Theeffectiveinterestrate,effectiveannualinterestrate,annualequ Theeffectiveinterestrate,effectiveannual interestrate,annualequivalentr ivalentr ate(AER)orsimplyeffectiverateistheinte ate(AER)orsimplyef fectiverateistheinterestrateonaloanorfi restrateonaloanorfinancialp nancialp roductrestatedfromthenominalinterestrate roductrestatedfromt henominalinterestrateasaninterestratewith asaninterestratewithannualc annualc ompoundinterestpayableinarrears.[1] Itisusedtocomparetheannualinterestbetw Itisusedtocompare theannualinterestbetweenloanswithdifferent eenloanswithdifferentcompoundi compoundi ngterms(daily,monthly,annually,orother). ngterms(daily,month ly,annually,orother).Theeffectiveinterestr Theeffectiveinterestratediffe atediffe rsintwoimportantrespectsfromtheannualp rsintwoimportantre spectsfromtheannualpercentagerate(APR):[2] ercentagerate(APR):[2] 1. theeffect theeffectivei iveintere nterestra stratege tegeneral nerallydo lydoesno esnotinc tincorpor orporateo ateone-ti ne-timech mechar ar gessuchasfront-endfees; 2. theeffect theeffectivei iveintere nterestra strateis teis(gen (generall erally)no y)notdef tdefined inedbyle bylegalo galorreg rregul ul atoryauthorities(asAPRisinmanyjurisdictions).[3] Bycontrast,theeffectiveAPRisusedasale Bycontrast,theeffec tiveAPRisusedasalegalterm,wherefront-fee galterm,wherefront-feesandoth sandoth ercostscanbeincluded,asdefinedbylocallaw.[2][3] Annualpercentageyieldoreffectiveannualyi Annualpercentageyiel doreffectiveannualyieldistheanalogousconc eldistheanalogousconceptused eptused forsavingsorinvestmentproducts,suchasa forsavingsorinvestm entproducts,suchasacertificateofdeposit.S certificateofdeposit.Sinceany inceany loanisaninvestmentproductforthelender, loanisaninvestment productforthelender,thetermsmaybeusedto thetermsmaybeusedtoapplyto applyto thesametransaction,dependingonthepointofview. Effectiveannualinterestoryieldmaybecalc Effectiveannualinter estoryieldmaybecalculatedorapplieddiffere ulatedorapplieddifferentlydepe ntlydepe ndingonthecircumstances,andthedefinition ndingonthecircumsta nces,andthedefinitionshouldbestudiedcarefu shouldbestudiedcarefully.For lly.For example,abankmayrefertotheyieldonalo example,abankmayre fertotheyieldonaloanportfolioafterexpect anportfolioafterexpectedlosses edlosses asitseffectiveyieldandincludeincomefro asitseffectiveyiel dandincludeincomefromotherfees,meaningtha motherfees,meaningthattheint ttheint erestpaidbyeachborrowermaydiffersubstan erestpaidbyeachbor rowermaydiffersubstantiallyfromthebank'sef tiallyfromthebank'seffectivey fectivey ield. Theeffectiveinterestrateiscalculatedasi Theeffectiveinterest rateiscalculatedasifcompoundedannually.Th fcompoundedannually.Theeffecti eeffecti verateiscalculatedinthefollowingway,wh verateiscalculated inthefollowingway,whereristheeffectivean ereristheeffectiveannualrate nualrate ,ithenominalrate,andnthenumberofcomp ,ithenominalrate, andnthenumberofcompoundingperiodsperyear oundingperiodsperyear(forexam (forexam ple,12formonthlycompounding): Forexample,anominalinterestrateof6%compoundedmonthlyisequiva Forexample,anominalinterestrateof6%com poundedmonthlyisequivalenttoa lenttoa neffectiveinterestrateof6.17%.6%compoun neffectiveinterestr ateof6.17%.6%compoundedmonthlyiscrediteda dedmonthlyiscreditedas6%/12= s6%/12= 0.005everymonth.Afteroneyear,theinitia 0.005everymonth.Af teroneyear,theinitialcapitalisincreasedby lcapitalisincreasedbythefact thefact or(1+0.005)12≈1.0617. Whenthefrequencyofcompoundingisincreased Whenthefrequencyof compoundingisincreaseduptoinfinitythecalcu uptoinfinitythecalculationwi lationwi llbe: Theyielddependsonthefrequencyofcompounding: EffectiveAnnualRateBasedonFrequencyofCompounding N o m i na l R a t e Semi-Annual Q ua r t er l y M o n t h ly D ai l y C on t i n u o u s 1% 1.002% 1.004% 1.005% 1.005% 1.005% 5% 5.062% 5.095% 5.116% 5.127% 5.127% 10% 10% 10.2 10.250 50% % 10.3 10.381 81% % 10.4 10.471 71% % 10.5 10.516 16% % 10.5 10.517 17% % 15% 15% 15.5 15.563 63% % 15.8 15.865 65% % 16.0 16.075 75% % 16.1 16.180 80% % 16.1 16.183 83% % 20% 20% 21.0 21.000 00% % 21.5 21.551 51% % 21.9 21.939 39% % 22.1 22.134 34% % 22.1 22.140 40% % 30% 30% 32.2 32.250 50% % 33.5 33.547 47% % 34.4 34.489 89% % 34.9 34.969 69% % 34.9 34.986 86% % 40% 40% 44.0 44.000 00% % 46.4 46.410 10% % 48.2 48.213 13% % 49.1 49.150 50% % 49.1 49.182 82% % 50% 50% 56.2 56.250 50% % 60.1 60.181 81% % 63.2 63.209 09% % 64.8 64.816 16% % 64.8 64.872 72% % Theeffectiveinterestrateisaspecialcase Theeffectiveinterest rateisaspecialcaseoftheinternalrateofr oftheinternalrateofreturn. eturn. Ifthemonthlyinterestratejisknownandre Ifthemonthlyinteres tratejisknownandremainsconstantthroughout mainsconstantthroughouttheyear theyear ,theeffectiveannualratecanbecalculatedasfollows: Beforeyoutakeoutabankloan,youneedtoknowhowyourinterestrat Beforeyoutakeoutabankloan,youneedtok nowhowyourinterestrateiscalc eiscalc ulated.Therearemanymethodsbanksusetoca ulated.Therearemany methodsbanksusetocalculateinterestratesan lculateinterestratesandeachme deachme thodwillchangetheamountofinterestyoupa thodwillchangethea mountofinterestyoupay.Ifyouknowhowtocal y.Ifyouknowhowtocalculatein culatein terestrates,youwillbetterunderstandyour terestrates,youwill betterunderstandyourloancontractwithyourb loancontractwithyourbank.You ank.You arealsoinabetterpositiontonegotiateyou arealsoinabetterp ositiontonegotiateyourinterestratewithyour rinterestratewithyourbank.Ba bank.Ba nkswillquoteyoutheeffectiverateofinter nkswillquoteyouthe effectiverateofinterest.Theeffectiverateo est.Theeffectiverateofinteres finteres tisalsoknownastheannualpercentagerate tisalsoknownasthe annualpercentagerate(APR).TheAPRoreffecti (APR).TheAPRoreffectiverateo verateo finterestisdifferentthanthestatedrateo finterestisdifferen tthanthestatedrateofinterest.Banksalsoti finterest.Banksalsotieyourin eyourin terestratetoabenchmark,usuallytheprime terestratetoabench mark,usuallytheprimerateofinterest. rateofinterest. EffectiveInterestRateonaoneYearLoan
Ifyouborrow$1000fromabankforoneyearandhavetopay$60ininterestfor thatyear,yourstatedinterestrateis6%.Hereisthecalculation: EffectiveRateonaSimpleInterestLoan=Interest/Principal=$60/$1000=6% YourannualpercentagerateorAPRisthesameasthestatedrateinthisexampl ebecausethereisnocompoundinteresttoconsider.Thisisasimpleinterestl oan. EffectiveInterestRateonaLoanWithaTermofLessThanoneYear Ifyouborrow$1000fromabankfor120daysandtheinterestrateis6%,whati stheeffectiveinterestrate? Effectiverate=Interest/PrincipalXDaysintheYear(360)/DaysLoanisOutsta nding EffectiverateonaLoanwithaTermofLessThanoneYear=$60/$1000X360/120= 18% Theeffectiverateofinterestis18%sinceyouonlyhaveuseofthefundsfor1 20daysinsteadof360days. EffectiveInterestRateonaDiscountedLoan Somebanksofferdiscountedloans.Discountedloansareloansthathavetheinte restpaymentsubtractedfromtheprincipalbeforetheloanisdisbursed. Effectiverateonadiscountedloan=Interest/Principal-InterestXDaysinth eYear(360)/DaysLoanisOutstanding Effectiverateonadiscountedloan=$60/$1,000-$60X360/360=6.38% Asyoucansee,theeffectiverateofinterestishigheronadiscountedloanth anonasimpleinterestloan. EffectiveInterestRatewithCompensatingBalances Somebanksrequirethatthesmallbusinessfirmapplyingforabusinessbankloa nholdabalance,calledacompensatingbalance,withtheirbankbeforetheywil lapprovealoan.Thisrequirementmakestheeffectiverateofinteresthigher. Effectiveratewithcompensatingbalances(c)=Interest/(1-c) Effectiveratecompensatingbalance=6%/(1-0.2)=7.5%(ifcisa20%compensa tingbalance) EffectiveInterestRateonInstallmentLoans Oneofthemostconfusinginterestratesthatyouwillhearquotedonabankloa nisthatonaninstallmentloan.Installmentloaninterestratesaregenerally thehighestinterestratesyouwillencounter.Usingtheexamplefromabove: Effectiverateoninstallmentloan=2XAnnual#ofpaymentsXInterest/(Total no.ofpayments+1)XPrincipal Effectiverate/installmentloan=2X12X$60/13X$1,000=11.08% Theinterestrateonthisinstallmentloanis11.08%ascomparedto7.5%onthe loanwithcompensatingbalances. 4.Effectiveannualinterestrateoninstallmentloans Aninstallment(amortized)loanisaloanthatisperiodicallypaidoffinequal installments.Examplesmayincludecarloans,commercialloans,andmortgages. Therearefourmethodsusedtocalculatetheeffectiveannualinterestrateoni nstallmentloans(refertothetablebelow). Illustration2:Effectiveinterestratesoninstallmentloans Actuarial method • Most accurate method • Used by lenders • Complicated formulas Constant-ratio method • Simple formula • Overstated EAR • Higherquotedrate,moreoverstatedEAR EAR=2xMxC÷[Px(N+1)] Misthenumberofpaymentperiodsperyear Cisthecostofcredit(financecharges) Pistheoriginalproceeds Nisthenumberofscheduledpayments Direct-ratio method • Simple formula • Morecomplicatedthanconstant-ratiomethodbutlesscomplicatedthanactuarial
method •
Slightlyunderstateseffectiveannualinterestrate EAR=6xMxC÷[3xPx(N+1)+Cx(N+1)] Misthenumberofpaymentperiodsperyear Cisthecostofcredit(financecharges) Pistheoriginalproceeds Nisthenumberofscheduledpayments N-ratiomethod • Moreaccuratethanconstant-ratioordirect-ratiomethods • Effectiveannualinterestrateisslightlyoverstatedorunderstateddependingo nthenominalrateandthematurityoftheloan EAR=MxCx(95xN+9)÷[12xNx(N+1)x(4P+C)] Misthenumberofpaymentperiodsperyear Cisthecostofcredit(financecharges) Pistheoriginalproceeds Nisthenumberofscheduledpayments Iftheamountofpaymentortimebetweenpaymentsvariesfromperiodtoperiod( e.g.,balloonpayments),theconstant-ratio,direct-ratio,andN-ratiomethodsc annotbeused.Ifalenderchargesacreditinvestigation,loanapplication,or lifeinsurancefee,suchacostshouldbeaddedtothecostofcredit(financec harge). Letuslookatasimpleexampletoseehowtheeffectiveannualinterestrateis calculatedoninstallmentloans. InstallmentLoans–Example1: CompanyABCborrows$12,000toberepaidin12months.Themonthlyinstallments are$1,116each.Thefinancechargeis$1,400.Whatistheapproximatevalueof effectiveannualinterestrate? Constantratiomethod: EAR= 2x12x$1,400 =0.2154 12,000x(12+1) Direct-ratiomethod: EAR= 6x12x$1,400 =0.2073 3x12,000x(12+1)+1,400x(12+1) N-ratiomethod: EAR= 12x$1,400(95x12+9) =0.2104 12x12(12+1)(4x12,000+1,400) Usingtheactuarialmethod,theeffectiveannualinterestrateislikelytobec loseto21.04%. Aswecanseefromthisexample,theconstant-ratiomethodoverstatedtheeffect iveannualinterestrate,whilethedirect-ratiomethodslightlyunderstatedthe effectiveannualinterestrateontheinstallmentloan. Thereisanothermethodusedtoapproximatethisrateonone-yearinstallmentlo anstobepaidinequalmonthlyinstallments.Theeffectiveinterestrateisdet erminedbydividingtheinterestbytheaverageamountoutstandingfortheyear. Iftheloanisdiscounted,theaverageloanbalanceequalstheaverageofproce eds(i.e.,principallessinterest). InstallmentLoans–Example2: CompanyABCborrows$10,000ata10%interestratetobepaidin12monthlyinst allments. Inthisexample,theEARcouldbeapproximatedasfollows: Interest=$12,000x0.10=$1,200 AverageLoanBalance=$12,000÷2=$6,000 EffectiveAnnualInterestRate=$1,200÷$6,000=0.20 Ifthisloanisdiscounted,theeffectiveannualinterestratewillbecalculate dasfollows: Interest=$1,200 Proceeds=$12,000-$1,200=10,800 AverageLoanBalance:$10,800÷2=$5,400
EffectiveAnnualInterestRate=$1,200÷$5,400=0.2222