9/16/2014
Exhaust Gas Recirculation
DieselNet Technology Guide » Guide » Engine Design for Low Emissions www.DieselNet.com. Copyright © Ecopoint Inc. Revision 2012.07a
Exhaust Gas Recirculation Magdi K. Khair, Hannu Jääskeläinen
This is a preview of the paper, limited to some initial content. Full access requires DieselNet subscription subscription.. Please log in to in to view the complete version of this paper.
Abstract: Abstract: Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions from diesel engines. The EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. Several configurations have been proposed, including high- and low-pressure loop EGR, as well as hybrid systems. NOx emissions may be further reduced by cooled EGR, in which recirculated exhaust gas is cooled in an EGR cooler. Drawbacks of EGR include increased PM emissions and fuel consumption. Introduction Principle of Operation EGR Configurations Emissions and Engine Performance Low NOx and PM Demonstrations
1. Introduction Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reductions from most types of diesel engines: from light-duty engines through mediumand heavy-duty engine applications right up to low-speed, two-stroke marine engines. While the application of EGR for NOx reduction is the most common reason for applying EGR to modern commercial diesel engines, its potential application extents to other purposes as well. Some of 1933], as an enabler for these include: aiding vaporization of liquid fuels in SI engines [McAdams 1933] 1956][Campbell Campbell 1953] 1953] and for improving the ignition quality closed cycle diesel engines [Thwaites 1956][ 1964]. While NOx reductions had been of difficult-to-ignite fuels in diesel engines [Mühlberg 1964] 1940], the first engine experiments to investigate the reported with EGR as early as 1940 [Berger 1940]
NOx reduction potential potential of EGR appeared to be carried carried out in the late 1950s in SI engines engines [Kopa 1960]. By the 1970s, EGR was being seriously considered as a NOx control measure for diesel 1974][Kern Kern 1977] 1977]. engines [Teshirogi 1974][ https://www.dieselnet.com/tech/engine_egr.php
1/6
9/16/2014
Exhaust Gas Recirculation
From 1972/73 to the late 1980s EGR was commonly used for NOx control in gasoline fueled passenger car and light-duty truck engines in North America. After the early 1990s, some gasoline fueled applications were able to dispense with EGR. Following the early gasoline application, EGR was also introduced to diesel passenger cars and light-duty trucks and then heavy-duty diesel engines. While there were applications to heavy-duty diesel dating back to the 1970s, it was not until the early 2000s that cooled EGR became very common in heavy-duty diesel engines in North America [Hawley 1999]. It was this heavy-duty application that attracted the most attention to EGR, due to the more difficult technical challenges compared to the earlier light-duty applications. After 2010, the application of EGR into light-duty gasoline engines was expanded—not for NOx control but for fuel economy purposes. Using EGR in downsized, direct-injected gasoline engines can reduce pumping losses, improve combustion efficiency, improve knock tolerance and lessen the need for fuel enrichment [Styles 2011]. A potential non NOx reducing application EGR for modern diesel engines is to combine it with other engine control measures to increase exhaust gas temperature and facilitate the regeneration of diesel particulate filters [Lemaire 1994]. The NOx emission benefit of EGR comes at a cost: other measures are usually required to avoid unacceptable increases in fuel consumption, emissions of PM, HC, and CO, engine wear and reductions in engine durability. In order to address these trade-offs in commercial diesel engine applications, engine manufacturers have had to simultaneously adopt a range of other technological changes such as: reductions in lubricating oil consumption, increases in fuel injection pressure, increased use of diesel oxidation catalysts, and increased intake manifold boost pressure. More than one technical route exists to meet a given NOx limit, and EGR can sometimes be used as one of several alternative technologies. Such competition exists, for example, between cooled EGR and urea-SCR technology in heavy-duty Euro IV, Euro V and US 2010 diesel engines. However, to meet more stringent NOx emission limits, it may be necessary to use EGR in combination with NOx reduction catalysts. Commercial applications of EGR on diesel engines are summarized in the following table. On several occasions, small scale EGR applications occurred earlier than indicated in the table, typically driven by various voluntary incentive programs.
https://www.dieselnet.com/tech/engine_egr.php
2/6
9/16/2014
Exhaust Gas Recirculation
Table 1 Commercial Application of EGR Systems on Diesel Engines Emission Legislation
NOx Limit
Areas of EGR Application
Light-Duty Vehicles Euro 1/2 (1992/96)
NOx+HC = 0.97-0.7 g/km
Introduced in DI and larger IDI Euro 1 engines, EGR (non-cooled) became the main NOx reduction strategy in nearly all Euro 2 vehicles.
NOx= 0.5-0.25 g/km
Cooled EGR introduced in larger size Euro 3 engines, and became the standard in Euro 4 and later diesel passenger cars and light trucks.
NOx ≈ 2 g/bhp-hr
Cooled EGR introduced on heavy-duty truck and bus engines by most manufacturers (Cummins, Volvo/Mack, DDC, International). Miller-type intake valve timing was the alternative technology to EGR (Caterpillar).
NOx = 3.5 g/kWh
EGR introduced by some manufacturers of heavy-duty truck and bus engines (Scania, MAN); used in competition to urea-SCR technology.
Japan 2005
NOx = 2.0 g/kWh
EGR introduced by some manufacturers of heavy-duty truck and bus engines (Hino, Isuzu); used in competition to urea-SCR technology.
US 2007
NOx ≈ 1 g/bhp-hr
EGR used on heavy-duty truck and bus engines by all manufacturers.
NOx = 2 g/kWh
EGR continues to be used in some products by several OEMs (Scania and MAN), however, no OEM relies solely on EGR. Urea-SCR is still the competing technology.
NOx = 0.2 g/bhp-hr
EGR combined with NOx credits allows one heavy-duty diesel engine manufacturer (Navistar) to certify engines to a 0.5 g/bhp-hr NOx level. All other manufacturers rely on a combination of EGR and urea-SCR.
NOx = 0.4 g/kWh
Most manufacturers intend to use a combination of EGR and urea-SCR. The competing technology is urea-SCR without EGR (Iveco).
NOx = 4.0 g/kWh
Cooled EGR engines introduced by John Deere. A number of other manufacturers used internal EGR.
Euro 3/4 (2000/05) Heavy-Duty Engines
US 2004 (2002-04)
Euro IV (2005)
Euro V (2008)
US 2010
Euro VI (2013) Nonroad Engines US Tier 3 (2006)
US Tier 4i / EU Stage IIIB NOx ≈ 2 g/kWh (2011)
Cooled EGR introduced by a number of nonroad engine manufacturers; used in competition to urea-SCR technology.
IMO Tier III (2016)
EGR will be used in some two-stroke low-speed marine diesel engine applications (MAN Diesel & Turbo). Ammonia-SCR is an important competing technology.
NOx = 3.4 to 1.96 g/kWh
Light-Duty Engines. The introduction of EGR technology to diesel passenger cars in the 1990s
went almost unnoticed and was not considered a major breakthrough for several reasons. Because the required NOx reduction was quite modest, the system allowed little EGR back into the cylinder and there was no need for EGR cooling. Typical passenger car engines operate mostly at part load conditions where temperatures are relatively low. It was only the Euro 3/4 legislation that created higher demands on EGR systems and triggered the introduction of https://www.dieselnet.com/tech/engine_egr.php
3/6
9/16/2014
Exhaust Gas Recirculation
increasingly more sophisticated, electronically controlled cooled EGR systems on light-duty engines. Heavy-Duty Engines. Heavy-duty applications of EGR date back to at least 1977 when the
technology was used on some naturally aspirated engines—such as Caterpillar’s 3208—to comply with California’s 5 g/bhp-hr NOx+HC limit for heavy-duty diesel engines. However, through the 1980s and 1990s the use of EGR on heavy-duty engines remained limited—EGR was not required to meet regulatory emission standards and the application of the technology was driven primarily by incentives such as the US EPA voluntary “low emission vehicle” certification program. The wide scale launch of cooled EGR on heavy-duty engines that attracted a lot of attention to the technology took place in late 2002 in the North American market. This momentous introduction was in part triggered by the Consent Decrees and the political upheaval that surrounded the issue of “dual-mapping” that led to the 1998 settlement between the US EPA, the Department of Justice and the heavy-duty diesel engine manufacturers [EPA 1999]. The Consent Decrees advanced the implementation of the EPA 2004 emission standards by 15 months, to October 2002, putting heavy-duty engine manufacturers under extreme pressure to quickly select a technology capable of achieving the new NOx limits of approximately 2 g/bhp-hr. High pressure loop cooled EGR was the most expedient in-cylinder NOx reduction technology that could achieve this emission level [Dennis 1999]. In October 2002, several heavy-duty engine manufacturers introduced their new EPA-certified engines equipped with EGR systems. There was a considerable apprehension in the field regarding the performance, fuel economy, and the durability of these new engines. While initial statements from fleet managers appeared to praise the new technology [DDC 2003], some users have complained of the increase in fuel consumption. For EPA 2007, EGR continued to be the primary NOx reduction technology and allowed a number of engine makers to reach about 1 g/bhp-hr NOx. For EPA 2010, the 0.2 g/bhp-hr NOx limit proved to be too low to be effectively reached with EGR alone and additional help from NOx aftertreatment was required. Navistar—the only manufacturer to temporarily use EGR without aftertreatment for EPA 2010—was able to do so only by certifying engines to 0.4-0.5 g/bhp-hr NOx and making up the difference with credits. In Europe, a couple of heavy-duty on-road engine makers introduced EGR-only engine at the Euro IV stage with the remainder relying solely on urea SCR. By Euro V, the engine makers using EGR also adopted urea SCR to supplement their EGR strategies while the other manufacturer’s continued to rely on urea SCR only solutions. For Euro VI, the use of EGR became more widespread with almost all engine manufacturers adopted some combination of EGR and urea SCR. While Iveco was the only manufacturer that used an “SCR-only” approach, other manufacturers such as Volvo were able to minimize the use of EGR to certain low load conditions and avoid it at higher operating conditions such as highway cruise. Nonroad Engines. EGR technology was also adopted by nonroad engines. Some of the first
nonroad application of cooled external EGR were the US Tier 3 John Deere PowerTech Plus https://www.dieselnet.com/tech/engine_egr.php
4/6
9/16/2014
Exhaust Gas Recirculation
engines. The first cooled EGR John Deere engine was the 6 cylinder 9 L model (6090) launched in 2006, followed by the 6.8 L and 13.5 L models. These engines used high pressure loop cooled EGR and a variable geometry turbocharger. It is interesting to note that the 6090 EGR engine used in the John Deere 8000 series tractor in 2006 had the lowest fuel consumption of all time (as determined by the University of Nebraska Tractor Test Laboratory), demonstrating that the fuel economy penalty associated with EGR can be overcome by skillful engine design. Other applications of cooled EGR for Tier 3 included Komatsu’s 11.0, 15.2 and 23.2 L ecot3 engines [Karino 2006] and Deutz’s TCD 2012 [Hoen 2009]. An alternative to cooled external EGR, internal
EGR, was used by a range of engine manufacturers for US Tier 3. Cooled EGR became more widely adopted in US Tier 4i and EU Stage IIIB nonroad engines. For the final Tier 4/Stage IV emission standards, most nonroad engine manufacturers chose urea-SCR technology—with or without cooled EGR. By 2012, the idea of using an SCR-only approach for Tier 4 final seemed to be spreading [Stanton 2012]. Marine Engines. Low-speed marine engine applications of EGR are perhaps the most
challenging technically. These engines are designed to burn heavy-fuel oil (HFO) that produces exhaust gas heavily laden with metals, sulfur and other components that must be removed before the exhaust gas is re-introduced into the engine. While EGR had been considered by some to be unsuitable for engines burning HFO because of the cleaning challenges, by about 2010, all major manufacturers of low-speed marine engines (MAN Diesel & Turbo, Wärtsilä and Mitsubishi) were considering EGR for HFO IMO Tier III applications. MAN Diesel & Turbo announced commercial orders as early as 2011. Future Trends. Many advanced combustion concepts under development—for instance low
temperature combustion (LTC) —utilize very high EGR rates for emission control. This is likely to put even more demand on future EGR systems and their components if the application of LTC over a significant portion of the engine operating map becomes commercial. Urea-SCR aftertreatment will continue to be an alternative NOx reduction technique competing with EGR. Depending on the stringency of the respective emission standards, on the progress in NOx conversion efficiency and durability of SCR catalysts, and on the relative costs of diesel fuel and urea, three main NOx reduction technology pathways can be used in modern diesel engines: EGR (without NOx aftertreatment) EGR combined with SCR aftertreatment SCR only, without EGR This paper covers the theoretical background of the EGR technique, configurations, and effects on combustion parameters and emissions. Commercial implementations of EGR, system components—including EGR vaves and EGR coolers—and other practical issues are discussed in the EGR Systems paper, while electronic control of EGR is covered in the EGR Control https://www.dieselnet.com/tech/engine_egr.php
5/6
9/16/2014
Exhaust Gas Recirculation
paper.
References Berger, L.B., et al., 1940. “Diesel engines underground – II. Effect of adding exhaust gas to intake air. Report of Investigations 3541”, US Department of Interior, Bureau of Mines, November 1940 Campbell, L.F., 1953. “Closed Cycle Engine”, US Patent 2,645,216, http://www.google.com/patents/US2645216 DDC, 2003. “Competitive Analysis: EGR VS. ACERT”, Detroit Diesel Corporation, Detroit, MI, Publ. 6SA0584 Rev. 0304 Dennis, A.J., C.P. Garner and D.H.C. Taylor, 1999. “The Effect of EGR on Diesel Engine Wear”, SAE Technical Paper 199901-0839, doi:10.4271/1999-01-0839 EPA, 1999. “Heavy Duty Diesel Engine Settlement I nformation”, US Environmental Protection Agency, Civil Enforcement; web page, viewed November 16, 2006, http://www.epa.gov/compliance/resources/cases/civil/caa/diesel/ Hawley, J.G., et al., 1999. “Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimized VGT/EGR Schedules”, SAE Technical Paper 1999-01-0835, doi:10.4271/1999-01-0835 Hoen, T., J. Schmid, W. Stumpf, 2009. “Less Wear and Oil Consumption through Helical Slide Honing of Engines by Deutz”, MTZ Motortechnische Zeitschrift, 70 (4), 46-51, http://www.federalmogul.com/enUS/Media/Documents/LessWearandOilConsumptionMTZ409.pdf Karino, H., et al., 2006. “Development of Tier 3 Engine ecot3”, Komatsu Technical Report, Vol.52 No.158, 1-7, http://www.komatsu.com/CompanyInfo/profile/report/pdf/157-03_E.pdf Kern, R.A., et al., 1977. “Exhaust gas recirculation system for a diesel engine”, US Patent 4,020,809 (Caterpillar), http://www.google.com/patents/US4020809 Kopa, R.D., H. Kimura, 1960. “Exhaust gas recirculation as a method of nitrogen oxides control in an internal combustion engine”, Proceedings of the APCA 53rd Annual Meeting, Cincinnati, Ohio, USA, 22–26 May 1960, (Air Pollution Control Association)., 1-54 Lemaire, J., W. Mustel and P. Zelenka, 1994. “Fuel Additive Supported Particulate Trap Regeneration Possibilities by Engine Management System Measures”, SAE Technical Paper 942069, doi:10.4271/942069 McAdams, W.H., 1933. “Method Of Controlling Recycling Of Exhaust Gas In Internal Combustion Engines”, US Patent 1,916,325, http://www.google.com/patents/US1916325 Mühlberg, E., 1964. “Recycled Exhaust Gas Regulation”, US Patent 3,135,253, http://www.google.com/patents/US3135253 Stanton, D., 2012. “Diesel Engine Technologies to Meet Future On‐Road and Off ‐Road US EPA Regulations”, CTI NOx Reduction Conference, June 18-20, 2012, Detroit, MI, USA Styles, D., 2011. “Cooled EGR for GTDI Engine CO2 Reduction – Benefits and Challenges”, 9th Annual CTI Forum – Exhaust Systems, Stuttgart, Germany, January 26, 2011 Teshirogi, N., H. Nakahara, 1974. “Method For Controlling Noxious Components Of Exhaust Gas From Diesel Engine”, US Patent 3,851,632, http://www.google.com/patents/US3851632 Thwaites, H.L., 1956. “Method Of Fuel Combustion Control In Internal Combustion Engines”, US Patent 2,742,885, http://www.google.com/patents/US2742885
###
https://www.dieselnet.com/tech/engine_egr.php
6/6