thin coat of heatcon-ducting oil (e.g. Electroiube 2X, a product of Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 UlmLehr), on all contact faces involved. Tighten the M6 screws at the clamping caps with a torque of 8 Nrn. These screws must be tightened diagonally. To permit replacement of the varistor disks, the inspection cover at the N end must be removed so that the parts mentioned above, including their fastening elements, become accessible. Fault location on diode failure Defective diodes can be located by means of a DC continuity tester (e.g. AVΩ -MULTIZET). It should be noted, however, that owing to the low measuring voltage de-pending on the measuring range selected, measurements carried out with Instruments of this type may pro-vide greatly differing results, particularly in the forward direction. The results can therefore only be used for comparing the Orders of magnitude of resistance in the blocking and forward directions.
D1973/7 Seite/Page 3
s Zur Messung des Widerstandes in Durchlassrichtung ist ein möglichst großer Messbereich zu wählen. Bei einwandfreien Dioden können unter Verwendung von 1,5 V Mess-Spannung die Widerstandswerte in Durchlassrichtung je nach Messbereich ca. 100 Ω bis 10 kΩ, in Sperr-Richtung einige hundert kΩ betragen. Um die Diodenbrücke auf fehlerhafte Dioden überprüfen zu können, sind die Anschlussleitungen aller Dioden von den Sammelringen zu lösen. Hinsichtlich möglicher Störungen an der Diodenbrücke sind zwei Fälle zu unterscheiden: Verlust der Sperrfähigkeit (Durchlegieren) Beim Durchlegieren einer Diode fließt nur noch ein geringer Strom durch die Feldwicklung der Hauptmaschine, so dass die belastete Maschine übersynchron außer Tritt fallen wird. Die Maschine muss daher zur Behebung der Störung sofort entregt und stillgesetzt werden. Durchlegierte Dioden zeigen in beiden Richtungen einen extrem geringen Widerstand. Verlust der Leitfähigkeit in Durchlaßrichtung (Unterbrechung) Die Unterbrechung einer Diode tritt wesentlich seltener auf als das Durchlegieren, sie macht sich in der Weise bemerkbar, dass die von der Brücke abgegebene Spannung um ca. 15 % zurückgeht. Wegen der Erregungsreserve kann die Hilfserregereinrichtung diesen Verlust an Erregerspannung voll ausgleichen, wobei die Maschine bei Nennleistung und Nennleistungsfaktor einen höheren Hilfserregerstrom benötigt. Dioden, bei denen eine Unterbrechung in Durchlassrichtung vorliegt, zeigen in beiden Richtungen extrem hohe Widerstandswerte.
D1973/7 Seite/Page4
For measuring the resistance in the forward direction, the measuring range should be as small as possible. With healthy diodes and with a measuring voltage of 1.5 V, the resistance in the forward direction may be about 100 Ω to 10 kΩ, depending on the measuring range, and a few hundred Kohms in the reverse direction. Diode bridges can be tested for faulty diodes after the leads of all the diodes have been disconnected from the bus rings. Diode bridges are likely to give rise to two kinds of faults as follows: Loss of blocking capability (diode breakdown) If a diode breaks down, only a low current flows through the field winding of the main machine, causing the loaded machine to fall out of Step oversynchronously. To clear the fault, the machine must be de-excited and stopped immediately. Diodes that have broken down display an extremely low resistance in both directions. Loss of blocking capability (diode failure) Loss of diode conductivity occurs considerably less of-ten than diode breakdown and is indicated by a reduction of the voltage delivered by the bridge of approx. 15 %. Thanks to the excitation reserve, the auxiliary excitation unit is able to fully compensate this loss of excitation voltage even though the machine requires a higher auxiliary excitation current at rated Output and nominal powerfactor. Diodes which have become blocked in the forward direction have extremely high resistance values.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 1973/7-74 0106
s Stillstandsheizung
Anti-condensation heating
Baugruppen-Nr. 6590
Assembly Group No. 6590
Beschreibung
Description
Verwendung
Application
Verwendung In die elektrische Maschine ist eine Stillstandsheizung eingebaut. Die Stillstandsheizung ist so ausgelegt, daß die aktiven Maschinenteile immer wärmer als ihre Umgebung sind und eine Betauung vermieden wird. Die erforderliche Heizleistung wird bei der Auslegung der elektrischen Maschine bestimmt.
The electrical machine is fitted with an anti-condensation heating system. This system is so designed that the temperature of the active parts of the machine is always higher than the ambient temperature and that condensation is prevented. The heating power required is determined when designing the electrical machine.
a) Heizkörper im oder am Gehäuse befestigt a) Heater 1 fitted inside the casing or to the casing 1
1
b) Heizkörper 1 im Außengehäuse oder am Grundrahmen befestigt b) Heater 1 fitted inside the outer casing or to the baseframe
1
1
c) Heizkörper im Fundament befestigt c) Heater 1 fitted inside the foundation 1 1
Fig. 1 Anordnung der Stillstandsheizung Fig. 2 Arrangement of anti-condensation heaters
Ausführung
Design
Die Stillstandsheizung besteht aus einem oder mehreren elektrisch zusammengeschalteten Rohrheizkörpern, die im Innern der Maschine an geeigneten Stellen so montiert sind, daß die aufsteigende Warmluft die aktiven Maschinenteile berührt, die Wicklungsisolierung aber nicht durch die hohe Oberflächentemperatur der Heizkörper beschädigt wird. Abhängig von der Konstruktion der elektrischen Maschine sind mehrere Einbauvarianten möglich (Fig. 1). Stillstandsheizungen für explosionsgeschützte Maschinen sind mit einem Temperaturregler und Temperaturbegrenzer ausgerüstet. Der Temperaturbegrenzer ist auf die der Zündgruppe entsprechende höchstzulässige Oberflächentemperatur des Heizkörpers eingestellt und plombiert. Diese Heizkörper entsprechen den VDE-Vorschriften 0170 und 0171 und sind bescheinigt. Leistung und Anschlußspannung sind dem ,,Maßbild-Text" zu entnehmen.
The anti-condensation heating system consists of one or several heating tubes which are connected together and so arranged in the machine that the warm air rises to the active parts and that the winding insulation is not damaged by the high surface temperature of the heaters.
D 567-0502 de-en
Depending on the type of construction of the machine, the heaters can be arranged in various forms as shown in Fig.1. Anti-condensation heaters for machines intended for use in explosive atmospheres are equipped with thermostats and cut-outs. The cut-out is set to the maximum surface temperature permitted for the particular ignition-temperature group and then sealed. These heaters comply with the VDE specifications 0170 and 0171. The heaters have been officially approved. For rating and supply voltage, please refer to the text in the ,,Dimension drawing”.
567 Seite/Page 1
s
Fig. 2 Ausführungsbeispiel von montierten Rohrheizkörpern Fig. 2 Tubular anti-condensation heaters (example)
Fig. 3 Heizkörper, eingebaut in einer explosionsgeschützten Maschine Fig. 3 Heater installed in a machine for use in explosive atmospheres
Montage
Installation
Anschluß
Connection
Die Anschlußleitungen sind in einem Sekundärklemmenkasten oder an eine Klemmenleiste geführt. Der Anschluß der Netzleitungen ist nach dem gültigen Schaltplan vorzunehmen (s. a. ,,Maßbild"). Werden die Heizkörper explosionsgeschützter Maschinen erst auf der Baustelle direkt angeschlossen, ist mittels Steckschlüssel der Anschlußkastendeckel zu öffnen und der Anschluß nach einliegendem Wirkschaltplan, unter Beachtung der Betriebsanleitung des Heizkörperherstellers, vorzunehmen. Achtung! Vorgesehene Standorterdung unbedingt anschließen. Bei Drehstromanschluß ist darauf zu achten, daß auch die Steuerseite elektrisch angeschlossen wird.
The heater connecting leads are brought to a secondary terminal box or to a terminal block. The supply leads should be connected according to the applicable circuit diagram (also refer to the ,,Dimension drawing"). Should the heaters of machines for use in explosive atmospheres only be connected on site, this is to be done by opening the terminal box cover using a socket wrench and proceeding as indicated on the enclosed wiring diagram, following the operating instructions for the tubular heaters. Important: Connect to earthing system. With three-phase connection also make sure that the control circuit is correctly connected.
Einschalten
Switching on
Die Stillstandsheizung darf während des Betriebes der elektrischen Maschine nicht eingeschaltet sein. Deshalb ist eine Verriegelung erforderlich, die verhindert, daß die Maschine bei eingeschalteter Heizung in Betrieb genommen werden kann. Umgekehrt empfiehlt es sich, das Einschalten der Stillstandsheizung vom Abschalten der Maschine abhängig zu machen.
The anti-condensation heater must be switched off when the machine is running. An interlocking circuit is therefore necessary which prevents the machine from being started while the heater is switched on. On the other hand, it is recommended that switching on of the heater be made dependent on the shut-down of the machine.
Wartung
Maintenance
Austausch
Replacement
Bei einem Austausch defekter Stillstandsheizungen nur solche gleicher Ausführung verwenden. Achtung! Dies gilt insbesondere bei explosionsgeschützten Maschinen. Es wird empfohlen, Ersatzheizkörper vom Herstellerwerk der Maschinen zu beziehen. Bei Bestellung Maschinentyp und Fabriknummer angeben. Beide Angaben sind aus dem Leistungsschild ersichtlich. Beim Einbau darauf achten, daß explosionsgeschützte Heizkörper wieder in der gleichen Lage eingebaut und angeschlossen werden, da sonst die Funktion der Regler und Begrenzer beeinträchtigt wird.
When replacing defective heating tubes, only use tubes of the same type. Important: This is of special importance with machines for use in explosive atmospheres. lt is recommended that spare heating tubes be ordered from the machine manufacturer stating type and serial number which can be taken from the rating plate. New heaters for use in explosive atmospheres must be installed in the same position and connected in the same way as the old ones to ensure proper functioning of the thermostats and cut-outs.
Reinigung
Cleaning
Bei den entsprechenden Maschinenrevisionen ist eine Reinigung von Schmutz- und Staubablagerungen sowie eine Funktionsüberprüfung vorzunehmen.
Remove dirt and dust deposits from the heaters and test for proper functioning when machine inspections are carried out.
567 Seite/Page 2
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 567-0502 de-en
Luft-Wasser-Kühler Air-to-Water Cooler Betriebsanleitung / Instructions
Beschreibung
Description
Der Luft-Wasser-Kühler ist in der nachfolgenden Druckschrift der Herstellerfirma beschrieben. Die technischen Angaben sind im Maßbild-Text enthalten. Die Kühlerwerkstoffe sind optimal für die Wasserverhältnisse gewählt, für die der Kühler bestellt wurde. Für andere Wasserverhältnisse kann er nicht ohne weiteres eingesetzt werden.
The air-to-water cooler is described in the following leaflet of the manufacturers. The technical data will be found in the legend of the dimension drawing. The materials of the cooler have been selected for the water conditions for which the cooler has been ordered. It cannot be used indiscriminately for other water conditions.
Montage
Installation
Der Luft-Wasser-Kühler ist in den Gehäuseaufsatz eingeschoben und mit Spannlaschen befestigt. Unter dem Kühlerelement ist eine Auffangwanne für Kondenswasser eingebaut. Durch je eine Bohrung an den Längsseiten der Maschine, die durch Sechskantschrauben verschlossen sind, kann ein möglicher Kondenswasserstand kontrolliert werden. Die Öffnung auf der dem Kühlereinschub gegenüber liegenden Seite ist gleich groß und durch einen Deckel verschlossen. Wird der Deckel abgenommen, kann die Wasserkammer demontiert werden.
The air-to-water cooler is inserted in the top-mounted casing and secured with clamping straps. Below the cooler is a collection tray for condensed water. The level of any eventual condensed water can be checked through a hole on each side of the machine which is closed by a hexagon screw plug. The opening at the end opposite to the cooler insert is of equal size and closed by a cover. After removing this cover, the water box can be removed.
Korrosionsschutz
Corrosion protection
Allgemeines Rohre aus Kupfer und Kupferlegierungen müssen auf der Kühlwasserseite Schutzschichten aufbauen, damit eine ausreichende Korrosionsbeständigkeit erreicht wird. Schutzschichtbildung und -erhaltung ist im wesentlichen von der Inbetriebsetzung und den späteren Betriebsbedingungen abhängig. Nur eine dichte, festhaftende Schutzschicht kann vor Korrosionsangriff schützen.
General Tubes made of copper and copper alloys must build up protective layers on the cooling-water side to achieve sufficient corrosion resistance.
DW 8692-0106 74
The formation and preservation of the protective layers depends essentially on the conditions prevailing during commissioning and subsequent operation. Protection against corrosion is only provided if the covering layers are dense and adhere well.
Seite/Page 1
s Inbetriebsetzung
Commissioning
Die Zeit der Inbetriebsetzung ist als Einfahrphase für die Schutzschichtbildung ausschlaggebend. Nach Möglichkeit soll für mindestens zwei Monate ein kontinuierlicher Betrieb mit der Kühlwasser-Nennmenge erfolgen (siehe Maßbild-Text). Zur weitgehenden Verhinderung von Ablagerungen bzw. Störung der Schutzschichtbildung darf die im Maßbild-Text angegebene Kühlwassermenge nur um + 10% bzw. - 20% geändert werden. Je aggressiver ein Kühlwasser ist (z. B. hoher Gehalt an Chloriden, Sulfaten, suspendierten Stoffen) um so notwendiger wird ein kontinuierlicher Betrieb für die homogene Schutzschichtbildung. Zur schnelleren Ausbildung einer Schutzschicht ist ein möglichst hoher O2Gehalt erforderlich. Da dies bei der Inbetriebsetzung einer Anlage nicht immer gewährleistet ist, empfiehlt es sich, den Kühler bereits vor Inbetriebnahme der Anlage mit Kühlwasser zu beaufschlagen und Schutzschichtbetrieb zu fahren.
The commisioning period is decisive for the initial formation of the protective layer. If possible, there should be continuous operation with the nominal cooling water flow for at least two months (see dimension drawing legend). In order to prevent deposits as far as possible and to avoid inhibiting the formation of protective layers, the cooling water flow rate given in the dimension drawing legend should not be varied by more than 10% or -20%. The more corrosive the cooling water (e.g. high levels of chlorides, sulphates, suspended matter), the more necessary it is to have continuous operation in order to obtain a homogeneous protective layer. The highest possible level of O2 is necessary for rapid formation of the protective layer. Since this cannot always be ensured when a plant is being commissioned, it is recommended that cooling water be passed through the cooler before commissioning of the plant for the purpose of protective layer formation.
HINWEIS
NOTE
Sollten sich unvermeidbare Betriebsunterbrechungen ergeben, oder entsteht zeitlich ein Abstand zwischen dem Füllen mit Wasser und dem Normalbetrieb sind die beschriebenen Maßnahmen unter „Stillstand” zu beachten. Es ist selbstverständlich, dass vor der Inbetriebsetzung eine sorgfältige Reinigung des Kühlwasserzulaufsystems zu erfolgen hat. Sollten Fremdkörper im Kühlwasserzulaufsystem nicht mit Sicherheit vermeidbar sein, müssen die Rohre kontrolliert und bei Ansatz von Fremdkörpern gereinigt werden
In the event of unavoidable interruptions of operation or should some time elapse before filling with water and the beginning of normal operation the measures described under ”Standstill periods” should be observed. It is obvious that the cooling water supply system must be thoroughly cleaned before commissioning. If the presence of foreign bodies in the water supply system cannot be excluded with certainty, the piping must be checked and then cleaned should foreign bodies be detected.
Dauerbetrieb
Continuous operation
Der Dauerbetrieb mit der im Maßbild-Text angegebenen Kühlwassermenge ist für den Erhaltungszustand optimal. Eine größere Kühlwassermenge oder eine örtliche Querschnittsverengung (z. B. Fremdkörper), die zu einer Erhöhung der Kühlwassergeschwindigkeit führen, zerstören die Schutzschichten durch Erosion, die zuerst auf der Kühlwassereintrittsseite der Kühlrohre in Erscheinung tritt. Es soll auch nicht mit einer zu niedrigen Geschwindigkeit gefahren werden, da sonst die Gefahr von Ablagerungen aus dem Kühlwasser besteht. Ablagerungen in den Kühlrohren stören die Schutzschichtbildung erheblich und können eine bereits vorhandene Schutzschicht durch Korrosion zerstören. Ablagerungen sind Abscheidungen fester Schwebstoffe aus dem Kühlwasser. Eine Reinigung mittels Handreinigungsbürste bzw. Hochdruckreinigungsmaschine ist erforderlich. Hinsichtlich der Dauer der Reinigungsperioden und der Intervalle sind die Betriebserfahrungen maßgebend. Allgemein gültige Richtlinien können deshalb nicht gegeben werden.
Continuous operation with the cooling water flow rate given in the dimension drawing legend is optimal for proper care of the cooler. A higher cooling water flow rate or a local constriction (e.g. foreign bodies) which lead to an increase in the cooling water velocity, will result erosion of the protective layers which appears initially at the cooling water inlet of the cooling tubes.
8692 Seite/Page 2
The velocity should not be too low to avoid deposits from the cooling water. Deposits in the cooler tubes impair protective layer formation considerably and can also destroy an existing protective layer by corrosion. Deposits normally arise from suspended solid matter in the cooling water. The tubing must then be cleaned using a hand brush or a high-pressure cleaning machine. Operating experience will determine the duration and frequency of cleaning. Generally applicable guidelines cannot therefore be given.
s Durch Kontrollieren der Berohrung bei Stillständen soll sich der Betreiber ein Bild über das Verhalten der Kühler machen und Erfahrungen mit dem zur Verfügung stehenden Kühlwasser sammeln. Häufig verschmutzen die Kühlrohre auch durch das Wachstum von Mikroorganismen, meist schleimigen Bakterien, die durch eine mechanische Rohrreinigung nicht immer beseitigt werden können, sondern z. B. eine Stoßchlorierung mit 2 bis 3 mg Cl2/l erfordern. In besonders hartnäckigen Fällen kann die Chlorkonzentration ohne Gefährdung der Rohrwerkstoffe bis 10 mg Cl2/l erhöht werden.
The operator will have to form his own opinion as to the behaviour of the cooler by inspecting the tubing during standstill periods and by gathering experience with the available cooling water. The cooling tubes frequently become fouled also due to the growth of micro-organisms, mainly slimy bacteria, which cannot always be removed by mechanical cleaning but may require, for example, chlorinating with a concentration of 2 to 3 mg Cl2/l. In particularly stubborn cases, the chlorine concentration can be increased up to 10 mg Cl2/l.
Stillstände
Standstill periods
Stillstände sind für Rohre aus Kupfer und Kupferlegierungen besonders gefährlich, wenn die Schutzschicht sich noch nicht gebildet hat oder aber die Gefahr ihrer Zerstörung durch Korrosion unter Ablagerungen besteht. Bei Betriebsunterbrechungen oder Ausfall der Kühlwasserversorgung bis zu drei Tagen, können die Kühler mit Kühlwasser gefüllt bleiben, wenn
Standstill periods are particularly dangerous for tubes made of copper and copper alloys if the protective layer has not yet been formed or if they are likely to be destroyed by corrosion under deposits.
· ·
Rohre frei von Ablagerungen sind. Absperrarmaturen zum Schließen vorhanden sind und System entlüftet wurde. · keine Gefahr besteht, dass das Kühlwasser gefrieren könnte. Werden die Bedingungen nicht erfüllt, muss · das Kühlwasser abgelassen werden. · das Rohrsystem gereinigt, mit sauberem Wasser gespült und mit warmer, vorgetrockneter Luft getrocknet werden. Bei Stillständen von mehr als drei Tagen sind die Kühler wie vorher bei nicht erfüllter Bedingung zu behandeln. Für Stillstände bis zu drei Tagen ist auch der Betrieb mit kleineren Kühlwassermengen bis 20% (Schleichströmung) zulässig, damit Ablagerungen in den Rohren vermieden werden. Diese Maßnahme ist besser als ein absoluter Stillstand des Kühlwassers in den Rohren, da Fäulnisprodukte vom Ort ihrer Entstehung fortgespült werden.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. DW 8692-74 0106
In the event of operational outages or failure of the cooling water supply for periods up to three days, the coolers may remain filled with cooling water when the following conditions are satisfied · Tubes are free from deposits · Shut-off valves are fitted and system has been vented. · Cooling water is not likely to freeze. When these conditions are not satisfied: · Cooling water must be drained. · Tubing must be cleaned, flushed out with clean water and dried with hot, pre-dried air. In the case of standstill periods lasting longer than three days, the coolers should be treated as described above for non-satisfied conditions. In the case of standstill periods up to three days it is also permissible to operate with lower cooling water flow rates up to 20% to avoid the accumulation of deposits in the tubes. This measure is better than absolute standstill of the cooling water in the tubes since any products of decay are flushed away from where they originate.
8692 Seite/Page 3
2008-04-21
&RLOWHFK$%6(6|GHUN|SLQJ6ZHGHQ_3KRQH_7HOHID[ :HEZZZFRLOWHFKFRP
)(1,52/
Motor/Generator Cooler from Coiltech CZ 8012-22,7 one cooler. Id ______________________________________________________________________________________________ Air 183 kW Capacity 8.5 m³/s (48°C) Flow rate 67.5 °C Temperature in 48.0 °C Temperature out 1013 hPa Absolute pressure 106 Pa Pressure drop 3.4 m/s Velocity ______________________________________________________________________________________________ Cooling medium Water 22.7 m³/h (32°C) Flow rate 32.0 °C Temperature in 39.0 °C Temperature out 78 kPa Pressure drop 2.3 m/s Velocity ______________________________________________________________________________________________ Dimensions 7 % Overdesign 2340 mm Tube length 1100 mm Finned width 2 1/2" ANSI B 16.5 150LB Nozzle size 3 No. of tube rows 2.5 mm Fin pitch Copper-Nickel Tube material Aluminium Fin material Rilsan coated steel Removable header Galvanized steel Casing material Brass Tube plates 242/41 kg/l Dry weight / Internal volume 116 kg Copper content 99 No of tubes 162 m² Cooling surface 0.6 MPa Max op. pressure 0.9 MPa Test pressure 100 °C Max op. temperature ______________________________________________________________________________________________ QLKE-234-110-3-2-4-23-3-8-X Ordering code X= 0,15 mm fins.
8.10.1.0 bp
1
2008-04-21
&RLOWHFK$%6(6|GHUN|SLQJ6ZHGHQ_3KRQH_7HOHID[ :HEZZZFRLOWHFKFRP
)(1,52/
Motor/Generator Cooler from Coiltech CZ 8012-22,7 one cooler. Id ______________________________________________________________________________________________
______________________________________________________________________________________________ QLKE-234-110-3-2-4-23-3-8 Ordering code
8.10.1.0 bp
2
s Trocknen von Wicklungen
Drying of Windings
Allgemeines Siemens-Isolierungen MICALASTIC® sind grundsätzlich unempfindlich gegen Feuchte. Anschlussklemmen und während der Montage eingefügte Stäbe, Spulen oder Verbindungen, die nicht voll der Isoliertechnik der übrigen Wicklung entsprechen, können jedoch durch Feuchtigkeit gefährdet sein. Es kann sich auch durch Transport, Lagerung, Bauarbeiten oder durch längere Stillstandszeit innerhalb der Maschine ein Feuchtigkeitsfilm auf den Oberflächen gebildet haben, der vor einer Inbetriebnahme durch eine der nachfolgend beschriebenen Trocknungsmethoden zu beseitigen ist. Da ein Feuchtigkeitsfilm auf der Isolierung im Innern von Maschinen visuell nicht immer festgestellt werden kann, sind zusätzliche Beurteilungskriterien - wie z. B. Isolationswiderstand und Nachladezahl -zu beachten. Der Isolationswiderstand ist in jedem Fall zu bestimmen, da aus den Messwerten Aussagen über den Zustand der Wicklung abgeleitet werden können. Die ermittelten Werte protokollieren und - falls vorhanden mit früheren Werten vergleichen. Bei der Trocknung wird durch Erwärmung der Wicklung die unerwünschte Oberflächenfeuchtigkeit beseitigt. Werden bei Maschinen einzelne Wicklungsteile (z. B. beim Schließen der Teilfuge) am Montageort eingebaut, sind diese vor dem Lackieren vorzutrocknen, vorzugsweise mit trockener Warmluft. Für Mikafolium-Isolierung wird nach längerer Stillstandszeit immer eine Trocknung notwendig sein. Ist eine Stillstandsheizung vorhanden, so ist diese sobald wie möglich in Betrieb zu nehmen, um Eindringen bzw. Niederschlagen von Feuchtigkeit zu verhindern. Die Läuferwicklung wird normalerweise ausreichend durch die warme Umgebungsluft miterwärmt, wenn der Ständer bei der Trocknung Strom führt. Eine Trocknung bei laufender Maschine ist einer solchen im Stillstand vorzuziehen. Isolationswiderstand von Hochspannungswicklungen Der Isolationswiderstand gibt Aufschluss über OberFlächen-Feuchtigkeitsgehalt, Verschmutzung und evtl. Beschädigung der Wicklungen. Einzelheiten über die Durchführung der Messung sind in „Messen des Isolationswiderstandes elektrischer Maschinen“ 1075 enthalten. Bei Hochspannungswicklungen sollen folgende Werte gemessen werden: 1 Isolationswiderstand jedes Stranges gegen geerdetes Gehäuse und die anderen geerdeten Stränge. 2 Isolationswiderstand aller Wicklungsstränge gegen geerdetes Gehäuse. Der Isolationsmesser soll dabei eine Spannung von 500 bis 3000 V, vorzugsweise 1000 V, abgeben. Die Temperatur der Wicklung ist über die eingebauten Temperaturfühler (normalerweise Widerstandsthermometer) zu messen. Nachladezahl
General Siemens MICALASTIC® insulation is basically not affected by moisture. Terminals as well as conductor bars, coils or connections fitted during the installation that are not insulated to the same degree as the rest of the winding can, however, be endangered by moisture. Shipping, storage, construction work or a long period of standstill can cause a film of moisture to form inside the machine on the surface of the insulation which must be dried before commissioning by one of the methods described here.
In Abhängigkeit von der Zeit sind nach Anlegen der Prüfspannung die Werte des Isolationswiderstandes bei 30s, 1 min und fortlaufend jede Minute bis 12 min zu notieren. D1074g-0312 de-en
Because a film of moisture on the insulation inside the machine cannot always be visually detected, other detection methods such as insulation resistance and polarization index must be used. The insulation resistance should always be determined because information on the condition of the winding can be derived from this. Record the measured values and compare them with earlier values, if available. During the drying process the surface moisture is driven off by heating the windings. If individual portions of the windings are installed at site, for example after closing the stator joints, these parts must be dried before varnishing, preferably by hot, dry air. In the case of mica folium insulation, drying is always necessary after a long standstill. Where anti-condensation heating is fitted, this should be switched on as early as possible in order to prevent the ingress or condensation of moisture. The rotor winding is normally heated sufficiently by the surrounding air when the stator is heated by passing current through it. Drying the machine whilst running is preferable to drying at standstill. Insulation resistance of HV windings The insulation resistance provides information about the surface moisture content, contamination and any damage to the windings. The measuring procedure is detailed in "Measuring the Insulation Resistance of Electrical Machines" 1075. With HV windings the following values should be measured: 1 Insulation resistance of each phase to earthed frame and to the other earthed phases. 2
Insulation resistance of all winding phases to earthed frame. The insulation resistance tester should produce a voltage of 500 to 3000 V, preferably 1000 V. The temperature of the winding is measured by built-in sensors (normally resistance thermometers). Polarization index The insulation resistance is taken at 30s, 1 min and then at every minute up to 12 min after the test voltage has been applied.
1074 Seite/Page 1
s Die lange Messdauer ist durch den Absorptionsstrom bedingt, der seine Ursache in der Polarisation des Dielektrikums hat. Das dielektrische Absorptionsverhältnis wird auch zur Kennzeichnung des Zustandes der Isolation von Wicklungen herangezogen. Es ist das Verhältnis von zwei Ablesungen des Isolationswiderstandes nach verschiedenen Zeiten während der gleichen Messung, d. h. auch gleicher Temperatur (z. B. R60s Isolationswert nach 60 s abgelesen).
The length of the measurement period is determined by the absorption current which is caused by the polarization of the dielectric. The dielectric polarization index is also used as an indication of the condition of the winding insulation. It is the ratio of two readings of the insulation resistance taken at specified time intervals during the same measurement, i.e. at the same temperature (R60s = insulation resistance reading 60 s after the test voltage has been applied).
Richtwerte
R 10min R 1min PI oder N PI = Polarisationsindex N = Nachladezahl
Trocknen
Comparative rating
Drying R 10min R 1min PI or N PI or N = Polarization index
Gefährlich Schlecht Fraglich Brauchbar Gut Ausgezeichne t
< 1,1 1,1 bis 1,25 1,25 bis 1,4 1,4 bis 1,6 > 1,6
ja ja empfehlenswert nein nein nein
Dangerous Poor Questionable Satisfactory Good Very good
<1.1 1, 1 to 1.25 1.25 to 1.4 1.4 to 1.6 > 1.6
R 60 s R 30 s
<1 1 bis 1,5 1,5 bis 2 2 bis 3 3 bis 4 >4
Der Polarisationsindex oder die Nachladezahl soll -wenn die Wicklung getrocknet werden muss - vor und nach dem Trocknen bei gleicher Temperatur bestimmt werden, da eine gewisse Temperaturabhängigkeit bestehen kann. Mindestwert des Isolationswiderstandes Der Isolationswiderstand soll einen gewissen Mindestwert haben, den die Fig. 1 für die gesamte Wicklung gegen Erde, in Abhängigkeit von der Wicklungstemperatur zeigt. Um die Abhängigkeit des Isolationswiderstandes von der Maschinengröße zu eliminieren, ist hier als Ordinate das (konstante) Produkt aus Wicklungskapazität und Isolationswiderstand, die sogenannte Isolationszeitkonstante τ = R10 x C in MΩ, µF = s aufgetragen. Der Isolationswiderstand ist dabei der 10-min-Wert, der als zeitlicher Endwert bei der Messung angesehen wird. Unterliegen Maschinen ausländischen Normen, müssen selbstverständlich darin enthaltene Mindestwerte eingehalten werden.
1074 Seite/Page 2
R 60 s R 30 s
<1 1 to 1.5 1.5 to 2 2 to 3 3 to 4 >4
yes yes recommended no no no
The polarization index should be determined before and after drying - in the event that the winding requires drying - at the same temperature because to a certain extent the index is temperature dependent. Minimum value of the insulation resistance The insulation resistance of the complete winding to earth should have a certain minimum value which is shown in Fig. 1 as a function of the winding temperature. In order to eliminate the dependence of the insulation resistance on the size of the machine, the ordinate is formed by the (constant) product of the winding capacitance and the insulation resistance which is known as the insulation time constant τ = R10 x C in MΩ, µF = s The insulation resistance is the 10 min value which is considered to be the final measurement value. If machines are subject to foreign standards, the minimum values contained therein must be observed.
A Isolationszeitkonstante/Insulation time constant
10 =
R10C
B Umrechnungsfaktor für Bezugstemperatur 75° C → Conversion factor for reference temperature of 75°C →
s
Fig. 1
Nuttemperatur/Slot temperature
In bestimmten Fällen kann auch mit Hinweis auf die IEEE-Empfehlung St 43-1974 für den Mindestwert des Isolationswider-standes die Formel R is,min = kV + 1 M angewendet werden, wobei R is,min der Wert bei 40°C und kV die Maschinennennspannung ist. Die Wicklungskapazität C (alle 3 Stränge gegen Erde) wird einer evtl. durchgeführten tan-δ-Messung entnommen oder über die Stromaufnahme an 220 V Wechselspannung (50 Hz bzw. 60 Hz) oder mit einer C-Messbrücke bestimmt. C=
Mindestwert der Isolationszeitkonstante und Beispiel einer Trocknung Minimum value of the insulation time constant and example of a drying process
J U ⋅ω
In der Praxis genügt es an kleinen und mittleren Maschinen, d. h. bis ca. 20 MVA, den Mindest-Isolationswiderstand nach der angegebenen IEEE-Formel anzusetzen. Der Messwert R 1 min (d.h. 1 min Messdauer) ist ausreichend. Für die Temperaturabhängigkeit des Isolationswiderstandes kann man in grober Annäherung mit der Faustformel arbeiten, dass 10 K Erwärmung den Widerstand halbieren bzw., dass nach Abfall der Temperatur um 10 K sich der Isolationswiderstand verdoppelt. Die genaue Umrechnung ist aus Fig. 1 zu entnehmen (s.a. unter „Trocknungsmethoden“). Nach Erreichen des Mindest-Isolationswiderstandes kann die Trocknung beendet werden. Falls eines der beiden Beurteilungskriterien Polarisationsindex und Isolationswiderstand - zu niedrige Werte hat, sollte die Wicklung erst einmal visuell auf Feuchtigkeit, Verschmutzung und Beschädigung untersucht werden.
In certain cases the formula R is,min = kV + 1 in M may also be used with reference to IEEE recommendation St 43-1974 for the minimum value of the insulation resistance where R is,min is the value at 40°C and kV is the rated machine voltage. The winding capacitance C (all three phases to earth) may be determined from a loss-tangent test if carried out, by measuring the current input at 220 V AC (50 Hz or 60 Hz) or by means of a capacitance measuring bridge. C=
J U ⋅ω
In practice, it is sufficient with small and medium machines, i.e. up to approx. 20 MVA, to use the minimum insulation value in accordance with the IEEE formula given above. The measured value R 1 min (i.e. 1 minute value) is sufficient. To determine the insulation resistance at other temperatures, the rule of thumb can be used, i.e. for 10 K temperature rise the insulation resistance is halved and for 10 K temperature drop it is doubled. The exact conversion can be seen in Fig. 1 (see also "Drying Methods"). Drying can be stopped when the minimum insulation resistance is reached. If either of the measurement methods - polarization index or insulation resistance - produces values that are too low, the winding should initially be visually examined for moisture, contamination or damage. 1074 3
Seite/Page
s Können dabei Mängel nicht festgestellt oder nicht behoben werden, so muss eine Trocknung vorgenommen werden. Eine Trocknung ist natürlich auch dann erforderlich, wenn trotz guten Polarisationsindexes und guten Isolationswiderstandes offensichtlich Feuchtigkeit an der Wicklung vorhanden ist. Niedrige Werte des Isolationswiderstandes bei neuen oder reparierten Wicklungen können allerdings auch durch noch unvollständig ausgehärtete Harzsysteme verursacht sein. Der endgültige hohe Isolationswiderstand wird dann erst nach längerer Betriebszeit (einige hundert Stunden) erreicht. Bei zweifelhaften Messergebnissen sind deshalb unbedingt die Ursachen der Abweichungen zu suchen. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und ggf. auch Trocknung durchgeführt werden. Isolationswiderstand von Erreger- und Niederspannungswicklungen Niederspannungswicklungen in MICALASTIC- Ausführung sind im wesentlichen genauso zu beurteilen wie Hochspannungs-Wicklungen. Hier kann der Isolationswiderstand bei höheren Temperaturen im kΩ -Bereich liegen; es ist deswegen ratsam, mit Spannungen <500 V, z. B. 100 V, zu messen. Bei Läuferwicklungen wird der Isolationswiderstand gegen die geerdete Welle gemessen. Polwicklungen von Synchronmaschinen Erregerwicklungen von Synchronmaschinen sollen besonders wenn es sich um einlagige Wicklungen handelt - während ihrer Betriebszeit bei Betriebstemperatur einen Isolationswiderstand von 0,1 MΩ nicht unterschreiten; andernfalls sind die Wicklungen zu säubern bzw. zu trocknen. Besondere Sorgfalt ist den Polverbindungen und den Schleifringzuleitungen zu widmen. Im Neuzustand soll der Wert des Isolationswiderstandes pro Pol bei Raumtemperatur Ris > 200 MΩ sein. Dementsprechend ergibt sich für die gesamte Wicklung ein Mindestwert von Ris,min > 200 MΩ. Nach Polzahl
längerer Lagerung bzw. längerem Betrieb soll der Isolationswiderstand erst bei kleiner Spannung (500 V) gemessen werden, damit durch die Messspannung nicht Schäden an der (evtl. nachzubehandelnden) Isolierung entstehen. Gleichstrommaschinen Bei Gleichstromankern mit der Vielzahl der offen liegenden Wicklungsenden und den daran angeschlossenen Kommutatorlamellen gibt naturgemäß der gemessene Isolationswiderstand in erster Linie den Zustand der zwischen den nicht isolierten Leiterteilen und Eisen liegenden Kriechstrecken auf der Isolationsoberfläche an. Das gilt auch für die Hauptstromwicklungen (Kompensations-, Wendepol- und Reihenschlusswicklung) im Magnetgestell. Deswegen kann der Mindestwert des Isolationswiderstandes nur im Neuzustand gefordert werden. Schon Transport und Lagerung können die Isolationswerte erheblich verringern. Nach längeren Betriebs- bzw. Stillstandszeiten kann auch nach sorgfältiger Reinigung und Trocknung der ursprüngliche Isolationswert nicht mehr erreicht werden; Folgerungen auf den Zustand der Isolierung sind aus oben 1074 Seite/Page 4
If deficiencies cannot be detected or cannot be dealt with then the winding should be dried. Of course, drying is also necessary when, in spite of good polarization index and insulation resistance values, moisture is visible on the windings. Low insulation resistance values of new or repaired windings can also be caused by resin before it has completely cured. In this case the final insulation resistance value is only attained after an extended operating period (several 100 hours). If doubtful measurement results are obtained, it is important to determine the cause. In any case, whenever low insulation resistance values are obtained, carry out thorough cleaning and also, if required, drying. Insulation resistance of field and LV windings For LV windings using MICALASTIC insulation, basically the same applies as for HV windings. Here, the insulation resistance can be in the kΩ range at higher temperatures; it is therefore advisable to carry out the measurement with voltages less than 500 V, for example 100 V. The insulation resistance of rotor windings is measured relative to the earthed shaft. Field windings of synchronous machines During operation, the insulation resistance of the field windings of synchronous machines should not fall below a value of 0.1 MΩ at operating temperature - particularly in the case of single-layer windings. If the insulation resistance does fall below this value the windings must be cleaned and/or dried. Special attention should be paid to the pole connections and the slipring leads. When new, their insulation resistance per pole should be Ris > 200 M at room temperature. Accordingly, this results in a minimum value for the whole winding 200 MΩ. After prolonged storage or of Ris,min > No. of poles
after prolonged operation the insulation resistance should initially be measured with a low voltage (< 500 V) so that damage is not caused to the insulation as a result of the test voltage. If such damage does occur it must be repaired. DC machines The insulation resistance of DC armatures,which have a large number of open winding ends connected to commutator segments, is first and foremost a measure of the condition of the leakage paths over the insulation surface between the non-insulated conducting parts and the armature body. This is also true of the main windings (compensating, interpole and series windings) on the yoke. Thus the minimum value of the insulation resistance can only be specified in the new condition. Even shipment and storage can considerably reduce insulation resistance values. After extended periods of operation or standstill, the original value of the insulation resistance will no longer be attained even after careful cleaning and drying. Conclusions regarding the condition of the insulation are for the abovementioned reasons difficult.
s
oben genannten Gründen schwierig. Als grober Richtwert sollte bei Gleichstrommaschinen ein Isolationswiderstand von 1000 Ω/Volt Betriebsspannung bei 75°C angestrebt werden (entspricht ca. 20 kΩ/V bei 25°C). Einige Betreiber begnügen sich auch mit 500 Ω/Volt. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und gegebenenfalls auch Trocknung durchgeführt werden. Die Feldwicklung der Gleichstrommaschine soll bei 75°C einen Isolationswiderstand von 1 MΩ nicht unterschreiten. Trocknungsmethoden Beim Trocknen von Wicklungen kann die Wärme auf drei Arten zugeführt werden: 1 Erzeugung von Verlustwärme in der Maschine selbst, d. h. im Kurzschlussbetrieb. 2 Einspeisung von Strom aus fremden Energiequellen zur Erzeugung von Verlustwärme in den Wicklungen, z. B. mit Hilfe von Schweißumformern oder steuerbaren HochstromgIeichrichtern. 3 Warmluftzuführung nach entsprechender Abdeckkung mit Zeltplanen, Holzverkleidungen usw. Bei allen Methoden muss natürlich darauf geachtet werden, dass ein Luftaustausch zum Abführen der Feuchtigkeit erfolgt. Als Beharrungstemperatur beim Trocknen ist eine Temperatur von ca. 60°C anzustreben. Dieser Wert soll jedoch erst nach ca. vier Stunden bei Micalastic und ca. acht Stunden bei Mikafolium von Beginn der Trocknung an erreicht werden. Die Stromstärke in den Wicklungen bzw. die zugeführte Wärmemenge ist - angefangen von kleinen Werten unter Beachtung der Temperaturzunahme - so zu steigern bzw. einzustellen, dass diese Bedingung eingehalten wird. (Bei wasserstoffgekühlten Maschinen wird wegen des Luftaustausches mit normaler Frischluft getrocknet, deswegen den Kurzschlussstrom wegen höherer Erwärmung niedrig halten!) Durchführungen und Stützer vor dem Trocknen mit trockenem Lappen säubern. Bei der Durchführung einer Trocknung wird entsprechend der Fig. 1 nur der Isolationswiderstand der gesamten Wicklung gegen Erde gemessen, und zwar der 10-min-Wert. Die Umrechnung des jeweiligen Isolationswiderstandes auf die Bezugstemperatur von 75°C erfolgt nach Kurve B. Beispiel: Gemessen bei 40°C Ris,40 = 33 M , Ris,75 = 0,125 x 33 = 4,1 M Temperaturschwankungen während des Trockenbetriebes vermeiden. Bei vollständig gekapselten Maschinen Abzugsmöglichkeit (Klappen, Deckel) für feuchte Luft schaffen und für saubere, möglichst trockene Zuluft sorgen. Temperatur möglichst durch eingebaute Widerstandsthermometer (Nutthermometer) messen. Bei laufender Maschine zusätzlich Zu- und Abluft (Kalt- und Warmluft) messen. Bei fehlenden Nutthermometern und in jedem Fall bei stehender Maschine, möglichst an den Wickelköpfen Alkoholthermometer befestigen. Maßgebend ist die Temperatur an der räumlich höchsten Stelle.
A typical value of roughly 1000 Ω/Volt of operating voltage should be expected for DC machines at 75°C (corresponds to approx. 20 kΩ/V at 25°C). Some users are also satisfied with 500 ΩV. In any case, when poor insulation resistance values are obtained, carry out thorough cleaning and also, if required, drying. The field winding insulation resistance of DC machines is not to fall below 1 MΩ at 75°C. Drying methods For the purpose of drying windings, heat can be applied in three ways: 1 By producing heat losses in the machine itself, i.e. by operating the machine on short circuit. 2 By feeding current from external energy sources to produce heat losses in the windings, e.g. with the aid of m.g. welding sets or controllable high-current rectifiers. 3 By providing a flow of hot air after suitably covering with tarpaulins, wood cladding etc. With all these methods some air circulation must naturally be provided to allow the moisture to escape. A steady-state temperature of about 60°C is desirable for the drying process. However, this value should be reached not less then about four hours with Micalastic and about eight hours with micafolium after starting the drying process. The magnitude of the current in the winding or the quantity of heat applied should be controlled so as to fulfil this requirement, i.e. starting with low values and regulated according to the temperature rise. (With hydrogen-cooled machines, normal fresh air is used for drying due to the air circulation. The shortcircuit current must be kept low due to the increased temperature rise.) Bushings and post-type insulators should be cleaned with dry rags before drying. During the drying process, only the insulation resistance of the whole winding to earth is measured, i.e. the 10 min value, according to Fig. 1. The insulation resistances are converted to the reference temperature of 75°C from curve B. Example: Measured at 40°C Ris,40 = 33 M , Ris,75 = 0.125 x 33 = 4.1 M Avoid temperature variations during the drying process. With totally enclosed machines provision should be made (by removing covers, etc.) to permit the moisture to escape and for clean, dry air to enter. Measure the temperature, using the built-in resistance thermo-meters (slot thermometers) if possible. In addition, in the case of running machines, measure the inlet and outlet (cold and hot air) temperatures. Where slot thermometers are not provided and, in any case, with stationary machines, install alcohol thermometers on the winding overhangs if possible. The most important measurement is the temperature at the highest point. 1074 5
Seite/Page
s Quecksilberthermometer wegen Bruchgefahr nicht verwenden, bei Wechselstrom außerdem Fehlanzeige durch Wirbelströme. Unteres Ende der Thermometer zur besseren Wärmeübertragung mit Aluminiumfolie umwickeln und gegen Abkühlung mit Filz oder Watte bedecken. Bei Maschinen kann nicht von der Gehäusetemperatur auf die Wicklungstemperatur geschlossen werden. Die Temperaturerhöhung über der Umgebungstemperatur bei Maschinen ohne Widerstandsthermometer sollte außerdem aus der Zunahme des gemessenen Wicklungswiderstandes errechnet werden. Faustregel: Je 10 K Temperaturerhöhung nimmt der Widerstand bei Cu um 4 % zu. Maschine nach beendetem Trockenbetrieb möglichst bald belasten, damit erneute Aufnahme von Feuchtigkeit verhindert wird. Falls eine Stillstandsheizung vorhanden, so ist diese natürlich nach beendeter Trocknung in Betrieb zu nehmen. Kurzschlusstrocknung von Generatoren Bei Generatoren sollte die Wicklung möglichst im Kurzschluss bei laufender Maschine getrocknet werden, damit keine Heißstellen durch Wärmestau entstehen. Die dreipolige Kurzschlussverbindung so ausführen, dass der Nennstrom der Maschine keine nennenswerten Erwärmungen ergibt (Richtwert 1 A/mm²). Kurzschlussverbindung möglichst unmittelbar an den Generatorklemmen anbringen. Liegen zwischen Generator und Kurzschlussverbindung Leistungs- oder Trennschalter, muss verhindert werden, dass diese während des Trocknens geöffnet werden können. In diesem Falle käme die Maschine sofort auf Spannung. Im Bereich der kurzgeschlossenen Wicklung liegende Spannungswandler oder Kondensatoren abklemmen, da sie die Messung des Isolationswiderstandes verfälschen. Bei der praktischen Durchführung der Kurzschlusstrocknung ist auf folgendes zu achten: Spannungsreglerumschalter auf „Hand“ schalten. Bei Transipolerregung jeden Strang der Sekundärwicklung der Übertragerdrosseln einzeln kurzschließen. Verbindung der Oberspannungswicklung des Erregertransformators zur Generatorleitung unterbrechen und Sekundärwicklung des Erregertransformators von Fremdnetz einspeisen. Vorsicht, Rückspannung! In den ersten sechs bis acht Stunden (abhängig von Maschinengröße) Ständerstrom von etwa 0,5 JN an so weit steigern, dass 60°C Wicklungstemperatur nicht überschritten werden. Kühlwassermenge entsprechend einstellen. Nennstrom nicht überschreiten. Überstromschutz einschließlich Entregungseinrichtung in Betrieb nehmen. Liegt Kurzschluss im Differentialschutzbereich, stromdurchflossene Stromwandlerkreise kurzschließen. Stündlich Nuttemperatur, Zu- und Ablufttemperatur und Generatorstrom notieren.
1074 Seite/Page 6
Mercury thermometers should not be used because of the danger of breakage and also because of incorrect readings resulting from AC induced eddy currents. Wind aluminium foil around the lower end of the thermometers to improve the thermal contact and cover with felt or cotton wadding to reduce the effects of cooling. Do not assume that the temperature of the machine housing is also the temperature of the winding. The rise in temperature above the ambient temperature of machines without resistance thermometers should be calculated from the increase in the measured winding resistance. Rule of thumb: For every 10 K temperature rise the resistance of copper rises by 4 %. After completing the drying process, the machine should be loaded as soon as possible to prevent moisture from being re-absorbed. Where anti-condensation heating is provided, this should naturally be put back into service after drying. Short-circuit drying of generators The windings of generators should preferably be dried with the machine running on short circuit to prevent hot spots being formed by heat accumulation. The three-phase short-circuit link should be designed so that the rated current of the machine does not cause the link to be noticeably heated (typical value 1 A/mm²). Connect the short-circuit link as close as possible to the generator terminals. If circuitbreakers or isolating breakers are in circuit between the generator and the short-circuit link, measures must be taken to ensure that they cannot be opened during the drying process. If this did occur, voltage would immediately appear at the generator terminals. Voltage transformers or capacitors in the region of the short-circuited winding should be disconnected since they introduce errors into the insulation resistance measurement. During the short-circuit drying of windings the following should be observed: Switch the voltage regulator changeover switch to "Manual". With Transipol excitation each phase of the secondary winding of the air-gap reactor is individually short-circuited. Break the connection between the excitation transformer higher-voltage winding and the air-gap reactors and feed the secondary winding of the excitation transformer from an external system. Beware - danger of feedback voltage. In the first 6 to 8 hours (depending on the size of the machine) increase the stator current from about 0.5 IN to a value such that the winding temperature does not exceed 60°C. Set the cooling-water flow accordingly. Do not exceed the rated current. Energize the overcurrent protection including the de-excitation equipment. If the short circuit is in the zone of the differential protection, short-circuit the current circuit of the current transformers. Record the slot temperature, inlet and outlet temperatures and the generator current every hour.
s Der Fortgang der Trocknung ist durch wiederholte Messungen des Isolationswiderstandes - 3 Stränge gegen geerdetes Gehäuse - unter Beobachtung der Wicklungstemperatur zu überwachen (siehe Beispiel Fig. 1). Die Wicklung muss für diese Messung spannungsfrei sein. Kurzschlusstrocknung von Asynchronmaschinen Das Trocknen von asynchronen Schleifringläufermotoren im Kurzschluss erfordert besondere Vorkehrungen, da Kurzschluss hier die Einspeisung bei stillstehendem Läufer bedeutet. Der Läufer ist unmittelbar an den Schleifringen kurzzuschließen (z. B. mit Schraubzwingen) und gegen Drehung zu sichern. Bei den meisten Motoren bis 6,3 kV Nennspannung bietet sich eine Trocknung durch Speisung der Ständerwicklung aus dem Niederspannungs-Drehstromnetz an (220, 380 bzw. 500 V), falls dieses Netz stark genug ist. Auch wenn der sich einstellende Strom geringer als der halbe Nennstrom ist, ist auf entstehende Wärmenester zu achten, da die Maschine still steht. Für einen ständigen Luftaustausch muss gesorgt werden. Der Läufer selbst soll etwa stündlich um 90° gedreht werden. Damit die feuchte Luft austreten kann, ggf. vorhandene Deckel, Verschlüsse oder ähnliches öffnen. Etwa vorhandene Kondens-Wasserlöcher auf der Unterseite des Motors öffnen. Ist ein Drehstromgenerator vorhanden, kann mit diesem die Ständerwicklung des Schleifringläufermotors gespeist werden. Der Strom in der Ständerwicklung ist dann so einzustellen, dass ca. 60°C innerhalb von vier bis acht Stunden erreicht werden. Käfigläufermotoren können unter Beachtung der obigen Hinweise auf dieselbe Art getrocknet werden. Trocknen mit Schweißumformer Werden für die Erwärmung einer Maschinenwicklung Schweißumformer verwendet, dürfen diese nicht ohne weiteres parallelgeschaltet werden. Es ist nachzumessen, ob die Gleichspannung bei Leerlauf gleich ist. Die Erregerwicklung F1 – F2 aller parallel zu schaltenden Schweißumformer mit einem zusätzlichen Schalter gemeinsam ein- bzw. ausschalten, nachdem die Umformer drehstromseitig angelassen bzw. ausgeschaltet sind Zulässigen Strom im Strang der Wicklung höchstens 50 % des Nennstromes einstellen, da die Lüftung fehlt. Strom und Spannung jedes Umformers messen (zulässige Grenzleistung beachten). Die einzelnen Stränge der Wicklung in Reihe oder parallel schalten. Bei Reihenschaltung der einzelnen Stränge diese unsymmetrisch (z. B. Plus an U1, U2 an V1 V2 an W1 W2 an Minus) schalten, um den axialen magnetischen Fluss in der Welle gering zu halten. Bei nicht herausgeführtem Sternpunkt müssen zwangsläufig zwei Stränge parallel in Reihe zum dritten Strang geschaltet werden. Anschlüsse etwa stündlich wechseln, damit sich die Wicklung gleichmäßig erwärmt. Bei offenem Sternpunkt stündlich den Isolationswiderstand jedes Stranges gegen Gehäuse messen. Gleichstrom vor dem Abschalten langsam heruntersteuern, da andernfalls wegen der Wicklungsinduktivität starke Lichtbögen auftreten können.
Monitor the progress of the drying process by repeated measurement of the insulation resistance three phases to earthed frame -while observing the winding temperature (see example Fig. 1). For this measurement the winding must be isolated. Short-circuit drying of induction machines Special arrangements must be made when drying slipring induction motors by short-circuiting because in this case short circuit means feeding the rotor at standstill. The rotor must be short-circuited directly at the sliprings, for example by bolted clamps, and also mechanically locked to prevent rotation. Most motors up to 6.3 kV rated voltage can be dried by feeding the stator winding from a three-phase LV supply (220, 380 or 500 V) if the supply system can take the load. Even when the current setting is lower than half the rated current, make sure that hot spots are not formed due to the machine being stationary. Ensure that continuous air circulation is provided. The rotor should be turned through 90° about every hour. In order to allow the moisture to escape, covers or the like should be opened. Where a drain plug is provided for water condensation on the underside of the motor this should be opened. If a three-phase generator is available this can be used to supply current to the stator winding of the slipring motor. The current should be set so that a temperature of about 60°C is reached in a period of four to eight hours. Cage motors can also be dried by the abovementioned procedure. Drying with welding sets If m.g. welding sets are to be used for drying machine windings certain precautions must be taken before connecting them in parallel. Measure the open circuit DC voltages to ensure that they are all equal. Connect the excitation windings F1 – F2 of all the welding sets required to operate in parallel through an additional switch. This allows all the field windings to be switched on or off together depending on whether the three-phase motors of the m.g. sets have been started or stopped. Because there is no ventilation, adjust the maximum permissible current per winding phase to 50 % of the rated current. Measure the current and voltage of each m.g. set (observe permissible limits). Connect the individual phases of the winding either in series or parallel. With series connection connect the individual phases unsymmetrically (e.g. plus to U1, U2 to V1 V2 to W1 W2 to minus) in order to keep the axial magnetic flux in the shaft low. Where the neutral point is not brought out, two phases must inevitably be paralleled and connected in series to the third phase. Change the connection order about every hour so that the winding is evenly heated. With the neutral point open, measure the insulation resistance of each phase to frame hourly. Before switching off a direct current, the current should be gradually reduced, otherwise the winding inductance will cause heavy arcing. 1074 7
Seite/Page
s Da bei stehender Maschine die Temperaturverteilung nicht der Verteilung bei Lüftung entspricht, 60°C Wicklungstemperatur nicht überschreiten. Läufer (falls eingebaut) stündlich um 90° drehen. Trocknen mit Warmluft Falls die Verfahren 1 und 2 nicht anwendbar sind, muss mit Warmluft getrocknet werden, die von einer äußeren Energiequelle zur Verfügung gestellt wird. Naturgemäß kommt dieses Trocknungsverfahren hauptsächlich für Synchronmotoren und Gleichstrommotoren in Betracht, bei denen eine Erwärmung über die eigenen Stromwärmeverluste nicht möglich ist oder die Schweißumformer nicht eingesetzt werden können. Die Heizkörper sind so anzuordnen, dass einerseits durch geeignete Abdeckungen die zu trocknende Wicklung im Warmluftstrom steht, andererseits aber nicht durch Wärmestau Wärmenester mit zu hohen Temperaturen entstehen, d. h. es muss eine Luftbewegung mit Luftaustausch zustande gebracht werden. Die Warmluft soll 80°C nicht überschreiten, beim Austritt aus der Maschine soll sie noch 10 K über der Umgebungstemperatur liegen.. Taupunktunterschreitung in der Maschine ist zu vermeiden, d. h. am Austritt darf sich keine Feuchtigkeit niederschlagen. Dieses Verfahren der Trocknung erfordert mehr als die beiden anderen Verfahren ständige Überwachung, da Brandgefahr besteht. Auch hier ist darauf zu achten, dass der Läufer stündlich um ca. 90° weitergedreht wird.
1074 Seite/Page 8
Since the temperature distribution of a machine at standstill is different from that in the running condition, a winding temperature of 60° must not be exceeded. If the rotor is in position, turn it through 90° every hour. Drying with hot air If methods 1 and 2 cannot be applied, the machine must be dried with hot air obtained from an external heat source. This method of drying is usually adopted for synchronous motors and DC motors where direct heating by means of current losses is not possible or when an m.g. welding set cannot be used. The heaters should be arranged so that by means of suitable covers the winding being heated is in the hot-air stream without concentrating the heat to the extent that excessive temperatures are reached. This requires that a continuous circulation and replacement of the air takes place. The air inlet temperature should not exceed 80°C and the outlet temperature should be at least 10 K above the ambient air temperature. Do not allow the air temperature within the machine to drop below the dew point, i.e. there must be no moisture condensation forming at the outlet. Because of the risk of fire this method of drying requires constant monitoring to a much larger extent than the other two methods This method also requires that the rotor be turned through 90° about every hour.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 1074g-0312 de-en
Siemens Electric Machines s.r.o.
Tightening torques Synchronous generator Unless other specific information is given, the following tightening torques are valid for normal connections of fastening screws, bolts and nuts. Tightening torques in Nm a tolerance of ± 10%
Tightening torques for bolts with strength class 8.8 (or A4-70) connecting components with high material strength (e.g. grey cast, steel, cast steel) Size of a thread Tightening torques
M4
M5
M6
M8
M10
M12
M16
M20
M24
M30 M36
3
5
8
20
40
70
170
340
600
1200 2000
(Nm)
Tightening torques for bolts with strength class 5.6 or for bolts connecting components with low material strength (e.g. aluminum) Size of a thread Tightening torques (Nm)
M4 M5
M6
M8
M10
M12
M16
M20
M24
M30 M36
1,3
4,5
10
20
34
83
160
280
570
2,6
990
Tightening torques for electrical connection where permissible torque is usually limited by the bolts materials and/or the load capability of the insulators Size of a thread M4 M5 M6 M8 M10 M12 M16 Tightening torques (Nm)
1,2
2,5
4
8
13
20
40
Special parts: Diode mounting torque (D170U25C, D170S25C) ............... 20 Nm Terminals in main terminal box (Connection elements – strength class 8.8)
Product documentation – Tightening torques 1F. v1.2 P 2-035 (09/06/05)
M10 M12 M16
40 Nm 70 Nm 155 Nm
page 1/1
Instructions For Installation and Operation
Slide Bearings TYPE EF with external oil supply
RH - EFZEI - E - 10.00
Installation and Operation
RENK AKTIENGESELLSCHAFT Werk Hannover Weltausstellungsallee 21 D - 30539 Hannover Telephone: (0511) 8601-0 Telefax: (0511) 8601-266 e-mail:
[email protected] http:\\www.renk.de All rights reserved. Copy or reproduction without prior permission of RENK Aktiengesellschaft Hannover prohibited. 2
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Contents Bearing Coding .......................................................................................................................................... 5 General Drawing of the EF Slide Bearing with External Oil Supply ........................................................... 7 General Drawing of the Thrust Part with Circular Tilting Pads (RD-Thrust Pads)...................................... 9 General Drawing of the Loose Oil Ring.................................................................................................... 11 General Drawing of the Floating Labyrinth Seal with Seal Carrier........................................................... 13 General Drawing of the Rigid Labyrinth Seal ........................................................................................... 15 General Drawing of the Baffle .................................................................................................................. 17 General Drawing of the Dust flinger ......................................................................................................... 19 1
Considerations for Use .......................................................................................................................... 21
2
Safety Instructions.................................................................................................................................. 22
3
Preparatory Work.................................................................................................................................... 23
4
5
3.1
Tools and equipment......................................................................................................................... 23
3.2
Use of lifting equipment .................................................................................................................... 23
3.3
Dismantling of the bearing................................................................................................................. 25
3.3.1
Dismantling of the shaft seal - outboard side ............................................................................ 25
3.3.2
Dismantling of the housing......................................................................................................... 26
3.3.3
Dismantling of the shaft seal - machine-side............................................................................. 26
3.4
Cleaning of the bearing ..................................................................................................................... 27
3.5
Checks............................................................................................................................................... 27
3.6
Assembly of the circular tilting pads (RD-thrust pads)...................................................................... 28
Assembly of the Bearing ........................................................................................................................ 31 4.1
Assembly of the the machine seal..................................................................................................... 31
4.2
Fitting the bottom half of the housing into the machine shield ......................................................... 32
4.3
Fitting in the bottom half of the shell ................................................................................................. 32
4.4
Assembly of the shaft seal - machine-side ....................................................................................... 33
4.5
Installation of the loose oil ring.......................................................................................................... 35
4.6
Fitting in the top half of the shell ....................................................................................................... 36
4.7
Assembly of the top half of the housing............................................................................................ 37
Assembly of the Seals - Outboard Side................................................................................................ 39 5.1
Floating labyrinth seal (Type 10)........................................................................................................ 39
5.2
Floating labyrinth seal with dust flinger (Type 11) ............................................................................. 43
5.3
Floating labyrinth seal with baffle ( Type 12) ..................................................................................... 44
5.4
Rigid labyrinth seal (Type 20)............................................................................................................. 44
5.5
Rigid labyrinth seal with dust flinger (Type 21) .................................................................................. 46
5.6
Rigid labyrinth seal with baffle (Type 22)........................................................................................... 47
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
3
Installation and Operation
6
Instructions for Assembly of Peripheral Equipment ........................................................................... 48 6.1
Assembly of the oil supply equipment .............................................................................................. 48
6.2
Temperature measurement ............................................................................................................... 50
6.3
Water supply...................................................................................................................................... 50
7
Bearing Insulation ................................................................................................................................... 51
8
Operation ................................................................................................................................................. 51
9
4
8.1
Filling up with lubricating oil .............................................................................................................. 51
8.2
Trial run.............................................................................................................................................. 52
Glossary ................................................................................................................................................... 53
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Bearing Coding
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
5
Installation and Operation
Type
Housing
Heat Dissipation
Shape of Bore and Type of Lubrication
Thrust part
F - flange mounted bearing
E
Z - lubrication by oil circulation with external oil cooling
C - plain cylindrical bore without oil ring
Q - without thrust part (non locating bearing )
X - lubrication by oil circulation with external oil cooling when oil throughput is high
L - plain cylindrical bore with loose oil ring
B - plain sliding surfaces (locating bearing)
U - circulating pump and natural cooling T - circulating pump and water cooling (finned tubes in oil sump )
Size - Diameter
Y - two-lobe bore (”lemon bore”) E - taper land faces for one sense of rotation without oil ring (locating bearing) V - four-lobe bore K - taper land faces for both without oil ring senses of rotation (locating bearing)
9
80≤D≤100
1
100≤D≤125
14
125≤D≤160
18
160≤D≤200
22
200≤D≤250
28
250≤D≤315
A - elastically supported circular tilting pads (locating bearing)
Example for bearing coding:
E
F
Z
L
K
22-200
Shaft seals
Type EF slide bearing with flange-mounted housing, lubrication by oil circulation with external oil cooling, plain cylindrical bore with loose oil ring, locating bearing with taper land faces for both senses of rotation, size 22, dia meter 200.
Type 10 - floating labyrinth seal (IP 44) Type 11 - floating labyrinth seal with dust flinger (IP 54) Type 12 - floating labyrinth seal with baffle (IP 55) Type 20 - rigid labyrinth seal (IP 44) Type 21 - rigid labyrinth seal with dust flinger (IP 54) Type 22 - rigid labyrinth seal with baffle (IP 55)
6
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
external oil supply
General Drawing of the EF Slide Bearing with external oil supply
RENK AG Werk Hannover
RH-EFZE/WI-E Version: 26 Oktober, 2000
7
5
6
7
8
9
4
10 11 12
3
13
2
14 15
1
16 17 xxx
31
xxx
18
x
19 30 20 21
29
22 23
24
28
27
26
25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Top half of the housing Hole for positioning pin Positioning pin Connection hole for the oil supply of the thrust part Top sight glass Eye bolt Screw (not included in delivery) Screw Tapped hole ( in the top and bottom halves of the shell, up size 14 ) Machine seal Top half of the shell Screw (split line of the housing) Bottom half of the shell Spherical seating Engraved number - shell Spigot Tapped hole Screw (not included in delivery) Screw (split line of the shell) Engraved numbers - housing Bottom half of the housing Tapped hole for temperature measurement of the journal part Oil inlet connection hole Tapped hole for the oil sump temperature measurement Outlet/Inlet cooling water (Type E.T..) Cooler ( Type E.T..) Hexagon head plug (Oil drain plug) Metal tabs ( optional for EFZL. ) Oil outlet connection hole Oil outlet pipe with lock nut and lead seal Marking
external oil supply
General Drawing of the Thrust Part with Circular Tilting Pads (RD-Thrust Pads)
RENK AG Werk Hannover
RH-RDZE/WI-E Version: 26 Oktober, 2000
9
37
38 39 40
41
42
43
37 38 39 40 41 42 43
Carrier ring Location groove Shroud ring top half Screw Shroud ring bottom half Circular tilting pad (RD-thrust pad) Anti - Rotation pin
external oil supply
General Drawing of the Loose Oil Ring
RENK AG Werk Hannover
RH-LSZE/WI-E Version: 26 Oktober, 2000
11
44 45 46 47
44 45 46 47
Loose Oil Ring Dowel pin Hole Screw
external oil supply
General Drawing of the Floating Labyrinth Seal with Seal Carrier
RENK AG Werk Hannover
RH-SSZE/WI-E Version: 26 Oktober, 2000
13
Bearing side 48
49
54 53
50 52 51
58
57
56
Outer view
55
48 49 50 51 52 53 54 55 56 57 58
Seal carrier - top half Garter spring Groove Seal carrier - bottom half Bottom half of the seal Top half of the seal Anti - rotation pin Screw Engraved number Groove ( Type 11 ) Engraved number
external oil supply
General drawing of the Rigid Labyrinth Seal
RENK AG Werk Hannover
RH-KDZE/WI-E Version: 26 Oktober, 2000
15
59 60
65
61 (2x)
62
64
63
59 60 61 62 63 64 65
Rigid labyrinth seal - top half Screw Screw (split line) Groove ( Type 21 ) Rigid labyrinth seal - bottom part Engraved number Engraved number
external oil supply
General Drawing of the Baffle
RENK AG Werk Hannover
RH-DSZE/WI-E Version: 26 Oktober, 2000
17
66
67
68
66 67 68
Baffle - top half Screw Baffle - bottom half
external oil supply
General Drawing of the Dust Flinger
RENK AG Werk Hannover
RH-LRZE/WI-E Version: 26 Oktober, 2000
19
69
70 (2x)
69 70
Dust flinger Screw (split line)
EF with external oil supply
1
Considerations for Use
The instructions for installation and operation are addressed to qualified technical personnel (fitters, mechanic installers, mechanical engineers). Read these instructions carefully before starting assembly. Slide bearings of type EF are almost universally used in the engineering industry. Therefore it is not possible to provide detailed information on all possible types and range of applications for these bearing types. For instance, the position of the connection points for supply and monitoring equipment is determined by the place of application ( in the following called " installation " ). Please keep ready the guidelines with the technical documentation before starting assembly and operation of the slide bearings. Additional technical documentation with detailed information is supplied in the case of special design bearings. Please contact RENK Export or Domestic Department for supplementary information on bearings. Please indicate the bearing coding and the full reference number, too. Following indications should be observed when reading these instructions. Safety instructions are marked as follows: Danger! Warning of dangers for personnel. Example: Warning of injury
Attention! Warning of damage for the bearing or installation.
Useful recommendations and additional information are framed. EF...Q
This is how chapters, instructions or recommendations are marked when referring to a single type or size of a bearing. Example: Slide bearing type EF without thrust part ( non-locating bearing ) -
Instruction follows.
•
Beginning of an enumeration.
( )
This is how the different parts of a bearing as described in the general drawings ( numbers ) are marked in the text.
− Use the enclosed check-list before starting assembly or operation. Copies available on request. The check list provides the experienced mechanical fitters of RENK bearings with the necessary instructions for installation and operation.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
21
Installation and Operation
2
Safety Instructions Danger! The maintenance and inspection of the slide bearings should be carried out by: • persons nominated by the safety representative • persons correspondingly trained and instructed • persons with knowledge on appropriate standards, regulations and accident prevention rules • persons with knowledge on first-aid measures and local rescue centers.
Warning of injury! Before starting work on the bearing: - Switch off the installation. - Make sure the installation is not in operation. Never lift or transport machines, etc.by the bearing eye bolts. These are only intended for assembly and dismantling of the bearing !
Warning of injury! Do not grab such heavy bearing parts as the housing during assembly or dismantling work. This could result in bruising or injury to hands !
Attention! All metal parts of a slide bearing consisting of top and bottom part such as the housing, shells, shaft seals are marked by engraved numbers. Fit together only the parts with the same number.
Attention! In case • the admissible bearing temperature exceeds by 15 K, • inadmissible vibrations occur, • unusual noises or odours are noticed, • monitoring equipment triggers alarm, shut down the installation and inform the maintenance personnel in charge.
Attention! Do not operate the bearing below the transition speed values indicated in the bearing calculation, thus avoiding inadmissible operating conditions, which could lead to damage to the bearing.
22
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
3
Preparatory Work
3.1
Tools and equipment
− Following tools and equipment are necessary: • • • • • • • • • • • • • •
Allan key set Wrenching key set Open-jawed spanner set Feeler gauges ( up 0,05 mm ) Caliper gauge Emery paper, plain scraper Oil stone Lifting equipment Permanent sealing compound ( e.g. Curil T ) Clean (close weave) rags Oil with the correct viscosity ( see bearing type plate ) Detergents Liquid screw locking compound ( e.g. LOCTITE 242 ) Liquid sealing compound and Teflon-tape
3.2
Use of lifting equipment
Warning of injury! Before transport or lifting, check if the eye bolts are tight ! Insecure eye bolts could result in bearing becoming loose. Before moving the bearing by the eye bolts make sure that the split line screws are tightened, otherwise the bottom half of the bearing could become detached. Make sure that the eye bolts are not exposed to bending stress, otherwise the bolts could break. Follow exactly the instructions for the use of lifting equipment.
− Use lifting equipment for assembly or transport of the following items: Transport/Assembly of:
Use lifting equipment for the following bearing sizes
Whole bearing unit
9-28
Top half of the housing
14-28
Bottom half of the housing
11-28
Shells
14-28
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
23
Installation and Operation
− Following steps are to be observed before using the lifting equipment: Whole bearing unit
− Check if the screws are tight (12): Bearing size
9
11
14
18
22
28
Torque [Nm]
69
69
170
330
570
1150
− Check if the eye bolts (6) are tight. − Connect the lifting equipment to the eye bolts (6). Top half of the housing
− Check if the eye bolts (6) are tight. − Connect the lifting devices to the eye bolts (6). Bottom half of the housing
− Screw two eye bolts (6) with suitable threads tight into the cross-placed opposite tapped holes (17). Bearing size
9
11
14
18
22
28
Tapped hole
M 12
M 12
M 16
M 20
M 24
M 30
− Connect the lifting equipment to the eye bolts (6). Shells
− Screw two eye bolts or screw hooks with suitable threads tight into the tapped holes (9): Bearing size
14
18
22
28
Tapped hole
M8
M 12
M 12
M 16
− Connect the lifting equipment to the eye bolts or to the screw hooks.
24
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
3.3
Dismantling of the bearing
Attention Make sure that the work place and the parts to be assembled are clean. Contamination and damage to the bearing, especially to the working surfaces, have a negative influence on the operating quality and could lead to premature failure. 3.3.1
Dismantling of the shaft seal - outboard side
− Dismantle the shaft seals of the bearing. Proceed according to the sealing type: Type 10 Type 11
Floating labyrinth seal (Type 10) Floating labyrinth seal with dust flinger (Type 11)
Size 9 -11
− Take hold of the floating labyrinth seal with both hands. Press out the protective cardboard with both thumbs.
Size 14-18
− Take both halves of the seal (52), (53) by the split line. Pull both halves apart, till you can press out the protective cardboard. Remove carefully by pressing along the edge of the split line.
− Loosen and remove all screws (55). − Simultaneously take away in axial direction both top half (48) and bottom half (51) of the seal carrier from the housing. − Lift off the top half of the seal carrier (48) and take out the floating labyrinth seal from the bottom half of the seal carrier (51). − Remove the protective cardboard (for transport protection) from the floating labyrinth seal. − Proceed as indicated for sizes • 9-11 •14-28
Warning of injury! During dismantling of the floating labyrinth seal hold on tight to the tensioned garter spring (49) which otherwise could bounce back and lead to injury.
− Take both seal halves (52), (53) and pull them apart by approximately 20 mm. − Open the garter spring (49). Type 12
Floating labyrinth seal with baffle ( Type 12 ):
Type 20 Type 21
Rigid labyrinth seal (type 20) Rigid labyrinth seal with dust flinger (type 21)
Type 22
Rigid labyrinth seal with baffle (type 22)
− Disconnect the top half of the baffle (66) and the bottom (68). To do so, loosen the screws (67). − Further proceed as in the case of type 10 and 11 seal.
− Untighten all screws (60) and remove them. − Simultaneously remove in axial direction both top and bottom (59), (63) halves of the rigid labyrinth seal. − Remove the screws (61). − Separate the top half of the rigid labyrinth seal (59) from the bottom half (63) and take out the protective cardboard (used for safe transport).
− Separate the top and bottom half (66), (68) of the baffle, by untightening the screws (67). − Further proceed as in the case of types 20 and 21.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
25
Installation and Operation
3.3.2 EF.V.
Dismantling of the housing
− Unscrew the screw plug with the welded-on positioning pin. − Unscrew the screws (12) and lift the top half of the housing (1). − Take out both top (11) and bottom (13) halves of the shell from the bottom half of the housing (21). Attention! Do not damage the thrust and radial working surfaces!
− Unscrew the screws (19) and separate the top and bottom halves of the shell (11), (13) without using any tools or other devices. Attention! If the bottom half of the shell (13) is provided with metal tabs (28) do not remove them. They regulate the oil level in the oil pockets. EFT..
The cooler (26) is already assembled and does not have to be removed for cleaning purposes.
3.3.3
Dismantling of the shaft seal - machine-side
The machine side seal is of Type 10, floating labyrinth seal.
− − − −
Remove the floating labyrinth seal from the bottom half of the housing. Notice the anti-rotation pin at the split line of the bottom half of the housing. Remove the protective cardboard (for transport protection) from the floating labyrinth seal. Proceed as indicated for sizes • 9-11 •14-28
Size 9 -11
− Take hold of the floating labyrinth seal with both hands. Press out the protective cardboard with both thumbs.
Size 14-18
− Take both halves of the seal (52), (53) by the split line. Pull both halves apart, till you can press out the protective cardboard. Remove carefully by pressing along the edge of the split line. Warning of injury! During dismantling of the floating labyrinth seal hold on tight to the tensioned garter spring (49) which otherwise could bounce back and lead to injury.
− Take both seal halves (52), (53) and pull them apart by approximately 20 mm. − Open the garter spring (49).
26
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
3.4
Cleaning of the bearing
Attention! Use only non-aggressive detergents, such as for instance: • VALVOLINE 150. • Alcaline cleaning compounds (pH-value 6 to 9, short reaction time).
Warning of injury! Please observe the instructions for the use of the detergents.
Attention! Never use cleaning wool or fibrous cloth. Residues of such materials left in the bearing could lead to excessive temperatures.
− Clean the following parts thoroughly, to remove all residues of preservation :
EF.L.
• • • • • •
inside the top half of the housing (1) inside the bottom half of the housing (21) all plain parts of the top and bottom half of the housing (1), (21) top half of the shell (11) bottom half of the shell (13) sealing surfaces of the top (48) and bottom (51) half of the seal carrier or of the rigid labyrinth seal
•
loose oil ring (44).
3.5
Checks
− Please check if there is any visible damage. Check the split line and the working surfaces in particular. EF.L.
The loose oil ring (44) should show absolutely no burrs or have no shoulders.
Insulated Bearings
− Check the insulating layer of the spherical seating (14). − If necessary, change the damaged parts.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
27
Installation and Operation
EF..A
3.6
Assembly of the circular tilting pads (RD-thrust pads)
− Clean both top (39) and bottom (41) halves of the shroud ring and all RD-thrust pads (42). Proceed as described under chapter 3.4 (Cleaning of the bearing). Bearing size
9
11
14
18
22
28
Diameter
Number of RD-thrust pads per bearing [Pieces]
80
14
90
16
100
20
100
16
110
18
125
22
125
18
140
20
160
24
160
18
180
20
200
24
200
18
225
20
250
24
250
18
280
20
300
24
− Check if the parts show any visible damage. Carry out the assembly of both thrust parts of the top (11) and bottom (13) half of the shell according to the following instructions: One RD-thrust pad on both sides of the top half of the shell has a bore for the insertion of a thermo sensor (thrust part temperature measurement).
28
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
To mount the RD-thrust pad into the correct position proceed as follows:
− Find the position of the location groove (38) on the top half of the shroud ring (39). Insert the RD-thrust pad (42) with the anti-rotation pin (43) into the corresponding thrust pad location hole (37). − Insert all other RD-thrust pads (42) into the corresponding thrust pad holes (37) of the top and bottom half of the shell (11), (13).
42 37
Illustration 1:
Assembly of the RD-thrust pads
− Place the top half of the shroud ring (39) into the the top half of the shell (11) by inserting the anti-rotation pin (43) into the location hole (38). Match the split line of the top half of the shell (11) with the split line of the top half of the shroud ring (39) in true alignment.
38 39 43
42
Illustration 2:
Assembly of the shroud ring
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
29
Installation and Operation
− Tighten the screws (40) to the following torque rates: Bearing size
9
11
14
18
22
28
Tapped hole
M4
M4
M5
M6
M8
M 10
Torque [Nm]
1,4
1,4
2,7
8
20
40
− Place the bottom half of the shroud ring (41) into the bottom half of the shell (13). Match the corresponding split lines in true alignment. Tighten the screws (40) to the same torque rates as specified for the top half of the shell (11). − Check the mobility of all RD-thrust pads (42). If the RD-thrust pads jam, realign the top (39) and bottom half (41) of the shroud ring. Attention! Insufficient mobility of the RD-thrust pads will cause damage of the bearing. Both top and bottom halves of the shells are prepared for assembly.
30
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
4
Assembly of the Bearing
Attention! Remove all impurities or other objects such as screws, nuts, etc. from inside the bearing.If left inside they could lead to damage to the bearing. Cover up the opened bearing during work breaks. Attention! Carry out all assembly operations without making use of force. Attention! Secure all screws of the housing, at the split line and flange with a liquid screw locking compound (e.g. LOCTITE 242).
4.1
Assembly of the the machine seal
Before assembly of the bearing screw the split and non-split machine seal (10) into the machine shield. The non-split machine seal must be assembled before starting the assembly of the shaft.
− Fit the machine seal with the recess onto the machine shield. − In the case of a split machine seal insert the split line screws and tighten them hand tight. − Tighten the screws (7) to the following torque rates: Bearing size
9
11
14
18
22
28
Tapped hole
M6
M6
M6
M8
M8
M8
Torque [Nm]
8
8
8
20
20
20
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
31
Installation and Operation
4.2
Fitting the bottom half of the housing into the machine shield
Attention! The lifting equipment should not come to contact with the seal and working surfaces of the shaft.
− Lift the shaft high enough to give room for the assembly operations. − Protect the shaft against unintended movement. − Place the bottom half of the housing with the spigot (16) into the mounting recess of the machine shield. − Tighten the flange screws to the following torque rates. EF..A
− In case the bearings type EF are operating under high axial loads tighten the third flange screw mounted on the inner part of the machine shield into the bottom half of the housing to the following torque rates. − Use only 8.8 quality screws. Bearing size Suitable flange screws Torque [Nm] for µ tot (lightly oiled)
4.3 EF..E
9
11
14
18
22
28
M 10
M 12
M 16
M 20
M 24
M 30
69
69
170
330
570
1150
Fitting in the bottom half of the shell
Attention! Mounting the bottom half of the shell (not marked with an arrow) correctly will ease the assembly of the top half shell (marked with an arrow) (see chapter 4.6).
− Apply some lubricant to the spherical seating (14) in the bottom half of the housing (21) and to the working surfaces of the shaft. Use the same type of lubricant as indicated for bearing operation (see type plate ). − Place the bottom half of the shell (13) on the working surface of the shaft. Turn the bottom half of the shell (13) into the bottom half of the housing (21) with the split line surfaces of both halves in true alignment. In case the bottom half of the shell doesn`t turn in easily, check the position of the shaft and the alignment of the housing
EF..B, EF..K EF..E EF..A
Attention! These operations should be carried out most carefully. The thrust parts of the bottom shell must not be damaged.
− Lower down the shaft till it sits on the bottom half of the shell (13).
32
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
4.4
Assembly of the shaft seal - machine-side
The machine-side shaft seal is, as standard, a floating labyrinth seal. The integrated seal groove is in the top and bottom halves of the housing. Warning of injury! During assembly hold the garter spring ends securely to avoid them suddenly releasing and causing possible injury !
Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing.
− − − −
Put the garter spring (49) around the shaft and hook both ends into each other. Put both halves of the seal (52),(53) in their place on the shaft. Put the garter spring (49) into the groove (50). Turn the floating labyrinth seal on the shaft.
Attention! The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheating during operation and even to shaft wear. If the floating labyrinth seal jams, - dismantle the seal and - remove the worn parts of the seal carefully, by using emery paper or a plain scraper.
− Dismantle the floating labyrinth seal. − Apply Curil T to the guide surfaces of the integrated seal groove in the bottom half of the housing.
21
Illustration 3:
Application of Curil T to the integrated seal groove
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
33
Installation and Operation
− Apply a uniform layer of Curil T to the guide surfaces and to the split line surfaces of both halves of the seal (52), (53).
52
Illustration 4:
Application of Curil T to the floating labyrinth seal
Please observe the instructions for the use of Curil T.
− Place the bottom half of the seal (52) with the labyrinths onto the shaft. − The oil return holes at the bearing side must be clear and open. − Turn the seal in opposite direction from the anti-rotation pin into the groove of the housing until the split lines of the bottom half of the housing and the bottom half of the seal match each other. − Remove the residue of Curil T. − Push the garter spring into the integrated seal groove between the bottom half of the housing and the seal until both ends jut out from the split line. − Place the top half of the seal with the cam facing the inside of the bearing on the bottom half of the seal. − Stretch the garter spring till both ends can be hooked.
34
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
EF.L.
4.5
Installation of the loose oil ring
− Open both split lines of the loose oil ring (44) by untightening and removing the screws (47). Separate both halves of the loose oil ring (44) carefully without using any tools or other devices. II
I
44
44
44
47
Illustration 5:
Opening of the loose oil ring
− Place both halves of the loose oil ring into the shell groove around the shaft. Press the positioning pin (45) of each split line into the corresponding hole (46). − Adjust both halves of the loose oil ring till the split lines match each other.
21 45
44
44
Illustration 6:
13
Installation of the loose oil ring
− Tighten the screws (47) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
1,4
1,4
1,4
2,7
2,7
2,7
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
35
Installation and Operation
4.6
Fitting in the top half of the shell
− Apply some lubricant to the working surfaces of the shaft. Use the same type of lubricant as indicated for bearing operation (see type plate). − Check if the engraved number (15) on the bottom half of the shell corresponds with the engraved number (15) on the top half of the shell. − Place the top half of the shell (11) on the shaft; both engraved numbers (15) should be on one side. Attention! An incorrectly placed shell could jam the shaft thus leading to the damage of both shaft and bearing.
EF..B, EF..K, EF..E, EF..A
Attention! Place the top half of the shell carefully on the shaft. The thrust parts of the top half of the shell must not be damaged.
insulated bearings
In the case of bearings arranged for insulation monitoring, connect the black cable for insulation monitoring to the shell. According to the bearing type, there are two possibilities of connection. 1. The black cable is provided with a cable connector.
− Plug the cable with the cable connector into the counterpart available on the top of the shell. − Lead the cable through the cable gland in the bottom half of the housing and out of the bearing. − Tighten the cable gland oil-tight. 2. The black cable is provided with an eyelet.
− Fasten the cable with the eyelet to the split line of the shell, by using one of the shell joint bolts. − Lead the cable through the cable gland in the bottom half of the housing and out of the bearing. − Tighten the cable gland oil-tight. − Tighten up the screw (19) at the split line of the shell to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
20
69
69
170
− Check the split line of the shell by using a feeler gauge. The split line gap should be less than 0,05 mm. If the split line is greater than this, dismantle both top (11) and bottom (13) halves of the shell. Rework the split line surfaces of the top (11) and bottom (13) half of the shell with an oil stone. EF.L.
− Check the mobility of the loose oil ring (44).
Marine bearings
A guide bush in the top half of the shell secures the function of the loose oil ring.
36
− Check the mobility of the loose oil ring (44) in the guide bush.
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
EF..E
Shells with taper land faces suitable only for one direction of rotation are marked with an arrow on the top half shell, which indicates the sense of rotation of the shaft. The arrow indicates the allowed direction of shaft rotation after completion of the bearing assembly.
− Before mounting the top half of the housing check that the proposed direction of rotation of the shaft corresponds to the direction indicated by the arrow on the top half of the shell. − If the directions match, continue the assembly of the bearing. − If the directions do not match, the shell must be disassembled, re-aligned and mounted again. Attention! A wrongly placed shell, without observance of the direction of rotation of the shaft, impairs the operational safety of the bearing. 4.7
Assembly of the top half of the housing
− Check the true alignment of the split lines of the shell (11), (13) and bottom (21) half of the housing. EF.C. EF.L. EF.Y.
The positioning pin (3) in the top half of the housing fits in the corresponding hole (2) in the shell.
− Check if the engraved numbers (20) on the top and bottom halves of the housing correspond. − Clean the split line surfaces of the top and bottom halves of the housing. − Apply Curil°T over the whole surface of the split line of the bottom half (21) of the housing. Please observe the instructions for the use of Curil T.
− Place the top half of the housing carefully into the machine shield, without touching the seals or the shell. − Lower the top half of the housing (1) vertically on the bottom half of the housing (21). Lower the top half of the housing (1) till the split line of the housing is not visible any more. − Gently hit the bottom half of the housing (21) with a nylon hammer, thus ensuring the alignment of the spherical seating. − Insert the screws (12) at the split line of the housing. Tighten them hand-tight. − Insert the screws (8). Tighten them to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
69
69
170
330
570
1150
− Insert the screws (12) at the split line of the housing. Tighten them crosswise to the same torque rates. EF.V.
− Tighten the screw plug with the welded-on positioning pin into the top half of the housing (1).
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
37
Installation and Operation
insulated bearings
Insulation monitoring In the case of electric insulated bearings provided with insulation monitoring, the cable coming out of the housing must be connected in a professional manner. According to the type supplied, please follow the assembly instructions given below. a) The cable is very short and provided with a further cable connector at the end of it. This cable is ready for connection to the housing. The bottom half of the housing is provided with the counterpart.
− Plug the cable connector into the counterpart. Attention! This connection bypasses the electrical insulation of the bearing. In the case of electric machines, make sure at least one bearing is electrically insulated. To check the electrical insulation, interrupt the connection cable - housing. Check the electrical resistance with a suitable measuring instrument. Make sure that both bearings and the coupling are electrically insulated. b) The cable has a free end. In this case the customer has to make the connection. Attention! If only one bearing is insulated, the end of the cable must not be earthed. Any further connection depends on the customer’s requirements related to the insulation monitoring and can not therefore be described here.
38
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
5
Assembly of the Seals - Outboard Side
− Assemble the outboard side seals. Proceed according to the seal type used.
Type 10
• • •
Floating labyrinth seal (Type 10) Floating labyrinth seal with dust flinger (Type 11) Floating labyrinth seal with baffle (Type 12)
Chapter 5.1 Chapter 5.2 Chapter 5.3
• • •
Rigid labyrinth seal (Type 20) Rigid labyrinth seal with dust flinger (Type 21) Rigid labyrinth seal with baffle (Type 22)
Chapter 5.4 Chapter 5.5 Chapter 5.6
5.1
Floating labyrinth seal (Type 10) Warning of injury! During assembly hold the garter spring ends securely to avoid them suddenly releasing and causing possible injury !
Check the movement of the floating labyrinth seal on the shaft.
− − − −
Put the garter spring (49) around the shaft and hook both ends into each other. Put both halves of the seal (52),(53) in their place on the shaft. Put the garter spring (49) into the groove (50). Turn the floating labyrinth seal on the shaft.
Attention! The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheating during operation and even to shaft wear. If the floating labyrinth seal jams, - dismantle the seal and - remove the worn parts of the seal carefully, by using emery paper or a plain scraper.
− Dismantle the floating labyrinth seal.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
39
Installation and Operation
− Apply a uniform layer of Curil T to the guide surfaces and to the split line surfaces of both halves of the seal (52), (53). Please observe the instructions for the use of Curil T.
52
Illustration 7:
Application of Curil T to the floating labyrinth seal
− Press the bottom half of the seal (52) against the shaft. − Place the top half of the seal (53) on the shaft and align both halves of the seal to each other. − Place the garter spring (49) into the groove (50) and stretch until both ends can be hooked.
54
49
Illustration 8:
40
52
53
1
21
Assembly of the floating labyrinth seal
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Place in true alignment the split line of the floating labyrinth seal and the split line of the seal carrier. − Check that both engraved numbers (56) and (58) on top and bottom halves of the seal carrier (48), (51) correspond. − Clean the following parts: • • •
the seal surfaces of the top (48) and bottom (51) half of the seal carrier (the groove of the floating labyrinth seal, the flange surfaces) the split line surfaces of the top (48) and bottom half (51) of the seal carrier the flange surfaces of the housing.
− Apply a uniform layer of Curil T to: • the lateral surfaces of the groove at the top (48) and bottom half (51) of the seal carrier • the flange surfaces of the top (48) and bottom (51) half of the seal carrier • the split line surfaces of the bottom half of the seal carrier (51). Please observe the instructions for the use of Curil T.
51
Ilustration 9:
Application of CurilT to the seal carrier
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
41
Installation and Operation
− Place the top half of the seal carrier (48) on the top half of the seal (53). Press the bottom half (51) of the seal carrier against it. Push the shaft seal completely into the housing.
48 54
53
Illustration 10
Assembly of the seal carrier
− Place in true alignment the split lines of the seal carrier and the housing. − Tighten up the screws (55) to the following torque rates:
42
Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
8
20
20
20
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Type11
5.2
Floating labyrinth seal with dust flinger (Type 11)
− Assemble the floating labyrinth seal with dust flinger as described in Chapter 5.1, Floating labyrinth seal type 10. − Place both halves of the dust flinger (69) in front of the shaft seal around the shaft. Loosely screw in the screws (70) of the flinger.
48
69
e
57
Illustration 11: Clearance between dust flinger and seal carrier EF..Q
− Push the dust flinger (69) into the groove (57) of the seal carrier. − Set the clearance "e" at the following figure around the whole unit: maximum longitudinal extension of the shaft in operation + 1 mm (Parameters indicated in the Technical Documentation of the Installation).
− Tighten up both screws (70) to the following torque rates: Seal diameter [mm] Torque [Nm]
EF..B, EF..K, EF..E, EF..A
80-140
>140
7
18
− Push the dust flinger (69) into the groove (57) of the seal carrier. − Set the clearance "e"at 1 mm around the whole unit. − Tighten both screws (70) to the following torque rates: Seal diameter [mm] Torque [Nm]
RENK AG Werk Hannover
80-140
>140
7
18
RH-EFZEI-E Version: 26 Oktober, 2000
43
Installation and Operation
Type 12
5.3
Floating labyrinth seal with baffle ( Type 12)
− Assemble the floating labyrinth seal with baffle as described in Chapter 5.1, type10. − Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of the baffle. − Screw • the top half of the baffle (66) to top half of the seal carrier (48) • the bottom half of the baffle (68) to bottom half of the seal carrier (51). − Tighten the screws (67) to the following torque rates: Seal diameter [mm]
80-140
>140
4
10
Torque [Nm]
Type 20
5.4
Rigid labyrinth seal (Type 20)
− Check if the engraved numbers (64) and (65) on the bottom half (63) and top half (59) of the rigid labyrinth seal correspond. − Clean • • •
the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal the split line surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal the flange surfaces of the housing.
− Apply a uniform layer of Curil T to the following parts: • the flange surfaces of the top (59) and bottom half (63) of the rigid labyrinth seal • the split lines of the bottom half (63) of the rigid labyrinth seal.
63
Illustration 12: Application of Curil T to the rigid labyrinth seal
44
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Place the top half (59) of the rigid labyrinth seal on the shaft and press slightly the bottom half (63) of the rigid labyrinth seal from below against it. Lightly push the rigid labyrinth seal completely into the housing. − Tighten the screws (61) at the split line of the labyrinth seal. − Place in parallel alignment the split line of the rigid labyrinth seal and the split line of the housing. Press the rigid labyrinth seal slightly from below against the shaft. Adjust the rigid labyrinth seal in such a way that the clearance "f" between the shaft and the rigid labyrinth seal at both split lines has the same figure.
1
59
f
f
21
63
Illustration 13: Alignment of the rigid labyrinth seal
− Tighten the screws (60) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
8
20
20
20
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
45
Installation and Operation
Type 21
5.5
Rigid labyrinth seal with dust flinger (Type 21)
− Assemble the rigid labyrinth seal with dust flinger as described in Chapter 5.4, type 20. − Place both halves of the dust flinger (69) round the shaft, in front of the rigid labyrinth seal. Mount both screws (70) loose.
59
69
e 62
Illustration 14: Clearance between dust flinger and rigid labyrinth seal EF..Q
− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal. − Set the clearance "e" at the following figure around the whole unit. maximum longitudinal extension of the shaft in operation + 1 mm (Parameters are indicated in the Technical Documentation of the Installation).
− Tighten both screws (70) to the following torque rates: Seal diameter [mm]
80-140
>140
7
18
Torque [Nm]
EF..B, EF..K, EF..E, EF..A
− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal. − Set the clearance "e" at 1 mm around the whole unit. − Tighten both screws (70) to the following torque rates: Seal diameter [mm]
80-140
>140
7
18
Torque [Nm]
46
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Type 22
5.6
Rigid labyrinth seal with baffle (Type 22)
− Assemble the rigid seal with baffle as described in Chapter 5.4, type 20. − Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of the baffle. − Screw • •
the top half of the baffle (66) to the top half (59) of the rigid labyrinth seal the bottom half of the baffle (68) to the bottom half (63) of the rigid labyrinth seal.
− Tighten the screws (67) to the following torque rates: Seal diameter [mm] Torque [Nm]
RENK AG Werk Hannover
80-140
>140
4
10
RH-EFZEI-E Version: 26 Oktober, 2000
47
Installation and Operation
6
Instructions for Assembly of Peripheral Equipment
6.1
Assembly of the oil supply equipment
The oil supply equipment together with the pressure, temperature and flow measuring instruments are usually provided by the user. The oil quantity and viscosity necessary for the operation of the bearing are specified in the bearing calculations. This manual contains only indications on the connection points with the bearing. The connection bores for the oil inlets and outlets are on both lateral sides of the bearing, closed with screw plugs. Remove only those plugs where pipes are to be connected. Connection conditions
Inlet
Pipelines
Flow speed
Indications
Precision steel pipe DIN 2391
about 1,5 m/s
Place the throttle valve in the inlet pipeline directly in front of the bearing
max. 0,15 m/s
• 15° inclination
Steel pipe DIN 2448 Outlet
Steel pipe DIN 2448
• if 15° inclination is not possible enlarge correspondingly the cross sections of the pipeline directly behind the bearing. Too low inclination or / and too small cross-section lead to oil back pressure in the bearing. Leakage or overflowing are the consequences.
− Before starting assembly pickle all pipes which
• have been welded • have been bent hot • are contamined and rusty inside.
Warning of injury! Please observe the instructions for the use of the pickling fluid. Wear rubber gloves, rubber apron, rubber boots and safety glasses.
48
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Rinsing of the oil circuit
− Rinse the whole oil circuit to remove all impurities. The bearing must not be connected to the oil circuit during rinsing operations. The rinsing should be done before connecting the oil supply to the bearing or the bearing should be disconnected from the oil circuit. If this is not possible, dismantle the top half of the housing and remove the shells. To avoid damage to the fittings:
− Remove all measuring and switching fittings. − Close all connections (see also the Technical Documentation of the Installation). − Fill up the oil supply system with lubricant. Use the type with the viscosity indicated on the bearing type plate. − Start operating the oil supply system.Collect the first charge of high contamined oil separately. Continue rinsing until the lubricant contains no impurities. − Drain off the oil supply system completely. Clean the oil tank and the filters. Warning of environmental pollution! Please observe the instructions for the use of the lubricant. The manufacturer could provide information on waste oil disposal.
− Assemble all fittings. Oil inlet
− Connect the inlet pipe to the tapped hole (23) for the oil inlet. Seal with Teflon tape or liquid sealing compound. − Depending on the bearing size, the tapped hole has the following threads: Bearing size Tapped hole / Oil inlet (23)
9
11
14
18
22
28
G 3/8
G 3/8
G 3/8
G 1/2
G 3/4
G 3/4
If the bearing calculation specifies a separate supply source for the thrust parts:
− connect the inlet pipes to the tapped hole of the thrust part supply (4) on the lateral side of the bearing. Seal with Teflon tape or liquid sealing compound.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
49
Installation and Operation
Oil outlet EFZ.., EFX..
− Apply sealing compound (i.e. Loctite 572) to the thread of the oil outlet. − Screw the oil outlet with special nut and lead sealing ring (30) into the oil outlet connection hole (29). − Tighten the special nut with the lead sealing ring. − Connect the oil outlet pipe to the flange. − Depending on the bearing size the connection hole for the oil outlet (29) has the following standard threads (larger threads are possible): Bearing size Tapped hole for oil outlet (29)
9
11
14
18
22
28
G 1 1/4
G 1 1/4
G 1 1/2
G 1 1/2
G2
G 2 1/2
EF.L.
− Apply sealing compound (i.e. Loctite 572) to the thread of the oil outlet. − Screw the oil outlet with special nut and lead sealing ring (30) into the corresponding hole (29) with the marking (31) at top dead centre. Tighten the special nut with the lead sealing ring. The spillover oil weir then ensures the minimum oil level for the emergency lubrication by means of the loose oil ring. Connect the oil outlet pipe to the flange.
EFU.., EFT..
− Screw in the outlet pipe to the selected oil sump temperature measurement connection hole (24) and seal with Teflon tape or liquid sealing compound.
6.2
Temperature measurement
− Fix suitable thermo sensors: • • •
into one of the tapped holes (22) for temperature measurements of the journal parts into one of the tapped holes (24) for temperature measurements of the oil sump into one of the tapped holes (optional) for temperature measurement of the thrust parts.
Proceed as follows:
− Take out the screw plugs from the connection holes. − Place the thermo sensor into the bore by using Teflon tape or sealing compound. − Connect the thermo sensor at the temperature monitoring equipment of the installation (see the Technical Documentation of the Installation for connecting and adjustement).
EFT..
6.3
Water supply
Following requirements should be observed before connecting the cooler (26):
• • • •
water velocity of maximum 1,5 m/s in the cooling water inlet water pressure of maximum 5 bar adjusting tap on inlet outlet of cooling water is under no pressure.
The direction of the cooling water passage in the cooler (26) is arbitrary.
50
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
7
Bearing Insulation
These bearings are delivered insulated. The electrical insulation is assured by:
• • • •
plastic coating of the spherical seatings (14) shaft seals made of non-conducting materials insulated positioning pin (3) insulated screwed connections for thermometers.
It is not necessary to insulate the pipelines.
− Mark the insulated bearing with the delivered plate "Insulated shells". Install the plate in a visible place by using two grooved drive studs.
8
Operation
8.1
Filling up with lubricating oil
Attention! Make sure that no impurities get into the bearing.
− Tighten all screw plugs in the tapped holes (22), (23), (24),(27) to the necessary torque rates: Screw plug threads
G 3/8
G 1/2
G 3/4
G1
G 1 1/4 G 1 1/2
Torque [Nm] for plugs with injection-moulded plastic sealing ring
30
40
60
110
160
Torque [Nm] for plugs with flexible sealing ring
34
60
85
130
240
G2
G 2 1/2
230
320
500
300
330
410
− Check that • the top sight glass (5) is tight, the screws should be hand-tight. − Retighten the screws for oil inlet and outlet, and for the thrust parts (if existing). The necessary torque rates depend on the screw connections used. In case thermo sensor or/and oil sump thermometer are used:
− Check if they are tight (according the the manufacturer's instructions). − Fill up the oil supply system with lubricant. Use a lubricant with a viscosity as indicated for the specific bearing operation. − Start operating the oil supply system in order to fill the bearing with lubricant. EF.C., EF.L., EF.Y.
− Remove the protective layer from the top sight glass (5). Continue as already mentioned above.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
51
Installation and Operation
8.2
Trial run
− Before the trial run, check the following: •
EFT..
•
the way the oil supply system functions (see also the Technical Documentation of the Installation).The lubricant quantity at the bearing oil inlet must correspond to the values indicated in the EDP-calculations. that the temperature monitoring equipment works.
•
that the water cooling installation works.
Attention! Not enough lubricant leads to • temperature rises and thus damage of the bearing. Too much lubricant leads to • leakages.
The bearing is ready for operation.
− Supervise the bearing during the trial run (5-10 operating hours). Pay special attention to: • • • • •
the way the oil supply installation works (necessary lubricant quantity, lubricant temperature, lubricant pressure before entering the bearing) bearing temperature sliding noises of the shaft seals tightness occurrence of inadmissible vibrations.
Attention! If the bearing temperature exceeds the calculated value by 15 K (see bearing calculation) stop the installation immediately. Carry out an inspection of the bearing as described under Instructions for Service and Inspection of the Slide Bearings Type EF with External Oil Supply.
52
RH-EFZEI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
9
Glossary
Baffle
With bearing types 10 and 20 the baffles are assembled externally in front of the shaft seals. The baffle, made of reinforced polyamide, protects the bearing from dust and water.
Rigid labyrinth seal
The rigid labyrinth seal (type 20) is used with slide bearings type E with high oil throughput.It corresponds to the protective system IP44 and is made of an aluminium alloy. The rigid labyrinth seal is built of two halves, flanged at the housing.The labyrinths that wipe out the lubricant are arranged into two groups.The first two labyrinths , installed inside keep back most of the lubricant. Five further labyrinths protect the bearing from outside.They prevent the lubricant overflow and the ingress of impurities.The overflow lubricant is collected into a chamber between the both groups of labyrinths.Through the return bores the lubricant flows back into the bearing.
Spherical seating
The spherical seating is a special feature enabling the alignment of the shell in the housing.The shell is seated on two spherical seatings. The advantages of the spherical seating are: • easy at assembly • good heat transfer from the shell to the housing • suitable for such applications with high thrust or journal loads.
Dust flinger
In the case of bearing types 10 and 20 a light alloy ring is clamped on the shaft in front of the shaft.This ring fits into a groove in the seal carrier or the rigid labyrinth seal, thus building a labyrinth. The labyrinth protects the shaft exit against low pressure that could otherwise " absorb " the lubricant. Low pressure occurs for instance in the case of rotating discs, such as couplings or cooling discs.
Floating labyrinth seal
The floating labyrinth seal (type 10) in the seal carrier is used as a shaft seal in the case of bearings type E operating under normal conditions. It prevents the lubricant and lubricant mist coming out and the ingress of impurities. The floating seal has a high capacity of resistance to wear. It is made of a high-performance, high temperature stability and electrically insulated plastic material.The floating seal consists of two halves held together by a garter spring. Both ends of the spring are hooked together. In the case of slide bearings type EM the floating seal is mounted into a two-piece seal carrier. The groove allows for radial movement of up to 1 mm. The seal is thus insensitive to shaft radial displacement or deflection. The sealing effect is produced by the baffles wiping off the lubricant from the shaft. The lubricant flows back into the bearing via oil return opening.
Machine seal
In the case of the flange mounted bearings, the machine seal reduces the influence of positive and negative pressure in the machine thus preventing leakages at the inner seal area. The space between the machine seal and the bearing housing must always be vented to atmospheric pressure. The size of the gap between shaft and machine seal influences the sealing effect.
RENK AG Werk Hannover
RH-EFZEI-E Version: 26 Oktober, 2000
53
Instructions for Maintenance and Inspection
Slide Bearings Type EF with external oil supply
RH - EFZWI - E - 10.00
Maintenance and Inspection
RENK AKTIENGESELLSCHAFT Werk Hannover Weltausstellungsallee 21 D - 30539 Hannover Telephone: (0511) 8601-0 Telefax: (0511) 8601-266 e-mail:
[email protected] http:\\www.renk.de All rights reserved. Copy or reproduction without prior permission of RENK Aktiengesellschaft Hannover prohibited.
2
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Contents Bearing Coding................................................................................................................................................ 5 General Drawing of the EF Slide Bearing with External Oil Supply................................................................. 7 General Drawing of the Thrust Part with RD-Thrust Pads .............................................................................. 9 General Drawing of the Loose Oil Ring ......................................................................................................... 11 General Drawing of the Floating Labyrinth Ring with Seal Carrier................................................................ 13 General Drawing of the Rigid Labyrinth Seal ................................................................................................ 15 General Drawing of the Baffle ....................................................................................................................... 17 General Drawing of the Dust Flinger ............................................................................................................. 19 1
Considerations for Use .......................................................................................................................... 21
2
Safety Instructions.................................................................................................................................. 22
3
Operating Instructions after Standstill ................................................................................................. 23
4
Maintenance Schedule........................................................................................................................... 24
5
Oil Change ............................................................................................................................................... 25
6
Dismantling of the Bearing .................................................................................................................... 26
7
6.1
Tools and equipment......................................................................................................................... 26
6.2
Use of lifting equipment .................................................................................................................... 26
6.3
Preparation for dismantling ............................................................................................................... 28
6.4
Dismantling of the shaft seal - outboard side ................................................................................... 28
6.4.1
Floating labyrinth seal (Type 10)................................................................................................. 29
6.4.2
Floating labyrinth seal with dust flinger (Type 11) ...................................................................... 29
6.4.3
Floating labyrinth seal with baffle (Type 12) ............................................................................... 29
6.4.4
Rigid labyrinth seal (Type 20) ..................................................................................................... 29
6.4.5
Rigid labyrinth seal with dust flinger (Type 21)........................................................................... 29
6.4.6
Rigid labyrinth seal with baffle (Type 22).................................................................................... 29
6.5
Dismantling of the top half of the housing ........................................................................................ 30
6.6
Removal of the top half of the shell................................................................................................... 30
6.6.1
Dismantling of the loose oil ring ................................................................................................. 30
6.6.2
Dismantling the machine side shaft seal.................................................................................... 31
6.7
Removal of the bottom half of the shell ............................................................................................ 31
6.8
Dismantling of the machine seal ....................................................................................................... 31
Cleaning and Checking of the Bearing ................................................................................................. 32
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
3
Maintenance and Inspection
8
9
Assembly of the Bearing ........................................................................................................................ 34 8.1
Fitting in the bottom half of the shell ................................................................................................. 34
8.2
Assembly of the shaft seal - machine-side ....................................................................................... 35
8.3
Installation of the loose oil ring.......................................................................................................... 37
8.4
Fitting in the top half of the shell ....................................................................................................... 38
8.5
Closing of the bearing ....................................................................................................................... 39
8.6
Assembly of the Seals - Outboard Side ............................................................................................ 41
8.6.1
Floating labyrinth seal (Type 10)................................................................................................. 41
8.6.2
Floating labyrinth seal with dust flinger (Type 11) ...................................................................... 45
8.6.3
Floating labyrinth seal with baffle (Type 12) ............................................................................... 46
8.6.4
Rigid labyrinth seal (Type 20) ..................................................................................................... 46
8.6.5
Rigid labyrinth seal with dust flinger (Type 21)........................................................................... 48
8.6.6
Rigid labyrinth seal with baffle (Type 22).................................................................................... 48
Starting Operation after Inspection ...................................................................................................... 49
10 .. Corrosion Protection for Longer Standstill Periods............................................................................ 50 11 .. Transport Protection .............................................................................................................................. 50 12 .. Glossary................................................................................................................................................... 51
4
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Bearing Coding
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
5
Maintenance and Inspection
Type
Housing
Heat Dissipation
Shape of Bore and Type of Lubrication
Thrust part
F - flange mounted bearing
E
Z - lubrication by oil circulation with external oil cooling
C - plain cylindrical bore without oil ring
X - lubrication by oil circulation with external oil cooling when oil throughput is high
L - plain cylindrical bore with loose oil ring
U - circulating pump and natural cooling T - circulating pump and water cooling (finned cooler in oil sump)
Y - two-lobe bore (”lemon bore”) without oil ring V - four-lobe bore without oil ring
Q - without thrust part (non locating bearing ) B - plain sliding surfaces (locating bearing) E - taper land faces for one sense of rotation (locating bearing) K - taper land faces for both senses of rotation (locating bearing)
Size - Diameter
9
80≤D≤100
11
100≤D≤125
14
125≤D≤160
18
160≤D≤200
22
200≤D≤250
28
250≤D≤315
A - elastically supported circular tilting pads (locating bearing)
Example for bearing coding:
E
F
Z
L
K
22-200
Shaft seals
Type E slide bearing with flanged mounted housing, lubrication by oil circulation with external oil cooling, plain cylindrical bore with loose oil ring, locating bearing with taper land faces, size 22, diameter 200.
Type 10 - floating labyrinth seal (IP 44) Type 11 - floating labyrinth seal with dust flinger (IP 54) Type 12 - floating labyrinth seal with baffle (IP 55) Type 20 - rigid labyrinth seal (IP 44) Type 21 - rigid labyrinth seal with dust flinger (IP 54) Type 22 - rigid labyrinth seal with baffle (IP 55)
6
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
external oil supply
General Drawing of the EF Slide Bearing with external oil supply
RENK AG Werk Hannover
RH-EFZE/WI-E Version: 26 Oktober, 2000
7
5
6
7
8
9
4
10 11 12
3
13
2
14 15
1
16 17 xxx
31
xxx
18
x
19 30 20 21
29
22 23
24
28
27
26
25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Top half of the housing Hole for positioning pin Positioning pin Connection hole for the oil supply of the thrust part Top sight glass Eye bolt Screw (not included in delivery) Screw Tapped hole ( in the top and bottom halves of the shell, up size 14 ) Machine seal Top half of the shell Screw (split line of the housing) Bottom half of the shell Spherical seating Engraved number - shell Spigot Tapped hole Screw (not included in delivery) Screw (split line of the shell) Engraved numbers - housing Bottom half of the housing Tapped hole for temperature measurement of the journal part Oil inlet connection hole Tapped hole for the oil sump temperature measurement Outlet/Inlet cooling water (Type E.T..) Cooler ( Type E.T..) Hexagon head plug (Oil drain plug) Metal tabs ( optional for EFZL. ) Oil outlet connection hole Oil outlet pipe with lock nut and lead seal Marking
external oil supply
General Drawing of the Thrust Part with Circular Tilting Pads (RD-Thrust Pads)
RENK AG Werk Hannover
RH-RDZE/WI-E Version: 26 Oktober, 2000
9
37
38 39 40
41
42
43
37 38 39 40 41 42 43
Carrier ring Location groove Shroud ring top half Screw Shroud ring bottom half Circular tilting pad (RD-thrust pad) Anti - Rotation pin
external oil supply
General Drawing of the Loose Oil Ring
RENK AG Werk Hannover
RH-LSZE/WI-E Version: 26 Oktober, 2000
11
44 45 46 47
44 45 46 47
Loose Oil Ring Dowel pin Hole Screw
external oil supply
General Drawing of the Floating Labyrinth Seal with Seal Carrier
RENK AG Werk Hannover
RH-SSZE/WI-E Version: 26 Oktober, 2000
13
Bearing side 48
49
54 53
50 52 51
58
57
56
Outer view
55
48 49 50 51 52 53 54 55 56 57 58
Seal carrier - top half Garter spring Groove Seal carrier - bottom half Bottom half of the seal Top half of the seal Anti - rotation pin Screw Engraved number Groove ( Type 11 ) Engraved number
external oil supply
General drawing of the Rigid Labyrinth Seal
RENK AG Werk Hannover
RH-KDZE/WI-E Version: 26 Oktober, 2000
15
59 60
65
61 (2x)
62
64
63
59 60 61 62 63 64 65
Rigid labyrinth seal - top half Screw Screw (split line) Groove ( Type 21 ) Rigid labyrinth seal - bottom part Engraved number Engraved number
external oil supply
General Drawing of the Baffle
RENK AG Werk Hannover
RH-DSZE/WI-E Version: 26 Oktober, 2000
17
66
67
68
66 67 68
Baffle - top half Screw Baffle - bottom half
external oil supply
General Drawing of the Dust Flinger
RENK AG Werk Hannover
RH-LRZE/WI-E Version: 26 Oktober, 2000
19
69
70 (2x)
69 70
Dust flinger Screw (split line)
EF with external oil supply
1
Considerations for Use
The instructions for maintenance and inspection are addressed to qualified technical personnel (fitters, mechanic installers, mechanical engineers). Read these instructions carefully before starting assembly. Slide bearings of type EF are almost universally used in the engineering industry. Therefore it is not possible to provide detailed information on all possible types and range of applications for these bearing types. For instance, the position of the connection points for supply and monitoring equipment is determined by the place of application ( in the following called " installation " ). Please keep ready the guidelines with the technical documentation before starting assembly and operation of the slide bearings. Additional technical documentation with detailed information is supplied in the case of special design bearings. Please contact RENK Export or Domestic Department for supplementary information on bearings. Please indicate the bearing coding and the full reference number, too. Following indications should be observed when reading these instructions. Safety instructions are marked as follows: Danger! Warning of dangers for personnel. Example: Warning of injury
Attention! Warning of damage for the bearing or installation.
Useful recommendations and additional information are framed. EF..Q
This is how chapters, instructions or recommendations are marked when referring to a single type or size of a bearing. Example: Slide bearing type EF without thrust part ( non-locating bearing ) -
Instruction follows.
•
Beginning of an enumeration.
( )
This is how the different parts of a bearing as described in the general drawings ( numbers ) are marked in the text.
− Use the enclosed check-list before starting assembly or operation. Copies available on request. − The check list provides the experienced mechanical fitters of RENK bearings with the necessary instructions for installation and operation.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
21
Maintenance and Inspection
2
Safety Instructions Danger! The maintenance and inspection of the slide bearings should be carried out by: • persons nominated by the safety representative • persons correspondingly trained and instructed • persons with knowledge on appropriate standards, regulations and accident prevention rules • persons with knowledge on first-aid measures and local rescue centres.
Warning of injury! Before starting work on the bearing: - Switch off the installation. - Make sure the installation is not in operation. Never lift or transport machines, etc.by the bearing eye bolts. These are only intended for assembly and dismantling of the bearing !
Warning of injury! Do not grab such heavy bearing parts as the housing during assembly or dismantling work. This could result in bruising or injury to hands !
Attention! All metal parts of a slide bearing consisting of top and bottom part such as the housing, shells, shaft seals are marked by engraved numbers. Fit together only the parts with the same number.
Attention! In case • the admissible bearing temperature exceeds by 15 K • inadmissible vibrations occur • unusual noises or odours are noticed • monitoring equipment triggers alarm shut down the installation and inform the maintenance personnel in charge.
Attention! Do not operate the bearing below the transition speed values indicated in the bearing calculation, thus avoiding inadmissible operating conditions, which could lead to damage of the bearing.
22
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
3
Operating Instructions after Standstill
− Clean the external parts of the bearing. Dust and dirt impede the radiation of the heat. − Check with the instructions to determine if an oil change is necessary. Depending on the duration of the standstill an oil change is either prescribed or recommended. Carry out the oil change as indicated in Chapter 5. − Retighten the screws (8), (18), (12) at the split line and flange to the following torque rates: Bearing Size
9
11
14
18
22
28
Torque [Nm] for µtot = 0,1 (lightly oiled)
69
69
170
330
570
1150
− Check that the top sight glass (5) is firmly in position. − Retighten the connection holes for oil inlets and outlets, the oil supply hole for the thrust part (optional). The necessary torque rates depend on the used pipe joints. − In case a thermo sensor or/and an oil sump thermometer are used: − Check that they are correctly fitted (see also the manufacturer's instructions). − Retighten all screw plugs in the connection holes (22), (24), (27), (29) to the necessary torque rates: Screw plug threads
G 3/8
G 1/2
G 3/4
G1
G 1 1/4 G 1 1/2
Torque [Nm] for plugs with injection-moulded plastic sealing ring
30
40
60
110
160
Torque [Nm] for plugs with flexible sealing ring
34
60
85
130
240
G2
G 2 1/2
230
320
500
300
330
410
− Start operating the oil supply system and check its functioning ( see also the Technical Documentation of the Installation ). The supplied oil quantity at the bearing oil inlet must correspond to the values indicated in the EDP-calculations. − Check that the temperature monitoring equipment is functioning correctly EFT..
− Check that the cooler is functioning correctly. The bearing is now ready to work.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
23
Maintenance and Inspection
4
Maintenance Schedule
Maintenance work
Deadline
Exterior cleaning of the bearing
every 100-1000 hours
Oil change
Bearing in reversing operation every 5000 operating hours. Bearing in continuous operation every 20.000 operating hours (please observe also the indications for the use of the lubricating oil).
Bearing inspection
During prevention maintenance work for the installation. Immediately if:
• the bearing temperature exceeds 15 K over the indicated value (see the EDP-calculations) • unusual operating noises occur • unusual changes of the lubricating oil become visible • increased oil level in the case of bearing type EFT....
24
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
5
Oil Change
Risk of pollution! Please observe the instructions for the use of the lubricating oil. The manufacturer can provide information on waste oil disposal.
− − − −
Shut down the installation and secure it against unintended operation. Shut down the oil supply system. Take all necesarry measures to collect the whole quantity of the lubricating oil. Drain off the lubricating oil while still in a warm condition. Impurities and residues will thus be scavenged. Go ahead as follows: − Drain off and collect the lubricating oil of the oil supply system. − Unscrew the hexagon head plug (27). Drain off the lubricating oil and collect it. Attention! In case where the lubricating oil contains unusual residues or is visibly changed, eliminate the causes. If necessary, carry out an inspection.
− Tighten the hexagon head plug (27) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
30
30
30
40
60
60
− Clean the oil tank. − Fill up the oil supply system with lubricating oil. Use a lubricant with the viscosity indicated on the bearing type plate. − Start the oil supply system in order to fill up the bearing with lubricating oil. The bearing is ready to work when the quantity of oil supplied at the bearing oil inlet corresponds to the values indicated in the EDP-calculations.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
25
Maintenance and Inspection
6
Dismantling of the Bearing
6.1
Tools and equipment
− Following tools and equipment are necessary: • • • • • • • • • • • • • •
Allan key set Wrenching key set Open-jawed spanner set Feeler gauges (up 0,05 mm) Caliper gauge Emery paper, plain scraper Oil stone Lifting equipment Permanent sealing compound (e.g. Curil T) Clean (close weave) rags Oil with the viscosity indicated (see bearing type plate) Detergents Liquid screw locking compound (e.g.LOCTITE 242) Liquid sealing compound and Teflon tape.
6.2
Use of lifting equipment Risk of injury! Before transport or lifting check if the eye bolts are tight! Insecure eye bolts could result in bearing becoming loose. Before moving the bearing by the eye bolts make sure that the split line screws are tightened, otherwise the bottom half of the bearing could become detached. Make sure that the eye bolts are not exposed to bending stress, otherwise the bolts could break. Follow exactly the instructions for the use of the lifting equipment.
− Use lifting equipment for following assembly and transport works: Transport/Assembly of:
26
Use lifting equipment for the following bearing sizes
Whole bearing unit
9-28
Top half of the housing
14-28
Bottom half of the housing
11-28
Shells
14-28
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Following steps are to be observed before using the lifting equipment: Whole bearing unit
− Check if the screws are tight (12): Bearing size
9
11
14
18
22
28
Torque value [Nm] for µtot = 0,1 (lightly oiled)
69
69
170
330
570
1150
− Check if the eye bolts are tight (6). − Connect the lifting equipment to the eye bolts (6). Top half of the housing
− Check if the eye bolts are tight (6). − Connect the lifting equipment to the eye bolts (6). Bottom half of the housing
− Screw two eye bolts (6) with suitable threads tight into the cross-placed opposite tapped holes (17). Bearing size
9
11
14
18
22
28
Tapped hole
M 12
M 12
M 16
M 20
M 24
M 30
− Connect the lifting equipment to the eye bolts (6). Shells
− Screw two eye bolts or screw hooks with suitable threads tight into the tapped holes (9): Bearing size
14
18
22
28
Tapped hole
M8
M 12
M 12
M 16
− Connect the lifting equipment to the screw hooks.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
27
Maintenance and Inspection
6.3
Preparation for dismantling
Attention! Make sure that the work place is clean. Contamination and damage to the bearing, especially to the working surfaces, have a negative influence on the operating quality and could lead to premature failure.
Attention! Do not use any violence or force!
− Shut down the installation and ensure it against unintended operation. − Shut down the oil supply system. EFT..
− Interrupt the cooling water supply. − Disconnect all thermo sensors from the tapped holes. − Take all necessary measures to collect the lubricating oil. − Unscrew the hexagon head plug (27) and collect the lubricating oil. Risk of pollution! Please observe the instructions for the use of the lubricating oil. The manufacturer can provide necessary information on waste oil disposal.
− Tighten the hexagon head plug (27) to the following torque rates Bearing size
9
11
14
18
22
28
Torque (Nm]
30
30
30
40
60
60
− Inform yourself about maintenance and inspection of the oil supply system ( see also the Technical Documentation Oil Supply System ). Carry out all necessary maintenance and inspection works. 6.4
Dismantling of the shaft seal - outboard side
− Dismantle the outboard side seals of the bearing. Proceed correspondingly to the seal type:
28
• Floating labyrinth seal (Type 10) • Floating labyrinth seal with dust flinger (Type 11) • Floating labyrinth seal with baffle (Type 12)
Chapter 6.4.1 Chapter 6.4.2 Chapter 6.4.3
• Rigid labyrinth seal (Type 20) • Rigid labyrinth seal with dust flinger (Type 21) • Rigid labyrinth seal with baffle (Type 22)
Chapter 6.4.4 Chapter 6.4.5 Chapter 6.4.6
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Type 10
6.4.1
Floating labyrinth seal (Type 10)
− Loosen all screws (55) and take them out. − Remove simultaneously in axial direction both top half (48) and bottom half (51) of the seal carrier from the housing. − Shift a little (about 20 mm) the top half (53) of the seal. Tilt it over carefully until the garter spring (49) unbends. Warning of injury! During dismantling of the floating labyrinth seal hold tight the garter spring (49) which is under tension and could bounce back and lead to injury.
− Open the garter spring (49) and remove the bottom half of the seal (52) from the shaft. Type 11
6.4.2
Floating labyrinth seal with dust flinger (Type 11)
− Dismantle the dust flinger (69). Loosen the screws (70) and take out the dust flinger (69) from the groove (57) of the seal carrier.Remove both halves of the dust flinger. − Go on as indicated for type 10 (see Chapter .4.1). Type 12
6.4.3
Type 20
6.4.4
Type 21
6.4.5
Type 22
6.4.6
Floating labyrinth seal with baffle (Type 12)
− Disconnect both top 66) and bottom (68) halves of the baffle by untightening the screws (67). − Go on as indicated for type 10 (see Chapter 6.4.1). Rigid labyrinth seal (Type 20)
− Loosen all screws (60) and take them out. − Take out the screws (61). − Remove simultaneously in axial direction both top (59) and bottom (63) halves of the rigid labyrinth seal. Rigid labyrinth seal with dust flinger (Type 21)
− Dismantle the dust flinger (69). Loosen the screws (70) and take out the dust flinger (69) from the groove (62) of the rigid seal. Remove both halves of the dust flinger. − Go on as indicated for type 20 (see Chapter 6.4.4). Rigid labyrinth seal with baffle (Type 22)
− Unscrew the top half (66) and the bottom half (68) of the baffle by untightening the screws (67). − Go on as indicated for type 20 (see Chapter 6.4.4).
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
29
Maintenance and Inspection
6.5 EF.V.
− − − −
Dismantling of the top half of the housing Unscrew the screw plug with the welded-on positioning pin. Remove the screws (8). Remove the screws (12). Lift the top part of the housing (1) until the top part of the housing can be moved in axial line over the shell, without touching it.
6.6
Removal of the top half of the shell
− Unscrew the screws (19) and lift the top half of the shell (11). Attention! Do not damage the thrust and radial working surfaces.
Attention! In the case of insulated housings (white plastic insulating foil) avoid any jamming of the top half of the shell when you lift it up. Jamming could lead to damage of the insulating foil in the bottom half of the housing.
EF.L.
6.6.1
Dismantling of the loose oil ring
− Open both split lines of the loose oil ring (44) by untightening and taking out the screws (47). Separate both halves of the loose oil ring (44) carefully without using any tools or other devices. I
II 44
44
44
47
Illustration 1
Opening of the loose oil ring
To check the geometry of the loose oil ring put it together as follows:
− Press the positioning pin (45) into the holes (46). − Adjust both halves of the loose oil ring till the split lines match each other. − Tighten the screws (47).
30
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
6.6.2
Dismantling the machine side shaft seal
− Shift a little (about 20 mm) the top half (53) of the seal. Tilt it over carefully until the garter spring (49) unbends. Warning of injury! During dismantling of the floating labyrinth seal hold tight the garter spring (49) which is under tension and could bounce back and lead to injury.
− Open the garter spring (49) and turn the bottom half of the seal (52) in opposite direction from the anti-rotation pin out of the integrated seal groove of the bottom half of the housing. 6.7
Removal of the bottom half of the shell
Attention! Make sure that all bearings mounted on a shaft line are opened. Loosen the screws at the split line of the housings.
Attention! The lifting equipment should not come into contact with the seal and working surfaces of the shaft.
− Lift the shaft up to the point where shaft and bottom half of the shell (13) do not touch each other any more. Protect the shaft against unintended movement. − Turn the bottom half of the shell (13) out of the bottom half of the housing (21) and remove it from the shaft. Attention! If the bottom half of the shell (13) is provided with metal tabs (28) do not remove them. They regulate the oil level in the oil pockets. 6.8
Dismantling of the machine seal
Usually it is not necessary to dismantle the machine seal (10) if maintenance works are carried out. If due to certain reasons the split machine seal must be dismantled please observe that this operation can be carried out only from the inner part of the machine. Loosen the screws at the split line of the machine seal and remove the screws (7). Non-split machine seals can be dismantled only after dismantling the machine shield or the shaft completely. In the case the machine seal is equipped with a hamp packing, some visible changes can be noticed, such as : tallow excess, black colour of the seal due to temperature development. Even in such cases it is not necessary to renew the hamp packing. Colour changes will appear with a new hamp packing too, until the seal clearance adjusts during operation.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
31
Maintenance and Inspection
7
Cleaning and Checking of the Bearing
Attention! Use only non-aggressive detergents such as for instance • VALVOLINE 150 • Alcaline cleaning compounds (pH-value 6 to 9, short reaction time).
Warning of injury! Please observe the instructions for the use of the detergents.
Attention! Never use cleaning wool or cloth. Residues of such materials left in the bearing could lead to excessive temperatures.
− Clean the following parts thoroughly: • top half of the housing (1) • bottom half of the housing (21) • top half of the shell (11) • bottom half of the shell (13) • sealing surfaces of the top half (48) and bottom half (51) of the seal carrier or of the rigid labyrinth seal EF.L.
• loose oil ring (44).
EFT..
− Check the condition of the cooler (26). In case the cooler (26) is incrusted with oil sludge:
− Dismantle the cooler. Remove the incrustation by using for instance a wire brush. − Install the cooler (26) into the bearing.
32
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Carry out a visual check of the wear condition of all bearing parts. The following table provides information on the parts that must be replaced in case of wear.The right evaluation of the wear condition, especially of the working surfaces of the shell, implies a lot of experience. If in doubt, replace the worn part with new ones. Bearing part
Wear condition
Maintenance procedure
Shell
Scoring
Bearing temperature before inspection: • not increased - no new shells • increased - new shells
White metal lining damaged
New shell
Bow wave ridges
New shells
Shaft seal
Baffles broken or damaged
New shaft seal
Loose oil ring
Geometrical form ( roundness, flatness ) visibly changed
New loose oil ring
− Check the projection of the positioning pin (3) according to the rates indicated below:
EF.C. EF.L. EF.Y. Size 9-14
Bearing size
9
11
14
18
22
28
Projection of the positioning pin (4) mm
7
8
10
12
14
16
In case the projection is less than indicated,
insulated bearings
EF..A
− drive the positioning pin (3) into the top half of the housing (1) until the indicated value is reached. − Check the insulating layer of the spherical seating (14) of the top half (1) and bottom half (21) of the housing. In case of damage contact the RENK-sales agency in charge. − Check the mobility of all RD-thrust pads (42).
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
33
Maintenance and Inspection
8
Assembly of the Bearing
Attention! Remove all impurities or other objects such as screws, nuts, etc. from inside the bearing. If left inside they could lead to damage of the bearing. Cover up the opened bearing during work breaks.
Attention! Carry out all assembly operations without making use of force.
Attention! Secure all screws at the split line, of the housing and flange with a liquid screw locking compound (e.g.LOCTITE 242).
8.1 EF..E
Fitting in the bottom half of the shell
Attention! Mounting the bottom half of the shell (not marked with an arrow) correctly will ease the assembly of the top half shell (marked with an arrow) (see chapter 8.4).
− Apply some lubricant to the spherical seating (14) in the bottom half of the housing (21) and to the working surfaces of the shaft. Use the same type of lubricant as indicated for bearing operation ( see type plate ). − Place the bottom half of the shell (13) on the working surface of the shaft. Turn the bottom half of the shell (13) into the bottom half of the housing (21) with the split line surfaces of both halves in true alignment. In case the bottom half of the shell doesn`t turn in easily, check the position of the shaft and the alignment of the housing
EF..B, EF..K, EF..E, EF..A
Attention! These operations should be carried out most carefully. The thrust parts of the bottom shell must not be damaged.
− Lower down the shaft till it sits on the bottom half of the shell (13).
34
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
8.2
Assembly of the shaft seal - machine-side
The machine-side shaft seal, as standard, a floating labyrinth seal. The integrated seal groove is in the top and bottom halves of the housing. Warning of injury! During assembly hold the garter spring ends (49) securely to avoid them suddenly releasing and causing possible injury!
Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing:
− − − −
Put the garter spring (49) around the shaft and hook both ends into each other. Put both halves of the seal (52), (53) in their place on the shaft. Put the garter spring (49) into the groove (50). Turn the floating labyrinth seal on the shaft.
Attention! The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheating during operation and even to shaft wear. If the floating labyrinth seal jams, - dismantle the seal and - remove the worn parts of the seal carefully, by using emery paper or a plain scraper.
− Dismantle the floating labyrinth seal. − Apply Curil T to the guide surfaces of the integrated seal groove in the bottom half of the housing.
21
Illustration 2:
Applikation of Curil T to the integrated seal groove
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
35
Maintenance and Inspection
− Apply a uniform layer of Curil T to the seal surfaces and to the split line surfaces of both halves of the seal (52), (53).
52
Illustration 3:
Application of Curil T to the floating labyrinth seal
Please observe the instructions for the use of Curil T.
− Place the bottom half of the seal (52) with the labyrinths onto the shaft. − The oil return holes at the bearing side must be clear and open. − Turn the seal in opposite direction from the anti-rotation pin into the groove of the housing until the split lines of the bottom half of the housing and the bottom half of the seal match each other. − Remove the residue of Curil T. − Push the spring hook into the integrated groove between the bottom half of the housing and the seal until both ends jut out from the split line. − Place the top half of the seal with the cam facing the inside of the bearing on the bottom half of the seal. − Stretch the garter spring till both ends can be hooked.
36
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
EF.L.
8.3
Installation of the loose oil ring
− Open both split lines of the loose oil ring (44) by untightening and removing the screws (47). Separate both halves of the loose oil ring (44) carefully without using any tools or other devices. II
I
44
44
44
47
Illustration:4
Opening of the loose oil ring
− Place both halves of the loose oil ring into the shell groove (13) around the shaft. Press the positioning pin (45) of each split line into the corresponding hole (46). − Adjust both halves of the loose oil ring till the split lines match each other.
21 45
44
44 Illustration 5:
18 Installation of the loose oil ring
− Tighten the screws (47) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
1,4
1,4
1,4
2,7
2,7
2,7
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
37
Maintenance and Inspection
8.4
Fitting in the top half of the shell
− Apply some lubricant to the working surfaces of the shaft. Use the same type of lubricant as indicated for bearing operation (see type plate). − Check if the engraved numbers (15 ) on the bottom and top halves of the shell correspond. − Place the top half of the shell (11) on the shaft; both engraved numbers (15) should be on the same side. Attention! An incorrectly placed shell could jam the shaft thus leading to the damage of both shaft and bearing. EF..B, EF..K, EF..E, EF..A insulated bearings
Attention! Place the top half of the shell carefully on the shaft. The thrust parts of the top half of the shell must not be damaged. In the case of bearings arranged for insulation monitoring, connect the black cable for insulation monitoring to the shell. According to the bearing type, there are two possibilities of connection. 1. The black cable is provided with a cable connector.
− Plug the cable with the cable connector into the counterpart available on the top of the shell. − Lead the cable through the cable gland in the bottom half of the housing and out of the bearing. − Tighten the cable gland oil-tight. 2. The black cable is provided with an eyelet.
− Fasten the cable with the eyelet to the split line of the shell, by using one of the shell joint bolts. − Lead the cable through the cable gland in the bottom half of the housing and out of the bearing. − Tighten the cable gland oil-tight. − Tighten up the screws (19) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
20
69
69
170
− Check the split line of the shell by using a feeler gauge. The split line gap should be less than 0,05 mm. If the split line is greater than this, dismantle both top and bottom (11), (13) halves of the shell. Rework the split line surfaces of the top half (11) and bottom half (13) of the shell with an oil stone. EF.L.
− Check the mobility of the loose oil ring (44).
EF.L. Marine Bearing
A guide bush in the top half of the shell secures the function of the loose oil ring.
38
− Check the mobility of the loose oil ring (44) in the guide bush.
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
EF..E
Shells with taper land faces suitable only for one direction of rotation are marked with an arrow on the top half shell, which indicates the sense of rotation of the shaft. The arrow indicates the allowed direction of shaft rotation after completion of the bearing assembly.
− Before mounting the top half of the housing check that the proposed direction of rotation of the shaft corresponds to the direction indicated by the arrow on the top half of the shell. − If the directions match, continue the assembly of the bearing. − If the directions do not match, the shell must be disassembled, re-aligned and mounted again. Attention! A wrongly placed shell, without observance of the direction of rotation of the shaft, impairs the operational safety of the bearing. 8.5
Closing of the bearing
− Check the true alignment of the shell (11), (13) and bottom half (21) of the housing. EF.C. EF.L. EF.Y.
The positioning pin (3) in the top half of the housing fits in the corresponding hole (2). The shell is thus placed into its right position.
− Check if the engraved numbers (20) on the top and bottom halves of the housing correspond. − Clean the split line surfaces of the top and bottom halves (1), (21) of the housing. − Apply Curil T to the whole surface of the split line of the bottom half (21) of the housing. Please observe the instructions for the use of Curil T.
− Place the top half of the housing carefully into the machine shield, without touching the seals or the shell. − Lower the top half of the housing (1) vertically on the bottom half of the housing (21). Lower the top half of the housing (1) till the split line of the housing is not visible any more. − Gently hit the bottom half of the housing (21) with a nylon hammer, thus ensuring the alignment of the spherical seating. − Insert the screws (12). Tighten them hand-tight. − Insert the screws (8). Tighten them to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm] µtot = 0,1 (lightly oiled)
69
69
170
330
570
1150
− Tighten the screws (12) of the housing crosswise to the same torque rates. EF.V.
− Tighten the screw plug with the welded-on positioning pin into the top half of the housing.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
39
Maintenance and Inspection
insulated bearings
Insulation monitoring In the case of electric insulated bearings provided with insulation monitoring, the cable coming out of the housing must be connected in a professional manner. According to the type supplied, please follow the assembly instructions given below. a) The cable is very short and provided with a further cable connector at the end of it. This cable is ready for connection to the housing. The bottom half of the housing is provided with the counterpart.
− Plug the cable connector into the counterpart. Attention! This connection bypasses the electrical insulation of the bearing. In the case of electric machines, make sure at least one bearing is electrically insulated. To check the electrical insulation, interrupt the connection cable - housing. Check the electrical resistance with a suitable measuring instrument. Make sure that both bearings and the coupling are electrically insulated. b) The cable has a free end. In this case the customer has to make the connection. Attention! If only one bearing is insulated, the end of the cable must not be earthed. Any further connection depends on the customer’s requirements related to the insulation monitoring and can not therefore be described here.
40
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
8.6
Assembly of the Seals - Outboard Side
− Assemble the outboard side seals. Proceed according to the seal type used:
Type 10
• Floating labyrinth seal (Type 10) • Floating labyrinth seal with dust flinger (Type 11) • Floating labyrinth seal with baffle (Type 12)
Chapter 8.6.1 Chapter 8.6.2 Chapter 8.6.3
• Rigid labyrinth seal (Type 20) • Rigid labyrinth seal with dust flinger (Type 21) • Rigid labyrinth seal with baffle (Type 22)
Chapter 8.6.4 Chapter 8.6.5 Chapter 8.6.6
8.6.1
Floating labyrinth seal (Type 10) Warning of injury! During assembly hold the garter spring ends (49) securely to avoid them suddenly releasing and causing possible injury!
Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing.
− − − −
Put the garter spring (49) around the shaft and hook both ends into each other. Put both halves of the seal (52), (53) in their place on the shaft. Put the garter spring (49) into the groove (50). Turn the floating labyrinth seal on the shaft.
Attention! The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheating during operation and even to shaft wear. If the floating labyrinth seal jams, - dismantle the seal and - remove the worn parts of the seal carefully, by using emery paper or a plain scraper.
− Dismantle the floating labyrinth seal.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
41
Maintenance and Inspection
− Apply a uniform layer of Curil T to the seal surfaces and to the split line surfaces of both halves of the seal (52), (53). Please observe the instructions for the use of Curil T.
52
Illustration 6:
Application of Curil T to the floating labyrinth seal
− Press the bottom half of the seal (52) against the shaft. − Place the top half of the seal (53) on the shaft and align both halves of the seal to each other. − Place the garter spring (49) into the groove (50) and stretch until both ends can be hooked.
54
49
Illustration 7:
42
52
53
1
21
Assembly of the floating labyrinth seal
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Place in true alignment the split line of the floating labyrinth seal and the split line of the seal carrier. − Check that both engraved numbers (56) and (58) on top and bottom halves of the seal carrier (48), (51) correspond. − Clean the following parts: • the seal surfaces of the top (48) and bottom (51) half of the seal carrier (the groove of the floating labyrinth seal, the flange surfaces) • the split line surfaces of the top (48) and bottom (51) half of the seal carrier • the flange surfaces of the housing. − Apply a uniform layer of Curil T to: • the lateral surfaces of the groove at the top (48) and bottom (51) half of the seal carrier • the flange surfaces of the top (48) and bottom (51) half of the seal carrier • the split line surfaces of the bottom half of the seal carrier (51). Please observe the instructions for the use of Curil T.
51
Illustration 8:
Application of Curil T to the seal carrier
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
43
Maintenance and Inspection
− Place the top half of the seal carrier (48) on the top half of the seal (53). Press the bottom half (51) of the seal carrier against it. Push the shaft seal completely into the housing.
48 54
53
Illustration 9:
Assembly of the seal carrier
− Place in true alignment the split lines of the seal carrier and the housing. − Tighten up the screws (55) to the following torque rates:
44
Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
8
20
20
20
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
Type 11
8.6.2
Floating labyrinth seal with dust flinger (Type 11)
− Assemble the floating labyrinth seal with dust flinger as described in Chapter 8.6.1, Floating labyrinth seal type 10. − Place both halves of the dust flinger (69) in front of the shaft seal around the shaft. Loosely screw in the screws (70).
48
69
e
57
Illustration 10: Clearance between dust flinger and seal carrier EF..Q
− Push the dust flinger (69) into the groove (57) of the seal carrier. − Set the clearance "e" at the following figure around the whole unit: maximum longitudinal extension of the shaft in operation + 1 mm (Parameters indicated in the Technical Documentation of the Installation).
− Tighten up the screws (70) to the following torque rates: Seal diameter [mm] Torque [Nm] EF..B, EF..K, EF..E, EF..A
80-140
>140
7
18
− Push the dust flinger (69) into the groove (57) of the seal carrier. − Set the clearance "e" at 1 mm around the whole unit. − Tighten the screws (70) to the following torque rates: Seal diameter [mm] Torque [Nm]
RENK AG Werk Hannover
80-140
>140
7
18
RH-EFZWI-E Version: 26 Oktober, 2000
45
Maintenance and Inspection
Type 12
8.6.3
Floating labyrinth seal with baffle (Type 12)
− Assemble the floating labyrinth seal with baffle as in Chapter 8.6.1, Type 10. − Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of the baffle. − Screw • the top half of the baffle (66) to the top half of the seal carrier (48) • the bottom half of the baffle (68) to the bottom half of the seal carrier (51). − Tighten the screws (67) to the following torque rates: Seal diameter [mm]
80-140
>140
4
10
Torque [Nm] Type 20
8.6.4
Rigid labyrinth seal (Type 20)
− Check if the engraved numbers (64) and (65) on the bottom half (63) and top half (59) of the rigid labyrinth seal correspond. − Clean • the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal • the split line surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal • the flange surfaces of the housing. − Apply a uniform layer of Curil T to the following parts: • the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal • the split lines of the bottom half (63) of the rigid labyrinth seal. Please observe the instructions for the use of Curil T.
63
Illustration 11: Application of Curil T to the rigid labyrinth seal
46
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
− Place the top half (59) of the rigid labyrinth seal on the shaft and press slightly the bottom half (63) of the rigid labyrinth seal from below against it. Lightly push the rigid labyrinth seal completely into the housing. − Tighten the screws (61). − Place in parallel alignment the split line of the rigid labyrinth seal and the split line of the housing. Press the rigid labyrinth seal slightly from below against the shaft. Adjust the rigid labyrinth seal in such a way that the clearance "f" between the shaft and the rigid labyrinth seal at both split lines has the same figure.
1
59
f
f
21
63
Illustration 12: Alignment of the rigid labyrinth seal
− Tighten the screws (60) to the following torque rates: Bearing size
9
11
14
18
22
28
Torque [Nm]
8
8
8
20
20
20
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
47
Maintenance and Inspection
Type 21
8.6.5
Rigid labyrinth seal with dust flinger (Type 21)
− Assemble the rigid labyrinth seal with dust flinger as indicated in Chapter 8.6.4, Type 20. − Place both halves of the dust flinger (69) round the shaft, in front of the rigid labyrinth seal. Mount the screws (70) loose.
59
69
e 62
Illustration 13: Clearance between dust flinger and rigid labyrinth seal EF..Q
− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal. − Set the clearance "e" at the following figure around the whole unit: maximum longitudinal extension of the shaft in operation + 1 mm (Parameters are indicated in the Technical Documentation of the Installation).
− Tighten the screws (70) to the following torque rates: Seal diameter [mm]
80-140
>140
7
18
Torque [Nm] EF..B, EF..K, EF..E, EF..A
− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal. − Set the clearance "e" at 1 mm around the whole unit. − Tighten the screws (70) to the following torque rates: Seal diameter [mm]
80-140
>140
7
18
Torque [Nm]
Type 22
8.6.6
Rigid labyrinth seal with baffle (Type 22)
− Assemble the rigid labyrinth seal with baffle as described in Chapter 8.6.4. − Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of the baffle. − Screw • the top half of the baffle (66) to the top half (59) of the rigid labyrinth seal. • the bottom half of the baffle (68) to the bottom half (63) of the rigid labyrinth seal. − Tighten the screws (67) to the following torque rates: Seal diameter [mm]
80-140
>140
4
10
Torque [Nm]
48
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
9
Starting Operation after Inspection
− Fit the thermo sensors for: • temperature measurement of the journal part in the tapped holes (22) • temperature measurement of the thrust part in the tapped holes (optional). − Retighten all screw plugs in the tapped holes (22), (24), (27), (29) to the following torque rates: Screw plug threads
G 3/8
G 1/2
G 3/4
G1
G 1 1/4 G 1 1/2
Torque [Nm] for plugs with injection-moulded plastic sealing ring
30
40
60
110
160
Torque [Nm] for plugs with flexible sealing ring
34
60
85
130
240
G2
G 2 1/2
230
320
500
300
330
410
− Check that the top sight glass (5) is tight. − Retighten the connection holes for oil inlet and oil outlet and the holes for the thrust part oil supply system (optional). The torque depends on the threaded joints used. − Carry out a visual check of the assembled bearing. − Fill up the oil supply system with lubricant. Use the same type of lubricant as indicated on the type plate. − Start operating the oil supply system in order to fill up the bearing with lubricant. − Check • the way the oil supply system functions ( see also the Technical Documentation of the Installation).The lubricant quantity at the bearing oil inlet must correspond to the values indicated in the EDP-calculations. • that the temperature monitoring equipment functions. Attention! • Not enough lubricant leads to temperature rises and thus to damage to the bearing. • Too much lubricant leads to leakages. EFT..
− Start operating the cooling water supply system and check its functioning. The bearing is ready for operation.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
49
Maintenance and Inspection
− Supervise the bearing during the trial run ( 5 - 10 operating hours ). Pay special attention to: • the way the oil supply system works (necessary lubricant quantity, lubricant pressure before entering the bearing) • bearing temperature • sliding noises of the shaft seals • tightness • occurrence of inadmissible vibrations. Attention! If the bearing temperature exceeds the calculated value by 15 K (see the EDP-bearing calculations) stop the installation immediately. Carry out an inspection of the bearing and find out the causes.
10
Corrosion Protection for Longer Standstill Periods
If you want to protect the bearing mounted on an installation against corrosion proceed as follows:
− Dismantle the bearing (see Chapter 6). − Clean the bearing (see Chapter 7). − Paint or spray the top half of the shell (11), the bottom half of the shell (13) and the shaft with TECTYL 511. − Assemble the bearing (see Chapter 8). − Close all tapped holes with screw plugs. − Seal the gaps between • shaft seal and housing • shaft seal and shaft by using a self-adhesive, permanent tape. − Remove the top sight glass (5). Spray some anti-corrosive such as TECTYL 511 or VALVOLINE into the bearing. − Put a bag of dessicant (silicate gel) inside. The dessicant absorbs the humidity and prevents the formation of condensation water inside the bearing. − Close the bearing tight with the top sight glass (5). In case the standstill period is longer than 1/2 year:
− Repeat the preservation procedures. − Put a new bag of dessicant into the bearing. In case the standstill period lasts more years:
− Dismantle the shells. − Preserve and store the bearing parts.
11
Transport Protection
In case of a machine equipped with slide bearings of type EF:
− Carry out the corrosion protection as described in Chapter 10 and apply enough lubricant on the working surfaces of the bearing. − Secure the shaft against thrust and radial movements during transport.
50
RH-EFZWI-E Version: 26 Oktober, 2000
RENK AG Werk Hannover
EF with external oil supply
12
Glossary
Baffle
With bearing types 10 and 20 the baffles are assembled externally in front of the shaft seals. The baffle, made of reinforced polyamide, protects the bearing from dust and water.
Rigid labyrinth seal
The rigid labyrinth seal (type 20) is used with slide bearings type E with high oil throughput.It corresponds to the protective system IP44 and is made of an aluminium alloy. The rigid labyrinth seal is built of two halves, flanged at the housing.The labyrinths that wipe out the lubricant are arranged into two groups.The first two labyrinths , installed inside keep back most of the lubricant. Five further labyrinths protect the bearing from outside.They prevent the lubricant overflow and the ingress of impurities.The overflow lubricant is collected into a chamber between the both groups of labyrinths.Through the return bores the lubricant flows back into the bearing.
Spherical seating
The spherical seating is a special feature enabling the alignment of the shell in the housing.The shell is seated on two spherical seatings. The advantages of the spherical seating are: • easy at assembly • good heat transfer from the shell to the housing • suitable for such applications with high thrust or journal loads.
Dust flinger
In the case of bearing types 10 and 20 a light alloy ring is clamped on the shaft in front of the shaft.This ring fits into a groove in the seal carrier or the rigid labyrinth seal, thus building a labyrinth. The labyrinth protects the shaft exit against low pressure that could otherwise " absorb " the lubricant. Low pressure occurs for instance in the case of rotating discs, such as couplings or cooling discs.
Floating labyrinth seal
The floating labyrinth seal (type 10) in the seal carrier is used as a shaft seal in the case of bearings type E operating under normal conditions. It prevents the lubricant and lubricant mist coming out and the ingress of impurities. The floating seal has a high capacity of resistance to wear. It is made of a high-performance, high temperature stability and electrically insulated plastic material.The floating seal consists of two halves held together by a garter spring. Both ends of the spring are hooked together. In the case of slide bearings type EM the floating seal is mounted into a two-piece seal carrier. The groove allows for radial movement of up to 1 mm. The seal is thus insensitive to shaft radial displacement or deflection. The sealing effect is produced by the baffles wiping off the lubricant from the shaft. The lubricant flows back into the bearing via oil return opening.
Machine seal
In the case of the flange mounted bearings, the machine seal reduces the influence of positive and negative pressure in the machine thus preventing leakages at the inner seal area. The space between the machine seal and the bearing housing must always be vented to atmospheric pressure. The size of the gap between shaft and machine seal influences the sealing effect.
RENK AG Werk Hannover
RH-EFZWI-E Version: 26 Oktober, 2000
51
LIST OF RECOMMENDED SPARE PARTS Turbo Generator: Type: Serial No: Project No:
1DT 4138-8AD02-Z 1219294/100 3488017
Item
Description
Quantity
Location
Type
1
Slide Bearing Shell
1 set
DE Bearing
EFZLK 22-250
Renk
2
Slide Bearing Shell
1 set
NDE Bearing
EFZLQ 22-225
Renk
1
DE Bearing
1
NDE Bearing
1
NDE
DEW 8,5-400-460V/1000W SN70621
1 set / 6 pcs. 1 set / 6 pcs.
V1-V6 / Rectifier Wheel, U / Bus Rings at Rectifier Wheel
D660N-18T SN72544 Varistor disc C13/180V SN72543
3 4
Bearing Thermometer for remote reading/alarm Bearing Thermometer for remote reading/alarm
2PT100/B-235X6S-G1/2-3/0-N, L=235 mm 2PT100/B-250X6S-G1/2-3/0-N, L=250 mm
Manufacturer
Dosch Dosch
5
Space Heater Element
6
Silicon Diode
7
Protective Varistor
8
Hot/cold air temperature detectors
3
Cooler housing
M12, 2XPT100A, PT35/70 MM
9
Leakage relay
1
Auxiliary terminal box
RM4 L32MW, 24 Vdc
Telemecanique
10
Brush
2
Shaft earthing
BRE 25, MK75, SN73005
Schunk
1 set
DE Bearing
330880-16-15-061(154mm)-03(M20)-02
Bently Nevada
1 set
NDE Bearing
330880-16-15-066(168mm)-03(M20)-02
Bently Nevada
11 12
PROXPAC PROXIMITY TRANDUSER ASSEMBLY PROXPAC PROXIMITY TRANDUSER ASSEMBLY
We recommend to order spare parts by SIEMENS only. When ordering spare parts, please state the Type and Serial No. of the generator in question.
Doebeln Elektrowaerme Eupec Langlade & Picard Ravet
Part Number 131236-01 Revision E, August 2003
PROXPAC® PROXIMITY TRANSDUCER ASSEMBLY Manual
Proxpac Proximity Transducer Assembly Manual
Copyright © 1995 – 2003 Bently Nevada LLC All Rights Reserved. The information contained in this document is subject to change without notice. The following are trademarks of Bently Nevada LLC in the United States and other countries: ACM™, Actionable Information®, Actionable Information to the Right People at the Right Time®, ADRE, ™, Asset Condition Management™, Asset Condition Monitoring™, Bently ALIGN™, Bently BALANCE®, Bently DOCUVIEW™, Bently LUBE™, Bently Nevada, Bently PERFORMANCE™, Bently RELIABILITY™, CableLoc™, ClickLoc™, Data Manager, Decision SupportSM, DemoNet™, Dynamic Data Manager, Engineer Assist™, FieldMonitor™, flexiTIM™, FluidLoc, Helping You Protect and Manage All Your Machinery, HydroScan, HydroView™, Key ∅, Keyphasor, Machine Condition Manager™ 2000, MachineLibrary™, Machine Manager™, MicroPROX, Move Data, Not People, Move Information, Not Data™, NSv™, Prime Spike™, PROXPAC, Proximitor, REBAM, RuleDesk™, SE™, Seismoprobe, Smart Monitor, Snapshot™, System 1™, System Extender™, TDXnet™, TDIXconnX™, The Plant Asset Management CompanySM, TipLoc™, TorXimitor, Transient Data Manager, Trendmaster, TrimLoc™, Velomitor Bently Nevada’s orbit logo and other logos associated with the trademarks in bold above, are also all trademarks or registered trademarks of Bently Nevada in the United States and other countries. The following ways of contacting Bently Nevada are provided for those times when you cannot contact your local Bently Nevada representative: Mailing Address Telephone Fax Internet
ii
1631 Bently Parkway South Minden, NV 89423 USA 1 775 782 3611 1 800 227 5514 1 775 215 2876 www.bently.com
Related Documents The following documents contain additional information that you may find helpful when you install the transducer. This manual refers to these documents by document number.
Installing the Transducer Proximity Probes and Related Accessories (Bently Nevada application note AN028). Guidelines for Grounding Bently Rotating Machinery Information Systems (Bently Nevada application note AN013). Installation of Electrical Equipment in Hazardous Areas (Bently Nevada application note AN015).
Electrical and Mechanical Runout "Glitch": Definition of and Methods for Correction, including Shaft Burnishing to Remove Electrical Runout (Bently Nevada application note AN002). API 670, third edition, Section 4.1.1.2: Machine Shaft Requirements for Electrical and Mechanical runout. (Available from the American Petroleum Institute, Publications and Distribution, 1220 L Street N.W., Washington D.C., 20005. Phone: (202) 682-8375.)
Reference Performance Specifications for the PROXPAC® Proximity Transducer Assembly (Bently Nevada document number 158735). Bently Nevada Glossary (Bently Nevada document L1014).
European CE mark for the Bently Nevada PROXPAC® Transducer Assembly In this Document is a list of the PROXPAC® transducer assemblies that have the CE mark, applicable standards used for certification, and installation instructions required for compliance.
Proximity Transducer Systems are electronic devices typically used in industrial applications. The PROXPAC® Transducer has been certified using the same Technical Construction File (TCF) and declaration of conformity as the 3300 8mm transducer system because they are similar in design and application. The PROXPAC® Transducer Assembly consists of a Proximitor® Sensor and a 3300 8mm reverse mount proximity probe built into a probe housing. iii
Proxpac Proximity Transducer Assembly Manual
TCF through TÜV Rheinland of North America A Technical Construction File has been prepared through TÜV Rheinland of North America (TÜV Rheinland File Number: P9472350.02). The certificate of compliance is for Directive 89/336/EEC (EMC Directive). The applicable Generic Norms are: EN50081-2 and EN50082-2.
Installation Instructions (Reference Figure 0-1) These instructions are an addition to the Installation Instructions Section of the manual.
Compliant Systems and Component Part Numbers #
Model Names
Model Numbers
10 PROXPAC® Transducer
330800, 330801, 132306, 330105, 330106, and any PROXPAC® Assembly manufactured from these standard modules**
Includes all options and all approval versions of the base model numbers listed. **--any proximity transducer, proximity probe, or extension cable which works correctly with the listed modules.
Testing and Test Levels Title
EN
EN
ENV50140
ENV50140
EN 61000-4-4
ENV50142
ENV50141
EN 61000-4-8
55011
61000-4-2
(IEC 801-3)
Rad. RFI
(IEC 801-4)
(IEC 801-5)
(IEC 801-6)
(IEC 1000-4-8)
(EN55022)
(IEC 801-2)
Rad. RFI
Surge
Cond. RFI
Mag. Fields
EFT Emission
ESD
Test Levels
Emission Class A
4kV; 8kVc
Criteria
N/A
A
10V/md
10V/me
1kVf
0.5kVf
10Vg
30A/m, 50Hz
A
A
A
A
B
A
These notes listed below apply only to the table “Testing and Test Levels” c discharge method: Contact; Air d 80-1000 MHz sweep with 80% 1 kHz sine wave amplitude modulation e 900 MHz dwell with 100% 200 Hz square wave modulation f I/O lines tested with conduit removed g 150 kHz-80 MHz sweep with 80% 1 kHz sine wave amplitude modulation, conduit removed.
Bently Nevada Technical Publication The PROXPAC® Transducer is immune to EMI at levels as specified by EN50082-2 (i.e. 10 V/m signal level from 80 - 1000 MHz except for ITU broadcast frequency bands of 87 - 108 MHz, 174 - 230 MHz, and 470 - 790 MHz where the level shall be 3 V/m). Vibration readings due to EMI interference will be less than 1.0 mil pp. iv
Proximity Probes All probes must be mounted in an EMI shielded environment (i.e. typically inside a machine casing).
Field Wiring All field wiring must include a foil or braided shield that is connected to ground.
EMI Shielding With Conduit All field wiring, from the PROXPAC® enclosure to a receiving unit (i.e. monitor), must be shielded from EMI energy. Acceptable EMI shielding includes either rigid or flexible metal conduit. The EMI shield, in this example conduit, is grounded through the PROXPAC® at the point of entrance to the PROXPAC® enclosure. Grounding at any subsequent junction enclosure is also required.
EMI Shielding Without Conduit Acceptable wiring includes a multi-conductor cable with both a foil and a braided shield. The shield must be grounded to the metal liner inside the PROXPAC® enclosure. Using the nut on one of the hole plugs to ground the shield is acceptable. The shield must be maintained around the wiring as it is grounded to the enclosure. Grounding at any subsequent junction enclosure is also required. Grounding the cable shield at the PROXPAC® is not acceptable if intrinsic safety barriers are being used. Grounding the cable shield at both ends may cause errors due to current flowing in the wiring shield if the grounds are not at the same potential.
EMI Suppression Ferrite An EMI suppression ferrite must be clipped onto the field wiring close to the Proximitor® Sensor's terminal strip. Remove jacket, foil and braided shield from the field wiring where the EMI suppression ferrite is placed.
Non Grounded Bearing Housings When the PROXPAC® is installed on a bearing housing which is isolated from ground, mount the PROXPAC® on an insulated bushing to maintain the housing isolation and ground the PROXPAC® at the conduit fitting.
v
Proxpac Proximity Transducer Assembly Manual
MADE IN U.S.A.
OUT COM V T
3300 8mm PROBE ONLY 1 METER CABLE LENGTH
Figure 0-1: Front view with cover removed. (1) (2) (3) (4) (5) (6)
vi
PROXPAC® Enclosure Field Wiring EMI Suppression Ferrite (p/n 02200068) Plug Conduit To Monitor
Contents Related Documents ...........................................................................................................................iii Installing the Transducer...............................................................................................................iii Electrical and Mechanical Runout ................................................................................................iii Reference ......................................................................................................................................iii European CE mark for the Bently Nevada PROXPAC® Transducer Assembly .............................iii In this Document...........................................................................................................................iii Proximity Transducer Systems .....................................................................................................iii TCF through TÜV Rheinland of North America .......................................................................... iv Installation Instructions................................................................................................................. iv Compliant Systems and Component Part Numbers ...................................................................... iv Testing and Test Levels ................................................................................................................ iv Bently Nevada Technical Publication............................................................................................... iv Proximity Probes............................................................................................................................ v Field Wiring ................................................................................................................................... v EMI Shielding With Conduit ......................................................................................................... v EMI Shielding Without Conduit .................................................................................................... v EMI Suppression Ferrite ................................................................................................................ v Non Grounded Bearing Housings .................................................................................................. v
Section 1 — System Description ......................................................... 1 Receiving, Inspecting, and Handling the System............................................................................... 1 Customer Service ............................................................................................................................... 1
Section 2 — Installation........................................................................ 3 Installing the Probe Sleeve and Housing ........................................................................................... 3 Checking the Resonant Frequency of the Probe Sleeve..................................................................... 3 Connecting the Field Wiring.............................................................................................................. 8 Removing and Reinstalling Gapped Probes....................................................................................... 8
Section 3 — Maintenance and Troubleshooting .............................. 11 Scale Factor Verification ................................................................................................................. 12 Troubleshooting ............................................................................................................................... 14 Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc....................................................................... 15 Fault Type 2: VSIG = 0 Vdc ............................................................................................................. 17 Fault Type 3: -1 Vdc < VSIG < 0 Vdc .............................................................................................. 18 Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc ............................................................................. 20 Fault Type 5: VSIG = VXDCR ............................................................................................................. 21
Section 4 — Ordering Information..................................................... 23 Notes: ........................................................................................................................................... 23 PROXPAC® Proximity Transducer, English .............................................................................. 23 PROXPAC® Proximity Transducer, Metric................................................................................ 24 Accessories .................................................................................................................................. 25
Section 5 — Specifications ................................................................ 29 Electrical .......................................................................................................................................... 29 Hazardous Area Approvals .............................................................................................................. 30 Mechanical ....................................................................................................................................... 31 Environmental Limits ...................................................................................................................... 32 Effects of 60 Hz Magnetic Fields up to 420 Gauss:..................................................................... 33 Patents .......................................................................................................................................... 33 vii
Proxpac Proximity Transducer Assembly Manual
viii
Section 1 — System Description
Section 1 — System Description The PROXPAC® Proximity Transducer Assembly is similar in external appearance and mounting detail to our 31000/32000 Proximity Probe Housing Assemblies. It offers the same advantages and features as these conventional housings for external adjustment of, and access to, proximity probes. However, the PROXPAC® Assembly also contains its own Proximitor® Sensor inside the housing’s cover. This design makes the PROXPAC® Assembly a completely self-contained proximity probe system, and eliminates the need for an extension cable between the probe and its associated Proximitor® Sensor. It also eliminates the need for a separate Proximitor® housing. For short cable runs, field wiring is connected directly between the monitors and PROXPAC® Assemblies. For longer cable runs, a junction box is often mounted at or near the machine skid to house terminal strips. The field wiring is connected to terminal strips in the junction box, providing access to Proximitor® signals at a convenient location near the machine. The PROXPAC® housing is made of Polyphenylene Sulfide (PPS) which is an advanced, molded thermoplastic. It was chosen specifically to replace previous steel and aluminum housings offered by Bently Nevada, and incorporates glass and conductive fibers in the PPS for added strength and electrostatic dissipation. The PROXPAC® housing is rated for Type 4X and for IP66 environments for extra protection in severe environments.
Receiving, Inspecting, and Handling the System Application Alert: Although the terminals and connector on the Proximitor Sensor have protection against electrostatic discharge, take reasonable precautions to avoid electrostatic discharge when handling the Proximitor® Sensor.
Carefully remove all equipment from the shipping containers and inspect the equipment for shipping damage. If shipping damage is apparent, file a claim with the carrier and submit a copy to the nearest Bently Nevada office. Include part numbers and serial numbers on all correspondence. If no damage is apparent and the equipment is not going to be used immediately, return the equipment to the shipping containers and reseal until ready for use. Store the equipment in an environment free from potentially damaging conditions such as high temperature or a corrosive atmosphere. See Specifications Section for environmental specifications.
Customer Service Bently Nevada maintains numerous Sales and Service offices worldwide. To locate the office nearest you, visit our website at www.bently.com
. Here, you can also find specifications on all standard product offerings. Support for products and services should be directed to one of these departments: For product quotations, product applications, product ordering, scheduling onsite Services, and questions regarding existing orders, please contact your nearby Bently Nevada Sales and Service Office. 1
Proxpac Proximity Transducer Assembly Manual
For general product pricing, delivery, or other ordering information, contact your local BNC office or contact Customer Service Department, Minden, Nevada, USA Phone: 1-775-782-9913 Fax: 1-775-782-9259. For technical questions or problems regarding installed BNC products, contact our Technical Support Staff at: [email protected] or at the following locations: Technical Support (North America) Phone: 1-775-782-1818 Fax: 1-775-782-1815 Technical Support (UK) Phone: (44) 1925 818504 Fax: (44) 1925 817819
2
Section 2 — Installation
Section 2 — Installation This section shows how to: •
Install the probe sleeve and housing
•
Connect the field wiring
•
Install replacement components
Installing the Probe Sleeve and Housing The following figures show the minimum values for side clearance and target configuration for the 3300 8mm reverse mount probe used in the PROXPAC® Proximity Transducer Assembly.
15.2 mm (0.6 in) 15.2 mm (0.6 in)
35.6 mm (1.4 in) Shaft Shaft
6.4 mm (0.25 in)
17.8 mm (0.70 in)
8.9 mm (0.35 in)
8.9 mm (0.35 in)
Shaft
Checking the Resonant Frequency of the Probe Sleeve The probe sleeve length is defined as the probe penetration depth plus the standoff adapter length. The probe sleeve will vibrate unless proper stiffening supports are used. Evaluate each machine installation to be sure the vibration of the sleeve is within acceptable levels. The resonant frequency of the probe sleeve for various lengths is shown below.
3
Proxpac Proximity Transducer Assembly Manual
Probe Sleeve Resonant Frequency
The resonant frequency (Hz) should be at least three times the machine running speed in Hz.
Hz =
rpm 60
Refer to document AN028 for more information on mounting brackets and adapters or contact your nearest Bently Nevada office for a copy of the Bently Nevada catalog. The figure below shows the installation procedure for the PROXPAC® housings. Although only one possible mounting configuration is shown, the plastic housing can mount on top of the outer sleeve through any one of the four holes in its sides. The retaining chain can be fastened to any one of the four corner holes in either the housing or the cover to allow for the most convenient positioning. The retaining nut slides through any of the four holes in the side of the housing so that the probe can be gapped before attaching the housing to the outer sleeve. This nut contains a thread locking patch which creates a resistance to turning that is strong enough to resist loosening under vibration and to require a wrench to turn the nut. By following the installation procedures outlined on the next page, the probe can be fully gapped before the plastic housing and its attached cover are installed and conduit or armored cable is connected. The numbers in the figure refer to the steps in the procedure. 4
Section 2 — Installation
Vertical Installation Conduit Fitting Probe Cable Connector Protector
Housing
Captive Screws
7 6
Proximitor® Sensor Housing Cover
Probe Sleeve with Wrench Flats
5 4
Locknut
Retaining Plate Retaining Nut
2
Outer Sleeve
1 Machine Case
5
Proxpac Proximity Transducer Assembly Manual
1.
Install the outer sleeve on the machine.
2.
Install the probe sleeve and adjust the probe gap using the figure below. Tighten the probe sleeve locknut to the recommended torque (see specifications). Apply medium strength, removable threadlocking compound (Loctite 242) or use equivalent means to prevent the probe sleeve locknut from loosening.
3.
Seal unused holes in the housing with blanking plugs. Tighten the blanking plug nut to 0.5 N•m (5 in lb).
4.
Place the housing on the outer sleeve and slide the retaining plate under the retaining nut. Tighten the retaining nut to 29.5 N•m (260 in lb).
5.
Attach conduit or cable gland as necessary. Install the conduit such that liquid will not enter PROXPAC® housing.
6.
Connect the field wiring, probe cable, and connector protector.
7.
Fasten the cover in place.
6
Blanking Plug Body Rubber Seal Backplate Torque Nut To 0.5 N-M (5 IN-LB)
Section 2 — Installation
Voltage at the center of the linear range (typically –9Vdc).
Voltmeter
Power Supply
-9 Vdc
24 Vdc
10 kΩ
Spacer
Proximitor® Sensor
3300, 8mm 1metre probe
1.27 mm (50 mil)
Shaft
Mechanical Method
Shaft
Electrical Method
7
Proxpac Proximity Transducer Assembly Manual
Connecting the Field Wiring Use the following wiring diagrams to connect the field wiring between the Proximitor® Sensor and the monitoring instruments (refer to application notes AN013 and AN015 for more information).
No Barriers Transducer Power Common Input Signal
To Probe
Monitor Terminal Strip Connect shield to single point ground at monitor.
Cable Shield Proximitor® Sensor
External Barriers Transducer Power Common Input Signal Monitor Terminal Strip
To Probe Cable Shield
External Barrier
Cable Shield Proximitor® Sensor
See the frequency response graph, Figure 5-1, at the end of the Specifications section of this document as a guideline for determining maximum field wiring length for 18 gauge wire.
Removing and Reinstalling Gapped Probes Caution: The Housing could be under high pressure. Removing the cover could result in injury or permanent eye damage. Make sure the pressure is equalized before removal. In some instances you may need to remove an externally mounted probe for maintenance or replacement. If the probe has been gapped, the reinstallation of the probe sleeve can be quickened by marking the location of the probe sleeve locknut before removing the probe sleeve from the outer sleeve. Mark the probe sleeve locknut position with an indelible marking pen, by temporarily locking it with a second jamnut, or by other similar means. This will allow you to screw 8
Section 2 — Installation
the probe sleeve back in to its approximate position. Take care to avoid turning the probe into the shaft. Do not use this method as a substitute for gapping probes. Proper installation always requires that the gapping procedures be followed. When the probe sleeve is removed, the outer sleeve will be left with an opening into the machine case. This opening can be sealed using Bently Nevada part number 104968-01(english version) or 104968-02 (metric version) to prevent fluid leakage from the machine case or contamination of lube oil. This seal is effective to 3.4 bar (50 psi).
9
Proxpac Proximity Transducer Assembly Manual
10
Section 3 — Maintenance and Troubleshooting
Section 3 — Maintenance and Troubleshooting This section shows how to verify that the system is operating properly and identify parts of the system that are not working properly. The transducer system does not require verification at regular intervals. You should, however, verify operation by using the scale factor verification on the following page if any of the following conditions occur: •
components of the system are replaced or disturbed
•
the performance of the system changes or becomes erratic
•
you suspect that the transducer is not calibrated correctly
The scale factor verification and the adjustment procedure require the following instruments: -
digital multimeter
-
power supply
-
spindle micrometer
-
fixed resistor, 10 kΩ
The scale factor verification uses the test setup shown in the following figure:
Digital Multimeter
Power Supply -24 Vdc
Vin
Com 10 kΩ
11
Proxpac Proximity Transducer Assembly Manual
Scale Factor Verification
12
1.
Compensate for mechanical backlash and adjust the spindle micrometer for electrical zero.
2.
Adjust gap to electrical zero by moving the probe.
3.
Compensate for mechanical backlash in the micrometer and adjust to the start of the linear range.
4.
Record voltages in the following table and calculate Incremental Scale Factors (ISFs) and Average Scale Factor (ASF) using the equations.
Section 3 — Maintenance and Troubleshooting
Increments: 250 µm or 10 mil
Adjust Micrometer to… N
µmn
miln
1
250
10
2
500
20
3
750
30
4
1000
40
5
1250
50
6
1500
60
7
1750
70
8
2000
80
9
2250
90
Record Voltages
Calculate Scale Factor
Vdcn
ISFn
ASF
(Incremental Scale Factor)
(Average Scale Factor)
Vdc n - 1 − Vdc n 0.25 Vdc 250 µm − Vdc 2250 µm ASF(mV / µm) = 2
ISFn
(mV / µm)
=
13
Proxpac Proximity Transducer Assembly Manual
Vdc n - 1 − Vdc n 0.01 Vdc 10 mil − Vdc 90 mil ASF(mV / mil) = 0.08
ISFn (mV / mil) =
Troubleshooting This section shows how to interpret a fault indication and isolate faults in an installed transducer system. Before beginning this procedure, be sure the system has been installed correctly and all electrical connections have been secured properly in the correct locations. When a malfunction occurs, locate the appropriate fault, check the probable causes for the fault indication and follow the procedure to isolate and correct the fault. Use a digital voltmeter to measure voltage and resistance. If you find faulty transducers, contact your local Bently Nevada Corporation office for assistance. The troubleshooting procedures use measured voltages as shown in the following figure and table:
VPS
VXDCR
Transducer Power Common (ground) Input Signal Instrument terminal strip
VSIG
Note: VXDCR, VSIG, and VPS are all negative voltage values.
Table 3-1: Symbols for Measured Voltages
14
Symbol
Meaning
Voltage measured between…
VXDCR
Transducer input voltage
VT and COM
VSIG
Signal voltage from the transducer
OUT and COM
VPS
Power supply voltage
Power Source and Common
Section 3 — Maintenance and Troubleshooting
Table 3-2: Definitions Symbol
Defintion
Example
A>B
"A" value is more positive than "B"
-21 > -23
A
"A" value is more negative than "B"
-12 < -5
A=B
"A" same value (or very close) to "B"
-24.1 = -24.0
Connect
Disconnect
Inspect
Record
Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc Possible causes •
Faulty power source
•
Faulty field wiring
•
Faulty Proximitor® Sensor
15
Proxpac Proximity Transducer Assembly Manual
VPS
Yes
Measure VPS:
Faulty Power Supply
VPS > 23 Vdc or VPS < -26 Vdc? No
VXDCR
Yes
Measure VXDCR: VXDCR > 23 Vdc or VXDCR < -26 Vdc? No Faulty Proximitor® Sensor
16
Faulty Field wiring
Section 3 — Maintenance and Troubleshooting
Fault Type 2: VSIG = 0 Vdc Possible causes: •
Incorrect power source voltage
•
Short circuit in field wiring
•
Short circuit at Proximitor® Sensor terminal connection
•
Faulty Proximitor® Sensor
Does fault condition type 1 exist? No
VSIG
Measure VSIG: VSIG = 0 Vdc ? Yes Faulty Proximitor® Sensor
No Incorrect power source voltage or short in field wiring or short at Proximitor® Sensor terminal connection.
17
Proxpac Proximity Transducer Assembly Manual
Fault Type 3: -1 Vdc < VSIG < 0 Vdc Possible causes: •
Probe is incorrectly gapped (too close to target)
•
Incorrect power source voltage
•
Faulty Proximitor Sensor
•
Probe is detecting other material than target
•
Short or open circuit in a connector (dirty or wet) or loose connectors
•
Short or open circuit in the probe
Does fault condition type 1 exist? No Verify the probe gap in the machine. Is the probe gapped correctly?
No
Re-gap the probe. Retest the system.
Yes
Step 2
Step 1
Original probe
VSIG
18
Known good probe with correct integral length cable (open gap)
Section 3 — Maintenance and Troubleshooting
Measure VSIG:
No
-1.1 Vdc < VSIG < 0 Vdc ?
Faulty Proximitor® Sensor or probe is being loaded.
Yes
Yes
Inspect the connector. Is there a dirty, rusty, or poor connection? No
Clean connector (using isopropyl alcohol or electronic terminal cleaner), reassemble, and retest the original system.
RPROBE
Measure the resistance. Is RPROBE within specifications? 1m probe: 7.58 Ω ± 0.5 Ω
Yes Retest the original system.
No Faulty Probe
19
Proxpac Proximity Transducer Assembly Manual
Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc Possible causes: •
Faulty Proximitor Sensor
•
Probe is incorrectly gapped (too far from target)
Does fault condition type 1 exist? No
VSIG
No
Measure VSIG: -1.2 Vdc < VSIG < -0.3 Vdc ? Yes Reconnect system Regap the probe Retest system
20
Faulty Proximitor® Sensor
Section 3 — Maintenance and Troubleshooting
Fault Type 5: VSIG = VXDCR Possible causes: •
Incorrect power source voltage
•
Faulty Proximitor Sensor
•
Faulty field wiring (between Out and VT)
Does fault condition type 1 exist? No
VSIG
Measure VSIG: VSIG = VXDCR ?
Yes Faulty Proximitor® Sensor
No Faulty field wiring (short between OUT and VT)
If a faulty Proximitor® Sensor is indicated, replace the Proximitor® Sensor and housing lid as a unit (the replacement part number is printed on the Proximitor® Sensor). Do not remove the Proximitor® Sensor from the lid. There are no user serviceable parts inside. 21
Proxpac Proximity Transducer Assembly Manual
Bently Nevada performs failure analysis on all returned transducers. The information gained during analysis of failed products is used to improve our current and future products. If you encounter a part that has failed, return the part with a brief description of the product application and symptoms observed to our corporate headquarters in Minden, Nevada for analysis: Bently Nevada, LLC Attn: Product Repair Department 1631 Bently Parkway South Minden, Nevada 89423 USA
22
Section 4 — Ordering Information
Section 4 — Ordering Information Notes: Order -00 or -000 for all options to receive just a spare housing with Proximitor® Sensor. When ordering probe separate from PROXPAC® Transducer, order a separate Connector Protector, Part Number 03839420 for the probe.
PROXPAC® Proximity Transducer, English 330800-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option 00 No probe; Proximitor® Sensor without approvals 01 No probe; Proximitor® Sensor with Multiple Approvals 16 3300 XL 8 mm probe 28 3300 XL 8 mm probe with Multiple Approvals B: Standoff Adapter Option (B Dimension) Order in increments of 0.5 in (13 mm ). Minimum length: 1.5 in (38 mm) Maximum length: 7.5 in (191 mm ) Examples: 0 0 = No standoff adapter 1 5 = 1.5 in (38 mm) C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 1.0 and 2.0 inches, counter bore may be required in machine case to reduce probe side view and/or rear view effects.
Order in increments of 0.1 in (2 mm). Minimum length: 1.0 in (25 mm) Maximum length: 30 in (762 mm ) Examples: 0 0 0 = No probe sleeve 0 3 7 = 3.7 in (94 mm) 2 2 4 = 22.4 in (569 mm) D: Fittings Option Note: For 1/2-14 NPT fittings, order option -03 or spare 26650-01 reducers for either option -01 or -02.
00
No fittings; two plugs and two washers
01
One 3/4-14 NPT fitting, two plugs
02
Two 3/4-14 NPT fittings, one plug
03
One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs
E: Mounting Thread Option 00 No outer sleeve assembly
23
Proxpac Proximity Transducer Assembly Manual
02
3/4-14 NPT (Required if ordering Standoff Adapter Option.)
05
7/8-14 UNF-2A
PROXPAC® Proximity Transducer, Metric 330801-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option 00 No probe; Proximitor® Sensor without approvals 01
No probe; Proximitor® Sensor with Multiple Approvals
16
3300 XL 8 mm probe
28
3300 XL 8 mm probe with Multiple Approvals
B: Standoff Adapter Option (B Dimension) Order in increments of 10 mm. Minimum length: 40 mm Maximum length: 200 mm Examples: 0 0 = No standoff adapter 0 4 = 40 mm 2 0 = 200 mm C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 25 and 50 mm, counter bore may be required in machine case to reduce probe side view and/or rear view effects.
Order in increments of 1 mm. Minimum length: 25 mm Maximum length: 760 mm Examples: 0 0 0 = No probe sleeve 0 5 0 = 50 mm 7 6 0 = 760 mm D: Fittings Option (supplied as a kit) 00 No fittings; two plugs and two washers 01
One M25 fitting, two plugs
02
Two M25 fittings, one plug
03
One M20 fitting, two plugs
05
One PG21 to PG11 reducer, two plugs
06
One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs
07
One PG21 x M20 fitting, two plugs
08
Two PG21 x M20 fittings, one plug
Note: Conduit fittings are necessary when hardline conduit or metal piping is brought into the housing. If using flexible conduit, it should be ordered with integral 3/4-14 NPT fittings so that additional conduit
24
Section 4 — Ordering Information fittings are not required with the housing. If using flexible conduit, order the D = 00 option.
E: Mounting Thread Option 00 No outer sleeve assembly 01
M24 X 3
02
3/4-14 NPT (required if ordering Standoff Adapter Option)
Accessories 02200068 Spare EMI Suppression Ferrite. This snap-on ferrite part covers a portion of the field wiring inside the PROXPAC® Transducer housing. It reduces the effect of Electro-Magnetic Interference (EMI) on the transducer signal. The ferrite part is required for CE approved installations, primarily found in Europe. 158735 Performance Specification 131236-01 Operation Manual 132306-01 Spare Proximitor® Sensor and Housing Cover, nonapproved 132306-02 Spare Proximitor® Sensor and Housing Cover, approved 330105-02-12-10-02-00 Spare 3300 XL 8 mm probe, English, non-approved 330105-02-12-10-02-05 Spare 3300 XL 8 mm probe, English, approved 330106-05-30-10-02-00 Spare 3300 XL 8 mm probe, metric, non-approved 330106-05-30-10-02-05 Spare 3300 XL 8 mm probe, metric, approved 132501-AXX Field Wiring Cable 1.0 mm² (18 AWG), 3 conductor, twisted, shielded cable. Terminal ring lugs are installed at each end including an extra shield ring lug at the monitor end. Option Description A: Cable length option in feet. Order in increments of 1.0 ft (0.3 m). Minimum length: 2 ft (0.6 m). Maximum length: 99 ft (30 m). Examples: 1 5 = 15 feet (4.57 metres) 2 0 = 20 feet (6.10 metres)
25
Proxpac Proximity Transducer Assembly Manual
103537-01 Terminal Mounting Block The block includes mounting screws and is easily installed in a Proximitor® Housing. The block accepts ring lugs used on the Field Wiring Cable. 02120015 Bulk Field Wire 1.0 mm² (18 AWG), 3-conductor, twisted shielded cable with drain wire. Specify length in feet. 01651632 Terminal Ring Lug Extra ring lugs can be attached to Bulk Field Wire to assemble the exact length of cable needed. 37948-01 Probe Support / Oil Sleeve Provides seal along probe sleeve. May be used as a probe sleeve support in certain installations. 40113-02 Connector Protector Kit Installs a connector protector onto a probe that has been ordered separately.
English Probe Sleeve (Spare) 108883 –AXXX This is the measured probe sleeve length. Order in increments of 0.1 in (3 mm). Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length: AXXX: = Standoff Adapter Option from original housing (330800 option B) + Probe penetration option from original housing (330800 option C) + 0 2 5. Example: original part number is 330800-16-15-035-03-02. AXXX: option for replacement sleeve is (015 + 035 + 025) = 075. Minimum Probe Sleeve Length: 3.5 in (89 mm)= 0 3 5 Maximum Probe Sleeve Length: 32.5 in (826 mm) = 3 2 5
Metric Probe Sleeve (Spare) 108882 –AXXX This is the measured probe sleeve length. Order in increments of 1 mm. Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length: AXXX: = Standoff Adapter Option from original housing (330801 option B) * 10 + Probe penetration option from original housing (330801 option
26
Section 4 — Ordering Information
C) + 0 6 3. Example: original part number is 330801-16-08-205-0302. AXXX: option for replacement sleeve is (080 + 205 + 063) = 348. Minimum Probe Sleeve Length: 88 mm (3.5 in) = 0 8 8 Maximum Probe Sleeve Length: 823 mm (32.4 in) = 8 2 3
English Standoff Adapter (Spare) Hex = 1 3/8 in; threads = 3/4-14 NPT 109319 –AXXX Order in increments of 0.5 in (13 mm). Minimum length: 1.5 in (38 mm) Maximum length: 7.5 in (191mm) Example: 0 2 0 = 2 in (51 mm)
Metric Standoff Adapter (Spare) Wrench flats = 35 mm; threads = 3/4-14 NPT. 109318 –AXX Order in increments of 10 mm. Minimum length: 40 mm Maximum length: 200 mm Example: 0 5 = 50 mm 104968-01 English Sleeve Plug Threaded, 303 stainless steel. 104968-02 Metric Sleeve Plug Threaded, 303 stainless steel. Plugs fill opening when sleeve is removed from machine case. 104288-01 English Blanking Plug 104288-02 Metric Blanking Plug. Blanking plugs are included with the Fittings Option "D". Spare plugs fill conduit holes in plastic housing where needed.
Heavy Duty Cable Fittings 03813103 Chrome-plated Zinc Conduit Fitting, 3/4-14 NPT 03818100 AISI 316 Stainless Steel Conduit Fitting, 3/4-14 NPT
27
Proxpac Proximity Transducer Assembly Manual
03818101 AISI 316 Stainless Steel Conduit Fitting, PG21 x M25 03818102 AISI 316 Stainless Steel Conduit Fitting, PG21 x M20 03818111 Nickel-plated Brass Conduit Fitting, PG21 x M20 26650-01 AISI 303 Stainless Steel Reducer 3/4-14 NPT to 1/2-14 NPT
Sealtite® Flexible Conduit 14847-AXX 1/2-14 NPT assembly 14848-AXX 3/4-14 NPT assembly Option Description A: Length Option Order in increments of 1 ft (0.3 m). Minimum length: 1 ft (0.3 m). Maximum length: 99 ft (30.2 m) Example: 0 5 = 5 ft (1.5 m).
28
Section 5 — Specifications
Section 5 — Specifications Unless otherwise noted, the following specifications apply from +18°C to +27°C (+64°F to +80°F) with a -24 Vdc power supply, a 10 kΩ load, a Bently Nevada supplied AISI 4140 steel target and a probe gapped at 1.27 mm (50 mils).
Electrical Input: Accepts one noncontacting 3300 XL 8 mm Proximity Probe with a one (1) metre cable length installed in the probe sleeve.
Power: Requires -17.5 Vdc to -26 Vdc without barriers at 12 mA maximum consumption. -23 Vdc to -26 Vdc with barriers. Operating at a more positive voltage than -23.5 Vdc may result in reduced linear range.
Supply Sensitivity: Less than 2 mV change in output voltage per volt change in input voltage.
Output resistance: 50 Ω
Probe dc resistance (nominal) (RPROBE): 7.58 ± 0.5 Ω
Field Wiring: Recommend using three-conductor shielded triad cable. Maximum length of 305 metres (1,000 feet) between the PROXPAC® Sensor and the monitor. See the frequency response graph (Figure 5-1) for signal rolloff at high frequencies when using longer field wiring lengths.
Linear Range: 2.0 mm (80 mils). Linear range begins at approximately 0.25 mm (10 mils) from the target and is from 0.25 mm to 2.3 mm (10 to 90 mils) (approximately -1 to -17 Vdc).
Recommended Gap Setting: 1.27 mm (50 mils).
Incremental Scale Factor (ISF): 7.87 mV/µm (200 mV/mil) ±5.5% typical including interchangeability errors when measured in increments of 0.25 mm (10 mils) over the linear range.
Deviation from best fit straight line (DSL): Less than ±23 µm (±0.9 mil) typical including interchangeability errors over the linear range when referenced to a 7.87 mV/µm (200 mV/mil) best fit straight line.
29
Proxpac Proximity Transducer Assembly Manual
Probe Temperature Stability: Over probe temperature range of -35°C to +120°C (30°F to +250°F), typical Incremental Scale Factor (ISF) remains within ±10% of 7.87 mV/µm (200 mV/mil) while deviation from straight line remains within ±50µm (±2 mils).
Minimum Target Size: 15.2 mm (0.6 in) diameter (flat target).
Shaft Diameter: Minimum: 50.8 mm (2 in).
Recommended minimum: 76.2 mm (3 in). Measurements on shaft diameters smaller than 50 mm (2 in) usually require close spacing of radial vibration or axial position transducers with the potential for their electromagnetic emitted fields to interact with one another (cross-talk), resulting in erroneous readings. Care should be taken to maintain minimum separation of transducer tips, generally at least 40 mm (1.6 in) for axial position measurements or 74 mm (2.9 in) for radial vibration measurements. Radial vibration or position measurements on shaft diameters smaller than 76.2 mm (3 in) will generally result in a change in scale factor. Consult Performance Specification 158735 for additional information.
Frequency Response: 0 to 8 kHz: +0, -3 dB, at 50 mils probe gap with up to 305 metres (1000 feet) of field wiring. See Figure 5-1 below.
Hazardous Area Approvals CSA/NRTL/C: Exia for Class I, Division 1, Groups A, B, C and D, when installed with intrinsically safe zener barriers per drawing 132484 or when installed with galvanic isolators. Class I, Division 2, Groups A, B, C and D non-incendive when installed without barriers per drawing 132484. T6 @ Ta=+100°C, T5 @ Ta=-35 to +85°C.
BASEEFA / CENELEC: EExia for Zones 0, 1 and 2, Group IIC, LCIE certificate number 98 ATEX 6011X, when installed with intrinsically safe zener barriers or galvanic isolators per drawing 132484, T5 @ Ta=100°C. ExN for Zone 2, Groups IIA, IIB and IIC, BASEEFA certificate number Ex 97Y4175X, T4 @ Ta=100°C.
30
Section 5 — Specifications
Mechanical Housing Ratings: For North America, Type 4X water-proof and corrosionresistant rating certified by Canadian Standards Association. IP66 rating verified by CSA report number SC 115582-1. CENELEC standard EN50014 rating for electrostatic dissipation of a plastic material located in a hazardous area.
Probe Tip Material: Polyphenylene Sulfide (PPS)
Probe Case Material: AISI 304 stainless steel
Probe Cable: 1 metre length, 75 Ω triaxial, fluoroethylene propylene (FEP) insulated.
Probe Connector: Gold-plated brass ClickLoc™ connector with connector protector attached.
Probe Tensile Strength: 330 N (75 lb) between probe cable and case, maximum.
Housing Material: Ultraviolet (UV) resistant, glass-reinforced polyphenylene sulfide (PPS) thermoplastic containing conductive fibers.
Sleeve Material and Retaining Chain: AISI 304 stainless steel
Outer Sleeve and Retaining Screws: AISI 303 stainless steel
Sleeve O-Ring Material: Neoprene®
Grounding Liner and Retaining Plate Material: AISI 304 Stainless Steel
Recommended Torque Retaining Nut: 29.5 N·m (260 in·lb) Probe Sleeve Locknut: 39.3 N·m (350 in·lb)
Housing Strength (typical): Outer sleeve was mounted on a test stand with its axis parallel to horizontal and the housing mounted on the outer sleeve through an end hole. The housing supported 912 N (205 lb) placed approximately 38 mm (1.5 in) from the unsupported end with the cover fastened in place and grounding liner installed.
31
Proxpac Proximity Transducer Assembly Manual
Housing Impact Strength: Certified by BASEEFA to withstand two separate 4 Joule (5.4 ft·lb) impacts at 39°C (-38°F) and at 115°C (239°F). Samples of the housing and cover were verified by CSA to withstand a 7 Joule (9.5 ft·lb) impact at ambient room temperature.
Total System Weight: 1.4 kg (3.1 lb) typical with 0.3 metre (12 in) sleeve length.
Environmental Limits Probe Temperature Range Operating and Storage Temperature: -51°C to +177°C (-60°F to +350°F). Note: Exposing the probe to temperatures below -34°C (-30°F) may cause premature failure of the pressure seal.
Probe Housing and Proximitor® Sensor Operating Temperature: -34°C to +100°C (-30°F to +212°F). Storage Temperature: -34°C to +105°C (-30°F to +221°F).
Relative Humidity (PROXPAC® Sensor and probe): 100% condensing, non-submersible when connectors are protected. When properly sealed, moisture should not enter the housing. Precautions should be taken to prevent moisture from traveling through the conduit into the housing.
Hot Water and Steam Exposure Effects: (Specification not guaranteed) Brief periods (up to one week) of contact with hot water 95°C (203°F) and/or condensing steam should not significantly affect the strength of the plastic housing. Contact with these beyond this length of time may eventually cause the strength of the plastic housing to permanently decrease during the first 6 to 8 weeks of exposure, and then level at approximately half of its initial value. Tests of actual housing performance after contact with hot water and condensing steam have not been conducted.
Probe Pressure: The PROXPAC® is designed to seal differential pressure between the probe tip and the housing main body when used with a 3300 XL 8 mm probe. The sealing material internal to the probe case consists of a Viton® O-ring; the O-ring between the sleeve and the housing is a Neoprene® O-ring. The plastic housing is certified to seal against hose-directed water according to Type 4X and IP66 standards but is not designed to resist
32
Section 5 — Specifications
internal or external pressure. Probes are not pressure tested prior to shipment. Contact our custom design department if you require a test of the pressure seal for your application. Note: It is the responsibility of the customer or user to ensure that all liquids and gases are contained and safely controlled should leakage occur from the PROXPAC® transducer. Solutions with high or low pH values may erode the tip assembly of the probe, causing media leakage into surrounding areas. Bently Nevada Corporation will not be held responsible for any damages resulting from leaking Proximity Probe Housing Assemblies. In addition, PROXPAC® transducers will not be replaced under the service plan due to probe leakage.
Effects of 60 Hz Magnetic Fields up to 420 Gauss: Output voltage in mil pp/gauss: Gap:
Proximitor® Sensor
Probe
90 mil (worst case)
0.0179
0.0045
Patents 5,016,343; 5,126,664; 5,351,388; and 5,685,884 Components or procedures described in the patents apply to this product 1
Magnitude (dB)
0 -1 -2 -3 -4 -5 -6 10
100
1000
10000
Frequency in Hz 305 m (1000 ft)
610 m (2000 ft)
3660 m (12000 ft)
152 m (500 ft) with external barriers
Figure 5-1: Typical Frequency Response at 50 mils Gap
33
Proxpac Proximity Transducer Assembly Manual
34
Presentation
3
Zelio Control - industrial measurement and control relays Liquid level control relays RM4 L
561078
Functions These devices monitor the levels of conductive liquids. They control the actuation of pumps or valves to regulate levels and are also suitable for protecting submersible pumps against running empty, or protecting tanks from "overflow". They can also be used to control dosing of liquids in mixing processes and to protect heating elements in the event of non immersion. They have a transparent, hinged flap on their front face to avoid any accidental alteration of the settings. This flap can be directly sealed.
RM4 LG01
3
1 2 2 2 2 2
Compatible liquids: spring, town, industrial and sea water, metallic salt, acid or base solutions, liquid fertilizers, non concentrated alcohol (< 40 %), liquids in the food-processing industry: milk, beer, coffee, etc.
1 2 2 2 2
Non-compatible liquids: chemically pure water, fuels, liquid gasses (inflammable), oil, concentrated alcohol (> 40 %), ethylene, glycol, paraffin, varnish and paints.
Description 561079
RM4 LG01 Width 22.5 mm
R U
RM4 LA32
RM4 LA32 Width 22.5 mm
2 3
R U
1 Fine adjustment of time delay (as % of setting range max. value). 2 Fine adjustment of response sensitivity (as % of setting range max. value). 3 Function selector switch: - empty or fill . 4 Switch combining: - selection of the response sensitivity range, - selection of time delay on energisation or on de-energisation of the relay. R U
Yellow LED: indicates relay state. Green LED: indicates that supply to the RM4 is on.
Table showing details for switch 4 Switch position Time delay 500 On-delay 500 Off-delay 50 On-delay 50 Off-delay 5 On-delay 5 Off-delay
References : page 3/112
3/110
1 2 3 4
Characteristics : page 3/113
Dimensions, schemes : page 3/114
Setting-up : page 3/115
Sensitivity High = 500 kΩ range High = 500 kΩ range Medium = 50 kΩ range Medium = 50 kΩ range Low = 5 kΩ range Low = 5 kΩ range
3
Presentation (continued)
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Operating principle The operating principle is based on a change in the resistance measured between immersed or non-immersed electrodes. Low resistance between electrodes: liquid present. High resistance between electrodes: no liquid present. The electrodes may be replaced by other sensors or probes which transmit values representing variations in resistance. The a.c. measuring voltage which is < 30 V and galvanically insulated from the supply and contact circuits, ensures safe use and the absence of any electrolysis phenomena. RM4 relays may be used: 1 For detection of a liquid level, operating with 2 electrodes, one reference electrode and one high level electrode, or an LA9 RM201 probe. Example: prevention of tank overflow. 1 For regulating a liquid level between a minimum and a maximum level, operating with 3 electrodes, one reference electrode, one low level electrode and one high level electrode, or two LA9 RM201 probes. Example: water tower. The state of the output relay can be configured: 1 Empty function : the output relay is energised when high level electrode B2 is immersed and is de-energised when low level electrode B3 is "dry" (1). 1 Fill function : the output relay is energised when the low level electrode is "dry" and is de-energised when high level electrode is immersed (1). On model RM4 LA32 a time delay can be set on energisation or de-energisation of the output relay in order to raise the maximum level function or to lower the minimum level function . This function also makes it possible to avoid pulsing of the output relay (wave effect) when operating with 2 electrodes . Function diagrams
2 Empty function 26Maximum level detection (2 electrodes or 1 probe LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1
B2
B1
B2
B1
B2
U supply A1/A2
LG01
Ð
15/18 15/16
t
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
26Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1 B3 B2
B1 B3 B2
B1 B3 B2
B1 B3 B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
2 Full function 26Maximum level detection (2 electrodes or 1 probe LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1
B2
B1
B2
B1
B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
26Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201) Type RM4-
Function switch 3
B1 B3 B2
Time delay switch 4
B1 B3 B2
B1 B3 B2
B1 B3 B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
B1 : reference electrode B2 : high level electrode B3 : low level electrode (1) When operating with 2 electrodes, the high level electrode performs both high and low level functions. References : page 3/112
Characteristics : page 3/113
Dimensions, schemes : page 3/114
Setting-up : page 3/115
3/111
3
References
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Liquid level control relays 561087
Time delay
Without
Sensitivity scale
Width
Output relay
kΩ 5…100
mm 22.5
1 C/O
Basic reference, to be Weight completed by adding the voltage code (1) kg RM4 LG012 0.165
0.25 ...5 2.5 ...50 25 ...500
22.5
2 C/O
RM4 LA3222
RM4 LG01
3 561088
Adjustable 0.1...10 s
0.165
RM4 LA32
Level control probe for liquid 561089
Type of installation
Suspended by cable
Maximum operating temperature °C 100
Reference
Weight kg 0.100
LA9 RM201
LA9 RM201 (1) Standard supply voltages RM4 LG01 Volts 50/60 Hz RM4 LA32 Volts 24...240 50/60 Hz MW MW
1 1 2
Presentation : pages 3/110 and 3/111
3/112
Characteristics : page 3/113
Dimensions, schemes : page 3/114
24 B 24 B –
Setting-up : page 3/115
110...130 F 110...130 F –
220...240 M 220...240 M –
380...415 Q 380...415 Q –
Characteristics
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Power supply circuit characteristics Relay type Rated supply voltage (Un)
Average consumption at Un
1 50/60 Hz
V
RM4 LG01 24 110...130
220...240
380...415
RM4 LA32 24...240 24
110...130
220...240
380...415
2
V
–
–
–
–
24...240
–
–
–
–
1
VA
1.9
2.6
2.4
2.9
2.7
3.1
2.7
2.6
3.4
2
W
–
–
–
–
2.4
–
–
–
–
Output relay and operating characteristics Number of C/O contacts
1
Output relay state
Can be configured by switch: empty
2
3
/ fill
Electrode circuit characteristics (1) Sensitivity scale
kΩ
5…100 (adjustable)
0.25…5
Maximum a.c. electrode voltage (peak to peak)
V
24
24
Maximum current in the electrodes
mA
1
Maximum cable capacity
nF
10
Maximum cable length
m
100
2.5…50
25…500
200
25
4
1000
100
20
(1) The electrodes may also be incorporated in the probes. The probes are normally designed for fixing to a tank by means of a bracket with a seal (closed tanks) or suspended by their own electrical connecting cable (boreholes, etc.). See page 3/115 “Setting-up” Probe LA9-RM201.
Presentation : pages 3/110 and 3/111
References : page 3/112
Dimensions, schemes : page 3/114
Setting-up : page 3/115
3/113
Dimensions, schemes
3
Zelio Control - industrial measurement and control relays Liquid level control relays RM4 L
Dimensions RM4 LG01, LA32 Screw fixing
22,5
89,5
6
80
78
78
6
Rail mounting
82
Ø4
3
16
Probe LA9 RM201
150
Connection schemes
16
25 28
15 26
B2
16 26 16
A2
Electrodes and level controlled B1
Reference or tank earth electrode
B2
High level
B3
Low level
st
1 C/O contact of the output relay nd
2 C/O contact of the output relay
Presentation : pages 3/110 and 3/111
3/114
25 B3
A2
A1 28 18
A2
A1-A2 Supply voltage B1, B2, B3 Electrodes (see table opposite) 15-18 15-16 25-28 25-26
15 B2
B3
B1
15 16
A2
A1 18
A1 B1
B3
18
B2
15 B2
B3
B1
A1 B1
RM4 LA32
18
RM4 LG01
References : page 3/112
Characteristics : page 3/113
Setting-up : page 3/115
3
Setting-up
3
Zelio Control - industrial measurement and control relays
3
Liquide level control relays RM4 L
Setting-up
1 Select the empty /fill function according to the sequence to be performed. 1 If necessary, set potentiometer 1 to minimum (time delay). 1 Set potentiometer 2 to minimum; on RM4-LA, select the lowest sensitivity range or 5 ). using potentiometer 4 (5 1 With all the electrodes immersed, turn the sensitivity potentiometer towards maximum until the relay is energised ( function) or de-energised ( function), then exceed the threshold by about 10 % to compensate for variation in the supply voltage. If the relay is not able to energise, a higher sensitivity scale must be used (selector 4 on RM4 LA32) or relay RM4 LG must be replaced by an RM4 LA32 relay and the adjustment procedure must be started again. 1 Then check that the relay de-energises ( function) or energises ( function) as soon as electrodes B3 and B2 are out of the liquid. If the relay does not de-energise, select a lower sensitivity scale. 1 The electrode connection point must be protected against corrosion by sticking or sealing. In areas where thunderstorms are likely to occur, 1 measures must also be taken to protect the 2 2 electrode lines. R 3 3 Note: the high level can be raised by means of the R U U 4 adjustable time delay from 0.1 to 10 seconds with function . The low level can be lowered by means of this same time delay with function . RM4 LG01
RM4 LA32
Probe LA9 RM201 This probe is of the "suspension" type. It is coaxial, i.e. in addition to the normal (central) electrode, the stainless steel skirt can also act as earth (reference electrode), which means that there is no need to install a separate reference probe. In this way, for controlling one level, only one probe is required instead of 2; for controlling 2 levels, only 2 probes are required instead of 3. The connecting cable must be of the 2-conductor cable in "2-conductor" type, with common cylindrical PVC cylindrical sheath (max Ø 6.3 mm) sheath, having a maximum diameter of 6.3 mm. The skirt also acts as a "calming chamber", so Level electrode avoiding inaccuracy due to an agitated surface of the liquid (waves). Maximum operating temperature: 100 °C. Reference electrode Probe LA9 RM201 can also be fixed on various (skirt) containers (cisterns, tanks, ...) by means of a bracket or other suitable fixing device. LA9 RM201
Connection examples
2 Control by electrodes B2
High level
B3
B3
B1
B2
B1
Supply voltage
A1
Low level
A2
2 Control by probes RM4 LG01 B2 B1
B2 B3 B1
2 levels
Presentation : pages 3/110 and 3/111
References : page 3/112
Characteristics : page 3/113
1 level
Dimensions, schemes : page 3/114
3/115
3
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
BEARING EFZLK 22-250 DRAWING-NO.: 27126419 A 1
HOUSING EF22
785162
1
2
HEXAGON SOCKET HEAD CAP SCREW M24X90
350943
4
3
RING BOLT M24
158013
2
4
POSITIONING PIN 22
350913
1
5
SIGHT GLASS BSP11/2“
694050
1
6
OIL SIGHT GLASS BSP2“
725953
1
7
SCREW PLUG BSP3/4“
351006
4
8
SCREW PLUG BSP1/2“
351005
4
9
SCREW PLUG BSP1/4“
351003
1
10
SCREW PLUG 3/4NPT
248318
2
11
OIL OUTLET DN50
722352
1
12
PIPE NUT BSP2“
142209
1
13
SEALING RING 60X70X4
142041
1
14
SHELL EZLK 22-250
785160
1
15
HEXAGON SOCKET HEAD CAP SCREW M12X35
346924
2
16
LOOSE OIL RING 22-2
698779
1
17
HEXAGON SOCKET HEAD CAP SCREW M5X20
142900
2
18
LABYRINTH SEAL 250-R
758532
1
19
LABYRINTH SEAL 280-R
757103
1
20
SEAL CARRIER 22-280
785987
1
21
HEXAGON SOCKET HEAD CAP SCREW M8X20
158532
8
22
BAFFLE 280
785989
1
23
HEXAGON SOCKET HEAD CAP SCREW M6X30
142948
8
24
WASHER 6
350445
8
25
EXTENSION PIECE BSP1/2-BSP1/4
721758
1
26
SEALING RING A21X26
168405
1
27
PIPING FOR HYDROSTATIC JACKING 22
745822
1
28
CARTRIGDE OF NON-RETURN VALVE RVP13
350603
1
Filename
Page
Si.
Date
L785592e
1/2
Gre
11.07.08
Appr.
Date
RENK ID - No L785592
Revisions A
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
29
CABLE 2.5X450
500002
1
30
WASHER 12
350461
1
31
CABLE GLAND PG7
142151
1
Filename
Page
Si.
Date
L785592e
2/2
Gre
11.07.08
Appr.
Date
RENK ID - No L785592
Revisions A
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
BEARING EFZLQ 22-225 DRAWING-NO.: 27126034 A 1
HOUSING EF22
785157
1
2
HEXAGON SOCKET HEAD CAP SCREW M24X90
350943
4
3
RING BOLT M24
158013
2
4
POSITIONING PIN 22
350913
1
5
SIGHT GLASS BSP11/2“
694050
1
6
OIL SIGHT GLASS BSP2“
725953
1
7
SCREW PLUG BSP3/4“
351006
4
8
SCREW PLUG BSP1/2“
351005
4
9
SCREW PLUG BSP1/4“
351003
1
10
SCREW PLUG 3/4NPT
248318
2
11
OIL OUTLET DN 50
709758
1
12
LOCK NUT BSP2”
350394
1
13
SEALING RING 60X70X4
142041
1
14
SHELL EZLB 22-225
738717
1
15
HEXAGON SOCKET HEAD CAP SCREW M12X35
346924
2
16
LOOSE OIL RING 22-1
698762
1
17
HEXAGON SOCKET HEAD SCREW M5X20
142900
2
18
LABYRINTH SEAL 250-R
758532
1
19
END COVER 22
350379
1
20
HEXAGON SOCKET HEAD CAP SCREW M8X16
142601
8
21
EXTENSION PIECE BSP1/2”-BSP1/4”
721758
1
22
SEALING RING 21X26
168405
1
23
PIPING FOR HYDROSTATIC JACKING 22
745822
1
24
CARTRIDGE OF NON- RETURN VALVE RVP13
350603
1
Filename
Page
Si.
Date
L784934e
1/1
Gre
11.07.08
Appr.
Date
RENK ID - No L784934
Revisions A
s
Operating Instructions
Synchronous generator
s Operating manual: Project code: Fenirol
Edition: Type: 1DT 4138-8ADO2-Z
Contract-No.: 1219294 Documentation List:
Works Order No.: 178553
Register No.
Document
1.
Technical data Electrical data
Text of dimension drawing
TK.930276-1219294 Page 5
2.
Drawings
Generator description
TK.930276-1219294
Dimensions drawing Instrument wiring diagram
(07 2070 0023) 577287 A 577291
Shaft calculation drawing Rotor withdrawal Generator foundation
2 132 z294w/A 592481 573436A
3.
Reports
Quality inspection certificate
4.
Instructions and Additional documents a) Synchronous generator b) Logbook c) Brushless exciter d) Anti-condensation heating e) Air-to-Water Cooler f) Cooler-Coiltech, Operation and Maintenance instruction g) Cooling data h) Cooler dimension i) Drawing of DE- Bearing - EFZLK 22k-250H7 j) Drawing of NDE- Bearing - EFZLQ 22k-225H7 k) Drying of Windings l) Bolt tightening torques m) Slide Bearing Type EF RH-EFZEI-E-10.00 n) Slide Bearing Type EF RH-EFZWI-E-10.00 o) Lubricants for Slide Bearings Recommendation RH-2005 p) List of recommended spare parts
s Revision Page
Revised
Rev.
s
Dimension Drawing Text
Type W.-No. Contract-No. Code Drawing-No.
: : : : :
1DT 4138-8ADO2-Z 178553 1219294 FENIROL TK.930276-1219294
s CONTENTS 1.
Technical data .................................................................................................................................... 5 1.1 Electrical data ............................................................................................................................. 5 1.2 Degree of protection ................................................................................................................... 6 1.3
2. 3. 4.
Weights ....................................................................................................................................... 6 Text part - legend............................................................................................................................... 7 Operation of cooler ............................................................................................................................ 9 Temperature monitoring devices ..................................................................................................... 10
5. 6. 7. 8.
Machine monitoring......................................................................................................................... 11 Shaft end .......................................................................................................................................... 12 Direction of rotation......................................................................................................................... 13 Foundation load ............................................................................................................................... 14
9. 10. 11.
Rating plate ...................................................................................................................................... 15 Outlet box ........................................................................................................................................ 16 Sleeve bearing - DE ......................................................................................................................... 17
12. Sleeve bearing - NDE ...................................................................................................................... 18 13. Oil lubrication inlet.......................................................................................................................... 19 14. Axial bearing clearance ................................................................................................................... 20 15. Rotary rectifier - brushless excitation components.......................................................................... 21 16. 17. 18.
Anti-condensation heater ................................................................................................................. 22 Shaft earthing................................................................................................................................... 23 External earthing ball point and earth terminals.............................................................................. 24
19. 20. 21. 22.
Thermal expansion........................................................................................................................... 25 Displacement ................................................................................................................................... 25 Relative vibration sensor PROXPAC 330800 type Bently Nevada .............................................. 26 Shaft vibration monitoring system................................................................................................... 27
23. Lifting instruction ............................................................................................................................ 28 24. Service covers .................................................................................................................................. 29 25. Outdrawal space for heat exchanger................................................................................................ 30 26. Protection against corosion.............................................................................................................. 31
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 4
s 1. Technical data 1.1 Electrical data Rated output Rated voltage Rated current Power factor
SN UN IN
: : : :
12 500 kVA 6 600 V 1 093 A 0.8
Rated frequency Rated speed Excitation current Excitation voltage
f nN IFN UFN
: : : :
50 1 500 413 149
Exciter: Excitation current
IFRG : 9,5 UFRG : 62
Excitation voltage
A*) V*)
Type of construction Cooling method
: IM 1005 : IC81W
Ambient temperature Necessary volume of cooling air Losses to dissipate Thermal class
: : : :
Stator winding temperature rise (res. method) Xd’’ saturated value
: acc.to Th.-Cl. F : 16,5 %*)
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Hz min-1 A*) V*)
Notice
Date
Name
s
40 8,5 272 F
°C m3/s kW
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 5
s 1.2 Degree of protection Machine
: IP 54 EN60034-5
Terminal
: IP 54 EN60034-5
1.3 Weights Total weight
: 31 000
kg
Rotor complete Cooler top housing Moment of inertia rotor cpl. (Shaft drawing No. 2 132 z573w/A )
: 9 150 : 2 200 : 1 007
kg kg kg.m2
*) Calculated values Dynamic analysis and check of the shafting acc. to VDI-3840 recommended. Transient torques and shaft calculation data will be supplied on request.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 6
s 2. Text part - legend Machine parts listed in the following text are supplied by SEM Siemens Electric Machines s.r.o., unless otherwise stated. 1 Cooler housing There is a flexible connection between the Cooler housing and the Stator frame. Their dynamic behaviors are different. Any rigid connection between them is not allowed (for example water piping connected to the Cooler and to the Stator frame) 2 Closed circuit cooler see page 9 Type: Quantity: Cooling data: 3
QLKE-234-110-3-2-4-23-3-8-X X= 0,15 mm fins. 2 Register 2
DE-bearing EFZLK 22-250
see page 17
Lubricants see recommendation of manufacturer Renk
see register 4
Axial bearing clearance
see page 20
4
NDE-bearing EFZLQ 22-225 Floating bearing.
see page 18 see register 4
5
Outlet box
see page 16
6
Anti-condensation-heater Terminal diagram
see page 22 see register 2
7
Leakage-water detector
see page 11
Type: Quantity:
GEA 11 19 1259 01 2
8
Leakage-monitoring Type: RM4 LA32 MW Quantity: 1
9
Centre of gravity
10 Covers on servicing openings 11 External earthing ball point Quantity: 2
see page 24
12 Grounding terminal
see page 24
13 Aux. terminal box for anti-condensation heater, exciter, thermometers. Terminal diagram see register 2 14 Lifting lugs for lifting complete machine. For lifting a suitable lifting beam must be used. Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
see page 28 W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 7
s 15 Exciter Type: 1JG3300-8HV06-Z Terminal diagram
see page 21 see register 2
16 Vent plug 17 Water drain plug 18 Bearing temperature sensors. Each bearing has 1 double resistance thermometer 2xPT100 Type
DE: 2PT100/B-235X6S-G1/2-3/0-N NDE: 2PT100/B-250X6S-G1/2-3/0-N
Manufacturer Terminal diagram Location PT100s are lead out into aux. terminal box.
Fa. Dosch see register 2 see page 11
19 Foundation load
see page 14
20 Cold-air resistant thermometer Type: 2xPT 100 Quantity: 2 Location Terminal diagram
see page 11 see register 2
21 Hot-air resistant thermometer Type: 2xPT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 1 Location see page 11 Terminal diagram see register 2 22 Slot resistance thermometer in stator winding Type: PT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 9 Setting see page 10 Location see page 11 Terminal diagram see register 2 23 Foundation screws M 56 Quantity: 8 24 Oil lubrication inlet
see page 19
25 DE shaft end
see page 12
26 Earthing of shaft
see page 23
27 Water inlet 2 ½”ANSI B16,5; 150LB 28 Water outlet 2 ½”ANSI B16,5; 150LB 29 Vibration monitoring
see page 26,27 Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 8
s 3. Operation of cooler Air-water single-tube cooler Water-cooler data: Water cooler composed of Cooler resistance (water side) Max. operating gauge pressure
: 2 : 0,8 : 6
Elements bar bar
Required water flow rate: 1 cooler operation 2 coolers operation at a water inlet temperature of Water outlet temperature
: : : :
m3 / h m3 / h °C °C
Connection flange for cooling water Core tubes Cooling fins Tube plates water side Tube plates air side Water boxes Side walls
: 2 ½”ANSI B 16,5; 150LB : CuNi10Fe : Al : CuZn38SnAl : CuZn38SnAl : CS + Rilsan : CS galvanized
22,7 33,7 32 39
To obtain noise-damping and vibration isolation it is necessary to use expansion-joints for cooler connection.
In case of one cooler failure, it is necessary to reduce generator power output to 50% of nominal power.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 9
s 4. Temperature monitoring devices Slot resistance thermometer in stator winding Position in Stator core viewed from drive end. Thermometer in slot 3 is located at top of the stator core. Arrangement clockwise
No. 1 2 3 4 5 6 7 8 9
Thermometer with connection 2:1 – 2:3 2:4 – 2:6 2:7 – 2:9 2:10 – 2:12 2:13 – 2:15 2:16 – 2:18 2:19 – 2:21 2:22 – 2:24 2:25 – 2:27
in slot 3 15 27 39 51 63 57 69 9
in phase U V W U V W U V W
Temperature limits. Max. continuous operating temperature
Sensor
Terminal Quantity
Type
Location
Max. continuous operating temperature
Stator winding
XT2
9
PT 100
Stator core slots
145°C
Bearings
XT3
2
2xPT 100
Bearing shell
95 °C
Cold air
XT7
2
2xPT 100
Cooler housing
45°C
Hot air
XT7
1
2xPT 100
Cooler housing
78°C
Leakage sensor
XT5
2
GEA 11 19 1259 01
Cooler housing
-
Guide values for adjustment of tripping temperatures: 1. Switch point (Warning) 5 K above the measured max. operating temperature. 2. Switch point (Cut out) 10 K above the measured max. operating temperature.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 10
s 5. Machine monitoring
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 11
s 6. Shaft end Type of flange: K-31310-2 MODEL LS3
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 12
s 7. Direction of rotation
Direction of rotation facing drive end. The generator is only suitable for CLOCKWISE direction of rotation. Connection of the system phases in the positive sequence to the machine terminals U1 V1 W1.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 13
s 8. Foundation load Peak torque produced by maximum asymetric short-circuit currents Stosskurzschlussfaktor
2k Mn M(2k) max
ωN Tg T(2k)
8,4
The following applies for the three-phase generator Mn=9,55*Sn/n Für den Drehstromgenerator gilt Sn in [kVA] Peak torque produced by maximum asymetric short-circuit currents Mn*2k Max. Stosskurzschlussmoment The vibration caused by maximum asymetric short-circuit currents can be calculated from the following equation Die Stosskurzschlussschwingung verläuft nach der Gleichung
668,64 kNm *
Angular frequency of the system Netzfrequenz Time constant of d.c. component Zeitkonstante des Gleichstromgliedes Time constant of initial asymetric short-circuit current Zeitkonstante des Stosskurzschlusswechselstromes
0,199
s
0,365
s
371,46 kN Force produced by the machine weight Gewichtskraft durch das Eigengewicht Foundation load Fundamentbelastung Foundation load Fundamentbelastung
A B
+F+G/2 -F+G/2
The foundation is to be calculated and constructed ba the civil-engineering contractor. Transfer of vibration from adjacent machine sets to be prevented by an adequate design of the foundation. Die Berechnung und Ausführung des Fundamentes ist Angelegenheit der ausführenden Baufirma. Eine Schwingungsübertragung vonNachbaraggregaten muss durch entsprechende Fundamentgestal tung vermieden werden.
kN
523,4
kNm
-219,3 kNm
*
By neglection of fadeout process. Bei Varnachlässigung des Abklingvorganges.
STATIC LOAD
DYNAMISCHE BELASTUNG
RUHENDE BELASTUNG
Siemens Electric Machines s.r.o Notice
304,1
DYNAMIC LOAD
Datum: 15.12.2008 Name: KOLÁŘ
Stat.
kNm
[1/s]
Fmax =± G
79,6
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 14
s 9. Rating plate
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 15
s 10. Outlet box
Cable outlet of each phase is provided by 2 cables SIAF 150, 13,8 kV.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 16
s 11. Sleeve bearing - DE Suplier Bearing type Size Oil viscosity grade
: Renk : EFZLK : 22-250 : ISO VG 46
Power dissipation Flow rate Min. oil inlet temperature Max. allowed oil inlet temperature
: 4,1 kW : 14 l/min : -4 °C : 45 °C
Min. pressure in oil supply pipe : 1, 5 Bar Max. pressure in oil supply pipe : 6 Bar Oil reservoir capacity : 23 l Lubrication by oil circulation and with oil ring lubrication. Bearing is shipped without oil. Axial clearance see page 20. Lubricant - see recommendations by bearing manufacturer. The bearing is insulated. Insulation of the drive end bearing is bridged with stranded copper conductor. The generator shall only be driven while being bridged.
Lubrication for sleeve bearings Forced lubrication
Flow rate:
14 l/min
Viscosity of oil(ISO VG)
46
Oil reservoar capacity
23 l
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 17
s 12. Sleeve bearing - NDE Supplier Bearing type Size Oil viscosity grade
: Renk : EFZLQ : 22-225 : ISO VG 46
Power dissipation Flow rate Min. oil inlet temperature Max. allowed oil inlet temperature
: 3,5 kW : 5 l/min : -4 °C : 45 °C
Min. pressure in oil supply pipe : 1, 5 Bar Max. pressure in oil supply pipe : 6 Bar Oil reservoir capacity : 23 l Lubrication by oil circulation and with oil ring lubrication. Bearing is shipped without oil. Lubricant - see recommendations by bearing manufacturer. The bearing is insulated. Insulation of the NDE bearing may not be bridged.
Lubrication for sleeve bearings Forced lubrication
Flow rate:
5 l/min
Viscosity of oil(ISO VG)
46
Oil reservoar capacity
23 l
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 18
s 13. Oil lubrication inlet 1. Throttle valve
Type: VRFB 90°, Fa. Hydrocom
2. Oil-flow meter
Type: DKM/A-1/24 MS G3/4”, Fa. Meister
with minimal flow contact 3. Shut-off valve
EMIL01C, Fa. MTC
4. Pressure gauge
MGN63R006, Type: 304G, 0-6 Bar
5. Oil inlet
Flange class 150 ANSI B16,5-3/4”
6. Hydrostatic inlet
Hydrostatic connection G ¼”
7. Oil outlet
Flange class 150 ANSI B16,5-2”
Lubricant oil circuit
Terminals from Oil-flow meter switch are lead out into aux. terminal box.
Hydrostatic values DE
NDE
Starting pressure Operation pressure
8,5 Mpa (85 Bar) 5 Mpa (50 Bar)
Starting pressure Operation pressure
8 Mpa (80 Bar) 4,5 Mpa (45 Bar)
Oil flow
0,8 l/min
Oil flow
0,8 l/min
ON/OFF speed limit(cold) ON/OFF speed limit(warm)
40 rpm 90 rpm
ON/OFF speed limit(cold) ON/OFF speed limit(warm)
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
40 rpm 90 rpm
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 19
s 14. Axial bearing clearance
All measurements are in mm.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 20
s 15. Rotary rectifier - brushless excitation components
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 21
s 16. Anti-condensation heater Quantity Type
:1 : DEW 8,5-400-380/1000W/3Y
Voltage No. of phases Power rating
: 380 V / 50 Hz :3 : ca. 1000 W
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 22
s 17. Shaft earthing
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 23
s 18. External earthing ball point and earth terminals
Type:
754 200 DIN VDE 0683-1, DIN 48088-1 Ø 20 mm
Earthing ball points are placed on the both side of the generator. Earthing ball point is galvanized – Do not paint!!
Earth protective terminals are placed in diagonal corners of the generator.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 24
s 19. Thermal expansion
Vertical development ∆ l = 0,34 mm Horizontal development ∆ h = 0,54 mm
20. Displacement
Vertical displacement sx = 0,064 mm Horizontal displacement sy = 0,086 mm Note: Values are calculated for rated operation conditions.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 25
s 21. Relative vibration sensor PROXPAC 330800 type Bently Nevada
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 26
s 22. Shaft vibration monitoring system Manufacturer Type shaft vibration DE Type shaft vibration NDE
: : :
Bently Nevada 330880-16-15-061(154mm)-03(M20)-02 330880-16-15-066(168mm)-03(M20)-02
Recommended values for the set points: 1. operating data (alarm) (max.80 µ p.t.p.) 2. operating data (trip) (max.110 µ p.t.p.) The amplitude of oscillation which is measured at normal operation Operating data: measured value at normal operation
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 27
s 23. Lifting instruction
The lifting capacity of the beam must be min 32 tons.
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 28
s 24. Service covers Service cover no.1 dismantle in case of maintenance of rectifier or for cold air temperature detector exchange. Service cover no. 2 dismantle for hot air detector exchange and cover no. 3 for cold air detector exchange. Do not use for emergency cooling !
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 29
s 25. Outdrawal space for heat exchanger
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 30
s 26. Protection against corosion
Total thickness
:
Number of coats Primary coat
: :
Top coat
:
Inside 30 µm
Outside 60 µm
1 30 µm Colour RAL 3012 -
2 30 µm Colour RAL 3012 30 µm Colour RAL 7002
Tolerance per coat
:
±10 µm
Datum: 15.12.2008 Name: KOLÁŘ
Siemens Electric Machines s.r.o Stat.
Notice
Date
Name
s
W-No.: 178553 No. Code: FENIROL
Dimension Drawing Text
Type: 1DT 4138-8ADO2-Z
TK.930276-1219294
Page 31
s
Operating instructions
Synchronous Generator
G 3~ Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov
s Dear customers,
Now you become the owners of a synchronous generator produced by the Siemens Electric Machine, s.r.o. It is a product of the company with many-years' tradition that was produced on the basis of operational experience by a team of experts and skilled workers and which incorporates the latest know-how and advanced technology. We produce the series of synchronous generators with power output from about 20 to 12 000 kVA, LV and HV options for all usual applications. We will fulfil your special demands on a generator for special use or arrangement.
Team of company employees
Product documentation v3.5.a 2-032 (21/2/05)
page 2/31
s Contents page 1 Generally 1.1 1.2 1.3
Significant (relevant) safety terms...................................................................... 6 General safety information................................................................................. 6 Type marking of generators...............................................................…............ 8
2 Description 2.1 2.2 2.3 2.4 2.5
Technical description, variants........................................................................... Electric characteristics....................................................................................... Use.... ..............................................................................................……....... Warranties......................................................................................................... Standards.............................................................................................……......
9 10 11 11 11
3 Transport and storage 3.1 3.2 3.3
Safety recommendations.................................................................................... 12 Storage conditions.... ................................................................................. 13 Inspection during storage time........................................................................... 13
4 Installation and operation 4.1 4.2 4.3 4.4 4.5
Safety recommendations.................................................................................... Preparation........................................................................................................ Electric installation............................................................................................ First start up and operation.. ................................................................. Diagnostics of defects ……………..............................................................
14 14 17 18 22
5 Maintenance 5.1 5.2 5.3 5.4
Safety recommendations.................................................................................... Inspection of insulation condition...................................................................... Cleaning............................................................................................................ Bearing maintenance........................................................................................
25 25 26 26
6 Disassembly and regressive assembly 6.1 6.2
Dismantling (disassembling)............................................................................... 27 Regressive assembly (assembly)......................................................................... 27
7 Regulation 7.1 7.2 7.3 7.4 7.5
General description, principle of regulation........................................................ Range of voltage regulation............................................................................... Regulation accuracy.......................................................................................... Dynamic state of voltage................................................................................... Parallel operation..............................................................................................
Product documentation v3.5.a 2-032 (21/2/05)
28 29 29 29 30
page 3/31
s page 8 Neutral point 8.1
Generally....................................................................................................... 31
9 Generator disposal after lifetime expiration ................................... 31
List of enclosures
Enclosed
Enclosure No. 1: Technical data………………………..….. Enclosure No. 2: Machine name plate…………………...… Enclosure No. 3: Direction of rotation………………….…. Enclosure No. 4: Load of foundation by generator…….…. Enclosure No. 5: List of bearings with relubricating plan… Enclosure No. 6: Operational logbook of generator ……… Enclosure No. 7: Voltage regulators ……………………….. Enclosure No. 8: Regulator VAR/Power factor…………... Enclosure No. 9: Regulator RÜW 10……………………… Enclosure No. 10: Test certificate…..……………………… Enclosure No. 11: Connection diagram…………………… Enclosure No. 12: Dimensions drawing……………………
Product documentation v3.5.a 2-032 (21/2/05)
page 4/31
s 1. Generally Herein submitted operational instructions refer only to standard type. Possible dissimilarities from standard model (special models) are described in enclosures or supplements of operational instructions. NOTICE: Contents of operational instructions and production documentation is not the part of previous or current agreements promises or juridical relations or is not to change above mentioned. All obligations of SIEMENS result from existing purchase contract that also contains complete and valid delimitation of warranties. These contractual warranty contracts are neither limited nor extended by elaboration of these instructions and documentation.
Danger Electric machines are operational devices to be used in industrial heavy-current machinery. In the course of operation these operational devices have dangerous voltage, conductive bare parts, moving or rotating parts. Therefore they can cause the worst injuries or damage to properties in case of inadmissible removing of covers, unprofessional handling, incorrect manipulating or insufficient maintenance. Therefore the workers responsible for safety operation of a device have to secure the following: - only qualified operators have to be authorised to attend these machines - these operators and the others must always have submitted operational instructions and the other production documentation at their disposal in the course of all corresponding operations and have to adhere to this documentation consistently. - unqualified people are forbidden to operate the machines and keep in their surrounding.!!!
Product documentation v3.5.a 2-032 (21/2/05)
page 5/31
s 1.1 Significant (relevant) terms Warning terms such as DANGER, WARNING, CAUTION and RECOMMENDATION which are mentioned in this operational instructions are used to inform about danger or extraordinary information that require special marking. DANGER means that in case a person does not adhere to it, his life can be jeopardised or he may cause damage to property. WARNING means that in case a person does not adhere to it, he may induce difficult injury or cause damage to property. CAUTION means hat in case a person does not adhere to it, he may induce an injury or cause damage to property. RECOMMENDATION means that there are extraordinary and special technical connections that are not obvious even for experts. Regardless, it is also necessary to adhere to recommendations that are not specially emphasized, regarding transport, operation and maintenance as well as technical data (which are given in operational instructions, production documentation and on the machine itself) to prevent breakdown which can either directly or indirectly induce difficult injuries of people or cause damage to property. Qualified staff are operators who were in charge of safety of device, who are able to perform all necessary activities and at the same time recognize and prevent possible danger. These operators have to perform above mentioned as the result of their education, experience, previous training as well as acquiring knowledge of standards, provisions, regulations, safety of work and working relations. Above all qualification of staff providing service and maintenance has to correspond to the laws concerning work on heavy-current devices of a particular country which the device is operated in. Besides, knowledge of provisions of first aid and local rescue devices is necessary as well. Concerning work on heavy-current devices, restriction of employing unqualified people is determined in e.g. VBG 4 or ČSN 33 2000-4-41 or IEC 364-4-443.
1.2 General safety information Herein mentioned machines are parts of heavy-current devices for industrial extent of use. They are produced in compliance with corresponding and acknowledged technical regulations. WARNING: It is supposed that basic planned operations with a device as well as all operations concerning transport, assembly, installation, launching, maintenance and repairs will be performed by qualified staff or checked by responsible experts. Product documentation v3.5.a 2-032 (21/2/05)
page 6/31
s Concurrently it is necessary to take the following into consideration: - Technical data and data of admissible use (assembly connection terms, environmental terms and operational terms), which are, among others, stated in a catalogue, in operational instructions, orders, name plates and in the other technical documentation. - General establishing and safety provisions. - Local provisions and requirements which are specific for the device. - Qualified use of tools, lifting and transport devices. - Use of personal protective devices. - Duty of responsible people to take part in training on safety of employees in accordance with SAFETY PROVISIONS as well as keeping to the laws of a country in which the device is operated. Above all the laws, concerning protection of environment, handling with waste, safety use of substances that are dangerous for lives or environment e.g. cleaners, lubricants, adhesives, varnishes etc. Detailed information about these special products can be found in a “list of safety data” provided by producers or importer of a product. Operational instructions cannot contain all detailed information concerning different construction variants and cannot take into consideration every possible occurrence of installation, operation or maintenance owing to the loss of lucidity. Therefore operational instructions designed for qualified operators (see above mentioned) contain such recommendations that are necessary if a machine is used in accordance with provisions in the extent of industrial operation. If there are special requirements concerning nonindustrial area (e.g. protection against dangerous touch of children fingers and so on), these conditions have to be secured on the device by means of supplementary protective provisions. If there are any discrepancies, especially missing information which specify a product, sales department of SIEMENS is in charge of providing necessary explanation. Concerning this matter we ask you to mention mainly type and production number of a machine, please. Concerning planning, assembly, launching and service we recommend using the promotion and services of appropriate service centre of SIEMENS. RECOMMENDATIONS: Other detailed information concerning general works e.g. checking of delivered coils (damages which can be caused during transport), long term storage and preserving of machines, checking of footing, connection stretching, erection (setting) and (seating), levelling of a machine and others could be found in our “Assembly materials” or (newly) in “Operational instructions”. These materials could be obtained in SIEMENS sales department. Product documentation v3.5.a 2-032 (21/2/05)
page 7/31
s 1.3 Type marking of generators
1FC2 353-4SB40-Z Rotating electric machine
1
Synchronous machine
F
Basic design Water cooler design Air cooler design Military design
C J Q R
Low voltage, output up to 3 MVA 2 Low voltage, output above 3 MVA 3 Middle and high voltage 4 Axial height
180 mm 225 mm 280 mm 355 mm 450 mm 560 mm 630 mm 710 mm 800 mm
18 22 28 35 45 56 63 71 80
Power size
1 2 3 .
Number of poles 4 6 8 10 12
4 6 8 10 12
Product documentation v3.5.a 2-032 (21/2/05)
page 8/31
s 2. Description 2.1 Technical description, variants Machines of type 1FC2 are three-phase synchronous generators for low voltage with a rotor with protruding poles in brushless design. They consist of alternative current generator (main machine) and exciter with rotating rectifier. Rotors of main machine and exciter together with rotating rectifier and fan are situated on one shaft. Parts that are used for voltage regulation can be found in terminal box. One construction unit consists of above mentioned parts, welded cover and bearings. Main machine has got a rotor with protruding poles. Three-phase winding is brought out on four terminals and connected in a star. The star is brought out. Rotor is equipped with damper winding to improve dynamic stability of asymmetric load. Exciter is an alternative generator with outer poles with steady exciter winding in stator. Rotor alternating winding feeds winding in the winding of main machine by means of rotating rectifier. Rotating rectifier is a diode module connected in a three-phase bridge that is equipped with overvoltage protection. Basic mechanical design is represented by two-bearing design with degree of protection IP 23 and feet that are pulled out. There are other variants such as footing-flange, onebearing or other designs. Bundle of stator sheets is pressed into a solid welded box and it secured to prevent round moving. It is possible to adjust the height of footings towards generator axis. Generator rotor is a compact part of the machine with damper cage (amortiser) in magnet field. It is excited by means of integrated exciter. Stator of exciting machine (exciter) is situated in bearing shield on the non-drive-end. Bearing shields are produced of qualitative grey cast iron, may be welded. Rectifier and protective varistor are attached outside the machine on NS – side (front side). This solution can enable their easy replacement. In special designs it is situated even inside of the machine. There is a through system of cooling in the machine, which is optimal. Fans are made of aluminium up to axial height of 350 mm. Welded constructions are used for higher axial heights. Protective coverage is secured with ribbed sheets in the places where the air comes in and out. If generator operates in dusty areas, it can be equipped with a filter on the side where the air comes in. There is an option of supplying generators equipped with higher degree of protection than IP 23, and with water cooler or air cooler. Spacious terminal box is situated on the upper part of generator stator box. It contains all equipment that is needed for connection and operation of generator, including regulator. Terminals are arranged on 6-terminal bars. There is also an option of equipping a generator with thermal sensors in stator winding and bearings. Standard design of generator is supplied without drilled openings for outlet cables. There is an option of supplying inlet cable necks with PG – screw joints.
Product documentation v3.5.a 2-032 (21/2/05)
page 9/31
s 2.2 Electric characteristics 2.2.1. Output and raise of the temperature Determined output that is stated on the name plate is intended for long-term operation with symmetrical load, prescribed frequency and voltage, power factor cosϕ = 0,8 to 1,0, ambient air temperature up to 40o C and altitude of machine location up to 1000 m. Simultaneously, the machine is used in compliance with temperature class F, if need H according to IEC 60034-1.
2.2.2. Short-term current overload Machines can bear short-term overload without harmful effect in compliance with the following table: Tab.2.3.a Current overload I/In
1,10
1,15
1,30
t
1h
25 min
6 min
1,5 15s
3,0 5s
Above mentioned overload can occur only rarely and must be followed by running of machine for at least one hour at reduced output or at most at determined output.
2.2.3. Voltage Machines are standardly supplied with a star connection for voltage of 400 V at 50 Hz, or 450 V at 60 Hz (according to machine name plate). ATTENTION!! Machines that were supplied for voltage of 400V at 50 Hz, cannot be operated at voltage of 450 V and 60 Hz.
2.2.4. Shape of a voltage curve Time behaviour of terminal voltage during idle running and during symmetrical linear load is virtually sinusoid with upper frequency response according to ISO 8528, part 1, and at most 5 % of difference from the fundamental oscillation.
2.2.5. Asymmetric load Asymmetric load according to IEC 60034-1 article 22 Maximum I2 / IN for permanent operation 0,08 Maximum ( I2 / IN )2.t operation during breakdowns 20
2.2.6. Short-circuit current During symmetrical three-phase short-circuit the value of short-time short-circuit current makes minimally triple of nominal current. Short-circuit current must be switched off by 5 s. Product documentation v3.5.a 2-032 (21/2/05)
page 10/31
s 2.2.7. Radio interference elimination Generators correspond to interference elimination degree according to IEC 60034-1.
2.2.8. Currents in star neutral points If star neutral points of generators are connected mutually or with neutral points of transformers and appliances directly, then transient currents with triple determined frequency could appear in conductor among neutral points. To prevent thermal jeopardy of generators, transient currents should not exceed 50 % of nominal current of generator. Higher currents should be reduced outside of device by means of current limiting choke or similar devices.
2.3 Use Generators are used in land central offices and in naval shipboard networks for long-term or reserve operation. They can be driven by combustion engines, gas of water turbines or electromotors. They can run individually, parallelly with similar device or it is possible to connect them to public network.
2.4 Warranties Warranties refer to adhering of operational instructions and permissible operational terms. If these provisions are not adhered, it can result in refusing of warranty claims. During claim or with spare parts order it is necessary to provide factory (production) number and if need other data stated in output name plate. The user is obliged to keep the operational log, and he can dismantle the generator only if approved by the producer otherwise the producer shall be released from the obligations under its warranty. During the warranty and after the warranty period, the user must not make any external and internal intervention in the machine design.
2.5 Standards Generator design corresponds to standards IEC 60034-1 and also DIN EN 60034 (VDE 0530-1). If required, generators can meet requirements of other standards and regulations.
Product documentation v3.5.a 2-032 (21/2/05)
page 11/31
s 3 Transport and storage 3.1 Safety recommendation ! WARNING. During any lifting or transport of an aggregate it is necessary to use only openings that are provided for lifting and transportation, gripping lugs or pins in foundation plate! Lifting should be performed at four axially symmetrical places at least (see picture 3a). Aggregates must not be lifted hanging on individual parts of a machine! Existing accessory lifting lugs e.g. on bearing shields, cooler superstructure etc. are provided only for lifting of these individual parts of the machine. Lifting capacity of applied lifting device should be taken into consideration! Lifting devices should be chosen with respect of the weight of machine. Appropriate guiding of ropes should be used with possible superstructures or extension.
Picture 3a. Transport of machine
Product documentation v3.5.a 2-032 (21/2/05)
page 12/31
s 3.2 Storage conditions Generator and accessories must be professionally stored before installation. They must be protected from humidity, harmful environmental conditions and from other strange influences. If generator is placed in a transport box, it must be removed out of it before storage. Storage areas must be clean, dry, closed and protected from tremors. Temperature should not drop bellow 5oC.
3.3 Inspection during storage If storage takes more than 3 months, insulation resistance and preservative coats must be inspected. If the value of insulation resistance drops down bellow the value determined in point 4.3.1, table 1, generator must be desiccated immediately. You are obliged to record the start/end date of the storage period including all activities performed with the generator during this period to the operational log of the generator.
Product documentation v3.5.a 2-032 (21/2/05)
page 13/31
s 4 Installation and operation
4.1 Safety recommendation ! WARNING Strictly adhere to ”General safety information”, please. In paragraph 1.2 of this Instructions, recommendations concerning admissible use of machine and recommendations concerning required professional knowledge that is necessary while operating heavy-current machinery. Coverings must not be opened during operation (see also paragraph 5). Covers prevent from touching of active or rotating parts or they are necessary for right routing of air and effective cooling . For safety reasons, the machine can be started until the coupling is inserted at the free shaft end or after dismantling the key at the free shaft end. No higher speeds cannot be adjusted because this is ensured by right designed controlling and checking of speeds. The only admissible speeds are these that are given according to output name plate.
4.2. Preparation 4.2.1 General inspection of machine Generator must be properly inspected prior to erection (installation) with the aim to find out if there are any damages caused during transport or storage. Any imperfections that are found out must be reported to a supplier or transport company and must be professionally repaired. Remove preservative coating from metal surfaces (feet, flange, free end, etc.) prior to machine seating and installation. Insulation resistance must be inspected. Record the data measured to the operational log. 4.2.2 Locating Generator must be located in the way that terminal box, bearings and accessories could be easily approachable. 4.2.3 Installation Generator must be placed on a solid foundation without any vibrations. Machine feet must stand on flat metal base. If need, contact surface must be carefully laid under to prevent deformation of stator body.
Product documentation v3.5.a 2-032 (21/2/05)
page 14/31
s When installed, it is recommended that the increase of the axial height of the loaded generator must be taken into account. The increase of the axial height is affected by the heat machine use (its classification), the method of ventilation, the generator size, etc. The most suitable way is to operate the drive until the steady operational temperature regime is achieved, then to switch off the machine and to make the axial height correction. The informative calculation of the above-mentioned increase can be done from the following formula: Height increase [µm] = 0.312 x vertical foot distance from the shaft axis. Keep a record in the operational log.
4.2.4 Cooling Space, in which generator is situated, must be sufficiently large and aired. Generator cannot suck warm air from other machine. For continuous operation, it is necessary to provide a steady cooling air ventilation with a volume rate of 0.55 m3s-1 for each 100 kW. ATTENTION Temperature on surface parts of electric machines (stator housing, shields) can reach over 100oC, therefore possibility of touching these surfaces must be prevented. At the same time it is forbidden to put or attach any parts that are temperature sensitive such as normal leads or parts of electronic equipment.
4.2.5 Coupling Flexible connections must be used to connect generator and driving machine mechanically. The coupling must transmit only torsion moment from driving machine that must get rid of impact peaks that are produced especially by combustion engines. Further, it must attenuate all axial and radial vibrations of driving machine. Coupling must be dynamically balanced, it itself must not be a source of any undesirable forces and vibrations.
Shaft extensibility Due to motor heat dilatation the free end may extend to the clutch by 0.0012 fold motor stator length Shaft extension (mm) = 0.0012 x stator length (mm) That extension should be considered in motor clutch system design. For additional information see Annex, or contact us.
Product documentation v3.5.a 2-032 (21/2/05)
page 15/31
s Prior to assembly of connection on the generator shaft, preservative coat must be removed and the shaft should be slightly varnished with oil. Concerning actual assembly of a installation on the shaft, it is recommended to use assembly jig that will fit in a thread in generator shaft. If need, installation can be heated in oil bath with a temperature of up to 100oC. Installation must not be pulled on shaft by force. When pulling down the connection from the shaft, it is necessary to use pulling jig.
Coupling of a set must be adjusted by means of two indicators or another appropriate device according to picture 4.2.5. Tolerance that is determined by a producer of connection should be reduced as much as possible because every slightest defect will cause disproportionate increase of burden on bearings and coupling. Check the coupling during the steady operational temperature regime, and record the parameters to the operational log.
Picture 4.2.5: Points of measurement
4.2.6 Securing of mechanical position The right position of installed and fixed generator to the foundation must be secured in such a way that set axial alignment will not be changed in the course of operation. Feet must be plugged in into the foundation.
Product documentation v3.5.a 2-032 (21/2/05)
page 16/31
s 4.3 Connection 4.3.1 Insulation resistance of winding Insulation resistance of stator winding must be measured prior to launching a new generator or in generator that was out of operation for longer period of time. In winding without defects the resistance must not drop bellow the values given in table 4.3.1. ! WARNING The terminals have partly dangerous voltage and it is dangerous to touch them during or just after measurement. If there is a possibility of connecting network line being under voltage, make sure that network line cannot be connected during measurement. Table 4.3.1.
V
Insulation resistance at winding temperature 25ºC MOhm
Insulation resistance at winding temperature 75ºC MOhm
> 1000 1500
30 50
1,0 1,7
Nominal voltage
Measuring direct voltage V 500 1) 500
1)
the lowest measuring voltage 100V
It takes about 1 min. to reach final value of insulation resistance. If a measured value of resistance is bellow determined value, generator must be dried out. Increased temperature of winding by 10oC results in decrease of value of insulation resistance by a half. If the temperature of winding drops bellow 5oC, measured value of insulation resistance must not be considered as to be ready for connection because this may result in false conclusions. Record the values measured to the operational log. 4.3.2 Desiccation The simplest method of desiccation is a dry area with 80oC clean warm air and with exhaust. Generator does not have to be disassembled. Concerning generators with high protection e.g. IP 54, the parts that secure protection must be disassembled. Time of desiccation depends on the degree of humidity. The other desiccation methods: - short-circuit operation at IN with foreign exciter - warming up by means of direct current Insulation resistance must be measured during desiccation. At the start it will drop down quickly and then it will raise again. Desiccation is finished when insulation resistance reaches corresponding value. If insulation resistance of generator is not improved after longer period of desiccation, then the low value is not caused by humidity in stator. There must be another defect. Record to the operational log that the drying has been done. Product documentation v3.5.a 2-032 (21/2/05)
page 17/31
s Only qualified professionals can carry out cable lead to generator and its connection to switching and protective apparatus. And they have to adhere to valid regulations and standards. Cables must be thoroughly connected, and can stress connection terminals neither in tension nor in bending. Connection cables are connected in compliance with connection diagrams that can be found on inner side of terminal box cover. Terminal bolt must be properly tightened so as not to warm up and loose due to resistance during operation. Terminal box must be closed after the connection is finished. 4.3.3 Safeguarding Generator must be well protected by means of regressive protection to prevent dangerous operational situations and overcurrent defects. Generators must be safeguarded in compliance with nominal current that is determined in output name plate.
4.4 Launching and operation 4.4.1 Installation Prior to launching a driving machine, the following must be checked: - Generator load must be disconnected - Insulation resistance must be kept at least to minimal value - Safety regulations concerning operation of aggregate must be adhered - Protective wire must be connected When the check is over the whole aggregate can be launched according to operational instructions designed for the whole set. In case that the machine is not put out of operation for more than 3 months, only a short visual inspection is sufficient before the connection starts. 4.4.2 Change of rotating direction Change of rotating direction is possible only in generators equipped with a fan that can rotate in both directions. Change of direction is performed by switching over the terminals k and l of current transformer (picture 7.1.a). Change of rotating direction is accompanied with the change of phase sequence on the main terminals. Rotating direction cannot be changed in generators that have got only one-way fan. The fan must be exchanged.
Product documentation v3.5.a 2-032 (21/2/05)
page 18/31
s 4.4.3 Operation ! WARNING If any changes occur that are different from normal operation (higher input, temperature or vibrations, unusual noise or smells, reaction of control devices etc.), it means that function is damaged. Maintenance staff must be called immediately to prevent breakdowns that can directly or indirectly jeopardize people or that can cause damage to property.
IN CASE OF ANY DOUBTS, IMMEDIATELY DISCONNECT APPROPRIATE DRIVING MECHANISM Generator is able to be excited itself. But the following must be taken into consideration: - Required terminal voltage in the extent of UN ± 5% or according to technical specification can be set by external potentiometer after nominal revolutions are reached. - Generator can be fully loaded after nominal speeds are reached The following operational data must be checked again: - Current, generator cannot be overloaded - Symmetry of load of individual phases - Frequency - Increase of temperature in bearings, cooling of machine and mechanical operation To prevent resonance, take heed of the following: own electromechanical frequencies of generator must not be in accordance with mechanical exciting frequencies of driving machine. 4.4.4 Check of operation The function of generator must be continuously observed during operation so as to avoid a breakdown. Its course must be recorded in generator operational logbook, especially the changes that are unusual in the course of normal operation. Any found imperfections must be repaired immediately. Above all, generator must be clean, must be secured in accordance with the data on output name plate, running must be centred without vibrations, perfect condition of bearings and good tightening of connection terminals. During generator operation ventilation openings must not be covered in any way. If a generator was out of operation for longer period, insulation resistance of winding, condition of lubrication in bearings, tightening of terminal bolts and mechanical connection with driving machine must be inspected prior to putting the machine into operation.
Product documentation v3.5.a 2-032 (21/2/05)
page 19/31
s Intervals of preventive inspections Preventive inspection I. is carried out regularly in the course of common operation of the machine after 500 operational hours from the beginning. The inspection consists of: a) b) c) d)
Inspection of cleanliness of cooling surfaces of machine. Measurement of stator winding insulation resistance. Inspection of bearings operation if needed. Inspection of function of additional equipment if needed.
Any found imperfections must be repaired prior to putting the machine into operation. Preventive inspection II. is carried out regularly after 5000 operational hours from the beginning. The inspection consists of: a) b) c) d) e) f) g) h)
Inspection of cleanliness of cooling surfaces of machine. Measurement of stator winding insulation resistance. Measurement of rotor winding circuit insulation resistance. (measuring voltage is 500 V) Measurement of voltage, current, temperature, bearings and oscillations. Inspection of bearings operation. Inspection of connection to the net and tightening of terminal bolts. Inspection of tightness of terminal box cover. Inspection of function of additional equipment.
Any found imperfections must be repaired prior to putting the machine into operation. Preventive inspection III. is carried out regularly after 15000 operational hours from the beginning. The inspection consists of: a) b) c) d) e) f) g)
Thorough cleaning. Thorough inspection. Reparation of any imperfections. Bearings relubrication. Assembly according to the instructions. Measurements. Tests.
Any found imperfections must be repaired prior to putting the machine into operation. All inspections must be recorded in the generator operational logbook. 4.4.5 Putting out of operation
Product documentation v3.5.a 2-032 (21/2/05)
page 20/31
s Loading must be disconnected before generator is put out of operation. Next steps should follow operational instructions prescribed for the whole set. 4.4.6 Operational log The operational log serves for recording all events that relate to operation, maintenance and revisions of the generator. Keep the records starting from the storage period before putting the generator into operation. Record the current number of the operational hours to the "Operational hours" box starting from the first commissioning. Record also all events that are related to winding insulating resistance, drying, and record parameter values (e.g. voltage, current, bearing temperature, vibration, etc.) during both the commissioning and normal operation. The operational log is also used to record the results of all inspections and revisions. All machine modifications, part replacement, faults of generator, accessories, switching and breaking elements including their replacement are recorded to the operational log. Moreover, emergency events are also recorded (e.g. overload, short circuit, etc.) even if no generator failure occurred. The record in the operational log may refer to another document in which the activity is evidently recorded.
Product documentation v3.5.a 2-032 (21/2/05)
page 21/31
s 4.5. Diagnostics of defects 4.5.1. Mechanical cause
Excessive noise
Axial vibration
Radial vibration
Bearings are overheated Excessive temperature of generator
Scratchy noise
Breakdown
•
Contact of rotor or shaft with solid parts of machine appears Limited access of air, excessive amount of dust in winding, dust in cooler ducts Polluted or blocked air filter (if it is equipped)
•
Cooler function gets worse (goes for design with watercooler)
• •
Remedy precaution
Find and eliminate cause Perform check of access of air, pollution of winding, check cooler Filter exchange, if need to clean Clean cooler with regards to operational instructions, check amount of cooling medium, vent cooler Contact producer and require balancing
•
Unbalance on rotor
• •
Unbalance in coupling Transfer of vibration from linked machine
•
•
Badly fixed generator in foundation or changes in foundation
Level machine, check foundation, and tightening of generator
•
•
Resonance with foundation
Strengthen foundation
•
Lack of lubricant in bearing
Check amount of lubricant in bearing
•
Bearing is overloaded
Check tightening, levelling and clamping of machine
Damaged or badly worn out bearing
Perform exchange
•
Product documentation v3.5.a 2-032 (21/2/05)
Possible cause
Rebalancing Check of linked machine
page 22/31
s 4.5.2 Electric cause
Current and voltage drifting
Outside control device with no function
Generator voltage > 1,1 UN cannot be set by means of control device
Generator voltage app.0,1 UN (remanent voltage)
UN cannot be set by means of potenciometer VOLT
Generator voltage < UN
Breakdown
• • • •
•
Too high number of speeds Too low number of speeds Oscillation of number of speeds
Check speeds of drive Check speeds of drive Check speeds of drive Check diodes, exchange diode module Exchange varistor or diodes Check wires Check wires from auxiliary winding to regulator (terminals X3-X4,voltage app 180200 V) Exchange fuse
Defective varistor or diodes Break in circuit
• •
Break in regulator feeding
•
Defect on fuse F1
•
Break in exciting circuit •
•
•
Defective voltage regulator
•
Stability potentiometer reset
Frequency potentiometer reset
• •
Product documentation v3.5.a 2-032 (21/2/05)
Remedy precaution
Defect on rotating rectifier •
•
Possible cause
Check wires from regulator to exciter Exchange regulator New adjustment of potentiometer, stability according to operational instructions of regulator New adjustment of potentiometer, frequency according to operational instructions of regulator
•
Breakdown in circuit of planned values, short-circuit in leads
Eliminate short-circuit
•
Breakdown in circuit of planned values, interruption in leads
Eliminate interruption
During operation of potentiometer of planned values bridge 6-7 is missing
Input bridge 6-7 or attach external potentiometer with planned value
page 23/31
s Electric cause – follow-up
Fluctuation of output
Part of winding is overheated
Overheating
Difference of voltage among individual phases
Uneven load distribution during parallel operation
Generator voltage < UN
Breakdown
•
Remedy precaution
Overload Break of outer wires
• • • • • • • •
Product documentation v3.5.a 2-032 (21/2/05)
Possible cause
Reduce load Check outer wires Measure winding and insulation Short-circuit of stator winding resistance, consult producer and repair Overload Reduce load Uneven load Adjust load Measure winding and insulation Short-circuit of stator winding resistance, consult producer and repair Fluctuation of turning moment Check driving machine In generator equipped with statics Potentiometer of statics is reset module-set potentiometer of statics according to operational instructions Break or short-circuit of lead Eliminate short-circuit, in case of a from statics current transformer break check current transformer T1 to statics A2
page 24/31
s 5 Maintenance 5.1 Safety recommendation ! WARNING Pay heed to strict adhering to “General safety information” in paragraph 1.2 of these instructions. Unconditionally pay heed to necessary professional knowledge that must be acquired while operating in heavy-current machinery. Before any work on machines is started, make sure that machine or unit is disconnected in accordance to regulations. This applies especially for opening of protective covers. Pay heed not only to main current circuits but also to possible supplementary auxiliary current circuits. This especially applies to heater in the course of stoppage of machine. There are “5 safety regulations’’ (e.g. according to EN 50110-1): - disconnection - securing that prevents new connection - make sure that machine is disconnected - earthing and short-circuit connection (for voltage above 1000 V), - block or cover (close) neighbouring active parts. NOTICE: Cross-section drawings and or detailed drawings that are a part of instructions, usually contain useful information on technical construction of normal machines and constructional groups. This information can be appreciated by experts and should be taken into consideration in a certain way. ATTENTION Special designs and constructional variants can differ from normal projections as far as technical details are concerned. We are here to solve any potential uncertainty, please, contact us and provide us with type and production number of a machine. Other possibility is to contact directly SIEMENS service centre and have maintenance works performed by the centre. WARNING. Any works that are performed on generator must be carried out on disconnected machine, apart from relubrication of bearings. In that particular case it is necessary to adhere to safety instructions. If the works are performed on the parts of machine or accessories under current , make sure that generator is always separated from the network. At the same time check if these parts are not under voltage. Protective wire must always be connected.
5.2 Inspection of insulation condition Condition of generator insulation must be inspected during every maintenance and prior to putting into operation in case of longer period of a shut down.
Product documentation v3.5.a 2-032 (21/2/05)
page 25/31
s 5.3 Cleaning Generator and its accessories must be kept in clean condition. Cleaning must be carried out in dependence on operational requirements. The best way of cleaning is to use clean and dry pressed air (most 200 kpa). Collecting dust decreases cooling capacity and increases raise of temperature of machine. If generator is fitted with a filter in the inlet spot of cooling air, then it must be cleaned regularly. Cleaning intervals depend on conditions of ambient surrounding in which generator operates. Degree of contamination can be assessed in dependence on increase of temperature of stator winding which is normally equipped with resistance thermometer (concerning designs with a filter). Filter is disassembled and blown with pressed air. Keep a record of cleaning in the operational log. ! WARNING Pay heed to suitable exhaust and personal protective aids (protective goggles, filter, respirator etc.) in the course of pressure cleaning! When chemical cleaners are used, please, adhere to warning and safety recommendations that are stated in appropriate list of safety data (see paragraph 1.2). Chemical cleaners must be applicable for machine parts, especially parts made of plastics.
5.4 Bearing maintenance 5.4.1 Antifriction bearings Generator antifriction bearings are filled with lubricating grease and ready for operation. Generators are provided with bearings including relubrication equipment and grease amount regulator. Bearing type together with lubricant used are given complementary rating plate at each lubrication point. Relubrication intervals, if any, are given in Annex. Grease amount must be regularly checked in antifriction bearings and exchange, if necessary. New grease is to be filled during the preventive inspection III., no later than after 3 years. During maintenance the bearing part must be cleaned and new grease filled. Keep a record of additional lubrication in the operational log. 5.4.2 Sliding bearings Maintenance of sliding bearings is specified in manufacturer’s Manual which is enclosed. Take care of the following: - a regular oil exchange at specified intervals, - checks of screwed joints, - checks of temperature sensors.
Product documentation v3.5.a 2-032 (21/2/05)
page 26/31
s 6 Disassembly and regressive assembly 6.1 Disassembly Disassembly can be carried out only in clean dustless and dry environment. Prior to actual disassembly, plate of cable inputs must be removed. Open terminal box and release exciting cables and wire of bearing thermometer. Release the bolts (01), and then it is possible to remove the cover of rotating rectifier. Exchange of three-phase bridge or varistor can be carried out, then.. Release the bolts 02) and (03), and then it is possible to pull down bearing covers by means of pulling device and thread openings in bearing shields. Afterwards, a check or bearing exchange can be carried out. Once the stator is removed, winding of stator and rotor of main and exciting machine can be inspected.
Picture 6.2 a: Generator longitudinal cross-section
6.2 Regressive assembly (assembly) Regressive assembly of generator is carried out as a reversed sequence of steps. Appropriate tools must be used in the course of regressive assembly to prevent any violent force. If a generator differs from basic design e.g. different arranging of feet with two bearings, disassembly and regressive assembly can differ. Variants equipped with air filter, air watercooler, with different design of protection degree than IP 23, with special shape or mechanical design are provided with complementary supplements enclosed to operational instructions. Keep a record of dismantling in the operational log. Product documentation v3.5.a 2-032 (21/2/05)
page 27/31
s 7 Regulation 7.1 General description, regulation principle Regulation is performed to keep constant terminal voltage of main machine independently of load and power factor. Apart from this voltage regulator measures voltage of generator and compares it with adjusted required value. Exciting winding of exciting machine gets necessary direct current by means of regulation body of voltage regulator that is fed by means of auxiliary winding that is inserted into the main machine stator. Threephase winding of exciting machine feeds magnet wheel of main machine through rotating rectifiers. Overvoltage protection (varistor) limits arising voltage peaks to tolerable values. Generators are standardly equipped with voltage regulator AEC 63-7, pic. 7.1.a., or with power factor regulator (option) cos ϕ SCP 250 G , pic. 7.1.b. (producer Basler Electric Company). Voltage regulators in compact design are resistant against humidity and vibrations. Selfexcitation of generator is secured by sufficiently high remanence in stator of exciting machine.
L1 L2 L3
RIGHT ROTATION
L2 L1 L3
LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)
SUPPLY CONNECTION
A1
VOLTAGE REGULATOR
F1
FUSE
G1
MAIN MACHINE
G2
EXCITER MACHINE
H
AUXILIARY WINDING
T1
CURRENT TRANSFORMER FOR DROP COMPENSATION
U
VARISTOR
V2
ROTATING RECTIFIERS
1
JUMPER FOR OPERATION 50 Hz OR 60 Hz
1
PROPOJKA 50/60 Hz
CONNECTION OF AN EXTERNAL POTENTIOMETER
Picture 7.1 a: Diagram of regulator without regulation cos ϕ
Product documentation v3.5.a 2-032 (21/2/05)
page 28/31
s SUPPLY CONNECTION
L1 L2 L3 L2 L1 L3
A1
VOLTAGE REGULATOR
A2
COS ϕ REGULATOR
F1
FUSE
G1
MAIN MACHINE
G2
EXCITER MACHINE
H
AUXILIARY WINDING
R1
VOLTAGE SETTING POTENTIOMETER
S1
SWITCH
RIGHT ROTATION LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)
-FOR COS ϕ REGULATION : OPEN
-UNIT COS ϕ REGULATION : CLOSED T1
CURRENT TRANSFORMER FOR DROP COMPENSATION
T2
CURRENT TRANSFORMER 1/5A
U
VARISTOR
V2
ROTATING RECTIFIERS
1
JUMPER FOR OPERATION 50 Hz OR 60 Hz
Picture 7.1 b: Diagram of regulator with regulation cos ϕ
7.2 Range of voltage regulation Terminal voltage can be adjusted in the range of ±5,0% of nominal voltage by means of potentiometer that is situated on regulator. There is an option of supplying external potentiometer designed for remote control. Optionally it can be supplied with motor control.
7.3 Regulation accuracy Static accuracy of regulation is ±1% in the range from running without load up to full load as well as during constant output and change of revolutions of up to ±5,0%. Other information about regulation accuracy on demand.
7.4 Dynamic states of voltage Temporary drop of voltage that occurs during connection of full load with power factor cos ϕ makes normally up to 20%. This value depends on generator size. Time of reregulation makes about 1,5 - 2 s and depends on the size of regulator.
Product documentation v3.5.a 2-032 (21/2/05)
page 29/31
s 7.5 Parallel operation Synchronous generators 1FC2 are suitable for parallel operation with another generator and network. In the course of parallel operation, distribution of active load is determined by driving machines. To secure uniform distribution of active load, regulators of revolutions of parallely working driving machines must be adjusted at the same characteristics. They can even be equipped with electronic load regulator. Concerning parallel operation, generators are equipped with static regulator to secure good distribution of reactive load. Inclination (gradient) of reactive current characteristics can be changed by means of adjusting of resistance in static regulator. Statics is set by producer to a value of about 6% - possible range of adjustment is 10%. This adjustment enables voltage swing up to ±2,5% in parallel operation of network without exceeding maximum reactive generator current. If higher line voltage swing appears, it is necessary either to increase statics or and to regulate terminal voltage by means of power factor regulator.
Product documentation v3.5.a 2-032 (21/2/05)
page 30/31
s 8 Neutral wire 8.1 Generally In the course of parallel operation of generators amongst themselves or with the line, differential currents can appear as the result of distribution harmonic oscillation of 3rd order. Differential currents are added to phase currents and can result in inadmissible raise of temperature of generators. Neutral current must not exceed 50% of nominal current. If currents are higher, it is necessary to adopt suitable remedies concerning limitation e.g. current limiting choke.
9 Generator disposal after lifetime expiration After expiration of the generator lifetime it is user’s responsibility to dispose it ecologically. It is recommended to use the service of an authorized company. It is necessary to disassemble the generator and separate individual materials. The machine disposal may produce environment-demanding waste, such as grease or insulation material remaining. For machine ecological disposal including unexpended parts of the machine (e.g. packing materials - plastic, wood, metal) obey the legal regulations in force in particular country.
Product documentation v3.5.a 2-032 (21/2/05)
page 31/31
s Enclosure
Operational logbook Operational logbook of generator
Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Sheet 1 Name
Signature
page 1/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 2 Signature
page 2/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 3 Signature
page 3/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 4 Signature
page 4/5
s Type of generator Entrepreneur: Date
Enclosure
Count of operation hours
Voltage
Power
Plant:
Production number Workplace of generator
Records:
Name
Sheet 5 Signature
page 5/5
RG-Erregermaschine Brushless exciter Betriebsanleitung / Instructions
Beschreibung
Description
Aufbau
Construction
Die RG-Erregermaschine, ausgeführt als Außenpolgenerator, ist eine bürstenlose Erregereinrichtung. Der Läufer der Erregermaschine ist auf der Welle der Hauptmaschine angeordnet, während der Ständer an der Hauptmaschine befestigt wird. Eine statische Hilfserregereinrichtung, die an anderer Stelle beschrieben ist, erregt über einen Spannungsregler das Feld des Außenpolgenerators. Der in der Läuferwicklung fließende Drehstrom wird in dem mitrotierenden Gleichrichterrad von Siliziumdioden gleichgerichtet und über die Erregerleitung der Erregerwicklung der Hauptmaschine zugeführt.
The exciter, designed as stationary-field generator, is of the brushless type. The exciter rotor is on the main machine shaft, and the stator is secured to the main machine itself.
Da sich die Erregermaschine innerhalb der Hauptmaschine befindet, benötigt sie keine Gehäuseabdeckung. Läufer Der Läufer ist auf einen Wellenstumpf der Hauptmaschine aufgeschrumpft und in Umfangsrichtung durch eine Passfedern gesichert. Die Läufernabe ist als Blechpaket ausgeführt. Die in die Nuten des Blechpaketes eingelegte Läuferwicklung ist eine dreiphasige Drehstromwicklung in Sternschaltung. Sie ist als Einschicht-Wicklung aus isoliertem Cu-Draht mit mehreren parallelen Leitern ausgeführt. Die Schaltenden der Einzelspulen liegen auf der A-Seite und sind mit den auf der gleichen Seite befindlichen Sammelringen W, U und V verbunden. Zur Sicherung gegen Fliehkräfte ist auf jedem Wickelkopf eine Bandage angeordnet Die Läuferwicklung ist mit Epoxydharz imprägniert.
As the exciter is situated inside the main machine, it needs no casing.
D1973/7-74 0106
A static auxiliary excitation unit described separately, is used for exciting the field of the external-pole via a voltage regulator. The three-phase current flowing in the rotor winding is rectified by silicon diodes in the rotating rectifier and fed into the field winding of the main machine through the excitation line of the field winding of the main machine.
Rotor The rotor is shrunk onto the shaft of the main machine and secured in the circumferential direction by a feather key. The rotor hub is designed as laminated core. The three-phase rotorwinding, inserted in the slots of the laminated core, is connected in star. It is a onelayer winding of insulated copper wire with multiple parallel conductors. The free ends of the individual windings are arranged at the D end and connected to the W, U and V and neutral bus rings arranged on the same side. The winding overhangs are provided with bandings to afford protection against centrifugal forces. The rotor winding is impregnated with epoxy resin.
Seite/Page 1
s Ständer Der Ständer der RG-Erregermaschine besteht aus einem gewalzten Jochring mit über Rippen angeschweißtem Flansch. Im Jochring befinden sich die durch Schrauben befestigten Pole mit der Erregerwicklung. Auf jeden Pol ist eine Spule aus isoliertem Cu-Draht gewickelt, die mit Harz verfestigt ist. Die Polspulen sind in Reihe geschaltet, wobei die Schaltenden der Nordpole gekreuzt und die der Südpole ungekreuzt ausgeführt sind. Die Enden der Erregerwicklung sind an eine Reihenklemme angeschlossen. Der Erregermaschinenständer wird im Gehäuse der Hauptmaschine mit Sechskantschrauben befestigt und zentriert. Belüftung Die RG-Erregermaschine ist im Kaltluftstrom der Hauptmaschine angeordnet. Öffnungen im Läuferblechpaket lassen die Kühlluft durch die Läufernabe strömen. Gleichrichterrad Der Gleichrichterteil befindet sich auf dem Gleichrichterrad und enthält je nach Höhe des Maschinenstromes drei oder sechs Diodeneinbausätze. Diodeneinbausätze Jeder Dioden-Einbausatz besteht aus einem mit Kühlrippen versehenen Leichtmetallkörper und enthält eine Siliziumdiode, die durch eine Spannkappe gehalten wird und deren Einbaulage die Polarität bestimmt. Da die Kühlkörper unter Spannung stehen, sind sie isoliert an der Läufernabe befestigt. Die Verbindung zwischen den Kontaktbolzen, den Siliziumdioden und den Gleichstromsammelringen erfolgt durch längsliegende Anschlusswinkel. Die Gleichstromsammelringe, an denen die Teile des Varistor-Schutzwiderstandes befestigt sind, sind isoliert auf der A-Seite des Gleichrichterrades angeschraubt. Varistoren Als Schutz der Gleichrichter gegen energiereiche Überspannungen in Störungsfällen ist ein spannungsabhängiger Widerstand eingebaut. Dieser Schutzwiderstand besteht aus sechs oder zwölf Varistorscheiben, die parallel zwischen dem Plus- und Minussammelring angeordnet sind. Jede Varistorscheibe wird von einer zentralen, isolierten Schraube gehalten. Der elektrische Kontakt zu den Sammelringen wird auf jeder Seite durch weichgeglühte Kupferscheiben hergestellt.
D1973/7 Seite/Page2
Stator The Stator frame of the brushless exciter consists of a rolled yoke ring with welded-on mounting feet. The pole pieces carrying the exciter winding are screwed to the in-side of the yoke ring. The coils wound on the pole pieces are of insulated copperwire and impregnated with resin. They are connected in series in such a way that the end leads of the north poles are crossed over, while those of the south poles are uncrossed. The exciter winding end leads are taken to a terminal block. The exciter frame is secured with hexagonal-head screws directiy to the main machine and locked with tapered pins. Ventilation The brushless exciter is arranged in the cool air flow of the main machine. Openings in the laminated rotor core allow the cooling air to flow through the rotor hub Rotating rectifier The rectifier section is located on the rotating rectifier and contains three or six diode assemblies, depending on machine current magnitude. Diode assemblies Each diode assembly consists of a light metal heat sink with cooling ribs and includes two silicon diodes that are fitted by means of clamping caps and arranged according to polarity. As the heat sinks are live, they are fitted to the rotor hub using insulated elements. The connection between the contact pins of the silicon diodes and the DC bus rings is established via longitudinally arranged connecting angles. The DC bus rings carry the components of the protective varistor and are fastened to the rotating rectifier at the D-end using insulating screws. Varistors The rectifier bridge is protected against such highenergy overvoltages as may occur in the event of faults by a voltage-dependent resistor consisting of six or twelve varistor disks arranged in parallel between the positive and negative bus ring. Each varistor disk is secured by a central insulating screw. The electrical connection to the bus rings is established on either side by two soft-an-nealed copper disks.
s Wartung
Maintenance
Die RG-Erregermaschine ist im wesentlichen wartungsfrei. Es empfiehlt sich, die Maschine in gewissen Zeitabständen auf Staubablagerungen zu kontrollieren und bei Bedarf, vor allem im Bereich der Kühlkörper, zu reinigen. Es genügt dafür Ausblasen der Maschine mit Pressluft (max. 4 bar). Die Demontage des Erregermaschinen-Ständers erfolgt gemeinsam mit dem BS-Gehäuse der Hauptmaschine. Dazu sind zunächst die Kabelverbindungen zu trennen. Das Gehäuse ist axial zu demontieren und dann auf die Gehäusewand zu legen. Der Ausbau des Erregerständers geschieht nach lösen der Sechskantschrauben, in senkrechter Richtung. Bei einem eventuell erforderlichen Abziehen von Läufer und Gleichrichterrad von der Hauptmaschinenwelle, sind vor dem Erwärmen der Naben mit einem Schweißbrenner, alle Diodeneinbausätze sowie die Gleichstromsammelringe auszubauen. Zum Aufschrumpfen können der komplett montierte Erregermaschinenläufer und das Gleichrichterrad in einem geeigneten Ofen erwärmt werden, wobei mit Rücksicht auf die Halbleiterbauelemente eine Ofentemperatur von 100 C° nicht überschritten werden darf. Zum Ausbau der Dioden sind die betroffenen Kontaktverbindungen sowie die Spannkappen der Einbausätze zu lösen. Die einzelnen Dioden können dann entnommen werden.
The brushless exciter requires only a minimum of maintenance. It is advisable to inspect the machine for dust deposits at suitable internals and to clean it if necessary, above all the heat sinks. It will be sufficient for this purpose to blow out the machine with compressed air at a pressure of not more than 4 bar. Dismantling of the exciter machine Stator is achieved by removing the N end. housing of the main machine. Firstly, disconnect the cable joints, lift the housing axial upwards and rest it on the housing panel. To remove the exciter Stator vertically, remove the screws.
HINWEIS Beim Einbau neuer Dioden auf alle damit in Verbindung stehenden Kontaktflächen, in dünner Schicht Kontaktöl (zB. Electrolube 2X, Produkt der Fa. Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 UlmLehr), gleichmäßig auftragen. Anzugsmoment der Schrauben M6 an den Spannkappen 8 Nm. Schrauben über Kreuz anziehen. Für die Wartungsarbeiten an der Erregermaschine ist der Bedienungsdeckel des BS-Gehäuses abzunehmen. Die genannten Teile und deren Befestigungselemente sind dann für die Montage zugänglich. Fehlersuche bei Diodenausfall Fehlerhafte Dioden können mittels eines Gleichspannungs-Durchgangsprüfers (z.B. AVΩ-Multizet) ausfindig gemacht werden. Es sei jedoch darauf hingewiesen, dass eine derartige Messung wegen der niedrigen Mess-Spannung je nach Wahl des Messbereiches am Instrument, besonders in Durchlassrichtung, sehr unterschiedliche Werte liefert und nur für einen größenordnungsmäßigen Vergleich der Widerstände in Sperr- und Durchlassrichtung geeignet ist.
If the rotor is to be removed from the shaft of the main machine, detach all the diode assemblies and DC bus rings before the hub is heated by means of a welding torch. Before shrink titling, heat up the completely assembled rotor in a suitable oven and take care that a temperature of 100 °C is not exceeded so that the semiconductor elements are not damaged. To remove a diode assembly, undo the associated contact screws as well as the clamping caps of the assemblies. The individual diodes can then be withdrawn from the rotor. NOTE When fitting new diodes, apply a thin coat of heatcon-ducting oil (e.g. Electroiube 2X, a product of Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 UlmLehr), on all contact faces involved. Tighten the M6 screws at the clamping caps with a torque of 8 Nrn. These screws must be tightened diagonally. To permit replacement of the varistor disks, the inspection cover at the N end must be removed so that the parts mentioned above, including their fastening elements, become accessible. Fault location on diode failure Defective diodes can be located by means of a DC continuity tester (e.g. AVΩ -MULTIZET). It should be noted, however, that owing to the low measuring voltage de-pending on the measuring range selected, measurements carried out with Instruments of this type may pro-vide greatly differing results, particularly in the forward direction. The results can therefore only be used for comparing the Orders of magnitude of resistance in the blocking and forward directions.
D1973/7 Seite/Page 3
s Zur Messung des Widerstandes in Durchlassrichtung ist ein möglichst großer Messbereich zu wählen. Bei einwandfreien Dioden können unter Verwendung von 1,5 V Mess-Spannung die Widerstandswerte in Durchlassrichtung je nach Messbereich ca. 100 Ω bis 10 kΩ, in Sperr-Richtung einige hundert kΩ betragen. Um die Diodenbrücke auf fehlerhafte Dioden überprüfen zu können, sind die Anschlussleitungen aller Dioden von den Sammelringen zu lösen. Hinsichtlich möglicher Störungen an der Diodenbrücke sind zwei Fälle zu unterscheiden: Verlust der Sperrfähigkeit (Durchlegieren) Beim Durchlegieren einer Diode fließt nur noch ein geringer Strom durch die Feldwicklung der Hauptmaschine, so dass die belastete Maschine übersynchron außer Tritt fallen wird. Die Maschine muss daher zur Behebung der Störung sofort entregt und stillgesetzt werden. Durchlegierte Dioden zeigen in beiden Richtungen einen extrem geringen Widerstand. Verlust der Leitfähigkeit in Durchlaßrichtung (Unterbrechung) Die Unterbrechung einer Diode tritt wesentlich seltener auf als das Durchlegieren, sie macht sich in der Weise bemerkbar, dass die von der Brücke abgegebene Spannung um ca. 15 % zurückgeht. Wegen der Erregungsreserve kann die Hilfserregereinrichtung diesen Verlust an Erregerspannung voll ausgleichen, wobei die Maschine bei Nennleistung und Nennleistungsfaktor einen höheren Hilfserregerstrom benötigt. Dioden, bei denen eine Unterbrechung in Durchlassrichtung vorliegt, zeigen in beiden Richtungen extrem hohe Widerstandswerte.
D1973/7 Seite/Page4
For measuring the resistance in the forward direction, the measuring range should be as small as possible. With healthy diodes and with a measuring voltage of 1.5 V, the resistance in the forward direction may be about 100 Ω to 10 kΩ, depending on the measuring range, and a few hundred Kohms in the reverse direction. Diode bridges can be tested for faulty diodes after the leads of all the diodes have been disconnected from the bus rings. Diode bridges are likely to give rise to two kinds of faults as follows: Loss of blocking capability (diode breakdown) If a diode breaks down, only a low current flows through the field winding of the main machine, causing the loaded machine to fall out of Step oversynchronously. To clear the fault, the machine must be de-excited and stopped immediately. Diodes that have broken down display an extremely low resistance in both directions. Loss of blocking capability (diode failure) Loss of diode conductivity occurs considerably less of-ten than diode breakdown and is indicated by a reduction of the voltage delivered by the bridge of approx. 15 %. Thanks to the excitation reserve, the auxiliary excitation unit is able to fully compensate this loss of excitation voltage even though the machine requires a higher auxiliary excitation current at rated Output and nominal powerfactor. Diodes which have become blocked in the forward direction have extremely high resistance values.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 1973/7-74 0106
s Stillstandsheizung
Anti-condensation heating
Baugruppen-Nr. 6590
Assembly Group No. 6590
Beschreibung
Description
Verwendung
Application
Verwendung In die elektrische Maschine ist eine Stillstandsheizung eingebaut. Die Stillstandsheizung ist so ausgelegt, daß die aktiven Maschinenteile immer wärmer als ihre Umgebung sind und eine Betauung vermieden wird. Die erforderliche Heizleistung wird bei der Auslegung der elektrischen Maschine bestimmt.
The electrical machine is fitted with an anti-condensation heating system. This system is so designed that the temperature of the active parts of the machine is always higher than the ambient temperature and that condensation is prevented. The heating power required is determined when designing the electrical machine.
a) Heizkörper im oder am Gehäuse befestigt a) Heater 1 fitted inside the casing or to the casing 1
1
b) Heizkörper 1 im Außengehäuse oder am Grundrahmen befestigt b) Heater 1 fitted inside the outer casing or to the baseframe
1
1
c) Heizkörper im Fundament befestigt c) Heater 1 fitted inside the foundation 1 1
Fig. 1 Anordnung der Stillstandsheizung Fig. 2 Arrangement of anti-condensation heaters
Ausführung
Design
Die Stillstandsheizung besteht aus einem oder mehreren elektrisch zusammengeschalteten Rohrheizkörpern, die im Innern der Maschine an geeigneten Stellen so montiert sind, daß die aufsteigende Warmluft die aktiven Maschinenteile berührt, die Wicklungsisolierung aber nicht durch die hohe Oberflächentemperatur der Heizkörper beschädigt wird. Abhängig von der Konstruktion der elektrischen Maschine sind mehrere Einbauvarianten möglich (Fig. 1). Stillstandsheizungen für explosionsgeschützte Maschinen sind mit einem Temperaturregler und Temperaturbegrenzer ausgerüstet. Der Temperaturbegrenzer ist auf die der Zündgruppe entsprechende höchstzulässige Oberflächentemperatur des Heizkörpers eingestellt und plombiert. Diese Heizkörper entsprechen den VDE-Vorschriften 0170 und 0171 und sind bescheinigt. Leistung und Anschlußspannung sind dem ,,Maßbild-Text" zu entnehmen.
The anti-condensation heating system consists of one or several heating tubes which are connected together and so arranged in the machine that the warm air rises to the active parts and that the winding insulation is not damaged by the high surface temperature of the heaters.
D 567-0502 de-en
Depending on the type of construction of the machine, the heaters can be arranged in various forms as shown in Fig.1. Anti-condensation heaters for machines intended for use in explosive atmospheres are equipped with thermostats and cut-outs. The cut-out is set to the maximum surface temperature permitted for the particular ignition-temperature group and then sealed. These heaters comply with the VDE specifications 0170 and 0171. The heaters have been officially approved. For rating and supply voltage, please refer to the text in the ,,Dimension drawing”.
567 Seite/Page 1
s
Fig. 2 Ausführungsbeispiel von montierten Rohrheizkörpern Fig. 2 Tubular anti-condensation heaters (example)
Fig. 3 Heizkörper, eingebaut in einer explosionsgeschützten Maschine Fig. 3 Heater installed in a machine for use in explosive atmospheres
Montage
Installation
Anschluß
Connection
Die Anschlußleitungen sind in einem Sekundärklemmenkasten oder an eine Klemmenleiste geführt. Der Anschluß der Netzleitungen ist nach dem gültigen Schaltplan vorzunehmen (s. a. ,,Maßbild"). Werden die Heizkörper explosionsgeschützter Maschinen erst auf der Baustelle direkt angeschlossen, ist mittels Steckschlüssel der Anschlußkastendeckel zu öffnen und der Anschluß nach einliegendem Wirkschaltplan, unter Beachtung der Betriebsanleitung des Heizkörperherstellers, vorzunehmen. Achtung! Vorgesehene Standorterdung unbedingt anschließen. Bei Drehstromanschluß ist darauf zu achten, daß auch die Steuerseite elektrisch angeschlossen wird.
The heater connecting leads are brought to a secondary terminal box or to a terminal block. The supply leads should be connected according to the applicable circuit diagram (also refer to the ,,Dimension drawing"). Should the heaters of machines for use in explosive atmospheres only be connected on site, this is to be done by opening the terminal box cover using a socket wrench and proceeding as indicated on the enclosed wiring diagram, following the operating instructions for the tubular heaters. Important: Connect to earthing system. With three-phase connection also make sure that the control circuit is correctly connected.
Einschalten
Switching on
Die Stillstandsheizung darf während des Betriebes der elektrischen Maschine nicht eingeschaltet sein. Deshalb ist eine Verriegelung erforderlich, die verhindert, daß die Maschine bei eingeschalteter Heizung in Betrieb genommen werden kann. Umgekehrt empfiehlt es sich, das Einschalten der Stillstandsheizung vom Abschalten der Maschine abhängig zu machen.
The anti-condensation heater must be switched off when the machine is running. An interlocking circuit is therefore necessary which prevents the machine from being started while the heater is switched on. On the other hand, it is recommended that switching on of the heater be made dependent on the shut-down of the machine.
Wartung
Maintenance
Austausch
Replacement
Bei einem Austausch defekter Stillstandsheizungen nur solche gleicher Ausführung verwenden. Achtung! Dies gilt insbesondere bei explosionsgeschützten Maschinen. Es wird empfohlen, Ersatzheizkörper vom Herstellerwerk der Maschinen zu beziehen. Bei Bestellung Maschinentyp und Fabriknummer angeben. Beide Angaben sind aus dem Leistungsschild ersichtlich. Beim Einbau darauf achten, daß explosionsgeschützte Heizkörper wieder in der gleichen Lage eingebaut und angeschlossen werden, da sonst die Funktion der Regler und Begrenzer beeinträchtigt wird.
When replacing defective heating tubes, only use tubes of the same type. Important: This is of special importance with machines for use in explosive atmospheres. lt is recommended that spare heating tubes be ordered from the machine manufacturer stating type and serial number which can be taken from the rating plate. New heaters for use in explosive atmospheres must be installed in the same position and connected in the same way as the old ones to ensure proper functioning of the thermostats and cut-outs.
Reinigung
Cleaning
Bei den entsprechenden Maschinenrevisionen ist eine Reinigung von Schmutz- und Staubablagerungen sowie eine Funktionsüberprüfung vorzunehmen.
Remove dirt and dust deposits from the heaters and test for proper functioning when machine inspections are carried out.
567 Seite/Page 2
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 567-0502 de-en
Luft-Wasser-Kühler Air-to-Water Cooler Betriebsanleitung / Instructions
Beschreibung
Description
Der Luft-Wasser-Kühler ist in der nachfolgenden Druckschrift der Herstellerfirma beschrieben. Die technischen Angaben sind im Maßbild-Text enthalten. Die Kühlerwerkstoffe sind optimal für die Wasserverhältnisse gewählt, für die der Kühler bestellt wurde. Für andere Wasserverhältnisse kann er nicht ohne weiteres eingesetzt werden.
The air-to-water cooler is described in the following leaflet of the manufacturers. The technical data will be found in the legend of the dimension drawing. The materials of the cooler have been selected for the water conditions for which the cooler has been ordered. It cannot be used indiscriminately for other water conditions.
Montage
Installation
Der Luft-Wasser-Kühler ist in den Gehäuseaufsatz eingeschoben und mit Spannlaschen befestigt. Unter dem Kühlerelement ist eine Auffangwanne für Kondenswasser eingebaut. Durch je eine Bohrung an den Längsseiten der Maschine, die durch Sechskantschrauben verschlossen sind, kann ein möglicher Kondenswasserstand kontrolliert werden. Die Öffnung auf der dem Kühlereinschub gegenüber liegenden Seite ist gleich groß und durch einen Deckel verschlossen. Wird der Deckel abgenommen, kann die Wasserkammer demontiert werden.
The air-to-water cooler is inserted in the top-mounted casing and secured with clamping straps. Below the cooler is a collection tray for condensed water. The level of any eventual condensed water can be checked through a hole on each side of the machine which is closed by a hexagon screw plug. The opening at the end opposite to the cooler insert is of equal size and closed by a cover. After removing this cover, the water box can be removed.
Korrosionsschutz
Corrosion protection
Allgemeines Rohre aus Kupfer und Kupferlegierungen müssen auf der Kühlwasserseite Schutzschichten aufbauen, damit eine ausreichende Korrosionsbeständigkeit erreicht wird. Schutzschichtbildung und -erhaltung ist im wesentlichen von der Inbetriebsetzung und den späteren Betriebsbedingungen abhängig. Nur eine dichte, festhaftende Schutzschicht kann vor Korrosionsangriff schützen.
General Tubes made of copper and copper alloys must build up protective layers on the cooling-water side to achieve sufficient corrosion resistance.
DW 8692-0106 74
The formation and preservation of the protective layers depends essentially on the conditions prevailing during commissioning and subsequent operation. Protection against corrosion is only provided if the covering layers are dense and adhere well.
Seite/Page 1
s Inbetriebsetzung
Commissioning
Die Zeit der Inbetriebsetzung ist als Einfahrphase für die Schutzschichtbildung ausschlaggebend. Nach Möglichkeit soll für mindestens zwei Monate ein kontinuierlicher Betrieb mit der Kühlwasser-Nennmenge erfolgen (siehe Maßbild-Text). Zur weitgehenden Verhinderung von Ablagerungen bzw. Störung der Schutzschichtbildung darf die im Maßbild-Text angegebene Kühlwassermenge nur um + 10% bzw. - 20% geändert werden. Je aggressiver ein Kühlwasser ist (z. B. hoher Gehalt an Chloriden, Sulfaten, suspendierten Stoffen) um so notwendiger wird ein kontinuierlicher Betrieb für die homogene Schutzschichtbildung. Zur schnelleren Ausbildung einer Schutzschicht ist ein möglichst hoher O2Gehalt erforderlich. Da dies bei der Inbetriebsetzung einer Anlage nicht immer gewährleistet ist, empfiehlt es sich, den Kühler bereits vor Inbetriebnahme der Anlage mit Kühlwasser zu beaufschlagen und Schutzschichtbetrieb zu fahren.
The commisioning period is decisive for the initial formation of the protective layer. If possible, there should be continuous operation with the nominal cooling water flow for at least two months (see dimension drawing legend). In order to prevent deposits as far as possible and to avoid inhibiting the formation of protective layers, the cooling water flow rate given in the dimension drawing legend should not be varied by more than 10% or -20%. The more corrosive the cooling water (e.g. high levels of chlorides, sulphates, suspended matter), the more necessary it is to have continuous operation in order to obtain a homogeneous protective layer. The highest possible level of O2 is necessary for rapid formation of the protective layer. Since this cannot always be ensured when a plant is being commissioned, it is recommended that cooling water be passed through the cooler before commissioning of the plant for the purpose of protective layer formation.
HINWEIS
NOTE
Sollten sich unvermeidbare Betriebsunterbrechungen ergeben, oder entsteht zeitlich ein Abstand zwischen dem Füllen mit Wasser und dem Normalbetrieb sind die beschriebenen Maßnahmen unter „Stillstand” zu beachten. Es ist selbstverständlich, dass vor der Inbetriebsetzung eine sorgfältige Reinigung des Kühlwasserzulaufsystems zu erfolgen hat. Sollten Fremdkörper im Kühlwasserzulaufsystem nicht mit Sicherheit vermeidbar sein, müssen die Rohre kontrolliert und bei Ansatz von Fremdkörpern gereinigt werden
In the event of unavoidable interruptions of operation or should some time elapse before filling with water and the beginning of normal operation the measures described under ”Standstill periods” should be observed. It is obvious that the cooling water supply system must be thoroughly cleaned before commissioning. If the presence of foreign bodies in the water supply system cannot be excluded with certainty, the piping must be checked and then cleaned should foreign bodies be detected.
Dauerbetrieb
Continuous operation
Der Dauerbetrieb mit der im Maßbild-Text angegebenen Kühlwassermenge ist für den Erhaltungszustand optimal. Eine größere Kühlwassermenge oder eine örtliche Querschnittsverengung (z. B. Fremdkörper), die zu einer Erhöhung der Kühlwassergeschwindigkeit führen, zerstören die Schutzschichten durch Erosion, die zuerst auf der Kühlwassereintrittsseite der Kühlrohre in Erscheinung tritt. Es soll auch nicht mit einer zu niedrigen Geschwindigkeit gefahren werden, da sonst die Gefahr von Ablagerungen aus dem Kühlwasser besteht. Ablagerungen in den Kühlrohren stören die Schutzschichtbildung erheblich und können eine bereits vorhandene Schutzschicht durch Korrosion zerstören. Ablagerungen sind Abscheidungen fester Schwebstoffe aus dem Kühlwasser. Eine Reinigung mittels Handreinigungsbürste bzw. Hochdruckreinigungsmaschine ist erforderlich. Hinsichtlich der Dauer der Reinigungsperioden und der Intervalle sind die Betriebserfahrungen maßgebend. Allgemein gültige Richtlinien können deshalb nicht gegeben werden.
Continuous operation with the cooling water flow rate given in the dimension drawing legend is optimal for proper care of the cooler. A higher cooling water flow rate or a local constriction (e.g. foreign bodies) which lead to an increase in the cooling water velocity, will result erosion of the protective layers which appears initially at the cooling water inlet of the cooling tubes.
8692 Seite/Page 2
The velocity should not be too low to avoid deposits from the cooling water. Deposits in the cooler tubes impair protective layer formation considerably and can also destroy an existing protective layer by corrosion. Deposits normally arise from suspended solid matter in the cooling water. The tubing must then be cleaned using a hand brush or a high-pressure cleaning machine. Operating experience will determine the duration and frequency of cleaning. Generally applicable guidelines cannot therefore be given.
s Durch Kontrollieren der Berohrung bei Stillständen soll sich der Betreiber ein Bild über das Verhalten der Kühler machen und Erfahrungen mit dem zur Verfügung stehenden Kühlwasser sammeln. Häufig verschmutzen die Kühlrohre auch durch das Wachstum von Mikroorganismen, meist schleimigen Bakterien, die durch eine mechanische Rohrreinigung nicht immer beseitigt werden können, sondern z. B. eine Stoßchlorierung mit 2 bis 3 mg Cl2/l erfordern. In besonders hartnäckigen Fällen kann die Chlorkonzentration ohne Gefährdung der Rohrwerkstoffe bis 10 mg Cl2/l erhöht werden.
The operator will have to form his own opinion as to the behaviour of the cooler by inspecting the tubing during standstill periods and by gathering experience with the available cooling water. The cooling tubes frequently become fouled also due to the growth of micro-organisms, mainly slimy bacteria, which cannot always be removed by mechanical cleaning but may require, for example, chlorinating with a concentration of 2 to 3 mg Cl2/l. In particularly stubborn cases, the chlorine concentration can be increased up to 10 mg Cl2/l.
Stillstände
Standstill periods
Stillstände sind für Rohre aus Kupfer und Kupferlegierungen besonders gefährlich, wenn die Schutzschicht sich noch nicht gebildet hat oder aber die Gefahr ihrer Zerstörung durch Korrosion unter Ablagerungen besteht. Bei Betriebsunterbrechungen oder Ausfall der Kühlwasserversorgung bis zu drei Tagen, können die Kühler mit Kühlwasser gefüllt bleiben, wenn
Standstill periods are particularly dangerous for tubes made of copper and copper alloys if the protective layer has not yet been formed or if they are likely to be destroyed by corrosion under deposits.
· ·
Rohre frei von Ablagerungen sind. Absperrarmaturen zum Schließen vorhanden sind und System entlüftet wurde. · keine Gefahr besteht, dass das Kühlwasser gefrieren könnte. Werden die Bedingungen nicht erfüllt, muss · das Kühlwasser abgelassen werden. · das Rohrsystem gereinigt, mit sauberem Wasser gespült und mit warmer, vorgetrockneter Luft getrocknet werden. Bei Stillständen von mehr als drei Tagen sind die Kühler wie vorher bei nicht erfüllter Bedingung zu behandeln. Für Stillstände bis zu drei Tagen ist auch der Betrieb mit kleineren Kühlwassermengen bis 20% (Schleichströmung) zulässig, damit Ablagerungen in den Rohren vermieden werden. Diese Maßnahme ist besser als ein absoluter Stillstand des Kühlwassers in den Rohren, da Fäulnisprodukte vom Ort ihrer Entstehung fortgespült werden.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. DW 8692-74 0106
In the event of operational outages or failure of the cooling water supply for periods up to three days, the coolers may remain filled with cooling water when the following conditions are satisfied · Tubes are free from deposits · Shut-off valves are fitted and system has been vented. · Cooling water is not likely to freeze. When these conditions are not satisfied: · Cooling water must be drained. · Tubing must be cleaned, flushed out with clean water and dried with hot, pre-dried air. In the case of standstill periods lasting longer than three days, the coolers should be treated as described above for non-satisfied conditions. In the case of standstill periods up to three days it is also permissible to operate with lower cooling water flow rates up to 20% to avoid the accumulation of deposits in the tubes. This measure is better than absolute standstill of the cooling water in the tubes since any products of decay are flushed away from where they originate.
8692 Seite/Page 3
2008-04-21
&RLOWHFK$%6(6|GHUN|SLQJ6ZHGHQ_3KRQH_7HOHID[ :HEZZZFRLOWHFKFRP
)(1,52/
Motor/Generator Cooler from Coiltech CZ 8012-22,7 one cooler. Id ______________________________________________________________________________________________ Air 183 kW Capacity 8.5 m³/s (48°C) Flow rate 67.5 °C Temperature in 48.0 °C Temperature out 1013 hPa Absolute pressure 106 Pa Pressure drop 3.4 m/s Velocity ______________________________________________________________________________________________ Cooling medium Water 22.7 m³/h (32°C) Flow rate 32.0 °C Temperature in 39.0 °C Temperature out 78 kPa Pressure drop 2.3 m/s Velocity ______________________________________________________________________________________________ Dimensions 7 % Overdesign 2340 mm Tube length 1100 mm Finned width 2 1/2" ANSI B 16.5 150LB Nozzle size 3 No. of tube rows 2.5 mm Fin pitch Copper-Nickel Tube material Aluminium Fin material Rilsan coated steel Removable header Galvanized steel Casing material Brass Tube plates 242/41 kg/l Dry weight / Internal volume 116 kg Copper content 99 No of tubes 162 m² Cooling surface 0.6 MPa Max op. pressure 0.9 MPa Test pressure 100 °C Max op. temperature ______________________________________________________________________________________________ QLKE-234-110-3-2-4-23-3-8-X Ordering code X= 0,15 mm fins.
8.10.1.0 bp
1
2008-04-21
&RLOWHFK$%6(6|GHUN|SLQJ6ZHGHQ_3KRQH_7HOHID[ :HEZZZFRLOWHFKFRP
)(1,52/
Motor/Generator Cooler from Coiltech CZ 8012-22,7 one cooler. Id ______________________________________________________________________________________________
______________________________________________________________________________________________ QLKE-234-110-3-2-4-23-3-8 Ordering code
8.10.1.0 bp
2
s Trocknen von Wicklungen
Drying of Windings
Allgemeines Siemens-Isolierungen MICALASTIC® sind grundsätzlich unempfindlich gegen Feuchte. Anschlussklemmen und während der Montage eingefügte Stäbe, Spulen oder Verbindungen, die nicht voll der Isoliertechnik der übrigen Wicklung entsprechen, können jedoch durch Feuchtigkeit gefährdet sein. Es kann sich auch durch Transport, Lagerung, Bauarbeiten oder durch längere Stillstandszeit innerhalb der Maschine ein Feuchtigkeitsfilm auf den Oberflächen gebildet haben, der vor einer Inbetriebnahme durch eine der nachfolgend beschriebenen Trocknungsmethoden zu beseitigen ist. Da ein Feuchtigkeitsfilm auf der Isolierung im Innern von Maschinen visuell nicht immer festgestellt werden kann, sind zusätzliche Beurteilungskriterien - wie z. B. Isolationswiderstand und Nachladezahl -zu beachten. Der Isolationswiderstand ist in jedem Fall zu bestimmen, da aus den Messwerten Aussagen über den Zustand der Wicklung abgeleitet werden können. Die ermittelten Werte protokollieren und - falls vorhanden mit früheren Werten vergleichen. Bei der Trocknung wird durch Erwärmung der Wicklung die unerwünschte Oberflächenfeuchtigkeit beseitigt. Werden bei Maschinen einzelne Wicklungsteile (z. B. beim Schließen der Teilfuge) am Montageort eingebaut, sind diese vor dem Lackieren vorzutrocknen, vorzugsweise mit trockener Warmluft. Für Mikafolium-Isolierung wird nach längerer Stillstandszeit immer eine Trocknung notwendig sein. Ist eine Stillstandsheizung vorhanden, so ist diese sobald wie möglich in Betrieb zu nehmen, um Eindringen bzw. Niederschlagen von Feuchtigkeit zu verhindern. Die Läuferwicklung wird normalerweise ausreichend durch die warme Umgebungsluft miterwärmt, wenn der Ständer bei der Trocknung Strom führt. Eine Trocknung bei laufender Maschine ist einer solchen im Stillstand vorzuziehen. Isolationswiderstand von Hochspannungswicklungen Der Isolationswiderstand gibt Aufschluss über OberFlächen-Feuchtigkeitsgehalt, Verschmutzung und evtl. Beschädigung der Wicklungen. Einzelheiten über die Durchführung der Messung sind in „Messen des Isolationswiderstandes elektrischer Maschinen“ 1075 enthalten. Bei Hochspannungswicklungen sollen folgende Werte gemessen werden: 1 Isolationswiderstand jedes Stranges gegen geerdetes Gehäuse und die anderen geerdeten Stränge. 2 Isolationswiderstand aller Wicklungsstränge gegen geerdetes Gehäuse. Der Isolationsmesser soll dabei eine Spannung von 500 bis 3000 V, vorzugsweise 1000 V, abgeben. Die Temperatur der Wicklung ist über die eingebauten Temperaturfühler (normalerweise Widerstandsthermometer) zu messen. Nachladezahl
General Siemens MICALASTIC® insulation is basically not affected by moisture. Terminals as well as conductor bars, coils or connections fitted during the installation that are not insulated to the same degree as the rest of the winding can, however, be endangered by moisture. Shipping, storage, construction work or a long period of standstill can cause a film of moisture to form inside the machine on the surface of the insulation which must be dried before commissioning by one of the methods described here.
In Abhängigkeit von der Zeit sind nach Anlegen der Prüfspannung die Werte des Isolationswiderstandes bei 30s, 1 min und fortlaufend jede Minute bis 12 min zu notieren. D1074g-0312 de-en
Because a film of moisture on the insulation inside the machine cannot always be visually detected, other detection methods such as insulation resistance and polarization index must be used. The insulation resistance should always be determined because information on the condition of the winding can be derived from this. Record the measured values and compare them with earlier values, if available. During the drying process the surface moisture is driven off by heating the windings. If individual portions of the windings are installed at site, for example after closing the stator joints, these parts must be dried before varnishing, preferably by hot, dry air. In the case of mica folium insulation, drying is always necessary after a long standstill. Where anti-condensation heating is fitted, this should be switched on as early as possible in order to prevent the ingress or condensation of moisture. The rotor winding is normally heated sufficiently by the surrounding air when the stator is heated by passing current through it. Drying the machine whilst running is preferable to drying at standstill. Insulation resistance of HV windings The insulation resistance provides information about the surface moisture content, contamination and any damage to the windings. The measuring procedure is detailed in "Measuring the Insulation Resistance of Electrical Machines" 1075. With HV windings the following values should be measured: 1 Insulation resistance of each phase to earthed frame and to the other earthed phases. 2
Insulation resistance of all winding phases to earthed frame. The insulation resistance tester should produce a voltage of 500 to 3000 V, preferably 1000 V. The temperature of the winding is measured by built-in sensors (normally resistance thermometers). Polarization index The insulation resistance is taken at 30s, 1 min and then at every minute up to 12 min after the test voltage has been applied.
1074 Seite/Page 1
s Die lange Messdauer ist durch den Absorptionsstrom bedingt, der seine Ursache in der Polarisation des Dielektrikums hat. Das dielektrische Absorptionsverhältnis wird auch zur Kennzeichnung des Zustandes der Isolation von Wicklungen herangezogen. Es ist das Verhältnis von zwei Ablesungen des Isolationswiderstandes nach verschiedenen Zeiten während der gleichen Messung, d. h. auch gleicher Temperatur (z. B. R60s Isolationswert nach 60 s abgelesen).
The length of the measurement period is determined by the absorption current which is caused by the polarization of the dielectric. The dielectric polarization index is also used as an indication of the condition of the winding insulation. It is the ratio of two readings of the insulation resistance taken at specified time intervals during the same measurement, i.e. at the same temperature (R60s = insulation resistance reading 60 s after the test voltage has been applied).
Richtwerte
R 10min R 1min PI oder N PI = Polarisationsindex N = Nachladezahl
Trocknen
Comparative rating
Drying R 10min R 1min PI or N PI or N = Polarization index
Gefährlich Schlecht Fraglich Brauchbar Gut Ausgezeichne t
< 1,1 1,1 bis 1,25 1,25 bis 1,4 1,4 bis 1,6 > 1,6
ja ja empfehlenswert nein nein nein
Dangerous Poor Questionable Satisfactory Good Very good
<1.1 1, 1 to 1.25 1.25 to 1.4 1.4 to 1.6 > 1.6
R 60 s R 30 s
<1 1 bis 1,5 1,5 bis 2 2 bis 3 3 bis 4 >4
Der Polarisationsindex oder die Nachladezahl soll -wenn die Wicklung getrocknet werden muss - vor und nach dem Trocknen bei gleicher Temperatur bestimmt werden, da eine gewisse Temperaturabhängigkeit bestehen kann. Mindestwert des Isolationswiderstandes Der Isolationswiderstand soll einen gewissen Mindestwert haben, den die Fig. 1 für die gesamte Wicklung gegen Erde, in Abhängigkeit von der Wicklungstemperatur zeigt. Um die Abhängigkeit des Isolationswiderstandes von der Maschinengröße zu eliminieren, ist hier als Ordinate das (konstante) Produkt aus Wicklungskapazität und Isolationswiderstand, die sogenannte Isolationszeitkonstante τ = R10 x C in MΩ, µF = s aufgetragen. Der Isolationswiderstand ist dabei der 10-min-Wert, der als zeitlicher Endwert bei der Messung angesehen wird. Unterliegen Maschinen ausländischen Normen, müssen selbstverständlich darin enthaltene Mindestwerte eingehalten werden.
1074 Seite/Page 2
R 60 s R 30 s
<1 1 to 1.5 1.5 to 2 2 to 3 3 to 4 >4
yes yes recommended no no no
The polarization index should be determined before and after drying - in the event that the winding requires drying - at the same temperature because to a certain extent the index is temperature dependent. Minimum value of the insulation resistance The insulation resistance of the complete winding to earth should have a certain minimum value which is shown in Fig. 1 as a function of the winding temperature. In order to eliminate the dependence of the insulation resistance on the size of the machine, the ordinate is formed by the (constant) product of the winding capacitance and the insulation resistance which is known as the insulation time constant τ = R10 x C in MΩ, µF = s The insulation resistance is the 10 min value which is considered to be the final measurement value. If machines are subject to foreign standards, the minimum values contained therein must be observed.
A Isolationszeitkonstante/Insulation time constant
10 =
R10C
B Umrechnungsfaktor für Bezugstemperatur 75° C → Conversion factor for reference temperature of 75°C →
s
Fig. 1
Nuttemperatur/Slot temperature
In bestimmten Fällen kann auch mit Hinweis auf die IEEE-Empfehlung St 43-1974 für den Mindestwert des Isolationswider-standes die Formel R is,min = kV + 1 M angewendet werden, wobei R is,min der Wert bei 40°C und kV die Maschinennennspannung ist. Die Wicklungskapazität C (alle 3 Stränge gegen Erde) wird einer evtl. durchgeführten tan-δ-Messung entnommen oder über die Stromaufnahme an 220 V Wechselspannung (50 Hz bzw. 60 Hz) oder mit einer C-Messbrücke bestimmt. C=
Mindestwert der Isolationszeitkonstante und Beispiel einer Trocknung Minimum value of the insulation time constant and example of a drying process
J U ⋅ω
In der Praxis genügt es an kleinen und mittleren Maschinen, d. h. bis ca. 20 MVA, den Mindest-Isolationswiderstand nach der angegebenen IEEE-Formel anzusetzen. Der Messwert R 1 min (d.h. 1 min Messdauer) ist ausreichend. Für die Temperaturabhängigkeit des Isolationswiderstandes kann man in grober Annäherung mit der Faustformel arbeiten, dass 10 K Erwärmung den Widerstand halbieren bzw., dass nach Abfall der Temperatur um 10 K sich der Isolationswiderstand verdoppelt. Die genaue Umrechnung ist aus Fig. 1 zu entnehmen (s.a. unter „Trocknungsmethoden“). Nach Erreichen des Mindest-Isolationswiderstandes kann die Trocknung beendet werden. Falls eines der beiden Beurteilungskriterien Polarisationsindex und Isolationswiderstand - zu niedrige Werte hat, sollte die Wicklung erst einmal visuell auf Feuchtigkeit, Verschmutzung und Beschädigung untersucht werden.
In certain cases the formula R is,min = kV + 1 in M may also be used with reference to IEEE recommendation St 43-1974 for the minimum value of the insulation resistance where R is,min is the value at 40°C and kV is the rated machine voltage. The winding capacitance C (all three phases to earth) may be determined from a loss-tangent test if carried out, by measuring the current input at 220 V AC (50 Hz or 60 Hz) or by means of a capacitance measuring bridge. C=
J U ⋅ω
In practice, it is sufficient with small and medium machines, i.e. up to approx. 20 MVA, to use the minimum insulation value in accordance with the IEEE formula given above. The measured value R 1 min (i.e. 1 minute value) is sufficient. To determine the insulation resistance at other temperatures, the rule of thumb can be used, i.e. for 10 K temperature rise the insulation resistance is halved and for 10 K temperature drop it is doubled. The exact conversion can be seen in Fig. 1 (see also "Drying Methods"). Drying can be stopped when the minimum insulation resistance is reached. If either of the measurement methods - polarization index or insulation resistance - produces values that are too low, the winding should initially be visually examined for moisture, contamination or damage. 1074 3
Seite/Page
s Können dabei Mängel nicht festgestellt oder nicht behoben werden, so muss eine Trocknung vorgenommen werden. Eine Trocknung ist natürlich auch dann erforderlich, wenn trotz guten Polarisationsindexes und guten Isolationswiderstandes offensichtlich Feuchtigkeit an der Wicklung vorhanden ist. Niedrige Werte des Isolationswiderstandes bei neuen oder reparierten Wicklungen können allerdings auch durch noch unvollständig ausgehärtete Harzsysteme verursacht sein. Der endgültige hohe Isolationswiderstand wird dann erst nach längerer Betriebszeit (einige hundert Stunden) erreicht. Bei zweifelhaften Messergebnissen sind deshalb unbedingt die Ursachen der Abweichungen zu suchen. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und ggf. auch Trocknung durchgeführt werden. Isolationswiderstand von Erreger- und Niederspannungswicklungen Niederspannungswicklungen in MICALASTIC- Ausführung sind im wesentlichen genauso zu beurteilen wie Hochspannungs-Wicklungen. Hier kann der Isolationswiderstand bei höheren Temperaturen im kΩ -Bereich liegen; es ist deswegen ratsam, mit Spannungen <500 V, z. B. 100 V, zu messen. Bei Läuferwicklungen wird der Isolationswiderstand gegen die geerdete Welle gemessen. Polwicklungen von Synchronmaschinen Erregerwicklungen von Synchronmaschinen sollen besonders wenn es sich um einlagige Wicklungen handelt - während ihrer Betriebszeit bei Betriebstemperatur einen Isolationswiderstand von 0,1 MΩ nicht unterschreiten; andernfalls sind die Wicklungen zu säubern bzw. zu trocknen. Besondere Sorgfalt ist den Polverbindungen und den Schleifringzuleitungen zu widmen. Im Neuzustand soll der Wert des Isolationswiderstandes pro Pol bei Raumtemperatur Ris > 200 MΩ sein. Dementsprechend ergibt sich für die gesamte Wicklung ein Mindestwert von Ris,min > 200 MΩ. Nach Polzahl
längerer Lagerung bzw. längerem Betrieb soll der Isolationswiderstand erst bei kleiner Spannung (500 V) gemessen werden, damit durch die Messspannung nicht Schäden an der (evtl. nachzubehandelnden) Isolierung entstehen. Gleichstrommaschinen Bei Gleichstromankern mit der Vielzahl der offen liegenden Wicklungsenden und den daran angeschlossenen Kommutatorlamellen gibt naturgemäß der gemessene Isolationswiderstand in erster Linie den Zustand der zwischen den nicht isolierten Leiterteilen und Eisen liegenden Kriechstrecken auf der Isolationsoberfläche an. Das gilt auch für die Hauptstromwicklungen (Kompensations-, Wendepol- und Reihenschlusswicklung) im Magnetgestell. Deswegen kann der Mindestwert des Isolationswiderstandes nur im Neuzustand gefordert werden. Schon Transport und Lagerung können die Isolationswerte erheblich verringern. Nach längeren Betriebs- bzw. Stillstandszeiten kann auch nach sorgfältiger Reinigung und Trocknung der ursprüngliche Isolationswert nicht mehr erreicht werden; Folgerungen auf den Zustand der Isolierung sind aus oben 1074 Seite/Page 4
If deficiencies cannot be detected or cannot be dealt with then the winding should be dried. Of course, drying is also necessary when, in spite of good polarization index and insulation resistance values, moisture is visible on the windings. Low insulation resistance values of new or repaired windings can also be caused by resin before it has completely cured. In this case the final insulation resistance value is only attained after an extended operating period (several 100 hours). If doubtful measurement results are obtained, it is important to determine the cause. In any case, whenever low insulation resistance values are obtained, carry out thorough cleaning and also, if required, drying. Insulation resistance of field and LV windings For LV windings using MICALASTIC insulation, basically the same applies as for HV windings. Here, the insulation resistance can be in the kΩ range at higher temperatures; it is therefore advisable to carry out the measurement with voltages less than 500 V, for example 100 V. The insulation resistance of rotor windings is measured relative to the earthed shaft. Field windings of synchronous machines During operation, the insulation resistance of the field windings of synchronous machines should not fall below a value of 0.1 MΩ at operating temperature - particularly in the case of single-layer windings. If the insulation resistance does fall below this value the windings must be cleaned and/or dried. Special attention should be paid to the pole connections and the slipring leads. When new, their insulation resistance per pole should be Ris > 200 M at room temperature. Accordingly, this results in a minimum value for the whole winding 200 MΩ. After prolonged storage or of Ris,min > No. of poles
after prolonged operation the insulation resistance should initially be measured with a low voltage (< 500 V) so that damage is not caused to the insulation as a result of the test voltage. If such damage does occur it must be repaired. DC machines The insulation resistance of DC armatures,which have a large number of open winding ends connected to commutator segments, is first and foremost a measure of the condition of the leakage paths over the insulation surface between the non-insulated conducting parts and the armature body. This is also true of the main windings (compensating, interpole and series windings) on the yoke. Thus the minimum value of the insulation resistance can only be specified in the new condition. Even shipment and storage can considerably reduce insulation resistance values. After extended periods of operation or standstill, the original value of the insulation resistance will no longer be attained even after careful cleaning and drying. Conclusions regarding the condition of the insulation are for the abovementioned reasons difficult.
s
oben genannten Gründen schwierig. Als grober Richtwert sollte bei Gleichstrommaschinen ein Isolationswiderstand von 1000 Ω/Volt Betriebsspannung bei 75°C angestrebt werden (entspricht ca. 20 kΩ/V bei 25°C). Einige Betreiber begnügen sich auch mit 500 Ω/Volt. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und gegebenenfalls auch Trocknung durchgeführt werden. Die Feldwicklung der Gleichstrommaschine soll bei 75°C einen Isolationswiderstand von 1 MΩ nicht unterschreiten. Trocknungsmethoden Beim Trocknen von Wicklungen kann die Wärme auf drei Arten zugeführt werden: 1 Erzeugung von Verlustwärme in der Maschine selbst, d. h. im Kurzschlussbetrieb. 2 Einspeisung von Strom aus fremden Energiequellen zur Erzeugung von Verlustwärme in den Wicklungen, z. B. mit Hilfe von Schweißumformern oder steuerbaren HochstromgIeichrichtern. 3 Warmluftzuführung nach entsprechender Abdeckkung mit Zeltplanen, Holzverkleidungen usw. Bei allen Methoden muss natürlich darauf geachtet werden, dass ein Luftaustausch zum Abführen der Feuchtigkeit erfolgt. Als Beharrungstemperatur beim Trocknen ist eine Temperatur von ca. 60°C anzustreben. Dieser Wert soll jedoch erst nach ca. vier Stunden bei Micalastic und ca. acht Stunden bei Mikafolium von Beginn der Trocknung an erreicht werden. Die Stromstärke in den Wicklungen bzw. die zugeführte Wärmemenge ist - angefangen von kleinen Werten unter Beachtung der Temperaturzunahme - so zu steigern bzw. einzustellen, dass diese Bedingung eingehalten wird. (Bei wasserstoffgekühlten Maschinen wird wegen des Luftaustausches mit normaler Frischluft getrocknet, deswegen den Kurzschlussstrom wegen höherer Erwärmung niedrig halten!) Durchführungen und Stützer vor dem Trocknen mit trockenem Lappen säubern. Bei der Durchführung einer Trocknung wird entsprechend der Fig. 1 nur der Isolationswiderstand der gesamten Wicklung gegen Erde gemessen, und zwar der 10-min-Wert. Die Umrechnung des jeweiligen Isolationswiderstandes auf die Bezugstemperatur von 75°C erfolgt nach Kurve B. Beispiel: Gemessen bei 40°C Ris,40 = 33 M , Ris,75 = 0,125 x 33 = 4,1 M Temperaturschwankungen während des Trockenbetriebes vermeiden. Bei vollständig gekapselten Maschinen Abzugsmöglichkeit (Klappen, Deckel) für feuchte Luft schaffen und für saubere, möglichst trockene Zuluft sorgen. Temperatur möglichst durch eingebaute Widerstandsthermometer (Nutthermometer) messen. Bei laufender Maschine zusätzlich Zu- und Abluft (Kalt- und Warmluft) messen. Bei fehlenden Nutthermometern und in jedem Fall bei stehender Maschine, möglichst an den Wickelköpfen Alkoholthermometer befestigen. Maßgebend ist die Temperatur an der räumlich höchsten Stelle.
A typical value of roughly 1000 Ω/Volt of operating voltage should be expected for DC machines at 75°C (corresponds to approx. 20 kΩ/V at 25°C). Some users are also satisfied with 500 ΩV. In any case, when poor insulation resistance values are obtained, carry out thorough cleaning and also, if required, drying. The field winding insulation resistance of DC machines is not to fall below 1 MΩ at 75°C. Drying methods For the purpose of drying windings, heat can be applied in three ways: 1 By producing heat losses in the machine itself, i.e. by operating the machine on short circuit. 2 By feeding current from external energy sources to produce heat losses in the windings, e.g. with the aid of m.g. welding sets or controllable high-current rectifiers. 3 By providing a flow of hot air after suitably covering with tarpaulins, wood cladding etc. With all these methods some air circulation must naturally be provided to allow the moisture to escape. A steady-state temperature of about 60°C is desirable for the drying process. However, this value should be reached not less then about four hours with Micalastic and about eight hours with micafolium after starting the drying process. The magnitude of the current in the winding or the quantity of heat applied should be controlled so as to fulfil this requirement, i.e. starting with low values and regulated according to the temperature rise. (With hydrogen-cooled machines, normal fresh air is used for drying due to the air circulation. The shortcircuit current must be kept low due to the increased temperature rise.) Bushings and post-type insulators should be cleaned with dry rags before drying. During the drying process, only the insulation resistance of the whole winding to earth is measured, i.e. the 10 min value, according to Fig. 1. The insulation resistances are converted to the reference temperature of 75°C from curve B. Example: Measured at 40°C Ris,40 = 33 M , Ris,75 = 0.125 x 33 = 4.1 M Avoid temperature variations during the drying process. With totally enclosed machines provision should be made (by removing covers, etc.) to permit the moisture to escape and for clean, dry air to enter. Measure the temperature, using the built-in resistance thermo-meters (slot thermometers) if possible. In addition, in the case of running machines, measure the inlet and outlet (cold and hot air) temperatures. Where slot thermometers are not provided and, in any case, with stationary machines, install alcohol thermometers on the winding overhangs if possible. The most important measurement is the temperature at the highest point. 1074 5
Seite/Page
s Quecksilberthermometer wegen Bruchgefahr nicht verwenden, bei Wechselstrom außerdem Fehlanzeige durch Wirbelströme. Unteres Ende der Thermometer zur besseren Wärmeübertragung mit Aluminiumfolie umwickeln und gegen Abkühlung mit Filz oder Watte bedecken. Bei Maschinen kann nicht von der Gehäusetemperatur auf die Wicklungstemperatur geschlossen werden. Die Temperaturerhöhung über der Umgebungstemperatur bei Maschinen ohne Widerstandsthermometer sollte außerdem aus der Zunahme des gemessenen Wicklungswiderstandes errechnet werden. Faustregel: Je 10 K Temperaturerhöhung nimmt der Widerstand bei Cu um 4 % zu. Maschine nach beendetem Trockenbetrieb möglichst bald belasten, damit erneute Aufnahme von Feuchtigkeit verhindert wird. Falls eine Stillstandsheizung vorhanden, so ist diese natürlich nach beendeter Trocknung in Betrieb zu nehmen. Kurzschlusstrocknung von Generatoren Bei Generatoren sollte die Wicklung möglichst im Kurzschluss bei laufender Maschine getrocknet werden, damit keine Heißstellen durch Wärmestau entstehen. Die dreipolige Kurzschlussverbindung so ausführen, dass der Nennstrom der Maschine keine nennenswerten Erwärmungen ergibt (Richtwert 1 A/mm²). Kurzschlussverbindung möglichst unmittelbar an den Generatorklemmen anbringen. Liegen zwischen Generator und Kurzschlussverbindung Leistungs- oder Trennschalter, muss verhindert werden, dass diese während des Trocknens geöffnet werden können. In diesem Falle käme die Maschine sofort auf Spannung. Im Bereich der kurzgeschlossenen Wicklung liegende Spannungswandler oder Kondensatoren abklemmen, da sie die Messung des Isolationswiderstandes verfälschen. Bei der praktischen Durchführung der Kurzschlusstrocknung ist auf folgendes zu achten: Spannungsreglerumschalter auf „Hand“ schalten. Bei Transipolerregung jeden Strang der Sekundärwicklung der Übertragerdrosseln einzeln kurzschließen. Verbindung der Oberspannungswicklung des Erregertransformators zur Generatorleitung unterbrechen und Sekundärwicklung des Erregertransformators von Fremdnetz einspeisen. Vorsicht, Rückspannung! In den ersten sechs bis acht Stunden (abhängig von Maschinengröße) Ständerstrom von etwa 0,5 JN an so weit steigern, dass 60°C Wicklungstemperatur nicht überschritten werden. Kühlwassermenge entsprechend einstellen. Nennstrom nicht überschreiten. Überstromschutz einschließlich Entregungseinrichtung in Betrieb nehmen. Liegt Kurzschluss im Differentialschutzbereich, stromdurchflossene Stromwandlerkreise kurzschließen. Stündlich Nuttemperatur, Zu- und Ablufttemperatur und Generatorstrom notieren.
1074 Seite/Page 6
Mercury thermometers should not be used because of the danger of breakage and also because of incorrect readings resulting from AC induced eddy currents. Wind aluminium foil around the lower end of the thermometers to improve the thermal contact and cover with felt or cotton wadding to reduce the effects of cooling. Do not assume that the temperature of the machine housing is also the temperature of the winding. The rise in temperature above the ambient temperature of machines without resistance thermometers should be calculated from the increase in the measured winding resistance. Rule of thumb: For every 10 K temperature rise the resistance of copper rises by 4 %. After completing the drying process, the machine should be loaded as soon as possible to prevent moisture from being re-absorbed. Where anti-condensation heating is provided, this should naturally be put back into service after drying. Short-circuit drying of generators The windings of generators should preferably be dried with the machine running on short circuit to prevent hot spots being formed by heat accumulation. The three-phase short-circuit link should be designed so that the rated current of the machine does not cause the link to be noticeably heated (typical value 1 A/mm²). Connect the short-circuit link as close as possible to the generator terminals. If circuitbreakers or isolating breakers are in circuit between the generator and the short-circuit link, measures must be taken to ensure that they cannot be opened during the drying process. If this did occur, voltage would immediately appear at the generator terminals. Voltage transformers or capacitors in the region of the short-circuited winding should be disconnected since they introduce errors into the insulation resistance measurement. During the short-circuit drying of windings the following should be observed: Switch the voltage regulator changeover switch to "Manual". With Transipol excitation each phase of the secondary winding of the air-gap reactor is individually short-circuited. Break the connection between the excitation transformer higher-voltage winding and the air-gap reactors and feed the secondary winding of the excitation transformer from an external system. Beware - danger of feedback voltage. In the first 6 to 8 hours (depending on the size of the machine) increase the stator current from about 0.5 IN to a value such that the winding temperature does not exceed 60°C. Set the cooling-water flow accordingly. Do not exceed the rated current. Energize the overcurrent protection including the de-excitation equipment. If the short circuit is in the zone of the differential protection, short-circuit the current circuit of the current transformers. Record the slot temperature, inlet and outlet temperatures and the generator current every hour.
s Der Fortgang der Trocknung ist durch wiederholte Messungen des Isolationswiderstandes - 3 Stränge gegen geerdetes Gehäuse - unter Beobachtung der Wicklungstemperatur zu überwachen (siehe Beispiel Fig. 1). Die Wicklung muss für diese Messung spannungsfrei sein. Kurzschlusstrocknung von Asynchronmaschinen Das Trocknen von asynchronen Schleifringläufermotoren im Kurzschluss erfordert besondere Vorkehrungen, da Kurzschluss hier die Einspeisung bei stillstehendem Läufer bedeutet. Der Läufer ist unmittelbar an den Schleifringen kurzzuschließen (z. B. mit Schraubzwingen) und gegen Drehung zu sichern. Bei den meisten Motoren bis 6,3 kV Nennspannung bietet sich eine Trocknung durch Speisung der Ständerwicklung aus dem Niederspannungs-Drehstromnetz an (220, 380 bzw. 500 V), falls dieses Netz stark genug ist. Auch wenn der sich einstellende Strom geringer als der halbe Nennstrom ist, ist auf entstehende Wärmenester zu achten, da die Maschine still steht. Für einen ständigen Luftaustausch muss gesorgt werden. Der Läufer selbst soll etwa stündlich um 90° gedreht werden. Damit die feuchte Luft austreten kann, ggf. vorhandene Deckel, Verschlüsse oder ähnliches öffnen. Etwa vorhandene Kondens-Wasserlöcher auf der Unterseite des Motors öffnen. Ist ein Drehstromgenerator vorhanden, kann mit diesem die Ständerwicklung des Schleifringläufermotors gespeist werden. Der Strom in der Ständerwicklung ist dann so einzustellen, dass ca. 60°C innerhalb von vier bis acht Stunden erreicht werden. Käfigläufermotoren können unter Beachtung der obigen Hinweise auf dieselbe Art getrocknet werden. Trocknen mit Schweißumformer Werden für die Erwärmung einer Maschinenwicklung Schweißumformer verwendet, dürfen diese nicht ohne weiteres parallelgeschaltet werden. Es ist nachzumessen, ob die Gleichspannung bei Leerlauf gleich ist. Die Erregerwicklung F1 – F2 aller parallel zu schaltenden Schweißumformer mit einem zusätzlichen Schalter gemeinsam ein- bzw. ausschalten, nachdem die Umformer drehstromseitig angelassen bzw. ausgeschaltet sind Zulässigen Strom im Strang der Wicklung höchstens 50 % des Nennstromes einstellen, da die Lüftung fehlt. Strom und Spannung jedes Umformers messen (zulässige Grenzleistung beachten). Die einzelnen Stränge der Wicklung in Reihe oder parallel schalten. Bei Reihenschaltung der einzelnen Stränge diese unsymmetrisch (z. B. Plus an U1, U2 an V1 V2 an W1 W2 an Minus) schalten, um den axialen magnetischen Fluss in der Welle gering zu halten. Bei nicht herausgeführtem Sternpunkt müssen zwangsläufig zwei Stränge parallel in Reihe zum dritten Strang geschaltet werden. Anschlüsse etwa stündlich wechseln, damit sich die Wicklung gleichmäßig erwärmt. Bei offenem Sternpunkt stündlich den Isolationswiderstand jedes Stranges gegen Gehäuse messen. Gleichstrom vor dem Abschalten langsam heruntersteuern, da andernfalls wegen der Wicklungsinduktivität starke Lichtbögen auftreten können.
Monitor the progress of the drying process by repeated measurement of the insulation resistance three phases to earthed frame -while observing the winding temperature (see example Fig. 1). For this measurement the winding must be isolated. Short-circuit drying of induction machines Special arrangements must be made when drying slipring induction motors by short-circuiting because in this case short circuit means feeding the rotor at standstill. The rotor must be short-circuited directly at the sliprings, for example by bolted clamps, and also mechanically locked to prevent rotation. Most motors up to 6.3 kV rated voltage can be dried by feeding the stator winding from a three-phase LV supply (220, 380 or 500 V) if the supply system can take the load. Even when the current setting is lower than half the rated current, make sure that hot spots are not formed due to the machine being stationary. Ensure that continuous air circulation is provided. The rotor should be turned through 90° about every hour. In order to allow the moisture to escape, covers or the like should be opened. Where a drain plug is provided for water condensation on the underside of the motor this should be opened. If a three-phase generator is available this can be used to supply current to the stator winding of the slipring motor. The current should be set so that a temperature of about 60°C is reached in a period of four to eight hours. Cage motors can also be dried by the abovementioned procedure. Drying with welding sets If m.g. welding sets are to be used for drying machine windings certain precautions must be taken before connecting them in parallel. Measure the open circuit DC voltages to ensure that they are all equal. Connect the excitation windings F1 – F2 of all the welding sets required to operate in parallel through an additional switch. This allows all the field windings to be switched on or off together depending on whether the three-phase motors of the m.g. sets have been started or stopped. Because there is no ventilation, adjust the maximum permissible current per winding phase to 50 % of the rated current. Measure the current and voltage of each m.g. set (observe permissible limits). Connect the individual phases of the winding either in series or parallel. With series connection connect the individual phases unsymmetrically (e.g. plus to U1, U2 to V1 V2 to W1 W2 to minus) in order to keep the axial magnetic flux in the shaft low. Where the neutral point is not brought out, two phases must inevitably be paralleled and connected in series to the third phase. Change the connection order about every hour so that the winding is evenly heated. With the neutral point open, measure the insulation resistance of each phase to frame hourly. Before switching off a direct current, the current should be gradually reduced, otherwise the winding inductance will cause heavy arcing. 1074 7
Seite/Page
s Da bei stehender Maschine die Temperaturverteilung nicht der Verteilung bei Lüftung entspricht, 60°C Wicklungstemperatur nicht überschreiten. Läufer (falls eingebaut) stündlich um 90° drehen. Trocknen mit Warmluft Falls die Verfahren 1 und 2 nicht anwendbar sind, muss mit Warmluft getrocknet werden, die von einer äußeren Energiequelle zur Verfügung gestellt wird. Naturgemäß kommt dieses Trocknungsverfahren hauptsächlich für Synchronmotoren und Gleichstrommotoren in Betracht, bei denen eine Erwärmung über die eigenen Stromwärmeverluste nicht möglich ist oder die Schweißumformer nicht eingesetzt werden können. Die Heizkörper sind so anzuordnen, dass einerseits durch geeignete Abdeckungen die zu trocknende Wicklung im Warmluftstrom steht, andererseits aber nicht durch Wärmestau Wärmenester mit zu hohen Temperaturen entstehen, d. h. es muss eine Luftbewegung mit Luftaustausch zustande gebracht werden. Die Warmluft soll 80°C nicht überschreiten, beim Austritt aus der Maschine soll sie noch 10 K über der Umgebungstemperatur liegen.. Taupunktunterschreitung in der Maschine ist zu vermeiden, d. h. am Austritt darf sich keine Feuchtigkeit niederschlagen. Dieses Verfahren der Trocknung erfordert mehr als die beiden anderen Verfahren ständige Überwachung, da Brandgefahr besteht. Auch hier ist darauf zu achten, dass der Läufer stündlich um ca. 90° weitergedreht wird.
1074 Seite/Page 8
Since the temperature distribution of a machine at standstill is different from that in the running condition, a winding temperature of 60° must not be exceeded. If the rotor is in position, turn it through 90° every hour. Drying with hot air If methods 1 and 2 cannot be applied, the machine must be dried with hot air obtained from an external heat source. This method of drying is usually adopted for synchronous motors and DC motors where direct heating by means of current losses is not possible or when an m.g. welding set cannot be used. The heaters should be arranged so that by means of suitable covers the winding being heated is in the hot-air stream without concentrating the heat to the extent that excessive temperatures are reached. This requires that a continuous circulation and replacement of the air takes place. The air inlet temperature should not exceed 80°C and the outlet temperature should be at least 10 K above the ambient air temperature. Do not allow the air temperature within the machine to drop below the dew point, i.e. there must be no moisture condensation forming at the outlet. Because of the risk of fire this method of drying requires constant monitoring to a much larger extent than the other two methods This method also requires that the rotor be turned through 90° about every hour.
© Siemens AG All Rights Reserved Alle Rechte vorbehalten Printed in Germany
Bestell-Nr./Order-No. D 1074g-0312 de-en
Siemens Electric Machines s.r.o.
Tightening torques Synchronous generator Unless other specific information is given, the following tightening torques are valid for normal connections of fastening screws, bolts and nuts. Tightening torques in Nm a tolerance of ± 10%
Tightening torques for bolts with strength class 8.8 (or A4-70) connecting components with high material strength (e.g. grey cast, steel, cast steel) Size of a thread Tightening torques
M4
M5
M6
M8
M10
M12
M16
M20
M24
M30 M36
3
5
8
20
40
70
170
340
600
1200 2000
(Nm)
Tightening torques for bolts with strength class 5.6 or for bolts connecting components with low material strength (e.g. aluminum) Size of a thread Tightening torques (Nm)
M4 M5
M6
M8
M10
M12
M16
M20
M24
M30 M36
1,3
4,5
10
20
34
83
160
280
570
2,6
990
Tightening torques for electrical connection where permissible torque is usually limited by the bolts materials and/or the load capability of the insulators Size of a thread M4 M5 M6 M8 M10 M12 M16 Tightening torques (Nm)
1,2
2,5
4
8
13
20
40
Special parts: Diode mounting torque (D170U25C, D170S25C) ............... 20 Nm Terminals in main terminal box (Connection elements – strength class 8.8)
Product documentation – Tightening torques 1F. v1.2 P 2-035 (09/06/05)
M10 M12 M16
40 Nm 70 Nm 155 Nm
page 1/1
LIST OF RECOMMENDED SPARE PARTS Turbo Generator: Type: Serial No: Project No:
1DT 4138-8AD02-Z 1219294/100 3488017
Item
Description
Quantity
Location
Type
1
Slide Bearing Shell
1 set
DE Bearing
EFZLK 22-250
Renk
2
Slide Bearing Shell
1 set
NDE Bearing
EFZLQ 22-225
Renk
1
DE Bearing
1
NDE Bearing
1
NDE
DEW 8,5-400-460V/1000W SN70621
1 set / 6 pcs. 1 set / 6 pcs.
V1-V6 / Rectifier Wheel, U / Bus Rings at Rectifier Wheel
D660N-18T SN72544 Varistor disc C13/180V SN72543
3 4
Bearing Thermometer for remote reading/alarm Bearing Thermometer for remote reading/alarm
2PT100/B-235X6S-G1/2-3/0-N, L=235 mm 2PT100/B-250X6S-G1/2-3/0-N, L=250 mm
Manufacturer
Dosch Dosch
5
Space Heater Element
6
Silicon Diode
7
Protective Varistor
8
Hot/cold air temperature detectors
3
Cooler housing
M12, 2XPT100A, PT35/70 MM
9
Leakage relay
1
Auxiliary terminal box
RM4 L32MW, 24 Vdc
Telemecanique
10
Brush
2
Shaft earthing
BRE 25, MK75, SN73005
Schunk
1 set
DE Bearing
330880-16-15-061(154mm)-03(M20)-02
Bently Nevada
1 set
NDE Bearing
330880-16-15-066(168mm)-03(M20)-02
Bently Nevada
11 12
PROXPAC PROXIMITY TRANDUSER ASSEMBLY PROXPAC PROXIMITY TRANDUSER ASSEMBLY
We recommend to order spare parts by SIEMENS only. When ordering spare parts, please state the Type and Serial No. of the generator in question.
Doebeln Elektrowaerme Eupec Langlade & Picard Ravet
Part Number 131236-01 Revision E, August 2003
PROXPAC® PROXIMITY TRANSDUCER ASSEMBLY Manual
Proxpac Proximity Transducer Assembly Manual
Copyright © 1995 – 2003 Bently Nevada LLC All Rights Reserved. The information contained in this document is subject to change without notice. The following are trademarks of Bently Nevada LLC in the United States and other countries: ACM™, Actionable Information®, Actionable Information to the Right People at the Right Time®, ADRE, ™, Asset Condition Management™, Asset Condition Monitoring™, Bently ALIGN™, Bently BALANCE®, Bently DOCUVIEW™, Bently LUBE™, Bently Nevada, Bently PERFORMANCE™, Bently RELIABILITY™, CableLoc™, ClickLoc™, Data Manager, Decision SupportSM, DemoNet™, Dynamic Data Manager, Engineer Assist™, FieldMonitor™, flexiTIM™, FluidLoc, Helping You Protect and Manage All Your Machinery, HydroScan, HydroView™, Key ∅, Keyphasor, Machine Condition Manager™ 2000, MachineLibrary™, Machine Manager™, MicroPROX, Move Data, Not People, Move Information, Not Data™, NSv™, Prime Spike™, PROXPAC, Proximitor, REBAM, RuleDesk™, SE™, Seismoprobe, Smart Monitor, Snapshot™, System 1™, System Extender™, TDXnet™, TDIXconnX™, The Plant Asset Management CompanySM, TipLoc™, TorXimitor, Transient Data Manager, Trendmaster, TrimLoc™, Velomitor Bently Nevada’s orbit logo and other logos associated with the trademarks in bold above, are also all trademarks or registered trademarks of Bently Nevada in the United States and other countries. The following ways of contacting Bently Nevada are provided for those times when you cannot contact your local Bently Nevada representative: Mailing Address Telephone Fax Internet
ii
1631 Bently Parkway South Minden, NV 89423 USA 1 775 782 3611 1 800 227 5514 1 775 215 2876 www.bently.com
Related Documents The following documents contain additional information that you may find helpful when you install the transducer. This manual refers to these documents by document number.
Installing the Transducer Proximity Probes and Related Accessories (Bently Nevada application note AN028). Guidelines for Grounding Bently Rotating Machinery Information Systems (Bently Nevada application note AN013). Installation of Electrical Equipment in Hazardous Areas (Bently Nevada application note AN015).
Electrical and Mechanical Runout "Glitch": Definition of and Methods for Correction, including Shaft Burnishing to Remove Electrical Runout (Bently Nevada application note AN002). API 670, third edition, Section 4.1.1.2: Machine Shaft Requirements for Electrical and Mechanical runout. (Available from the American Petroleum Institute, Publications and Distribution, 1220 L Street N.W., Washington D.C., 20005. Phone: (202) 682-8375.)
Reference Performance Specifications for the PROXPAC® Proximity Transducer Assembly (Bently Nevada document number 158735). Bently Nevada Glossary (Bently Nevada document L1014).
European CE mark for the Bently Nevada PROXPAC® Transducer Assembly In this Document is a list of the PROXPAC® transducer assemblies that have the CE mark, applicable standards used for certification, and installation instructions required for compliance.
Proximity Transducer Systems are electronic devices typically used in industrial applications. The PROXPAC® Transducer has been certified using the same Technical Construction File (TCF) and declaration of conformity as the 3300 8mm transducer system because they are similar in design and application. The PROXPAC® Transducer Assembly consists of a Proximitor® Sensor and a 3300 8mm reverse mount proximity probe built into a probe housing. iii
Proxpac Proximity Transducer Assembly Manual
TCF through TÜV Rheinland of North America A Technical Construction File has been prepared through TÜV Rheinland of North America (TÜV Rheinland File Number: P9472350.02). The certificate of compliance is for Directive 89/336/EEC (EMC Directive). The applicable Generic Norms are: EN50081-2 and EN50082-2.
Installation Instructions (Reference Figure 0-1) These instructions are an addition to the Installation Instructions Section of the manual.
Compliant Systems and Component Part Numbers #
Model Names
Model Numbers
10 PROXPAC® Transducer
330800, 330801, 132306, 330105, 330106, and any PROXPAC® Assembly manufactured from these standard modules**
Includes all options and all approval versions of the base model numbers listed. **--any proximity transducer, proximity probe, or extension cable which works correctly with the listed modules.
Testing and Test Levels Title
EN
EN
ENV50140
ENV50140
EN 61000-4-4
ENV50142
ENV50141
EN 61000-4-8
55011
61000-4-2
(IEC 801-3)
Rad. RFI
(IEC 801-4)
(IEC 801-5)
(IEC 801-6)
(IEC 1000-4-8)
(EN55022)
(IEC 801-2)
Rad. RFI
Surge
Cond. RFI
Mag. Fields
EFT Emission
ESD
Test Levels
Emission Class A
4kV; 8kVc
Criteria
N/A
A
10V/md
10V/me
1kVf
0.5kVf
10Vg
30A/m, 50Hz
A
A
A
A
B
A
These notes listed below apply only to the table “Testing and Test Levels” c discharge method: Contact; Air d 80-1000 MHz sweep with 80% 1 kHz sine wave amplitude modulation e 900 MHz dwell with 100% 200 Hz square wave modulation f I/O lines tested with conduit removed g 150 kHz-80 MHz sweep with 80% 1 kHz sine wave amplitude modulation, conduit removed.
Bently Nevada Technical Publication The PROXPAC® Transducer is immune to EMI at levels as specified by EN50082-2 (i.e. 10 V/m signal level from 80 - 1000 MHz except for ITU broadcast frequency bands of 87 - 108 MHz, 174 - 230 MHz, and 470 - 790 MHz where the level shall be 3 V/m). Vibration readings due to EMI interference will be less than 1.0 mil pp. iv
Proximity Probes All probes must be mounted in an EMI shielded environment (i.e. typically inside a machine casing).
Field Wiring All field wiring must include a foil or braided shield that is connected to ground.
EMI Shielding With Conduit All field wiring, from the PROXPAC® enclosure to a receiving unit (i.e. monitor), must be shielded from EMI energy. Acceptable EMI shielding includes either rigid or flexible metal conduit. The EMI shield, in this example conduit, is grounded through the PROXPAC® at the point of entrance to the PROXPAC® enclosure. Grounding at any subsequent junction enclosure is also required.
EMI Shielding Without Conduit Acceptable wiring includes a multi-conductor cable with both a foil and a braided shield. The shield must be grounded to the metal liner inside the PROXPAC® enclosure. Using the nut on one of the hole plugs to ground the shield is acceptable. The shield must be maintained around the wiring as it is grounded to the enclosure. Grounding at any subsequent junction enclosure is also required. Grounding the cable shield at the PROXPAC® is not acceptable if intrinsic safety barriers are being used. Grounding the cable shield at both ends may cause errors due to current flowing in the wiring shield if the grounds are not at the same potential.
EMI Suppression Ferrite An EMI suppression ferrite must be clipped onto the field wiring close to the Proximitor® Sensor's terminal strip. Remove jacket, foil and braided shield from the field wiring where the EMI suppression ferrite is placed.
Non Grounded Bearing Housings When the PROXPAC® is installed on a bearing housing which is isolated from ground, mount the PROXPAC® on an insulated bushing to maintain the housing isolation and ground the PROXPAC® at the conduit fitting.
v
Proxpac Proximity Transducer Assembly Manual
MADE IN U.S.A.
OUT COM V T
3300 8mm PROBE ONLY 1 METER CABLE LENGTH
Figure 0-1: Front view with cover removed. (1) (2) (3) (4) (5) (6)
vi
PROXPAC® Enclosure Field Wiring EMI Suppression Ferrite (p/n 02200068) Plug Conduit To Monitor
Contents Related Documents ...........................................................................................................................iii Installing the Transducer...............................................................................................................iii Electrical and Mechanical Runout ................................................................................................iii Reference ......................................................................................................................................iii European CE mark for the Bently Nevada PROXPAC® Transducer Assembly .............................iii In this Document...........................................................................................................................iii Proximity Transducer Systems .....................................................................................................iii TCF through TÜV Rheinland of North America .......................................................................... iv Installation Instructions................................................................................................................. iv Compliant Systems and Component Part Numbers ...................................................................... iv Testing and Test Levels ................................................................................................................ iv Bently Nevada Technical Publication............................................................................................... iv Proximity Probes............................................................................................................................ v Field Wiring ................................................................................................................................... v EMI Shielding With Conduit ......................................................................................................... v EMI Shielding Without Conduit .................................................................................................... v EMI Suppression Ferrite ................................................................................................................ v Non Grounded Bearing Housings .................................................................................................. v
Section 1 — System Description ......................................................... 1 Receiving, Inspecting, and Handling the System............................................................................... 1 Customer Service ............................................................................................................................... 1
Section 2 — Installation........................................................................ 3 Installing the Probe Sleeve and Housing ........................................................................................... 3 Checking the Resonant Frequency of the Probe Sleeve..................................................................... 3 Connecting the Field Wiring.............................................................................................................. 8 Removing and Reinstalling Gapped Probes....................................................................................... 8
Section 3 — Maintenance and Troubleshooting .............................. 11 Scale Factor Verification ................................................................................................................. 12 Troubleshooting ............................................................................................................................... 14 Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc....................................................................... 15 Fault Type 2: VSIG = 0 Vdc ............................................................................................................. 17 Fault Type 3: -1 Vdc < VSIG < 0 Vdc .............................................................................................. 18 Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc ............................................................................. 20 Fault Type 5: VSIG = VXDCR ............................................................................................................. 21
Section 4 — Ordering Information..................................................... 23 Notes: ........................................................................................................................................... 23 PROXPAC® Proximity Transducer, English .............................................................................. 23 PROXPAC® Proximity Transducer, Metric................................................................................ 24 Accessories .................................................................................................................................. 25
Section 5 — Specifications ................................................................ 29 Electrical .......................................................................................................................................... 29 Hazardous Area Approvals .............................................................................................................. 30 Mechanical ....................................................................................................................................... 31 Environmental Limits ...................................................................................................................... 32 Effects of 60 Hz Magnetic Fields up to 420 Gauss:..................................................................... 33 Patents .......................................................................................................................................... 33 vii
Proxpac Proximity Transducer Assembly Manual
viii
Section 1 — System Description
Section 1 — System Description The PROXPAC® Proximity Transducer Assembly is similar in external appearance and mounting detail to our 31000/32000 Proximity Probe Housing Assemblies. It offers the same advantages and features as these conventional housings for external adjustment of, and access to, proximity probes. However, the PROXPAC® Assembly also contains its own Proximitor® Sensor inside the housing’s cover. This design makes the PROXPAC® Assembly a completely self-contained proximity probe system, and eliminates the need for an extension cable between the probe and its associated Proximitor® Sensor. It also eliminates the need for a separate Proximitor® housing. For short cable runs, field wiring is connected directly between the monitors and PROXPAC® Assemblies. For longer cable runs, a junction box is often mounted at or near the machine skid to house terminal strips. The field wiring is connected to terminal strips in the junction box, providing access to Proximitor® signals at a convenient location near the machine. The PROXPAC® housing is made of Polyphenylene Sulfide (PPS) which is an advanced, molded thermoplastic. It was chosen specifically to replace previous steel and aluminum housings offered by Bently Nevada, and incorporates glass and conductive fibers in the PPS for added strength and electrostatic dissipation. The PROXPAC® housing is rated for Type 4X and for IP66 environments for extra protection in severe environments.
Receiving, Inspecting, and Handling the System Application Alert: Although the terminals and connector on the Proximitor Sensor have protection against electrostatic discharge, take reasonable precautions to avoid electrostatic discharge when handling the Proximitor® Sensor.
Carefully remove all equipment from the shipping containers and inspect the equipment for shipping damage. If shipping damage is apparent, file a claim with the carrier and submit a copy to the nearest Bently Nevada office. Include part numbers and serial numbers on all correspondence. If no damage is apparent and the equipment is not going to be used immediately, return the equipment to the shipping containers and reseal until ready for use. Store the equipment in an environment free from potentially damaging conditions such as high temperature or a corrosive atmosphere. See Specifications Section for environmental specifications.
Customer Service Bently Nevada maintains numerous Sales and Service offices worldwide. To locate the office nearest you, visit our website at www.bently.com . Here, you can also find specifications on all standard product offerings. Support for products and services should be directed to one of these departments: For product quotations, product applications, product ordering, scheduling onsite Services, and questions regarding existing orders, please contact your nearby Bently Nevada Sales and Service Office. 1
Proxpac Proximity Transducer Assembly Manual
For general product pricing, delivery, or other ordering information, contact your local BNC office or contact Customer Service Department, Minden, Nevada, USA Phone: 1-775-782-9913 Fax: 1-775-782-9259. For technical questions or problems regarding installed BNC products, contact our Technical Support Staff at: [email protected] or at the following locations: Technical Support (North America) Phone: 1-775-782-1818 Fax: 1-775-782-1815 Technical Support (UK) Phone: (44) 1925 818504 Fax: (44) 1925 817819
2
Section 2 — Installation
Section 2 — Installation This section shows how to: •
Install the probe sleeve and housing
•
Connect the field wiring
•
Install replacement components
Installing the Probe Sleeve and Housing The following figures show the minimum values for side clearance and target configuration for the 3300 8mm reverse mount probe used in the PROXPAC® Proximity Transducer Assembly.
15.2 mm (0.6 in) 15.2 mm (0.6 in)
35.6 mm (1.4 in) Shaft Shaft
6.4 mm (0.25 in)
17.8 mm (0.70 in)
8.9 mm (0.35 in)
8.9 mm (0.35 in)
Shaft
Checking the Resonant Frequency of the Probe Sleeve The probe sleeve length is defined as the probe penetration depth plus the standoff adapter length. The probe sleeve will vibrate unless proper stiffening supports are used. Evaluate each machine installation to be sure the vibration of the sleeve is within acceptable levels. The resonant frequency of the probe sleeve for various lengths is shown below.
3
Proxpac Proximity Transducer Assembly Manual
Probe Sleeve Resonant Frequency
The resonant frequency (Hz) should be at least three times the machine running speed in Hz.
Hz =
rpm 60
Refer to document AN028 for more information on mounting brackets and adapters or contact your nearest Bently Nevada office for a copy of the Bently Nevada catalog. The figure below shows the installation procedure for the PROXPAC® housings. Although only one possible mounting configuration is shown, the plastic housing can mount on top of the outer sleeve through any one of the four holes in its sides. The retaining chain can be fastened to any one of the four corner holes in either the housing or the cover to allow for the most convenient positioning. The retaining nut slides through any of the four holes in the side of the housing so that the probe can be gapped before attaching the housing to the outer sleeve. This nut contains a thread locking patch which creates a resistance to turning that is strong enough to resist loosening under vibration and to require a wrench to turn the nut. By following the installation procedures outlined on the next page, the probe can be fully gapped before the plastic housing and its attached cover are installed and conduit or armored cable is connected. The numbers in the figure refer to the steps in the procedure. 4
Section 2 — Installation
Vertical Installation Conduit Fitting Probe Cable Connector Protector
Housing
Captive Screws
7 6
Proximitor® Sensor Housing Cover
Probe Sleeve with Wrench Flats
5 4
Locknut
Retaining Plate Retaining Nut
2
Outer Sleeve
1 Machine Case
5
Proxpac Proximity Transducer Assembly Manual
1.
Install the outer sleeve on the machine.
2.
Install the probe sleeve and adjust the probe gap using the figure below. Tighten the probe sleeve locknut to the recommended torque (see specifications). Apply medium strength, removable threadlocking compound (Loctite 242) or use equivalent means to prevent the probe sleeve locknut from loosening.
3.
Seal unused holes in the housing with blanking plugs. Tighten the blanking plug nut to 0.5 N•m (5 in lb).
4.
Place the housing on the outer sleeve and slide the retaining plate under the retaining nut. Tighten the retaining nut to 29.5 N•m (260 in lb).
5.
Attach conduit or cable gland as necessary. Install the conduit such that liquid will not enter PROXPAC® housing.
6.
Connect the field wiring, probe cable, and connector protector.
7.
Fasten the cover in place.
6
Blanking Plug Body Rubber Seal Backplate Torque Nut To 0.5 N-M (5 IN-LB)
Section 2 — Installation
Voltage at the center of the linear range (typically –9Vdc).
Voltmeter
Power Supply
-9 Vdc
24 Vdc
10 kΩ
Spacer
Proximitor® Sensor
3300, 8mm 1metre probe
1.27 mm (50 mil)
Shaft
Mechanical Method
Shaft
Electrical Method
7
Proxpac Proximity Transducer Assembly Manual
Connecting the Field Wiring Use the following wiring diagrams to connect the field wiring between the Proximitor® Sensor and the monitoring instruments (refer to application notes AN013 and AN015 for more information).
No Barriers Transducer Power Common Input Signal
To Probe
Monitor Terminal Strip Connect shield to single point ground at monitor.
Cable Shield Proximitor® Sensor
External Barriers Transducer Power Common Input Signal Monitor Terminal Strip
To Probe Cable Shield
External Barrier
Cable Shield Proximitor® Sensor
See the frequency response graph, Figure 5-1, at the end of the Specifications section of this document as a guideline for determining maximum field wiring length for 18 gauge wire.
Removing and Reinstalling Gapped Probes Caution: The Housing could be under high pressure. Removing the cover could result in injury or permanent eye damage. Make sure the pressure is equalized before removal. In some instances you may need to remove an externally mounted probe for maintenance or replacement. If the probe has been gapped, the reinstallation of the probe sleeve can be quickened by marking the location of the probe sleeve locknut before removing the probe sleeve from the outer sleeve. Mark the probe sleeve locknut position with an indelible marking pen, by temporarily locking it with a second jamnut, or by other similar means. This will allow you to screw 8
Section 2 — Installation
the probe sleeve back in to its approximate position. Take care to avoid turning the probe into the shaft. Do not use this method as a substitute for gapping probes. Proper installation always requires that the gapping procedures be followed. When the probe sleeve is removed, the outer sleeve will be left with an opening into the machine case. This opening can be sealed using Bently Nevada part number 104968-01(english version) or 104968-02 (metric version) to prevent fluid leakage from the machine case or contamination of lube oil. This seal is effective to 3.4 bar (50 psi).
9
Proxpac Proximity Transducer Assembly Manual
10
Section 3 — Maintenance and Troubleshooting
Section 3 — Maintenance and Troubleshooting This section shows how to verify that the system is operating properly and identify parts of the system that are not working properly. The transducer system does not require verification at regular intervals. You should, however, verify operation by using the scale factor verification on the following page if any of the following conditions occur: •
components of the system are replaced or disturbed
•
the performance of the system changes or becomes erratic
•
you suspect that the transducer is not calibrated correctly
The scale factor verification and the adjustment procedure require the following instruments: -
digital multimeter
-
power supply
-
spindle micrometer
-
fixed resistor, 10 kΩ
The scale factor verification uses the test setup shown in the following figure:
Digital Multimeter
Power Supply -24 Vdc
Vin
Com 10 kΩ
11
Proxpac Proximity Transducer Assembly Manual
Scale Factor Verification
12
1.
Compensate for mechanical backlash and adjust the spindle micrometer for electrical zero.
2.
Adjust gap to electrical zero by moving the probe.
3.
Compensate for mechanical backlash in the micrometer and adjust to the start of the linear range.
4.
Record voltages in the following table and calculate Incremental Scale Factors (ISFs) and Average Scale Factor (ASF) using the equations.
Section 3 — Maintenance and Troubleshooting
Increments: 250 µm or 10 mil
Adjust Micrometer to… N
µmn
miln
1
250
10
2
500
20
3
750
30
4
1000
40
5
1250
50
6
1500
60
7
1750
70
8
2000
80
9
2250
90
Record Voltages
Calculate Scale Factor
Vdcn
ISFn
ASF
(Incremental Scale Factor)
(Average Scale Factor)
Vdc n - 1 − Vdc n 0.25 Vdc 250 µm − Vdc 2250 µm ASF(mV / µm) = 2
ISFn
(mV / µm)
=
13
Proxpac Proximity Transducer Assembly Manual
Vdc n - 1 − Vdc n 0.01 Vdc 10 mil − Vdc 90 mil ASF(mV / mil) = 0.08
ISFn (mV / mil) =
Troubleshooting This section shows how to interpret a fault indication and isolate faults in an installed transducer system. Before beginning this procedure, be sure the system has been installed correctly and all electrical connections have been secured properly in the correct locations. When a malfunction occurs, locate the appropriate fault, check the probable causes for the fault indication and follow the procedure to isolate and correct the fault. Use a digital voltmeter to measure voltage and resistance. If you find faulty transducers, contact your local Bently Nevada Corporation office for assistance. The troubleshooting procedures use measured voltages as shown in the following figure and table:
VPS
VXDCR
Transducer Power Common (ground) Input Signal Instrument terminal strip
VSIG
Note: VXDCR, VSIG, and VPS are all negative voltage values.
Table 3-1: Symbols for Measured Voltages
14
Symbol
Meaning
Voltage measured between…
VXDCR
Transducer input voltage
VT and COM
VSIG
Signal voltage from the transducer
OUT and COM
VPS
Power supply voltage
Power Source and Common
Section 3 — Maintenance and Troubleshooting
Table 3-2: Definitions Symbol
Defintion
Example
A>B
"A" value is more positive than "B"
-21 > -23
A
"A" value is more negative than "B"
-12 < -5
A=B
"A" same value (or very close) to "B"
-24.1 = -24.0
Connect
Disconnect
Inspect
Record
Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc Possible causes •
Faulty power source
•
Faulty field wiring
•
Faulty Proximitor® Sensor
15
Proxpac Proximity Transducer Assembly Manual
VPS
Yes
Measure VPS:
Faulty Power Supply
VPS > 23 Vdc or VPS < -26 Vdc? No
VXDCR
Yes
Measure VXDCR: VXDCR > 23 Vdc or VXDCR < -26 Vdc? No Faulty Proximitor® Sensor
16
Faulty Field wiring
Section 3 — Maintenance and Troubleshooting
Fault Type 2: VSIG = 0 Vdc Possible causes: •
Incorrect power source voltage
•
Short circuit in field wiring
•
Short circuit at Proximitor® Sensor terminal connection
•
Faulty Proximitor® Sensor
Does fault condition type 1 exist? No
VSIG
Measure VSIG: VSIG = 0 Vdc ? Yes Faulty Proximitor® Sensor
No Incorrect power source voltage or short in field wiring or short at Proximitor® Sensor terminal connection.
17
Proxpac Proximity Transducer Assembly Manual
Fault Type 3: -1 Vdc < VSIG < 0 Vdc Possible causes: •
Probe is incorrectly gapped (too close to target)
•
Incorrect power source voltage
•
Faulty Proximitor Sensor
•
Probe is detecting other material than target
•
Short or open circuit in a connector (dirty or wet) or loose connectors
•
Short or open circuit in the probe
Does fault condition type 1 exist? No Verify the probe gap in the machine. Is the probe gapped correctly?
No
Re-gap the probe. Retest the system.
Yes
Step 2
Step 1
Original probe
VSIG
18
Known good probe with correct integral length cable (open gap)
Section 3 — Maintenance and Troubleshooting
Measure VSIG:
No
-1.1 Vdc < VSIG < 0 Vdc ?
Faulty Proximitor® Sensor or probe is being loaded.
Yes
Yes
Inspect the connector. Is there a dirty, rusty, or poor connection? No
Clean connector (using isopropyl alcohol or electronic terminal cleaner), reassemble, and retest the original system.
RPROBE
Measure the resistance. Is RPROBE within specifications? 1m probe: 7.58 Ω ± 0.5 Ω
Yes Retest the original system.
No Faulty Probe
19
Proxpac Proximity Transducer Assembly Manual
Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc Possible causes: •
Faulty Proximitor Sensor
•
Probe is incorrectly gapped (too far from target)
Does fault condition type 1 exist? No
VSIG
No
Measure VSIG: -1.2 Vdc < VSIG < -0.3 Vdc ? Yes Reconnect system Regap the probe Retest system
20
Faulty Proximitor® Sensor
Section 3 — Maintenance and Troubleshooting
Fault Type 5: VSIG = VXDCR Possible causes: •
Incorrect power source voltage
•
Faulty Proximitor Sensor
•
Faulty field wiring (between Out and VT)
Does fault condition type 1 exist? No
VSIG
Measure VSIG: VSIG = VXDCR ?
Yes Faulty Proximitor® Sensor
No Faulty field wiring (short between OUT and VT)
If a faulty Proximitor® Sensor is indicated, replace the Proximitor® Sensor and housing lid as a unit (the replacement part number is printed on the Proximitor® Sensor). Do not remove the Proximitor® Sensor from the lid. There are no user serviceable parts inside. 21
Proxpac Proximity Transducer Assembly Manual
Bently Nevada performs failure analysis on all returned transducers. The information gained during analysis of failed products is used to improve our current and future products. If you encounter a part that has failed, return the part with a brief description of the product application and symptoms observed to our corporate headquarters in Minden, Nevada for analysis: Bently Nevada, LLC Attn: Product Repair Department 1631 Bently Parkway South Minden, Nevada 89423 USA
22
Section 4 — Ordering Information
Section 4 — Ordering Information Notes: Order -00 or -000 for all options to receive just a spare housing with Proximitor® Sensor. When ordering probe separate from PROXPAC® Transducer, order a separate Connector Protector, Part Number 03839420 for the probe.
PROXPAC® Proximity Transducer, English 330800-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option 00 No probe; Proximitor® Sensor without approvals 01 No probe; Proximitor® Sensor with Multiple Approvals 16 3300 XL 8 mm probe 28 3300 XL 8 mm probe with Multiple Approvals B: Standoff Adapter Option (B Dimension) Order in increments of 0.5 in (13 mm ). Minimum length: 1.5 in (38 mm) Maximum length: 7.5 in (191 mm ) Examples: 0 0 = No standoff adapter 1 5 = 1.5 in (38 mm) C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 1.0 and 2.0 inches, counter bore may be required in machine case to reduce probe side view and/or rear view effects.
Order in increments of 0.1 in (2 mm). Minimum length: 1.0 in (25 mm) Maximum length: 30 in (762 mm ) Examples: 0 0 0 = No probe sleeve 0 3 7 = 3.7 in (94 mm) 2 2 4 = 22.4 in (569 mm) D: Fittings Option Note: For 1/2-14 NPT fittings, order option -03 or spare 26650-01 reducers for either option -01 or -02.
00
No fittings; two plugs and two washers
01
One 3/4-14 NPT fitting, two plugs
02
Two 3/4-14 NPT fittings, one plug
03
One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs
E: Mounting Thread Option 00 No outer sleeve assembly
23
Proxpac Proximity Transducer Assembly Manual
02
3/4-14 NPT (Required if ordering Standoff Adapter Option.)
05
7/8-14 UNF-2A
PROXPAC® Proximity Transducer, Metric 330801-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option 00 No probe; Proximitor® Sensor without approvals 01
No probe; Proximitor® Sensor with Multiple Approvals
16
3300 XL 8 mm probe
28
3300 XL 8 mm probe with Multiple Approvals
B: Standoff Adapter Option (B Dimension) Order in increments of 10 mm. Minimum length: 40 mm Maximum length: 200 mm Examples: 0 0 = No standoff adapter 0 4 = 40 mm 2 0 = 200 mm C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 25 and 50 mm, counter bore may be required in machine case to reduce probe side view and/or rear view effects.
Order in increments of 1 mm. Minimum length: 25 mm Maximum length: 760 mm Examples: 0 0 0 = No probe sleeve 0 5 0 = 50 mm 7 6 0 = 760 mm D: Fittings Option (supplied as a kit) 00 No fittings; two plugs and two washers 01
One M25 fitting, two plugs
02
Two M25 fittings, one plug
03
One M20 fitting, two plugs
05
One PG21 to PG11 reducer, two plugs
06
One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs
07
One PG21 x M20 fitting, two plugs
08
Two PG21 x M20 fittings, one plug
Note: Conduit fittings are necessary when hardline conduit or metal piping is brought into the housing. If using flexible conduit, it should be ordered with integral 3/4-14 NPT fittings so that additional conduit
24
Section 4 — Ordering Information fittings are not required with the housing. If using flexible conduit, order the D = 00 option.
E: Mounting Thread Option 00 No outer sleeve assembly 01
M24 X 3
02
3/4-14 NPT (required if ordering Standoff Adapter Option)
Accessories 02200068 Spare EMI Suppression Ferrite. This snap-on ferrite part covers a portion of the field wiring inside the PROXPAC® Transducer housing. It reduces the effect of Electro-Magnetic Interference (EMI) on the transducer signal. The ferrite part is required for CE approved installations, primarily found in Europe. 158735 Performance Specification 131236-01 Operation Manual 132306-01 Spare Proximitor® Sensor and Housing Cover, nonapproved 132306-02 Spare Proximitor® Sensor and Housing Cover, approved 330105-02-12-10-02-00 Spare 3300 XL 8 mm probe, English, non-approved 330105-02-12-10-02-05 Spare 3300 XL 8 mm probe, English, approved 330106-05-30-10-02-00 Spare 3300 XL 8 mm probe, metric, non-approved 330106-05-30-10-02-05 Spare 3300 XL 8 mm probe, metric, approved 132501-AXX Field Wiring Cable 1.0 mm² (18 AWG), 3 conductor, twisted, shielded cable. Terminal ring lugs are installed at each end including an extra shield ring lug at the monitor end. Option Description A: Cable length option in feet. Order in increments of 1.0 ft (0.3 m). Minimum length: 2 ft (0.6 m). Maximum length: 99 ft (30 m). Examples: 1 5 = 15 feet (4.57 metres) 2 0 = 20 feet (6.10 metres)
25
Proxpac Proximity Transducer Assembly Manual
103537-01 Terminal Mounting Block The block includes mounting screws and is easily installed in a Proximitor® Housing. The block accepts ring lugs used on the Field Wiring Cable. 02120015 Bulk Field Wire 1.0 mm² (18 AWG), 3-conductor, twisted shielded cable with drain wire. Specify length in feet. 01651632 Terminal Ring Lug Extra ring lugs can be attached to Bulk Field Wire to assemble the exact length of cable needed. 37948-01 Probe Support / Oil Sleeve Provides seal along probe sleeve. May be used as a probe sleeve support in certain installations. 40113-02 Connector Protector Kit Installs a connector protector onto a probe that has been ordered separately.
English Probe Sleeve (Spare) 108883 –AXXX This is the measured probe sleeve length. Order in increments of 0.1 in (3 mm). Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length: AXXX: = Standoff Adapter Option from original housing (330800 option B) + Probe penetration option from original housing (330800 option C) + 0 2 5. Example: original part number is 330800-16-15-035-03-02. AXXX: option for replacement sleeve is (015 + 035 + 025) = 075. Minimum Probe Sleeve Length: 3.5 in (89 mm)= 0 3 5 Maximum Probe Sleeve Length: 32.5 in (826 mm) = 3 2 5
Metric Probe Sleeve (Spare) 108882 –AXXX This is the measured probe sleeve length. Order in increments of 1 mm. Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length: AXXX: = Standoff Adapter Option from original housing (330801 option B) * 10 + Probe penetration option from original housing (330801 option
26
Section 4 — Ordering Information
C) + 0 6 3. Example: original part number is 330801-16-08-205-0302. AXXX: option for replacement sleeve is (080 + 205 + 063) = 348. Minimum Probe Sleeve Length: 88 mm (3.5 in) = 0 8 8 Maximum Probe Sleeve Length: 823 mm (32.4 in) = 8 2 3
English Standoff Adapter (Spare) Hex = 1 3/8 in; threads = 3/4-14 NPT 109319 –AXXX Order in increments of 0.5 in (13 mm). Minimum length: 1.5 in (38 mm) Maximum length: 7.5 in (191mm) Example: 0 2 0 = 2 in (51 mm)
Metric Standoff Adapter (Spare) Wrench flats = 35 mm; threads = 3/4-14 NPT. 109318 –AXX Order in increments of 10 mm. Minimum length: 40 mm Maximum length: 200 mm Example: 0 5 = 50 mm 104968-01 English Sleeve Plug Threaded, 303 stainless steel. 104968-02 Metric Sleeve Plug Threaded, 303 stainless steel. Plugs fill opening when sleeve is removed from machine case. 104288-01 English Blanking Plug 104288-02 Metric Blanking Plug. Blanking plugs are included with the Fittings Option "D". Spare plugs fill conduit holes in plastic housing where needed.
Heavy Duty Cable Fittings 03813103 Chrome-plated Zinc Conduit Fitting, 3/4-14 NPT 03818100 AISI 316 Stainless Steel Conduit Fitting, 3/4-14 NPT
27
Proxpac Proximity Transducer Assembly Manual
03818101 AISI 316 Stainless Steel Conduit Fitting, PG21 x M25 03818102 AISI 316 Stainless Steel Conduit Fitting, PG21 x M20 03818111 Nickel-plated Brass Conduit Fitting, PG21 x M20 26650-01 AISI 303 Stainless Steel Reducer 3/4-14 NPT to 1/2-14 NPT
Sealtite® Flexible Conduit 14847-AXX 1/2-14 NPT assembly 14848-AXX 3/4-14 NPT assembly Option Description A: Length Option Order in increments of 1 ft (0.3 m). Minimum length: 1 ft (0.3 m). Maximum length: 99 ft (30.2 m) Example: 0 5 = 5 ft (1.5 m).
28
Section 5 — Specifications
Section 5 — Specifications Unless otherwise noted, the following specifications apply from +18°C to +27°C (+64°F to +80°F) with a -24 Vdc power supply, a 10 kΩ load, a Bently Nevada supplied AISI 4140 steel target and a probe gapped at 1.27 mm (50 mils).
Electrical Input: Accepts one noncontacting 3300 XL 8 mm Proximity Probe with a one (1) metre cable length installed in the probe sleeve.
Power: Requires -17.5 Vdc to -26 Vdc without barriers at 12 mA maximum consumption. -23 Vdc to -26 Vdc with barriers. Operating at a more positive voltage than -23.5 Vdc may result in reduced linear range.
Supply Sensitivity: Less than 2 mV change in output voltage per volt change in input voltage.
Output resistance: 50 Ω
Probe dc resistance (nominal) (RPROBE): 7.58 ± 0.5 Ω
Field Wiring: Recommend using three-conductor shielded triad cable. Maximum length of 305 metres (1,000 feet) between the PROXPAC® Sensor and the monitor. See the frequency response graph (Figure 5-1) for signal rolloff at high frequencies when using longer field wiring lengths.
Linear Range: 2.0 mm (80 mils). Linear range begins at approximately 0.25 mm (10 mils) from the target and is from 0.25 mm to 2.3 mm (10 to 90 mils) (approximately -1 to -17 Vdc).
Recommended Gap Setting: 1.27 mm (50 mils).
Incremental Scale Factor (ISF): 7.87 mV/µm (200 mV/mil) ±5.5% typical including interchangeability errors when measured in increments of 0.25 mm (10 mils) over the linear range.
Deviation from best fit straight line (DSL): Less than ±23 µm (±0.9 mil) typical including interchangeability errors over the linear range when referenced to a 7.87 mV/µm (200 mV/mil) best fit straight line.
29
Proxpac Proximity Transducer Assembly Manual
Probe Temperature Stability: Over probe temperature range of -35°C to +120°C (30°F to +250°F), typical Incremental Scale Factor (ISF) remains within ±10% of 7.87 mV/µm (200 mV/mil) while deviation from straight line remains within ±50µm (±2 mils).
Minimum Target Size: 15.2 mm (0.6 in) diameter (flat target).
Shaft Diameter: Minimum: 50.8 mm (2 in).
Recommended minimum: 76.2 mm (3 in). Measurements on shaft diameters smaller than 50 mm (2 in) usually require close spacing of radial vibration or axial position transducers with the potential for their electromagnetic emitted fields to interact with one another (cross-talk), resulting in erroneous readings. Care should be taken to maintain minimum separation of transducer tips, generally at least 40 mm (1.6 in) for axial position measurements or 74 mm (2.9 in) for radial vibration measurements. Radial vibration or position measurements on shaft diameters smaller than 76.2 mm (3 in) will generally result in a change in scale factor. Consult Performance Specification 158735 for additional information.
Frequency Response: 0 to 8 kHz: +0, -3 dB, at 50 mils probe gap with up to 305 metres (1000 feet) of field wiring. See Figure 5-1 below.
Hazardous Area Approvals CSA/NRTL/C: Exia for Class I, Division 1, Groups A, B, C and D, when installed with intrinsically safe zener barriers per drawing 132484 or when installed with galvanic isolators. Class I, Division 2, Groups A, B, C and D non-incendive when installed without barriers per drawing 132484. T6 @ Ta=+100°C, T5 @ Ta=-35 to +85°C.
BASEEFA / CENELEC: EExia for Zones 0, 1 and 2, Group IIC, LCIE certificate number 98 ATEX 6011X, when installed with intrinsically safe zener barriers or galvanic isolators per drawing 132484, T5 @ Ta=100°C. ExN for Zone 2, Groups IIA, IIB and IIC, BASEEFA certificate number Ex 97Y4175X, T4 @ Ta=100°C.
30
Section 5 — Specifications
Mechanical Housing Ratings: For North America, Type 4X water-proof and corrosionresistant rating certified by Canadian Standards Association. IP66 rating verified by CSA report number SC 115582-1. CENELEC standard EN50014 rating for electrostatic dissipation of a plastic material located in a hazardous area.
Probe Tip Material: Polyphenylene Sulfide (PPS)
Probe Case Material: AISI 304 stainless steel
Probe Cable: 1 metre length, 75 Ω triaxial, fluoroethylene propylene (FEP) insulated.
Probe Connector: Gold-plated brass ClickLoc™ connector with connector protector attached.
Probe Tensile Strength: 330 N (75 lb) between probe cable and case, maximum.
Housing Material: Ultraviolet (UV) resistant, glass-reinforced polyphenylene sulfide (PPS) thermoplastic containing conductive fibers.
Sleeve Material and Retaining Chain: AISI 304 stainless steel
Outer Sleeve and Retaining Screws: AISI 303 stainless steel
Sleeve O-Ring Material: Neoprene®
Grounding Liner and Retaining Plate Material: AISI 304 Stainless Steel
Recommended Torque Retaining Nut: 29.5 N·m (260 in·lb) Probe Sleeve Locknut: 39.3 N·m (350 in·lb)
Housing Strength (typical): Outer sleeve was mounted on a test stand with its axis parallel to horizontal and the housing mounted on the outer sleeve through an end hole. The housing supported 912 N (205 lb) placed approximately 38 mm (1.5 in) from the unsupported end with the cover fastened in place and grounding liner installed.
31
Proxpac Proximity Transducer Assembly Manual
Housing Impact Strength: Certified by BASEEFA to withstand two separate 4 Joule (5.4 ft·lb) impacts at 39°C (-38°F) and at 115°C (239°F). Samples of the housing and cover were verified by CSA to withstand a 7 Joule (9.5 ft·lb) impact at ambient room temperature.
Total System Weight: 1.4 kg (3.1 lb) typical with 0.3 metre (12 in) sleeve length.
Environmental Limits Probe Temperature Range Operating and Storage Temperature: -51°C to +177°C (-60°F to +350°F). Note: Exposing the probe to temperatures below -34°C (-30°F) may cause premature failure of the pressure seal.
Probe Housing and Proximitor® Sensor Operating Temperature: -34°C to +100°C (-30°F to +212°F). Storage Temperature: -34°C to +105°C (-30°F to +221°F).
Relative Humidity (PROXPAC® Sensor and probe): 100% condensing, non-submersible when connectors are protected. When properly sealed, moisture should not enter the housing. Precautions should be taken to prevent moisture from traveling through the conduit into the housing.
Hot Water and Steam Exposure Effects: (Specification not guaranteed) Brief periods (up to one week) of contact with hot water 95°C (203°F) and/or condensing steam should not significantly affect the strength of the plastic housing. Contact with these beyond this length of time may eventually cause the strength of the plastic housing to permanently decrease during the first 6 to 8 weeks of exposure, and then level at approximately half of its initial value. Tests of actual housing performance after contact with hot water and condensing steam have not been conducted.
Probe Pressure: The PROXPAC® is designed to seal differential pressure between the probe tip and the housing main body when used with a 3300 XL 8 mm probe. The sealing material internal to the probe case consists of a Viton® O-ring; the O-ring between the sleeve and the housing is a Neoprene® O-ring. The plastic housing is certified to seal against hose-directed water according to Type 4X and IP66 standards but is not designed to resist
32
Section 5 — Specifications
internal or external pressure. Probes are not pressure tested prior to shipment. Contact our custom design department if you require a test of the pressure seal for your application. Note: It is the responsibility of the customer or user to ensure that all liquids and gases are contained and safely controlled should leakage occur from the PROXPAC® transducer. Solutions with high or low pH values may erode the tip assembly of the probe, causing media leakage into surrounding areas. Bently Nevada Corporation will not be held responsible for any damages resulting from leaking Proximity Probe Housing Assemblies. In addition, PROXPAC® transducers will not be replaced under the service plan due to probe leakage.
Effects of 60 Hz Magnetic Fields up to 420 Gauss: Output voltage in mil pp/gauss: Gap:
Proximitor® Sensor
Probe
90 mil (worst case)
0.0179
0.0045
Patents 5,016,343; 5,126,664; 5,351,388; and 5,685,884 Components or procedures described in the patents apply to this product 1
Magnitude (dB)
0 -1 -2 -3 -4 -5 -6 10
100
1000
10000
Frequency in Hz 305 m (1000 ft)
610 m (2000 ft)
3660 m (12000 ft)
152 m (500 ft) with external barriers
Figure 5-1: Typical Frequency Response at 50 mils Gap
33
Proxpac Proximity Transducer Assembly Manual
34
Presentation
3
Zelio Control - industrial measurement and control relays Liquid level control relays RM4 L
561078
Functions These devices monitor the levels of conductive liquids. They control the actuation of pumps or valves to regulate levels and are also suitable for protecting submersible pumps against running empty, or protecting tanks from "overflow". They can also be used to control dosing of liquids in mixing processes and to protect heating elements in the event of non immersion. They have a transparent, hinged flap on their front face to avoid any accidental alteration of the settings. This flap can be directly sealed.
RM4 LG01
3
1 2 2 2 2 2
Compatible liquids: spring, town, industrial and sea water, metallic salt, acid or base solutions, liquid fertilizers, non concentrated alcohol (< 40 %), liquids in the food-processing industry: milk, beer, coffee, etc.
1 2 2 2 2
Non-compatible liquids: chemically pure water, fuels, liquid gasses (inflammable), oil, concentrated alcohol (> 40 %), ethylene, glycol, paraffin, varnish and paints.
Description 561079
RM4 LG01 Width 22.5 mm
R U
RM4 LA32
RM4 LA32 Width 22.5 mm
2 3
R U
1 Fine adjustment of time delay (as % of setting range max. value). 2 Fine adjustment of response sensitivity (as % of setting range max. value). 3 Function selector switch: - empty or fill . 4 Switch combining: - selection of the response sensitivity range, - selection of time delay on energisation or on de-energisation of the relay. R U
Yellow LED: indicates relay state. Green LED: indicates that supply to the RM4 is on.
Table showing details for switch 4 Switch position Time delay 500 On-delay 500 Off-delay 50 On-delay 50 Off-delay 5 On-delay 5 Off-delay
References : page 3/112
3/110
1 2 3 4
Characteristics : page 3/113
Dimensions, schemes : page 3/114
Setting-up : page 3/115
Sensitivity High = 500 kΩ range High = 500 kΩ range Medium = 50 kΩ range Medium = 50 kΩ range Low = 5 kΩ range Low = 5 kΩ range
3
Presentation (continued)
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Operating principle The operating principle is based on a change in the resistance measured between immersed or non-immersed electrodes. Low resistance between electrodes: liquid present. High resistance between electrodes: no liquid present. The electrodes may be replaced by other sensors or probes which transmit values representing variations in resistance. The a.c. measuring voltage which is < 30 V and galvanically insulated from the supply and contact circuits, ensures safe use and the absence of any electrolysis phenomena. RM4 relays may be used: 1 For detection of a liquid level, operating with 2 electrodes, one reference electrode and one high level electrode, or an LA9 RM201 probe. Example: prevention of tank overflow. 1 For regulating a liquid level between a minimum and a maximum level, operating with 3 electrodes, one reference electrode, one low level electrode and one high level electrode, or two LA9 RM201 probes. Example: water tower. The state of the output relay can be configured: 1 Empty function : the output relay is energised when high level electrode B2 is immersed and is de-energised when low level electrode B3 is "dry" (1). 1 Fill function : the output relay is energised when the low level electrode is "dry" and is de-energised when high level electrode is immersed (1). On model RM4 LA32 a time delay can be set on energisation or de-energisation of the output relay in order to raise the maximum level function or to lower the minimum level function . This function also makes it possible to avoid pulsing of the output relay (wave effect) when operating with 2 electrodes . Function diagrams
2 Empty function 26Maximum level detection (2 electrodes or 1 probe LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1
B2
B1
B2
B1
B2
U supply A1/A2
LG01
Ð
15/18 15/16
t
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
26Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1 B3 B2
B1 B3 B2
B1 B3 B2
B1 B3 B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
2 Full function 26Maximum level detection (2 electrodes or 1 probe LA9 RM201) Type RM4-
Function switch 3
Time delay switch 4
B1
B2
B1
B2
B1
B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
26Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201) Type RM4-
Function switch 3
B1 B3 B2
Time delay switch 4
B1 B3 B2
B1 B3 B2
B1 B3 B2
U supply A1/A2
LG01
Ð
15/18 15/16
t LA32
15/18 25/28 15/16 25/26
LA32
15/18 25/28 15/16 25/26
t
B1 : reference electrode B2 : high level electrode B3 : low level electrode (1) When operating with 2 electrodes, the high level electrode performs both high and low level functions. References : page 3/112
Characteristics : page 3/113
Dimensions, schemes : page 3/114
Setting-up : page 3/115
3/111
3
References
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Liquid level control relays 561087
Time delay
Without
Sensitivity scale
Width
Output relay
kΩ 5…100
mm 22.5
1 C/O
Basic reference, to be Weight completed by adding the voltage code (1) kg RM4 LG012 0.165
0.25 ...5 2.5 ...50 25 ...500
22.5
2 C/O
RM4 LA3222
RM4 LG01
3 561088
Adjustable 0.1...10 s
0.165
RM4 LA32
Level control probe for liquid 561089
Type of installation
Suspended by cable
Maximum operating temperature °C 100
Reference
Weight kg 0.100
LA9 RM201
LA9 RM201 (1) Standard supply voltages RM4 LG01 Volts 50/60 Hz RM4 LA32 Volts 24...240 50/60 Hz MW MW
1 1 2
Presentation : pages 3/110 and 3/111
3/112
Characteristics : page 3/113
Dimensions, schemes : page 3/114
24 B 24 B –
Setting-up : page 3/115
110...130 F 110...130 F –
220...240 M 220...240 M –
380...415 Q 380...415 Q –
Characteristics
3
Zelio Control - industrial measurement and control relays
3
Liquid level control relays RM4 L
Power supply circuit characteristics Relay type Rated supply voltage (Un)
Average consumption at Un
1 50/60 Hz
V
RM4 LG01 24 110...130
220...240
380...415
RM4 LA32 24...240 24
110...130
220...240
380...415
2
V
–
–
–
–
24...240
–
–
–
–
1
VA
1.9
2.6
2.4
2.9
2.7
3.1
2.7
2.6
3.4
2
W
–
–
–
–
2.4
–
–
–
–
Output relay and operating characteristics Number of C/O contacts
1
Output relay state
Can be configured by switch: empty
2
3
/ fill
Electrode circuit characteristics (1) Sensitivity scale
kΩ
5…100 (adjustable)
0.25…5
Maximum a.c. electrode voltage (peak to peak)
V
24
24
Maximum current in the electrodes
mA
1
Maximum cable capacity
nF
10
Maximum cable length
m
100
2.5…50
25…500
200
25
4
1000
100
20
(1) The electrodes may also be incorporated in the probes. The probes are normally designed for fixing to a tank by means of a bracket with a seal (closed tanks) or suspended by their own electrical connecting cable (boreholes, etc.). See page 3/115 “Setting-up” Probe LA9-RM201.
Presentation : pages 3/110 and 3/111
References : page 3/112
Dimensions, schemes : page 3/114
Setting-up : page 3/115
3/113
Dimensions, schemes
3
Zelio Control - industrial measurement and control relays Liquid level control relays RM4 L
Dimensions RM4 LG01, LA32 Screw fixing
22,5
89,5
6
80
78
78
6
Rail mounting
82
Ø4
3
16
Probe LA9 RM201
150
Connection schemes
16
25 28
15 26
B2
16 26 16
A2
Electrodes and level controlled B1
Reference or tank earth electrode
B2
High level
B3
Low level
st
1 C/O contact of the output relay nd
2 C/O contact of the output relay
Presentation : pages 3/110 and 3/111
3/114
25 B3
A2
A1 28 18
A2
A1-A2 Supply voltage B1, B2, B3 Electrodes (see table opposite) 15-18 15-16 25-28 25-26
15 B2
B3
B1
15 16
A2
A1 18
A1 B1
B3
18
B2
15 B2
B3
B1
A1 B1
RM4 LA32
18
RM4 LG01
References : page 3/112
Characteristics : page 3/113
Setting-up : page 3/115
3
Setting-up
3
Zelio Control - industrial measurement and control relays
3
Liquide level control relays RM4 L
Setting-up
1 Select the empty /fill function according to the sequence to be performed. 1 If necessary, set potentiometer 1 to minimum (time delay). 1 Set potentiometer 2 to minimum; on RM4-LA, select the lowest sensitivity range or 5 ). using potentiometer 4 (5 1 With all the electrodes immersed, turn the sensitivity potentiometer towards maximum until the relay is energised ( function) or de-energised ( function), then exceed the threshold by about 10 % to compensate for variation in the supply voltage. If the relay is not able to energise, a higher sensitivity scale must be used (selector 4 on RM4 LA32) or relay RM4 LG must be replaced by an RM4 LA32 relay and the adjustment procedure must be started again. 1 Then check that the relay de-energises ( function) or energises ( function) as soon as electrodes B3 and B2 are out of the liquid. If the relay does not de-energise, select a lower sensitivity scale. 1 The electrode connection point must be protected against corrosion by sticking or sealing. In areas where thunderstorms are likely to occur, 1 measures must also be taken to protect the 2 2 electrode lines. R 3 3 Note: the high level can be raised by means of the R U U 4 adjustable time delay from 0.1 to 10 seconds with function . The low level can be lowered by means of this same time delay with function . RM4 LG01
RM4 LA32
Probe LA9 RM201 This probe is of the "suspension" type. It is coaxial, i.e. in addition to the normal (central) electrode, the stainless steel skirt can also act as earth (reference electrode), which means that there is no need to install a separate reference probe. In this way, for controlling one level, only one probe is required instead of 2; for controlling 2 levels, only 2 probes are required instead of 3. The connecting cable must be of the 2-conductor cable in "2-conductor" type, with common cylindrical PVC cylindrical sheath (max Ø 6.3 mm) sheath, having a maximum diameter of 6.3 mm. The skirt also acts as a "calming chamber", so Level electrode avoiding inaccuracy due to an agitated surface of the liquid (waves). Maximum operating temperature: 100 °C. Reference electrode Probe LA9 RM201 can also be fixed on various (skirt) containers (cisterns, tanks, ...) by means of a bracket or other suitable fixing device. LA9 RM201
Connection examples
2 Control by electrodes B2
High level
B3
B3
B1
B2
B1
Supply voltage
A1
Low level
A2
2 Control by probes RM4 LG01 B2 B1
B2 B3 B1
2 levels
Presentation : pages 3/110 and 3/111
References : page 3/112
Characteristics : page 3/113
1 level
Dimensions, schemes : page 3/114
3/115
3
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
BEARING EFZLK 22-250 DRAWING-NO.: 27126419 A 1
HOUSING EF22
785162
1
2
HEXAGON SOCKET HEAD CAP SCREW M24X90
350943
4
3
RING BOLT M24
158013
2
4
POSITIONING PIN 22
350913
1
5
SIGHT GLASS BSP11/2“
694050
1
6
OIL SIGHT GLASS BSP2“
725953
1
7
SCREW PLUG BSP3/4“
351006
4
8
SCREW PLUG BSP1/2“
351005
4
9
SCREW PLUG BSP1/4“
351003
1
10
SCREW PLUG 3/4NPT
248318
2
11
OIL OUTLET DN50
722352
1
12
PIPE NUT BSP2“
142209
1
13
SEALING RING 60X70X4
142041
1
14
SHELL EZLK 22-250
785160
1
15
HEXAGON SOCKET HEAD CAP SCREW M12X35
346924
2
16
LOOSE OIL RING 22-2
698779
1
17
HEXAGON SOCKET HEAD CAP SCREW M5X20
142900
2
18
LABYRINTH SEAL 250-R
758532
1
19
LABYRINTH SEAL 280-R
757103
1
20
SEAL CARRIER 22-280
785987
1
21
HEXAGON SOCKET HEAD CAP SCREW M8X20
158532
8
22
BAFFLE 280
785989
1
23
HEXAGON SOCKET HEAD CAP SCREW M6X30
142948
8
24
WASHER 6
350445
8
25
EXTENSION PIECE BSP1/2-BSP1/4
721758
1
26
SEALING RING A21X26
168405
1
27
PIPING FOR HYDROSTATIC JACKING 22
745822
1
28
CARTRIGDE OF NON-RETURN VALVE RVP13
350603
1
Filename
Page
Si.
Date
L785592e
1/2
Gre
11.07.08
Appr.
Date
RENK ID - No L785592
Revisions A
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
29
CABLE 2.5X450
500002
1
30
WASHER 12
350461
1
31
CABLE GLAND PG7
142151
1
Filename
Page
Si.
Date
L785592e
2/2
Gre
11.07.08
Appr.
Date
RENK ID - No L785592
Revisions A
Spare Parts List
WERK HANNOVER
Part
Designation
RENK ID - No.
Qty.
BEARING EFZLQ 22-225 DRAWING-NO.: 27126034 A 1
HOUSING EF22
785157
1
2
HEXAGON SOCKET HEAD CAP SCREW M24X90
350943
4
3
RING BOLT M24
158013
2
4
POSITIONING PIN 22
350913
1
5
SIGHT GLASS BSP11/2“
694050
1
6
OIL SIGHT GLASS BSP2“
725953
1
7
SCREW PLUG BSP3/4“
351006
4
8
SCREW PLUG BSP1/2“
351005
4
9
SCREW PLUG BSP1/4“
351003
1
10
SCREW PLUG 3/4NPT
248318
2
11
OIL OUTLET DN 50
709758
1
12
LOCK NUT BSP2”
350394
1
13
SEALING RING 60X70X4
142041
1
14
SHELL EZLB 22-225
738717
1
15
HEXAGON SOCKET HEAD CAP SCREW M12X35
346924
2
16
LOOSE OIL RING 22-1
698762
1
17
HEXAGON SOCKET HEAD SCREW M5X20
142900
2
18
LABYRINTH SEAL 250-R
758532
1
19
END COVER 22
350379
1
20
HEXAGON SOCKET HEAD CAP SCREW M8X16
142601
8
21
EXTENSION PIECE BSP1/2”-BSP1/4”
721758
1
22
SEALING RING 21X26
168405
1
23
PIPING FOR HYDROSTATIC JACKING 22
745822
1
24
CARTRIDGE OF NON- RETURN VALVE RVP13
350603
1
Filename
Page
Si.
Date
L784934e
1/1
Gre
11.07.08
Appr.
Date
RENK ID - No L784934
Revisions A