ESTUDIO DE SUELOS PARA EL PROYECTO DE FUNDACIONES EN LA CONSTRUCCION DEL CENTRO REGIONAL DE ACCION SOCIAL POR LA MUSICA DEL ESTADO ARAGUA
Realizado por:
OFICINA TECNICA INGENIERO JOSE HEREDIA & ASOCIADOS C.A. MARACAY ESTADO ARAGUA REF: ESTSU-25224310 ABRIL DEL 2010
REF: ESTSU-25224310 FECHA: 08/04/10
ESTUDIO DE SUELOS PARA EL PROYECTO DE FUNDACIONES EN LA CONSTRUCCION DEL CENTRO REGIONAL DE ACCION SOCIAL POR LA MUSICA DEL ESTADO ARAGUA Contenido: 1.-Información General. 2.-Aspectos Geológicos de la Región. 3.-Métodos de Exploración del Suelo. 4.-Aguas Subterráneas. 5.-Análisis de los Resultados de Campo y Laboratorio. 5.1.-Ensayos Cualitativo de Corrosión- Cloruros Y Sulfatos 5.2.-Peso Unitario y Gravedad Específica 6.-Conclusiones y Recomendaciones. 7.-Zonificación Sísmica. 8.-Anexos.
8.1-Registros de Perforaciones 8.2-Croquis de Ubicación de las Perforaciones 8.3-Perfiles Probables del Suelo 8.4-Resultados de Laboratorio 8.5-Memoria Fotográfica 8.6.- Ensayo de Resistividad
2
1.- INFORMACIÓN GENERAL A solicitud de la Arq. Valentina Herz, en representación de La Fundación del Estado para el Sistema Nacional de las Orquestas Juveniles e Infantiles de Venezuela, procedimos a efectuar los trabajos de campo y laboratorio, correspondientes al estudio de suelos para el proyecto de fundaciones, en la construcción de la sede del Centro Regional de Acción Social por la Música del Estado Aragua, ubicada en el lote 6,
vía Las
Delicias (terrenos del INIA) municipio Girardot, Maracay Estado Aragua. El proyecto contempla la construcción de dos (2) estructuras principales; un área destinada a Salas de Conciertos de 20.0 metros de altura por encima del escenario (aproximadamente 11 pisos) y otra área destinada al edificio académico que seria de Salones para Ensayos y Estudios de 6 a 7 pisos, en ambos casos con tres niveles de sótano (aproximadamente 11.0 metros de excavación), que posiblemente unirá a las dos estructuras.
Para el momento de realizar el presente informe, no disponíamos de datos sobre cargas estructurales.
2.- ASPECTOS GEOLÓGICOS DE LA REGIÓN Debido al sistema de fallas producidas en dirección Este-Oeste en el espacio comprendido entre La Serranía del Interior de la cordillera de La Costa., se formó una depresión de forma alargada conocida como Graben 3
de Valencia, hacia la cual se vertieron de lado y lado las aguas provenientes de ambas serranías. La formación de los conos aluvionales o de deyección debido a la erosión de las montañas, condicionaron el represamiento de las aguas y la formación del Lago de Valencia, que fue evolucionando hasta llegar a su forma actual que ocupa un área de aproximadamente 1280 Km2 y en cuyo centro se encuentra el Lago de Valencia
o
de
los
Tacarigua,
ocupando
una
extensión
de
aproximadamente 280 Km2.
Específicamente en Maracay, los bordes de las planicies al norte, están formados por rocas metamórficas de origen sedimentario del tipo esquisto, meteorizados y fuertemente tectonizados como se pueden observar en los cortes de la avenida José Casanova Godoy. También se pueden localizar afloramientos de rocas meta-ígneas con una capa exterior descompuesta
que
avanza
hacia
horizontes
menos
alterados
en
profundidad. Estas rocas son del tipo granitos gneis, cuya descomposición y posterior erosión hacia los conos del río Las Delicias y El Limón, han aportado la mayoría de los sedimentos arenosos, que constituyen el subsuelo de Maracay. A medida que avanzamos hacia el sur, buscando la línea de la costa del Lago de Los Tacariguas o Lago de Valencia, la granulometría de los sedimentos se torna más fina, apareciendo en la parte media de la ciudad, entre su límite norte y sur, depósitos de arcilla y limos arcillosos, que van aumentando su proporción con respecto a los suelos granulares al sur de la avenida Aragua, con variaciones laterales debido a la aparente forma sinusoidal de la antigua línea de costa del Lago.
4
La zona sur de Maracay, está constituida por sedimentos de granulometría fina y estratos arenosos, intercalado entre depósitos diatomáceos, que corresponden a los diferentes periodos de formación del Lago y que se han denominado Terrazas de Inundación. La cuenca del Lago de Valencia se encuentra dentro de una fosa tectónica formada por la falla de la Victoria; esta tiene una sismicidad que actualmente puede considerarse baja. En el mapa sismológico publicado por Fiedler (1972) no aparecen epicentros de sismos registrados en épocas recientes en esta zona; no obstante, se ha determinado la presencia de algunas fallas en direcciones paralelas y al Norte de la falla de la Victoria, como son la Falla de la Cabrera y la Falla de Horno (C. Shubert y M. Laredo 1979); según el estudio de estos autores, la Falla de Horno tuvo su último movimiento durante el Pleistoceno, pero la Falla de la Cabrera a continuado activa hasta el presente. (Tomado de la Geología de Venezuela de González de Juana).
3.- MÉTODOS DE EXPLORACIÓN DEL SUELO
Para
investigar
las
características
geotécnicas
del
suelo,
se
ejecutaron cinco (5) perforaciones cuyas profundidades y ubicación, se muestran a continuación.
PEROFORACION
PROFUNDIDAD
COORDENADA
COORDENADA
No.
(metros)
NORTE
ESTE
1
20.0
1.137.263
656.770
2
15.0
1.137.264
656.782 5
3
10.0
1.137.231
656.854
4
10.0
1.137.255
656.834
5
11.0
1.137.285
656.848
Las perforaciones se ejecutaron con el método combinado de rotación-percusión, avance por lavado y recuperación continua de muestras cada metro, según la especificación ASTM D1586-63T " Standard Penetration Test".
Se tomó el conteo del número de golpes necesarios para que el sacamuestras penetre un pie (30.48 cm), en el suelo bajo el golpeo de un martillo de 140 Lb. de peso; y una altura de caída de 76 cm., utilizando un sacamuestras del tipo cuchara partida de diámetro 1 1/2", tubería AX y forros de diámetro 2 1/2".
De manera de obtener una mejor información de los metros iniciales, se realizó un muestreo continuo cada 50 centímetros hasta la cota -3.00 metros. Esto nos permitió evaluar más eficientemente la posibilidad de utilizar fundaciones superficiales.
4.- AGUAS SUBTERRANEAS Y SUPERFICIALES
Para la fecha en la cual se realizaron las perforaciones (Segunda quincena del mes de Marzo del 2010) no se localiza agua subterránea hasta la profundidad explorada, sin embargo es posible localizar bolsones o agua
6
entrampadas, característico de la estratigrafía de la zona, que debe ser considerado al momento de la excavación de los sótanos,
5.- ANÁLISIS DE LOS RESULTADOS DE CAMPO Y LABORATORIO Las muestras recuperadas durante la exploración cada vez que se realizaba la prueba de penetración normal (S.P.T.), fueron sometidas a los siguientes ensayos de clasificación:
Humedad Natural
ASTM D2216-71 ó AASHTO T-93
Composición Granulométrica (mecánica)
AASHTO T-87 ó COVENIN 255-77 (*)
Granulometría vía húmeda (hidrómetro)
AASHTO T-88
Límites de consistencia
COVENIN 1125-77 (*)
Límite Líquido
ASTM D4318-84 ó AASHTO T-89
Límite Plástico
ASTM D4318-84 ó AASHTO T-90
Clasificación de suelos
CCCA-101-77 ó ASTM 2487-85 (*)
Examen visual
(no localizamos especificación nacional)
Gravedad Específica
ASTM D-854
Peso Unitario
-
Ensayo de Corte
ASTM D-3080
Ensayo de Cloruros
-
Ensayo de Sulfatos
-
Ensayo PH
-
5.1.-ENSAYOS CUALITATIVO DE CLORUROS Y SULFATOS Los Valores de PH, cloruros y sulfatos, se muestran a continuación. 7
Ensayo
Valores obtenidos
PH
Alcalino (8)
Cloruros
Negativo
Sulfatos
Negativo
5.2.-PESO UNITARIO Y GRAVEDAD ESPECÍFICA: Se determinaron los valores de Peso Unitario y gravedad específica, cuyos valores se muestran a continuación.
PERFORACIÓN
PROFUNDIDAD
PESO UNITARIO
GRAVEDAD
No.
(metros)
(T/m3.)
ESPECÍFICA
P1
1.0
1.66
2.60
P1
11.0
1.96
2.65
P2
3.0
1.71
2.66
P2
7.0
1.76
2.60
P3
2.0
1.68
2.68
P3
8.0
1.74
2.65
P4
5.0
1.66
2.69
P4
10.0
1.91
2.69
P5
3.0
1.67
2.71
P5
8.0
1.82
2.68
Todos los ensayos fueron realizados con los procedimientos y métodos expuestos en las normas Covenín y especificaciones vigentes. 8
De la interpretación de los registros de perforación mostrados en el anexo 8.1, se obtienen los perfiles probables del
suelo mostrados en el
anexo 8.3., estos indican que están constituidos principalmente por la siguiente secuencia estratigráfica.
CORTE 1: Este corte está representado por las perforaciones P1 y P2; entre la cota de perforación, hasta la profundidad explorada de 20.0 metros, se localiza un potente estrato conformado por suelos de grano grueso, como son las arenas limosas de clasificación (SM)g de granulometría media a gruesa con alto contenido de grava, colores beige, ocre y marrón y pasantes por el tamiz No.200 entre 12% a 35%, con la presencia en P1 entre 9.0 m. a 11.0 metros, , de un bolsón de arena limosa, de aspecto orgánico y clasificación SM color negro, con pasantes por el tamiz No.200 de 35%.
Con respecto a la resistencia a la penetración, el suelo se muestra heterogéneo, si comparamos los resultados de la prueba S.P.T.
CORTE 2: Perforaciones P3, P4 y P5; superficialmente y con un espesor de 0.5 metros, se localiza la capa vegetal arenosa.
Desde -0.5 m. y con un espesor comprendido entre 4.0 m. a 5.0 metros, se presenta una arena limosa de clasificación (SP-SM)g no plástica mal gradada, de granulometría media a gruesa, colores ocre, gris y marrón, con pasantes por el tamiz No.200 entre 6% a 10%.
A partir de los 5.0 m. hasta los 11.0 metros de profundidad, localizamos una arena limosa de clasificación (SM)g con alto contenido de 9
grava, colores marrón y ocre, con pasantes por el tamiz No.200 entre 15% a 25%.
Con respecto a la resistencia a la penetración, el suelo se muestra ligeramente homogéneo, con una zona débil en los metros iniciales de las perforaciones ejecutadas.
6.- CONCLUSIONES Y RECOMENDACIONES Hemos analizado los resultados obtenidos de las pruebas de campo y laboratorio, la estratigrafía del suelo según mostrados
los perfiles
probables
en el anexo 8.3 y el tipo de construcción , llegando a las
siguientes conclusiones sobre el sistema de fundación más adecuado.
6.1.- USO DE FUNDACIONES SUPERFICIALES Ó DIRECTAS: El proyecto contempla la construcción de un sótano de 11.0 m de profundidad aproximadamente, por tal razón, considerando esta cota de piso del sótano, se podrá apoyar la estructura por medio de fundaciones superficiales o directas. Es importante mencionar que esta situación se aplica única y exclusivamente por la presencia de los sótanos, si éste no fuese el proyecto definitivo las condiciones de apoyo y recomendaciones variarán.
En este caso
sería mediante el uso de fundaciones aisladas que
podrán ser cuadradas (B=L) o rectangulares arriostradas rígidamente en la dirección de todos sus ejes, apoyadas a una profundidad variable entre 2.0 y 2.5 metros, tomando como referencia la cota de piso después de la 10
excavación de los 11.0 metros para la construcción de los sótanos (entre 13 y 13.5 metros aproximadamente con respecto a la cota actual del terreno).
Los parámetros para el cálculo de las fundaciones aisladas se muestran a continuación en la tabla 6.1.
TABLA 6.1. PARÁMETROS PROMEDIO PARA EL CÁLCULO DE LAS FUNDACIONES AISLADAS TIPO DE SUELO DE APOYO PROFUNDIDAD DE APOYO PESO UNITARIO CAPACIDAD DE CARGA ADMISIBLE DEL TERRENO qa. ASENTAMIENTO MAXIMO ESTIMADO PARA qa DENSIDAD RELATIVA DEL TERRENO COEFICIENTE DE BALASTO
:
Arena (SM)g
:
2.50 metros (*)
:
1.99 T/m3
:
29.9
T/m2
:
12.0 mm
:
85%
:
2.49 Kg/cm3
(*) Entre 13.0 m y 13.5 m con respecto a la cota de perforación. Nota: Estos valores fueron calculados para un factor de seguridad igual a tres (3), utilizando los criterios propuestos por TERZAGHI, para un estado de falla del suelo entre el corte local y corte general. Los asentamientos fueron calculados en base a las correlaciones del Dr. Fernando Tinoco.
RECOMENDACIONES CONSTRUCTIVAS
Para el apoyo de los pisos, se recomienda colocar un relleno granular con un espesor no menor de 0.20 metros, en una sola capa suelta, 11
compactada cada capa, hasta obtener una densidad no menor del 95%, referida a un ensayo de compactación AASTHO Modificado T180 var iante “D”.
El material de relleno deberá
cumplir con los siguientes parámetros
mínimos.
PESO UNITARIO MÁXIMO INDICE DE PLASTICIDAD MAT. PASANTE TAMIZ #200 TAMAÑO MAXIMO
: : : :
2000 Kg/m3 (MINIMO) 9 % (MAXIMO) 25 % (MAXIMO) 2" (50.8 mm.)
Es importante la toma de densidades en campo para verificar que los porcentajes de compactación se encuentren dentro de los parámetros
mínimos
establecidos,
a
fin
de
evitar
futuros
asentamientos en los pisos de la estructura.
Antes del vaciado de las fundaciones, se densificará enérgicamente el fondo de la excavación y se colocará un colchón de apoyo constituido por piedra picada Nº 1 o granzón de río, en un espesor no menor de 10.0 cm.; densificado con “rana”, esto servirá para homogeneizar el asiento de contacto entre suelo y fundación.
Dada la elevada humedad de la zona, se recomienda el uso de aditivos impermeabilizantes en el concreto, así como en los frisos.
Una vez colocados los bloques de las paredes y antes de frisarlas, se recomienda pintar con asfalto líquido el primer metro, a partir de la viga de riostra, esto para evitar el desprendimiento del friso a futuro. 12
Las fundaciones y vigas de riostra, deberán igualmente ser pintadas con asfalto líquido.
Para la excavación de los sótanos y fundaciones, se deberá prever en algunos casos, el uso de voladura o martillos, ya que es posible localizar rocas de gran tamaño, característico de la estratigrafía de la zona.
Para el control de calidad del concreto de las fundaciones, recomendamos que la dispersión máxima de los ensayos evaluados sea menor del 10% de f'c, utilizando como método de ensayo el propuesto en la norma Covenin 338-79, el valor de f'c debe ser suministrado por el ingeniero calculista.
6.2.-MUROS PERIMETRALES DE SOSTENIMIENTO El proyecto presenta unas condiciones constructivas muy especiales, ya que será necesario la construcción de muros perimetrales de sostenimiento para un triple sótano, estimando una excavación de 11.0 metros aproximadamente; esto implica obligatoriamente el uso de anclajes provisionales.
Por razones constructivas, el proyectista de las fundaciones, podrá presentar variantes constructivas para su evaluación.
Para la construcción de los muros perimetrales se presentan dos alternativas: 13
Muros colados atirantados
Muros de concreto proyectado atirantados
Los muros colados atirantados tienen la ventaja que se construyen previamente y permite un mejor control de la excavación del sótano, ya que van atirantando a medida que se excava; este tipo de muro evita el riesgo de derrumbes ó afectaciones de estructuras vecinas. En Maracay existe un elevado riesgo de hundimiento en los perímetros externos de los muros profundos, ocasionados por la presencia en los estratos más superficiales de lentes arenosos sueltos mal gradados.
Los muros colados tienen como desventaja su elevado costo y el espesor del muro cuando hay derrumbes de la excavación, provoca sobre volúmenes de concreto que deben ser corregidos una vez que se procede a la excavación.
La segunda alternativa es el uso de muros de concreto proyectado y luego atirantados.
Este método constructivo tiene como ventajas su menor costo por el control que se tiene del espesor del concreto de la pantalla.
Esta solución tiene como desventaja que se requiere una excavación previa que puede provocar molestias por la posibilidad de derrumbes en períodos de lluvias por la gran presencia en todo el perfil de lentes arenosos sueltos y un riesgo sobre la estabilidad de estructuras muy cercanas a la excavación. 14
En ambas soluciones, para los tirantes de linderos, se tendrá especial cuidado a fin de evitar perturbaciones en las estructuras vecinas o vialidad que pueda alterar las condiciones actuales de sus fundaciones, trayendo como consecuencia posibles demandas en caso que esto suceda; por tal razón la empresa constructora de los muros, garantizará la seguridad, reforzando debidamente la pantalla en el sector donde coincida con estructuras vecinas o vialidad.
En Maracay, se tiene experiencia de excavaciones de 10.0 m. a 17.0 metros; en el primero utilizando muros colados y en el segundo, utilizando pantallas atirantadas y en todos se han presentado los problemas indicados en las desventajas.
RECOMENDACIONES PARA LOS MUROS PERIMETRALES Los parámetros para el diseño de los muros perimetrales son el promedio de las perforaciones ejecutadas en el estudio geotécnico y se muestran en la tabla 6.2.
TABLA 6.2 PARÁMETROS GEOTÉCNICOS PARA EL DISEÑO DE LOS MUROS PERIMETRALES DE SOSTENIMIENTO Prof. (m) De 0 m a 5 m De 6 m a 10 m De 11 m a 20 m
Espesor ngulo del Nprom de estrato (SPT) Fricción (m) (º)
Cohesión (T/m2)
E (Kg/cm2)
Mv (cm2/Kg)
PU (T/m3)
5.00
11
30
0
200
0.005
0.35
1.70
5.00
40
35
0
400
0.0025
0.30
1.86
10.00
>60
40
0
500
0.0020
0.25
1.99 15
E = Módulo de elasticidad Mv = Módulo de compresibilidad volumétrica = Coeficiente de Poisson = Peso unitario
El diagrama de presiones a considerar para la etapa de tirantes provisionales, es decir durante la excavación, se asumió rectangular con un ancho E y se representará mediante la expresión:
E=0.65 KaPuH Donde:
Ka
=
Coeficiente de empuje en estado activo (Tg2(45º-/2))
Pu
=
Peso unitario del suelo en T/M3
H
=
Altura de excavación en mts.
En el caso más crítico según los datos de la tabla 6.1.1 será E = 4.05 T/m2. Para la condición de trabajo definitivo debe asumirse un empuje rectangular con coeficiente de empuje de reposo; el ancho se representará mediante la expresión: E = 0.65 KoPuH Donde:
Ko
=
coeficiente de empuje en reposo
Pu
=
Peso unitario del suelo en T/M3 16
H
=
Altura de excavación en metros
El coeficiente Ko se puede expresar:
Ko = 1 -
En el caso más crítico según los datos de la tabla 6.2 será = 6,07 T/m2. Por ello se realizó la simulación con una presión de contacto de un área cargada de 10 T/m2 y estimando en base a la tabla 6.1.1, los esfuerzos horizontales que se producirían en el suelo bajo los parámetros geotécnicos estimados, el resultado se muestran en las gráficas # 1 y # 2.
GRÁFICA # 1
17
GRÁFICA # 2
Los valores promedio de la gráfica # 1 se aproximan a los esfuerzos estimados para las dos condiciones anteriores.
La longitud de los tirantes se establecerá de tal manera que el bulbo de los anclajes esté en lo posible fuera de la cuña de deslizamiento del suelo.
Con fines de anteproyecto y de una manera conservadora se puede considerar que todos los bulbos deben estar fuera de una línea de deslizamiento que arranca del fondo de la excavación a una distancia H/2 de la pantalla y se extiende hasta la superficie con un ángulo de 45 grados con respecto a la horizontal. El proyectista podrá considerar cualquier otra 18
proposición técnica y suficientemente comprobada para plantear su diseño. En todo caso la línea superior de anclajes que es la más crítica no tendrá una longitud menor a 16 m.
Los muros se proveerán de un eficiente sistema de drenajes, para evitar acumulaciones de agua detrás de los mismos, mediante el uso de barbacanas de dos (2”) pulgadas de diámetro, sobre todo en el tercio final del muro. Los proyectistas deberán prever un nivel de bombeo en el último sótano, para prevenir inundaciones en el mismo por aguas externas, subida del nivel freático o filtraciones de construcciones vecinas.
Para el control de calidad del concreto de las fundaciones, recomendamos que la dispersión máxima de los ensayos evaluados sea menor del 10% de f'c, utilizando como método de ensayo el propuesto en la norma Covenin 338-79, el valor de f'c debe ser suministrado por el ingeniero calculista.
7.- ZONIFICACION SISMICA. De acuerdo a lo contemplado en la norma COVENIN 1756-1:2001, el terreno en estudio presenta los siguientes parámetros sísmicos.
ZONA SÍSMICA COEFICIENTE DE ACELERACI N Ao FORMA ESPECTRAL FACTOR
:
Nº 5
:
0.3 G
:
S2
:
0.90 19
A continuación se presenta un extracto del Mapa de Fallas
Cuaternarias de Venezuela, asociados al área en estudio (Autores: U.S. Geological Survey (USGS), FUNVISIS, INTEVEP Y PDVSA)
20
Si durante la ejecución de las fundaciones y debido a la complejidad estratigráfica de la zona, se encontrara en el suelo algún problema no detectado durante las perforaciones exploratorias, o si ocurriese algún cambio no previsto en el proyecto original que implique el aumento en las exigencias de capacidad admisible del suelo, es necesario hacer las consultas técnicas pertinentes, para lo cual quedamos a sus gratas órdenes.
Atentamente,
JOSE V. HEREDIA T. INGENIERO GEOLOGO CIV. 31772
21