OptiX OSN 8800/6800/3800 V100R007C02
Hardware Description Issue
03
Date
2013-05-16
HUAWEI TECHNOLOGIES CO., LTD.
Copyright © Huawei Technologies Co., Ltd. 2013. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.
Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.
Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.
Huawei Technologies Co., Ltd. Address:
Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China
Website:
http://www.huawei.com
Email:
[email protected]
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
i
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
About This Document
Related Versions Product Name
Version
OptiX OSN 8800
V100R007C02
OptiX OSN 6800
V100R007C02
OptiX OSN 3800
V100R007C02
iManager U2000
V100R008C00
iManager U2000 Web LCT
V100R008C00
Intended Audience This document describes the hardware feature of a cabinet and each subrack, in addition to application, working principle, front panel, and specifications of each board. This document is intended for: l
Network Planning Engineer
l
Hardware Installation Engineer
l
Installation and Commissioning Engineer
l
Field Maintenance Engineer
l
Network Monitoring Engineer
l
Data Configuration Engineer
l
System Maintenance Engineer
Symbol Conventions The symbols that may be found in this document are defined as follows. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
ii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Symbol
Description
DANGER
WARNING
CAUTION
Indicates a hazard with a high level of risk, which if not avoided, will result in death or serious injury. Indicates a hazard with a medium or low level of risk, which if not avoided, could result in minor or moderate injury. Indicates a potentially hazardous situation, which if not avoided, could result in equipment damage, data loss, performance degradation, or unexpected results.
TIP
Indicates a tip that may help you solve a problem or save time.
NOTE
Provides additional information to emphasize or supplement important points of the main text.
Diagram Conventions The diagram conventions that may be found in this document are defined as follows. Convention
Description Indicates the flow of optical signals. Indicates the flow of electrical signals. Indicates an optical module.
Indicates an electrical module.
All modules of a board are inside such a block in bold.
GUI Conventions The GUI conventions that may be found in this document are defined as follows.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
iii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Convention
Description
Boldface
Buttons, menus, parameters, tabs, window, and dialog titles are in boldface. For example, click OK.
>
Multi-level menus are in boldface and separated by the ">" signs. For example, choose File > Create > Folder.
Change History Updates between document issues are cumulative. Therefore, the latest document issue contains all updates made in previous issues.
Updates in Issue 03 (2013-05-16) Based on Product Version V100R007C02 This issue is the third official release for OptiX OSN 8800/6800/3800 V100R007C02. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
LOA Functions and Features
Deleted the InfiniBand 2.5G and InfiniBand 5G services.
FIU Panel
Changed the description of the MON/OUT port power split ratio for the TN13FIU02 board into the following sentence: The MON port is a 0.1/99.9 tap of the total composite signal at the OUT port (30 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (99.9/0.1) = 30 dB).
TOA Functions and Features
Deleted the FE electrical port feature for the TOA board.
Updates in Issue 02 (2013-04-20) Based on Product Version V100R007C02 This issue is the second official release for OptiX OSN 8800/6800/3800 V100R007C02. Compared with the manual for the issue 01, the manual of this issue contains the SPC100 and SPC200 related information.
Issue 03 (2013-05-16)
Update
Description
Whole manual
Changed the required U2000 version from V100R008C01 to V100R008C00.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
iv
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
1 Cabinet
l Optimized the cabinet descriptions. The N63B and N66B cabinets are described through comparison. l Added requirements on subrack configurations inside a cabinet.
LTX Application ND2 Application NO2 Application NQ2 Application NS3 Application NS4 Application
Revised the description of relay mode of line boards as follows: When optical-layer ASON and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. Added information about latency measurement.
14.22 TTX 14.20 TSC 13.12 LOA
Added information about InfiniBand 2.5G, InfiniBand 5G, FC1200, FICON10G, and 10GE LAN services.
NPO2E Functions and Features
Added information about electrical-layer ASON.
NPO2 Functions and Features ENQ2 Functions and Features
Updates in Issue 01 (2012-11-30) Based on Product Version V100R007C02 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R007C02. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
Added information about the TN52NS2T04, TN52NS2T05, TN52NS2T06, TN52NS201M01, TN52NS201M02, TN52ND2T04, TN14LSX, TN54TTX, and TN54TSC boards. Added information showing that the OptiX OSN 8800 platform subrack supports the TN12LDM, TN12LOM, TN13LQM, TN12LSX, TN14LSX, TN12LSXL, TN52TOM, TN12LWXS, and TN11LWX2 boards.
21.12 TN16UXCM
Issue 03 (2013-05-16)
Added information explaining that the TN16UXCM board supports centralized grooming of ODU4 signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
v
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
14.7 NS4
Added information explaining that the NS4 and NO2 boards can be used as line boards on the OptiX OSN 8800 T16.
14.3 NO2 14.11 TEM28
Added information explaining that the TEM28 board newly supports the 10GE WAN service.
Updates in Issue 03 (2012-12-15) Based on Product Version V100R007C00 This issue is the third official release for OptiX OSN 8800 V100R007C00. Compared with the manual for the issue 02, the manual of this issue contains the SPC200 related information. Update
Description
Whole manual
l Optimized the subrack ventilation system diagram. l Changed the power consumption of the subrack in typical configuration. l Added descriptions of the mounting ear.
13.11 LEX4
Added the number of virtual bridges (VBs) supported by the board.
13.10 LEM24
Revised the descriptions of the TBE board cross-connect capacity.
14.8 TBE 14.11 TEM28 13.19 LSC
Changed the board power consumption.
13.25 LTX 14.7 NS4
Updates in Issue 02 (2012-09-30) Based on Product Version V100R007C00 This issue is the second official release for OptiX OSN 8800 V100R007C00. Only the issue number is updated. Update
Description
Whole manual
Added information about the TN23SCC board. Added information showing that the OptiX OSN 8800 platform subrack supports the TN11LSQ, TN13LSX, TN11LOA, TN12LSC, TN12LOG, TN12TMX, TN11LTX, and TN12LDX boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
vi
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
13.19 LSC
Deleted the OTU4 service type for the LSC board.
13.10 LEM24
Added information showing that the LEM24 board supports the OptiX OSN 3800.
13.19 LSC
Added the SDFEC error correction mode and 55000ps/nm-C BandTunable Wavelength-ePDM-QPSK(SDFEC)-PIN optical modules for these boards.
13.25 LTX 14.7 NS4 14.7 NS4
Deleted the information that shows the NS4 board supports OptiX OSN 8800 T16 subracks, OptiX OSN 8800 platform subracks, and OptiX OSN 6800 subracks.
14.3 NO2
Deleted the information that shows the NO2 board supports OptiX OSN 8800 platform subracks and OptiX OSN 6800 subracks.
Updates in Issue 01 (2012-07-30) Based on Product Version V100R007C00 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R007C00. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
Added descriptions of the enhanced OptiX OSN 8800 T64 subracks. Added descriptions of PDU (DPD63-8-8). Added descriptions of the TN52AUX, TN15AUX, TN15EFI, TN54EG16, TN54EX2, TN54PND2, TN55NO2, TN54NS4, TN12TD20, TN11TM20, TN55TOX, TN12OPM8, TN15PIU, TN11RAU2, TNK2USXH, TN52UXCH, TN52UXCM, TN16UXCM and TNK2UXCT boards. Moved the loopback descriptions to the "Product Description".
13.19 LSC
Added the OTU4 service type for the LSC board.
13.10 LEM24
Added service-based LPT for the LEM24 and LEX4 boards.
13.11 LEX4
Issue 03 (2013-05-16)
20.8 RAU1
Added the following fiber types for the RAU1 board: TWPLUS, SMFLS, G.656, G.654A, TERA_LIGHT, and G.654B.
14.11 TEM28
Added the ERPS function for the TEM28 board.
22.5 ST2
Added the 80-km OSC modules for the ST2 board.
23.3 OLP
Added the TN12OLP04 board to the TN12OLP board series.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
vii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
24.2 MCA4 24.3 MCA8
Added the function to detect OSNR of 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signals for the TN11MCA402 and TN11MCA802 boards when the boards work with the Optical Doctor Management System Function Software.
14 Tributary Board and Line Board
Added the standard mode for the TN54NS3, TN54THA, TN54TOA, TN53TDX, and TN55TQX boards.
Updates in Issue 05 (2013-05-15) Based on Product Version V100R006C03 This issue is the fifth official release for OptiX OSN 8800/6800/3800 V100R006C03. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
For the transport equipment, heat consumption (BTU/h) and power consumption (W) are similar and can be taken as the same. 1 BTU/h = 0.2931 W.
13 Optical Transponder Unit
Limitations of the LDM, LDMS, LDMD, LQM, LQMS, and LQMD boards are added, indicating that each of the boards can receive and transmit only one 1.25 Gbit/s higher service and must use the RX1/TX1 port pair to receive/transmit the service.
23 Optical Protection Board
A description is added, explaining that the OLP and DCP boards support optical-layer ASON only when they are used to provide client 1+1 protection.
22 Optical Supervisory Channel Board
The maximum span loss supported by the SC1 and SC2 boards is changed to 42 dB. The maximum span loss supported by the ST2 boards is changed to 40.5 dB.
SCC Switch and Jumper
The diagrams of the DIP switches and jumpers on the SCC board are revised and optimized.
TBE Functions and Features
The cross-connect capability of the TBE board is changed.
Updates in Issue 04 (2012-10-30) Based on Product Version V100R006C03 This issue is the fourth official release for OptiX OSN 8800/6800/3800 V100R006C03. Compared with the manual for the previous version, the manual of this issue provides the following updates. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
viii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
13 Optical Transponder Unit
Adjusted the loopback descriptions to the "Product Description" part.
14 Tributary Board and Line Board 13 Optical Transponder Unit
Added information about the TN15LSXL board.
TOM
Revised the TN11TOM board application 5 diagram.
14.6.6 Valid Slots
Revised the slot limitations for the TN55NS3 board when it is used as a regeneration board.
11.3 Fiber Spooling Frame
Updated fiber management tray information.
Updates in Issue 03 (2012-06-22) Based on Product Version V100R006C03 This issue is the third official release for OptiX OSN 8800/6800/3800 V100R006C03. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
Added descriptions of the enhanced OptiX OSN 8800 T32 subracks.
14.13 TOA
Added the HD-SDIRBR service for the TOA board.
13.21 LSX
Modified the function description for the LSX and LDX boards, specifying that they do not support test frames.
13.9 LDX 13.10 LEM24 13.11 LEX4
Modified the function description for the LEM24 and LEX4 boards, specifying that they do not support optical-layer ASON.
21.15 AUX
Modified the jumper descriptions for the TN11AUX01 board.
Updates in Issue 02 (2012-04-05) Based on Product Version V100R006C03 This issue is the second official release for OptiX OSN 8800/6800/3800 V100R006C03. Compared with the manual for the previous version, the manual of this issue provides the following updates. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
ix
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
Whole manual
Deleted the TN15LSXL board.
13.12 LOA
Added the following optical modules for the TN11LOA, TN12LOG, TN12LOM, TN54TOA, TN52TOM, and TN54THA boards: 1000BASE-BX10-U, 1000BASE-BX10-D, 1000BASE-BX-U, and 1000BASE-BX-D.
13.13 LOG 13.14 LOM 14.13 TOA 14.15 TOM 14.12 THA 17.7 FIU
Added the application in OptiX OSN 3800 systems for the TN14FIU and TN11RAU1 boards.
20.8 RAU1 A.4 Board Indicators
Added the maintenance blinking mode for the STAT indicator.
Updates in Issue 01 (2011-12-15) Based on Product Version V100R006C03 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R006C03. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
Added descriptions of the TN12LSC, TN11LTX, TN15LSXL, TN54TEM28, TN55NS3, TN54TSXL, TN11RAU1, TN14FIU, and TN13OAU106.
14.10 TDX
Deleted the following client-side colored optical module from the specifications for the TN53TDX, TN53TQX, and TN55TQX boards: 800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP.
14.19 TQX
21.15 AUX
Revised the schematic diagram of the TN11AUX board jumpers in the "Jumper" section for the AUX board by changing the dotted lines to solid lines. Figure 21-74 shows the revised diagram. The solid lines indicate that the jumpers must be capped.
14.13 TOA
Modified the descriptions of the service timeslots for the TOA, THA, and LOA boards in the "Application" and "Physical and Logical Ports" sections.
14.12 THA 13.12 LOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
x
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Updates in Issue 04 (2013-05-15) Based on Product Version V100R006C01 This issue is the fourth official release for OptiX OSN 8800/6800/3800 V100R006C01. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
For the transport equipment, heat consumption (BTU/h) and power consumption (W) are similar and can be taken as the same. 1 BTU/h = 0.2931 W.
13 Optical Transponder Unit
Limitations of the LDM, LDMS, LDMD, LQM, LQMS, and LQMD boards are added, indicating that each of the boards can receive and transmit only one 1.25 Gbit/s higher service and must use the RX1/TX1 port pair to receive/transmit the service.
23 Optical Protection Board
A description is added, explaining that the OLP and DCP boards support optical-layer ASON only when they are used to provide client 1+1 protection.
22 Optical Supervisory Channel Board
The maximum span loss supported by the SC1 and SC2 boards is changed to 42 dB. The maximum span loss supported by the ST2 boards is changed to 40.5 dB.
SCC Switch and Jumper
The diagrams of the DIP switches and jumpers on the SCC board are revised and optimized.
XCS Functions and Features
For the TN11XCS board, the cross-connect capacity description is modified. For ODU1 and ODU2 signals, the board supports a maximum cross-connect capacity of 280 Gbit/s. For GE services, the board supports a maximum cross-connect capability of 140 Gbit/s.
TBE Functions and Features
The cross-connect capability of the TBE board is changed.
SFIU Valid Slots
The slots for the SFIU board inside an OptiX OSN 3800 chassis are changed to IU2-IU5 and IU11.
Updates in Issue 03 (2012-03-29) Based on Product Version V100R006C01 This issue is the third official release for OptiX OSN 8800/6800/3800 V100R006C01. Compared with the manual for the previous version, the manual of this issue provides the following updates.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xi
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
5 OptiX OSN 8800 Subrack and Power Requirement
Updated the maximum and typical power consumption specifications of the OptiX OSN 8800.
14.2 ND2
Explicitly specified that the TN12ND2 board does not support the 8800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP module.
13.12 LOA
Updated the specifications of client-side FC400 and FC800 optical modules.
20.4 HBA
Revised the application diagram of the HBA board by deleting the HBA board at the receiving site.
14.10 TDX
Deleted the following client-side colored optical module from the specifications for the TN53TDX, TN53TQX, and TN55TQX boards: 800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP.
14.19 TQX
Updated the power consumption specification of the FAN board for the OptiX OSN 8800.
21.15 AUX
Revised the schematic diagram of the TN11AUX board jumpers in the "Jumper" section for the AUX board by changing the dotted lines to solid lines. Figure 21-74 shows the revised diagram. The solid lines indicate that the jumpers must be capped.
14.13 TOA
Modified the descriptions of the service timeslots for the TOA, THA, and LOA boards in the "Application" and "Physical and Logical Ports" sections.
14.12 THA 13.12 LOA
Updates in Issue 02 (2011-10-31) Based on Product Version V100R006C01 This issue is the second official release for OptiX OSN 8800/6800/3800 V100R006C01. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
l Added descriptions of the TN55NPO2S0A, TN55NPO2S0B, TN55NPO2ES02, and TN55NPO2ES04 boards. l Deleted descriptions of the TN55NPO2S05 and TN55NPO2S07 boards. l Deleted slot IU22 from the valid slots for the TN16AUX board in an OptiX OSN 8800 T16 subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Updates in Issue 01 (2011-07-30) Based on Product Version V100R006C01 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R006C01. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
l Added descriptions of the TN11LOA, TN55TQX, TN53TDX, TN13OAU1, TN53NS2, TN53ND2, TN53NQ2, TN55NPO2E, TN12M40, TN12M40V, TN12D40, TN16SCC, TNK4SXH, TNK4SXM, TNK4XCT, N3EAS2, TN11BMD4, TN11BMD8, TN12ELQX, and TN12PTQX boards. l Updated the descriptions of cabinets. Cabinets are described by the cabinet model instead of device model. In addition, descriptions of typical cabinet configurations and fiber management frames are added. l Added the mappings between the board and equipment to the "Version Description" section. l Described service configuration in two separate sections: "Physical and Logical Ports" and "Configuration of Cross-Connection".
13 Optical Transponder Unit 14 Tributary Board and Line Board
l Added the mappings between boards and optical modules to sections that list board specifications, for example, "Specifications of the ND2".
16 PID Board 14.13 TOA
l Added service mapping paths from FC400 and 3G-SDI to ODUflex. l Added the descriptions of configuring service packages. l Added the IEEE 1588v2 function to the "Functions and Features" table.
14.12 THA
l Added the descriptions of configuring service packages. l Added the IEEE 1588v2 function to the "Functions and Features" table. Added the descriptions of configuring service packages.
14.15 TOM
Added the descriptions of configuring service packages.
Updates in Issue 03 (2011-09-15) Based on Product Version V100R006C00 This issue is the third official release for OptiX OSN 8800/6800/3800 V100R006C00. Compared with the manual for the previous version, the manual of this issue provides the following updates.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xiii
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
Whole manual
l Added descriptions of the TN11BMD4, TN11BMD8, TN12ELQX, and TN12PTQX boards. l Updated the descriptions of cabinets. Cabinets are described by the cabinet model instead of device model. In addition, descriptions of typical cabinet configurations and fiber management frames are added. l Added the mappings between the board and equipment to the "Version Description" section. l Described service configuration in two separate sections: "Physical and Logical Ports" and "Configuration of Cross-Connection".
13 Optical Transponder Unit 14 Tributary Board and Line Board
l Added the mappings between boards and optical modules to sections that list board specifications, for example, "Specifications of the ND2".
16 PID Board 14.15 TOM
Revised the port working modes for the TN52TOM board. The details are as follows: l In cascading mode: – Changed "ODU0 tributary mode (Any->ODU0[->ODU1])" to "ODU0 mode (Any->ODU0[->ODU1])". – Changed "ODU1 tributary mode (Any->ODU1)" to "ODU1 mode (OTU1/Any->ODU1)". – Changed "ODU1 tributary-line mode (Any->ODU1->OTU1)" to "ODU1 tributary-line mode (OTU1/Any->ODU1->OTU1)". l In non-cascading mode: – Changed "ODU0 tributary mode (Any->ODU0[->ODU1])" to "ODU0 mode (Any->ODU0[->ODU1])". – Changed "ODU1 tributary mode (OTU1/Any->ODU1)" to "ODU1 mode (OTU1/Any->ODU1)". – Changed "ODU1 tributary mode (OTU1->ODU1->Any->ODU0>ODU1)" to "ODU1_ANY_ODU0_ODU1 re-encapsulation mode (OTU1->ODU1->Any->ODU0->ODU1)". – Changed "ODU1 tributary-line mode (OTU1->ODU1->Any>ODU0->ODU1->OTU1)" to "ODU1_ANY_ODU0_ODU1 reencapsulation tributary-line mode (OTU1->ODU1->Any>ODU0->ODU1->OTU1)". – Changed "ODU1 tributary-line mode (OTU1/Any->ODU1>OTU1)" to "ODU1 tributary-line mode (OTU1/Any->ODU1>OTU1)". – Changed "ODU1 tributary mode (OTU1->ODU1->ODU0)" to "ODU1_ODU0 mode (OTU1->ODU1->ODU0)". – Changed "ODU1 tributary mode (OTU1->ODU1->Any>ODU0)" to "ODU1_ANY_ODU0 re-encapsulation mode (OTU1->ODU1->Any->ODU0)".
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xiv
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Updates in Issue 02 (2011-04-15) Based on Product Version V100R006C00 This issue is the second official release for OptiX OSN 8800/6800/3800 V100R006C00. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
l Added descriptions of the TN54TOA, TN54THA, TN53TQX, TN12OBU1P1, and TNK2SXH boards. l Deleted descriptions of the TN11BMD4, TN11BMD8, TN12ELQX, and TN12PTQX boards.
Updates in Issue 01 (2010-12-31) Based on Product Version V100R006C00 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R006C00. Compared with the manual for the previous version, the manual of this issue provides the following updates. Update
Description
Whole manual
l Added descriptions of the OptiX OSN 8800 T16. l Added descriptions of the TN11DAS1, TN11LSQ, and TN11WSMD9 boards l Added the "Optical-layer ASON" and "Electrical-layer ASON" rows to the "Functions and Features" table.
13.14 LOM
Added a description of the TN12LOM board's capability to support 3GSDI services.
16.7 NPO2
Added descriptions of the TN55NPO2 board.
21.7 TN52UXCM
Added descriptions of the TN52XCM02.
Updates in Issue 04 (2011-08-30) Based on Product Version V100R005C00 This issue is the fourth official release for OptiX OSN 8800/6800/3800 V100R005C00. Compared with the third official release, the manual of this issue provides the following updates. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xv
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
Whole manual
Changed optical module names to ensure that the name of each optical module is unique. Added the mappings between the board and equipment to the "Version Description" section. Added the mappings between boards and optical modules to sections that list board specifications, for example, "Specifications of the ND2".
Updates in Issue 03 (2011-05-25) Based on Product Version V100R005C00 This issue is the third official release for OptiX OSN 8800/6800/3800 V100R005C00. Compared with the second official release, the manual of this issue provides the following updates. Update
Description
16 PID Board
Deleted descriptions of the TN11BMD4, TN11BMD8, TN12ELQX, and TN12PTQX board (specific only to OptiX OSN 8800).
21.7 TN52UXCM
Added information about the TN52XCM02.
Updates in Issue 02 (2010-11-20) Based on Product Version V100R005C00 This issue is the second official release for OptiX OSN 8800/6800/3800 V100R005C00. Compared with the first official release, the manual of this issue provides the following updates. Update
Description
13.22 LSXL
Deleted information about the TN13LSXL.
C Quick Reference Table of the Units 13 Optical Transponder Unit
Added information about the LPT function and protocol or standard compliance in Functions and Features.
14 Tributary Board and Line Board 16 PID Board Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xvi
OptiX OSN 8800/6800/3800 Hardware Description
About This Document
Update
Description
21.10 TN52XCH
Added information about the TN52XCH02.
Updates in Issue 01 (2010-07-30) Based on Product Version V100R005C00 This issue is the first official release for OptiX OSN 8800/6800/3800 V100R005C00. In this release, the manuals for OptiX OSN 8800 V100R002C02, OptiX OSN 6800 V100R004C04, and OptiX OSN 3800 V100R004C04 are combined into one manual. Update
Description
Whole manual
l This manual provides descriptions according to product series OptiX OSN 8800, OptiX OSN 6800, and OptiX OSN 3800. Any difference between the products is described in the manual. l The equipment name is changed from OptiX OSN 8800 I to OptiX OSN 8800 T32 or from OptiX OSN 8800 II to OptiX OSN 8800 T64. l The descriptions of the following boards are added: – TN11LEM24, TN11LEX4, TN13LSXL, TN54NS3, TN53TSXL, TN54ENQ2, TN54NPO2, TN11SFIU, TN11RMU902, TN12WSMD4, TN11ST2, TN11OPM8, TNL1STI, N4BPA
Issue 03 (2013-05-16)
30 Optical Attenuator30.1 Fixed Optical Attenuator
Introduction to fixed optical attenuators and mechanical variable optical attenuators is added.
32 Filler Panels
Introduction to filler panels is added.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xvii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
Contents About This Document.....................................................................................................................ii 1 Cabinet.............................................................................................................................................1 1.1 Cabinet Introduction...........................................................................................................................................2 1.2 Space Requirements for Cabinets.......................................................................................................................3 1.3 Requirements on Configuring Subracks inside an N66B/N63B Cabinet...........................................................4 1.4 Typical Cabinet Configurations..........................................................................................................................6
2 Fiber Management Cabinet.........................................................................................................9 3 DC PDU.........................................................................................................................................14 3.1 TN16PDU/TN51PDU......................................................................................................................................15 3.2 TN11PDU.........................................................................................................................................................16 3.3 PDU (DPD63-8-8)............................................................................................................................................19
4 UPM................................................................................................................................................24 5 OptiX OSN 8800 Subrack and Power Requirement.............................................................33 5.1 OptiX OSN 8800 T64 Subrack.........................................................................................................................34 5.1.1 Structure...................................................................................................................................................34 5.1.2 Slot Description.......................................................................................................................................35 5.1.3 Cross-Connect Capacities........................................................................................................................36 5.1.4 Fan and Heat Dissipation.........................................................................................................................38 5.1.5 Power Consumption................................................................................................................................44 5.1.6 Power Requirement.................................................................................................................................46 5.2 OptiX OSN 8800 T32 Subrack.........................................................................................................................49 5.2.1 Structure...................................................................................................................................................50 5.2.2 Slot Description.......................................................................................................................................51 5.2.3 Cross-Connect Capacities........................................................................................................................53 5.2.4 Fan and Heat Dissipation.........................................................................................................................54 5.2.5 Power Consumption................................................................................................................................59 5.2.6 Power Requirement.................................................................................................................................62 5.3 OptiX OSN 8800 T16 Subrack.........................................................................................................................65 5.3.1 Structure...................................................................................................................................................65 5.3.2 Slot Description.......................................................................................................................................67 5.3.3 Cross-Connect Capacities........................................................................................................................68 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xviii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
5.3.4 Fan and Heat Dissipation.........................................................................................................................68 5.3.5 Power Consumption................................................................................................................................73 5.3.6 Power Requirement.................................................................................................................................75 5.4 OptiX OSN 8800 Platform Subrack.................................................................................................................78 5.4.1 Structure...................................................................................................................................................78 5.4.2 Slot Description.......................................................................................................................................80 5.4.3 Fan and Heat Dissipation.........................................................................................................................81 5.4.4 Power Consumption................................................................................................................................85 5.4.5 Power Requirement.................................................................................................................................86 5.5 Data Communication and Equipment Maintenance Interfaces........................................................................88 5.5.1 ATE.........................................................................................................................................................91 5.5.1.1 Version Description........................................................................................................................92 5.5.1.2 Application.....................................................................................................................................92 5.5.1.3 Front Panel......................................................................................................................................92 5.5.1.4 Valid Slots......................................................................................................................................98 5.5.1.5 ATE Specifications.........................................................................................................................98 5.5.2 TN15EFI..................................................................................................................................................99 5.5.2.1 Version Description........................................................................................................................99 5.5.2.2 Application.....................................................................................................................................99 5.5.2.3 Front Panel......................................................................................................................................99 5.5.2.4 Valid Slots....................................................................................................................................105 5.5.2.5 EFI Specifications.........................................................................................................................106 5.5.3 TN16EFI................................................................................................................................................106 5.5.3.1 Version Description......................................................................................................................106 5.5.3.2 Application...................................................................................................................................106 5.5.3.3 Front Panel....................................................................................................................................106 5.5.3.4 Valid Slots....................................................................................................................................113 5.5.3.5 DIP Switches................................................................................................................................114 5.5.3.6 EFI Specifications.........................................................................................................................114 5.5.4 EFI1.......................................................................................................................................................115 5.5.4.1 Version Description......................................................................................................................115 5.5.4.2 Application...................................................................................................................................115 5.5.4.3 Front Panel....................................................................................................................................115 5.5.4.4 Valid Slots....................................................................................................................................118 5.5.4.5 DIP Switches................................................................................................................................118 5.5.4.6 EFI1 Specifications.......................................................................................................................119 5.5.5 EFI2.......................................................................................................................................................119 5.5.5.1 Version Description......................................................................................................................119 5.5.5.2 Application...................................................................................................................................119 5.5.5.3 Front Panel....................................................................................................................................120 5.5.5.4 Valid Slots....................................................................................................................................125 5.5.5.5 EFI2 Specifications.......................................................................................................................125 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xix
OptiX OSN 8800/6800/3800 Hardware Description
Contents
5.5.6 STI.........................................................................................................................................................126 5.5.6.1 Version Description......................................................................................................................126 5.5.6.2 Application...................................................................................................................................126 5.5.6.3 Front Panel....................................................................................................................................126 5.5.6.4 Valid Slots....................................................................................................................................130 5.5.6.5 STI Specifications.........................................................................................................................130 5.5.7 Interfaces on the Front Panel of the AUX Board..................................................................................130
6 OptiX OSN 8800 Board Category............................................................................................136 7 OptiX OSN 6800 Subrack and Power Requirement...........................................................147 7.1 Structure..........................................................................................................................................................148 7.2 Slot Description..............................................................................................................................................149 7.3 Cross-Connect Capacities...............................................................................................................................150 7.4 Fan and Heat Dissipation................................................................................................................................151 7.5 Power Consumption.......................................................................................................................................156 7.6 Power Requirement........................................................................................................................................158 7.7 Data Communication and Equipment Maintenance Interfaces......................................................................160 7.7.1 TN11EFI................................................................................................................................................161 7.7.1.1 Version Description......................................................................................................................161 7.7.1.2 Application...................................................................................................................................161 7.7.1.3 Front Panel....................................................................................................................................161 7.7.1.4 Valid Slots....................................................................................................................................169 7.7.1.5 EFI Specifications.........................................................................................................................170 7.7.2 Interfaces on the Front Panel of the AUX Board..................................................................................170
8 OptiX OSN 6800 Board Category............................................................................................175 9 OptiX OSN 3800 Chassis and Power Requirement............................................................182 9.1 Chassis Structure............................................................................................................................................183 9.2 Slot Description..............................................................................................................................................183 9.3 Fan and Heat Dissipation................................................................................................................................184 9.4 AC Power Consumption.................................................................................................................................188 9.5 AC Power Requirement..................................................................................................................................189 9.6 DC Power Consumption.................................................................................................................................191 9.7 DC Power Requirement..................................................................................................................................192 9.8 Data Communication and Equipment Maintenance Interfaces......................................................................194 9.8.1 Interfaces on the Front Panel of the AUX Board..................................................................................194 9.8.2 PIN Assignment of Interfaces................................................................................................................196
10 OptiX OSN 3800 Board Category..........................................................................................202 11 Frames........................................................................................................................................207 11.1 DCM Frame and DCM Module....................................................................................................................208 11.2 CRPC Frame.................................................................................................................................................211 11.3 Fiber Spooling Frame...................................................................................................................................212 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xx
OptiX OSN 8800/6800/3800 Hardware Description
Contents
12 Overview of Boards.................................................................................................................214 12.1 Board Appearance and Dimensions.............................................................................................................215 12.1.1 Appearance and Dimensions...............................................................................................................215 12.1.2 Symbols on Boards..............................................................................................................................217 12.2 Introduction to Working Modes of OTUs, Tributary Boards and Line Boards...........................................219 12.2.1 Convergence and Non-convergence Applications of Tributary Boards..............................................219 12.2.2 Convergent and Non-convergent OTUs..............................................................................................220 12.2.3 Standard Mode and Compatible Mode................................................................................................221 12.3 Bar Code Overview......................................................................................................................................229
13 Optical Transponder Unit......................................................................................................234 13.1 Overview......................................................................................................................................................236 13.2 ECOM...........................................................................................................................................................242 13.2.1 Version Description.............................................................................................................................242 13.2.2 Application..........................................................................................................................................242 13.2.3 Functions and Features........................................................................................................................244 13.2.4 Working Principle and Signal Flow....................................................................................................245 13.2.5 Front Panel...........................................................................................................................................248 13.2.6 Valid Slots...........................................................................................................................................250 13.2.7 Physical and Logical Ports..................................................................................................................250 13.2.8 Configuration of Cross-connection.....................................................................................................252 13.2.9 Parameters Can Be Set or Queried by NMS........................................................................................253 13.2.10 ECOM Specifications........................................................................................................................254 13.3 L4G...............................................................................................................................................................258 13.3.1 Version Description.............................................................................................................................259 13.3.2 Application..........................................................................................................................................259 13.3.3 Functions and Features........................................................................................................................260 13.3.4 Working Principle and Signal Flow....................................................................................................262 13.3.5 Front Panel...........................................................................................................................................264 13.3.6 Valid Slots...........................................................................................................................................266 13.3.7 Characteristic Code for the L4G..........................................................................................................266 13.3.8 Physical and Logical Ports..................................................................................................................266 13.3.9 Configuration of Cross-connection.....................................................................................................268 13.3.10 Parameters Can Be Set or Queried by NMS......................................................................................269 13.3.11 L4G Specifications............................................................................................................................271 13.4 LDGD...........................................................................................................................................................275 13.4.1 Version Description.............................................................................................................................275 13.4.2 Application..........................................................................................................................................276 13.4.3 Functions and Features........................................................................................................................276 13.4.4 Working Principle and Signal Flow....................................................................................................279 13.4.5 Front Panel...........................................................................................................................................281 13.4.6 Valid Slots...........................................................................................................................................283 13.4.7 Characteristic Code for the LDGD......................................................................................................283 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.4.8 Physical and Logical Ports..................................................................................................................284 13.4.9 Configuration of Cross-connection.....................................................................................................285 13.4.10 Parameters Can Be Set or Queried by NMS......................................................................................286 13.4.11 LDGD Specifications........................................................................................................................288 13.5 LDGS............................................................................................................................................................294 13.5.1 Version Description.............................................................................................................................295 13.5.2 Application..........................................................................................................................................295 13.5.3 Functions and Features........................................................................................................................296 13.5.4 Working Principle and Signal Flow....................................................................................................298 13.5.5 Front Panel...........................................................................................................................................301 13.5.6 Valid Slots...........................................................................................................................................303 13.5.7 Characteristic Code for the LDGS.......................................................................................................303 13.5.8 Physical and Logical Ports..................................................................................................................303 13.5.9 Configuration of Cross-connection.....................................................................................................305 13.5.10 Parameters Can Be Set or Queried by NMS......................................................................................306 13.5.11 LDGS Specifications.........................................................................................................................308 13.6 LDM.............................................................................................................................................................315 13.6.1 Version Description.............................................................................................................................315 13.6.2 Application..........................................................................................................................................315 13.6.3 Functions and Features........................................................................................................................316 13.6.4 Working Principle and Signal Flow....................................................................................................320 13.6.5 Front Panel...........................................................................................................................................323 13.6.6 Valid Slots...........................................................................................................................................324 13.6.7 Characteristic Code for the LDM........................................................................................................325 13.6.8 Physical and Logical Ports..................................................................................................................325 13.6.9 Parameters Can Be Set or Queried by NMS........................................................................................325 13.6.10 LDM Specifications...........................................................................................................................328 13.7 LDMD..........................................................................................................................................................337 13.7.1 Version Description.............................................................................................................................337 13.7.2 Application..........................................................................................................................................337 13.7.3 Functions and Features........................................................................................................................338 13.7.4 Working Principle and Signal Flow....................................................................................................341 13.7.5 Front Panel...........................................................................................................................................344 13.7.6 Valid Slots...........................................................................................................................................345 13.7.7 Characteristic Code for the LDMD.....................................................................................................346 13.7.8 Physical and Logical Ports..................................................................................................................346 13.7.9 Parameters Can Be Set or Queried by NMS........................................................................................347 13.7.10 LDMD Specifications........................................................................................................................349 13.8 LDMS...........................................................................................................................................................357 13.8.1 Version Description.............................................................................................................................357 13.8.2 Application..........................................................................................................................................357 13.8.3 Functions and Features........................................................................................................................358 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.8.4 Working Principle and Signal Flow....................................................................................................362 13.8.5 Front Panel...........................................................................................................................................364 13.8.6 Valid Slots...........................................................................................................................................366 13.8.7 Characteristic Code for the LDMS......................................................................................................366 13.8.8 Physical and Logical Ports..................................................................................................................367 13.8.9 Parameters Can Be Set or Queried by NMS........................................................................................367 13.8.10 LDMS Specifications........................................................................................................................370 13.9 LDX..............................................................................................................................................................377 13.9.1 Version Description.............................................................................................................................377 13.9.2 Application..........................................................................................................................................377 13.9.3 Functions and Features........................................................................................................................378 13.9.4 Working Principle and Signal Flow....................................................................................................380 13.9.5 Front Panel...........................................................................................................................................383 13.9.6 Valid Slots...........................................................................................................................................385 13.9.7 Characteristic Code for the LDX.........................................................................................................385 13.9.8 Physical and Logical Ports..................................................................................................................385 13.9.9 Parameters Can Be Set or Queried by NMS........................................................................................386 13.9.10 LDX Specifications...........................................................................................................................389 13.10 LEM24........................................................................................................................................................395 13.10.1 Version Description...........................................................................................................................395 13.10.2 Application........................................................................................................................................395 13.10.3 Functions and Features......................................................................................................................396 13.10.4 Working Principle and Signal Flow..................................................................................................400 13.10.5 Front Panel.........................................................................................................................................403 13.10.6 Valid Slots.........................................................................................................................................405 13.10.7 Characteristic Code for the LEM24 ..................................................................................................406 13.10.8 Physical and Logical Ports................................................................................................................406 13.10.9 Configuration of Cross-connection...................................................................................................408 13.10.10 Parameters Can Be Set or Queried by NMS....................................................................................409 13.10.11 LEM24 Specifications.....................................................................................................................419 13.11 LEX4..........................................................................................................................................................426 13.11.1 Version Description...........................................................................................................................426 13.11.2 Application........................................................................................................................................426 13.11.3 Functions and Features......................................................................................................................427 13.11.4 Working Principle and Signal Flow..................................................................................................430 13.11.5 Front Panel.........................................................................................................................................434 13.11.6 Valid Slots.........................................................................................................................................436 13.11.7 Characteristic Code for the LEX4 ....................................................................................................436 13.11.8 Physical and Logical Ports................................................................................................................437 13.11.9 Configuration of Cross-connection...................................................................................................438 13.11.10 Parameters Can Be Set or Queried by NMS....................................................................................439 13.11.11 LEX4 Specifications........................................................................................................................448 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxiii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.12 LOA............................................................................................................................................................453 13.12.1 Version Description...........................................................................................................................453 13.12.2 Application Overview........................................................................................................................453 13.12.3 Functions and Features......................................................................................................................455 13.12.4 Characteristic Code for the LOA.......................................................................................................460 13.12.5 Physical Ports Displayed on NMS.....................................................................................................460 13.12.6 LOA Scenario 1: ODU0 non-convergence mode (Any->ODU0[->ODU1]->ODU2->OTU2) ........................................................................................................................................................................461 13.12.6.1 Application...............................................................................................................................461 13.12.6.2 Logical Ports.............................................................................................................................461 13.12.6.3 Configuring Cross-Connections...............................................................................................463 13.12.7 LOA Scenario 2: ODU1 non-convergence mode (OTU1/Any->ODU1->ODU2->OTU2)..............465 13.12.7.1 Application...............................................................................................................................465 13.12.7.2 Logical Ports.............................................................................................................................466 13.12.7.3 Configuring Cross-Connections...............................................................................................467 13.12.8 LOA Scenario 3: ODU1_ODU0 mode (OTU1->ODU1->ODU0[->ODU1]->ODU2->OTU2) ........................................................................................................................................................................468 13.12.8.1 Application...............................................................................................................................468 13.12.8.2 Logical Ports.............................................................................................................................468 13.12.8.3 Configuring Cross-Connections...............................................................................................470 13.12.9 LOA Scenario 4: ODUflex non-convergence mode (Any->ODUflex->ODU2->OTU2).................472 13.12.9.1 Application...............................................................................................................................472 13.12.9.2 Logical Ports.............................................................................................................................473 13.12.9.3 Configuring Cross-Connections...............................................................................................474 13.12.10 LOA Scenario 5: ODU2 non-convergence mode (Any->ODU2->OTU2).....................................475 13.12.10.1 Application.............................................................................................................................475 13.12.10.2 Logical Ports...........................................................................................................................476 13.12.10.3 Configuring Cross-Connections.............................................................................................477 13.12.11 Working Principle and Signal Flow................................................................................................477 13.12.12 Front Panel.......................................................................................................................................480 13.12.13 Valid Slots.......................................................................................................................................481 13.12.14 Parameters Can Be Set or Queried by NMS....................................................................................482 13.12.15 LOA Specifications.........................................................................................................................488 13.13 LOG............................................................................................................................................................504 13.13.1 Version Description...........................................................................................................................504 13.13.2 Application........................................................................................................................................506 13.13.3 Functions and Features......................................................................................................................506 13.13.4 Working Principle and Signal Flow..................................................................................................509 13.13.5 Front Panel.........................................................................................................................................513 13.13.6 Valid Slots.........................................................................................................................................515 13.13.7 Characteristic Code for the LOG.......................................................................................................516 13.13.8 Physical and Logical Ports................................................................................................................516 13.13.9 Configuration of Cross-connection...................................................................................................517 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxiv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.13.10 Parameters Can Be Set or Queried by NMS....................................................................................519 13.13.11 LOG Specifications.........................................................................................................................522 13.14 LOM...........................................................................................................................................................534 13.14.1 Version Description...........................................................................................................................534 13.14.2 Application........................................................................................................................................535 13.14.3 Functions and Features......................................................................................................................536 13.14.4 Working Principle and Signal Flow..................................................................................................540 13.14.5 Front Panel.........................................................................................................................................544 13.14.6 Valid Slots.........................................................................................................................................547 13.14.7 Characteristic Code for the LOM......................................................................................................548 13.14.8 Physical and Logical Ports................................................................................................................548 13.14.9 Parameters Can Be Set or Queried by NMS......................................................................................550 13.14.10 LOM Specifications.........................................................................................................................555 13.15 LQG............................................................................................................................................................567 13.15.1 Version Description...........................................................................................................................567 13.15.2 Application........................................................................................................................................568 13.15.3 Functions and Features......................................................................................................................568 13.15.4 Working Principle and Signal Flow..................................................................................................571 13.15.5 Front Panel.........................................................................................................................................574 13.15.6 Valid Slots.........................................................................................................................................575 13.15.7 Characteristic Code for the LQG.......................................................................................................576 13.15.8 Physical and Logical Ports................................................................................................................576 13.15.9 Configuration of Cross-connection...................................................................................................577 13.15.10 Parameters Can Be Set or Queried by NMS....................................................................................578 13.15.11 LQG Specifications.........................................................................................................................581 13.16 LQM...........................................................................................................................................................586 13.16.1 Version Description...........................................................................................................................586 13.16.2 Application........................................................................................................................................587 13.16.3 Functions and Features......................................................................................................................588 13.16.4 Working Principle and Signal Flow..................................................................................................593 13.16.5 Front Panel.........................................................................................................................................597 13.16.6 Valid Slots.........................................................................................................................................599 13.16.7 Characteristic Code for the LQM......................................................................................................599 13.16.8 Physical and Logical Ports................................................................................................................599 13.16.9 Configuration of Cross-connection...................................................................................................602 13.16.10 Parameters Can Be Set or Queried by NMS....................................................................................603 13.16.11 LQM Specifications.........................................................................................................................606 13.17 LQMD........................................................................................................................................................615 13.17.1 Version Description...........................................................................................................................615 13.17.2 Application........................................................................................................................................616 13.17.3 Functions and Features......................................................................................................................617 13.17.4 Working Principle and Signal Flow..................................................................................................621 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.17.5 Front Panel.........................................................................................................................................625 13.17.6 Valid Slots.........................................................................................................................................627 13.17.7 Characteristic Code for the LQMD...................................................................................................628 13.17.8 Physical and Logical Ports................................................................................................................628 13.17.9 Configuration of Cross-connection...................................................................................................630 13.17.10 Parameters Can Be Set or Queried by NMS....................................................................................632 13.17.11 LQMD Specifications......................................................................................................................635 13.18 LQMS.........................................................................................................................................................645 13.18.1 Version Description...........................................................................................................................645 13.18.2 Application........................................................................................................................................646 13.18.3 Functions and Features......................................................................................................................648 13.18.4 Working Principle and Signal Flow..................................................................................................653 13.18.5 Front Panel.........................................................................................................................................658 13.18.6 Valid Slots.........................................................................................................................................660 13.18.7 Characteristic Code for the LQMS....................................................................................................661 13.18.8 Physical and Logical Ports................................................................................................................661 13.18.9 Configuration of Cross-connection...................................................................................................663 13.18.10 Parameters Can Be Set or Queried by NMS....................................................................................666 13.18.11 LQMS Specifications......................................................................................................................669 13.19 LSC.............................................................................................................................................................679 13.19.1 Version Description...........................................................................................................................679 13.19.2 Application........................................................................................................................................680 13.19.3 Functions and Features......................................................................................................................680 13.19.4 Working Principle and Signal Flow..................................................................................................682 13.19.5 Front Panel.........................................................................................................................................684 13.19.6 Valid Slots.........................................................................................................................................686 13.19.7 Physical and Logical Ports................................................................................................................687 13.19.8 Parameters Can Be Set or Queried by NMS......................................................................................687 13.19.9 LSC Specifications............................................................................................................................691 13.20 LSQ.............................................................................................................................................................699 13.20.1 Version Description...........................................................................................................................699 13.20.2 Application........................................................................................................................................699 13.20.3 Functions and Features......................................................................................................................700 13.20.4 Working Principle and Signal Flow..................................................................................................702 13.20.5 Front Panel.........................................................................................................................................705 13.20.6 Valid Slots.........................................................................................................................................706 13.20.7 Physical and Logical Ports................................................................................................................707 13.20.8 Parameters Can Be Set or Queried by NMS......................................................................................707 13.20.9 LSQ Specifications............................................................................................................................710 13.21 LSX.............................................................................................................................................................713 13.21.1 Version Description...........................................................................................................................713 13.21.2 Application........................................................................................................................................717 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxvi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.21.3 Functions and Features......................................................................................................................718 13.21.4 Working Principle and Signal Flow..................................................................................................721 13.21.5 Front Panel.........................................................................................................................................725 13.21.6 Valid Slots.........................................................................................................................................728 13.21.7 Characteristic Code for the LSX.......................................................................................................729 13.21.8 Physical and Logical Ports................................................................................................................729 13.21.9 Parameters Can Be Set or Queried by NMS......................................................................................729 13.21.10 LSX Specifications..........................................................................................................................734 13.22 LSXL..........................................................................................................................................................745 13.22.1 Version Description...........................................................................................................................745 13.22.2 Application........................................................................................................................................747 13.22.3 Functions and Features......................................................................................................................747 13.22.4 Working Principle and Signal Flow..................................................................................................750 13.22.5 Front Panel.........................................................................................................................................754 13.22.6 Valid Slots.........................................................................................................................................757 13.22.7 Physical and Logical Ports................................................................................................................758 13.22.8 Parameters Can Be Set or Queried by NMS......................................................................................759 13.22.9 LSXL Specifications..........................................................................................................................763 13.23 LSXLR........................................................................................................................................................768 13.23.1 Version Description...........................................................................................................................768 13.23.2 Application........................................................................................................................................769 13.23.3 Functions and Features......................................................................................................................770 13.23.4 Working Principle and Signal Flow..................................................................................................772 13.23.5 Front Panel.........................................................................................................................................773 13.23.6 Valid Slots.........................................................................................................................................776 13.23.7 Physical and Logical Ports................................................................................................................777 13.23.8 Parameters Can Be Set or Queried by NMS......................................................................................778 13.23.9 LSXLR Specifications.......................................................................................................................780 13.24 LSXR..........................................................................................................................................................783 13.24.1 Version Description...........................................................................................................................783 13.24.2 Application........................................................................................................................................783 13.24.3 Functions and Features......................................................................................................................784 13.24.4 Working Principle and Signal Flow..................................................................................................786 13.24.5 Front Panel.........................................................................................................................................788 13.24.6 Valid Slots.........................................................................................................................................790 13.24.7 Characteristic Code for the LSXR.....................................................................................................791 13.24.8 Physical and Logical Ports................................................................................................................791 13.24.9 Parameters Can Be Set or Queried by NMS......................................................................................791 13.24.10 LSXR Specifications.......................................................................................................................794 13.25 LTX............................................................................................................................................................797 13.25.1 Version Description...........................................................................................................................797 13.25.2 Application........................................................................................................................................798 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxvii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.25.3 Functions and Features......................................................................................................................799 13.25.4 Working Principle and Signal Flow..................................................................................................803 13.25.5 Front Panel.........................................................................................................................................806 13.25.6 Valid Slots.........................................................................................................................................808 13.25.7 Physical and Logical Ports................................................................................................................809 13.25.8 Parameters Can Be Set or Queried by NMS......................................................................................810 13.25.9 LTX Specifications............................................................................................................................814 13.26 LWX2.........................................................................................................................................................819 13.26.1 Version Description...........................................................................................................................819 13.26.2 Application........................................................................................................................................819 13.26.3 Functions and Features......................................................................................................................820 13.26.4 Working Principle and Signal Flow..................................................................................................823 13.26.5 Front Panel.........................................................................................................................................825 13.26.6 Valid Slots.........................................................................................................................................826 13.26.7 Characteristic Code for the LWX2....................................................................................................827 13.26.8 Physical and Logical Ports................................................................................................................827 13.26.9 Parameters Can Be Set or Queried by NMS......................................................................................828 13.26.10 LWX2 Specifications......................................................................................................................829 13.27 LWXD........................................................................................................................................................837 13.27.1 Version Description...........................................................................................................................837 13.27.2 Application........................................................................................................................................837 13.27.3 Functions and Features......................................................................................................................838 13.27.4 Working Principle and Signal Flow..................................................................................................841 13.27.5 Front Panel.........................................................................................................................................843 13.27.6 Valid Slots.........................................................................................................................................844 13.27.7 Characteristic Code for the LWXD...................................................................................................844 13.27.8 Physical and Logical Ports................................................................................................................845 13.27.9 Parameters Can Be Set or Queried by NMS......................................................................................845 13.27.10 LWXD Specifications......................................................................................................................847 13.28 LWXS.........................................................................................................................................................855 13.28.1 Version Description...........................................................................................................................855 13.28.2 Application........................................................................................................................................856 13.28.3 Functions and Features......................................................................................................................857 13.28.4 Working Principle and Signal Flow..................................................................................................860 13.28.5 Front Panel.........................................................................................................................................862 13.28.6 Valid Slots.........................................................................................................................................863 13.28.7 Characteristic Code for the LWXS....................................................................................................864 13.28.8 Physical and Logical Ports................................................................................................................864 13.28.9 Parameters Can Be Set or Queried by NMS......................................................................................864 13.28.10 LWXS Specifications......................................................................................................................867 13.29 TMX...........................................................................................................................................................874 13.29.1 Version Description...........................................................................................................................875 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxviii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
13.29.2 Application........................................................................................................................................876 13.29.3 Functions and Features......................................................................................................................876 13.29.4 Working Principle and Signal Flow..................................................................................................878 13.29.5 Front Panel.........................................................................................................................................881 13.29.6 Valid Slots.........................................................................................................................................882 13.29.7 Characteristic Code for the TMX......................................................................................................883 13.29.8 Physical and Logical Ports................................................................................................................883 13.29.9 Parameters Can Be Set or Queried by NMS......................................................................................884 13.29.10 TMX Specifications.........................................................................................................................886
14 Tributary Board and Line Board...........................................................................................899 14.1 Overview......................................................................................................................................................901 14.2 ND2..............................................................................................................................................................908 14.2.1 Version Description.............................................................................................................................908 14.2.2 Application..........................................................................................................................................911 14.2.3 Functions and Features........................................................................................................................915 14.2.4 Working Principle and Signal Flow....................................................................................................922 14.2.5 Front Panel...........................................................................................................................................926 14.2.6 Valid Slots...........................................................................................................................................929 14.2.7 Characteristic Code for the ND2.........................................................................................................930 14.2.8 Physical and Logical Ports..................................................................................................................930 14.2.9 Configuration of Cross-connection.....................................................................................................936 14.2.10 Parameters Can Be Set or Queried by NMS......................................................................................946 14.2.11 ND2 Specifications............................................................................................................................950 14.3 NO2..............................................................................................................................................................958 14.3.1 Version Description.............................................................................................................................958 14.3.2 Application..........................................................................................................................................959 14.3.3 Functions and Features........................................................................................................................963 14.3.4 Working Principle and Signal Flow....................................................................................................969 14.3.5 Front Panel...........................................................................................................................................972 14.3.6 Valid Slots...........................................................................................................................................974 14.3.7 Characteristic Code for the NO2.........................................................................................................974 14.3.8 Physical and Logical Ports..................................................................................................................974 14.3.9 Configuration of Cross-connection.....................................................................................................977 14.3.10 Parameters Can Be Set or Queried by NMS......................................................................................981 14.3.11 NO2 Specifications............................................................................................................................985 14.4 NQ2..............................................................................................................................................................989 14.4.1 Version Description.............................................................................................................................989 14.4.2 Application..........................................................................................................................................991 14.4.3 Functions and Features........................................................................................................................996 14.4.4 Working Principle and Signal Flow..................................................................................................1003 14.4.5 Front Panel.........................................................................................................................................1007 14.4.6 Valid Slots.........................................................................................................................................1009 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxix
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.4.7 Characteristic Code for the NQ2.......................................................................................................1010 14.4.8 Physical and Logical Ports................................................................................................................1011 14.4.9 Configuration of Cross-connection...................................................................................................1017 14.4.10 Parameters Can Be Set or Queried by NMS....................................................................................1033 14.4.11 NQ2 Specifications..........................................................................................................................1037 14.5 NS2.............................................................................................................................................................1041 14.5.1 Version Description...........................................................................................................................1042 14.5.2 Application........................................................................................................................................1046 14.5.3 Functions and Features......................................................................................................................1049 14.5.4 Working Principle and Signal Flow..................................................................................................1055 14.5.5 Front Panel.........................................................................................................................................1058 14.5.6 Valid Slots.........................................................................................................................................1061 14.5.7 Characteristic Code for the NS2........................................................................................................1062 14.5.8 Physical and Logical Ports................................................................................................................1062 14.5.9 Configuring Cross-Connections........................................................................................................1068 14.5.10 Parameters Can Be Set or Queried by NMS....................................................................................1078 14.5.11 NS2 Specifications..........................................................................................................................1082 14.6 NS3.............................................................................................................................................................1091 14.6.1 Version Description...........................................................................................................................1091 14.6.2 Application........................................................................................................................................1093 14.6.3 Functions and Features......................................................................................................................1097 14.6.4 Working Principle and Signal Flow..................................................................................................1104 14.6.5 Front Panel.........................................................................................................................................1108 14.6.6 Valid Slots.........................................................................................................................................1112 14.6.7 Physical and Logical Ports................................................................................................................1115 14.6.8 Configuration of Cross-connection...................................................................................................1121 14.6.9 Parameters Can Be Set or Queried by NMS......................................................................................1133 14.6.10 NS3 Specifications..........................................................................................................................1138 14.7 NS4.............................................................................................................................................................1144 14.7.1 Version Description...........................................................................................................................1144 14.7.2 Application........................................................................................................................................1145 14.7.3 Functions and Features......................................................................................................................1151 14.7.4 Working Principle and Signal Flow..................................................................................................1157 14.7.5 Front Panel.........................................................................................................................................1160 14.7.6 Valid Slots.........................................................................................................................................1162 14.7.7 Physical and Logical Ports................................................................................................................1163 14.7.8 Configuration of Cross-connection...................................................................................................1165 14.7.9 Parameters Can Be Set or Queried by NMS......................................................................................1172 14.7.10 NS4 Specifications..........................................................................................................................1176 14.8 TBE.............................................................................................................................................................1179 14.8.1 Version Description...........................................................................................................................1179 14.8.2 Application........................................................................................................................................1179 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxx
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.8.3 Functions and Features......................................................................................................................1180 14.8.4 Working Principle and Signal Flow..................................................................................................1184 14.8.5 Front Panel.........................................................................................................................................1187 14.8.6 Valid Slots.........................................................................................................................................1189 14.8.7 Physical and Logical Ports................................................................................................................1189 14.8.8 Configuration of Cross-connection...................................................................................................1191 14.8.9 Parameters Can Be Set or Queried by NMS......................................................................................1192 14.8.10 TBE Specifications..........................................................................................................................1193 14.9 TDG............................................................................................................................................................1198 14.9.1 Version Description...........................................................................................................................1199 14.9.2 Application........................................................................................................................................1199 14.9.3 Functions and Features......................................................................................................................1200 14.9.4 Working Principle and Signal Flow..................................................................................................1201 14.9.5 Front Panel.........................................................................................................................................1203 14.9.6 Valid Slots.........................................................................................................................................1205 14.9.7 Physical and Logical Ports................................................................................................................1205 14.9.8 Configuration of Cross-connection...................................................................................................1206 14.9.9 Parameters Can Be Set or Queried by NMS......................................................................................1208 14.9.10 TDG Specifications.........................................................................................................................1210 14.10 TDX..........................................................................................................................................................1213 14.10.1 Version Description.........................................................................................................................1213 14.10.2 Application......................................................................................................................................1214 14.10.3 Functions and Features....................................................................................................................1216 14.10.4 Working Principle and Signal Flow................................................................................................1220 14.10.5 Front Panel.......................................................................................................................................1223 14.10.6 Valid Slots.......................................................................................................................................1226 14.10.7 Physical and Logical Ports..............................................................................................................1227 14.10.8 Configuration of Cross-connection.................................................................................................1230 14.10.9 Parameters Can Be Set or Queried by NMS....................................................................................1234 14.10.10 TDX Specifications.......................................................................................................................1241 14.11 TEM28......................................................................................................................................................1244 14.11.1 Version Description.........................................................................................................................1244 14.11.2 Application......................................................................................................................................1244 14.11.3 Functions and Features....................................................................................................................1245 14.11.4 Working Principle and Signal Flow................................................................................................1249 14.11.5 Front Panel.......................................................................................................................................1251 14.11.6 Valid Slots.......................................................................................................................................1253 14.11.7 Physical and Logical Ports..............................................................................................................1253 14.11.8 Configuration of Cross-connection.................................................................................................1255 14.11.9 Parameters Can Be Set or Queried by NMS....................................................................................1259 14.11.10 TEM28 Specifications...................................................................................................................1268 14.12 THA..........................................................................................................................................................1271 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.12.1 Version Description.........................................................................................................................1271 14.12.2 Application Overview......................................................................................................................1271 14.12.3 Functions and Features....................................................................................................................1272 14.12.4 Physical Ports Displayed on NMS...................................................................................................1277 14.12.5 THA scenario 1: ODU0 non-convergence mode (Any->ODU0)....................................................1278 14.12.5.1 Application.............................................................................................................................1278 14.12.5.2 Logical Ports...........................................................................................................................1278 14.12.5.3 Configuration of Cross-connection........................................................................................1280 14.12.6 THA scenario 2: ODU1 non-convergence mode (Any->ODU1)....................................................1284 14.12.6.1 Application.............................................................................................................................1284 14.12.6.2 Logical Ports...........................................................................................................................1284 14.12.6.3 Configuration of Cross-connection........................................................................................1286 14.12.7 THA scenario 3: ODU1 convergence mode (n X Any->ODU1)....................................................1288 14.12.7.1 Application.............................................................................................................................1289 14.12.7.2 Logical Ports...........................................................................................................................1289 14.12.7.3 Configuration of Cross-connection........................................................................................1291 14.12.8 THA scenario 4: ODU1_ODU0 mode (OTU1->ODU1->ODU0)..................................................1294 14.12.8.1 Application.............................................................................................................................1294 14.12.8.2 Logical Ports...........................................................................................................................1295 14.12.8.3 Configuration of Cross-connection........................................................................................1297 14.12.9 Working Principle and Signal Flow................................................................................................1299 14.12.10 Front Panel.....................................................................................................................................1301 14.12.11 Valid Slots.....................................................................................................................................1303 14.12.12 Parameters Can Be Set or Queried by NMS..................................................................................1303 14.12.13 THA Specifications.......................................................................................................................1308 14.13 TOA..........................................................................................................................................................1312 14.13.1 Version Description.........................................................................................................................1312 14.13.2 Application Overview......................................................................................................................1312 14.13.3 Functions and Features....................................................................................................................1313 14.13.4 Physical Ports Displayed on NMS...................................................................................................1319 14.13.5 TOA scenario 1: ODU0 non-convergence mode (Any->ODU0)....................................................1320 14.13.5.1 Application.............................................................................................................................1320 14.13.5.2 Logical Ports...........................................................................................................................1320 14.13.5.3 Configuration of Cross-connection........................................................................................1322 14.13.6 TOA scenario 2: ODU1 non-convergence mode (Any->ODU1)....................................................1325 14.13.6.1 Application.............................................................................................................................1325 14.13.6.2 Logical Ports...........................................................................................................................1325 14.13.6.3 Configuration of Cross-connection........................................................................................1327 14.13.7 TOA scenario 3: ODU1 convergence mode (n * Any->ODU1).....................................................1329 14.13.7.1 Application.............................................................................................................................1330 14.13.7.2 Logical Ports...........................................................................................................................1330 14.13.7.3 Configuration of Cross-connection........................................................................................1332 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.13.8 TOA scenario 4: ODU1_ODU0 mode (OTU1->ODU1->ODU0)..................................................1334 14.13.8.1 Application.............................................................................................................................1335 14.13.8.2 Logical Ports...........................................................................................................................1335 14.13.8.3 Configuration of Cross-connection........................................................................................1338 14.13.9 TOA scenario 5: ODUflex non-convergence mode (Any->ODUflex)...........................................1339 14.13.9.1 Application.............................................................................................................................1339 14.13.9.2 Logical Ports...........................................................................................................................1340 14.13.9.3 Configuration of Cross-connection........................................................................................1343 14.13.10 Working Principle and Signal Flow..............................................................................................1344 14.13.11 Front Panel.....................................................................................................................................1346 14.13.12 Valid Slots.....................................................................................................................................1348 14.13.13 Parameters Can Be Set or Queried by NMS..................................................................................1348 14.13.14 TOA Specifications.......................................................................................................................1354 14.14 TOG..........................................................................................................................................................1364 14.14.1 Version Description.........................................................................................................................1364 14.14.2 Application......................................................................................................................................1365 14.14.3 Functions and Features....................................................................................................................1366 14.14.4 Working Principle and Signal Flow................................................................................................1368 14.14.5 Front Panel.......................................................................................................................................1371 14.14.6 Valid Slots.......................................................................................................................................1372 14.14.7 Physical and Logical Ports..............................................................................................................1372 14.14.8 Configuration of Cross-connection.................................................................................................1374 14.14.9 Parameters Can Be Set or Queried by NMS....................................................................................1376 14.14.10 TOG Specifications.......................................................................................................................1379 14.15 TOM.........................................................................................................................................................1382 14.15.1 Version Description.........................................................................................................................1382 14.15.2 Application Overview......................................................................................................................1383 14.15.2.1 Concept: Tributary Mode and Tributary-Line Mode..............................................................1383 14.15.2.2 Concept: Cascading Mode and Non-cascading Mode............................................................1384 14.15.2.3 Application Scenario Overview of TN52TOM......................................................................1384 14.15.2.4 Application Scenario Overview of TN11TOM......................................................................1391 14.15.3 Function and Feature.......................................................................................................................1393 14.15.4 Physical Ports Displayed on NMS...................................................................................................1400 14.15.5 TN52TOM Scenario 1: Any->ODU0[->ODU1] (Cascading).........................................................1401 14.15.5.1 Application.............................................................................................................................1401 14.15.5.2 Logical Ports...........................................................................................................................1402 14.15.5.3 Configuration of Cross-connection........................................................................................1403 14.15.6 TN52TOM Scenario 2: Any->ODU0->ODU1->OTU1 (Cascading).............................................1405 14.15.6.1 Application.............................................................................................................................1405 14.15.6.2 Logical Ports...........................................................................................................................1406 14.15.6.3 Configuration of Cross-connection........................................................................................1407 14.15.7 TN52TOM Scenario 3: Any->ODU1 (Cascading).........................................................................1409 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxiii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.15.7.1 Application.............................................................................................................................1409 14.15.7.2 Logical Ports...........................................................................................................................1409 14.15.7.3 Configuration of Cross-connection........................................................................................1410 14.15.8 TN52TOM Scenario 4: Any->ODU1->OTU1 (Cascading)............................................................1411 14.15.8.1 Application.............................................................................................................................1411 14.15.8.2 Logical Ports...........................................................................................................................1412 14.15.8.3 Configuration of Cross-connection........................................................................................1413 14.15.9 TN52TOM Scenario 5: Any->ODU0[->ODU1] (Non-Cascading)................................................1414 14.15.9.1 Application.............................................................................................................................1414 14.15.9.2 Logical Ports...........................................................................................................................1415 14.15.9.3 Configuration of Cross-connection........................................................................................1417 14.15.10 TN52TOM Scenario 6: Any->ODU0->ODU1->OTU1(Non-Cascading)....................................1420 14.15.10.1 Application...........................................................................................................................1420 14.15.10.2 Logical Ports.........................................................................................................................1422 14.15.10.3 Configuration of Cross-connection......................................................................................1423 14.15.11 TN52TOM Scenario 7: OTU1/Any->ODU1 (Non-Cascading)....................................................1424 14.15.11.1 Application...........................................................................................................................1424 14.15.11.2 Logical Ports.........................................................................................................................1425 14.15.11.3 Configuration of Cross-connection......................................................................................1426 14.15.12 TN52TOM Scenario 8: OTU1->ODU1->Any->ODU0->ODU1 (Non-Cascading).....................1427 14.15.12.1 Application...........................................................................................................................1427 14.15.12.2 Logical Ports.........................................................................................................................1428 14.15.12.3 Configuration of Cross-connection......................................................................................1429 14.15.13 TN52TOM Scenario 9: OTU1->ODU1->Any->ODU0->ODU1->OTU1 (Non-Cascading) ......................................................................................................................................................................1430 14.15.13.1 Application...........................................................................................................................1430 14.15.13.2 Logical Ports.........................................................................................................................1431 14.15.13.3 Configuration of Cross-connection......................................................................................1432 14.15.14 TN52TOM scenario 10: OTU1/Any->ODU1->OTU1 (non-cascading).......................................1432 14.15.14.1 Application...........................................................................................................................1433 14.15.14.2 Logical Ports.........................................................................................................................1434 14.15.14.3 Configuration of Cross-connection......................................................................................1436 14.15.15 TN52TOM scenario 11: OTU1->ODU1->ODU0 (non-cascading)..............................................1437 14.15.15.1 Application...........................................................................................................................1437 14.15.15.2 Logical Ports.........................................................................................................................1438 14.15.15.3 Configuration of Cross-connection......................................................................................1438 14.15.16 TN52TOM Scenario 12: OTU1->ODU1->Any->ODU0 (Non-Cascading).................................1439 14.15.16.1 Application...........................................................................................................................1439 14.15.16.2 Logical Ports.........................................................................................................................1440 14.15.16.3 Configuration of Cross-connection......................................................................................1441 14.15.17 TN11TOM Scenario 1: Any->ODU1 (Cascading).......................................................................1442 14.15.17.1 Application...........................................................................................................................1442 14.15.17.2 Logical Ports.........................................................................................................................1443 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxiv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.15.17.3 Configuration of Cross-connection......................................................................................1444 14.15.18 TN11TOM Scenario 2: Any->ODU1->OTU1 (Cascading)..........................................................1444 14.15.18.1 Application...........................................................................................................................1444 14.15.18.2 Logical Ports.........................................................................................................................1445 14.15.18.3 Configuration of Cross-connection......................................................................................1447 14.15.19 TN11TOM Scenario 3: Any->ODU1 (Non-Cascading)...............................................................1447 14.15.19.1 Application...........................................................................................................................1447 14.15.19.2 Logical Ports.........................................................................................................................1448 14.15.19.3 Configuration of Cross-connection......................................................................................1449 14.15.20 TN11TOM Scenario 4: Any->ODU1->OTU1(Non-Cascading)..................................................1450 14.15.20.1 Application...........................................................................................................................1450 14.15.20.2 Logical Ports.........................................................................................................................1450 14.15.20.3 Configuration of Cross-connection......................................................................................1451 14.15.21 TN11TOM Scenario 5: OTU1->ODU1->OTU1 (electrical regeneration board).........................1452 14.15.21.1 Application...........................................................................................................................1452 14.15.21.2 Logical Ports.........................................................................................................................1453 14.15.21.3 Configuration of Cross-connection......................................................................................1453 14.15.22 Working Principle and Signal Flow..............................................................................................1454 14.15.23 Front Panel.....................................................................................................................................1459 14.15.24 Valid Slots.....................................................................................................................................1461 14.15.25 Parameters Can Be Set or Queried by NMS..................................................................................1461 14.15.26 TOM Specifications.......................................................................................................................1467 14.16 TOX..........................................................................................................................................................1480 14.16.1 Version Description.........................................................................................................................1480 14.16.2 Application......................................................................................................................................1480 14.16.3 Functions and Features....................................................................................................................1481 14.16.4 Working Principle and Signal Flow................................................................................................1484 14.16.5 Front Panel.......................................................................................................................................1486 14.16.6 Valid Slots.......................................................................................................................................1488 14.16.7 Physical and Logical Ports..............................................................................................................1488 14.16.8 Configuration of Cross-connection.................................................................................................1490 14.16.9 Parameters Can Be Set or Queried by NMS....................................................................................1490 14.16.10 TOX Specifications.......................................................................................................................1494 14.17 TQM.........................................................................................................................................................1498 14.17.1 Version Description.........................................................................................................................1498 14.17.2 Application......................................................................................................................................1499 14.17.3 Functions and Features....................................................................................................................1499 14.17.4 Working Principle and Signal Flow................................................................................................1504 14.17.5 Front Panel.......................................................................................................................................1507 14.17.6 Valid Slots.......................................................................................................................................1508 14.17.7 Physical and Logical Ports..............................................................................................................1509 14.17.8 Configuration of Cross-connection.................................................................................................1511 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.17.9 Parameters Can Be Set or Queried by NMS....................................................................................1513 14.17.10 TQM Specifications.......................................................................................................................1515 14.18 TQS...........................................................................................................................................................1522 14.18.1 Version Description.........................................................................................................................1522 14.18.2 Application......................................................................................................................................1523 14.18.3 Functions and Features....................................................................................................................1523 14.18.4 Working Principle and Signal Flow................................................................................................1525 14.18.5 Front Panel.......................................................................................................................................1528 14.18.6 Valid Slots.......................................................................................................................................1529 14.18.7 Physical and Logical Ports..............................................................................................................1529 14.18.8 Configuration of Cross-connection.................................................................................................1531 14.18.9 Parameters Can Be Set or Queried by NMS....................................................................................1532 14.18.10 TQS Specifications........................................................................................................................1534 14.19 TQX..........................................................................................................................................................1538 14.19.1 Version Description.........................................................................................................................1538 14.19.2 Application......................................................................................................................................1540 14.19.3 Functions and Features....................................................................................................................1540 14.19.4 Working Principle and Signal Flow................................................................................................1543 14.19.5 Front Panel.......................................................................................................................................1546 14.19.6 Valid Slots.......................................................................................................................................1548 14.19.7 Physical and Logical Ports..............................................................................................................1549 14.19.8 Configuration of Cross-connection.................................................................................................1551 14.19.9 Parameters Can Be Set or Queried by NMS....................................................................................1555 14.19.10 TQX Specifications.......................................................................................................................1560 14.20 TSC...........................................................................................................................................................1563 14.20.1 Version Description.........................................................................................................................1563 14.20.2 Application......................................................................................................................................1564 14.20.3 Functions and Features....................................................................................................................1564 14.20.4 Working Principle and Signal Flow................................................................................................1566 14.20.5 Front Panel.......................................................................................................................................1568 14.20.6 Valid Slots.......................................................................................................................................1570 14.20.7 Physical and Logical Ports..............................................................................................................1570 14.20.8 Configuration of Cross-connection.................................................................................................1572 14.20.9 Parameters Can Be Set or Queried by NMS....................................................................................1572 14.20.10 TSC Specifications........................................................................................................................1575 14.21 TSXL........................................................................................................................................................1580 14.21.1 Version Description.........................................................................................................................1580 14.21.2 Application......................................................................................................................................1581 14.21.3 Functions and Features....................................................................................................................1582 14.21.4 Working Principle and Signal Flow................................................................................................1585 14.21.5 Front Panel.......................................................................................................................................1589 14.21.6 Valid Slots.......................................................................................................................................1593 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxvi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
14.21.7 Physical and Logical Ports..............................................................................................................1594 14.21.8 Configuration of Cross-connection.................................................................................................1596 14.21.9 Parameters Can Be Set or Queried by NMS....................................................................................1597 14.21.10 TSXL Specifications......................................................................................................................1600 14.22 TTX..........................................................................................................................................................1604 14.22.1 Version Description.........................................................................................................................1604 14.22.2 Application......................................................................................................................................1605 14.22.3 Functions and Features....................................................................................................................1605 14.22.4 Working Principle and Signal Flow................................................................................................1608 14.22.5 Front Panel.......................................................................................................................................1611 14.22.6 Valid Slots.......................................................................................................................................1612 14.22.7 Physical and Logical Ports..............................................................................................................1612 14.22.8 Configuration of Cross-connection.................................................................................................1614 14.22.9 Parameters Can Be Set or Queried by NMS....................................................................................1615 14.22.10 TTX Specifications........................................................................................................................1618
15 Packet Service Unit................................................................................................................1623 15.1 Overview....................................................................................................................................................1624 15.2 EG16...........................................................................................................................................................1625 15.2.1 Version Description...........................................................................................................................1625 15.2.2 Application........................................................................................................................................1626 15.2.3 Functions and Features......................................................................................................................1627 15.2.4 Working Principle and Signal Flow..................................................................................................1630 15.2.5 Front Panel.........................................................................................................................................1632 15.2.6 Valid Slots.........................................................................................................................................1634 15.2.7 Physical and Logical Ports................................................................................................................1634 15.2.8 Parameters Can Be Set or Queried by NMS......................................................................................1636 15.2.9 EG16 Specifications..........................................................................................................................1643 15.3 EX2.............................................................................................................................................................1646 15.3.1 Version Description...........................................................................................................................1646 15.3.2 Application........................................................................................................................................1647 15.3.3 Functions and Features......................................................................................................................1647 15.3.4 Working Principle and Signal Flow..................................................................................................1651 15.3.5 Front Panel.........................................................................................................................................1653 15.3.6 Valid Slots.........................................................................................................................................1654 15.3.7 Physical and Logical Ports................................................................................................................1654 15.3.8 Parameters Can Be Set or Queried by NMS......................................................................................1656 15.3.9 EX2 Specifications............................................................................................................................1662 15.4 PND2..........................................................................................................................................................1664 15.4.1 Version Description...........................................................................................................................1664 15.4.2 Application........................................................................................................................................1665 15.4.3 Functions and Features......................................................................................................................1665 15.4.4 Working Principle and Signal Flow..................................................................................................1670 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxvii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
15.4.5 Front Panel.........................................................................................................................................1672 15.4.6 Valid Slots.........................................................................................................................................1674 15.4.7 Physical and Logical Ports................................................................................................................1674 15.4.8 Parameters Can Be Set or Queried by NMS......................................................................................1676 15.4.9 PND2 Specifications..........................................................................................................................1683
16 PID Board................................................................................................................................1688 16.1 Overview....................................................................................................................................................1689 16.2 BMD4.........................................................................................................................................................1690 16.2.1 Version Description...........................................................................................................................1690 16.2.2 Application........................................................................................................................................1691 16.2.3 Functions and Features......................................................................................................................1691 16.2.4 Working Principle and Signal Flow..................................................................................................1692 16.2.5 Front Panel.........................................................................................................................................1694 16.2.6 Valid Slots.........................................................................................................................................1696 16.2.7 Characteristic Code of the BMD4.....................................................................................................1697 16.2.8 Optical Interfaces on the BMD4........................................................................................................1697 16.2.9 Parameters Can Be Set or Queried by NMS......................................................................................1699 16.2.10 BMD4 Specifications......................................................................................................................1699 16.3 BMD8.........................................................................................................................................................1701 16.3.1 Version Description...........................................................................................................................1701 16.3.2 Application........................................................................................................................................1701 16.3.3 Functions and Features......................................................................................................................1702 16.3.4 Working Principle and Signal Flow..................................................................................................1703 16.3.5 Front Panel.........................................................................................................................................1704 16.3.6 Valid Slots.........................................................................................................................................1707 16.3.7 Characteristic Code of the BMD8.....................................................................................................1707 16.3.8 Optical Interfaces on the BMD8........................................................................................................1707 16.3.9 Parameters Can Be Set or Queried by NMS......................................................................................1710 16.3.10 BMD8 Specifications......................................................................................................................1711 16.4 ELQX..........................................................................................................................................................1713 16.4.1 Version Description...........................................................................................................................1713 16.4.2 Application........................................................................................................................................1714 16.4.3 Functions and Features......................................................................................................................1714 16.4.4 Working Principle and Signal Flow..................................................................................................1716 16.4.5 Front Panel.........................................................................................................................................1719 16.4.6 Valid Slots.........................................................................................................................................1720 16.4.7 Physical and Logical Ports................................................................................................................1720 16.4.8 Configuration of Cross-connection...................................................................................................1722 16.4.9 Parameters Can Be Set or Queried by NMS......................................................................................1725 16.4.10 ELQX Specifications.......................................................................................................................1728 16.5 PTQX..........................................................................................................................................................1732 16.5.1 Version Description...........................................................................................................................1732 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxviii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
16.5.2 Application........................................................................................................................................1734 16.5.3 Functions and Features......................................................................................................................1735 16.5.4 Working Principle and Signal Flow..................................................................................................1737 16.5.5 Front Panel.........................................................................................................................................1740 16.5.6 Valid Slots.........................................................................................................................................1742 16.5.7 Characteristic Code of the PTQX......................................................................................................1742 16.5.8 Physical and Logical Ports................................................................................................................1743 16.5.9 Configuration of Cross-connection...................................................................................................1745 16.5.10 Parameters Can Be Set or Queried by NMS....................................................................................1748 16.5.11 PTQX Specifications.......................................................................................................................1751 16.6 ENQ2..........................................................................................................................................................1756 16.6.1 Version Description...........................................................................................................................1756 16.6.2 Application........................................................................................................................................1756 16.6.3 Functions and Features......................................................................................................................1758 16.6.4 Working Principle and Signal Flow..................................................................................................1761 16.6.5 Front Panel.........................................................................................................................................1763 16.6.6 Valid Slots.........................................................................................................................................1764 16.6.7 Physical and Logical Ports................................................................................................................1765 16.6.8 Configuration of Cross-connection...................................................................................................1768 16.6.9 Parameters Can Be Set or Queried by NMS......................................................................................1774 16.6.10 ENQ2 Specifications.......................................................................................................................1775 16.7 NPO2..........................................................................................................................................................1775 16.7.1 Version Description...........................................................................................................................1775 16.7.2 Application........................................................................................................................................1780 16.7.3 Functions and Features......................................................................................................................1782 16.7.4 Working Principle and Signal Flow..................................................................................................1787 16.7.5 Front Panel.........................................................................................................................................1791 16.7.6 Valid Slots.........................................................................................................................................1794 16.7.7 Characteristic Code of the NPO2......................................................................................................1795 16.7.8 Physical and Logical Ports................................................................................................................1795 16.7.9 Configuration of Cross-connection...................................................................................................1799 16.7.10 Parameters Can Be Set or Queried by NMS....................................................................................1808 16.7.11 NPO2 Specifications........................................................................................................................1810 16.8 NPO2E........................................................................................................................................................1812 16.8.1 Version Description...........................................................................................................................1812 16.8.2 Application........................................................................................................................................1816 16.8.3 Functions and Features......................................................................................................................1818 16.8.4 Working Principle and Signal Flow..................................................................................................1821 16.8.5 Front Panel.........................................................................................................................................1824 16.8.6 Valid Slots.........................................................................................................................................1826 16.8.7 Characteristic Code of the NPO2E....................................................................................................1827 16.8.8 Physical and Logical Ports................................................................................................................1827 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xxxix
OptiX OSN 8800/6800/3800 Hardware Description
Contents
16.8.9 Configuration of Cross-connection...................................................................................................1830 16.8.10 Parameters Can Be Set or Queried by NMS....................................................................................1835 16.8.11 NPO2E Specifications.....................................................................................................................1836
17 Optical Multiplexer and Demultiplexing Board.............................................................1840 17.1 Overview....................................................................................................................................................1841 17.2 M40.............................................................................................................................................................1842 17.2.1 Version Description...........................................................................................................................1842 17.2.2 Application........................................................................................................................................1843 17.2.3 Functions and Features......................................................................................................................1844 17.2.4 Working Principle and Signal Flow..................................................................................................1844 17.2.5 Front Panel.........................................................................................................................................1846 17.2.6 Valid Slots.........................................................................................................................................1851 17.2.7 Characteristic Code for the M40.......................................................................................................1852 17.2.8 Optical Interfaces...............................................................................................................................1853 17.2.9 Parameters Can Be Set or Queried by NMS......................................................................................1853 17.2.10 M40 Specifications..........................................................................................................................1854 17.3 M40V..........................................................................................................................................................1855 17.3.1 Version Description...........................................................................................................................1855 17.3.2 Application........................................................................................................................................1856 17.3.3 Functions and Features......................................................................................................................1856 17.3.4 Working Principle and Signal Flow..................................................................................................1857 17.3.5 Front Panel.........................................................................................................................................1859 17.3.6 Valid Slots.........................................................................................................................................1864 17.3.7 Characteristic Code for the M40V.....................................................................................................1865 17.3.8 Optical Interfaces...............................................................................................................................1866 17.3.9 Parameters Can Be Set or Queried by NMS......................................................................................1866 17.3.10 M40V Specifications.......................................................................................................................1867 17.4 D40.............................................................................................................................................................1868 17.4.1 Version Description...........................................................................................................................1868 17.4.2 Application........................................................................................................................................1870 17.4.3 Functions and Features......................................................................................................................1870 17.4.4 Working Principle and Signal Flow..................................................................................................1870 17.4.5 Front Panel.........................................................................................................................................1872 17.4.6 Valid Slots.........................................................................................................................................1877 17.4.7 Characteristic Code for the D40........................................................................................................1878 17.4.8 Optical Interfaces...............................................................................................................................1879 17.4.9 Parameters Can Be Set or Queried by NMS......................................................................................1879 17.4.10 D40 Specifications...........................................................................................................................1880 17.5 D40V..........................................................................................................................................................1881 17.5.1 Version Description...........................................................................................................................1881 17.5.2 Application........................................................................................................................................1882 17.5.3 Functions and Features......................................................................................................................1882 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xl
OptiX OSN 8800/6800/3800 Hardware Description
Contents
17.5.4 Working Principle and Signal Flow..................................................................................................1883 17.5.5 Front Panel.........................................................................................................................................1885 17.5.6 Valid Slots.........................................................................................................................................1889 17.5.7 Characteristic Code for the D40V.....................................................................................................1889 17.5.8 Optical Interfaces...............................................................................................................................1890 17.5.9 Parameters Can Be Set or Queried by NMS......................................................................................1890 17.5.10 D40V Specifications........................................................................................................................1891 17.6 DFIU...........................................................................................................................................................1892 17.6.1 Version Description...........................................................................................................................1893 17.6.2 Application........................................................................................................................................1893 17.6.3 Functions and Features......................................................................................................................1893 17.6.4 Working Principle and Signal Flow..................................................................................................1894 17.6.5 Front Panel.........................................................................................................................................1895 17.6.6 Valid Slots.........................................................................................................................................1897 17.6.7 Characteristic Code for the DFIU......................................................................................................1897 17.6.8 Optical Interfaces...............................................................................................................................1897 17.6.9 Parameters Can Be Set or Queried by NMS......................................................................................1898 17.6.10 DFIU Specifications........................................................................................................................1899 17.7 FIU..............................................................................................................................................................1900 17.7.1 Version Description...........................................................................................................................1900 17.7.2 Application........................................................................................................................................1902 17.7.3 Functions and Features......................................................................................................................1903 17.7.4 Working Principle and Signal Flow..................................................................................................1904 17.7.5 Front Panel.........................................................................................................................................1906 17.7.6 Valid Slots.........................................................................................................................................1911 17.7.7 Characteristic Code for the FIU.........................................................................................................1913 17.7.8 Optical Interfaces...............................................................................................................................1913 17.7.9 Parameters Can Be Set or Queried by NMS......................................................................................1914 17.7.10 FIU Specifications...........................................................................................................................1915 17.8 ITL..............................................................................................................................................................1916 17.8.1 Version Description...........................................................................................................................1916 17.8.2 Application........................................................................................................................................1918 17.8.3 Functions and Features......................................................................................................................1919 17.8.4 Working Principle and Signal Flow..................................................................................................1919 17.8.5 Front Panel.........................................................................................................................................1921 17.8.6 Valid Slots.........................................................................................................................................1924 17.8.7 Characteristic Code for the ITL.........................................................................................................1925 17.8.8 Optical Interfaces...............................................................................................................................1925 17.8.9 Parameters Can Be Set or Queried by NMS......................................................................................1926 17.8.10 ITL Specifications...........................................................................................................................1927 17.9 SFIU............................................................................................................................................................1929 17.9.1 Version Description...........................................................................................................................1929 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xli
OptiX OSN 8800/6800/3800 Hardware Description
Contents
17.9.2 Application........................................................................................................................................1929 17.9.3 Functions and Features......................................................................................................................1930 17.9.4 Working Principle and Signal Flow..................................................................................................1930 17.9.5 Front Panel.........................................................................................................................................1932 17.9.6 Valid Slots.........................................................................................................................................1934 17.9.7 Characteristic Code for the SFIU......................................................................................................1935 17.9.8 Optical Interfaces...............................................................................................................................1935 17.9.9 Parameters Can Be Set or Queried by NMS......................................................................................1936 17.9.10 SFIU Specifications......................................................................................................................... 1937
18 Fixed Optical Add and Drop Multiplexing Board..........................................................1939 18.1 Overview....................................................................................................................................................1940 18.2 CMR1.........................................................................................................................................................1941 18.2.1 Version Description........................................................................................................................... 1941 18.2.2 Application........................................................................................................................................1942 18.2.3 Functions and Features......................................................................................................................1942 18.2.4 Working Principle and Signal Flow..................................................................................................1943 18.2.5 Front Panel.........................................................................................................................................1944 18.2.6 Valid Slots.........................................................................................................................................1945 18.2.7 Characteristic Code for the CMR1....................................................................................................1945 18.2.8 Optical Interfaces...............................................................................................................................1946 18.2.9 Parameters Can Be Set or Queried by NMS......................................................................................1946 18.2.10 CMR1 Specifications.......................................................................................................................1947 18.3 CMR2.........................................................................................................................................................1948 18.3.1 Version Description........................................................................................................................... 1948 18.3.2 Application........................................................................................................................................1949 18.3.3 Functions and Features......................................................................................................................1949 18.3.4 Working Principle and Signal Flow..................................................................................................1950 18.3.5 Front Panel.........................................................................................................................................1951 18.3.6 Valid Slots.........................................................................................................................................1954 18.3.7 Characteristic Code for the CMR2....................................................................................................1955 18.3.8 Optical Interfaces...............................................................................................................................1955 18.3.9 Parameters Can Be Set or Queried by NMS......................................................................................1956 18.3.10 CMR2 Specifications.......................................................................................................................1956 18.4 CMR4.........................................................................................................................................................1958 18.4.1 Version Description........................................................................................................................... 1958 18.4.2 Application........................................................................................................................................1959 18.4.3 Functions and Features......................................................................................................................1959 18.4.4 Working Principle and Signal Flow..................................................................................................1959 18.4.5 Front Panel.........................................................................................................................................1961 18.4.6 Valid Slots.........................................................................................................................................1964 18.4.7 Characteristic Code for the CMR4....................................................................................................1965 18.4.8 Optical Interfaces...............................................................................................................................1965 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
18.4.9 Parameters Can Be Set or Queried by NMS......................................................................................1966 18.4.10 CMR4 Specifications.......................................................................................................................1967 18.5 DMR1.........................................................................................................................................................1968 18.5.1 Version Description...........................................................................................................................1968 18.5.2 Application........................................................................................................................................1969 18.5.3 Functions and Features......................................................................................................................1970 18.5.4 Working Principle and Signal Flow..................................................................................................1970 18.5.5 Front Panel.........................................................................................................................................1972 18.5.6 Valid Slots.........................................................................................................................................1975 18.5.7 Characteristic Code for the DMR1....................................................................................................1976 18.5.8 Optical Interfaces...............................................................................................................................1976 18.5.9 Parameters Can Be Set or Queried by NMS......................................................................................1976 18.5.10 DMR1 Specifications......................................................................................................................1977 18.6 MR2............................................................................................................................................................1978 18.6.1 Version Description...........................................................................................................................1978 18.6.2 Application........................................................................................................................................1979 18.6.3 Functions and Features......................................................................................................................1980 18.6.4 Working Principle and Signal Flow..................................................................................................1980 18.6.5 Front Panel.........................................................................................................................................1982 18.6.6 Valid Slots.........................................................................................................................................1985 18.6.7 Characteristic Code for the MR2.......................................................................................................1986 18.6.8 Optical Interfaces...............................................................................................................................1986 18.6.9 Parameters Can Be Set or Queried by NMS......................................................................................1986 18.6.10 MR2 Specifications.........................................................................................................................1987 18.7 MR4............................................................................................................................................................1989 18.7.1 Version Description...........................................................................................................................1989 18.7.2 Application........................................................................................................................................1989 18.7.3 Functions and Features......................................................................................................................1990 18.7.4 Working Principle and Signal Flow..................................................................................................1990 18.7.5 Front Panel.........................................................................................................................................1992 18.7.6 Valid Slots.........................................................................................................................................1995 18.7.7 Characteristic Code for the MR4.......................................................................................................1996 18.7.8 Optical Interfaces...............................................................................................................................1996 18.7.9 Parameters Can Be Set or Queried by NMS......................................................................................1997 18.7.10 MR4 Specifications.........................................................................................................................1997 18.8 MR8............................................................................................................................................................2002 18.8.1 Version Description...........................................................................................................................2002 18.8.2 Application........................................................................................................................................2002 18.8.3 Functions and Features......................................................................................................................2003 18.8.4 Working Principle and Signal Flow..................................................................................................2003 18.8.5 Front Panel.........................................................................................................................................2005 18.8.6 Valid Slots.........................................................................................................................................2007 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xliii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
18.8.7 Characteristic Code for the MR8.......................................................................................................2008 18.8.8 Optical Interfaces...............................................................................................................................2008 18.8.9 Parameters Can Be Set or Queried by NMS......................................................................................2009 18.8.10 MR8 Specifications.........................................................................................................................2010 18.9 MR8V.........................................................................................................................................................2012 18.9.1 Version Description...........................................................................................................................2012 18.9.2 Application........................................................................................................................................2013 18.9.3 Functions and Features......................................................................................................................2013 18.9.4 Working Principle and Signal Flow..................................................................................................2014 18.9.5 Front Panel.........................................................................................................................................2015 18.9.6 Valid Slots.........................................................................................................................................2017 18.9.7 Characteristic Code for the MR8V....................................................................................................2018 18.9.8 Optical Interfaces...............................................................................................................................2019 18.9.9 Parameters Can Be Set or Queried by NMS......................................................................................2019 18.9.10 MR8V Specifications......................................................................................................................2020 18.10 SBM2........................................................................................................................................................2023 18.10.1 Version Description.........................................................................................................................2023 18.10.2 Application......................................................................................................................................2024 18.10.3 Functions and Features....................................................................................................................2024 18.10.4 Working Principle and Signal Flow................................................................................................2025 18.10.5 Front Panel.......................................................................................................................................2026 18.10.6 Valid Slots.......................................................................................................................................2028 18.10.7 Optical Interfaces.............................................................................................................................2028 18.10.8 Parameters Can Be Set or Queried by NMS....................................................................................2029 18.10.9 SBM2 Specifications.......................................................................................................................2030
19 Reconfigurable Optical Add and Drop Multiplexing Board........................................2031 19.1 Overview....................................................................................................................................................2033 19.2 RDU9..........................................................................................................................................................2035 19.2.1 Version Description...........................................................................................................................2035 19.2.2 Application........................................................................................................................................2036 19.2.3 Functions and Features......................................................................................................................2037 19.2.4 Working Principle and Signal Flow..................................................................................................2037 19.2.5 Front Panel.........................................................................................................................................2039 19.2.6 Valid Slots.........................................................................................................................................2042 19.2.7 Optical Interfaces...............................................................................................................................2042 19.2.8 Parameters Can Be Set or Queried by NMS......................................................................................2042 19.2.9 RDU9 Specifications.........................................................................................................................2043 19.3 RMU9.........................................................................................................................................................2044 19.3.1 Version Description...........................................................................................................................2044 19.3.2 Application........................................................................................................................................2045 19.3.3 Functions and Features......................................................................................................................2046 19.3.4 Working Principle and Signal Flow..................................................................................................2046 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xliv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
19.3.5 Front Panel.........................................................................................................................................2048 19.3.6 Valid Slots.........................................................................................................................................2050 19.3.7 Optical Interfaces...............................................................................................................................2051 19.3.8 Parameters Can Be Set or Queried by NMS......................................................................................2051 19.3.9 RMU9 Specifications........................................................................................................................2053 19.4 ROAM........................................................................................................................................................2054 19.4.1 Version Description...........................................................................................................................2054 19.4.2 Application........................................................................................................................................2055 19.4.3 Functions and Features......................................................................................................................2055 19.4.4 Working Principle and Signal Flow..................................................................................................2056 19.4.5 Front Panel.........................................................................................................................................2057 19.4.6 Valid Slots.........................................................................................................................................2061 19.4.7 Optical Interfaces...............................................................................................................................2061 19.4.8 Parameters Can Be Set or Queried by NMS......................................................................................2062 19.4.9 ROAM Specifications........................................................................................................................2063 19.5 TD20...........................................................................................................................................................2064 19.5.1 Version Description...........................................................................................................................2064 19.5.2 Application........................................................................................................................................2064 19.5.3 Functions and Features......................................................................................................................2065 19.5.4 Working Principle and Signal Flow..................................................................................................2066 19.5.5 Front Panel.........................................................................................................................................2068 19.5.6 Valid Slots.........................................................................................................................................2070 19.5.7 Optical Interfaces...............................................................................................................................2071 19.5.8 Parameters Can Be Set or Queried by NMS......................................................................................2071 19.5.9 TD20 Specifications..........................................................................................................................2073 19.6 TM20..........................................................................................................................................................2074 19.6.1 Version Description...........................................................................................................................2074 19.6.2 Application........................................................................................................................................2075 19.6.3 Functions and Features......................................................................................................................2075 19.6.4 Working Principle and Signal Flow..................................................................................................2076 19.6.5 Front Panel.........................................................................................................................................2078 19.6.6 Valid Slots.........................................................................................................................................2080 19.6.7 Optical Interfaces...............................................................................................................................2081 19.6.8 Parameters Can Be Set or Queried by NMS......................................................................................2081 19.6.9 TM20 Specifications..........................................................................................................................2082 19.7 WSD9.........................................................................................................................................................2083 19.7.1 Version Description...........................................................................................................................2083 19.7.2 Application........................................................................................................................................2084 19.7.3 Functions and Features......................................................................................................................2085 19.7.4 Working Principle and Signal Flow..................................................................................................2086 19.7.5 Front Panel.........................................................................................................................................2088 19.7.6 Valid Slots.........................................................................................................................................2090 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
19.7.7 Optical Interfaces...............................................................................................................................2092 19.7.8 Parameters Can Be Set or Queried by NMS......................................................................................2092 19.7.9 WSD9 Specifications.........................................................................................................................2094 19.8 WSM9.........................................................................................................................................................2095 19.8.1 Version Description...........................................................................................................................2095 19.8.2 Application........................................................................................................................................2096 19.8.3 Functions and Features......................................................................................................................2097 19.8.4 Working Principle and Signal Flow..................................................................................................2098 19.8.5 Front Panel.........................................................................................................................................2100 19.8.6 Valid Slots.........................................................................................................................................2102 19.8.7 Optical Interfaces...............................................................................................................................2104 19.8.8 Parameters Can Be Set or Queried by NMS......................................................................................2104 19.8.9 WSM9 Specifications........................................................................................................................2106 19.9 WSMD2......................................................................................................................................................2107 19.9.1 Version Description...........................................................................................................................2107 19.9.2 Application........................................................................................................................................2108 19.9.3 Functions and Features......................................................................................................................2109 19.9.4 Working Principle and Signal Flow..................................................................................................2109 19.9.5 Front Panel.........................................................................................................................................2111 19.9.6 Valid Slots.........................................................................................................................................2114 19.9.7 Optical Interfaces...............................................................................................................................2114 19.9.8 Parameters Can Be Set or Queried by NMS......................................................................................2115 19.9.9 WSMD2 Specifications.....................................................................................................................2116 19.10 WSMD4....................................................................................................................................................2117 19.10.1 Version Description.........................................................................................................................2117 19.10.2 Application......................................................................................................................................2119 19.10.3 Functions and Features....................................................................................................................2119 19.10.4 Working Principle and Signal Flow................................................................................................2120 19.10.5 Front Panel.......................................................................................................................................2122 19.10.6 Valid Slots.......................................................................................................................................2124 19.10.7 Optical Interfaces.............................................................................................................................2125 19.10.8 Parameters Can Be Set or Queried by NMS....................................................................................2126 19.10.9 WSMD4 Specifications...................................................................................................................2128 19.11 WSMD9....................................................................................................................................................2129 19.11.1 Version Description.........................................................................................................................2129 19.11.2 Application......................................................................................................................................2130 19.11.3 Functions and Features....................................................................................................................2131 19.11.4 Working Principle and Signal Flow................................................................................................2131 19.11.5 Front Panel.......................................................................................................................................2133 19.11.6 Valid Slots.......................................................................................................................................2136 19.11.7 Optical Interfaces.............................................................................................................................2136 19.11.8 Parameters Can Be Set or Queried by NMS....................................................................................2137 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlvi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
19.11.9 WSMD9 Specifications...................................................................................................................2138
20 Optical Amplifier Board......................................................................................................2140 20.1 Overview....................................................................................................................................................2141 20.2 CRPC..........................................................................................................................................................2143 20.2.1 Version Description...........................................................................................................................2143 20.2.2 Application........................................................................................................................................2144 20.2.3 Functions and Features......................................................................................................................2145 20.2.4 Working Principle and Signal Flow..................................................................................................2145 20.2.5 Front Panel.........................................................................................................................................2148 20.2.6 Valid Slots.........................................................................................................................................2151 20.2.7 Dip Switch and Jumper......................................................................................................................2151 20.2.8 Characteristic Code for the CRPC.....................................................................................................2153 20.2.9 Optical Interfaces...............................................................................................................................2153 20.2.10 Parameters Can Be Set or Queried by NMS....................................................................................2154 20.2.11 CRPC Specifications.......................................................................................................................2155 20.3 DAS1..........................................................................................................................................................2157 20.3.1 Version Description...........................................................................................................................2157 20.3.2 Application........................................................................................................................................2157 20.3.3 Functions and Features......................................................................................................................2158 20.3.4 Working Principle and Signal Flow..................................................................................................2160 20.3.5 Front Panel.........................................................................................................................................2163 20.3.6 Valid Slots.........................................................................................................................................2166 20.3.7 Optical Interfaces...............................................................................................................................2166 20.3.8 Parameters Can Be Set or Queried by NMS......................................................................................2167 20.3.9 DAS1 Specifications..........................................................................................................................2171 20.4 HBA............................................................................................................................................................2173 20.4.1 Version Description...........................................................................................................................2173 20.4.2 Application........................................................................................................................................2174 20.4.3 Functions and Features......................................................................................................................2174 20.4.4 Working Principle and Signal Flow..................................................................................................2175 20.4.5 Front Panel.........................................................................................................................................2177 20.4.6 Valid Slots.........................................................................................................................................2179 20.4.7 Characteristic Code for the HBA.......................................................................................................2180 20.4.8 Optical Interfaces...............................................................................................................................2180 20.4.9 Parameters Can Be Set or Queried by NMS......................................................................................2181 20.4.10 HBA Specifications.........................................................................................................................2183 20.5 OAU1..........................................................................................................................................................2184 20.5.1 Version Description...........................................................................................................................2185 20.5.2 Application........................................................................................................................................2186 20.5.3 Functions and Features......................................................................................................................2187 20.5.4 Working Principle and Signal Flow..................................................................................................2188 20.5.5 Front Panel.........................................................................................................................................2191 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlvii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
20.5.6 Valid Slots.........................................................................................................................................2196 20.5.7 Characteristic Code for the OAU1....................................................................................................2197 20.5.8 Optical Interfaces...............................................................................................................................2198 20.5.9 Parameters Can Be Set or Queried by NMS......................................................................................2199 20.5.10 OAU1 Specifications.......................................................................................................................2202 20.6 OBU1..........................................................................................................................................................2211 20.6.1 Version Description...........................................................................................................................2211 20.6.2 Application........................................................................................................................................2212 20.6.3 Functions and Features......................................................................................................................2213 20.6.4 Working Principle and Signal Flow..................................................................................................2214 20.6.5 Front Panel.........................................................................................................................................2216 20.6.6 Valid Slots.........................................................................................................................................2219 20.6.7 Characteristic Code for the OBU1.....................................................................................................2220 20.6.8 Optical Interfaces...............................................................................................................................2221 20.6.9 Parameters Can Be Set or Queried by NMS......................................................................................2221 20.6.10 OBU1 Specifications.......................................................................................................................2225 20.7 OBU2..........................................................................................................................................................2227 20.7.1 Version Description...........................................................................................................................2227 20.7.2 Application........................................................................................................................................2229 20.7.3 Functions and Features......................................................................................................................2229 20.7.4 Working Principle and Signal Flow..................................................................................................2230 20.7.5 Front Panel.........................................................................................................................................2232 20.7.6 Valid Slots.........................................................................................................................................2235 20.7.7 Characteristic Code for the OBU2.....................................................................................................2236 20.7.8 Optical Interfaces...............................................................................................................................2237 20.7.9 Parameters Can Be Set or Queried by NMS......................................................................................2238 20.7.10 OBU2 Specifications.......................................................................................................................2241 20.8 RAU1..........................................................................................................................................................2243 20.8.1 Version Description...........................................................................................................................2243 20.8.2 Application........................................................................................................................................2243 20.8.3 Functions and Features......................................................................................................................2244 20.8.4 Working Principle and Signal Flow..................................................................................................2246 20.8.5 Front Panel.........................................................................................................................................2248 20.8.6 Valid Slots.........................................................................................................................................2250 20.8.7 Optical Interfaces...............................................................................................................................2251 20.8.8 Parameters Can Be Set or Queried by NMS......................................................................................2252 20.8.9 RAU1 Specifications.........................................................................................................................2256 20.9 RAU2..........................................................................................................................................................2260 20.9.1 Version Description...........................................................................................................................2261 20.9.2 Application........................................................................................................................................2261 20.9.3 Functions and Features......................................................................................................................2262 20.9.4 Working Principle and Signal Flow..................................................................................................2264 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlviii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
20.9.5 Front Panel.........................................................................................................................................2266 20.9.6 Valid Slots.........................................................................................................................................2269 20.9.7 Optical Interfaces...............................................................................................................................2269 20.9.8 Parameters Can Be Set or Queried by NMS......................................................................................2270 20.9.9 RAU2 Specifications.........................................................................................................................2275
21 Cross-Connect Board and System and Communication Board....................................2280 21.1 Overview....................................................................................................................................................2282 21.2 USXH.........................................................................................................................................................2283 21.2.1 Version Description...........................................................................................................................2283 21.2.2 Application........................................................................................................................................2284 21.2.3 Functions and Features......................................................................................................................2284 21.2.4 Working Principle and Signal Flow..................................................................................................2285 21.2.5 Front Panel.........................................................................................................................................2286 21.2.6 Valid Slots.........................................................................................................................................2288 21.2.7 USXH Specifications.........................................................................................................................2288 21.3 UXCT.........................................................................................................................................................2289 21.3.1 Version Description...........................................................................................................................2289 21.3.2 Application........................................................................................................................................2289 21.3.3 Functions and Features......................................................................................................................2290 21.3.4 Working Principle and Signal Flow..................................................................................................2290 21.3.5 Front Panel.........................................................................................................................................2291 21.3.6 Valid Slots.........................................................................................................................................2293 21.3.7 UXCT Specifications.........................................................................................................................2293 21.4 SXM............................................................................................................................................................2294 21.4.1 Version Description...........................................................................................................................2294 21.4.2 Application........................................................................................................................................2295 21.4.3 Functions and Features......................................................................................................................2296 21.4.4 Working Principle and Signal Flow..................................................................................................2296 21.4.5 Front Panel.........................................................................................................................................2297 21.4.6 Valid Slots.........................................................................................................................................2299 21.4.7 SXM Specifications...........................................................................................................................2299 21.5 SXH............................................................................................................................................................2300 21.5.1 Version Description...........................................................................................................................2300 21.5.2 Application........................................................................................................................................2301 21.5.3 Functions and Features......................................................................................................................2302 21.5.4 Working Principle and Signal Flow..................................................................................................2303 21.5.5 Front Panel.........................................................................................................................................2304 21.5.6 Valid Slots.........................................................................................................................................2305 21.5.7 SXH Specifications............................................................................................................................2305 21.6 XCT............................................................................................................................................................2306 21.6.1 Version Description...........................................................................................................................2306 21.6.2 Application........................................................................................................................................2307 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
xlix
OptiX OSN 8800/6800/3800 Hardware Description
Contents
21.6.3 Functions and Features......................................................................................................................2308 21.6.4 Working Principle and Signal Flow..................................................................................................2308 21.6.5 Front Panel.........................................................................................................................................2309 21.6.6 Valid Slots.........................................................................................................................................2311 21.6.7 XCT Specifications............................................................................................................................2311 21.7 TN52UXCM...............................................................................................................................................2312 21.7.1 Version Description...........................................................................................................................2312 21.7.2 Application........................................................................................................................................2313 21.7.3 Functions and Features......................................................................................................................2314 21.7.4 Working Principle and Signal Flow..................................................................................................2314 21.7.5 Front Panel.........................................................................................................................................2316 21.7.6 Valid Slots.........................................................................................................................................2318 21.7.7 TN52UXCM Specifications..............................................................................................................2318 21.8 XCM...........................................................................................................................................................2319 21.8.1 Version Description...........................................................................................................................2319 21.8.2 Application........................................................................................................................................2319 21.8.3 Functions and Features......................................................................................................................2320 21.8.4 Working Principle and Signal Flow..................................................................................................2320 21.8.5 Front Panel.........................................................................................................................................2322 21.8.6 Valid Slots.........................................................................................................................................2324 21.8.7 XCM Board Specifications................................................................................................................2324 21.9 UXCH.........................................................................................................................................................2325 21.9.1 Version Description...........................................................................................................................2325 21.9.2 Application........................................................................................................................................2325 21.9.3 Functions and Features......................................................................................................................2326 21.9.4 Working Principle and Signal Flow..................................................................................................2327 21.9.5 Front Panel.........................................................................................................................................2329 21.9.6 Valid Slots.........................................................................................................................................2331 21.9.7 UXCH Specifications........................................................................................................................2331 21.10 TN52XCH................................................................................................................................................2332 21.10.1 Version Description.........................................................................................................................2332 21.10.2 Application......................................................................................................................................2332 21.10.3 Functions and Features....................................................................................................................2333 21.10.4 Working Principle and Signal Flow................................................................................................2333 21.10.5 Front Panel.......................................................................................................................................2334 21.10.6 Valid Slots.......................................................................................................................................2336 21.10.7 TN52XCH Specifications................................................................................................................2336 21.11 TN16XCH................................................................................................................................................2337 21.11.1 Version Description.........................................................................................................................2337 21.11.2 Application......................................................................................................................................2337 21.11.3 Functions and Features....................................................................................................................2338 21.11.4 Working Principle and Signal Flow................................................................................................2340 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
l
OptiX OSN 8800/6800/3800 Hardware Description
Contents
21.11.5 Front Panel.......................................................................................................................................2341 21.11.6 Valid Slots.......................................................................................................................................2343 21.11.7 Switch and Jumper...........................................................................................................................2343 21.11.8 TN16XCH Specifications................................................................................................................2344 21.12 TN16UXCM.............................................................................................................................................2345 21.12.1 Version Description.........................................................................................................................2345 21.12.2 Application......................................................................................................................................2345 21.12.3 Functions and Features....................................................................................................................2346 21.12.4 Working Principle and Signal Flow................................................................................................2348 21.12.5 Front Panel.......................................................................................................................................2349 21.12.6 Valid Slots.......................................................................................................................................2351 21.12.7 Switch and Jumper...........................................................................................................................2351 21.12.8 TN16UXCM Specifications............................................................................................................2353 21.13 XCS..........................................................................................................................................................2354 21.13.1 Version Description.........................................................................................................................2354 21.13.2 Application......................................................................................................................................2355 21.13.3 Functions and Features....................................................................................................................2355 21.13.4 Working Principle and Signal Flow................................................................................................2356 21.13.5 Front Panel.......................................................................................................................................2357 21.13.6 Valid Slots.......................................................................................................................................2359 21.13.7 XCS Specifications..........................................................................................................................2359 21.14 SCC...........................................................................................................................................................2359 21.14.1 Version Description.........................................................................................................................2359 21.14.2 Application......................................................................................................................................2361 21.14.3 Functions and Features....................................................................................................................2362 21.14.4 Working Principle and Signal Flow................................................................................................2364 21.14.5 Front Panel.......................................................................................................................................2366 21.14.6 Valid Slots.......................................................................................................................................2372 21.14.7 Switch and Jumper...........................................................................................................................2373 21.14.8 SCC Specifications..........................................................................................................................2378 21.15 AUX..........................................................................................................................................................2379 21.15.1 Version Description.........................................................................................................................2379 21.15.2 Application......................................................................................................................................2382 21.15.3 Functions and Features....................................................................................................................2382 21.15.4 Working Principle and Signal Flow................................................................................................2384 21.15.5 Front Panel.......................................................................................................................................2386 21.15.6 Valid Slots.......................................................................................................................................2392 21.15.7 Jumper.............................................................................................................................................2394 21.15.8 AUX Specifications.........................................................................................................................2399
22 Optical Supervisory Channel Board..................................................................................2401 22.1 Overview....................................................................................................................................................2402 22.2 HSC1..........................................................................................................................................................2403 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
li
OptiX OSN 8800/6800/3800 Hardware Description
Contents
22.2.1 Version Description...........................................................................................................................2403 22.2.2 Application........................................................................................................................................2403 22.2.3 Functions and Features......................................................................................................................2404 22.2.4 Working Principle and Signal Flow..................................................................................................2404 22.2.5 Front Panel.........................................................................................................................................2407 22.2.6 Valid Slots.........................................................................................................................................2409 22.2.7 Characteristic Code for the HSC1.....................................................................................................2409 22.2.8 Optical Interfaces...............................................................................................................................2410 22.2.9 Parameters Can Be Set or Queried by NMS......................................................................................2410 22.2.10 HSC1 Specifications........................................................................................................................2411 22.3 SC1.............................................................................................................................................................2412 22.3.1 Version Description...........................................................................................................................2412 22.3.2 Application........................................................................................................................................2413 22.3.3 Functions and Features......................................................................................................................2413 22.3.4 Working Principle and Signal Flow..................................................................................................2414 22.3.5 Front Panel.........................................................................................................................................2417 22.3.6 Valid Slots.........................................................................................................................................2419 22.3.7 Characteristic Code for the SC1........................................................................................................2420 22.3.8 Optical Interfaces...............................................................................................................................2420 22.3.9 Parameters Can Be Set or Queried by NMS......................................................................................2420 22.3.10 SC1 Specifications...........................................................................................................................2421 22.4 SC2.............................................................................................................................................................2422 22.4.1 Version Description...........................................................................................................................2422 22.4.2 Application........................................................................................................................................2423 22.4.3 Functions and Features......................................................................................................................2424 22.4.4 Working Principle and Signal Flow..................................................................................................2425 22.4.5 Front Panel.........................................................................................................................................2427 22.4.6 Valid Slots.........................................................................................................................................2429 22.4.7 Characteristic Code for the SC2........................................................................................................2430 22.4.8 Optical Interfaces...............................................................................................................................2430 22.4.9 Parameters Can Be Set or Queried by NMS......................................................................................2431 22.4.10 SC2 Specifications...........................................................................................................................2432 22.5 ST2..............................................................................................................................................................2432 22.5.1 Version Description...........................................................................................................................2432 22.5.2 Application........................................................................................................................................2433 22.5.3 Functions and Features......................................................................................................................2434 22.5.4 Working Principle and Signal Flow..................................................................................................2435 22.5.5 Front Panel.........................................................................................................................................2437 22.5.6 Valid Slots.........................................................................................................................................2439 22.5.7 Characteristic Code for the ST2........................................................................................................2440 22.5.8 Optical Interfaces...............................................................................................................................2440 22.5.9 Parameters Can Be Set or Queried by NMS......................................................................................2441 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
22.5.10 ST2 Specifications...........................................................................................................................2442
23 Optical Protection Board......................................................................................................2444 23.1 Overview....................................................................................................................................................2445 23.2 DCP............................................................................................................................................................2446 23.2.1 Version Description...........................................................................................................................2446 23.2.2 Application........................................................................................................................................2447 23.2.3 Functions and Features......................................................................................................................2448 23.2.4 Working Principle and Signal Flow..................................................................................................2449 23.2.5 Front Panel.........................................................................................................................................2451 23.2.6 Valid Slots.........................................................................................................................................2454 23.2.7 Characteristic Code for the DCP.......................................................................................................2455 23.2.8 Optical Interfaces...............................................................................................................................2456 23.2.9 Parameters Can Be Set or Queried by NMS......................................................................................2456 23.2.10 DCP Specifications..........................................................................................................................2457 23.3 OLP.............................................................................................................................................................2459 23.3.1 Version Description...........................................................................................................................2459 23.3.2 Application........................................................................................................................................2460 23.3.3 Functions and Features......................................................................................................................2462 23.3.4 Working Principle and Signal Flow..................................................................................................2463 23.3.5 Front Panel.........................................................................................................................................2464 23.3.6 Valid Slots.........................................................................................................................................2467 23.3.7 Characteristic Code for the OLP.......................................................................................................2467 23.3.8 Optical Interfaces...............................................................................................................................2468 23.3.9 Parameters Can Be Set or Queried by NMS......................................................................................2468 23.3.10 OLP Specifications..........................................................................................................................2469 23.4 SCS.............................................................................................................................................................2471 23.4.1 Version Description...........................................................................................................................2471 23.4.2 Application........................................................................................................................................2472 23.4.3 Functions and Features......................................................................................................................2472 23.4.4 Working Principle and Signal Flow..................................................................................................2473 23.4.5 Front Panel.........................................................................................................................................2474 23.4.6 Valid Slots.........................................................................................................................................2476 23.4.7 Characteristic Code for the SCS........................................................................................................2476 23.4.8 Optical Interfaces...............................................................................................................................2477 23.4.9 Parameters Can Be Set or Queried by NMS......................................................................................2477 23.4.10 SCS Specifications..........................................................................................................................2478
24 Spectrum Analyzer Board....................................................................................................2480 24.1 Overview....................................................................................................................................................2481 24.2 MCA4.........................................................................................................................................................2482 24.2.1 Version Description...........................................................................................................................2482 24.2.2 Application........................................................................................................................................2483 24.2.3 Functions and Features......................................................................................................................2484 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
liii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
24.2.4 Working Principle and Signal Flow..................................................................................................2485 24.2.5 Front Panel.........................................................................................................................................2486 24.2.6 Valid Slots.........................................................................................................................................2488 24.2.7 Characteristic Code for the MCA4....................................................................................................2488 24.2.8 Optical Interfaces...............................................................................................................................2489 24.2.9 Parameters Can Be Set or Queried by NMS......................................................................................2489 24.2.10 MCA4 Specifications......................................................................................................................2490 24.3 MCA8.........................................................................................................................................................2491 24.3.1 Version Description...........................................................................................................................2491 24.3.2 Application........................................................................................................................................2492 24.3.3 Functions and Features......................................................................................................................2493 24.3.4 Working Principle and Signal Flow..................................................................................................2494 24.3.5 Front Panel.........................................................................................................................................2496 24.3.6 Valid Slots.........................................................................................................................................2497 24.3.7 Characteristic Code for the MCA8....................................................................................................2498 24.3.8 Optical Interfaces...............................................................................................................................2498 24.3.9 Parameters Can Be Set or Queried by NMS......................................................................................2498 24.3.10 MCA8 Specifications......................................................................................................................2500 24.4 OPM8..........................................................................................................................................................2501 24.4.1 Version Description...........................................................................................................................2501 24.4.2 Application........................................................................................................................................2501 24.4.3 Functions and Features......................................................................................................................2502 24.4.4 Working Principle and Signal Flow..................................................................................................2502 24.4.5 Front Panel.........................................................................................................................................2505 24.4.6 Valid Slots.........................................................................................................................................2507 24.4.7 Characteristic Code for the OPM8....................................................................................................2507 24.4.8 Parameters Can Be Set or Queried by NMS......................................................................................2508 24.4.9 OPM8 Specifications.........................................................................................................................2509 24.5 WMU..........................................................................................................................................................2510 24.5.1 Version Description...........................................................................................................................2510 24.5.2 Application........................................................................................................................................2510 24.5.3 Functions and Features......................................................................................................................2511 24.5.4 Working Principle and Signal Flow..................................................................................................2511 24.5.5 Front Panel.........................................................................................................................................2513 24.5.6 Valid Slots.........................................................................................................................................2514 24.5.7 Optical Interfaces...............................................................................................................................2514 24.5.8 Parameters Can Be Set or Queried by NMS......................................................................................2515 24.5.9 WMU Specifications.........................................................................................................................2515
25 Variable Optical Attenuator Board....................................................................................2517 25.1 Overview....................................................................................................................................................2518 25.2 VA1............................................................................................................................................................2519 25.2.1 Version Description...........................................................................................................................2519 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
liv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
25.2.2 Application........................................................................................................................................2520 25.2.3 Functions and Features......................................................................................................................2520 25.2.4 Working Principle and Signal Flow..................................................................................................2521 25.2.5 Front Panel.........................................................................................................................................2522 25.2.6 Valid Slots.........................................................................................................................................2524 25.2.7 Characteristic Code for the VA1.......................................................................................................2525 25.2.8 Optical Interfaces...............................................................................................................................2525 25.2.9 Parameters Can Be Set or Queried by NMS......................................................................................2525 25.2.10 VA1 Specifications..........................................................................................................................2527 25.3 VA4............................................................................................................................................................2528 25.3.1 Version Description...........................................................................................................................2528 25.3.2 Application........................................................................................................................................2528 25.3.3 Functions and Features......................................................................................................................2529 25.3.4 Working Principle and Signal Flow..................................................................................................2529 25.3.5 Front Panel.........................................................................................................................................2531 25.3.6 Valid Slots.........................................................................................................................................2533 25.3.7 Characteristic Code for the VA4.......................................................................................................2534 25.3.8 Optical Interfaces...............................................................................................................................2534 25.3.9 Parameters Can Be Set or Queried by NMS......................................................................................2535 25.3.10 VA4 Specifications..........................................................................................................................2536
26 Dispersion Equalizing Board..............................................................................................2538 26.1 Overview....................................................................................................................................................2539 26.2 DCU............................................................................................................................................................2540 26.2.1 Version Description...........................................................................................................................2540 26.2.2 Application........................................................................................................................................2540 26.2.3 Functions and Features......................................................................................................................2541 26.2.4 Working Principle and Signal Flow..................................................................................................2542 26.2.5 Front Panel.........................................................................................................................................2543 26.2.6 Valid Slots.........................................................................................................................................2544 26.2.7 Characteristic Code for the DCU.......................................................................................................2544 26.2.8 Optical Interfaces...............................................................................................................................2545 26.2.9 Parameters Can Be Set or Queried by NMS......................................................................................2545 26.2.10 DCU Specifications.........................................................................................................................2546 26.3 TDC............................................................................................................................................................2547 26.3.1 Version Description...........................................................................................................................2548 26.3.2 Application........................................................................................................................................2548 26.3.3 Functions and Features......................................................................................................................2549 26.3.4 Working Principle and Signal Flow..................................................................................................2549 26.3.5 Front Panel.........................................................................................................................................2551 26.3.6 Valid Slots.........................................................................................................................................2552 26.3.7 Characteristic Code for the TDC.......................................................................................................2553 26.3.8 Optical Interfaces...............................................................................................................................2553 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lv
OptiX OSN 8800/6800/3800 Hardware Description
Contents
26.3.9 Parameters Can Be Set or Queried by NMS......................................................................................2553 26.3.10 TDC Specifications..........................................................................................................................2554
27 Clock Board.............................................................................................................................2556 27.1 STG.............................................................................................................................................................2557 27.1.1 Version Description...........................................................................................................................2557 27.1.2 Application........................................................................................................................................2557 27.1.3 Functions and Features......................................................................................................................2559 27.1.4 Working Principle and Signal Flow..................................................................................................2560 27.1.5 Front Panel.........................................................................................................................................2561 27.1.6 Valid Slots.........................................................................................................................................2564 27.1.7 Characteristic Code for the STG.......................................................................................................2564 27.1.8 Parameters Can Be Set or Queried by NMS......................................................................................2565 27.1.9 STG Specifications............................................................................................................................2565
28 OCS System Unit................................................................................................................... 2566 28.1 BPA............................................................................................................................................................2567 28.1.1 Version Description...........................................................................................................................2567 28.1.2 Application........................................................................................................................................2567 28.1.3 Functions and Features......................................................................................................................2567 28.1.4 Working Principle and Signal Flow..................................................................................................2568 28.1.5 Front Panel.........................................................................................................................................2569 28.1.6 Valid Slots.........................................................................................................................................2571 28.1.7 Characteristic Code for the BPA.......................................................................................................2571 28.1.8 Optical Interfaces...............................................................................................................................2572 28.1.9 BPA Specifications............................................................................................................................2572 28.2 EAS2...........................................................................................................................................................2573 28.2.1 Version Description...........................................................................................................................2574 28.2.2 Application........................................................................................................................................2574 28.2.3 Functions and Features......................................................................................................................2575 28.2.4 Working Principle and Signal Flow..................................................................................................2580 28.2.5 Front Panel.........................................................................................................................................2581 28.2.6 Jumpers and DIP Switches................................................................................................................2583 28.2.7 Valid Slots.........................................................................................................................................2583 28.2.8 Feature Code......................................................................................................................................2583 28.2.9 Optical Interfaces...............................................................................................................................2583 28.2.10 Parameters Can Be Set or Queried by NMS....................................................................................2584 28.2.11 EAS2 Specifications........................................................................................................................2593 28.3 EGSH..........................................................................................................................................................2596 28.3.1 Version Description...........................................................................................................................2596 28.3.2 Application........................................................................................................................................2597 28.3.3 Functions and Features......................................................................................................................2598 28.3.4 Working Principle and Signal Flow..................................................................................................2602 28.3.5 Front Panel.........................................................................................................................................2604 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lvi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
28.3.6 DIP Switches and Fiber Jumpers.......................................................................................................2606 28.3.7 Valid Slots.........................................................................................................................................2606 28.3.8 Characteristic Code for the EGSH.....................................................................................................2607 28.3.9 Optical Interfaces...............................................................................................................................2607 28.3.10 Board Protection..............................................................................................................................2608 28.3.11 Parameters Can Be Set or Queried by NMS....................................................................................2610 28.3.12 EGSH Specifications.......................................................................................................................2620 28.4 SF64............................................................................................................................................................2621 28.4.1 Version Description........................................................................................................................... 2621 28.4.2 Application........................................................................................................................................2621 28.4.3 Functions and Features......................................................................................................................2622 28.4.4 Working Principle and Signal Flow..................................................................................................2624 28.4.5 Front Panel.........................................................................................................................................2626 28.4.6 Jumpers and DIP Switches................................................................................................................2628 28.4.7 Valid Slots.........................................................................................................................................2628 28.4.8 Characteristic Code for the SF64.......................................................................................................2628 28.4.9 Optical Interfaces...............................................................................................................................2629 28.4.10 Parameters Can Be Set or Queried by NMS....................................................................................2629 28.4.11 SF64 Specifications.........................................................................................................................2630 28.5 SF64A......................................................................................................................................................... 2633 28.5.1 Version Description........................................................................................................................... 2633 28.5.2 Application........................................................................................................................................2634 28.5.3 Functions and Features......................................................................................................................2634 28.5.4 Working Principle and Signal Flow..................................................................................................2637 28.5.5 Front Panel.........................................................................................................................................2639 28.5.6 Jumpers and DIP Switches................................................................................................................2640 28.5.7 Valid Slots.........................................................................................................................................2640 28.5.8 Characteristic Code for the SF64A....................................................................................................2641 28.5.9 Optical Interfaces...............................................................................................................................2641 28.5.10 Parameters Can Be Set or Queried by NMS....................................................................................2641 28.5.11 SF64A Specifications......................................................................................................................2642 28.6 SFD64......................................................................................................................................................... 2644 28.6.1 Version Description........................................................................................................................... 2644 28.6.2 Application........................................................................................................................................2645 28.6.3 Functions and Features......................................................................................................................2645 28.6.4 Working Principle and Signal Flow..................................................................................................2647 28.6.5 Front Panel.........................................................................................................................................2649 28.6.6 Jumpers and DIP Switches................................................................................................................2651 28.6.7 Valid Slots.........................................................................................................................................2651 28.6.8 Characteristic Code for the SFD64....................................................................................................2651 28.6.9 Optical Interfaces...............................................................................................................................2652 28.6.10 Parameters Can Be Set or Queried by NMS....................................................................................2652 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lvii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
28.6.11 SFD64 Specifications......................................................................................................................2653 28.7 SL64............................................................................................................................................................2656 28.7.1 Version Description...........................................................................................................................2656 28.7.2 Application........................................................................................................................................2657 28.7.3 Functions and Features......................................................................................................................2657 28.7.4 Working Principle and Signal Flow..................................................................................................2659 28.7.5 Front Panel.........................................................................................................................................2661 28.7.6 Jumpers and DIP Switches................................................................................................................2663 28.7.7 Valid Slots.........................................................................................................................................2663 28.7.8 Characteristic Code for the SL64......................................................................................................2663 28.7.9 Optical Interfaces...............................................................................................................................2664 28.7.10 Parameters Can Be Set or Queried by NMS....................................................................................2664 28.7.11 SL64 Specifications.........................................................................................................................2665 28.8 SLD64.........................................................................................................................................................2667 28.8.1 Version Description...........................................................................................................................2667 28.8.2 Application........................................................................................................................................2668 28.8.3 Functions and Features......................................................................................................................2668 28.8.4 Working Principle and Signal Flow..................................................................................................2670 28.8.5 Front Panel.........................................................................................................................................2672 28.8.6 Jumpers and DIP Switches................................................................................................................2674 28.8.7 Valid Slots.........................................................................................................................................2674 28.8.8 Characteristic Code for the SLD64...................................................................................................2674 28.8.9 Optical Interfaces...............................................................................................................................2675 28.8.10 Parameters Can Be Set or Queried by NMS....................................................................................2675 28.8.11 SLD64 Specifications......................................................................................................................2676 28.9 SLH41.........................................................................................................................................................2677 28.9.1 Version Description...........................................................................................................................2677 28.9.2 Application........................................................................................................................................2678 28.9.3 Functions and Features......................................................................................................................2678 28.9.4 Working Principle and Signal Flow..................................................................................................2681 28.9.5 Front Panel.........................................................................................................................................2683 28.9.6 Jumpers and DIP Switches................................................................................................................2685 28.9.7 Valid Slots.........................................................................................................................................2685 28.9.8 Characteristic Code for the SLH41...................................................................................................2686 28.9.9 Optical Interfaces...............................................................................................................................2686 28.9.10 Parameters Can Be Set or Queried by NMS....................................................................................2687 28.9.11 SLH41 Specifications......................................................................................................................2688 28.10 SLO16.......................................................................................................................................................2690 28.10.1 Version Description.........................................................................................................................2690 28.10.2 Application......................................................................................................................................2690 28.10.3 Functions and Features....................................................................................................................2691 28.10.4 Working Principle and Signal Flow................................................................................................2693 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lviii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
28.10.5 Front Panel.......................................................................................................................................2695 28.10.6 Jumpers and DIP Switches..............................................................................................................2697 28.10.7 Valid Slots.......................................................................................................................................2697 28.10.8 Characteristic Code for the SLO16.................................................................................................2697 28.10.9 Optical Interfaces.............................................................................................................................2698 28.10.10 Parameters Can Be Set or Queried by NMS..................................................................................2698 28.10.11 SLO16 Specifications....................................................................................................................2699 28.11 SLQ16.......................................................................................................................................................2700 28.11.1 Version Description.........................................................................................................................2700 28.11.2 Application......................................................................................................................................2701 28.11.3 Functions and Features....................................................................................................................2701 28.11.4 Working Principle and Signal Flow................................................................................................2704 28.11.5 Front Panel.......................................................................................................................................2706 28.11.6 Jumpers and DIP Switches..............................................................................................................2707 28.11.7 Valid Slots.......................................................................................................................................2707 28.11.8 Characteristic Code for the SLQ16.................................................................................................2707 28.11.9 Optical Interfaces.............................................................................................................................2708 28.11.10 Parameters Can Be Set or Queried by NMS..................................................................................2708 28.11.11 SLQ16 Specifications....................................................................................................................2709 28.12 SLQ64.......................................................................................................................................................2710 28.12.1 Version Description.........................................................................................................................2710 28.12.2 Application......................................................................................................................................2711 28.12.3 Functions and Features....................................................................................................................2711 28.12.4 Working Principle and Signal Flow................................................................................................2713 28.12.5 Front Panel.......................................................................................................................................2715 28.12.6 Jumpers and DIP Switches..............................................................................................................2717 28.12.7 Valid Slots.......................................................................................................................................2717 28.12.8 Characteristic Code for the SLQ64.................................................................................................2717 28.12.9 Optical Interfaces.............................................................................................................................2717 28.12.10 Parameters Can Be Set or Queried by NMS..................................................................................2718 28.12.11 SLQ64 Specifications....................................................................................................................2719
29 Cables.......................................................................................................................................2721 29.1 PGND Cables.............................................................................................................................................2722 29.1.1 Cabinet PGND Power Cables............................................................................................................2722 29.1.2 Subrack PGND Cables......................................................................................................................2723 29.1.3 PDU PGND Cables...........................................................................................................................2724 29.1.4 Cabinet Door Ground Cables............................................................................................................2724 29.2 Power Cables..............................................................................................................................................2725 29.2.1 Cabinet -48 V/BGND Power Cables.................................................................................................2725 29.2.2 Subrack Power Cables.......................................................................................................................2729 29.3 Optical Fibers.............................................................................................................................................2731 29.3.1 Classification.....................................................................................................................................2731 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lix
OptiX OSN 8800/6800/3800 Hardware Description
Contents
29.3.2 Connectors.........................................................................................................................................2732 29.4 Alarm Cables..............................................................................................................................................2736 29.4.1 Cabinet Indicator Cable.....................................................................................................................2736 29.4.2 Alarm Output Interface Cable...........................................................................................................2737 29.4.3 Alarm Input Interface Cable..............................................................................................................2739 29.5 Management Cables...................................................................................................................................2740 29.5.1 OAM Serial Port Cable......................................................................................................................2740 29.5.2 AUX Signal Cable.............................................................................................................................2742 29.5.3 Straight-Through Network Cable......................................................................................................2746 29.6 Clock/Time Cable.......................................................................................................................................2748 29.6.1 Cables for other equipment Connections...........................................................................................2748 29.6.1.1 Straight-Through Network Cable.............................................................................................2749 29.6.1.2 Special Cables...........................................................................................................................2749 29.6.1.3 SMB-SMB Coaxial Cables.......................................................................................................2752 29.6.2 Cables for Internal Connections........................................................................................................2754 29.6.2.1 Cascading Network Cables ......................................................................................................2754 29.6.3 Cables for Testing equipment Connections.......................................................................................2756 29.6.3.1 SMB-BNC Coaxial Cables.......................................................................................................2756 29.6.3.2 Time Signal Testing Cables......................................................................................................2757
30 Optical Attenuator.................................................................................................................2760 30.1 Fixed Optical Attenuator ...........................................................................................................................2761 30.2 Mechanical Variable Optical Attenuator....................................................................................................2761
31 Pluggable Optical Modules.................................................................................................2762 32 Filler Panels............................................................................................................................2764 32.1 Functions and Features...............................................................................................................................2765 32.2 Front Panel..................................................................................................................................................2765 32.3 Valid Slots..................................................................................................................................................2766 32.4 Technical Specifications.............................................................................................................................2767
A Indicators..................................................................................................................................2768 A.1 Cabinet Indicators........................................................................................................................................2769 A.2 Subrack Indicator.........................................................................................................................................2769 A.3 Chassis Indicators........................................................................................................................................2770 A.4 Board Indicators...........................................................................................................................................2770 A.5 Fan Indicator................................................................................................................................................2774 A.6 PIU Indicator...............................................................................................................................................2775
B Bar Code for Boards................................................................................................................2776 B.1 Overview......................................................................................................................................................2778 B.2 Characteristic Code for OTUs.....................................................................................................................2781 B.2.1 Characteristic Code for DWDM OTUs..............................................................................................2782 B.2.2 Characteristic Code for DWDM Wavelength-Tunable OTUs............................................................2783 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lx
OptiX OSN 8800/6800/3800 Hardware Description
Contents
B.2.3 Characteristic Code for CWDM OTUs...............................................................................................2784 B.3 Characteristic Code of a Line Unit..............................................................................................................2785 B.4 Characteristic Code of an FOADM.............................................................................................................2785 B.4.1 Characteristic Code for the CMR1.....................................................................................................2785 B.4.2 Characteristic Code for the CMR2.....................................................................................................2786 B.4.3 Characteristic Code for the CMR4.....................................................................................................2786 B.4.4 Characteristic Code for the DMR1.....................................................................................................2787 B.4.5 Characteristic Code for the MR2........................................................................................................2787 B.4.6 Characteristic Code for of MR4..........................................................................................................2788 B.4.7 Characteristic Code for the MR8........................................................................................................2789 B.4.8 Characteristic Code for the MR8V.....................................................................................................2789 B.5 Characteristic Code of an MCA...................................................................................................................2790 B.5.1 Characteristic Code for the MCA4.....................................................................................................2790 B.5.2 Characteristic Code for the MCA8.....................................................................................................2791 B.6 Characteristic Code of an OAU...................................................................................................................2791 B.6.1 Characteristic Code for the HBA........................................................................................................2791 B.6.2 Characteristic Code for the OAU1......................................................................................................2792 B.6.3 Characteristic Code for the OBU1......................................................................................................2792 B.6.4 Characteristic Code for the OBU2......................................................................................................2793 B.6.5 Characteristic Code for of CRPC........................................................................................................2793 B.7 Characteristic Code of an Optical MUX/DMUX Unit................................................................................2794 B.7.1 Characteristic Code for the D40.........................................................................................................2794 B.7.2 Characteristic Code for the D40V.......................................................................................................2794 B.7.3 Characteristic Code for the DFIU.......................................................................................................2795 B.7.4 Characteristic Code for the FIU..........................................................................................................2795 B.7.5 Characteristic Code for the ITL..........................................................................................................2796 B.7.6 Characteristic Code for the M40.........................................................................................................2796 B.7.7 Characteristic Code for the M40V......................................................................................................2797 B.8 Characteristic Code of a Protection Unit.....................................................................................................2797 B.8.1 Characteristic Code for the DCP.........................................................................................................2798 B.8.2 Characteristic Code for the OLP.........................................................................................................2798 B.8.3 Characteristic Code for the SCS.........................................................................................................2798 B.9 Characteristic Code of a VOA.....................................................................................................................2799 B.9.1 Characteristic Code for the VA1.........................................................................................................2799 B.9.2 Characteristic Code for the VA4.........................................................................................................2799 B.10 Characteristic Code of a PDE Unit............................................................................................................2800 B.10.1 Characteristic Code for the DCU......................................................................................................2800 B.10.2 Characteristic Code for the GFU......................................................................................................2800 B.10.3 Characteristic Code for the TDC......................................................................................................2801
C Quick Reference Table of the Units....................................................................................2802 C.1 Specification of OTUs, Tributary Boards, Line Boards and Packet Service Boards...................................2804 C.1.1 OTUs, Tributary Boards and Packet Service Boards Specification on the Client Side......................2804 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lxi
OptiX OSN 8800/6800/3800 Hardware Description
Contents
C.1.2 OTUs, Line Boards and Packet Service Boards Specification on the WDM Side.............................2843 C.2 Specification of Optical Amplifying Unit....................................................................................................2862 C.3 Insertion Loss Specifications of Boards......................................................................................................2864 C.4 MON Interface Optical Split Ratio..............................................................................................................2868 C.5 Basic Functions of OTUs, Tributary Boards, Line Boards and Packet Service Boards.............................. 2869 C.6 Loopback Function of OTUs, Tributary Boards, Line Boards and Packet Service Boards........................2876 C.7 Protection mode of OTUs, Tributary Boards and Line Boards ..................................................................2880 C.8 Electrical cross-connection of OTUs, Tributary Boards and Line Boards..................................................2883 C.9 Common Parameters Specified for Optical Interfaces of OCS Boards.......................................................2888 C.10 Quick Reference of OCS Board Functions................................................................................................ 2891 C.11 Loopback Capabilities of OCS Boards......................................................................................................2893
D Parameter Reference..............................................................................................................2895 D.1 Autonegotiation Flow Control Mode ..........................................................................................................2897 D.2 Board Mode (WDM Interface)....................................................................................................................2898 D.3 Broadcast Packet Suppression Threshold.................................................................................................... 2900 D.4 Channel Use Status (WDM Interface)......................................................................................................... 2902 D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface)...............................................................................2903 D.6 Enabling Broadcast Packet Suppression .....................................................................................................2903 D.7 Ethernet Working Mode (WDM Interface).................................................................................................2904 D.8 FC Distance Extension (WDM Interface)...................................................................................................2905 D.9 FEC Mode (WDM Interface).....................................................................................................................2906 D.10 FEC Working State (WDM Interface).......................................................................................................2906 D.11 Flow Monitor (Ethernet Interface Attributes)............................................................................................2907 D.12 Fixed Pump Optical Power (dBm) (WDM Interface)...............................................................................2908 D.13 Gain (dB) (WDM Interface)......................................................................................................................2908 D.14 Initial Variance Value Between Primary and Secondary Input Power (dB) (WDM Interface)................2909 D.15 Laser Status (WDM Interface)...................................................................................................................2910 D.16 Line Rate....................................................................................................................................................2911 D.17 MAC Loopback ........................................................................................................................................2913 D.18 Maxmun Fixed Pump Optical Power (dBm) (WDM Interface)................................................................ 2914 D.19 Minmun Fixed Pump Optical Power (dBm) (WDM Interface).................................................................2915 D.20 Max. Packet Length (WDM Interface)....................................................................................................2916 D.21 Maximum Frame Length ..........................................................................................................................2916 D.22 Nominal Gain (dB) (WDM Interface).......................................................................................................2917 D.23 Non-Autonegotiation Flow Control Mode.............................................................................................2919 D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface)......................................................................2920 D.25 PHY Loopback .........................................................................................................................................2921 D.26 Planned Band Type (WDM Interface)....................................................................................................2922 D.27 Planned Wavelength No./Wavelength (nm)/Frequency (THz) (WDM Interface)...............................2923 D.28 Port Mapping (WDM Interface)................................................................................................................2924 D.29 PRBS Test Status (WDM Interface)..........................................................................................................2926 D.30 Rated Optical Power (dBm) (WDM Interface)..........................................................................................2927 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lxii
OptiX OSN 8800/6800/3800 Hardware Description
Contents
D.31 SD Trigger Condition (WDM Interface)...................................................................................................2928 D.32 Service Mode (WDM Interface)................................................................................................................2929 D.33 Input Power Loss Threshold (dBm) (WDM Interface).............................................................................2930 D.34 Variance Threshold Between Primary and Secondary Input Power (dB) (WDM Interface)....................2931
E Glossary....................................................................................................................................2933
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
lxiii
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
1
Cabinet
About This Chapter 1.1 Cabinet Introduction Huawei provides two types of ETS 300-119-compliant cabinets: N66B and N63B. 1.2 Space Requirements for Cabinets To ensure that cabinets are efficiently ventilated and can be easily maintained, observe the requirements described in this topic when installing a cabinet. 1.3 Requirements on Configuring Subracks inside an N66B/N63B Cabinet To ensure efficient heat dissipation, an appropriate quantity of subracks must be configured in correct positions inside an N66B/N63B cabinet. 1.4 Typical Cabinet Configurations Typical configuration of the cabinet involves settings of the following items: the subrack type, the number of subracks, DCM and CRPC frames, and the PDU model.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
1.1 Cabinet Introduction Huawei provides two types of ETS 300-119-compliant cabinets: N66B and N63B. Parameter
N66B (ETSI 600 mm Cabinet)
N63B (ETSI 300 mm Cabinet)
Front and rear doors: They can be disassembled. A key is provided for unlocking each of the doors.
Front door: The door can be disassembled. A key is provided for unlocking the door.
Side panels: They are secured with screws and can be disassembled.
Rear door and side panels: They are secured with screws. Only the side panels can be disassembled.
Appearancea
Height extension frame (optional)a Doors/ Panels
The door keys for all N66B cabinets and N64B cabinets are the same.
Dimensions (H x W x D)
l Not equipped with a height extension frame: 2200 mm (86.6 in.) x 600 mm (23.6 in.) x 600 mm (23.6 in.)
l Not equipped with a height extension frame: 2200 mm (86.6 in.) x 600 mm (23.6 in.) x 300 mm (11.8 in.)
l Equipped with a height extension frame: 2600 mm (102.4 in.) x 600 mm (23.6 in.) x 600 mm (23.6 in.)
l Equipped with a height extension frame: 2600 mm (102.4 in.) x 600 mm (23.6 in.) x 300 mm (11.8 in.)
l Not equipped with a height extension frame: 120 kg (264.6 lb.)
l Not equipped with a height extension frame: 60 kg (132.3 lb.)
Height
Door keys
De pth
dth Wi
Weight
l Equipped with a height extension frame: 130 kg (286.6 lb.) Standard working voltage
Issue 03 (2013-05-16)
l Equipped with a height extension frame: 66 kg (145.5 lb.)
-48 V DC or -60 V DC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
Parameter
N66B (ETSI 600 mm Cabinet)
N63B (ETSI 300 mm Cabinet)
Working voltage range
-48 V DC power source: -40 V to -57.6 V -60 V DC power source: -48 V to -72 V
a: A 400 mm height extension frame can be placed at the top of the cabinet, which increases the height of the cabinet to 2600 mm.
1.2 Space Requirements for Cabinets To ensure that cabinets are efficiently ventilated and can be easily maintained, observe the requirements described in this topic when installing a cabinet. The N63B cabinet is used as an example to describe the requirements for installing a cabinet in equipment room. The requirements for installing an N66B cabinet are the same as those for installing two N63B cabinets in back-to-back mode. (Two back-to-back N63B cabinets can be regarded as one N66B cabinet.) Cabinets are usually installed in a row inside equipment room. They are arranged in a face-toface or a back-to-back mode. Figure 1-1 and Figure 1-2 illustrate the positions of cabinets. To facilitate heat dissipation and maintenance of the cabinet, reserve sufficient space around the cabinet according to the following requirements: l
The space in front of the cabinet must be greater than or equal to 1000 mm (39.4 in.).
l
The space beside both sides of the cabinet must be greater than or equal to 800 mm (31.5 in.).
l
The space behind the cabinet must be greater than or equal to 50 mm. (Ignore this requirement when installing two N63B cabinets in back-to-back mode.)
Figure 1-1 Top view of cabinets in face-to-face mode Unit: mm Fiber management frame
Cabinet
50 300
800
150
150
600
Wall or any other equivalent
Front
1000
600
800 300
50
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
3
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
Figure 1-2 Top view of cabinets in back-to-back mode Unit: mm
Front Fiber management frame
1000
Cabinet 300 300
800
150
600
150
Front
1000
600 300 300
800 Front
1000
Wall or any other equivalent
NOTE
l If it is designed to ventilate the equipment from bottom to top, there must be vents on the ESD floor in front of the cabinet so that the fan tray assemblies can draw air from the air conditioner into the equipment. l A fiber management cabinet is installed on each side of the cabinet if excessive fibers are connected to the cabinet. If no fiber management cabinet is installed, adhere to the preceding space requirements when installing a cabinet. For details about the fiber management cabinet, see 2 Fiber Management Cabinet.
1.3 Requirements on Configuring Subracks inside an N66B/ N63B Cabinet To ensure efficient heat dissipation, an appropriate quantity of subracks must be configured in correct positions inside an N66B/N63B cabinet.
Requirements on the Subrack Quantity l
Issue 03 (2013-05-16)
N66B cabinet: Only one OptiX 8800 T64 electrical subrack can be deployed inside the cabinet. The other subracks, if required, must be optical subracks. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
4
OptiX OSN 8800/6800/3800 Hardware Description
l
1 Cabinet
N63B cabinet: – When OptiX OSN 8800 T32 or T16 needs to be installed inside the cabinet, only one OptiX OSN 8800 T32 electrical subrack or two OptiX OSN 8800 T16 electrical subracks can be configured. The other subracks, if required, must be optical subracks. – When no OptiX OSN 8800 T32 or T16 electrical subracks need to be installed inside the cabinet, the preceding restriction does not apply. NOTE
l An electrical subrack is used to hold only cross-connect boards, OTU boards, tributary boards, line boards, or protection boards. l An optical subrack is used to hold OADM, multiplexer/demultiplexer, optical amplifier, OSC, optical spectrum analyzer, OLP (for optical line protection only), regeneration board, or OTU boards. l When an optical subrack is configured with regeneration or OTU boards and the average board power consumption of the subrack exceeds 40 W (the maximum power consumed at 55°C (77°F)), the optical subrack is considered as an electrical subrack in calculating the number of subracks.
Requirements on the Subrack Installation Position l
Configuration principles for initial network construction: – When electrical and optical subracks are to be configured inside a cabinet, install the electrical subracks first from top to bottom, and install the optical subracks below the bottom-most electrical subrack from top to bottom. – When only optical subracks are to be configured inside a cabinet, install the optical subracks from bottom to top.
l
Configuration principles for network expansion: – Install subracks from top to bottom or bottom to top in adjacent positions. No vacant subrack position should be observed between any two subracks. – Optical subracks cannot be installed above two adjacent electrical subracks. – When multiple subracks need to be added, it is recommended that electrical subracks be installed above optical subracks.
An N66B cabinet has the front and rear sides. Each side consists of four areas. OptiX OSN 8800 T64 subracks are installed in areas 1 and 2 on the front and rear sides. Each of the OptiX OSN 8800 T16 subrack, OptiX OSN 8800 platform subrack, and OptiX OSN 6800 subrack occupies one area, and the OptiX OSN 8800 T32 subrack occupies two areas. An N66B is usually preequipped with an OptiX OSN 8800 T64 electrical subrack. In other areas of the cabinet, only optical subracks can be installed, from top to bottom and front to rear. Figure 1-3 shows the subrack configurations inside an N66B cabinet. Figure 1-3 Subrack installation positions inside an N66B cabinet Front
Rear
Front
Rear
Front
Rear
Front
Rear
Front
Rear
Area 1 Area 2 Area 3 Area 4
Optical subrack
Issue 03 (2013-05-16)
Electrical subrack
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Idle area
5
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
An N63B cabinet is divided into four areas from top to bottom. Each of the OptiX OSN 8800 T16 subrack, OptiX OSN 8800 platform subrack, and OptiX OSN 6800 subrack occupies one area, and the OptiX OSN 8800 T32 subrack occupies two areas (areas 1 and 2, or areas 3 and 4). Figure 1-4 shows the subrack configurations inside an N63B cabinet. Figure 1-4 Subrack installation positions inside an N63B cabinet Area 1 Area 2 Area 3 Area 4
Optical subrack
Electrical subrack
Idle area
1.4 Typical Cabinet Configurations Typical configuration of the cabinet involves settings of the following items: the subrack type, the number of subracks, DCM and CRPC frames, and the PDU model. Table 1-1 lists the typical configurations of the N66B cabinet. Table 1-2 lists the typical configurations of the N63B cabinet. NOTE
Electrical and optical subracks are installed in different positions inside a cabinet. For their installation positions, see 1.3 Requirements on Configuring Subracks inside an N66B/N63B Cabinet. NOTE
In the case of transmission equipment, power consumption is generally transformed into heat consumption. Hence, heat consumption (BTU/h) and power consumption (W) can be converted to each other in the formula: 1 BTU/h = 0.2931 W. Power consumption for the typical configuration refers to the average power consumption of the device in normal scenarios. The maximum power consumption refers to the maximum power consumption of the device under extreme conditions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
6
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
Table 1-1 Typical configurations of the N66B cabinet Typ ical Con figu rati on
8800
1
Number of T64 Subracks
Number of 6800 Subracks
Num ber of DCM Frame s
PDU Mode
PDF Circuit Breaker
Maxim um Power Consu mption of Integra ted Equip mentb
Number of T32 Subracksa
Num ber of T16 Subra cks
Num ber of Platfo rm Subra cks
1
2
0
0
0
2
TN51 or DPD638-8
Sixteen 63 A circuit breakers
10800 W
2
1
0
0
0
4
4
3
1
0
0
4
0
4
TN51 or DPD638-8
Eight 63 A and eight 32 A circuit breakers
10800 W
4
1
0
4
0
0
2
TN16 or DPD638-8
Sixteen 63 A circuit breakers
10000 W
a
a: OptiX OSN 8800 T64 and OptiX OSN 8800 T32 subracks are classified into enhanced and general subracks. The requirements on configuring enhanced and general subracks are the same. b: The maximum power consumption of the integrated equipment refers to the maximum power consumption of the cabinet or the maximum heat dissipation capacity of the integrated equipment. The power consumption of the integrated equipment do not exceed the maximum power consumption.
Table 1-2 Typical configurations of the N63B cabinet Typ ical Con figu rati on
8800 Subracks Number of T32 Subracksa
Numb er of T16 Subrac ks
Numbe r of Platfor m Subrac ks
1
2
0
2
1
0
Issue 03 (2013-05-16)
Number of 6800 Subracks
Num ber of DC M Fram es
Nu mbe r of CRP C Fra mes
PDU Model
PDF Circuit Breaker
0
0
0
0
TN51 or DPD63-8 -8
Eight 63 A 5400 W circuit breakers
2
0
2
0
TN51 or DPD63-8 -8
Four 63 A and four
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Maximu m Power Consum ption of Integrate d Equipme ntb
5400 W
7
OptiX OSN 8800/6800/3800 Hardware Description
1 Cabinet
Typ ical Con figu rati on
8800 Subracks
Number of 6800 Subracks
Num ber of DC M Fram es
Nu mbe r of CRP C Fra mes
Number of T32 Subracksa
Numb er of T16 Subrac ks
Numbe r of Platfor m Subrac ks
3
1
0
4
1
5
PDU Model
PDF Circuit Breaker
Maximu m Power Consum ption of Integrate d Equipme ntb
0
2
2
0
2
0
0
1
0
TN16 or DPD63-8 -8
Eight 63 A 5000 W circuit breakers
0
4
0
0
1
0
TN16 or DPD63-8 -8
Eight 63 A 5000 W circuit breakers
6
0
3
0
1
2
0
0
3
1
0
2
0
Six 63 A and two 32 A circuit breakers
5000 W
7
TN16 or DPD63-8 -8
8
0
2
0
2
2
0
0
2
2
0
2
0
Four 63 A and four 32 A circuit breakers
5000 W
9
TN16 or DPD63-8 -8
10
0
1
0
3
2
0
0
1
3
0
2
0
Two 63 A and six 32 A circuit breakers
5000 W
11
TN16 or DPD63-8 -8
12
0
0
0
4
1
0
0
0
4
0
1
0
Four 63 A circuit breakers
4800 W
13
TN11 or DPD63-8 -8
14
0
0
0
3
3
2
0
0
3
0
3
2
Four 63 A circuit breakers
4800 W
15
TN11 or DPD63-8 -8
32 A circuit breakers
a: OptiX OSN 8800 T32 subrack is classified into enhanced and general subracks. The requirements on configuring enhanced and general subracks are the same. b: The maximum power consumption of the integrated equipment refers to the maximum power consumption of the cabinet or the maximum heat dissipation capacity of the integrated equipment. The power consumption of the integrated equipment can not exceed the maximum power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
8
OptiX OSN 8800/6800/3800 Hardware Description
2 Fiber Management Cabinet
2
Fiber Management Cabinet
Used with an N63B or N66B cabinet, a fiber management cabinet can enhance the fiber capacity of the N63B or N66B cabinet and make fiber installation and routing more flexible.
Appearance There are two types of fiber management cabinets: left-side fiber management cabinet and rightside fiber management cabinet. Fiber management cabinets are used together with N63B and N66B cabinets, as shown in Figure 2-1 and Figure 2-2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
9
OptiX OSN 8800/6800/3800 Hardware Description
2 Fiber Management Cabinet
Figure 2-1 Fiber management cabinets used with the N63B cabinet
3 1 2
1. Left-side fiber management cabinet
Issue 03 (2013-05-16)
2. Right-side fiber management cabinet
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
3. Fiber spool unit
10
OptiX OSN 8800/6800/3800 Hardware Description
2 Fiber Management Cabinet
Figure 2-2 Fiber management cabinets used with the N66B cabinet
2 1
3
4
1,3. Left-side fiber management cabinet
Issue 03 (2013-05-16)
2,4. Right-side fiber management cabinet
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
11
OptiX OSN 8800/6800/3800 Hardware Description
2 Fiber Management Cabinet
Functions and features Table 2-1 lists the functions and features of a fiber management cabinet. Table 2-1 Functions and features Item
Description
Structure feature
l Fiber spool units in a fiber management cabinet can be adjusted based on device position in the cabinet. l A fiber management cabinet can protect fibers and meet the requirement for a minimum of 30 mm bending radius. l A fiber management cabinet makes fiber spooling more flexible.
Fiber capacity
Internal fiber capacity a
Without a fiber management cabinet b: 320 PCS With a fiber management cabinet c: 640 PCS
External fiber capacity a
Without a fiber management cabinet b: 720 PCS With a fiber management cabinet c: 1408 PCS
a: A fiber with a diameter of 2 mm is used as an example to calculate how many internal and external fibers that can be configured at most. An internal fiber is a fiber used inside a subrack or between subracks, and an external fiber is a fiber connecting one equipment cabinet to other equipment. b: Fibers in Overhead Cabling Mode can be configured at most. c: An N63B cabinet configured with left-side and right-side fiber management cabinets is used as an example to calculate how many internal and external fibers can be configured at most. Two routing fiber cabinets can be installed on the left and right sides of one N66B cabinet. In this configuration, a maximum of 1280 internal and 2816 external fibers can configured.
Configuration Principle Left-side and right-side fiber management cabinets are installed to the left and right of a cabinet respectively. Fiber management cabinets can be used with N63B or N66B cabinet only. You can determine whether to configure a fiber management cabinet based on the required fiber capacity. Observe the following rules when configuring an 80-channel system (fibers with 2 mm diameters are used as an example): l
When N63B cabinets are used, fiber management cabinets must be used for overhead cabling if more than 320 internal fibers and 720 external fibers are required.
l
When N66B cabinets are used, fiber management cabinets must be used for overhead cabling if more than 640 internal fibers and 1440 external fibers are required.
In addition, observe the following rules when configuring fiber management cabinets: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
12
OptiX OSN 8800/6800/3800 Hardware Description
2 Fiber Management Cabinet
l
For new network deployment or network expansion, or during network maintenance, fiber management cabinets can be configured if the free space on the two sides of a cabinet is large enough for users to flexibly and freely install and route fibers.
l
For underfloor cabling, fiber management cabinets must be used to manage external fibers because there is not much space left inside the cabinet after the external power cables are arranged in the cabinet. NOTE
l Left-side and right-side fiber management cabinets must be configured at the same time. l During cabinet expansion, spool internal cascading fibers and external fibers in the fiber management cabinets.
Mechanical Specifications The mechanical specifications of a fiber management cabinet are as follows: l
Outline dimensions: 150 mm (W) x 300 mm (D) x 2200 mm (H) (5.9 in. (W) x 11.8 in. (D) x 86.6 in. (H))
l
Weight: 23 kg (50.7 lb)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
13
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
3
DC PDU
About This Chapter There are four types of power distribution units (PDUs): TN16, TN51, TN11 and PDU (DPD63-8-8). The availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. l
The TN51PDU and TN16PDU use the same front panel and provide the same functions, but they are different in height. The two boards apply to the same scenarios. This manual uses the TN16PDU board as an example for illustration.
l
The TN16PDU is used for a cabinet housing only OptiX OSN 8800 subracks or a cabinet housing OptiX OSN 8800 and OptiX OSN 6800 subracks.
l
The TN11PDU is used only for a cabinet housing OptiX OSN 6800 subracks or a cabinet housing OptiX OSN 8800 platform subracks.
l
The PDU (DPD63-8-8) is used for a cabinet housing only OptiX OSN 8800 subracks , a cabinet housing only OptiX OSN 6800 subracks, or a cabinet housing OptiX OSN 8800 and OptiX OSN 6800 subracks.
3.1 TN16PDU/TN51PDU The TN16PDU/TN51PDU is installed in the upper part of a cabinet to supply power to subracks inside the cabinet. 3.2 TN11PDU The TN11PDU is installed in the upper part of a cabinet to supply power to subracks inside the cabinet. 3.3 PDU (DPD63-8-8) The DPD63-8-8 PDU is installed at the top of a cabinet to power subracks inside the cabinet.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
14
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
3.1 TN16PDU/TN51PDU The TN16PDU/TN51PDU is installed in the upper part of a cabinet to supply power to subracks inside the cabinet. NOTE
The TN51PDU and TN16PDU have the same functions but differ in height. The TN51PDU is 133.4 mm high. When two OptiX OSN 8800 T32 subracks are installed on a cabinet, one more DCM frame can be configured if the TN16PDU is used, compared with the TN51PDU. TN51PDU can be substituted by the TN16PDU.This topic describes the TN16PDU.
The TN16PDU consists of two parts: A and B, which backs up each other. Both A and B receive four -48V/-60V power supplies and output four power supplies for subracks in the cabinet. Whether short-circuiting copper bars are required is determined by the current of power supplied by the power supply equipment in the telecommunications room: l
When eight 63 A power supplies are provided, no short-circuiting copper bar is required.
l
When four 125 A power supplies are provided, short-circuiting copper bars are required for dividing one 125 A power supply into two 63 A power supplies. For more information about short-circuiting copper bars, see Short-Circuiting Copper Bar.
Figure 3-1 shows the front panel of the TN16PDU. Figure 3-1 Front panel of the TN16PDU Power supply input area
Power supply Power supply output area switch area
+ 1
1
+ 2
+ 3
Power supply Power supply switch area output area
+
+
1
4
A
1. Output cable terminal block
2
3 2. Input cable terminal block
+ 2
+ 3
+ 4
B 3. Power switch
l
Panel dimensions: 535 mm (W) x 100 mm (H) (21.1 in. (W) x 3.9 in. (H))
l
Output cable terminal block: Both A and B of the DC PDU have four output cable terminal blocks for connecting power cables of subracks to supply power for subracks.
l
Input cable terminal block: Both A and B of the DC PDU have four input cable terminal blocks and receive four -48V/-60V DC power supplies, eight -48V/-60V DC power supplies in total.
l
Power switch: Both A and B of the DC PDU have four output power switches to control power supplies for subracks inside the cabinet and provide overcurrent protection for each other.
Figure 3-2 shows the internal pin assignments of the TN16PDU. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
15
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Figure 3-2 TN16PDU internal pin assignments
OUTPUT B
OUTPUT A -
-
-
-
1
2
3
4
1 + ON
ON ON
ON
2 +
3 +
4 +
1 +
INPUT A
2 +
3 +
4 + ON
INPUT B
ON ON
+
+
+
1
2
3
4
-
-
-
1
2
3
4
ON
OUTPUT A +
-
OUTPUT B OFF OFF OFF OFF
OFF OFF OFF OFF
1 -
2
3
4
1
-
-
-
-
INPUT A
2
3
4
-
-
-
+
+
+
+
1
2
3
4
INPUT B
Short-Circuit Copper Bar If a power supply is 125 A, both A and B need to receive two power supplies, four power supplies in total. In this case, short-circuit copper bars are required for both A and B. Figure 3-3 shows the appearance of the short-circuiting copper bar. Figure 3-3 Appearance
Copper Plate
3.2 TN11PDU The TN11PDU is installed in the upper part of a cabinet to supply power to subracks inside the cabinet.
DC PDU The TN11PDU consists of two parts: A and B, which backs up each other. Both A and B receive two -48V/-60V power supplies and output six power supplies for subracks in the cabinet. Whether junction boxes are required is determined by the current of power supplied by the power supply equipment in the telecommunications room: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
16
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
l
If a power supply is 63 A, both A and B need to receive two power supplies, four power supplies in total. In this case, no junction box is required.
l
If a power supply is 125 A, both A and B need to receive one power supply, two power supplies in total. In this case, junction boxes are required for dividing one 125 A current into four 32 A currents. For more information about junction boxes, see Junction Box.
Figure 3-4 shows the front panel of the TN11PDU. Figure 3-4 Front panel of the TN11PDU 1
2
3
3
2
4
1. Output cable terminal block
1
4
2. Ground screw
3. Input cable terminal block
4. Power switch
l
Panel dimensions: 535 mm (W) x 131 mm (H) (21.1 in. (W) x 5.2 in. (H))
l
Output cable terminal block: Both A and B of the DC PDU have six output cable terminal blocks for connecting power cables of subracks to supply power for subracks.
l
Ground screw: used to connect (protection ground) PGND cables.
l
Input cable terminal block: Both A and B of the DC PDU have two input cable terminal blocks and receive two -48V/-60V DC power supplies, four -48V/-60V DC power supplies in total.
l
Power switch: Both A and B of the DC PDU have six power output switches (corresponding to the six output cable terminal blocks) to control power supplies for subracks in the cabinet. NOTE
For the OptiX OSN 6800, both A and B only use power switches SW2, SW3, SW4, and SW5 to control power supplies for four subracks from bottom to top.
Figure 3-5 shows the internal pin assignments of the TN11PDU.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
17
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Figure 3-5 TN11PDU internal pin assignments OUTPUT
+- +- +
-
+
-
+- +
-
OUTPUT
+- +- +
-
ON
-
-
+
-
-
-
-
+- +
ON
OFF
+
+ INPUT
-
-
+
+
-
-
OFF
INPUT
Junction Box If a power supply is 125 A, both A and B need to receive one power supply, two power supplies in total. In this case, junction boxes are required for both A and B. Figure 3-6 shows the junction box structure and Figure 3-7 shows the installation position of the junction box. Figure 3-6 Structure
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
18
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Figure 3-7 Installation position
3.3 PDU (DPD63-8-8) The DPD63-8-8 PDU is installed at the top of a cabinet to power subracks inside the cabinet. NOTE
The TN11PDU/TN16PDU/TN51PDU can be substituted by the DPD63-8-8 PDU.
DC PDU The DPD63-8-8 PDU consists of two sections: A and B, which provide backup for each other. Both A and B accept four -48V/-60V power inputs and produce four power outputs for subracks in the cabinet. According to the currents provided by the power source inside the equipment room, the DPD63-8-8 PDU can have different configurations. Table 3-1 lists the typical configurations of the PDU. Table 3-1 Typical configurations of the DPD63-8-8 PDU N o.
Input Current
Output Current
Circuit Breaker Requirement
Copper Fitting Configuration
1
8 x 63A
8 x 63A
8 x 63A
None
2
4 x 125A
8 x 63A
8 x 63A
Two-in-one copper fittings in the left, right, and middle of the PDU
3
4 x 63A
8 x 32A
8 x 32A
Two-in-one copper fittings in the left, right, and middle of the PDU
4
2 x 125A
8 x 32A
8 x 32A
l Four-in-one copper fittings in the left, right, and middle of the PDU l Two-in-one copper fittings in the middle of the PDU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
19
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
N o.
Input Current
Output Current
Circuit Breaker Requirement
Copper Fitting Configuration
5
2 x 125A + 2 x 63A
4 x 63A + 4 x 32A
4 x 63A + 4 x 32A
Two-in-one copper fittings in the left, right, and middle of the PDU
When working at the ambient temperature of 65°C (149°F) of the air exhaust vent, the PDU output current decreases from 63 A to 53.7 A or from 32 A to 29.1 A.
For more information about copper fitting configuration, see Copper Fittings. Figure 3-8 shows the front panel of the PDU (DPD63-8-8). Figure 3-8 Front panel of the DPD63-8-8 PDU CAUTION This device has more than one power input. Disconnect all the power inputs to power off this device. !
此设备有多路电源输入。设备断电时必须断开所有电 源输入。
CAUTION Disconnect power before servicing. Also all metal jewelry, such as watchs, rings, etc, should be removed from hands and wrists. !
维护前先断电。同时将金属饰物手表、戒指等取下。
PER INPUT
A1 A2 A3 A4 NEG(-)
-48V—-60V; 63A MAX
A1 A2 A3 A4 B1 B2 B3 B4 RTN(+) RTN(+) OUTPUT
B1 B2 B3 B4 NEG(-)
Figure 3-9 shows the terminals on the DPD63-8-8 PDU. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
20
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Figure 3-9 Terminals on the DPD63-8-8 PDU 1
2
4
5
3
1. NEG(-) power input interface
2. RTN(+) power input interface
4. NEG(-) power output interface
5. Power switch
3. RTN(+) power output interface
l
Panel dimensions (H x W x D): 110 mm (4.3 in.) x 442 mm (17.4 in.) x 89.2 mm (3.5 in.)
l
Power output interfaces: Four power output interfaces are located in each of sections A and B of the PDU. These interfaces connect to subrack power cables and distribute power to the subracks inside a cabinet.
l
Power input interfaces: Four power input interfaces are located in each of sections A and B of the PDU. The four interfaces in each section accept four -48 or -60 V DC power inputs, providing a total of eight -48 or -60 V DC power inputs in both sections.
l
Power switches: Four power switches are located in each of sections A and B of the PDU. They are in a one-to-one mapping relationship with power output interfaces and control the power inputs to the subracks inside the cabinet.
Figure 3-10 shows the internal pin assignments of the DPD63-8-8 PDU. Figure 3-10 DPD63-8-8 PDU internal pin assignments
INPUT A
INPUT B INPUT A
-
-
-
ON
ON ON
-
INPUT B
+
+
+
+
1
2
3
4
+ 1
+
+
+
2
3
4
ON
OFF OFF OFF OFF
-
-
-
OUTPUT A
Issue 03 (2013-05-16)
-
-
-
ON
ON ON
ON
OFF OFF OFF OFF
-
1
2
3
4
1
2
3
4
+
+
+
+
+
+
+
+
OUTPUT A
OUTPUT B
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
-
-
-
OUTPUT B
21
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Copper Fittings When sections A and B each require two power inputs (four power inputs in total), two-in-one copper fittings must be installed in both sections. Figure 3-11 shows the appearance of two-inone copper fittings and how they are installed on the DPD63-8-8 PDU. Figure 3-11 Appearance of the two-in-one copper fittings (four power inputs and eight power outputs) 3
1
2
2 1
3
Two-in-one copper fittings
Two-in-one copper fittings (left)
Two-in-one copper fittings (right)
When sections A and B require one power input each (two power inputs in total), four-in-one copper fittings must be installed on the left and right terminals and two-in-one copper fittings must be installed on the middle terminals of the DPD63-8-8 PDU. Figure 3-12 shows the appearance of four-in-one copper fittings and how they are installed on the DPD63-8-8 PDU.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
22
OptiX OSN 8800/6800/3800 Hardware Description
3 DC PDU
Figure 3-12 Appearance of the four-in-one copper fittings (two power inputs and eight power outputs) 3
1
3
2
1
2
Four-in-one copper fittings
Two-in-one copper fittings
3
Four-in-one copper fittings
NOTE
Eight holes are located on the terminal block in the middle of the DPD63-8-8 PDU. Four two-in-one copper fittings designated for the middle of the DPD63-8-8 PDU are installed to cover the first to eighth holes, as shown in Figure 3-11 and Figure 3-12. In total, four two-in-one copper fittings are required to combine the RTN(+) power inputs in the middle of the DPD63-8-8 PDU. As shown in Figure 3-12, one four-in-one copper fittings are vertically installed on the RTN(+) power input terminals in the middle of the DPD63-8-8 PDU.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
23
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
4
UPM
The UPM is an external uninterruptible power module. The UPM can directly convert 110 V/ 220 V AC mains power into -48 V DC power required by the transmission equipment. The UPM is suitable for the telecom carriers who cannot provide -48 V DC power supply or requires batteries.
Application Figure 4-1 shows the application of the UPM on the OptiX OSN 8800 T16/6800. Figure 4-1 Application of the UPM on the OptiX OSN 8800 T16/6800 OptiX OSN equipment 110V/220V
UPM
Backplane
-48V PIU
Board A
-48V PIU
Board B -48V
Appearance The UPM is a special power supply system and EPS75-4815AF is one type of the UPM. The output power of a single EPS75-4815AF power system is 2000 W. The EPS75-4815AF power system is 3U high. Figure 4-2 shows the appearance of the EPS75-4815AF power system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
24
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Figure 4-2 Appearance of the EPS75-4815AF power system
Functions and Features UPM can work with storage batteries . When the external AC power system supplies power normally, the batteries store power. When the 110 V/220 V AC power supply is interrupted, the batteries can supply power for 3 to 4 hours. To supply power to the OptiX OSN 8800 T16/ 6800 equipment, only one power system is required to be connected to the batteries. The standard maximum configuration of each EPS75-4815AF power system includes five rectifier modules and one monitoring module. NOTE
The batteries do not belong to the EPS75-4815AF. Therefore, the batteries need to be configured separately. If the batteries are required, a battery cabinet is provided generally or a dedicated space in the equipment cabinet is reserved for the batteries.
Table 4-1 provides the functions and features of the UPM. Table 4-1 Functions and features of the EPS75-4815AF power system
Issue 03 (2013-05-16)
Function and Feature
EPS75-4815AF
Hot-swappable function
The AC/DC rectifier module of the UPM is hot-swappable. When you replace a faulty rectifier module, the other rectifier module can still work normally. Therefore, the maintainability of the system is improved.
Storage battery protection function
The UPM provides the storage battery protection function. When the mains supply is interrupted, the power system of the equipment automatically switches to the storage battery, which ensures that the equipment operates normally. The battery module provides a capacity of 40 to 500 Ah. The default capacity is 65 Ah.
Loading capacity
The loading capability of each rectifier module is 800 W.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
25
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Function and Feature
EPS75-4815AF
Lightning-proof function
The rectifier module is embedded with the lightning-proof protector. The rectifier module can bear the 1.2/50 us x 6 kV or 8/20 us x 3 kA lightning surge. When the lightning current enters the rectifier module along with the power cable, install category-C and category-B light arresters before you connect the AC mains supply to the power system to prevent the overvoltage caused by the direct lightning strike from damaging the rectifier module.
Working Principle and Signal Flow The UPM is fed by one 220 V AC mains power supply. The rectifier module converts the input power into –48 V DC voltage to provide four DC branches and one battery branch. When the UPM works normally, the monitoring module controls the rectifier module, storage battery loop, and load loop, which work according to the preset parameters or user settings. The monitoring module also monitors the status and data of the rectifier module, storage battery loop, and load loop. In the case of a mains supply failure, the equipment is fed by the storage battery group that is connected to the UPM. The battery group must be connected to the UPM before the mains supply fails. When the batteries start to discharge due to a mains supply failure, the monitoring module reports the no-mains-supply alarm. With the discharge of the batteries, the battery voltage starts to drop. When the battery voltage is lower than 45 V, the monitoring module reports the DC undervoltage alarm. When the battery voltage reaches 43 V, the battery group enables the poweroff protection function to interrupt the connection between the battery group and the equipment. As a result, the batteries are automatically protected. When the mains supply is restored, the UPM resumes normal operations.
Interfaces and Indicators Figure 4-3 shows the rear view of the EPS75-4815AF power system (subject to the UPM on site).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
26
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Figure 4-3 Front panel of the EPS75-4815AF power system
1. Control circuit breaker of the AC input (30 A)
2. Control circuit breaker of the 3. Control circuit breaker of load 1 (10 battery branch (80 A) A)
4. Control circuit breaker of load 2 (30 5. Control circuit breaker of A) load 3 (40 A)
6. Control circuit breaker of load 4 (40 A)
7. AC phase line terminal
9. Negative 48 V terminal of the battery branch
8. AC zero line terminal
10. Negative 48 V terminal of the load 11. Positive 48 V terminal of branch the battery branch
12. Positive 48 V terminal of the load branch
13. Connecting terminal of the PGND 14. DB44 signal interface cable
15. Communication interface (COM)
16. Communication test interface (TEST)
Interfaces The front panel of the EPS75-4815AF has seven interfaces. Table 4-2 describes the types and usage of the interfaces of the EPS75-4815AF. Table 4-2 Interfaces of the EPS75-4815AF power system
Issue 03 (2013-05-16)
Interface
Type of Interface
Usage
Power input interface
Power interface
"7" and "8" indicate the AC mains input terminals, which access 110 V/220 V AC power.
Power output interface
Power interface
The power output interfaces are in the lower left corner on the front panel of the UPM. The terminals indicated by "9" and "11" constitute a battery interface, through which the power system is connected to the battery input socket at the back of the storage battery box through a battery cable. "10" and "12" indicate the output interfaces of four loads. The output interfaces can supply power to the OptiX OSN equipment by using power cables.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
27
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Interface
Type of Interface
Usage
Connectin g terminal of the PGND cable
Power interface
The UPM is grounded through the cabinet.
DB44 signal interface
DB44
The backplane of the subrack can be connected to the sensor transfer box (an optional device) through the DB44 signal interface and to the monitoring module through the 96-pin DIN connector. In addition, the sensor transfer box can be connected to multiple sensors. As a result, the monitoring function is extended.
Communi cation interface (COM)
RJ45
Reserved
Communi cation test interface (TEST)
RJ45
It is used for internal test.
Switch button
Button
The switch buttons are on the left of the UPM, as shown in Figure 4-3. "1" indicates the control circuit breaker of the AC input (30 A), which enables and disables the input of the AC mains supply. "2", "3", "4", and "5" indicate the load control switches, which enable and disable the load output.
Definition of DB44 signal pins Table 4-3 provides the definition of DB44 signal pins.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
28
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Table 4-3 Definition of DB44 signal pins Pin Diagram
Issue 03 (2013-05-16)
Pin
Definiti on
Function
Pin
Definit ion
Function
1
24 V
Auxiliary power output
23
SMOK E
Smoke sensor
2
12 V
Auxiliary power output
24
WATE R
Water damage detection
3
12 V
Auxiliary power output
25
DOOR
Door status switch (DSS) signal detection
4
GND
Signal ground
26
WIRE
Distribution frame connection
5
GND
Signal ground
27
JK1+
Positive terminal of dry contact 1
6
SIM1
Voltage detection of the first battery pack
28
JK1-
Negative terminal of dry contact 1
7
SIM2
Voltage detection of the second battery pack
29
JK2+
Positive terminal of dry contact 2
8
-
-
30
JK2-
Negative terminal of dry contact 2
9
-
-
31
CONT1 O+
Positive terminal for output control of optical coupler 1
10
GND
Signal ground
32
CONT1 O-
Negative terminal for output control of optical coupler 1
11
VHUM
Ambient humidity measurement
33
CONT2 O+
Positive terminal for output control of optical coupler 2
12
VBTEM 1
Battery temperature measurement 1
34
CONT2 O-
Negative terminal for output control of optical coupler 2
13
VBTEM 2
Battery temperature measurement 2
35
FANCT R1+
Positive terminal for fan rotation control
14
VTEM1
Ambient temperature measurement 1
36
FANCT R1-
Negative terminal for fan rotation control
15
VTEM2
Ambient temperature measurement 2
37
JKM1+
Positive terminal for a surge protector failure alarm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
29
OptiX OSN 8800/6800/3800 Hardware Description
Pin Diagram
4 UPM
Pin
Definiti on
Function
Pin
Definit ion
Function
16
JTD1
Backup 1
38
JKM1-
Negative terminal for a surge protector failure alarm
17
JTD2
Backup 2
39
JKM2+
Positive terminal for an AC power-off alarm
18
JTD3
Backup 3
40
JKM2-
Negative terminal for an AC power-off alarm
19
JTD4
Backup 4
41
JKM3+
Positive terminal for a battery undervoltage alarm
20
JTD5
Backup 5
42
JKM3-
Negative terminal for a battery undervoltage alarm
21
JTD6
Backup 6
43
JKM4+
Positive terminal for power supply system failure
22
JTD7
Backup 7
44
JKM4-
Negative terminal for power supply system failure
Indicators The front panel of each rectifier module has the following indicators: l
Running status indicator (RUN) – one color (green)
l
Alarm and protection indicator (ALM) – one color (yellow)
l
Faulty state indicator (FAULT) – one color (red)
The front panel of the monitoring module has the following indicators: l
Power supply system fault indicator (ALM) – one color (red)
l
Power supply system status indicator (RUN) – one color (green)
Valid Slots The UPM is case shaped. Therefore, the UPM does not occupy a slot in the subrack.
Technical Specifications A UPM consists of five power boxes and thus realizes the protected power supply. The output power of each UPM is 5 x 800 W. Table 4-4 lists the power parameters of the UPM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
30
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Table 4-4 Power parameters of the UPM Parameter
Value
Voltage range of the AC input
90-290 V AC
AC input
One single-phase three-wire system: 45-65 Hz
Rated input current
≤ 28 A
Output nominal voltage
53.5±0.5 V
Rated output current
DC output branches
Load circuit breaker 1: 10 A Load circuit breaker 2: 30 A Load circuit breaker 3: 40 A Load circuit breaker 4: 40 A Battery circuit breaker: 80 A
Total output DC current
Issue 03 (2013-05-16)
37.5±3 A to 75±3 A
Regulated voltage precision
≤ ±1%
Non-balance of load sharing
≤ ±5% (50%-100% load)
Rated efficiency of the integrated equipment
≥ 89%
Power factor
≥ 0.99 (nominal input or output)
Peak-to-peak noise voltage
≤ 200 mV (within the range of 20 MHz)
Electrical network adjustment rate
≤ ±0.1%
Lightning protection performance
When the UPM works alone, the input end can bear the simulated lightning surge current whose waveform is 8/20μs and amplitude is 5 kA for five times in both directions. The interval between two surges must be at least one minute. If the lightning surge current is higher than the preceding indexes, the UPM may be damaged and cannot work normally.
Cooling method
The fan that is embedded in the rectifier module cools the module.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
31
OptiX OSN 8800/6800/3800 Hardware Description
4 UPM
Mechanical Specifications The mechanical specifications of the UPM are as follows: l
Dimensions of the UPM: 436 mm (W) x 255 mm (D) x 133 mm (H) (17.2 in. (W) x 10.0 in. (D) x 5.2 in. (H))
l
Weight: 15 kg (33.1 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
32
OptiX OSN 8800/6800/3800 Hardware Description
5
5 OptiX OSN 8800 Subrack and Power Requirement
OptiX OSN 8800 Subrack and Power Requirement
About This Chapter The OptiX OSN 8800 includes the following types of subracks: OptiX OSN 8800 T64, OptiX OSN 8800 T32, OptiX OSN 8800 T16, and OptiX OSN 8800 platform subracks. The OptiX OSN 8800 T64, OptiX OSN 8800 T32, and OptiX OSN 8800 T16 subracks support electrical cross-connections, but the OptiX OSN 8800 platform subrack does not. This section describes the structure, slots, cross-connect capacities, FAN boards, power consumption, and power supply requirements for each type of subrack. 5.1 OptiX OSN 8800 T64 Subrack There are two types of OptiX OSN 8800 T64 subracks: enhanced and general. Enhanced and general subracks are the same in appearance except for the bandwidth of the backplane and electrical cross-connect capacities. 5.2 OptiX OSN 8800 T32 Subrack There are two types of OptiX OSN 8800 T32 subracks: enhanced and general. Enhanced and general subracks are the same in appearance except for the bandwidth of the backplane and electrical cross-connect capacities. 5.3 OptiX OSN 8800 T16 Subrack 5.4 OptiX OSN 8800 Platform Subrack 5.5 Data Communication and Equipment Maintenance Interfaces The equipment provides abundant interfaces for data communication and equipment maintenance.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
33
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.1 OptiX OSN 8800 T64 Subrack There are two types of OptiX OSN 8800 T64 subracks: enhanced and general. Enhanced and general subracks are the same in appearance except for the bandwidth of the backplane and electrical cross-connect capacities. In this document, "OptiX OSN 8800 T64" refers to both enhanced OptiX OSN 8800 T64 and general OptiX OSN 8800 T64 subracks unless otherwise specified.
5.1.1 Structure Subracks are the basic working units of the OptiX OSN 8800 T64. Each subrack has independent power supply. Figure 5-1 shows the structure of the OptiX OSN 8800 T64 subrack. Figure 5-1 Structure of OptiX OSN 8800 T64 subrack OSN 8800 T64
or OSN 8800 T64
3
6
1
2
5
3 4
1. Board area
2. Fiber cabling area
3. Fan tray assembly
4. Air filter
5. Fiber spool
6. Mounting ear
NOTE
A subrack identified by "Enhanced" is an enhanced OptiX OSN 8800 T64 subrack, and the one that is not identified by "Enhanced" is an general OptiX OSN 8800 T64 subrack. These two types of subracks are displayed as OSN8800 T64 Enhanced and OSN8800 T64 Standard respectively on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
34
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
l
Board area: All the boards are installed in this area. 93 slots are available.
l
Fiber cabling area: Fiber jumpers from the ports on the front panel of each board are routed to the fiber cabling area before being routed on a side of the open rack.
l
Fan tray assembly: Four fan tray assemblies are available for this subrack. Each fan tray assembly contains three fans that provide ventilation and heat dissipation for the subrack. The front panel of the fan tray assembly has four indicators that indicate fan status and related information. NOTE
For detailed descriptions of the fan tray assembly, see 5.1.4 Fan and Heat Dissipation.
l
Air filter: It protects the subrack from dust in the air and requires periodic cleaning.
l
Fiber spool: Fixed fiber spools are on two sides of the subrack. Extra fibers are coiled in the fiber spool on the open rack side before being routed to another subrack.
l
Mounting ears: The mounting ears attach the subrack in the cabinet.
Table 5-1 Mechanical specifications of the OptiX OSN 8800 T64 Item
Specification
Dimensions
498 mm (W) × 580 mm (D) × 900 mm (H) (19.6 in. (W) × 22.8 in. (D) × 35.4 in. (H))
Weight (empty subracka)
65 kg (143 lb.)
a: An empty subrack means no boards are installed in the board area, and no fan tray assembly or air filter is installed.
5.1.2 Slot Description The OptiX OSN 8800 T64 subrack provide 93 slots. Slots of the OptiX OSN 8800 T64 subrack are shown in Figure 5-2. Figure 5-2 Slots of the OptiX OSN 8800 T64 subrack Front
Back
IU91
PIU
PIU
EFI2
IU69
IU70
IU71
IU 19
IU 5
IU 24
IU 6
IU 25
IU 26
IU 7
IU74
IU75
IU 27
IU 28
EF I1 IU 76
IU 77
IU 29
IU 30
PIU
PIU
PIU
PIU
STI
IU78
IU79
IU80
IU81
IU82
IU 31
IU 32
IU 33
IU 34
IU 53
IU 54
IU 55
IU 56
IU 58
A U X
IU 83
IU 84
IU 59
IU 60
SCC
STG
IU85
IU86
IU 9
IU 10
IU 43
IU 44
IU 8
IU 11
IU 12
IU 13
IU 14
IU 15
IU 16
IU 17
IU 18
IU 35
IU 36
IU 37
IU 38
IU90
Issue 03 (2013-05-16)
IU 57
A U X
Cross-connect board
IU 4
IU 23
IU 73
STG
Cross-connect board
IU 3
IU 22
IU 72
IU93
SCC
Cross-connect board
IU 2
IU 21
A U X
Cross-connect board
IU 1
IU 20
A U X
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
IU 39
IU 40
IU 41
IU 42
ATE IU87
PIU
PIU
IU88
IU89
IU 61
IU 62
IU 63
IU 64
IU 65
IU 66
IU 67
IU 68
IU 45
IU 46
IU 47
IU 48
IU 49
IU 50
IU 51
IU 52
IU92
35
OptiX OSN 8800/6800/3800 Hardware Description
l l
5 OptiX OSN 8800 Subrack and Power Requirement
: houses service boards and supports service cross-connections. In a general OptiX OSN 8800 T64 subrack, IU73 and IU84 are reserved for future use, and IU72 and IU83 are used to house AUX boards. In an enhanced OptiX OSN 8800 T64 subrack, IU72 and IU83 are used to house the active AUX boards, and IU73 and IU84 are used to house the standby AUX boards. NOTE
Only the TN52AUX board supports 1+1 backup.
l
IU77 is reserved for future use.
l
IU9 and IU43 are reserved for the cross-connect board. – Enhanced OptiX OSN 8800 T64 subrack: TNK2UXCT or TNK4XCT. – General OptiX OSN 8800 T64 subrack: TNK4XCT or TNK2XCT.
l
IU10 and IU44 are reserved for the cross-connect board. – Enhanced OptiX OSN 8800 T64 subrack: TNK2USXH, TNK4SXH or TNK4SXM. – General OptiX OSN 8800 T64 subrack: TNK4SXH, TNK2SXH, TNK4SXM or TNK2SXM.
l
The following table provides the slots for housing active and standby boards of the subrack. Board
Slots for Active and Standby Boards
PIU
l General OptiX 8800 T64: IU69 & IU78, IU70 & IU79, IU80 & IU88, and IU81 & IU89 l Enhanced OptiX 8800 T64: IU69 & IU89, IU70 & IU88, IU78 & IU81, and IU79 & IU80
SCC
IU74 & IU85
STG
IU75 & IU86
SXM/SXH/ USXH
IU10 & IU44
XCT/UXCT
IU9 & IU43
TN52AUX
Enhanced OptiX 8800 T64: IU72 & IU73, IU83 & IU84
5.1.3 Cross-Connect Capacities The cross-connect capacity of a slot in an OptiX OSN 8800 T64 subrack vary according to the type of cross-connect board installed in the slot. OptiX OSN 8800 T64 subracks can cross-connect ODU0, ODU1, ODU2, ODU2e, ODU3, ODU4, ODUflex, VC-4, VC-3, and VC-12 granularities at the same time. Slots IU1-IU8, IU11IU42, and IU45-IU68 provide the same cross-connect capacity. As shown in Table 5-2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
36
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-2 Cross-connect capacity of OptiX OSN 8800 T64 subrack Subrack Type
CrossConnect Board
Maximum Cross-Connect Capacity of Each Slota
Maximum Cross-Connect Capacity of Subrack
ODUkb
VC-4
VC-3/ VC-12e
ODUkb
VC-4
VC-3/ VC-12
Enhance d
USXH
N/A
20 Gbit/ s
N/A
N/A
1.28 Tbit/ s
N/A
Enhance d
USXH +UXCTc
100 Gbit/s
20 Gbit/ s
N/A
6.4 Tbit/s
1.28 Tbit/ s
N/A
Enhance d
SXH
N/A
20 Gbit/ s
N/A
N/A
1.28 Tbit/ s
N/A
Enhance d
SXM
N/A
20 Gbit/ s
20 Gbit/ s
N/A
1.28 Tbit/ s
80 Gbit/s
Enhance d
SXH +XCTc
40 Gbit/ s
20 Gbit/ s
N/A
2.56 Tbit/ s
1.28 Tbit/ s
N/A
Enhance d
SXM +XCTc
40 Gbit/ s
20 Gbit/ s
20 Gbit/ s
2.56 Tbit/ s
1.28 Tbit/ s
80 Gbit/s
General
SXH
N/A
20 Gbit/ s
N/A
N/A
1.28 Tbit/ s
N/A
General
SXM
N/A
20 Gbit/ s
20 Gbit/ s
N/A
1.28 Tbit/ s
80 Gbit/s
General
SXH +XCTd
40 Gbit/ s
20 Gbit/ s
N/A
2.56 Tbit/ s
1.28 Tbit/ s
N/A
General
SXM +XCTd
40 Gbit/ s
20 Gbit/ s
20 Gbit/ s
2.56 Tbit/ s
1.28 Tbit/ s
80 Gbit/s
a: In OptiX OSN 8800 T64 enhanced subrack, the maximum cross-connect capacity of a single slot can be smoothly increased from 40 Gbit/s to 100 Gbit/s by replacing the cross-connect board. b: k=0, 1, 2, 2e, 3, 4 or flex. Only the USXH+UXCT supports ODU4 granularities. c: Enhanced OptiX OSN 8800 T64 subracks must be configured with both the USXH and UXCT boards, the SXH and XCT boards or the SXM and XCT boards to cross-connect ODUk granularities. d: General OptiX OSN 8800 T64 subracks must be configured with both the SXH and XCT boards or the SXM and XCT boards to cross-connect ODUk granularities. e: All service slots share a bandwidth of 80 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
37
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.1.4 Fan and Heat Dissipation Each OptiX OSN 8800 T64 subrack has four fan tray assemblies, each of which includes three independent fans. In each subrack, the lower fan tray assembly has an air filter, but the upper fan tray assembly does not. The user can withdraw, clean, and replace each air filter.
Version Description Only one functional version of the fan tray assembly is available, that is, TN51.
Functions and Features Table 5-3 describes the functions of a fan tray assembly. Table 5-3 Functions Function
Description
Basic function
Dissipates the heat generated by a network element (NE), so that the NE can operate normally within the designated temperature range.
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed.
Section-dependent heat dissipation
Each subrack is divided into six sections to provide efficient heat dissipation. The fan speed in each section is independently regulated.
Hot swapping
Provides the hot swapping function for the fan tray assembly.
Alarming
Reports alarms of the fans, and reports the in-service information.
Status checking
Checks and reports on the fan status.
Working Principle A fan tray assembly inside a subrack ventilates the subrack to ensure that the subrack works effectively at an appropriate temperature. The fan tray assembly is located in the lower portion of a subrack. It draws in air into the subrack, forming an air duct from bottom to top. Other boards in the subrack are installed vertically. In other words, the boards are parallel to the air duct. This design ensures reliable heat dissipation. Figure 5-3 shows how ventilation is performed in the OptiX OSN 8800 T64. Figure 5-3 shows how ventilation is performed in the OptiX OSN 8800 T64.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
38
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-3 Subrack heat dissipation and ventilation system
Side view
Front
Air outlet
Air inlet
Back
Air outlet Fan
Fan
Fan
Fan
Air filter
Air filter
Air inlet
The OptiX OSN 8800 supports two fan speed modes, as described in Table 5-4. The sectiondependent speed regulating function is available in Auto Speed Mode. The Auto Speed Mode is recommended.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
39
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-4 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
Fan speed in each section is regulated automatically according to the temperature of the boards in the section that the fans are targeted for. l Lower than 25°C (77°F): the fans run at low speed. l Higher than 45°C (113°F): the fans run at high speed. l 25°C to 45°C (77°F to 113° F): The fans automatically adjust their rotation speeds. This mode can reduce noise and is power-saving. Fan speed in each section is independently regulated. The fans run at full speed if the speed regulating signal is abnormal. If one of the fans in one section fails, the other fans in this section run at full speed. When the user queries the fan speed using the NMS, the highest fan speed among all sections is displayed. In other words, if the fans in one section rotate at high speed, the NMS displays the fan speed as high speed in the query result.
Adjustable Speed Mode
Six fan speeds are supported: Stop, Low Speed, Medium-Low Speed, Medium Speed, Medium-High Speed, and High Speed. In this mode, the user manually sets the fan speed and fans in all sections run at the same speed. The user cannot independently set the fan speed for a specific section.
Each OptiX OSN 8800 T64 subrack has two sides. Each side has six sections. See Figure 5-4.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
40
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-4 Section-dependent heat dissipation of the OptiX OSN 8800 T64 subrack IU91
Front FAN2
FAN1
IU69
IU19 IU20
IU70
IU21
IU71
IU22 IU23
IU24
IU72
IU74
IU73
IU25 IU26
IU9
IU1
IU2
IU3
IU4
IU5
IU6
IU7
FAN3
IU75
IU79
IU76
IU77
IU27
IU28 IU29
IU30
IU31
IU32 IU33
IU34
IU11
IU12
IU13 IU14
IU15
IU16 IU17
IU18
IU78
IU10
IU8
IU50 FAN4
Partition 1
Issue 03 (2013-05-16)
FAN5
FAN6
Partition 2
Partition 3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
IU90
41
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement IU93
Back FAN8
FAN7
IU80
IU81
IU53 IU54
IU55
IU82
IU56 IU57
IU58
IU83
IU84
IU85
IU59 IU60
FAN9
IU86
IU87
IU61
IU62 IU63
IU45
IU46
IU88
IU89
IU64
IU65
IU66 IU67
IU68
IU47 IU48
IU49
IU50 IU51
IU52
IU43 IU44
IU35 IU36
IU37 IU38
IU39 IU40
IU41 IU42
IU50 FAN10
Partition 4
FAN11
Partition 5
FAN12
Partition 6
IU92
NOTE
l If any one of the six fans in the two fan tray assemblies fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure long-term operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days. l Replace the fan tray assembly in either of the following two situations: l Two or more fans fail in one of the two fan tray assemblies. l One or more fans fail in each of the two fan tray assemblies. l In a system that is operating normally, the two fans in the same section (such as FAN1 and FAN4) run at the same speed.
The fan tray assembly consists of fans and fan control unit. Figure 5-5 shows the functional blocks of the fan tray assembly. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
42
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-5 Functional block diagram of the fan tray assembly
Speed adjusting signal SCC
Speed adjusting signal Fan control unit
Status signal
Status signal FAN
External power External power supply 1 supply 2
l
FAN: dissipates heat generated by normal operation of the subrack. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to the fan speed regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm. In this case, the SCC board issues commands to instruct the other fans to run at the full speed. – Monitors speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 5-6 shows a fan tray assembly. Figure 5-6 Fan tray assembly
3 SYSTEM
2
1
1. Air filter
2. Operating status indicators
3. Fans (three in total)
NOTE
An air filter is installed on the lower fan tray assembly to prevent dust from entering the subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
43
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Valid Slots The fan tray assembly occupies one slot. The valid slots for the fan tray assembly are IU90, IU91, IU92 and IU93 in the OptiX OSN 8800 T64 subrack.
Specifications of the Fan Tray Assembly Table 5-5 lists the technical specifications of the fan tray assembly. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Table 5-5 Technical specifications of the fan tray assembly Item
Specification
Dimensions (H x W x D)
64.0 mm (2.5 in.) x 493.7 mm (19.4 in.) x 280.5 mm (11.0 in.)
Weight
3.6 kg (7.9 lb.)
Power Consumptiona
l Low Speed: 70 W l Medium-Low Speed: 95 W l Medium Speed: 150 W l Medium-High Speed: 225W l High Speed: 270W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 270 W.
5.1.5 Power Consumption This section describes the maximum and typical subrack power consumption specifications. Table 5-6 describes the power consumption of an OptiX OSN 8800 T64 subrack. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
44
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-6 Power consumption of an OptiX OSN 8800 T64 Item
Enhanced 8800 T64
General 8800 T64
Maximum subrack power consumptiona
9600 W
6500 W
Typical configuration power consumption (OTN)
6000 W
3700 W
Typical configuration power consumption (OCS)
2135 W
1748 W
a: The maximum subrack power consumption refers to the theoretical power consumption obtained when boards with the highest power consumption are installed in every slot on the subrack.
Table 5-7 describes the power consumption of the subrack in typical configuration in an OptiX OSN 8800 T64. Table 5-7 Power consumption of the common units in an OptiX OSN 8800 T64
Issue 03 (2013-05-16)
Unit Name
Typical Power Consumption at 25°C (77°F) (W)a
Maximum Power Consumption at 55°C (131°F) (W)a
Remarks
OTU subrack 1
1804.6
2827.9
32 x LDX, 1 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OTU subrack 2
1421.7
2340.9
4 x LSC(SDFEC), 2 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OTU electrical crossconnect subrack 1 (general subrack)
2172.7
2822.9
2 x XCT, 2 x SXH, 8 x NS3, 2 x SCC, 2 x STG, 8 x PIU, 5 x TQX, 5 x TOA, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OTU electrical crossconnect subrack 2 (general subrack)
1839.1
2776.7
2 x XCT, 2 x SXM, 20 x NQ2, 1 x SCC, 8 x PIU, 5 x TOA, 5 x TQX, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
45
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Unit Name
Typical Power Consumption at 25°C (77°F) (W)a
Maximum Power Consumption at 55°C (131°F) (W)a
Remarks
OTU electrical crossconnect subrack (enhanced subrack)
5517.7
6932.4
2 x UXCT, 2 x USXH, 16 x NS4 (SDFEC), 8 x TSC, 4 x TTX, 5 x TOX, 2 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, 4 x fan tray assembly
OTM subrack 1
963.78
1860.3
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 12 x LDX, 1 x SCC, 1 x SC2, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OTM subrack 2
1470.7
2406.9
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 4 x LSC(SDFEC), 2 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OCS subrack (general subrack)
1748
2636
2 x SXM, 20 x SLD64, 8 x SLO16, 4 x SLQ16, 4 x SLH41, 4 x EGSH, 2 x STG, 1 x STI, 2 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
OCS subrack (enhanced subrack)
2135
3076
2 x USXH, 20 x SLD64, 8 x SLO16, 4 x SLQ16, 4 x SLH41, 4 x EGSH, 2 x STG, 1 x STI, 2 x SCC, 8 x PIU, 2 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 4 x fan tray assembly
a: Indicates that the power consumption of the subrack and cabinet is the value in a certain configuration. The value is for reference only. The actual power consumed by the chassis and cabinet is a calculation based on the power consumption of each module.
5.1.6 Power Requirement This section describes the requirements on power supply.
Requirements on Voltage and Current Table 5-8 provides the requirements on voltage and current of an OptiX OSN 8800 T64 subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
46
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-8 Requirements on voltage and current of an OptiX OSN 8800 T64 Item
Requirement
Rated working current
200 A (Independent power supplies to four sections of each subrack, with 50 A for each section)
Nominal working voltage
-48V DC/-60V DC
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 8800 T64/8800 T32, the PIU board can be TN16PIU or TN51PIU. For OptiX OSN 8800 T16, the PIU board must be TN16PIU. l
Function Accesses DC power in a range from -40 V to -72 V. Provides lightning protection and power filtering functions. The TN16PIU supports intelligent ammeter function, which enables the TN16PIU to detect the power consumption of the entire subrack and report the power consumption to the system control unit. NOTE
The overcurrent protection function for the access power supplies of each subrack is realized by the magnetic circuit breaker of the PDU.
l
Front Panel As shown in the following figures, two types of front panel are available for The TN51PIU board. The difference between the two types of front panel lies in the silkscreen. Figure 5-7 Front panel of the TN51PIU board
PIU RTN(+)
Issue 03 (2013-05-16)
PWR
NEG(-)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
47
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
PIU RTN
PWR
-48V
Figure 5-8 Front panel of the TN16PIU board
PIU RTN(+)
PWR
NEG(-)
There is only the power indicator (PWR), which is green. l
Valid Slots Table 5-9 Valid slots for the TN51PIU board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
48
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-10 Valid slots for the TN16PIU board
l
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
OptiX OSN 8800 T16 subrack
IU20 and IU23
Specifications – Performance Specifications Table 5-11 Performance specifications of the PIU board Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V DC
-48V DC: -40V to -57.6V
Input DC power current
A
-60V DC: -48V to -72V ≤60
– Mechanical Specifications Dimensions of front panel: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) Weight: – TN51PIU: 0.5 kg (1.10 lb.) – TN16PIU: 0.65 kg (1.43 lb.) – Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN51PIU
5
5
TN16PIU
3
3.6
5.2 OptiX OSN 8800 T32 Subrack There are two types of OptiX OSN 8800 T32 subracks: enhanced and general. Enhanced and general subracks are the same in appearance except for the bandwidth of the backplane and electrical cross-connect capacities. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
49
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
In this document, "OptiX OSN 8800 T32" refers to both enhanced OptiX OSN 8800 T32 and general OptiX OSN 8800 T32 subracks unless otherwise specified.
5.2.1 Structure Subracks are the basic working units of the OptiX OSN 8800 T32. Each subrack has independent power supply. Figure 5-9 shows the structure of the OptiX OSN 8800 T32 subrack. Figure 5-9 Structure of OptiX OSN 8800 T32 subrack
OSN 8800 T32
or OSN 8800 T32
3
6
1 5
2
3 4
1. Board area
2. Fiber cabling area
3. Fan tray assembly
4. Air filter
5. Fiber spool
6. Mounting ear
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
50
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
NOTE
A subrack identified by "Enhanced" is an enhanced OptiX OSN 8800 T32 subrack, and the one that is not identified by "Enhanced" is an general OptiX OSN 8800 T32 subrack. These two types of subracks are displayed as OSN8800 T32 Enhanced and OSN8800 T32 Standard
l
Board area: All the boards are installed in this area. 50 slots are available.
l
Fiber cabling area: Fiber jumpers from the ports on the front panel of each board are routed to the fiber cabling area before being routed on a side of the open rack.
l
Fan tray assembly: Fan tray assembly contains three fans that provide ventilation and heat dissipation for the subrack. The front panel of the fan tray assembly has four indicators that indicate subrack status. NOTE
For detailed descriptions of the fan tray assembly, see 5.2.4 Fan and Heat Dissipation.
l
Air filter: It protects the subrack from dust in the air and requires periodic cleaning.
l
Fiber spool: Fixed fiber spools are on two sides of the subrack. Extra fibers are coiled in the fiber spool on the open rack side before being routed to another subrack.
l
Mounting ears: The mounting ears attach the subrack in the cabinet.
Table 5-12 Mechanical specifications of the OptiX OSN 8800 T32 Item
Specification
Dimensions
498 mm (W) × 295 mm (D) × 900 mm (H) (19.6 in. (W) × 11.6 in. (D) × 35.4 in. (H))
Weight (empty subracka)
35 kg (77.1 lb.)
a: An empty subrack means no boards are installed in the board area, and no fan tray assembly or air filter is installed.
5.2.2 Slot Description The OptiX OSN 8800 T32 subrack provide 50 slots. Slots of the OptiX OSN 8800 T32 subrack are shown in Figure 5-10.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
51
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-10 Slots of the OptiX OSN 8800 T32 subrack IU51
AUX EFI2
EFI1
PIU
PIU
IU37
IU38
IU39
IU40
STG AUX
STG
IU41 IU42 IU43 IU44
PIU
PIU
IU45
IU46
STI IU47
ATE IU48
SCC
IU3
IU4
IU5
IU25
IU6
IU26 IU27
IU7
IU28
IU9
IU10
SCC or service board
IU2
IU23 IU24
Cross-connect board
IU1
IU22
Cross-connect board
IU20 IU21
IU8
IU29
IU30 IU31
IU32
IU33
IU34 IU35
IU36
IU12
IU13
IU14 IU15
IU16
IU17 IU18
IU19
IU11
IU50
l l
: houses service boards and supports service cross-connections. Slot IU43 in a general OptiX OSN 8800 T32 is reserved for future use. Slot IU41 and slot IU43 in an enhanced OptiX OSN 8800 T32 subrack are used to house the active and standby AUX boards, respectively. NOTE
Only the TN52AUX board supports 1+1 backup.
l
IU9 and IU10 are reserved for the cross-connect board. – Enhanced OptiX OSN 8800 T32 subrack: UXCH, UXCM, XCH or XCM. – General OptiX OSN 8800 T32 subrack: XCH or XCM.
l
Issue 03 (2013-05-16)
The following table provides the slots for housing active and standby boards of the subrack. Board
Slots for Active and Standby Boards
PIU
IU39 & IU45 and IU40 & IU46 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
52
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Board
Slots for Active and Standby Boards
SCC
IU28 & IU11
STG
IU42 & IU44
XCH/XCM/ UXCH/UXCM
IU9 & IU10
TN52AUX
Enhanced OptiX 8800 T32: IU41 & IU43
5.2.3 Cross-Connect Capacities The cross-connect capacity of a slot in an OptiX OSN 8800 T32 subrack vary the type of crossconnect board installed in the slot. OptiX OSN 8800 T32 subracks can cross-connect ODU0, ODU1, ODU2, ODU2e, ODU3, ODU4, ODUflex, VC-4, VC-3, VC-12 granularities and packet services at the same time. Slots IU1-IU8, IU12-IU27, and IU29-IU36 provide the same cross-connect capacity. As shown in Table 5-13. Table 5-13 Cross-connect capacity of OptiX OSN 8800 T32 subrack Subr ack Type
Issue 03 (2013-05-16)
Cros sCon nect Boar d
Maximum Cross-Connect Capacity of Each Slota
Maximum Cross-Connect Capacity of Subrackc
ODU kb
VC-4
Packe tc
ODU kb
VC-4
VC-3/ VC-12
Packe tc
Enha nced
UXC H
100 Gbit/s
40 Gbit/s
N/A
50 Gbit/s
3.2 Tbit/s
1.28 Tbit/s
N/A
1.6 Tbit/s
Enha nced
UXC M
100 Gbit/s
40 Gbit/s
40 Gbit/s
50 Gbit/s
3.2 Tbit/s
1.28 Tbit/s
80 Gbit/s
1.6 Tbit/s
Enha nced
XCH
40 Gbit/s
40 Gbit/s
N/A
N/A
1.28 Tbit/s
1.28 Tbit/s
N/A
N/A
Enha nced
XCM
40 Gbit/s
40 Gbit/s
40 Gbit/s
N/A
1.28 Tbit/s
1.28 Tbit/s
80 Gbit/s
N/A
Gene ral
XCH
40 Gbit/s
40 Gbit/s
N/A
N/A
1.28 Tbit/s
1.28 Tbit/s
N/A
N/A
Gene ral
XCM
40 Gbit/s
40 Gbit/s
40 Gbit/s
N/A
1.28 Tbit/s
1.28 Tbit/s
80 Gbit/s
N/A
VC-3/ VC-12 d
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
53
OptiX OSN 8800/6800/3800 Hardware Description
Subr ack Type
5 OptiX OSN 8800 Subrack and Power Requirement
Cros sCon nect Boar d
Maximum Cross-Connect Capacity of Each Slota
Maximum Cross-Connect Capacity of Subrackc
ODU kb
ODU kb
VC-4
VC-3/ VC-12 d
Packe tc
VC-4
VC-3/ VC-12
Packe tc
a: In enhanced OptiX OSN 8800 T32 subrack, the maximum cross-connect capacity of a single slot can be smoothly increased from 40 Gbit/s to 100 Gbit/s by replacing the cross-connect board. b: k = 0, 1, 2, 2e, 3, 4, or flex. c: Theoretically, the subrack supports grooming of a maximum of 1.6 Tbit/s packet services. In practice, however, the packet service grooming capability of the subrack is determined by packet boards. The current version provides a packet service grooming capability up to 640 Gbit/s. d: All service slots share a bandwidth of 80 Gbit/s.
5.2.4 Fan and Heat Dissipation Each OptiX OSN 8800 T32 subrack has two fan tray assemblies, each of which includes three independent fans. In each subrack, the lower fan tray assembly has an air filter, but the upper fan tray assembly does not have an air filter. The air filter can be drawn out, cleaned and replaced.
Version Description Only one functional version of the fan tray assembly is available, that is, TN51.
Functions and Features Table 5-14 describes the functions of a fan tray assembly. Table 5-14 Functions of a fan tray assembly Function
Description
Basic function
Dissipates the heat generated by a network element (NE), so that the NE can operate normally within the designated temperature range.
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed.
Issue 03 (2013-05-16)
Partitioned heat dissipation
Each subrack is divided into three partitions to help provide efficient heat dissipation. The fan speed in each partition is independently regulated.
Hot swapping
Provides the hot swapping function for the fan tray assembly.
Alarming
Reports alarms of the fans, and reports the in-service information. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
54
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Function
Description
Status checking
Checks and reports on the fan status.
Working Principle A fan tray assembly inside a subrack dissipates heat for the subrack to ensure that the subrack works effectively at a specified temperature. The fan tray assembly is located on the lower part of a subrack. It blows air into the subrack, forming an air duct from bottom to top. Other boards in the subrack are installed vertically. In other words, the boards are parallel to the air duct. This design ensures reliable heat dissipation. Figure 5-11 shows the heat dissipation and ventilation system in the OptiX OSN 8800 T32. Figure 5-11 Subrack heat dissipation and ventilation system
Side view
Front
Air outlet Fan
Fan
Air inlet
Air filter
The OptiX OSN 8800 supports two fan speed modes, as described in Table 5-15. The sectiondependent speed regulating function is available in Auto Speed Mode. The Auto Speed Mode is recommended.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
55
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-15 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
Fan speed in each section is regulated automatically according to the temperature of the boards in the section that the fans are targeted for. l Lower than 25°C (77°F): the fans run at low speed. l Higher than 45°C (113°F): the fans run at high speed. l 25°C to 45°C (77°F to 113° F): The fans automatically adjust their rotation speeds. This mode can reduce noise and is power-saving. Fan speed in each section is independently regulated. The fans run at full speed if the speed regulating signal is abnormal. If one of the fans in one section fails, the other fans in this section run at full speed. When the user queries the fan speed using the NMS, the highest fan speed among all sections is displayed. In other words, if the fans in one section rotate at high speed, the NMS displays the fan speed as high speed in the query result.
Adjustable Speed Mode
Six fan speeds are supported: Stop, Low Speed, Medium-Low Speed, Medium Speed, Medium-High Speed, and High Speed. In this mode, the user manually sets the fan speed and fans in all sections run at the same speed. The user cannot independently set the fan speed for a specific section.
Each OptiX OSN 8800 T32 subrack is divided into three partitions in terms of heat dissipation. The subrack adopts two fan tray assemblies to implement partitioned heat dissipation. See Figure 5-12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
56
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-12 Partitioned heat dissipation of the OptiX OSN 8800 T32 subrack FAN2
FAN1
IU37
IU20 IU21
IU38
IU39
IU22
IU23 IU24
IU40
IU25
IU41 IU42 IU43 IU44
IU26 IU27
IU9
IU1
IU2
IU3
IU4
IU5
IU6
IU7
FAN3
IU45
IU46
IU28 IU29
IU30 IU31
IU11 IU12
IU13
IU47
IU51
IU48
IU32
IU33
IU34 IU35
IU36
IU14 IU15
IU16
IU17 IU18
IU19
IU10
IU8
IU50 FAN4
Partition 1
FAN5
Partition 2
FAN6
IU50
Partition 3
NOTE
l If any one of the six fans in the two fan tray assemblies fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure long-term operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days. l Replace the fan tray assembly in either of the following two situations: l Two or more fans fail in one of the two fan tray assemblies. l One or more fans fail in each of the two fan tray assemblies. l In a system that is operating normally, the two fans in the same partition (such as FAN1 and FAN4) run at the same speed.
The fan tray assembly consists of fans and fan control unit. Figure 5-13 shows the functional blocks of the fan tray assembly.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
57
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-13 Functional block diagram of the fan tray assembly
Speed adjusting signal SCC
Speed adjusting signal Fan control unit
Status signal
Status signal FAN
External power External power supply 1 supply 2
l
FAN: dissipates heat generated by normal operation of the subrack. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to the fan speed regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm. In this case, the SCC board issues commands to instruct the other fans to run at the full speed. – Monitors speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 5-14 shows a fan tray assembly. Figure 5-14 Fan tray assembly
3 SYSTEM
2
1
1. Air filter
2. Operating status indicators
3. Fans (three in total)
NOTE
An air filter is installed on the lower fan tray assembly to prevent dust from entering the subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
58
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Valid Slots The fan tray assembly occupies one slot. The valid slots for the fan tray assembly are IU50 and IU51 in the OptiX OSN 8800 T32 subrack.
Specifications of the Fan Tray Assembly Table 5-16 lists the technical specifications of the fan tray assembly. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Table 5-16 Technical specifications of the fan tray assembly Item
Specification
Dimensions (H x W x D)
64.0 mm (2.5 in.) x 493.7 mm (19.4 in.) x 280.5 mm (11.0 in.)
Weight
3.6 kg (7.9 lb.)
Power Consumptiona
l Low Speed: 70 W l Medium-Low Speed: 95 W l Medium Speed: 150 W l Medium-High Speed: 225W l High Speed: 270W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 270 W.
5.2.5 Power Consumption This section describes the maximum and typical subrack power consumption specifications. Table 5-17 describes the power consumption of an OptiX OSN 8800 T32 subrack. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
59
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-17 Power consumption of an OptiX OSN 8800 T32 Item
Enhanced 8800 T32
General 8800 T32
Maximum subrack power consumptiona
4800 W
3500 W
Recommended typical configuration power consumption (OTN)
3300 W
2000 W
Recommended typical configuration power consumption (OCS)
1791 W
1282 W
a: The maximum subrack power consumption refers to the theoretical power consumption obtained when boards with the highest power consumption are installed in every slot on the subrack.
Table 5-18 describes the power consumption of the subrack in typical configuration in an OptiX OSN 8800 T32. Table 5-18 Power consumption of the subrack in typical configuration in an OptiX OSN 8800 T32
Issue 03 (2013-05-16)
Unit Name
Typical Power Consumption at 25°C (77°F) (W)a
Maximum Power Consumption at 55°C (131°F) (W)a
Remarks
OTU subrack 1
1633.4
2254.6
32 x LDX, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OTU subrack 2
1229.3
1742.3
4 x LSC(SDFEC), 2 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OTU electrical crossconnect subrack 1 (general subrack)
1641.6
2166.5
2 x XCH, 20 x NQ2, 1 x SCC, 4 x PIU, 5 x TQX, 5 x TOA, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
60
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
5 OptiX OSN 8800 Subrack and Power Requirement
Unit Name
Typical Power Consumption at 25°C (77°F) (W)a
Maximum Power Consumption at 55°C (131°F) (W)a
Remarks
OTU electrical crossconnect subrack 2 (general subrack)
1958.3
2558.5
2 x XCH, 8 x 55NS3, 2 x SCC, 4 x PIU, 2 x TQX, 5 x TOA, 2 x STG, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OTU electrical crossconnect subrack (enhanced subrack)
3338.7
4092.1
2 x UXCH, 10 x NS4(SDFEC), 2 x TSC, 8 x TTX, 2 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OTM subrack 1
792.5
1287.1
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 12 x LDX, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OTM subrack 2
1278.3
1808.3
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 4 x LSC(SDFEC), 2 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OLA subrack
290.3
706
4 x OBU1, 4 x VA1, 1 x SC2, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OADM subrack
974
1497.2
2 x OAU1, 2 x MR8V, 16 x LDX, 1 x SC2, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
378.2
811
2 x M40V, 2 x D40, 2 x FIU, 1 x SC2, 2 x RMU9, 2 x WSM9, 2 x OAU1, 2 x OBU1, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
373.1
306.6
2 x M40, 2 x D40, 2 x WSMD9, 2 x DAS1, 1 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
61
OptiX OSN 8800/6800/3800 Hardware Description
Unit Name
5 OptiX OSN 8800 Subrack and Power Requirement
Typical Power Consumption at 25°C (77°F) (W)a
Maximum Power Consumption at 55°C (131°F) (W)a
Remarks
OCS subrack 1281 (general subrack)
1755
2 x XCM, 10 x SLQ64, 8 x SLO16, 2 x SLH41, 2 x EGSH, 2 x STG, 1 x STI, 2 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
OCS subrack 1791 (enhanced subrack)
2321
2 x UXCM, 10 x SLQ64, 8 x SLO16, 2 x SLH41, 2 x EGSH, 2 x STG, 1 x STI, 2 x SCC, 4 x PIU, 1 x AUX, 1 x EFI1, 1 x EFI2, 1 x ATE, and 2 x fan tray assembly
a: Indicates that the power consumption of the subrack and cabinet is the value in a certain configuration. The value is for reference only. The actual power consumed by the chassis and cabinet is a calculation based on the power consumption of each module.
5.2.6 Power Requirement This section describes the requirements on power supply.
Requirements on Voltage and Current Table 5-19 provides the requirements on voltage and current of an OptiX OSN 8800 T32. Table 5-19 Requirements on voltage and current of an OptiX OSN 8800 T32 Item
Requirement
Rated working current
100 A (Independent power supplies to two sections of each subrack, with 50A for each section)
Nominal working voltage
-48V DC/-60V DC
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 8800 T64/8800 T32, the PIU board can be TN16PIU or TN51PIU. For OptiX OSN 8800 T16, the PIU board must be TN16PIU. l Issue 03 (2013-05-16)
Function Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
62
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Accesses DC power in a range from -40 V to -72 V. Provides lightning protection and power filtering functions. The TN16PIU supports intelligent ammeter function, which enables the TN16PIU to detect the power consumption of the entire subrack and report the power consumption to the system control unit. NOTE
The overcurrent protection function for the access power supplies of each subrack is realized by the magnetic circuit breaker of the PDU.
l
Front Panel As shown in the following figures, two types of front panel are available for The TN51PIU board. The difference between the two types of front panel lies in the silkscreen. Figure 5-15 Front panel of the TN51PIU board
PIU RTN(+)
PWR
NEG(-)
PIU RTN
Issue 03 (2013-05-16)
PWR
-48V
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
63
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-16 Front panel of the TN16PIU board
PIU RTN(+)
PWR
NEG(-)
There is only the power indicator (PWR), which is green. l
Valid Slots Table 5-20 Valid slots for the TN51PIU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
Table 5-21 Valid slots for the TN16PIU board
l
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
OptiX OSN 8800 T16 subrack
IU20 and IU23
Specifications – Performance Specifications
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
64
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-22 Performance specifications of the PIU board Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V DC
-48V DC: -40V to -57.6V
Input DC power current
A
-60V DC: -48V to -72V ≤60
– Mechanical Specifications Dimensions of front panel: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) Weight: – TN51PIU: 0.5 kg (1.10 lb.) – TN16PIU: 0.65 kg (1.43 lb.) – Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN51PIU
5
5
TN16PIU
3
3.6
5.3 OptiX OSN 8800 T16 Subrack 5.3.1 Structure Subracks are the basic working units of the OptiX OSN 8800 T16. Each subrack has independent power supply.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
65
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-17 Structure of OptiX OSN 8800 T16 subrack (subrack door excluded)
1
6
5 2 3 4
1. Board area
2. Fiber cabling area
3. Fan tray assembly
4. Air filter
5. Fiber spool
6. Mounting ear
l
Board area: All the boards are installed in this area. 24 slots are available.
l
Fiber cabling area: Fiber jumpers from the ports on the front panel of each board are routed to the fiber cabling area before being routed on a side of the open rack.
l
Fan tray assembly: Fan tray assembly contains ten fans that provide ventilation and heat dissipation for the subrack. The front panel of the fan tray assembly has four indicators that indicate fan status and related information. NOTE
For detailed descriptions of the fan tray assembly, see 5.3.4 Fan and Heat Dissipation.
l
Air filter: It protects the subrack from dust in the air and requires periodic cleaning.
l
Fiber spool: Fixed fiber spools are on two sides of the subrack. Extra fibers are coiled in the fiber spool on the open rack side before being routed to another subrack.
l
Mounting ears: The mounting ears attach the subrack in the cabinet.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
66
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-23 Mechanical specifications of the OptiX OSN 8800 T16 Item
Specification
Dimensions
498 mm (W) × 295 mm (D) × 450 mm (H) (19.6 in. (W) × 11.6 in. (D) × 17.7 in. (H))
Weight (empty subracka)
18 kg (39.6 lb.)
a: An empty subrack means no boards are installed in the board area, and no fan tray assembly or air filter is installed.
5.3.2 Slot Description The OptiX OSN 8800 T16 subrack provide 25 slots. Slots of the OptiX OSN 8800 T16 subrack are shown in Figure 5-18. Figure 5-18 Slots of the OptiX OSN 8800 T16 subrack IU20 PIU
IU19 EFI
IU21 AUX
IU22 AUX
IU9 IU 1
IU 2
IU 3
IU 4
IU 5
IU 6
IU 7
l l
IU24 ATE
IU10
IU 8
IU 11
IU25
IU23 PIU
IU 12
IU 13
IU 14
IU 15
IU 16
IU 17
IU 18
FAN
: houses service boards and supports service cross-connections. IU9 and IU10 are reserved for the TN16UXCM/TN16XCH/TN16SCC or for the other service boards. NOTE
Slots IU9 and IU10 can be used to house service boards only when the OptiX OSN 8800 T16 functions as a slave subrack. If slots IU9 and IU10 are used to house service boards or SCC boards, install a special filler panel in each slot first
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
67
OptiX OSN 8800/6800/3800 Hardware Description
l
5 OptiX OSN 8800 Subrack and Power Requirement
The following table provides the slots for housing active and standby boards of the subrack. Board
Slots for Active and Standby Boards
AUX
IU21 & IU22
PIU
IU20 & IU23
TN16UXCM/ TN16XCH/ TN16SCC
IU9 & IU10
5.3.3 Cross-Connect Capacities Slots in an OptiX OSN 8800 T16 subrack provide the same cross-connect capacity. OptiX OSN 8800 T16 subracks can cross-connect ODU0, ODU1, ODU2, ODU2e, ODU3, ODU4, ODUflex, VC-4, VC-3, VC-12 granularities and packet services at the same time. Slots IU1-IU8 and IU11-IU18 provide the same cross-connect capacity. As shown in Table 5-24. Table 5-24 Cross-connect capacity of OptiX OSN 8800 T16 subrack Cross Conn ect Boar d
Maximum Cross-Connect Capacity of Each Slot ODU ka
VC-4
TN16 XCH
40 Gbit/s
TN16 UXC M
100 Gbit/s
Maximum Cross-Connect Capacity of Subrack
VC-3/ VC-12b
Pack etc
ODUka
VC-4
VC-3/ VC-12
Packet
N/A
N/A
N/A
640 Gbit/ s
N/A
N/A
N/A
40 Gbit/s
20 Gbit/ s
50 Gbit/s
1.6 T Gbit/s
640 Gbit/s
20 Gbit/ s
800 Gbit/s
c
a: k = 0, 1, 2, 2e, 3, 4 or flex. b: All service slots share a bandwidth of 20 Gbit/s. c: Theoretically, the subrack supports grooming of a maximum of 800 Gbit/s packet services. In practice, however, the packet service grooming capability of the subrack is determined by packet boards. The current version provides a packet service grooming capability up to 320 Gbit/s.
5.3.4 Fan and Heat Dissipation Each OptiX OSN 8800 T16 subrack has one fan tray assembly, which includes ten independent fans and an air filter. The air filter can be drawn out, cleaned and replaced.
Version Description Only one functional version of the fan tray assembly is available, that is, TN16. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
68
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Functions and Features Table 5-25 describes the functions of a fan tray assembly. Table 5-25 Functions of a fan tray assembly Function
Description
Basic function
Dissipates the heat generated by a network element (NE), so that the NE can operate normally within the designated temperature range.
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed.
Partitioned heat dissipation
Each subrack is divided into five partitions to help provide efficient heat dissipation. The fan speed in each partition is independently regulated.
Hot swapping
Provides the hot swapping function for the fan tray assembly.
Alarming
Reports alarms of the fans, and reports the in-service information.
Status checking
Checks and reports on the fan status.
Working Principle A fan tray assembly inside a subrack dissipates heat for the subrack to ensure that the subrack works effectively at a specified temperature. The fan tray assembly is located on the lower part of a subrack. It blows air into the subrack, forming an air duct from bottom to top. Other boards in the subrack are installed vertically. In other words, the boards are parallel to the air duct. This design ensures reliable heat dissipation. Figure 5-19 shows the heat dissipation and ventilation system in the OptiX OSN 8800 T16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
69
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-19 Subrack heat dissipation and ventilation system Side view Front Air outlet
Fan Air inlet
Air filter
The OptiX OSN 8800 T16 supports two fan speed modes, as described in Table 5-26. The partitioned speed regulating function is available in Auto Speed Mode. It is recommended that you operate fans in Auto Speed Mode by default. Table 5-26 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
Fan speed in each partition is regulated automatically according to the temperature of the boards in the partition where the fans are installed. l Lower than 25°C (77°F): the fans run at low speed. l Higher than 45°C (113°F): the fans run at high speed. l 25°C to 45°C (77°F to 113° F): The fans automatically adjust their rotation speeds. This mode can reduce noise and is power-saving. Fan speed in each partition is independently regulated. The fans run at full speed if the speed regulating signals are abnormal. If one of the fans fails, the other fans run at full speed.
Adjustable Speed Mode
Issue 03 (2013-05-16)
Five fan speed modes are available: Low Speed, Medium-Low Speed, Medium Speed, Medium-High Speed, and High Speed. You can set the fan speed manually. In Adjustable Speed Mode, the fans in all partitions run at the same speed and do not support the partitioned manual fan speed adjustment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
70
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Each OptiX OSN 8800 T16 subrack is divided into five partitions in terms of heat dissipation. The subrack adopts one fan tray assembly to implement partitioned heat dissipation. See Figure 5-20. Figure 5-20 Partitioned heat dissipation of the OptiX OSN 8800 T16 subrack IU20 PIU
IU19 EFI
IU21 AUX
IU9 IU 1
IU 2
A
IU 3
IU 4
IU 5
IU 6
B
IU 7
IU23 PIU
IU22
IU24 ATE
IU10
IU 8
C
IU
IU
IU
IU
11
12
13
14
D
IU 15
IU 16
E
IU 17
IU 18
Fan tray assembly
In the OptiX OSN 8800 T16, there are five partitions (A, B, C, D, and E) in each subrack. Two fans in each partition dissipate heat generated by the boards in the partition where the fans reside. NOTE
l If any one of the ten fans in the fan tray assembly fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure longterm operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days. l Replace the fan tray assembly immediately if two or more fans fail in the fan tray assemblies.
The fan tray assembly consists of fans and fan control unit. Figure 5-21 shows the functional blocks of the fan tray assembly.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
71
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-21 Functional block diagram of the fan tray assembly
Speed adjusting signal SCC
Speed adjusting signal Fan control unit
Status signal
Status signal FAN
External power External power supply 1 supply 2
l
FAN: dissipates heat generated by normal operation of the subrack. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to the fan speed regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm. In this case, the SCC board issues commands to instruct the other fans to run at the full speed. – Monitors speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 5-22 shows a fan tray assembly. Figure 5-22 Fan tray assembly 3
2
SYSTEM
1 1. Air filter
2. Operating status indicators
3. Fans (ten in total)
NOTE
An air filter is installed on the fan tray assembly to prevent dust from entering the subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
72
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Valid Slots The fan tray assembly occupies one slot. The valid slot for the fan tray assembly is IU25 in the OptiX OSN 8800 T16 subrack.
Specifications of the Fan Tray Assembly Table 5-27 lists the technical specifications of the fan tray assembly. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Table 5-27 Technical specifications of the fan tray assembly Item
Specification
Dimensions
493.7 mm (W) x 266.6 mm (D) x 56.1 mm (H) (19.44 in. (W) x 10.5 in. (D) x 2.21 in. (H))
Weight
3.6 kg (7.9 lb.)
Power Consumptiona
l Low Speed: 42.7 W l Medium-Low Speed: 74.8 W l Medium Speed: 106.8 W l Medium-High Speed: 165.5 W l High Speed: 215 W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 215 W.
5.3.5 Power Consumption This section describes the maximum and typical subrack power consumption specifications. Table 5-28 describes the power consumption of an OptiX OSN8800 T16 subrack. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
73
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-28 Power consumption of an OptiX OSN 8800 T16 Item
Specification
Maximum subrack power consumptiona
1800 W
Typical configuration power consumption (OTN)
700 W
Typical configuration power consumption (OCS)
821 W
a: The maximum subrack power consumption refers to the theoretical power consumption obtained when boards with the highest power consumption are installed in every slot on the subrack.
Table 5-29 describes the power consumption of the subrack in typical configuration in an 8800 T16. Table 5-29 Power consumption of the common units in an OptiX OSN 8800 T16
Issue 03 (2013-05-16)
Unit Name
Typical Power Consumptio n at 25°C (77° F) (W)a
Maximum Power Consumptio n at 55°C (131°F) (W)a
Remarks
OTU subrack 1
509.2
615.6
8 x LDX, 1 x XCH, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OTU subrack 2
647.9
883.4
2 x LSC(SDFEC), 2 x SCC, 2 x PIU, 2 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OTU electrical cross-connect subrack 1
501
808
5 x NQ2, 2 x XCH, 2 x PIU, 1 x TQX, 2 x TOA, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OTU electrical cross-connect subrack 2
923.9
1209
2 x XCH, 4 x 55NS3, 2 x PIU, 1 x TTX, 1 x TQX, 2 x TOA, 2 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OTU electrical cross-connect subrack 3
1059.9
1359.4
2 x 16UXCM, 4 x 54NS4(SDFEC), 2 x 54TSC, 2 x 54TTX, 2 x AUX, 2 x PIU, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OTM subrack 1
468.7
569.7
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 6 x LDX, 1 x XCH, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
74
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Unit Name
Typical Power Consumptio n at 25°C (77° F) (W)a
Maximum Power Consumptio n at 55°C (131°F) (W)a
Remarks
OTM subrack 2
696.9
949.4
1 x M40V, 1 x D40, 1 x OAU1, 1 x OBU1, 2 x LSC(SDFEC), 2 x SCC, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OLA subrack
228.1
294.3
4 x OBU1, 4 x VA1, 1 x SC2, 2 x FIU, 1 x XCH, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OADM subrack
449.5
561.5
2 x OAU1, 2 x MR8V, 2 x FIU, 8 x LSX, 1 x SC2, 1 x XCH, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
221
269.2
1 x M40, 1 x D40, 1 x WSMD9, 1 x DAS1, 1 x XCH, 2 x PIU, 1 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
821
1109
2 x UXCM, 4 x 55NS3, 2×PIU, 5 x SLQ64, 4 x SLO16, 1 x SLH41, 1 x EGSH, 2 x AUX, 1 x EFI, 1 x ATE, and 1 x fan tray assembly
OCS subrack
a: Indicates that the power consumption of the subrack and cabinet is the value in a certain configuration. The value is for reference only. The actual power consumed by the chassis and cabinet is a calculation based on the power consumption of each module.
5.3.6 Power Requirement This section describes the requirements on power supply.
Requirements on Voltage and Current Table 5-30 provides the requirements on voltage and current of an OptiX OSN 8800 T16 subrack. Table 5-30 Requirements on voltage and current of an OptiX OSN 8800 T16
Issue 03 (2013-05-16)
Item
Requirement
Rated working current
37.5 A
Nominal working voltage
-48V DC/-60V DC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
75
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Item
Requirement
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 8800 T64/8800 T32, the PIU board can be TN16PIU or TN51PIU. For OptiX OSN 8800 T16, the PIU board must be TN16PIU. l
Function Accesses DC power in a range from -40 V to -72 V. Provides lightning protection and power filtering functions. The TN16PIU supports intelligent ammeter function, which enables the TN16PIU to detect the power consumption of the entire subrack and report the power consumption to the system control unit. NOTE
The overcurrent protection function for the access power supplies of each subrack is realized by the magnetic circuit breaker of the PDU.
l
Front Panel As shown in the following figures, two types of front panel are available for The TN51PIU board. The difference between the two types of front panel lies in the silkscreen. Figure 5-23 Front panel of the TN51PIU board
PIU RTN(+)
Issue 03 (2013-05-16)
PWR
NEG(-)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
76
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
PIU RTN
PWR
-48V
Figure 5-24 Front panel of the TN16PIU board
PIU RTN(+)
PWR
NEG(-)
There is only the power indicator (PWR), which is green. l
Valid Slots Table 5-31 Valid slots for the TN51PIU board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
77
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-32 Valid slots for the TN16PIU board
l
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU69, IU70, IU78, IU79, IU80, IU81,IU88 and IU89
OptiX OSN 8800 T32 subrack
IU39, IU40, IU45, and IU46
OptiX OSN 8800 T16 subrack
IU20 and IU23
Specifications – Performance Specifications Table 5-33 Performance specifications of the PIU board Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V DC
-48V DC: -40V to -57.6V
Input DC power current
A
-60V DC: -48V to -72V ≤60
– Mechanical Specifications Dimensions of front panel: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) Weight: – TN51PIU: 0.5 kg (1.10 lb.) – TN16PIU: 0.65 kg (1.43 lb.) – Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN51PIU
5
5
TN16PIU
3
3.6
5.4 OptiX OSN 8800 Platform Subrack 5.4.1 Structure The OptiX OSN 8800 platform subrack has an independent power supply. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
78
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-25 shows the structure of the subrack. Figure 5-25 Structure of OptiX OSN 8800 platform subrack 1
2
3
4
9
5 8
6 7
1. Indicator and interface area
2. SubRack_ID LED indicator
3. LAMP TEST Button
4. Board area
5. Fiber cabling area
6. Fan tray assembly
7. Air filter
8. Fiber spool
9. Mounting ear
NOTE
The interface area is behind the indicator panel in the upper part of the subrack. Remove the indicator panel before you connect cables.
l
Indicators: indicate the running status and alarm status of the subrack.
l
Subrack ID LED: displays the master/slave relationships between subracks when multiple subracks are cascaded. It has the same function as the subrack ID LED on the front panel of the SCC board. "0" indicates that the subrack housing the SCC board is the master subrack, "EE" indicates that the subrack ID is incorrect or the subrack ID fails to be obtained, and other values indicate slave subracks. For the meanings of other values displayed on the LED, see Figure 5-40.
l
LAMP TEST button: tests whether the indicators on the subrack are normal. After you press the button, all the indicators should be lit. It has the same function as the LAMP TEST button on the SCC board.
l
Board area: All service boards are installed in this area. 22 slots are available.
l
Fiber cabling area: Fiber jumpers from the ports on the front panel of each board are routed to the fiber cabling area before being routed on a side of the open rack. The mechanical VOA is also installed in this area.
l
Fan tray assembly: Fan tray assembly contains ten fans that provide ventilation and heat dissipation for the subrack. NOTE
For detailed descriptions of the fan tray assembly, see 5.4.3 Fan and Heat Dissipation.
l
Air filter: It protects the subrack from dust in the air and requires periodic cleaning.
l
Fiber spool: Fixed fiber spools are on two sides of the subrack. Extra fibers are coiled in the fiber spool on the open rack side before being routed to another subrack.
l
Mounting ears: The mounting ears attach the subrack in the cabinet.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
79
OptiX OSN 8800/6800/3800 Hardware Description
l
5 OptiX OSN 8800 Subrack and Power Requirement
The interface area provides functional interfaces, such as alarm output and cascading interface, alarm input and output interface, and subrack alarm output and cascading interface. It is behind the subrack indicator panel.
Table 5-34 Mechanical specifications of the OptiX OSN 8800 platform subrack Dimensions
Specification
Dimensions
497 mm (W) × 295 mm (D) × 400 mm (H) (19.6 in. (W) × 11.7 in. (D) × 15.7 in. (H))
Weight (empty subrack)
13 kg (28.66 lb.)
a: An empty subrack means no boards are installed in the board area, and no fan tray assembly or air filter is installed.
5.4.2 Slot Description The OptiX OSN 8800 Platform subrack provides 23 slots. Slots of the subrack are shown in Figure 5-26. Figure 5-26 Slots of the subrack IU23 EFI
IU3
IU4
IU5
IU6
IU7
IU8
IU9 IU10 IU11 IU12 IU13 IU14 IU15 IU16
SCC or service board
IU2
SCC or service board
IU1
PWR CRIT MAJ MIN
IU17 IU18
IU19 PIU
IU20 PIU
IU21 AUX
Fiber cabling area IU22 Fan
Mutual backup
l
Issue 03 (2013-05-16)
: houses service boards.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
80
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
NOTE
When the OptiX OSN 8800 platform subrack functions as a master subrack, slot IU18 is used to house the active SCC board and slot IU17 is used to house the standby SCC board or a service board. When the OptiX OSN 8800 platform subrack functions as a slave subrack, it uses the TN15AUX board and the SCC board is not required. In this case, slots IU17 and IU18 can be used to house service boards.
5.4.3 Fan and Heat Dissipation Each OptiX OSN 8800 platform subrack has one fan tray assembly, which includes ten independent fans and an air filter. The air filter can be drawn out and replaced.
Version Description Only one functional version of the fan tray assembly is available, that is, TN15. Functions and Features Table 5-35 Functions of a fan tray assembly Function
Description
Basic function
Dissipates the heat generated by an NE so that the NE can operate normally within the designated temperature range.
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed.
Partitioned heat dissipation
Each subrack is divided into five partitions to help provide efficient heat dissipation. The fan speed in each partition is independently regulated.
Hot swapping
Provides the hot swapping feature for the fan tray assembly.
Alarming
Reports alarms of the fans, and reports the in-service information.
Status checking
Checks and reports on the fan status.
Working Principle A fan tray assembly inside a subrack dissipates heat for the subrack to ensure that the subrack works effectively at a specified temperature. The fan tray assembly is located on the lower part of a subrack. It blows air into the subrack, forming an air duct from bottom to top. Other boards in the subrack are installed vertically. In other words, the boards are parallel to the air duct. This design ensures reliable heat dissipation. Figure 5-27 shows the heat dissipation and ventilation system in the OptiX OSN 8800 platform subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
81
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-27 Single-subrack heat dissipation and ventilation system Side view Front Air outlet
Fan Air inlet
Air filter
The OptiX OSN 8800 platform subrack supports two fan speed modes, as shown in Table 5-36. The partitioned speed regulating function is available in Auto Speed Mode. It is recommended that you set the speed mode to Auto Speed Mode. Table 5-36 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
Fan speed in each partition is regulated automatically according to the temperature of the boards in the partition where the fans are installed. l Lower than 25°C (77°F): the fans run at low speed. l Higher than 45°C (113°F): the fans run at high speed. l 25°C to 45°C (77°F to 113° F): The fans automatically adjust their rotation speeds. This mode can reduce noise and is power-saving. Fan speed in each partition is independently regulated. The fans run at full speed if the speed regulating signals are abnormal. If one of the fans fails, the other fans run at full speed.
Adjustable Speed Mode
Issue 03 (2013-05-16)
Four fan speed modes are available: Stop, Low Speed, Medium Speed, and High Speed. You can set the fan speed manually. In Adjustable Speed Mode, the fans in all partitions run at the same speed and do not support the partitioned manual fan speed adjustment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
82
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Each OptiX OSN 8800 platform subrack is divided into five partitions in terms of heat dissipation. The subrack adopts one fan tray assembly to implement partitioned heat dissipation. See Figure 5-28. Figure 5-28 Partitioned heat dissipation of the OptiX OSN 8800 platform subrack
I I I I I I I I I I U U U U U U U U U U 1 1 2 3 4 5 6 7 8 9 0
A
B
I U 1 1
I U 1 2
IU22 C
I U 1 3
I U 1 4
D
I U 1 5
I U 1 9 I I I I U U U U 2 1 1 1 0 6 7 8 I U 2 1
E
Fan Tray Assembly
There are five partitions (A, B, C, D, and E) in each subrack. Two fans in each partition dissipate heat generated by the boards in the partition where the fans reside. NOTE
l
If any one of the ten fans in the fan tray assembly fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure long-term operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days.
l
If two or more fans fail in the fan tray assemblies, replace the fan tray assembly immediately.
The fan tray assembly consists of ten fans and one fan control unit. Figure 5-29 shows the functional blocks of the fan tray assembly. Figure 5-29 Functional block diagram of the fan tray assembly
Speed adjusting signal SCC
Status signal
Speed adjusting signal Fan control unit
Status signal FAN
External power External power supply 1 supply 2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
83
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
l
FAN: dissipates heat generated by normal operation of the subrack. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm. In this case, the SCC board issues commands to instruct the other fan in the same partition to run at full speed. – Monitors the fan speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 5-30 shows a fan tray assembly. Figure 5-30 Fan tray assembly
3
2
1
1. Air filter
2. Operating status indicators
3. Fans (ten in total)
NOTE
An air filter is installed on the fan tray assembly to prevent dust from entering the subrack.
Valid Slots One slot houses one fan tray assembly. The valid slots for the fan tray assembly is IU22.
Specifications of the Fan Tray Assembly Table 5-37 lists the technical specifications of the OptiX OSN 8800 platform subrack fan tray assembly. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
84
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-37 Technical specifications of the fan tray assembly Item
Specification
Dimensions
493.7 mm (W) x 276 mm (D) x 56.5 mm (H) (19.44 in. (W) x 10.87 in. (D) x 2.22 in. (H))
Weight
3 kg (6.6 lb)
Power Consumptiona
l Low Speed: 40 W l Medium Speed: 60 W l High Speed: 120 W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 120 W.
5.4.4 Power Consumption This section describes the maximum and typical subrack power consumption specifications Table 5-38 describes the power consumption of an OptiX OSN 8800 platform subrack. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Table 5-38 Power consumption of an OptiX OSN 8800 platform subrack. Item
Value
Maximum subrack power consumptiona
1200W
a: The maximum subrack power consumption refers to the theoretical power consumption obtained when boards with the highest power consumption are installed in every slot on the subrack.
Table 5-39 lists the power consumption of the common units in an OptiX OSN 8800 platform subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
85
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-39 Power consumption of the subrack in typical configuration in the OptiX OSN 8800 platform subrack Unit Namea
Typical Power Consumpt ion at 25°C (77°F)b
Maximu m Power Consump tion at 55° C (131°F)b
Remarks
Electr ical relay subra ck
Subrack 1
781
945
16 x TN53NQ2, 2 x PIU, 1 x AUX, and fan tray assembly
Subrack 2
871
1045
8 x TN55NS3, 2 x PIU, 1 x AUX, and fan tray assembly
OTM subrack
105
200
1 x M40V, 1 x D40, 1 x OAU101, 1 x OBU103, 1 x FIU, 1 x SC1, 2 x PIU, 1 x AUX, and fan tray assembly
OLA subrack
97
191
2 x OAU101, 2 x FIU, 1 x SC2, 2 x PIU, 1 x AUX, and fan tray assembly
ROA DM subra ck (4 x dime nsion s)c
115
215
1 x WSMD4, 1 x DAS1, 1 x M40, 1 x D40, 2 x PIU, 1 x AUX, and fan tray assembly
314
601
3 x OTM subrack
Subrack
OTM cabinet
a: In this table, "subrack" refers to a slave subrack, which has no SCC board. If the subrack must be used as a master subrack, it must use SCC boards. In this situation, the typical power consumption of the subrack increases to 23 W and the maximum power consumption increases to 25.1 W. b: Indicates that the power consumption of the subrack and cabinet is the value in a certain configuration. The value is for reference only. The actual power consumption of the chassis and cabinet is calculation based on the power consumption of each module. c: At the ROADM site, it is recommended to deploy one subrack per direction. This table assumes that the four directions are configured identically and provides only the reference configurations for one direction.
5.4.5 Power Requirement This section describes the requirements on power supply.
Requirements on Voltage and Current Table 5-40 provides the requirements on voltage and current of an OptiX OSN 8800 platform subrack. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
86
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-40 Requirements on voltage and current of an OptiX OSN 8800 platform subrack Item
Requirement
Rated working current
25 A (-48 V)
Nominal working voltage
-48 V DC/-60 V DC
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 8800 platform subrack, the PIU board can be TN15PIU l
Function – Accepts DC power in a range from -40 V to -72 V and provides surge protection and power filtering functions. – Provides 3.6 V power supply in centralized manner, with the maximum power of 40 W.
l
Front Panel Appearance of the Front Panel Figure 5-31 Front panel of the TN15PIU board
PIU RUN
NEG(-) RTN(+)
Indicators: Running status indicator (RUN) - green l
Valid Slots Table 5-41 Valid slots for the TN15PIU board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 platform subrack
IU19 and IU20
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
87
OptiX OSN 8800/6800/3800 Hardware Description
l
5 OptiX OSN 8800 Subrack and Power Requirement
Specifications – Performance Specifications Table 5-42 Performance specifications of the TN15PIU board Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V DC
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
Input DC power current
A
≤30
– Mechanical Specifications – Dimensions of front panel: 28 mm (W) x 220 mm (D) x 65 mm (H) (1.1 in. (W) x 8.7 in. (D) x 2.6 in. (H)) – Weight: 0.5 kg (1.1 lb.) – Power Consumption Table 5-43 Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN15PIU
7
7.5
5.5 Data Communication and Equipment Maintenance Interfaces The equipment provides abundant interfaces for data communication and equipment maintenance. These OptiX OSN 8800 T64 interfaces are located in the interface area of the OptiX OSN 8800 T64 subrack and on the front panel of the EFI1, EFI2, ATE, and STI, as shown in Figure 5-32.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
88
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-32 Interfaces of the OptiX OSN 8800 T64 subrack EFI1
EFI2
PIU
53A PWR
ATE
STI
PIU RTN
-48V
53A PWR
-48V
ALMO3
TOD1
ALMI2
CLK1
TOD2
ALMI1 ALMO1
CLK2
ALMO4
ALMO2
NM_ETH1
ETH3
SERIAL
ETH2
LAMP1 LAMP2
ETH1
NM_ETH2
RTN
These OptiX OSN 8800 T32 interfaces are located in the interface area of the OptiX OSN 8800 T32 subrack and on the front panel of the EFI1, EFI2, ATE, and STI, as shown in Figure 5-33.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
89
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-33 Interfaces of the OptiX OSN 8800 T32 subrack EFI2
EFI1
PIU
ATE
STI 53A PWR
-48V
ALMO3
TOD1
ALMI2
CLK1
ALMI1 ALMO1
TOD2
ALMO4
ALMO2
ETH3
NM_ETH1
SERIAL
ETH2
CLK2
ETH1
LAMP1 LAMP2
NM_ETH2
RTN
These OptiX OSN 8800 T16 interfaces are located in the interface area of the OptiX OSN 8800 T16 subrack and on the front panel of the EFI, and ATE, as shown in Figure 5-34. Figure 5-34 Interfaces of the OptiX OSN 8800 T16 subrack PIU EFI
NEG(-)
ALMI1
ALMI2
ALMO1 CLK1 TOD1
ALMO3 ALMO4
ALMO2
NM_ETH1
TOD2
LAMP2
ETH3
NM_ETH2
ETH2
CLK2
LAMP1
SERIAL
ETH1
Issue 03 (2013-05-16)
ATE
PWR RTN(+)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
90
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
These OptiX OSN 8800 platform subrack interfaces are located in the interface area of the OptiX OSN 8800 platform subrack and on the front panel of the EFI, and AUX, as shown in Figure 5-35. Figure 5-35 Interfaces of the OptiX OSN 8800 platform subrack SubRACK_ID ALM01 ALM02
ALMI1
LAMP1 ALMP2
LAMP TEST
SCC
PIU RUN
NEG(-)
STAT ACT PROG SRV PWRA PWRB PWRC ALMC
RTN(+)
SubRACK_ID
NM_ETH1 NM_ETH2 ETH1 ETH2
Fan RESET STAT PROG LAMP TEST
AUX
ALM CUT
SCC
NOTE
The interface area is behind the indicator panel in the upper part of the subrack. Remove the indicator panel before you connect cables. Interfaces in the Interface
5.5.1 ATE ATE: Interface Board of Alarm & Timing & Expanding
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
91
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.5.1.1 Version Description The functional versions of the ATE board are TN16 and TN51. Table 5-44 lists the version description of the ATE board. Table 5-44 Version description of the ATE board Item
Description
Functional version
The available functional versions of the ATE board are TN16 and TN51. The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Difference
l Appearance: The number of interfaces varies according to the board version. For details, see 5.5.1.3 Front Panel. l Specification: The specifications vary according to versions. For details, see "ATE Specification"5.5.1.5 ATE Specifications.
Replacement
The TN16ATE and TN51ATE cannot replace each other.
5.5.1.2 Application The ATE provides alarm output/concatenation interface and alarm input interface. The ATE provides interfaces for inputting and outputting clock signals. Alarm outputs are sent to a centralized alarm management system through the output interface and the cascading interface. You can configure it to be the other outputs to implement integrated display of alarms. External alarm signal input function is designed for requirements when the alarm signals of the external systems (such as the environment monitory) need remote monitoring.
5.5.1.3 Front Panel There are interfaces on the front panel of the ATE board.
Appearance of the Front Panel Figure 5-36 shows the front panel of the TN51ATE board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
92
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-36 Front panel of the TN51ATE board ATE
ALMI2
ALMI1
ALMO3
ALMO1
ALMO4
ALMO2
Figure 5-37 shows the front panel of the TN16ATE board. Figure 5-37 Front panel of the TN16ATE board ATE ALMI2
ALMI1
ALMO3
TOD2
ALMO4
ALMO1 ALMO2 CLK1 TOD1
CLK2
Interfaces Table 5-45 lists the types and functions of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
93
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-45 Types and functions of the interfaces on the ATE board Interface
Type
Function
ALMO1– ALMO4
RJ45
l Housekeeping alarm outputs can be sent to a central alarm monitoring system for centralized surveillance through the ALMO1–ALMO4 interfaces. The alarm outputs are controlled by the internal relay contact. When the relay contact is closed, the resistance of each ALMO interface is less than 1 ohm. When the relay contact is open, the resistance of each ALMO interface is an infinite number. l The ALMO1 and ALMO2 interfaces have the same pin usage and are a pair of housekeeping alarm output/cascading interfaces. Similarly, the ALMO3 and ALMO4 interfaces also have the same pin usage and are another pair of housekeeping output/ cascading interfaces. For example, when ALMO1 and ALMO3 are used to output housekeeping alarm signals, ALMO2 and ALMO4 can be cascaded to ALMO2 and ALM04 on another subrack. l The OptiX OSN 8800 provides for eight alarm outputs. By default, the first three alarm outputs are defined as critical alarm, major alarm, and minor alarm. The other five are reserved. Alarm outputs can be cascaded.
ALMI1– ALMI2
RJ45
The OptiX OSN 8800 provides for eight housekeeping alarm inputs. The user can manually configure the severity of the eight alarms for remote monitoring of external device alarms.
CLK1/CLK2
RJ45
CLK1/CLK2 interface can input or output time signals. CLK1/CLK2 interface is bidirectional. That is, they input and output signals at the same time.
TOD1/TOD2
RJ45
TOD1/TOD2 interface can input or output time signals. At any time, a TOD1/TOD2 interface can either input or output time signals.
Pin assignment of the RJ45 Connector Figure 5-38 shows the pin assignment of the RJ45 connector.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
94
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-38 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the ALMO1 and the ALMO2 Interfaces For the pin assignment of the ALMO1 and the ALMO2 interfaces, refer to Table 5-46. Table 5-46 Pin assignment of the ALMO1 and ALMO2 interfaces Pin
Signal
Function
1
CRIT_SWITCH_OUTP
Critical housekeeping alarm output, positive
2
CRIT_SWITCH_OUTN
Critical housekeeping alarm output, negative
3
MAJ_SWITCH_OUTP
Major housekeeping alarm output, positive
4
MIN_SWITCH_OUTP
Minor housekeeping alarm output, positive
5
MIN_SWITCH_OUTN
Minor housekeeping alarm output, negative
6
MAJ_SWITCH_OUTN
Major housekeeping alarm output, negative
7
ALM_SWITCH_OUT1P
Reserved for housekeeping alarm output 1, positive
8
ALM_SWITCH_OUT1N
Reserved for housekeeping alarm output 1, negative
Pin Assignment of the ALMO3 and the ALMO4 Interfaces For the pin assignment of the ALMO3 and the ALMO4 interfaces, refer to Table 5-47.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
95
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-47 Pin assignment of the ALMO3 and the ALMO4 interfaces Pin
Signal
Function
1
ALM_SWITCH_OUT2P
Housekeeping alarm output 2, positive
2
ALM_SWITCH_OUT2N
Housekeeping alarm output 2, negative
3
ALM_SWITCH_OUT3P
Housekeeping alarm output 3, positive
4
ALM_SWITCH_OUT4P
Housekeeping alarm output 4, positive
5
ALM_SWITCH_OUT4N
Housekeeping alarm output 4, negative
6
ALM_SWITCH_OUT3N
Housekeeping alarm output 3, negative
7
ALM_SWITCH_OUT5P
Housekeeping alarm output 5, positive
8
ALM_SWITCH_OUT5N
Housekeeping alarm output 5, negative
Pin Assignment of the ALMI1 Interface For the pin assignment of the ALMI1 interface, refer to Table 5-48. Table 5-48 Pin assignment of the ALMI1 interface Pin
Signal
Function
1
SWITCHI_IN1
Housekeeping alarm input 1
2
GND
Ground
3
SWITCHI_IN2
Housekeeping alarm 2
4
SWITCHI_IN3
Housekeeping alarm 3
5
GND
Ground
6
GND
Ground
7
SWITCHI_IN4
Housekeeping alarm 4
8
GND
Ground
Pin Assignment of the ALMI2 Interface For the pin assignment of the ALMI2 interface, refer to Table 5-49. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
96
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-49 Pin assignment of the ALMI2 Pin
Signal
Function
1
SWITCHI_IN5
Housekeeping alarm 5
2
GND
Ground
3
SWITCHI_IN6
Housekeeping alarm 6
4
SWITCHI_IN7
Housekeeping alarm 7
5
GND
Ground
6
GND
Ground
7
SWITCHI_IN8
Housekeeping alarm 8
8
GND
Ground
Pin Assignment of the CLK1/CLK2 Interface For the pin assignment of the CLK1/CLK2 interface, refer to Table 5-50. Table 5-50 Pin assignment of the CLK1/CLK2 interface Pin
Signal
Function
1
RJ0_E1_RX_N
2MHz/2Mbit input negative
2
RJ0_E1_RX_P
2MHz/2Mbit input positive
3
NC
Not connected
4
RJ0_E1_TX_N
2MHz/2Mbit output negative
5
RJ0_E1_TX_P
2MHz/2Mbit output positive
6
NC
Not connected
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the TOD1/TOD2 Interface For the pin assignment of the TOD1/TOD2 interface, refer to Table 5-51. Table 5-51 Pin assignment of the TOD1/TOD2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
GND
Ground
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
97
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
2
GND
Ground
3
DCLS_IN0_N
1PPS negative
4
GND
Ground
5
GND
Ground
6
DCLS_IN0_P
1PPS positive
7
DCLS_OUT0_N
TOD negative
8
DCLS_OUT0_P
TOD positive
5.5.1.4 Valid Slots One slot houses one ATE board. Table 5-52 shows the valid slots for the TN51ATE board. Table 5-52 Valid slots for the TN51ATE board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU87
OptiX OSN 8800 T32 subrack
IU48
Table 5-53 shows the valid slots for the TN16ATE board. Table 5-53 Valid slots for the TN16ATE board Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU24
5.5.1.5 ATE Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l Issue 03 (2013-05-16)
Dimensions of front panel: Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
98
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
– TN51ATE: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) – TN16ATE: 76.2 mm (W) x 220 mm (D) x 80 mm (H) (3.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) l
Weight: – TN51ATE: 0.2 kg (0.44 lb.) – TN16ATE: 0.5 kg (1.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN51ATE
0.3
0.3
TN16ATE
0.2
0.3
5.5.2 TN15EFI EFI: EMI Filter Interface Board
5.5.2.1 Version Description The available functional version of the EFI board is TN15.
5.5.2.2 Application EFI provides the subrack ID LED, LAMP TEST button, alarm output and cascading interfaces, and alarm I/O interfaces.
5.5.2.3 Front Panel There are interfaces on the front panel of the EFI board.
Appearance of the Front Panel Figure 5-39 shows the front panel of the EFI board. Figure 5-39 Front panel of the EFI board SubRACK_ID
ALM01 ALM02
SubRACK_ID
ALMI1 LAMP1 LAMP2
LAMP TEST
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
99
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
CAUTION The LAMP interfaces on the EFI board provide 5 V power, it is only used for the indicators on a cabinet. It cannot connect to an RJ45 cable intended for the NM_ETH, ETH, ALMO, or CLK interface; otherwise, the EFI board, the connected test instrument, or the equipment will be damaged.
Indicators Four indicators are present on the front panel: l
PWR: green indicator, which indicates whether the power cables are energized.
l
CRIT: a subrack-level red indicator, which indicates whether a critical alarm is present on the subrack.
l
MAJ: a subrack-level orange indicator, which indicates whether a major alarm is present on the subrack.
l
MIN: a subrack-level yellow indicator, which indicates whether a minor alarm is present on the subrack.
Interfaces and Buttons Table 5-54 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
100
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-54 Description of interfaces in the interface area Silk-screen
Interface
Connector
Function
ALMO1 ALMO2
Alarm output and cascading interface
RJ45
l Alarm outputs are sent to the DC power distribution cabinet through the output interface and the cascading interface. You can configure it to be the other outputs to implement integrated display of alarms. The alarm outputs are controlled by the internal relay contact. When the relay contact is closed, the resistance of each ALMO interface is less than 1 ohm. When the relay contact is open, the resistance of each ALMO interface is an infinite number. l The definitions for the pins of the ALMO1 and ALMO2 interfaces are the same. The two interfaces are used for output/ cascading, respectively. For example, if ALMO1 is used to output alarm signals, ALMO2 can be cascaded to ALMO1 on another subrack. l The OptiX OSN 8800 platform subrack provides four alarm outputs. Defaults of the first three are critical alarm, major alarm, and minor alarm. The other one are reserved. Alarm outputs can be cascaded.
Issue 03 (2013-05-16)
ALMI1
Alarm input interface
RJ45
External alarm signal input function is designed for requirements when the alarm signals of the external systems (such as the environment monitory) need remote monitoring. The OptiX OSN 8800 platform subrack provides four alarm inputs. The severity of the four alarms can be configured to cooperate with the external system to implement remote monitoring of external alarms.
LAMP1 LAMP2
Subrack alarm output and cascading interface
RJ45
This interface drives the running indicators and alarm indicators of the cabinet that holds the subrack.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
101
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Silk-screen
Interface
Connector
Function
LAMP TEST
LAMP TEST button
-
The LAMP TEST button is used for testing the indicators on the subrack. After you press the LAMP TEST button, all indicators on the subrack should be lit. This button has the same function as the LAMP TEST button on the SCC board.
SubRACK_ID
Subrack ID LED
-
The LED displays the master/slave relationships between subracks. "0" indicates that the subrack housing the EFI board is the master subrack, "EE" indicates that the subrack ID is incorrect or the subrack ID fails to be obtained, and other values indicate slave subracks. For the meanings of other values displayed on the LED, see Figure 5-40. This subrack ID LED has the same function as that on front panel of the SCC board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
102
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-40 LED
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Error
Hexadecimal subrack ID displayed in the LED
0
Decimal subrack ID
Pin assignment of the RJ45 Connector Figure 5-41 shows the pin assignment of the RJ45 connector. Figure 5-41 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
103
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin Assignment of the ALMO1 and the ALMO2 Interfaces For the pin assignment of the ALMO1 and the ALMO2 interfaces, refer to Table 5-55. Table 5-55 Pin assignment of the ALMO1 and ALMO2 interfaces Pin
Signal
Function
1
CRIT_SWITCH_OUTP
Outputs the critical alarm signal positive
2
CRIT_SWITCH_OUTN
Outputs the critical alarm signal negative
3
MAJ_SWITCH_OUTP
Outputs the major alarm signal positive
4
MIN_SWITCH_OUTP
Outputs the minor alarm signal positive
5
MIN_SWITCH_OUTN
Outputs the minor alarm signal negative
6
MAJ_SWITCH_OUTN
Outputs the major alarm signal negative
7
ALM_SWITCH_OUT1P
Alarm signal output 1 positive
8
ALM_SWITCH_OUT1N
Alarm signal output 1 negative
Pin Assignment of the ALMI1 Interface For the pin assignment of the ALMI1 interface, refer to Table 5-56. Table 5-56 Pin assignment of the ALMI1 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
SWITCHI_IN1
Alarm input 1
2
GND
Ground
3
SWITCHI_IN2
Alarm input 2
4
SWITCHI_IN3
Alarm input 3
5
GND
Ground
6
GND
Ground
7
SWITCHI_IN4
Alarm input 4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
104
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
8
GND
Ground
Pin Assignment of the LAMP1 and the LAMP2 Interfaces For the pin assignment of the LAMP1 and the LAMP2 interfaces, refer to Table 5-57. Table 5-57 Pin assignment of the LAMP1 and the LAMP2 interfaces Pin
Signal
Function
1
CRIT_ALMP
Positive pole for critical alarm signals
2
CRIT_ALMN
Negative pole for critical alarm signals
3
MAJ_ALMP
Positive pole for major alarm signals
4
RUNP
Positive pole for power indicating signals
5
RUNN
Negative pole for power indicating signals
6
MAJ_ALMN
Negative pole for major alarm signals
7
MIN_ALMP
Positive pole for minor alarm signals
8
MIN_ALMN
Negative pole for minor alarm signals
5.5.2.4 Valid Slots One slot houses one EFI board. Table 5-58 shows the valid slots for the EFI board. Table 5-58 Valid slots for the EFI board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 platform subrack
IU23
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
105
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.5.2.5 EFI Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l
Dimensions of front panel: 320 mm (W) x 70.3 mm (D) x 20 mm (H) (12.6 in. (W) x 2.8 in. (D) x 0.8 in. (H))
l
Weight: 0.1 kg (0.22 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
EFI
2.5
2.8
5.5.3 TN16EFI EFI: EMI Filter Interface Board
5.5.3.1 Version Description The available functional version of the EFI board is TN16.
5.5.3.2 Application The EFI provides the alarm output/concatenation interface, network management interface, subrack communication interface and OAM interfaces.
5.5.3.3 Front Panel There are interfaces on the front panel of the EFI board.
Appearance of the Front Panel Figure 5-42 shows the front panel of the EFI board. Figure 5-42 Front panel of the EFI board EFI ETH1
LAMP1
ETH2
LAMP2
SERIAL
NM_ETH1
ETH3
NM_ETH2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
106
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
CAUTION The LAMP interfaces on the EFI board provide 5 V power, it is only used for the indicators on a cabinet. It cannot connect to an RJ45 cable intended for the NM_ETH, ETH, ALMO, or CLK interface; otherwise, the EFI board, the connected test instrument, or the equipment will be damaged.
Interfaces Table 5-59 lists the type and function of each interface. Table 5-59 Types and functions of the interfaces on the EFI board Interface
Type
Function
LAMP1– LAMP2
RJ45
Controls the PWR indicators and alarm indicators of the cabinet that holds the subrack.
ETH1–ETH3
RJ45
l Connects a network cable from the ETH1/ETH2/ ETH3 interface on one subrack to corresponding interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. NOTE When inter-subrack protection is configured, the ETH3 interface cannot be used for the communication between the master and slave subracks.
l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board. NM_ETH1– NM_ETH2
RJ45
l Connects the network interface on the equipment through a network cable to that on an NM server so that the NM can manage the equipment. l Connects the NM_ETH1/NM_ETH2 network interface on one NE through a network cable to that on another NE to achieve communication between NEs.
SERIAL
DB9
The interface provides serial NM and supports X.25 protocol.
Pin assignment of the RJ45 Connector Figure 5-43 shows the pin assignment of the RJ45 connector.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
107
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-43 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the DB9 Connector Figure 5-44 shows the pin assignment of the DB9 connector. Figure 5-44 Pin assignment of the DB9 connector
1 6 2 7 3 8 4 9 5
Pin Assignment of the ETH1 Interface For the pin assignment of the ETH1 interface, refer to Table 5-60. Table 5-60 Pin assignment of the ETH1 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH1_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH1_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
108
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
3
ETH1_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH1_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
5
ETH1_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH1_RXN
Negative pole for receiving the data for ordinary intersubrack communication
7
ETH1_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH1_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the ETH2 Interface For the pin assignment of the ETH2 interface, refer to Table 5-61. Table 5-61 Pin assignment of the ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH2_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH2_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
3
ETH2_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH2_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
109
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
5
ETH2_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH2_RXN
Negative pole for receiving the data for ordinary intersubrack communication
7
ETH2_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH2_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the ETH3 Interface For the pin assignment of the ETH3 interface, refer to Table 5-62. Table 5-62 Pin assignment of the ETH3 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH3_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH3_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
3
ETH3_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH3_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
5
ETH3_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH3_RXN
Negative pole for receiving the data for ordinary intersubrack communication
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
110
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
7
ETH3_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH3_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the LAMP1 and the LAMP2 Interfaces For the pin assignment of the LAMP1 and the LAMP2 interfaces, refer to Table 5-63. Table 5-63 Pin assignment of the LAMP1 and the LAMP2 interfaces Pin
Signal
Function
1
CRIT_ALMP
Positive pole for critical alarm signals
2
CRIT_ALMN
Negative pole for critical alarm signals
3
MAJ_ALMP
Positive pole for major alarm signals
4
RUNP
Positive pole for power indicating signals
5
RUNN
Negative pole for power indicating signals
6
MAJ_ALMN
Negative pole for major alarm signals
7
MIN_ALMP
Positive pole for minor alarm signals
8
MIN_ALMN
Negative pole for minor alarm signals
Pin Assignment of the NM_ETH1 Interface For the pin assignment of the NM_ETH1 interface, refer to Table 5-64.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
111
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-64 Pin assignment of the NM_ETH1 interface Pin
Signal
Function
1
NM_ETNTXP
Positive pole for transmitting the data for communication with the NM
2
NM_ETNTXN
Negative pole for transmitting the data for communication with the NM
3
NM_ETNRXP
Positive pole for receiving the data for communication with the NM
4
NC
Not connected
5
NC
Not connected
6
NM_ETNRXN
Negative pole for receiving the data for communication with the NM
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the NM_ETH2 Interface For the pin assignment of the NM_ETH2 interface, refer to Table 5-65. Table 5-65 Pin assignment of the NM_ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
NMJL_ETNTXP
Positive pole for transmitting the concatenated data for communication with a network management system (NM)
2
NMJL_ETNTXN
Negative pole for transmitting the concatenated data for communication with an NM
3
NMJL_ETNRXP
Positive pole for receiving the concatenated data for communication with an NM
4
NC
Not connected
5
NC
Not connected
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
112
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
6
NMJL_ETNRXN
Negative pole for receiving the concatenated data for communication with an NM
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the SERIAL Interface For the pin assignment of the SERIAL interface, refer to Table 5-66. Table 5-66 Pin assignment of the SERIAL interface Pin
Signal
Function
1
N.C
Not defined
2
RXD
Receive end
3
TXD
Transmit end
4
DTR
Data terminal equipment ready
5
GND
Ground
6
-
Reserved
7
-
Reserved
8
GND
Ground
9
N.C
Not defined
5.5.3.4 Valid Slots One slot houses one EFI board. Table 5-67 shows the valid slots for the EFI board. Table 5-67 Valid slots for the EFI board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU19
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
113
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.5.3.5 DIP Switches There are DIP switches inside the EFI board. The master and slave subracks are connected through the ETH1/ETH2/ETH3 interface on the EFI. The ID of each subrack is set by using two DIP switches on the EFI board. The value that can be set by using each of the two DIP switches on the EFI board is a binary value 0 or 1. ID1-ID4 correspond to bits 1-4 of SW2, and ID5-ID8 corresponding to bits 1-4 of SW1. Among these ID values, only ID1-ID5 are valid. ID6-ID8 are reserved. The bits from high to low are ID5-ID1, by which a maximum of 32 states can be set. The value is 00000 by default. "0" indicates the master subrack. The other values indicate slave subracks. Figure 5-45 shows the position of the DIP switches on the EFI board. l
The two DIP switches are numbered SW1 and SW2 and are located to the right of the T1.
l
When the DIP switch is ON, the value of the corresponding bit is set to 0.
l
As shown in Figure 5-45, the value represented by the ID5-ID1 is 000001, which is 1 in decimal system. That is, the subrack ID is 1.
Figure 5-45 Position of the DIP switches on the EFI board
U8 SERIAL
SW1
NM_ETH2
SW2
T1
ON
ON
ON
ON
(ID1) (ID2) (ID3) (ID4)
ON
ON
ON
ON
(ID5) (ID6) (ID7) (ID8)
SW1
SW2
NOTE
Ensure that the ID6 to ID8 switches are turned on as shown in Figure 5-45.
5.5.3.6 EFI Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l
Dimensions of front panel: 76.2 mm (W) x 220 mm (D) x 80 mm (H) (3.0 in. (W) x 8.7 in. (D) x 3.1 in. (H))
l
Weight: 0.5 kg (1.1 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
114
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
EFI
2
2.5
5.5.4 EFI1 EFI1: EMI Filter Interface Board
5.5.4.1 Version Description Only one functional version of the EFI1 board is available, that is, TN51.
5.5.4.2 Application The EFI1 provides network management and OAM interfaces.
5.5.4.3 Front Panel There are interfaces on the front panel of the EFI1 board.
Appearance of the Front Panel Figure 5-46 shows the front panel of the EFI1 board. Figure 5-46 Front panel of the EFI1 board EFI1
NM_ETH2 SERIAL
Interfaces Table 5-68 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
115
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-68 Types and functions of the interfaces on the EFI1 board Interface
Type
Function
NM_ETH2
RJ45
l Connects the network interface on the equipment through a network cable to that on an NM so that the NM can manage the equipment. l Connects the NM_ETH1/NM_ETH2 network interface on one NE through a network cable to that on another NE to achieve communication between NEs. NM_ETH1 and NM_ETH2 have the same function.
DB9
SERIAL
The interface provides serial NM and supports X.25 protocol.
Pin assignment of the RJ45 Connector Figure 5-47 shows the pin assignment of the RJ45 connector. Figure 5-47 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the DB9 Connector Figure 5-48 shows the pin assignment of the DB9 connector. Figure 5-48 Pin assignment of the DB9 connector
1 6 2 7 3 8 4 9 5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
116
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin Assignment of the NM_ETH2 Interface For the pin assignment of the NM_ETH2 interface, refer to Table 5-69. Table 5-69 Pin assignment of the NM_ETH2 interface Pin
Signal
Function
1
NMJL_ETNTXP
Positive pole for transmitting the concatenated data for communication with a network management system (NM)
2
NMJL_ETNTXN
Negative pole for transmitting the concatenated data for communication with an NM
3
NMJL_ETNRXP
Positive pole for receiving the concatenated data for communication with an NM
4
NC
Not connected
5
NC
Not connected
6
NMJL_ETNRXN
Negative pole for receiving the concatenated data for communication with an NM
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the SERIAL Interface For the pin assignment of the SERIAL interface, refer to Table 5-70. Table 5-70 Pin assignment of the SERIAL interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
N.C
Not defined
2
RXD
Receive end
3
TXD
Transmit end
4
DTR
Data terminal equipment ready
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
117
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
5
GND
Ground
6
-
Reserved
7
-
Reserved
8
GND
Ground
9
N.C
Not defined
5.5.4.4 Valid Slots One slot houses one EFI1 board. Table 5-71 provides the valid slots for the EFI1 board. Table 5-71 Valid slots for the EFI1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU76
OptiX OSN 8800 T32 subrack
IU38
5.5.4.5 DIP Switches There are DIP switches inside the EFI1 board. The EFI2 board is connected to the master subrack through the ETH1, ETH2, or ETH3 interface. The ID of each subrack is set by using two DIP switches on the EFI1 board. The value that can be set by using each of the two DIP switches on the EFI1 board is a binary value 0 or 1. ID1ID4 correspond to bits 1-4 of SW2, and ID5-ID8 corresponding to bits 1-4 of SW1. Among these ID values, only ID1-ID5 are valid. ID6-ID8 are reserved. The bits from high to low are ID5ID1, by which a maximum of 32 states can be set. The value is 00000 by default. "0" indicates the master subrack. The other values indicate slave subracks. Figure 5-49 shows the position of the DIP switches on the EFI1 board. l
The two DIP switches are numbered SW1 and SW2 and are located to the right of the CPLD.
l
When the DIP switch is ON, the value of the corresponding bit is set to 0.
l
As shown in Figure 5-49, the value represented by the ID5-ID1 is 000001, which is 1 in decimal system. That is, the subrack ID is 1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
118
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-49 Position of the DIP switches on the EFI1 board
NM_ETH2
CPLD SERIAL
(ID5)
ON
(ID1)
ON
(ID6)
ON
(ID2)
ON
(ID7)
ON
(ID3)
ON
(ID8)
ON
(ID4)
ON
SW1
SW2
NOTE
Ensure that the ID6 to ID8 switches are turned on as shown in Figure 5-49.
5.5.4.6 EFI1 Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l
Dimensions of front panel: 25.4 (W) x 220 mm (D) x 80 mm (H) (1.0 in. (W) x 8.7 in. (D) x 3.1 in. (H))
l
Weight: 0.2 kg (0.44 lb)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
EFI1
5
7
5.5.5 EFI2 EFI2: EMI Filter Interface Board
5.5.5.1 Version Description Only one functional version of the EFI2 board is available, that is, TN51.
5.5.5.2 Application The EFI2 provides the alarm output/concatenation interface, network management interface and subrack communication interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
119
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
5.5.5.3 Front Panel There are interfaces on the front panel of the EFI2 board.
Appearance of the Front Panel Figure 5-50 shows the front panel of the EFI2 board. Figure 5-50 Front panel of the EFI2 board EFI2
LAMP1
ETH1
LAMP2
ETH2
NM_ETH1
ETH3
CAUTION The LAMP interfaces on the EFI board provide 5 V power, it is only used for the indicators on a cabinet. It cannot connect to an RJ45 cable intended for the NM_ETH, ETH, ALMO, or CLK interface; otherwise, the EFI board, the connected test instrument, or the equipment will be damaged.
Interfaces Table 5-72 lists the type and function of each interface. Table 5-72 Types and functions of the interfaces on the EFI2 board
Issue 03 (2013-05-16)
Interface
Type
Function
LAMP1– LAMP2
RJ45
Controls the PWR indicators and alarm indicators of the cabinet that holds the subrack.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
120
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Interface
Type
Function
NM_ETH1
RJ45
l Connects the network interface on the equipment through a network cable to that on an NM server so that the NM can manage the equipment. l Connects the NM_ETH1/NM_ETH2 network interface on one NE through a network cable to that on another NE to achieve communication between NEs. NM_ETH1 and NM_ETH2 have the same function.
ETH1–ETH3
RJ45
l Connects a network cable from the ETH1/ETH2/ ETH3 interface on one subrack to corresponding interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. NOTE When inter-subrack protection is configured, the ETH3 interface cannot be used for the communication between the master and slave subracks.
l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board.
Pin assignment of the RJ45 Connector Figure 5-51 shows the pin assignment of the RJ45 connector. Figure 5-51 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the ETH1 Interface For the pin assignment of the ETH1 interface, refer to Table 5-73.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
121
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-73 Pin assignment of the ETH1 interface Pin
Signal
Function
1
ETH1_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH1_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
3
ETH1_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH1_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
5
ETH1_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH1_RXN
Negative pole for receiving the data for ordinary intersubrack communication
7
ETH1_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH1_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the ETH2 Interface For the pin assignment of the ETH2 interface, refer to Table 5-74. Table 5-74 Pin assignment of the ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH2_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH2_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
122
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
3
ETH2_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH2_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
5
ETH2_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH2_RXN
Negative pole for receiving the data for ordinary intersubrack communication
7
ETH2_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH2_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the ETH3 Interface For the pin assignment of the ETH3 interface, refer to Table 5-75. Table 5-75 Pin assignment of the ETH3 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH3_TXP
Positive pole for transmitting the data for ordinary intersubrack communication
2
ETH3_TXN
Negative pole for transmitting the data for ordinary inter-subrack communication
3
ETH3_RXP
Positive pole for receiving the data for ordinary intersubrack communication
4
ETH3_CRIT_TXP
Positive pole for transmitting the data for emergent intersubrack communication
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
123
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
5
ETH3_CRIT_TXN
Negative pole for transmitting the data for emergent inter-subrack communication
6
ETH3_RXN
Negative pole for receiving the data for ordinary intersubrack communication
7
ETH3_CRIT_RXP
Positive pole for receiving the data for emergent intersubrack communication
8
ETH3_CRIT_RXN
Negative pole for receiving the data for emergent intersubrack communication
Pin Assignment of the LAMP1 and the LAMP2 Interfaces For the pin assignment of the LAMP1 and the LAMP2 interfaces, refer to Table 5-76. Table 5-76 Pin assignment of the LAMP1 and the LAMP2 interfaces
Issue 03 (2013-05-16)
Pin
Signal
Function
1
CRIT_ALMP
Positive pole for critical alarm signals
2
CRIT_ALMN
Negative pole for critical alarm signals
3
MAJ_ALMP
Positive pole for major alarm signals
4
RUNP
Positive pole for power indicating signals
5
RUNN
Negative pole for power indicating signals
6
MAJ_ALMN
Negative pole for major alarm signals
7
MIN_ALMP
Positive pole for minor alarm signals
8
MIN_ALMN
Negative pole for minor alarm signals
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
124
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin Assignment of the NM_ETH1 Interface For the pin assignment of the NM_ETH1 interface, refer to Table 5-77. Table 5-77 Pin assignment of the NM_ETH1 interface Pin
Signal
Function
1
NM_ETNTXP
Positive pole for transmitting the data for communication with the NM
2
NM_ETNTXN
Negative pole for transmitting the data for communication with the NM
3
NM_ETNRXP
Positive pole for receiving the data for communication with the NM
4
NC
Not connected
5
NC
Not connected
6
NM_ETNRXN
Negative pole for receiving the data for communication with the NM
7
NC
Not connected
8
NC
Not connected
5.5.5.4 Valid Slots One slot houses one EFI2 board. Table 5-78 shows the valid slots for the EFI2 board. Table 5-78 Valid slots for the EFI2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU71
OptiX OSN 8800 T32 subrack
IU37
5.5.5.5 EFI2 Specifications Specifications include dimensions, weight and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
125
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Mechanical Specifications l
Dimensions of front panel: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H))
l
Weight: 0.3 kg (0.66 lb)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
EFI2
13
15
5.5.6 STI STI: Synchronous Timing Interface Board
5.5.6.1 Version Description The functional versions of the STI board are TN52 and TNL1. In an OptiX OSN 8800 T32 subrack, if the TNL1STI board is configured, the SCC board version must be TN52.
5.5.6.2 Application The STI, a clock interface unit, provides interfaces for input and output of clock signals.
5.5.6.3 Front Panel There are interfaces on the front panel of the STI board.
Appearance of the Front Panel Figure 5-52 and Figure 5-53 show the front panel of the STI board. Figure 5-52 Front panel of the TN52STI board STI
CLK1
CLK2
TOD1
TOD2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
126
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-53 Front panel of the TNL1STI board STI
CLK1
CLK2
TOD1
TOD2
F1
PHONE
NOTE
In an OptiX OSN 8800 T32 subrack, if the TNL1STI board is configured, the SCC board version must be TN52.
Interfaces Table 5-79 provides descriptions of the interfaces on the STI board. Table 5-79 Interface description of the STI Interfa ce
Silkscreen
Connector
Function
CLK1/ CLK2
CLK1/ CLK2
RJ45
CLK1/CLK2 interface can input or output time signals. CLK1/CLK2 interface is bidirectional. That is, they input and output signals at the same time.
TOD1/ TOD2
TOD1/ TOD2
RJ45
TOD1/TOD2 interface can input or output time signals. At any time, a TOD1/TOD2 interface can either input or output time signals.
PHONE
PHON E
RJ45
Orderwire phone interface
F1
F1
RJ45
F1 interface
Pin assignment of the RJ45 Connector Figure 5-54 describes the pin assignment of the RJ45 connector.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
127
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Figure 5-54 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the CLK1/CLK2 Interface For the pin assignment of the CLK1/CLK2 interface, refer to Table 5-80. Table 5-80 Pin assignment of the CLK1/CLK2 interface Pin
Signal
Function
1
RJ0_E1_RX_N
2MHz/2Mbit input negative
2
RJ0_E1_RX_P
2MHz/2Mbit input positive
3
NC
Not connected
4
RJ0_E1_TX_N
2MHz/2Mbit output negative
5
RJ0_E1_TX_P
2MHz/2Mbit output positive
6
NC
Not connected
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the TOD1/TOD2 Interface For the pin assignment of the TOD1/TOD2 interface, refer to Table 5-81. Table 5-81 Pin assignment of the TOD1/TOD2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
GND
Ground
2
GND
Ground
3
DCLS_IN0_N
1PPS negative
4
GND
Ground
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
128
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
5
GND
Ground
6
DCLS_IN0_P
1PPS positive
7
DCLS_OUT0_N
TOD negative
8
DCLS_OUT0_P
TOD positive
Pin Assignment of the PHONE Interface For the pin assignment of the PHONE interface, refer to Table 5-82. Table 5-82 Pin assignment of the PHONE interface Pin
Signal
Function
1
NC
Not connected
2
NC
Not connected
3
NC
Not connected
4
RING
Signal 1
5
TIP
Signal 2
6
NC
Not connected
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the F1 Interface For the pin assignment of the F1 interface, refer to Table 5-83. Table 5-83 Pin assignment of the F1 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
TX_P
Transmitting (+)
2
TX_N
Transmitting (-)
3
RX_P
Receiving (+)
4
NC
Not connected
5
NC
Not connected
6
RX_N
Receiving (-)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
129
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
7
NC
Not connected
8
NC
Not connected
5.5.6.4 Valid Slots One slot houses one STI board. Table 5-84 shows the valid slots for the STI board. Table 5-84 Valid slots for the STI board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU82
OptiX OSN 8800 T32 subrack
IU47
5.5.6.5 STI Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l
Dimensions of front panel: 50.8 mm (W) x 220 mm (D) x 80 mm (H) (2.0 in. (W) x 8.7 in. (D) x 3.1 in. (H))
l
Weight of TN52STI: 0.3 kg (0.66 lb)
l
Weight of TNL1STI: 0.4 kg (0.88 lb)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52STI
1.5
1.5
TNL1STI
3
3
5.5.7 Interfaces on the Front Panel of the AUX Board In an OptiX OSN 8800 platform subrack. The TN15AUX board provides NM interface, NM cascading interface, inter-subrack normal and emergent communication interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
130
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Appearance of the Front Panel Figure 5-55 shows the front panel of the AUX. Slot IU21 houses the AUX board. Figure 5-55 Interfaces on the front panel of the AUX
NM_ETH1 NM_ETH2 ETH1 ETH2
STAT PROG
AUX
Interfaces Description of interfaces on the front panel of the AUX board is list in Table 5-85. Table 5-85 Description of interfaces on the front panel of the AUX board Interface
Silk-screen
Connector
Function
NE management interface
NM_ETH1/ NM_ETH2
RJ45
l Connects the network interface on the OptiX OSN 8800 platform through a network cable to that on the U2000 server to achieve the management of the U2000 over the OptiX OSN 8800 platform. l Connects to the external CRPC or ROP board of a slave subrack using a network cable so that the slave subrack can communicate with the CRPC or ROP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
131
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Interface
Silk-screen
Connector
Function
Inter-subrack communication interface
ETH1/ETH2
RJ45
l Connects the ETH1/ETH2/ ETH3 interface on one subrack through a network cable to such interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board.
Pin assignment of the RJ45 Connector Figure 5-56 shows the pin assignment of the RJ45 connector. Figure 5-56 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the NM-ETH1 Interface For the pin assignment of the NM-ETH1 interface, refer to Table 5-86. Table 5-86 Pin assignment of the NM-ETH1 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
NM_ETNTXP
NM communications, transmits the data positive
2
NM_ETNTXN
NM communications, transmits the data negative
3
NM_ETNRXP
NM communications, receives the data positive
4
NC
Not connected.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
132
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
5
NC
Not connected.
6
NM_ETNRXN
NM communications, receives the data negative
7
NC
Not connected.
8
NC
Not connected.
Pin Assignment of the NM-ETH2 Interface For the pin assignment of the NM-ETH2 interface, refer to Table 5-87. Table 5-87 Pin assignment of the NM-ETH2 interface Pin
Signal
Function
1
NMJL_ETNTXP
Transmits the concatenated data positive for NM communications
2
NMJL_ETNTXN
Transmits the concatenated data negative for NM communications
3
NMJL_ETNRXP
Receives the concatenated data positive for NM communications
4
NC
Not connected
5
NC
Not connected
6
NMJL_ETNRXN
Receives the concatenated data negative for NM communications
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the ETH1 Interface For the pin assignment of the ETH1 interface, refer to Table 5-88.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
133
OptiX OSN 8800/6800/3800 Hardware Description
5 OptiX OSN 8800 Subrack and Power Requirement
Table 5-88 Pin assignment of the ETH1 interface Pin
Signal
Function
1
ETH1_TXP
Transmits the data positive for inter-subrack ordinary communications
2
ETH1_TXN
Transmits the data negative for inter-subrack ordinary communications
3
ETH1_RXP
Receives the data positive for inter-subrack ordinary communications
4
ETH1_CRIT_TXP
Transmits the data positive for inter-subrack emergent communications
5
ETH1_CRIT_TXN
Transmits the data negative for inter-subrack emergent communications
6
ETH1_RXN
Receives the data negative for inter-subrack ordinary communications
7
ETH1_CRIT_RXP
Receives the data positive for inter-subrack emergent communications
8
ETH1_CRIT_RXN
Receives the data negative for inter-subrack emergent communications
Pin Assignment of the ETH2 Interface For the pin assignment of the ETH2 interface, refer to Table 5-89. Table 5-89 Pin assignment of the ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH2_TXP
Transmits the data positive for inter-subrack ordinary communications
2
ETH2_TXN
Transmits the data negative for inter-subrack ordinary communications
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
134
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
5 OptiX OSN 8800 Subrack and Power Requirement
Pin
Signal
Function
3
ETH2_RXP
Receives the data positive for inter-subrack ordinary communications
4
ETH2_CRIT_TXP
Transmits the data positive for inter-subrack emergent communications
5
ETH2_CRIT_TXN
Transmits the data negative for inter-subrack emergent communications
6
ETH2_RXN
Receives the data negative for inter-subrack ordinary communications
7
ETH2_CRIT_RXP
Receives the data positive for inter-subrack emergent communications
8
ETH2_CRIT_RXN
Receives the data negative for inter-subrack emergent communications
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
135
OptiX OSN 8800/6800/3800 Hardware Description
6 OptiX OSN 8800 Board Category
6
OptiX OSN 8800 Board Category
The following types of boards are available for the system. Table 6-1 lists the boards for the OptiX OSN 8800. Table 6-1 Boards for the OptiX OSN 8800 Board Catego ry
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
Optical transpo nder unit
TN12LDM
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board
Y
Y
Y
Y
Y
N
TN11LDM D
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, dual fed and selective receiving
Y
Y
Y
Y
N
N
TN11LDMS
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, single fed and single receiving
Y
Y
Y
Y
N
N
TN12LDX
2 x 10 Gbit/s wavelength conversion unit
Y
Y
Y
Y
Y
Y
TN11LEM2 4
22 x GE + 2 x 10GE and 2 x OTU2 Ethernet switch board
Y
Y
Y
Y
N
Y
TN11LEX4
4 x 10GE and 2 x OTU2 Ethernet switch board
Y
Y
Y
Y
N
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
136
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
6 OptiX OSN 8800 Board Category
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN11LOA
8 x Any-rate MUX OTU2 Wavelength Conversion Board
Y
Y
Y
Y
Y
Y
TN11LOG
8 x Gigabit Ethernet unit
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
TN12LOG TN11LOM TN12LOM
8-port multi-service multiplexing & optical wavelength conversion board
TN13LQM
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit
Y
Y
Y
Y
Y
N
TN12LQM D
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, dual fed and selective receiving
Y
Y
Y
Y
N
N
TN12LQMS
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, single fed and single receiving
Y
Y
Y
Y
N
N
TN12LSC
100Gbit/s wavelength conversion board
Y
Y
Y
Y
Y
Y
TN11LSQ
40 Gbit/s wavelength conversion board
Y
Y
Y
Y
Y
Y
TN12LSX
10 Gbit/s wavelength conversion unit
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
N
N
TN13LSX TN14LSX TN12LSXL TN15LSXL
40 Gbit/s wavelength conversion board
TN12LSXL R
40 Gbit/s wavelength conversion relay unit
Y
Y
Y
Y
Y
N
TN11LSXR
10 Gbit/s wavelength conversion relay unit
Y
Y
Y
Y
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
137
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN11LTXe
10-Port 10Gbit/s Service Multiplexing & Optical Wavelength Conversion Board
Y
Y
Y
Y
Y
Y
TN11LWX2
arbitrary rate (16Mbit/ s-2.7Gbit/s) dualwavelength conversion board
N
N
N
N
Y
N
TN12LWXS
arbitrary rate (16Mbit/ s-2.7Gbit/s) wavelength conversion board (single transmit)
Y
Y
Y
Y
Y
Y
TN11TMX
4 channels STM-16/ OC-48/OTU1 asynchronism mux OTU-2 wavelength conversion board
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
TN12TMX
Tributar y unit
6 OptiX OSN 8800 Board Category
TN52TDX TN53TDX
2 x 10G tributary service processing board
TN54TEM2 8
24xGE+4x10GE Ethernet tributary unit
Y
Y
Y
Y
N
Y
TN54THA
16 Any-rate Ports Service Processing Board
Y
Y
Y
Y
N
Y
TN54TOA
8 Any-rate Ports Service Processing Board
Y
Y
Y
Y
N
Y
TN52TOG
8 x GE tributary service processing board
Y
Y
Y
Y
N
Y
TN52TOMg
8 x multi-rate ports service processing board
Y
Y
Y
Y
Y
Y
TN55TOX
8 x 10 Gbit/s tributary service processing board
N
Y
N
Y
N
N
TN52TQX
4 x 10 Gbit/s tributary service processing board
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
TN53TQX TN55TQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
138
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN54TSC
100 Gbit/s tributary service processing board
N
Y
N
Y
N
Y
TN53TSXL
40 Gbit/s tributary service processing board
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
TN54TSXL
Line unit
6 OptiX OSN 8800 Board Category
TN54TTX
10 x 10 Gbit/s tributary service processing board
N
Y
N
Y
N
Y
TN12ND2e
2 x 10G line service processing board
N
N
N
N
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
TN52ND2e TN53ND2e TN52NQ2 TN53NQ2e
4 x 10G Line Service Processing Board
TN54NQ2 TN55NO2f
8 x 10G Line Service Processing Board
Y
Y
Y
Y
N
Y
TN52NS2
10G Line Service Processing Board
Y
Y
Y
Y
N
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TN53NS2 TN52NS3 TN54NS3e
40G line service processing board
TN55NS3e
Packet Service Unit
PID unit
TN54NS4f
100G line service processing board
Y
Y
Y
Y
N
Y
TN54EG16
16-port gigabit ethernet packet switch board
N
N
N
Y
N
Y
TN54EX2
2 x 10GE ethernet packet switch board
N
N
N
Y
N
Y
TN54PND2
2 x 10G bit/s packet switch line board
N
N
N
Y
N
Y
TN54ENQ2
4 x 10G line service processing board
Y
Y
Y
Y
N
Y
TN54NPO2
12 x OTU2 PID board
Y
Y
Y
Y
N
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
139
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
6 OptiX OSN 8800 Board Category
Board Description
TN55NPO2
Crossconnect unit and system and commu nication unit
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
Y
Y
Y
Y
N
Y
TN55NPO2 E
10G PID line service processing board, 20– channel extended
Y
Y
Y
Y
N
Y
TN16XCH
High Cross-connection, System Control and Clock Processing Board
N
N
N
N
N
Y
TNK2SXM
OptiX OSN 8800 T64 centralized cross connect board
Y
N
N
N
N
N
Y
Y
N
N
N
N
TNK4SXM TN52UXCH
3.2T Universal Cross Connect Board
N
N
N
Y
N
N
TN52XCH
OptiX OSN 8800 T32 centralized cross connect board
N
N
Y
Y
N
N
TN52UXC M
3.2T Universal Cross Connect Board
N
N
N
Y
N
N
TN52XCM
Cross & connect process board (Support high- cross and low-cross)
N
N
Y
Y
N
N
TNK2UXC T
6.4T Universal Cross Connect Board
N
Y
N
N
N
N
TNK2XCT
OptiX OSN 8800 T64 centralized cross connect board
Y
N
N
N
N
N
Y
Y
N
N
N
N
TNK4XCT TN16UXC M
1.6T Universal Cross Connect,System Control and Clock Processing Board
N
N
N
N
N
Y
TN16SCC
system control and communication unit
N
N
N
N
N
Y
N
N
Y
N
N
N
TN52SCC
N
N
Y
Y
Y
N
TNK2SCC
Y
Y
N
N
N
N
N
N
N
N
Y
N
TN51SCCd
TN15AUX
Issue 03 (2013-05-16)
system auxiliary interface unit
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
140
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN16AUX
N
N
N
N
N
Y
TN51AUX
Y
Y
Y
Y
N
N
TN52AUX
Y
Y
Y
Y
N
N
Board Description
TNK2USX H
6.4T Universal Cross Connect Board
N
Y
N
N
N
N
TNK2SXH
OptiX OSN 8800 T64 centralized cross connect board
Y
N
N
N
N
N
Y
Y
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TNK4SXH Optical multipl exer and demulti plexer unit
6 OptiX OSN 8800 Board Category
TN11M40 TN12M40 TN11D40 TN12D40 TN11M40V TN12M40V
40-channel multiplexing unit 40-channel demultiplexing unit 40-channel multiplexing unit with VOA
TN11D40V
40-channel demultiplexing unit with VOA
Y
Y
Y
Y
N
N
TN12FIU
fiber interface unit
Y
Y
Y
Y
Y
Y
TN13FIU
Y
Y
Y
Y
Y
Y
TN14FIU
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TN11ITL
interleaver board
TN12ITL
Fixed optical add and drop multipl exing unit
TN11SFIU
fiber interface unit for sync timing
Y
Y
Y
Y
Y
Y
TN11CMR2
CWDM 2-channel optical add/drop multiplexing unit
Y
Y
Y
Y
Y
Y
TN11CMR4
CWDM 4-channel optical add/drop multiplexing unit
Y
Y
Y
Y
Y
Y
TN11DMR1
CWDM 1-channel bidirectional optical add/ drop multiplexing board
Y
Y
Y
Y
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
141
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Reconfi gurable optical add and drop multipl exing unit
6 OptiX OSN 8800 Board Category
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN11MR2
2-channel optical add/drop multiplexing unit
Y
Y
Y
Y
Y
Y
TN11MR4
4-channel optical add/drop multiplexing unit
Y
Y
Y
Y
Y
Y
TN11MR8
8-channel optical add/drop multiplexing unit
Y
Y
Y
Y
Y
N
TN11MR8V
8-channel optical add/drop multiplexing unit with VOA
Y
Y
Y
Y
Y
Y
TN11SBM2
2-channel CWDM singlefiber bidirectional add/drop board
Y
Y
Y
Y
Y
N
TN11RDU9
9-port ROADM demultiplexing board
Y
Y
Y
Y
Y
Y
TN11RMU9
9-port ROADM multiplexing board
Y
Y
Y
Y
Y
Y
a
TN11ROA M
reconfigurable optical adding board
Y
Y
Y
Y
N
N
TN12TD20
20-ports Tunable Demultiplexing Board
Y
Y
Y
Y
Y
Y
TN11TM20
20-ports Wavelength Tunable Multiplexing Board
Y
Y
Y
Y
Y
Y
TN12WSD9
9-port wavelength selective switching demultiplexing board
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TN13WSD9 TN12WSM 9 TN13WSM 9
9-port wavelength selective switching multiplexing board
TN11WSM D2
2-port wavelength selective switching multiplexer and demultiplexer board
Y
Y
Y
Y
Y
N
TN11WSM D4
4-port wavelength selective switching multiplexer and demultiplexer board
Y
Y
Y
Y
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
142
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
6 OptiX OSN 8800 Board Category
Board Description
TN12WSM D4
Optical amplifi er unit
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
Y
Y
Y
Y
Y
Y
9-port wavelength selective multiplexing and demultiplexing board
Y
Y
Y
Y
Y
Y
TN11CRPC
case-shape Raman pump amplifier unit for C-band
Y
Y
Y
Y
Y
Y
TN11DAS1
optical amplifier unit
Y
Y
Y
Y
Y
Y
TN11HBA
high-power booster amplifier board
Y
Y
Y
Y
Y
Y
TN11OAU1
optical amplifier unit
Y
Y
Y
Y
N
N
TN12OAU1
Y
Y
Y
Y
Y
Y
TN13OAU1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
TN12OBU1
Y
Y
Y
Y
Y
Y
TN11OBU2
Y
Y
Y
Y
N
N
TN12OBU2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TN11RAU1 TN11RAU2
Optical protecti on unit
Enha nced 8800 T64 Subr ack
TN11WSM D9
TN11OBU1
Optical supervi sory channel unit
Gene ral 8800 T64 Subr ack
optical booster unit
backward raman and erbium doped fiber hybrid optical amplifier unit
TN11HSC1
high power unidirectional optical supervisory channel board
Y
Y
Y
Y
Y
Y
TN12SC1
unidirectional optical supervisory channel unit
Y
Y
Y
Y
Y
Y
TN12SC2
bidirectional optical supervisory channel unit
Y
Y
Y
Y
Y
Y
TN11ST2
bidirectional optical supervisory channel and timing transmission unit
Y
Y
Y
Y
Y
Y
TN11DCP
2-channel optical path protection unit
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
TN12DCP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
143
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
6 OptiX OSN 8800 Board Category
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
TN11OLP
optical line protection unit
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
TN12OLP
Spectru m analyze r unit
TN11SCS
sync optical channel separator unit
Y
Y
Y
Y
Y
Y
TN11MCA4
4-channel spectrum analyzer unit
Y
Y
Y
Y
Y
Y
TN11MCA8
8-channel spectrum analyzer unit
Y
Y
Y
Y
Y
Y
TN11OPM8
8-channel optical power monitoring board
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
TN12OPM8 TN11WMU
wavelength monitoring unit
Y
Y
Y
Y
Y
Y
Variabl e optical attenuat or unit
TN12VA1
1-channel variable optical attenuator unit
Y
Y
Y
Y
Y
Y
TN12VA4
4-channel variable optical attenuator unit
Y
Y
Y
Y
Y
Y
Dispers ion equalizi ng unit
TN11DCU
dispersion compensation board
Y
Y
Y
Y
Y
Y
TN11TDC
single-wavelength tunabledispersion compensation board
Y
Y
Y
Y
Y
Y
Clock unit
TN52STG
centralized clock board
N
N
Y
Y
N
N
Y
Y
N
N
N
N
OCS system unit
SSN4BPA
optical booster and preamplifier board
Y
Y
Y
Y
N
Y
SSN3EAS2
2-port 10xGE switching and processing board
Y
Y
Y
Y
N
Y
SSN1EGSH
16 x GE Ethernet switching and processing board
Y
Y
Y
Y
N
Y
SSN4SF64
1 x STM-64 optical interface board with the FEC function
Y
Y
Y
Y
N
Y
TNK2STG
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
144
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
6 OptiX OSN 8800 Board Category
Board Name
Board Description
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
SSN1SF64A
1 x STM-64 optical interface board with the FEC function
Y
Y
Y
Y
N
Y
SSN4SFD64
1 x STM-64 optical interface board with the FEC function
Y
Y
Y
Y
N
Y
SSN4SL64
1 x STM-64 optical interface board
Y
Y
Y
Y
N
Y
SSN4SLD6 4
2 x STM-64 optical interface board
Y
Y
Y
Y
N
Y
SSN3SLH4 1
16 x STM-4/STM-1 optical interface board
Y
Y
Y
Y
N
Y
SSN4SLO1 6
8 x STM-16 optical interface board
Y
Y
Y
Y
N
Y
SSN4SLQ1 6
4xSTM-16 optical interface board
Y
Y
Y
Y
N
Y
SSN4SLQ6 4
4 x STM-64 line interface board
N
N
Y
Y
N
Y
ROPA subsyst em unitb
TN11GFU
gain flatness unit
Y
Y
Y
Y
Y
Y
TN11RGU
ROPA gain unit
Y
Y
Y
Y
Y
Y
TN11ROP
ROPA pumping unit
Y
Y
Y
Y
Y
Y
Interfac e area unitc
TN16ATE
interface board of alarm & timing & expanding
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
N
Y
N
TN16EFI
N
N
N
N
N
Y
TN51EFI1
Y
Y
Y
Y
N
N
TN51EFI2
Y
Y
Y
Y
N
N
Y
Y
Y
Y
N
N
Y
Y
Y
Y
N
N
Y
Y
Y
Y
N
N
N
N
N
N
Y
N
TN51ATE TN15EFI
TNL1STI TN52STI TN51PIU TN15PIU
Issue 03 (2013-05-16)
EMI filter interface board
synchronous timing interface board power interface unit
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
145
OptiX OSN 8800/6800/3800 Hardware Description
Board Catego ry
Board Name
6 OptiX OSN 8800 Board Category
Board Description
TN16PIU Fan
Gene ral 8800 T64 Subr ack
Enha nced 8800 T64 Subr ack
Gener al 8800 T32 Subra ck
Enhan ced 8800 T32 Subra ck
8800 Platfo rm Subra ck
8800 T16 Subra ck
Y
Y
Y
Y
N
Y
TN51FAN
Fan
Y
Y
Y
Y
N
N
TN16FAN
Fan
N
N
N
N
N
Y
TN15FAN
Fan
N
N
N
N
Y
N
a: For TN11RMU9: OptiX OSN 8800 T16 only supports the TN11RMU902. b: For details of the ROPA subsystem unit refer to ROPA Subsystem User Guide. c: For details of the interface area unit refer to 5.5 Data Communication and Equipment Maintenance Interfaces. d: TN51SCC only supports General OptiX OSN 8800 T32. e: The board for the OptiX OSN 8800 platform subrack only supports relay mode. f: In a general OptiX OSN 8800 T64 subrack/general OptiX OSN 8800 T32 subrack, the board can work only in relay mode. g: For the applications scenarios of the TN52TOM board installed in an OptiX OSN 8800 platform subrack, see 14.15.2.3 Application Scenario Overview of TN52TOM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
146
OptiX OSN 8800/6800/3800 Hardware Description
7
7 OptiX OSN 6800 Subrack and Power Requirement
OptiX OSN 6800 Subrack and Power Requirement
About This Chapter 7.1 Structure Subracks are the basic working units of the OptiX OSN 6800. The subrack of the OptiX OSN 6800 has an independent power supply. 7.2 Slot Description The board area of the subrack has 21 slots, labeled IU1 to IU21 from left to right. 7.3 Cross-Connect Capacities The slots in an OptiX OSN 6800 subrack vary in cross-connect capacities. 7.4 Fan and Heat Dissipation Each OptiX OSN 6800 subrack has one fan tray assembly, which includes ten independent fans and an air filter. The air filter can be drawn out, cleaned and replaced. 7.5 Power Consumption This section describes the maximum and typical subrack power consumption specifications. 7.6 Power Requirement This section describes the requirements on power supply. 7.7 Data Communication and Equipment Maintenance Interfaces The OptiX OSN 6800 provides abundant interfaces for data communication and equipment maintenance.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
147
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
7.1 Structure Subracks are the basic working units of the OptiX OSN 6800. The subrack of the OptiX OSN 6800 has an independent power supply. Figure 7-1 shows the structure of the subrack. Figure 7-1 OptiX OSN 6800 subrack structure diagram 1
2
7
3 6
4 5
1. Indicator and interface area
2. Board area
3. Fiber cabling area
4. Fan tray assembly
5. Air filter
6. Fiber spool
7. Mounting ear
NOTE
The interface area is behind the indicator panel in the upper part of the subrack. Remove the indicator panel before you connect cables.
l
Indicators: indicate the running status and alarm status of the subrack.
l
Board area: All service boards are installed in this area. 21 slots are available.
l
Fiber cabling area: Fiber jumpers from the ports on the front panel of each board are routed to the fiber cabling area before being routed on a side of the open rack. The mechanical VOA is also installed in this area.
l
Fan tray assembly: Fan tray assembly contains ten fans that provide ventilation and heat dissipation for the subrack. NOTE
For detailed descriptions of the fan tray assembly, see 7.4 Fan and Heat Dissipation.
l
Air filter: The air filter protects the subrack from dust in the air and requires periodic cleaning.
l
Fiber spool: Fixed fiber spools are on two sides of the subrack. Extra fibers are coiled in the fiber spool on the open rack side before being routed to another subrack.
l
Mounting ears: The mounting ears attach the subrack in the cabinet.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
148
OptiX OSN 8800/6800/3800 Hardware Description
l
7 OptiX OSN 6800 Subrack and Power Requirement
Interface area: The interface area provides functional interfaces, such as management interface, inter-subrack communication interface, alarm output and cascading interface, alarm input and output interface. It is behind the subrack indicator panel.
Table 7-1 Mechanical specifications of the OptiX OSN 6800 Item
Specification
Dimensions
497 mm (W) x 295 mm (D) x 400 mm (H) (19.6 in. (W) × 11.6 in. (D) × 15.7 in. (H))
Weight (empty subracka)
13 kg (28.6 lb.)
a: An empty subrack means no boards are installed in the board area, and no fan tray assembly or air filter is installed.
7.2 Slot Description The board area of the subrack has 21 slots, labeled IU1 to IU21 from left to right. Slots of the subrack are shown in Figure 7-2. Figure 7-2 Slots of the subrack
IU1
IU2
IU3
IU4
IU5
IU6
IU7
IU8
IU11 IU12 IU13 IU14 IU15 IU16
IU9
IU10
SCC or service board
XCS XCS
IU19 PIU SCC
IU17 IU18
IU20 PIU
IU21 AUX
VOA area Fan Paired slots
l l
Issue 03 (2013-05-16)
Mutual backup
: houses service boards and supports service cross-connections. IU15 and IU16 are also available for the STG.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
149
OptiX OSN 8800/6800/3800 Hardware Description
l
7 OptiX OSN 6800 Subrack and Power Requirement
Pair slots refer to a pair of slots whose resident boards' overhead can be processed by the buses on the backplanes. OptiX OSN 6800 supports seven pair slots. The pair slots support distributed grooming.
7.3 Cross-Connect Capacities The slots in an OptiX OSN 6800 subrack vary in cross-connect capacities.
Integrated Grooming When using the XCS board, an OptiX OSN 6800 subrack can cross-connect ODU1, ODU2,ODU2e, 10GE, and GE services between any two slots among slots IU1-IU8 and slots IU11-IU16. Figure 7-3 provides the cross-connect capacity for each slot. Figure 7-3 Cross-connect capacities of slots
IU1
IU2
IU3
IU4
IU5
IU6
IU7
IU8
IU11 IU12 IU13 IU14 IU15 IU16
IU9 IU10
SCC or service board
XCS XCS
IU19 PIU SCC IU20 PIU
IU17 IU18
IU21 AUX
VOA area Fan
Table 7-2 Cross-connect capacity of OptiX OSN 6800 subrack Cro ssCon nect Boa rd TN1 2XC S
Issue 03 (2013-05-16)
Slot
Maximum Cross-Connect Capacity of Each Slot ODU1/ODU2/ ODU2e/10GE
GE
40 Gbit/s
20 Gbit/s
20 Gbit/s
10 Gbit/s
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Maximum Cross-Connect Capacity of Subrack
180 Gbit/s GE 360 Gbit/s ODU1/ODU2/ ODU2e/10GE Supports hybrid transmission of the above-mentioned services 150
OptiX OSN 8800/6800/3800 Hardware Description
Cro ssCon nect Boa rd
7 OptiX OSN 6800 Subrack and Power Requirement
Slot
TN1 1XC S
Maximum Cross-Connect Capacity of Each Slot
Maximum Cross-Connect Capacity of Subrack
ODU1/ODU2/ ODU2e/10GE
GE
Not supported
Not supported
with the maximum cross-connect capacity of 360 Gbit/s.
20 Gbit/s
10 Gbit/s
Not supported
Not supported
140 Gbit/s GE 280 Gbit/s ODU1/ODU2/ ODU2e/10GE Supports hybrid transmission of the above-mentioned services with the maximum cross-connect capacity of 280 Gbit/s.
Distributed Grooming An OptiX OSN 6800 subrack provides seven pairs of slots: IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU11 and IU12, IU13 and IU14, IU15 and IU16. GE/Any/ODU1/OTU1 services can be cross-connected between paired slots. No XCS board is required when paired slots are used to cross-connect electrical services.
7.4 Fan and Heat Dissipation Each OptiX OSN 6800 subrack has one fan tray assembly, which includes ten independent fans and an air filter. The air filter can be drawn out, cleaned and replaced.
Version Description Only one functional version of the fan tray assembly is available, that is, TN11.
Functions and Features Table 7-3 describes the functions of a fan tray assembly. Table 7-3 Functions of a fan tray assembly
Issue 03 (2013-05-16)
Function
Description
Basic function
Dissipates the heat generated by an NE so that the NE can operate normally within the designated temperature range.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
151
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Function
Description
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed.
Partitioned heat dissipation
Each subrack is divided into five partitions to help provide efficient heat dissipation. The fan speed in each partition is independently regulated.
Hot swapping
Provides the hot swapping feature for the fan tray assembly.
Alarming
Reports alarms of the fans, and reports the in-service information.
Status checking
Checks and reports on the fan status.
Working Principle Air flow from the subrack is bottom intake top exhaust. Figure 7-4 and Figure 7-5 show the heat dissipation and ventilation system in the OptiX OSN 6800. Figure 7-4 Single-subrack heat dissipation and ventilation system Side view Front Air outlet
Fan Air inlet
Issue 03 (2013-05-16)
Air filter
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
152
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Figure 7-5 Multi-subrack heat dissipation and ventilation system
Side view
Front
Air outlet
Fan
Air inlet
Air filter
NOTE
If multiple subracks are used, an air duct deflector is required to help in heat dissipation.
The OptiX OSN 6800 supports two fan speed modes, as shown in Table 7-4. The partitioned speed regulating function is available in Auto Speed Mode. It is recommended that you set the speed mode to Auto Speed Mode. Table 7-4 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
Fan speed in each partition is regulated automatically according to the temperature of the boards in the partition where the fans are installed. l Lower than 25°C (77°F): the fans run at low speed. l Higher than 45°C (113°F): the fans run at high speed. l 25°C to 45°C (77°F to 113° F): The fans automatically adjust their rotation speeds. This mode can reduce noise and is power-saving. Fan speed in each partition is independently regulated. The fans run at full speed if the speed regulating signals are abnormal. If one of the fans fails, the other fans run at full speed.
Adjustable Speed Mode
Issue 03 (2013-05-16)
Four fan speed modes are available: Stop, Low Speed, Medium Speed, and High Speed. You can set the fan speed manually. In Adjustable Speed Mode, the fans in all partitions run at the same speed and do not support the partitioned manual fan speed adjustment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
153
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Each OptiX OSN 6800 subrack is divided into five partitions in terms of heat dissipation. The subrack adopts one fan tray assembly to implement partitioned heat dissipation. See Figure 7-6. Figure 7-6 Partitioned heat dissipation of the OptiX OSN 6800 subrack
I U 1 9 I I I I I I I I I I I I I I I I I I I U U U U U U U U U U U U U U U U U U U 1 1 1 1 1 1 1 1 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 I U 2 1 1
2
A
3
4
B
5
C
6
7
D
VOA
8
E
Fan Tray Assembly
There are five partitions (A, B, C, D, and E) in each subrack. Two fans in each partition dissipate heat generated by the boards in the partition where the fans reside. NOTE
l
If any one of the ten fans in the fan tray assembly fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure long-term operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days.
l
If two or more fans fail in the fan tray assemblies, replace the fan tray assembly immediately.
The fan tray assembly consists of ten fans and one fan control unit. Figure 7-7 shows the functional blocks of the fan tray assembly.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
154
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Figure 7-7 Functional block diagram of the fan tray assembly
Speed adjusting signal SCC
Speed adjusting signal Fan control unit
Status signal
Status signal FAN
External power External power supply 1 supply 2
l
FAN: dissipates heat generated by normal operation of the subrack. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm. In this case, the SCC board issues commands to instruct the other fan in the same partition to run at full speed. – Monitors the fan speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 7-8 shows a fan tray assembly. Figure 7-8 Fan tray assembly
3
2
1
1. Air filter
2. Operating status indicators
3. Fans (ten in total)
NOTE
An air filter is installed on the fan tray assembly to prevent dust from entering the subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
155
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Valid Slots One slot houses one fan tray assembly. The valid slot for the fan tray assembly is IU22.
Specifications of the Fan Tray Assembly Table 7-5 lists the technical specifications of the OptiX OSN 6800 fan tray assembly. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Table 7-5 Technical specifications of the fan tray assembly (OptiX OSN 6800) Item
Specification
Dimensions
493.7 mm (W) x 266.6 mm (D) x 56.1 mm (H) (19.44 in. (W) x 10.5 in. (D) x 2.21 in. (H))
Weight
3.6 kg (7.9 lb.)
Power Consumptiona
l Low Speed: 40 W l Medium Speed: 60 W l High Speed: 120 W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 120 W.
7.5 Power Consumption This section describes the maximum and typical subrack power consumption specifications. Table 7-6 describes the power consumption of an OptiX OSN 6800 subrack. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
156
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Table 7-6 Power consumption of an OptiX OSN 6800 Item
Value
Maximum subrack power consumption
1350 W
Table 7-7 lists the power consumption of the common units in an OptiX OSN 6800. Table 7-7 Power consumption of the subrack in typical configuration in an OptiX OSN 6800
Issue 03 (2013-05-16)
Unit Name
Typical Power Consumptio n at 25°C (77° F)a
Maximum Power Consumptio n at 55°C (131°F)a
Remarks
OTM subra ck
Subrack 1
566
722.2
17 x 10G OTU (LSX), 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
Subrack 2
168.7
281.6
1 x M40V, 1 x D40, 1 x OAU101, 1 x OBU103, 1 x FIU, 1 x SC1, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
Subrack 3
691.6
850
10 x ND2, 2 x TQX, 2 x TOG, 2 x XCS, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
OLA subrack
144.9
253.9
2 x OAU101s, 2 x FIU, 1 x SC2, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
FOADM subrack
292.3
418.3
2 x OAU101, 2 x VA4, 2 x OBU103, 2 x MR4, 4 x 10G OTU (LSX), 2 x FIU, 1 x SC2, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
ROA DM subra ck (2 x dime nsion s)
Subrack 1
87.4
96.4
1 x M40, 1 x D40, 2 x WSMD2, 2 x DAS1, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
Subrack 2
566
722.2
17 x 10G OTU (LSX), 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
157
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Unit Name
Typical Power Consumptio n at 25°C (77° F)a
Maximum Power Consumptio n at 55°C (131°F)a
Remarks
ROA DM subra ck (4 x dime nsion s)b
160
268.8
1 x WSMD4, 1 x DAS1, 1 x M40, 1 x D40, 1 x SCC, 2 x PIU, 1 x AUX, and 1 x fan tray assembly
1422.2
1951.1
2 x OTU subrack and 1 x OTM subrack 2
Subrack
OTM cabinet (40x10 Gbit/s)
a: Indicates that the power consumption of the subrack and cabinet is the value in a certain configuration. The value is for reference only. The actual power consumption of the chassis and cabinet is calculation based on the power consumption of each module. c: At the ROADM site, it is recommended to deploy one subrack per direction. This table assumes that the four directions are configured identically and provides only the reference configurations for one direction.
7.6 Power Requirement This section describes the requirements on power supply.
Requirements on Voltage and Current Table 7-8 provides the requirements on voltage and current of an OptiX OSN 6800 subrack. Table 7-8 Requirements on voltage and current of an OptiX OSN 6800 Item
Requirement
Rated working current
25 A (-48 V)
Nominal working voltage
-48 V DC/-60 V DC
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 6800, the PIU board must be TN11PIU. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
158
OptiX OSN 8800/6800/3800 Hardware Description
l
7 OptiX OSN 6800 Subrack and Power Requirement
Function Accesses DC power in a range from -40 V to -72 V. Provides lightning protection and power filtering functions. NOTE
The overcurrent protection function for the access power supplies of each subrack is realized by the magnetic circuit breaker of the PDU.
l
Front Panel Appearance of the Front Panel Figure 7-9 Front panel of the TN11PIU board
PIU RUN
NEG(-) RTN(+)
Indicators: Running status indicator (RUN) - green l
Valid Slots Table 7-9 Valid slots for the TN11PIU board
l
Product
Valid Slots
OptiX OSN 6800 subrack
IU19 and IU20
Specifications – Performance Specifications Table 7-10 Performance specifications of the PIU board Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V DC
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
Input DC power current Issue 03 (2013-05-16)
A
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
≤30 159
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
– Mechanical Specifications Dimensions of front panel: 28 mm (W) x 220 mm (D) x 65 mm (H) (1.1 in. (W) x 8.7 in. (D) x 2.6 in. (H)) Weight: 0.5 kg (1.1 lb.) – Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11PIU
24
38
7.7 Data Communication and Equipment Maintenance Interfaces The OptiX OSN 6800 provides abundant interfaces for data communication and equipment maintenance. These interfaces are located in the interface area of the subrack and on the front panel of the AUX, as shown in Figure 7-10. Figure 7-10 Interfaces of the OptiX OSN 6800 subrack COM
ETH3
ALM01 ALM02 ALM03 ALM04
SERIAL
ALMI1
ALMI2
xcs
LAMP1 ALMP2
SCC
STAT ACT PROG SRV
PIU RUN
NEG(-)
STAT ACT PROG SRV PWRA PWRB PWRC ALMC
RTN(+)
SubRACK_ID
NM_ETH1 NM_ETH2 ETH1 ETH2
Fan
RESET STAT PROG LAMP TEST
AUX
ALM CUT
xcs
Issue 03 (2013-05-16)
SCC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
160
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
NOTE
The interface area is behind the indicator panel in the upper part of the subrack. Remove the indicator panel before you connect cables.
7.7.1 TN11EFI EFI: EMI Filter Interface Board
7.7.1.1 Version Description The available functional version of the EFI board is TN11.
7.7.1.2 Application EFI provides functional interfaces such as management interface, inter-subrack communication interface, alarm output and cascading interface, alarm input and output interface.
7.7.1.3 Front Panel There are interfaces on the front panel of the EFI board.
Appearance of the Front Panel Figure 7-11 shows the front panel of the EFI board. Figure 7-11 Front panel of the EFI board COM
ETH3
ALM01 ALM02 ALM03 ALM04
SERIAL
ALMI1 ALMI2 LAMP1 LAMP2
CAUTION The LAMP interfaces on the EFI board provide 5 V power, it is only used for the indicators on a cabinet. It cannot connect to an RJ45 cable intended for the NM_ETH, ETH, ALMO, or CLK interface; otherwise, the EFI board, the connected test instrument, or the equipment will be damaged.
Interfaces and Buttons Table 7-11 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
161
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Table 7-11 Description of interfaces in the interface area Silk-screen
Interface
Connector
Function
Commissioning interface
COM
RJ45
This interface is intended only for Huawei engineers to commission the equipment at the factory.
Inter-subrack communication interface
ETH3
RJ45
l Connects a network cable from the ETH1/ETH2/ETH3 interface on one subrack to corresponding interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. NOTE When inter-subrack protection is configured, the ETH3 interface cannot be used for the communication between the master and slave subracks.
l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
162
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Silk-screen
Interface
Connector
Function
Alarm output and cascading interface
ALMO1 ALMO2 ALMO3 ALMO4
RJ45
l Alarm outputs are sent to the DC power distribution cabinet through the output interface and the cascading interface. You can configure it to be the other outputs to implement integrated display of alarms. The alarm outputs are controlled by the internal relay contact. When the relay contact is closed, the resistance of each ALMO interface is less than 1 ohm. When the relay contact is open, the resistance of each ALMO interface is an infinite number. l The definitions for the pins of the ALMO1 and ALMO2 interfaces are the same. The two interfaces are used for output/ cascading, respectively. The definitions for the pins of the ALMO3 and ALMO4 interfaces are the same. The two interfaces are used for output/cascading, respectively. For example, if ALMO1 is used to output alarm signals, ALMO2 can be cascaded to ALMO1 on another subrack. l The OptiX OSN 6800 provides eight alarm outputs. Defaults of the first three are critical alarm, major alarm, and minor alarm. The other five are reserved. Alarm outputs can be cascaded.
OAM interface
Issue 03 (2013-05-16)
SERIAL
DB9
The OAM interface is a serial NM interface, providing functions of serial NM and supporting X.25 protocol.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
163
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Silk-screen
Interface
Connector
Function
Alarm input interface
ALMI1 ALMI2
RJ45
External alarm signal input function is designed for requirements when the alarm signals of the external systems (such as the environment monitory) need remote monitoring. The OptiX OSN 6800 provides eight alarm inputs. The severity of the eight alarms can be configured to cooperate with the external system to implement remote monitoring of external alarms.
Subrack alarm output and cascading interface
LAMP1 LAMP2
RJ45
This interface drives the running indicators and alarm indicators of the cabinet that holds the subrack.
Pin assignment of the RJ45 Connector Figure 7-12 shows the pin assignment of the RJ45 connector. Figure 7-12 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the DB9 Connector Figure 7-13 shows the pin assignment of the DB9 connector.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
164
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Figure 7-13 Pin assignment of the DB9 connector
1 6 2 7 3 8 4 9 5
Pin Assignment of the COM Interface For the pin assignment of the COM interface, refer to Table 7-12. Table 7-12 Pin assignment of the COM interface Pin
Signal
Function
1
ETNTX_P_1
Transmits the data positive
2
ETNTX_N_1
Transmits the data negative
3
ETNRX_P_1
Receives the data positive
4
NC
Not connected
5
NC
Not connected
6
ETNRX_N_1
Receives data negative
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the ETH3 Interface For the pin assignment of the ETH3 interface, refer to Table 7-13. Table 7-13 Pin assignment of the ETH3 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH3_TXP
Transmits the data positive for inter-subrack ordinary communications
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
165
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Pin
Signal
Function
2
ETH3_TXN
Transmits the data negative for inter-subrack ordinary communications
3
ETH3_RXP
Receives the data positive for inter-subrack ordinary communications
4
ETH3_CRIT_TXP
Transmits the data positive for inter-subrack emergent communications
5
ETH3_CRIT_TXN
Transmits the data negative for inter-subrack emergent communications
6
ETH3_RXN
Receives the data negative for inter-subrack ordinary communications
7
ETH3_CRIT_RXP
Receives the data positive for inter-subrack emergent communications
8
ETH3_CRIT_RXN
Receives the data negative for inter-subrack emergent communications
Pin Assignment of the ALMO1 and the ALMO2 Interfaces For the pin assignment of the ALMO1 and the ALMO2 interfaces, refer to Table 7-14. Table 7-14 Pin assignment of the ALMO1 and ALMO2 interfaces
Issue 03 (2013-05-16)
Pin
Signal
Function
1
CRIT_SWITCH_OUTP
Outputs the critical alarm signal positive
2
CRIT_SWITCH_OUTN
Outputs the critical alarm signal negative
3
MAJ_SWITCH_OUTP
Outputs the major alarm signal positive
4
MIN_SWITCH_OUTP
Outputs the minor alarm signal positive
5
MIN_SWITCH_OUTN
Outputs the minor alarm signal negative
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
166
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Pin
Signal
Function
6
MAJ_SWITCH_OUTN
Outputs the major alarm signal negative
7
ALM_SWITCH_OUT1P
Alarm signal output 1 positive
8
ALM_SWITCH_OUT1N
Alarm signal output 1 negative
Pin Assignment of the ALMO3 and the ALMO4 Interfaces For the pin assignment of the ALMO3 and the ALMO4 interfaces, refer to Table 7-15. Table 7-15 Pin assignment of the ALMO3 and the ALMO4 interfaces Pin
Signal
Function
1
ALM_SWITCH_OUT2P
Alarm signal output 2 positive
2
ALM_SWITCH_OUT2N
Alarm signal output 2 negative
3
ALM_SWITCH_OUT3P
Alarm signal output 3 positive
4
ALM_SWITCH_OUT4P
Alarm signal output 4 positive
5
ALM_SWITCH_OUT4N
Alarm signal output 4 negative
6
ALM_SWITCH_OUT3N
Alarm signal output 3 negative
7
ALM_SWITCH_OUT5P
Alarm signal output 5 positive
8
ALM_SWITCH_OUT5N
Alarm signal output 5 negative
Pin Assignment of the SERIAL Interface For the pin assignment of the SERIAL interface, refer to Table 7-16. Table 7-16 Pin assignment of the SERIAL interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
N.C
Not defined
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
167
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Pin
Signal
Function
2
RXD
Receive end of data
3
TXD
Transmit end of data
4
DTR
Data terminal equipment ready
5
GND
Ground
6
-
Reserved
7
-
Reserved
8
GND
GND
9
5VOADM
Power supply for OADM
Pin Assignment of the ALMI1 Interface For the pin assignment of the ALMI1 interface, refer to Table 7-17. Table 7-17 Pin assignment of the ALMI1 interface Pin
Signal
Function
1
SWITCHI_IN1
Alarm input 1
2
GND
Ground
3
SWITCHI_IN2
Alarm input 2
4
SWITCHI_IN3
Alarm input 3
5
GND
Ground
6
GND
Ground
7
SWITCHI_IN4
Alarm input 4
8
GND
Ground
Pin Assignment of the ALMI2 Interface For the pin assignment of the ALMI2 interface, refer to Table 7-18. Table 7-18 Pin assignment of the ALMI2
Issue 03 (2013-05-16)
Pin
Signal
Function
1
SWITCHI_IN5
Alarm input 5
2
GND
Ground
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
168
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Pin
Signal
Function
3
SWITCHI_IN6
Alarm input 6
4
SWITCHI_IN7
Alarm input 7
5
GND
Ground
6
GND
Ground
7
SWITCHI_IN8
Alarm input 8
8
GND
Ground
Pin Assignment of the LAMP1 and the LAMP2 Interfaces For the pin assignment of the LAMP1 and the LAMP2 interfaces, refer to Table 7-19. Table 7-19 Pin assignment of the LAMP1 and the LAMP2 interfaces Pin
Signal
Function
1
CRIT_ALMP
Critical alarm signal positive
2
CRIT_ALMN
Critical alarm signal negative
3
MAJ_ALMP
Major alarm signal positive
4
RUNP
Power indicating signal positive
5
RUNN
Power indicating signal negative
6
MAJ_ALMN
Major alarm signal positive
7
MIN_ALMP
Minor alarm signal positive
8
MIN_ALMN
Minor alarm signal negative
7.7.1.4 Valid Slots One slot houses one EFI board. Table 7-20 shows the valid slots for the EFI board. Table 7-20 Valid slots for the EFI board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 subrack
IU23
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
169
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
7.7.1.5 EFI Specifications Specifications include dimensions, weight and power consumption.
Mechanical Specifications l
Dimensions of front panel: 320 mm (W) x 70.3 mm (D) x 20 mm (H) (12.6 in. (W) x 2.8 in. (D) x 0.8 in. (H))
l
Weight: 0.3 kg (0.66 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
EFI
8
8.8
7.7.2 Interfaces on the Front Panel of the AUX Board The AUX board provides NM interface, NM cascading interface, inter-subrack normal and emergent communication interface. Figure 7-14 shows the front panel of the AUX. Slot IU21 houses the AUX board. Figure 7-14 Interfaces on the front panel of the AUX
NM_ETH1 NM_ETH2 ETH1 ETH2
STAT PROG
AUX
Description of interfaces on the front panel of the AUX board is list in Table 7-21.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
170
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Table 7-21 Description of interfaces on the front panel of the AUX board Interface
Silk-screen
Connector
Function
NE management interface
NM_ETH1/ NM_ETH2
RJ45
l Connects the network interface on the OptiX OSN 6800 through a network cable to that on the U2000 server to achieve the management of the U2000 over the OptiX OSN 6800. l Connects the NM_ETH1/ NM_ETH2 network interface on one NE through a network cable to that on another NE to achieve communication between NEs.
Inter-subrack communication interface
ETH1/ETH2
RJ45
l Connects the ETH1/ETH2 interface on one subrack through a network cable to such interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board.
Pin assignment of the RJ45 Connector Figure 7-15 shows the pin assignment of the RJ45 connector. Figure 7-15 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the NM-ETH1 Interface For the pin assignment of the NM-ETH1 interface, refer to Table 7-22. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
171
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Table 7-22 Pin assignment of the NM-ETH1 interface Pin
Signal
Function
1
NM_ETNTXP
NM communications, transmits the data positive
2
NM_ETNTXN
NM communications, transmits the data negative
3
NM_ETNRXP
NM communications, receives the data positive
4
NC
Not connected.
5
NC
Not connected.
6
NM_ETNRXN
NM communications, receives the data negative
7
NC
Not connected.
8
NC
Not connected.
Pin Assignment of the NM-ETH2 Interface For the pin assignment of the NM-ETH2 interface, refer to Table 7-23. Table 7-23 Pin assignment of the NM-ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
NMJL_ETNTXP
Transmits the concatenated data positive for NM communications
2
NMJL_ETNTXN
Transmits the concatenated data negative for NM communications
3
NMJL_ETNRXP
Receives the concatenated data positive for NM communications
4
NC
Not connected
5
NC
Not connected
6
NMJL_ETNRXN
Receives the concatenated data negative for NM communications
7
NC
Not connected
8
NC
Not connected
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
172
OptiX OSN 8800/6800/3800 Hardware Description
7 OptiX OSN 6800 Subrack and Power Requirement
Pin Assignment of the ETH1 Interface For the pin assignment of the ETH1 interface, refer to Table 7-24. Table 7-24 Pin assignment of the ETH1 interface Pin
Signal
Function
1
ETH1_TXP
Transmits the data positive for inter-subrack ordinary communications
2
ETH1_TXN
Transmits the data negative for inter-subrack ordinary communications
3
ETH1_RXP
Receives the data positive for inter-subrack ordinary communications
4
ETH1_CRIT_TXP
Transmits the data positive for inter-subrack emergent communications
5
ETH1_CRIT_TXN
Transmits the data negative for inter-subrack emergent communications
6
ETH1_RXN
Receives the data negative for inter-subrack ordinary communications
7
ETH1_CRIT_RXP
Receives the data positive for inter-subrack emergent communications
8
ETH1_CRIT_RXN
Receives the data negative for inter-subrack emergent communications
Pin Assignment of the ETH2 Interface For the pin assignment of the ETH2 interface, refer to Table 7-25. Table 7-25 Pin assignment of the ETH2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETH2_TXP
Transmits the data positive for inter-subrack ordinary communications
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
173
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
7 OptiX OSN 6800 Subrack and Power Requirement
Pin
Signal
Function
2
ETH2_TXN
Transmits the data negative for inter-subrack ordinary communications
3
ETH2_RXP
Receives the data positive for inter-subrack ordinary communications
4
ETH2_CRIT_TXP
Transmits the data positive for inter-subrack emergent communications
5
ETH2_CRIT_TXN
Transmits the data negative for inter-subrack emergent communications
6
ETH2_RXN
Receives the data negative for inter-subrack ordinary communications
7
ETH2_CRIT_RXP
Receives the data positive for inter-subrack emergent communications
8
ETH2_CRIT_RXN
Receives the data negative for inter-subrack emergent communications
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
174
OptiX OSN 8800/6800/3800 Hardware Description
8
8 OptiX OSN 6800 Board Category
OptiX OSN 6800 Board Category
The following types of boards are available for the system. Table 8-1 lists the boards for the OptiX OSN 6800. Table 8-1 Boards for the OptiX OSN 6800 Board Category
Board Name
Board Description
Optical transponder unit
TN11ECOM
Enhanced communication interface unit
TN11L4G
Line wavelength conversion unit with 4 x Gigabit Ethernet line capacity
TN11LDGS
2 x Gigabit Ethernet unit, single fed and single receiving
TN11LDGD
2 x Gigabit Ethernet unit, dual fed and selective receiving
TN12LDM
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board
TN11LDMD
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, dual fed and selective receiving
TN11LDMS
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, single fed and single receiving
TN12LDX
2 x 10 Gbit/s wavelength conversion unit
TN11LEM24
22×GE + 2×10GE and 2×OTU2 ethernet switch board
TN11LEX4
4×10GE and 2×OTU2 ethernet switch board
TN11LOA
8 x Any-rate MUX OTU2 Wavelength Conversion Board
TN11LOG
8 x Gigabit Ethernet unit
TN12LOG TN11LOM TN12LOM Issue 03 (2013-05-16)
8-port multi-service multiplexing & optical wavelength conversion board
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
175
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
8 OptiX OSN 6800 Board Category
Board Name
Board Description
TN11LQG
4 x GE-multiplex-optical wavelength conversion board
TN13LQM
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit
TN11LQMD
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, dual fed and selective receiving
TN12LQMD TN11LQMS TN12LQMS
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, single fed and single receiving
TN12LSC
100Gbit/s wavelength conversion board
TN11LSQ
40 Gbit/s wavelength conversion board
TN11LSX
10 Gbit/s wavelength conversion unit
TN12LSX TN13LSX TN14LSX TN11LSXL
40 Gbit/s wavelength conversion board
TN12LSXL TN15LSXL TN11LSXLR
40 Gbit/s wavelength conversion relay unit
TN12LSXLR TN11LSXR
10 Gbit/s wavelength conversion relay unit
TN11LTX
10-Port 10Gbit/s Service multiplexing & optical wavelength conversion board
TN11LWX2
arbitrary rate (16Mbit/s-2.7Gbit/s) dual-wavelength conversion board
TN11LWXD
arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (double transmit)
TN11LWXS
arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (single transmit)
TN12LWXS TN11TMX TN12TMX Tributary unit
Issue 03 (2013-05-16)
4 channels STM-16/OC-48/OTU1 asynchronism mux OTU-2 wavelength conversion board
TN11TBE
10 Gigabit ethernet tributary board
TN11TDG
2 x GE tributary service processing board
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
176
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
8 OptiX OSN 6800 Board Category
Board Name
Board Description
TN11TDX
2 x 10G tributary service processing board
TN12TDX TN52TDX TN53TDX TN52TOG
8 x GE tributary service processing board
TN11TOM
8 x multi-rate ports service processing board
TN52TOM TN11TQM
4 x multi-rate tributary service processing board
TN12TQM TN11TQS
4 x STM-16/OC-48/OTU1 tributary service processing board
TN11TQX
4 x 10 Gbit/s tributary service processing board
TN52TQX TN55TQX
Line unit
TN11TSXL
40 Gbit/s tributary service processing board
TN11ND2
2 x 10G line service processing board
TN12ND2 TN52ND2 TN53ND2 TN51NQ2
4 x 10G Line Service Processing Board
TN52NQ2 TN53NQ2 TN11NS2
10G Line Service Processing Board
TN12NS2 TN52NS2 TN53NS2 TN11NS3
40G line service processing board
TN52NS3
NOTE The TN54NS3/TN55NS3 board for the OptiX OSN 6800 only supports relay mode.
TN54NS3 TN55NS3
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
177
OptiX OSN 8800/6800/3800 Hardware Description
8 OptiX OSN 6800 Board Category
Board Category
Board Name
Board Description
PID unit
TN11BMD4
PID Interleaver Board (C-band), 200/100 GHz
TN11BMD8
PID Interleaver Board (C_Band), 200/50 GHz
TN12ELQX
4×Electrical OTU2 with 4×10G Tributary Board
TN12PTQX
12× OTU2 PID board with 4×10G Tributary
TN11XCS
centralized cross connect board
Cross-connect unit and system and communicatio n unit
TN12XCS TN11SCC
system control and communication unit
TN51SCC TN52SCC
Optical multiplexer and demultiplexer unit
TN11AUX
system auxiliary interface unit
TN11M40
40-channel multiplexing unit
TN12M40 TN11D40
40-channel demultiplexing unit
TN12D40 TN11M40V
40-channel multiplexing unit with VOA
TN12M40V TN11D40V
40-channel demultiplexing unit with VOA
TN11FIU
fiber interface unit
TN12FIU TN13FIU TN14FIU TN11ITL
interleaver board
TN12ITL
Fixed optical add and drop multiplexing unit
Issue 03 (2013-05-16)
TN11SFIU
fiber interface unit for sync timing
TN11CMR2
CWDM 2-channel optical add/drop multiplexing unit
TN11CMR4
CWDM 4-channel optical add/drop multiplexing unit
TN11DMR1
CWDM 1-channel bidirectional optical add/drop multiplexing board
TN11MR2
2-channel optical add/drop multiplexing unit
TN11MR4
4-channel optical add/drop multiplexing unit
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
178
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
Reconfigurabl e optical add and drop multiplexing unit
8 OptiX OSN 6800 Board Category
Board Name
Board Description
TN11MR8
8-channel optical add/drop multiplexing unit
TN11MR8V
8-channel optical add/drop multiplexing unit with VOA
TN11SBM2
2-channel CWDM single-fiber bidirectional add/drop board
TN11RDU9
9-port ROADM demultiplexing board
TN11RMU9
9-port ROADM multiplexing board
TN11ROAM
reconfigurable optical adding board
TN12TD20
20-ports Tunable Demultiplexing Board
TN11TM20
20-ports Wavelength Tunable Multiplexing Board
TN11WSD9
9-port wavelength selective switching demultiplexing board
TN12WSD9 TN13WSD9 TN11WSM9
9-port wavelength selective switching multiplexing board
TN12WSM9 TN13WSM9 TN11WSMD2
2-port wavelength selective switching multiplexer and demultiplexer board
TN11WSMD4
4-port wavelength selective switching multiplexer and demultiplexer board
TN12WSMD4
Optical amplifier unit
TN11WSMD9
9-port wavelength selective multiplexing and demultiplexing board
TN11CRPC
case-shape Raman pump amplifier unit for C-band
TN11DAS1
optical amplifier unit
TN11HBA
high-power booster amplifier board
TN11OAU1
optical amplifier unit
TN12OAU1 TN13OAU1 TN11OBU1
optical booster unit
TN12OBU1 TN11OBU2
optical booster unit
TN12OBU2 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
179
OptiX OSN 8800/6800/3800 Hardware Description
8 OptiX OSN 6800 Board Category
Board Category
Board Name
Board Description
TN11RAU1
backward raman and erbium doped fiber hybrid optical amplifier unit
TN11RAU2 Optical supervisory channel unit
TN11HSC1
high power unidirectional optical supervisory channel board
TN11SC1
unidirectional optical supervisory channel unit
TN12SC1 TN11SC2
bidirectional optical supervisory channel unit
TN12SC2
Optical protection unit
TN11ST2
bidirectional optical supervisory channel and timing transmission unit
TN11DCP
2-channel optical path protection unit
TN12DCP TN11OLP
optical line protection unit
TN12OLP
Spectrum analyzer unit
TN11SCS
sync optical channel separator unit
TN11MCA4
4-channel spectrum analyzer unit
TN11MCA8
8-channel spectrum analyzer unit
TN11OPM8
8-channel optical power monitoring board
TN12OPM8
Variable optical attenuator unit
TN11WMU
wavelength monitoring unit
TN11VA1
1-channel variable optical attenuator unit
TN12VA1 TN11VA4
4-channel variable optical attenuator unit
TN12VA4
Issue 03 (2013-05-16)
Dispersion equalizing unit
TN11DCU
dispersion compensation board
TN11TDC
single-wavelength tunable-dispersion compensation board
Clock unit
TN11STG
centralized clock board
ROPA subsystem unita
TN11GFU
gain flatness unit
TN11RGU
ROPA gain unit
TN11ROP
ROPA pumping unit
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
180
OptiX OSN 8800/6800/3800 Hardware Description
8 OptiX OSN 6800 Board Category
Board Category
Board Name
Board Description
Interface area unitb
TN11EFI
EMI filter interface board
TN11PIU
power interface unit
Fan
TN11FAN
Fan
a: For the details of the ROPA subsystem unit, refer to ROPA Subsystem User Guide. b: For the details of the interface area unit, refer to 7.7 Data Communication and Equipment Maintenance Interfaces.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
181
OptiX OSN 8800/6800/3800 Hardware Description
9
9 OptiX OSN 3800 Chassis and Power Requirement
OptiX OSN 3800 Chassis and Power Requirement
About This Chapter 9.1 Chassis Structure The 3U-high, case-shaped chassis is the basic working unit of the OptiX OSN 3800 compact intelligent optical transport platform (OptiX OSN 3800 for short). 9.2 Slot Description The board area of the chassis has 11 slots, labeled IU1 to IU11 from left to right. 9.3 Fan and Heat Dissipation Each OptiX OSN 3800 chassis has one fan tray assembly, which includes six independent fans and an air filter. The air filter can be drawn out, cleaned and replaced. 9.4 AC Power Consumption This section provides the maximum and typical power consumption specifications of OptiX OSN 3800 when the equipment runs on AC power. 9.5 AC Power Requirement This section describes the requirements on power supplywhen the equipment runs on AC power. 9.6 DC Power Consumption This section provides the maximum and typical power consumption specifications of OptiX OSN 3800 when the equipment runs on DC power. 9.7 DC Power Requirement This section describes the requirements on power supply when the equipment runs on DC power. 9.8 Data Communication and Equipment Maintenance Interfaces The OptiX OSN 3800 provides abundant interfaces for data communication and equipment maintenance.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
182
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
9.1 Chassis Structure The 3U-high, case-shaped chassis is the basic working unit of the OptiX OSN 3800 compact intelligent optical transport platform (OptiX OSN 3800 for short). The chassis of the OptiX OSN 3800 can operate with an independent DC or AC power supply and can be installed in an ETSI 300 mm rear-column cabinet, a standard ETSI 300 mm cabinet, or a 19 and 23-inch open rack. Figure 9-1 shows appearance of the OptiX OSN 3800 chassis. Table 9-1 describes the mechanical specifications of the OptiX OSN 3800 chassis. Figure 9-1 OptiX OSN 3800 chassis
5 1 4 2
3
1. Grounding connector
2. Fiber frame
3. Board area
4. Antistatic jack
5. Fan indicator
l
Ground connector: Access the ground cables.
l
Fiber frame: Fiber jumpers in the service board area are routed through the fiber frame.
l
Board area: All service boards are installed in this area. In total, 11 slots are available.
l
Antistatic jack: The ESD strap is in this area.
l
Fan indicator: The fan indicator indicates the status of the fans.
Table 9-1 Mechanical specifications of the OptiX OSN 3800 Item
Specification
Dimensions
436 mm (W) x 295 mm (D) x 134 mm (H) or 17.17 in. (W) x 11.61 in. (D) x 5.28 in. (H)
Weight of an empty chassis (with backplane)
6 kg (13.23 lb.)
9.2 Slot Description The board area of the chassis has 11 slots, labeled IU1 to IU11 from left to right. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
183
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Slots of the chassis are shown in Figure 9-2 and Figure 9-3. Figure 9-2 Slots of the chassis (DC power)
IU1 FAN
Paired slots
IU11
IU6/PIU
IU2
IU7/PIU
IU3
IU8/SCC
IU4
IU9/SCC
IU5
IU10/AUX
Mesh group
Mutual backup
Figure 9-3 Slots of the chassis (AC power)
IU1
IU11
IU6/APIU
IU2 FAN
Paired slots
IU3
IU7/APIU
IU4
IU9/SCC
IU5
IU10/AUX
Mesh group
Mutual backup
NOTE
l
: service boards.
l Slots IU1 and IU11 can be used as two independent slots, each for housing an FOADM board with a height of 118.9 mm (4.7 in.). They can be also used as one slot for housing a service board with a height of 264.6 mm (10.4 in.). When the two slots are used as one slot, the slot ID is represented as IU11. l Pair slots refer to a pair of slots whose resident boards' overhead can be processed by the buses on the backplanes. l A mesh group refers to a group of slots housing the boards whose overhead can be processed by the buses on the backplane.
9.3 Fan and Heat Dissipation Each OptiX OSN 3800 chassis has one fan tray assembly, which includes six independent fans and an air filter. The air filter can be drawn out, cleaned and replaced.
Version Description Only one functional version of the fan tray assembly is available, that is, TN21. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
184
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Functions and Features Table 9-2 shows the functions of a fan tray assembly. Table 9-2 Functions of a fan tray assembly Function
Description
Basic function
Dissipates heat generated by the equipment so that the equipment can operate normally within the designated temperature range.
Commissioning control
l Auto Speed Mode: Implements automatic fan speed regulation, depending on the subrack temperature. l Adjustable Speed Mode: You can manually adjust the fan speed. NOTE Only when the chassis accesses DC power, Fan speed control is available.
Hot swapping
Provides the hot swapping function for the fan tray assembly.
Alarming
Reports alarms of the fans and reports the inservice information.
Status checking
Checks the fan status.
Working Principle Air flow from the subrack is left intake right exhaust.Figure 9-4 shows the heat dissipation and ventilation system in the OptiX OSN 3800. Figure 9-4 Front view of the heat dissipation and ventilation system
Planform
Air inlet Fan
Air outlet
Front
The OptiX OSN 3800 supports two fan speed modes, as shown in Table 9-3. It is recommended that you set the speed mode to Auto Speed Mode. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
185
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Table 9-3 FAN speed mode FAN Speed Mode
Description
Auto Speed Mode
The fan speed depends on the temperature. l Lower than 45°C (113°F): the fans run at low speed. l Higher than 65°C (149°F): the fans run at high speed. l 45°C (113°F) to 65°C (149°F): the fans run at medium speed. The fans run at full speed if the speed regulating signals are abnormal.
Adjustable Speed Mode
Four fan speed modes are available: Stop, Low Speed, Medium Speed, and High Speed. You can set the fan speed manually.
NOTE
l
If any one of the six fans in the fan tray assembly fails, the system can remain operational for a short term in environments where temperatures range between 0°C to 40°C (32°F to 104°F). To ensure long-term operation of the system, replace the fan tray assembly in a timely manner. Short-term operation means that the continuous operating time does not exceed 96 hours and the accumulated time per year does not exceed 15 days.
l
If two or more fans fail in the fan tray assembly, replace the fan tray assembly immediately.
The fan tray assembly consists of six fans and one fan control unit. Figure 9-5 shows the functional block of the fan tray assembly. Figure 9-5 Functional block diagram of the fan tray assembly Status signal Speed adjusting signal Fan control unit Status signal FAN
Speed adjusting signal
External power External power supply 1 supply 2
l
FAN: dissipates heat generated by normal operation of the chassis. FAN is the core of the fan tray assembly.
l
Fan control board: – Controls the fan speed according to regulating signals. – Detects faults. After a fault is detected, the fan control unit reports an alarm.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
186
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
– Monitors the fan speed regulating signals, the fan status, and the online/offline state of the fan tray assembly. – Receives and carries out commands from the SCC board to shut down the fans on the fan tray assembly if necessary.
Appearance Figure 9-6 shows a fan tray assembly. Figure 9-6 Fan tray assembly 1
2
1. Fans (6 in total)
2. Operating status indicator
Valid Slots One slot houses one fan tray assembly. The valid slot for the fan tray assembly is IU12.
Specifications of the Fan Tray Assembly Table 9-4 list the technical specifications of the fan tray assembly for the OptiX OSN 3800 system. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W.
Table 9-4 Technical specifications of the fan tray assembly (OptiX OSN 3800)
Issue 03 (2013-05-16)
Item
Specification
Dimensions
41.0 mm (W) x 262.6 mm (D) x 126.5 mm (H) (1.61 in. (W) x 10.34 in. (D) x 4.98 in. (H))
Weight
0.81 kg (1.79 lb)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
187
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Item
Specification
Power Consumptiona
l Low Speed: 9 W l Medium Speed: 17 W l High Speed: 32.7 W
a: Rotating speed of fans is controlled intelligently. When the system is typically configured, rotating speed of fans is automatically adjusted to a low level. When the system is fully configured with boards of high power consumption, and the system is running in a high ambient temperature, rotating speed of fans may be adjusted to a high level. When rotating at the maximum speed, power consumption of fan tray assembly may reach 32.7 W.
9.4 AC Power Consumption This section provides the maximum and typical power consumption specifications of OptiX OSN 3800 when the equipment runs on AC power. Table 9-5 describes the AC power consumption of an OptiX OSN 3800 chassis. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Table 9-5 AC Power consumption of an OptiX OSN 3800 Item
Value
Maximum power consumption
350 W
Table 9-6 lists the power consumption of the common units in an OptiX OSN 3800. Table 9-6 AC Power consumption of the chassis in typical configuration in an OptiX OSN 3800 Unit Name
OADM chassis (Using the APIU) Issue 03 (2013-05-16)
Chassis 1
Typical Power Consump tion at 25° C (77°F)
Maximum Power Consumpti on at 55°C (131°F)
Remarks
162.2
207.5
2 x TN21MR2, 4 x 2.5 Gbit/s OTU, 1 x SCC, 2 x APIU, 1 x AUX, and 1 x fan tray assembly.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
188
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Unit Name
Typical Power Consump tion at 25° C (77°F)
Maximum Power Consumpti on at 55°C (131°F)
Remarks
Chassis 2
117.7
154.5
1 x DFIU, 1 x SC2, 2 x OAU101, 1 x SCC, 2 x APIU, 1 x AUX, and 1 x fan tray assembly.
OLA chassis (Using the APIU)
119.7
156.7
1 x DFIU, 1 x SC2, 2 x OBU103, 1 x SCC, 2 x APIU, 1 x AUX, and 1 x fan tray assembly.
a: Indicates that the power consumption of the chassis is the value in a certain configuration. The value is for reference only. The actual power consumption of the chassis is calculated based on the power consumption of each module.
9.5 AC Power Requirement This section describes the requirements on power supplywhen the equipment runs on AC power.
Requirements on AC Voltage and Current Table 9-7 provides the requirements on AC voltage and current of an OptiX OSN 3800 chassis. Table 9-7 Requirements on AC voltage and current of an OptiX OSN 3800 Item
Requirement
Rated working current
1.7 A
Nominal working voltage
220 V AC
Working voltage range
90 V AC to 285 V AC
APIU The APIU board receives and provides AC power for equipment. For OptiX OSN 3800, the APIU board must be TN21APIU. l
Function: Accesses AC power in a range from 90 V to 285 V. Provides lightning protection and power filtering functions.
l
Front Panel: Appearance of the Front Panel
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
189
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Figure 9-7 Front panel of the APIU board
APIU RUN
ON
OFF ~100-240V
S1 S11 APIU S2 S3 APIU S4 SCC S5 AUX
Indicator: Running status indicator (RUN) - green l
Valid Slots: IU6, IU7 and IU8 together house two APIU boards. That is, each APIU requires 1.5 slots.
l
Specifications: – Performance Specifications Table 9-8 Performance specifications of the APIU
Issue 03 (2013-05-16)
Item
Unit
Value
Input power voltage range
V (AC)
90 to 285
Input frequency
Hz
50
Input power current
A (AC)
≤4
Output rated voltage
V (DC)
-48
Output rated current
A (DC)
6.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
190
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Item
Unit
Value
Output power
W
300
– Mechanical Specifications Dimensions of front panel: 37.5 mm (H) x 100 mm (W) x 220 mm (D) or 1.5 in. (H) x 3.9 in. (W) x 8.7 in. (D) Weight: 0.8 kg (1.8lb.) – Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN21APIU
50
55
9.6 DC Power Consumption This section provides the maximum and typical power consumption specifications of OptiX OSN 3800 when the equipment runs on DC power. Table 9-9 describes the DC power consumption of an OptiX OSN 3800 chassis. NOTE
For transport equipment, the heat consumption and power consumption are similar and can be considered the same. Heat consumption is expressed in BTU/h and power consumption is expressed in W. The conversion between the two units is as follows: 1 BTU/h = 0.2931 W. Typical configuration power consumption indicates the average power consumption of the equipment with the typical configuration and the equipment runs at the room temperature. Maximum power consumption indicates the possible maximum power consumption when the equipment runs in an environment with extreme conditions.
Table 9-9 DC Power consumption of an OptiX OSN 3800 Item
Value
Maximum power consumption
350 W
Table 9-10 lists the power consumption of the common units in an OptiX OSN 3800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
191
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Table 9-10 DC Power consumption of the chassis in typical configuration in an OptiX OSN 3800 Unit Name
Typical Power Consump tion at 25° C (77°F)
Maximum Power Consumpti on at 55°C (131°F)
Remarks
Chassis 1
99.4
135.3
2 x TN21MR2, 4 x 2.5 Gbit/s OTU, 1 x SCC, 2 x DPIU, 1 x AUX, and 1 x fan tray assembly.
Chassis 2
77.7
111.5
1 x DFIU, 1 x SC2, 2 x OAU101, 1 x SCC, 2 x DPIU, 1 x AUX, and 1 x fan tray assembly.
OLA chassis (Using the PIU)
79.7
113.7
1 x DFIU, 1 x SC2, 2 x OBU103, 1 x SCC, 2 x DPIU, 1 x AUX, and 1 x fan tray assembly.
OADM chassis (Using the PIU)
a: Indicates that the power consumption of the chassis is the value in a certain configuration. The value is for reference only. The actual power consumption of the chassis is calculated based on the power consumption of each module.
9.7 DC Power Requirement This section describes the requirements on power supply when the equipment runs on DC power.
Requirements on DC Voltage and Current Table 9-11 provides the requirements on DC voltage and current of an OptiX OSN 3800 chassis. Table 9-11 Requirements on DC voltage and current of an OptiX OSN 3800 Item
Requirement
Rated working current
8A
Nominal working voltage
-48 V DC/-60 V DC
Working voltage range
-48V DC: -40V to -57.6V -60V DC: -48V to -72V
PIU The PIU board receives and provides DC power for equipment. For OptiX OSN 3800, the PIU board must be TN21PIU. l Issue 03 (2013-05-16)
Function: Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
192
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Accesses DC power in a range from -40 V to -72 V. Provides lightning protection and power filtering functions. l
Front Panel: Appearance of the Front Panel Figure 9-8 Front panel of the PIU board
RUN
DO not hot plug this unit! S1 S4
S2
AUX
SCC
SCC
PIU
PIU
S5
S11
S6
NEG(-) RTN(+)
PIU
Indicator: Running status indicator (RUN) - green l
Valid Slots: IU6 and IU7
l
Specifications: – Performance Specifications Table 9-12 Performance specifications of the PIU Item
Unit
Value
Number of DC input power supplies
-
1
Input DC power voltage range
V
-40 to -72
Input DC power current
A
≤7
– Mechanical Specifications Dimensions of front panel: 218.50 mm (H) x 107.76 mm (W) or 8.6 in. (H) x 4.2 in. (W) Weight: 0.5 kg (1.0 lb.) – Power Consumption Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
193
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN21PIU
10
12
9.8 Data Communication and Equipment Maintenance Interfaces The OptiX OSN 3800 provides abundant interfaces for data communication and equipment maintenance.
9.8.1 Interfaces on the Front Panel of the AUX Board The AUX board provides NM interfaces and extended auxiliary interfaces. Figure 9-9 shows the front panel of the AUX board. The AUX board is housed in slot IU10. Figure 9-9 Interfaces on the front panel of the AUX board
STAT PROG
NM_ETH1 NM_ETH2 EXT
AUX
Table 9-13 describes the functions of each interface on the front panel of the AUX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
194
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Table 9-13 Functions of each interface on the front panel of the AUX board Interface
Silk-Screen
Connector
Function
NM interface
NM_ETH1/ NM_ETH2
RJ45
l Connects the network interface on the OptiX OSN 3800 through a network cable to that on the U2000 server so that the U2000 over the OptiX OSN 3800. l Connects the NM_ETH1/ NM_ETH2 network interface on one NE through a network cable to that on another NE to achieve communication between NEs.
Extended auxiliary interfaces
EXT
DB9, RJ45
Accesses and outputs each kind of external signals.
EXT interfaces include ALMO, LAMP1, LAMP2, ETH, SERIAL, ALMI1, and ALMI2. Table 9-14 lists the functions of the interfaces. Table 9-14 Description of interfaces Interface
Interface Description
Function
ALMO
Alarm output and cascading interface
l Alarm outputs are sent to the DC power distribution cabinet through the output interface. You can configure it to be the other outputs to implement integrated display of alarms. The alarm outputs are controlled by the internal relay contact. When the relay contact is closed, the resistance of each ALMO interface is less than 1 ohm. When the relay contact is open, the resistance of each ALMO interface is an infinite number. l Provides two alarm outputs and cascading.
SERIAL
Issue 03 (2013-05-16)
OAM interface
The OAM interface is a serial NM interface, providing functions of serial NM and supporting X.25 protocol.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
195
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Interface
Interface Description
Function
ALMI1 ALMI2
Alarm input interface
l External alarm signal input function is designed for requirements when the alarm signals of the external systems (such as the environment monitory) need remote monitoring. l Provides six alarm inputs. The severity of the six alarms can be configured to cooperate with the external system to implement remote monitoring of external alarms.
LAMP1 LAMP2
Subrack alarm output and cascading interface
This interface drives the running indicators and alarm indicators of the cabinet that holds the subrack.
ETH3
Inter-subrack communication interface
Reserved
9.8.2 PIN Assignment of Interfaces The OptiX OSN 3800 provides RJ45 and the DB9 ports to enable data communication and equipment maintenance. This section shows the pin assignments of the RJ45 and DB9 connectors and describes the pins of each connector.
Pin assignment of the RJ45 Connector Figure 9-10 shows the pin assignment of the RJ45 connector. Figure 9-10 Pin assignment of the RJ45 connector
8 7 6 5 4 3 2 1 .
Pin Assignment of the DB9 Connector Figure 9-11 shows the pin assignment of the DB9 connector. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
196
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Figure 9-11 Pin assignment of the DB9 connector
1 6 2 7 3 8 4 9 5
Pin Assignment of the ETH Interface For the pin assignment of the ETH interface, refer to Table 9-15. Table 9-15 Pin assignment of the ETH interface Pin
Signal
Function
1
ETNTX_P_1
Positive pole for transmitting the data
2
ETNTX_N_1
Negative pole for transmitting the data
3
ETNRX_P_1
Positive pole for receiving the data
4
NC
Not defined
5
NC
Not defined
6
ETNRX_N_1
Negative pole for receiving the data
7
NC
Not defined
8
NC
Not defined
Pin Assignment of the ALMO Interface For the pin assignment of the ALMO interface, refer to Table 9-16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
197
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Table 9-16 Pin assignment of the ALMO interface Pin
Signal
Function
1
SWCRIT_OUT1+
Alarm output signal 1 positive
2
SWCRIT_OUT1-
Alarm output signal 1 negative
3
SWCRIT_OUT2+
Alarm output signal 2 positive
4
SWCRIT_OUT1+
Cascaded alarm output signal 1 positive
5
SWCRIT_OUT1-
Cascaded alarm output signal 1 negative
6
SWCRIT_OUT2-
Alarm output signal 2 negative
7
SWCRIT_OUT2+
Cascaded alarm output signal 2 positive
8
SWCRIT_OUT2-
Cascaded alarm output signal 2 negative
NOTE
The alarm outputs are controlled by the internal relay contact. When the relay contact is closed, the resistance of each ALMO interface is less than 1 ohm. When the relay contact is open, the resistance of each ALMO interface is an infinite number.
Pin Assignment of the SERIAL Interface For the pin assignment of the SERIAL interface, refer to Table 9-17. Table 9-17 Pin assignment of the SERIAL interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
N.C
Not defined
2
RXD
Receive end
3
TXD
Transmit end
4
DTR
Data terminal equipment ready
5
GND
Ground
6
–
Reserved
7
–
Reserved
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
198
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Pin
Signal
Function
8
GND
Ground
9
V5_OADM
Power supply for OADM
Pin Assignment of the ALMI1 Interface For the pin assignment of the ALMI1 interface, refer to Table 9-18. Table 9-18 Pin assignment of the ALMI1 interface Pin
Signal
Function
1
SW_IN1P
Alarm input signal 1
2
GND
Ground
3
SW_IN2P
Alarm input signal 2
4
SW_IN3P
Alarm input signal 3
5
GND
Ground
6
GND
Ground
7
SW_IN4P
Alarm input signal 4
8
GND
Ground
Pin Assignment of the ALMI2 Interface For the pin assignment of the ALMI2 interface, refer to Table 9-19. Table 9-19 Pin assignment of the ALMI2 interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
SW_IN5P
Alarm input signal 5
2
GND
Ground
3
SW_IN6P
Alarm input signal 6
4
NC
Not defined
5
NC
Not defined
6
GND
Ground
7
NC
Not defined
8
NC
Not defined
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
199
OptiX OSN 8800/6800/3800 Hardware Description
9 OptiX OSN 3800 Chassis and Power Requirement
Pin Assignment of the LAMP1 and the LAMP2 Interfaces For the pin assignment of the LAMP1 and the LAMP2 interfaces, refer to Table 9-20. Table 9-20 Pin assignment of the LAMP1 and the LAMP2 interfaces Pin
Signal
Function
1
RED+
Positive pole for critical alarm signals
2
RED-
Negative pole for critical alarm signals
3
YELLOW+
Positive pole for major alarm signals
4
GREEN+
Positive pole for power indicating signals
5
GND
Negative pole for power indicating signals
6
YELLOW-
Negative pole for major alarm signals
7
ORG+
Positive pole for minor alarm signals
8
ORG-
Negative pole for minor alarm signals
Pin Assignment of the NM_ETH1/NM_ETH2 Interfaces For the pin assignment of the NM-ETH1/NM_ETH2 interface, refer to Table 9-21. Table 9-21 Pin assignment of the NM_ETH1/NM_ETH2 interfaces
Issue 03 (2013-05-16)
Pin
Signal
Function
1
ETNTX12P
Positive pole for transmitting the data for communication with an NM
2
ETNTX12N
Negative pole for transmitting the data for communication with an NM
3
ETNRX12P
Positive pole for receiving the data for communication with an NM
4
NC
Not defined
5
NC
Not defined
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
200
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
9 OptiX OSN 3800 Chassis and Power Requirement
Pin
Signal
Function
6
ETNRX12N
Negative pole for receiving the data for communication with an NM
7
NC
Not defined
8
NC
Not defined
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
201
OptiX OSN 8800/6800/3800 Hardware Description
10
10 OptiX OSN 3800 Board Category
OptiX OSN 3800 Board Category
The following types of boards are available for the system. Table 10-1 lists the boards for the OptiX OSN 3800. Table 10-1 Boards for the OptiX OSN 3800 Board Category
Board Name
Board Description
Optical transponder unit
TN11ECOM
Enhanced communication interface unit
TN11L4G
Line wavelength conversion unit with 4 x Gigabit Ethernet line capacity
TN11LDGS
2 x Gigabit Ethernet unit, single fed and single receiving
TN11LDGD
2 x Gigabit Ethernet unit, dual fed and selective receiving
TN12LDM
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board
TN11LDMD
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, dual fed and selective receiving
TN11LDMS
2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, single fed and single receiving
TN12LDX
2 x 10 Gbit/s wavelength conversion unit
TN11LEM24
22 x GE + 2 x 10GE and 2 x OTU2 Ethernet Switch board
TN11LOA
8 x Any-rate MUX OTU2 Wavelength Conversion Board
TN11LOG
8 x Gigabit Ethernet unit
TN12LOG TN11LOM TN12LOM TN11LQG Issue 03 (2013-05-16)
8-port multi-service multiplexing & optical wavelength conversion board 4 x GE-multiplex-optical wavelength conversion board
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
202
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
10 OptiX OSN 3800 Board Category
Board Name
Board Description
TN13LQM
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit
TN11LQMD
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, dual fed and selective receiving
TN12LQMD TN11LQMS TN12LQMS TN11LSX
4-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion unit, single fed and single receiving 10 Gbit/s wavelength conversion unit
TN12LSX TN13LSX TN14LSX TN11LSXR
10 Gbit/s wavelength conversion relay unit
TN11LWX2
arbitrary rate (16Mbit/s-2.7Gbit/s) dual-wavelength conversion board
TN11LWXD
arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (double transmit)
TN11LWXS
arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (single transmit)
TN12LWXS TN11TMX TN12TMX Tributary unit
4 channels STM-16/OC-48/OTU1 asynchronism mux OTU-2 wavelength conversion board
TN11TBE
10 Gigabit ethernet tributary board
TN11TDG
2 x GE tributary service processing board
TN11TDX
2 x 10G tributary service processing board
TN52TOG
8 x GE tributary service processing board
TN11TOM
8 x multi-rate ports service processing board
TN52TOM TN11TQM
4 x multi-rate tributary service processing board
TN12TQM
Line unit
TN11TQS
4 x STM-16/OC-48/OTU1 tributary service processing board
TN11NS2
10G Line Service Processing Board
TN12NS2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
203
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
10 OptiX OSN 3800 Board Category
Board Name
Board Description
TN52NS2 TN53NS2 Optical multiplexer and demultiplexer unit
TN21DFIU
bidirectional fiber interface board
TN13FIUa
fiber interface unit
TN14FIU TN21FIU
Optical add and drop multiplexing unit
TN11SFIU
fiber interface unit for sync timing
TN21CMR1
CWDM 1-channel optical add/drop multiplexing unit
TN11CMR2
CWDM 2-channel optical add/drop multiplexing unit
TN21CMR2 TN11CMR4
CWDM 4-channel optical add/drop multiplexing unit
TN21CMR4 TN11DMR1 TN21DMR1 TN11MR2
CWDM 1-channel bidirectional optical add/drop multiplexing board 2-channel optical add/drop multiplexing unit
TN21MR2 TN11MR4
4-channel optical add/drop multiplexing unit
TN21MR4
Optical amplifier unit
TN11SBM2
2-channel CWDM single-fiber bidirectional add/drop board
TN11DAS1
optical amplifier unit
TN11OAU1
optical amplifier unit
TN12OAU1 TN13OAU1 TN11OBU1
optical booster unit
TN12OBU1 TN11OBU2
optical booster unit
TN12OBU2 TN11RAU1 TN11RAU2
Issue 03 (2013-05-16)
backward raman and erbium doped fiber hybrid optical amplifier unit
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
204
OptiX OSN 8800/6800/3800 Hardware Description
10 OptiX OSN 3800 Board Category
Board Category
Board Name
Board Description
Cross-connect unit and system and communicatio n unit
TN21SCC
system control and communication unit
TN22SCC TN23SCC TN21AUX
system auxiliary interface unit
TN22AUX Optical supervisory channel unit
TN11HSC1
high power unidirectional optical supervisory channel board
TN11SC1
unidirectional optical supervisory channel unit
TN12SC1 TN11SC2
bidirectional optical supervisory channel unit
TN12SC2
Optical protection unit
TN11ST2
bidirectional optical supervisory channel and timing transmission unit
TN11DCP
2-channel optical path protection unit
TN12DCP TN11OLP
optical line protection unit
TN12OLP
Spectrum analyzer unit
TN11SCS
sync optical channel separator unit
TN11MCA4
4-channel spectrum analyzer unit
TN11MCA8
8-channel spectrum analyzer unit
TN11OPM8
8-channel optical power monitoring board
TN12OPM8 Variable optical attenuator unit
TN11VA1
1-channel variable optical attenuator unit
TN12VA1 TN11VA4
4-channel variable optical attenuator unit
TN12VA4
Issue 03 (2013-05-16)
Dispersion equalizing unit
TN11DCU
dispersion compensation board
Interface area unitb
TN21PIU
power interface unit
TN21APIU
AC Power Interface Unit
Fan
TN21FAN
Fan
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
205
OptiX OSN 8800/6800/3800 Hardware Description
Board Category
10 OptiX OSN 3800 Board Category
Board Name
Board Description
a: For TN13FIU: OptiX OSN 3800 only supports the TN13FIU01. b: For the details of the interface area unit, refer to 9.8 Data Communication and Equipment Maintenance Interfaces.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
206
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
11
Frames
About This Chapter 11.1 DCM Frame and DCM Module DCM modules are installed in DCM frames and are used to compensate for the positive dispersion of transmission fibers to help maintain the shape of a propagated signal. 11.2 CRPC Frame The CRPC frame holds a CRPC board, a fan tray assembly, and a power distribution unit. The frame is installed in an open rack. 11.3 Fiber Spooling Frame The fiber spooling frame is used to store fiber jumpers in a coil.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
207
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
11.1 DCM Frame and DCM Module DCM modules are installed in DCM frames and are used to compensate for the positive dispersion of transmission fibers to help maintain the shape of a propagated signal. After an optical signal is transmitted over a certain distance, the optical signal pulse expands because of the accumulation of positive dispersion. This pulse expansion has a negative impact on system transmission performance. Therefore, dispersion compensation modules (DCMs), which are passive devices, are required to compensate for the positive dispersion. DCMs use the inherent negative dispersion of a dispersion compensating fiber to offset the positive dispersion of transmission fibers to prevent pulse expansion. Depending on the technology that DCMs use, two types of DCMs are available: dispersion compensating fiber (DCF)-DCMs and fiber Bragg grating (FBG)-DCMs. These DCMs can compensate for the following transmission distances: 5 km (3.1 mi.), 10 km (6.2 mi.), 20 km (12.4 mi.), 40 km (24.8 mi.), 60 km (37.3 mi.), 80 km (49.7 mi.), 100 km (62.1 mi.), 120 km (74.6 mi.), 160 km (99.4 mi.), 200 km (124.2 mi.), and 240 km (149.1 mi.). Each DCM frame can hold up to two DCM modules. The left- and right-side mounting ears attach the DCM frame to the columns of a cabinet. For the appearance of the DCM, see Figure 11-1. Figure 11-1 Appearance of the DCM frame
1
1. DCM frame
2
2. DCMs
Table 11-1, Table 11-2, Table 11-3 and Table 11-4 describes the performance requirements for C-band dispersion compensation in different fibers. Each DCM supports a dispersion slope compensation rate (DSCR) within the range of 90% to 110% and an operating wavelength within the range of 1528 nm to 1568 nm.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
208
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
Table 11-1 Performance requirements for C-band DCMs (G.652 fibers) DCM Module
Transmission Distance (mi./ km)
Max. Insertion Loss (dB)
PMD (ps)
PDL (dB)
Max. Allowable Powera (dBm)
DCM(S)
3.1/5
2.3
0.3
0.1
20
DCM(T)
6.2/10
2.8
0.3
0.1
20
DCM(A)
12.4/20
3.3
0.4
0.1
20
DCM(B)
24.8/40
4.7
0.5
0.1
20
DCM(C)
37.3/60
6.4
0.6
0.1
20
DCM(D)
49.7/80
8
0.7
0.1
20
DCM(E)
62.1/100
9
0.8
0.1
20
DCM(F)
74.5/120
9.8
0.8
0.1
20
FBG-DCM(80)
49.7/80
4
1.0
0.2
23
FBG-DCM(100)
62.1/100
4
1.0
0.2
23
FBG-DCM(120)
74.5/120
4
1.0
0.2
23
FBG-DCM(160)
99.4/160
8
1.6
0.4
23
FBG-DCM(200)
124.2/200
8
1.6
0.4
23
FBG-DCM(240)
149.1/240
8
1.6
0.4
23
a: The Max. Allowable Power refers to the maximum input optical power allowed into the optical module without causing damage.
Table 11-2 Performance requirements for C-band DCMs (G.655 LEAF fibers)
Issue 03 (2013-05-16)
DCM Module
Transmission Distance (mi./ km)
Max. Insertion Loss (dB)
PMD (ps)
PDL (dB)
Max. Allowable Powera (dBm)
DCM(A)
12.4/20
4
0.4
0.3
20
DCM(B)
24.8/40
5
0.5
0.3
20
DCM(C)
37.3/60
5.9
0.7
0.3
20
DCM(D)
49.7/80
6.9
0.8
0.3
20
DCM(E)
62.1/100
7.8
0.9
0.3
20
DCM(F)
74.5/120
8.8
1.0
0.3
20
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
209
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
DCM Module
Transmission Distance (mi./ km)
Max. Insertion Loss (dB)
PMD (ps)
PDL (dB)
Max. Allowable Powera (dBm)
FBG-DCM(120)
74.5/120
3.7
1.0
0.2
23
FBG-DCM(160)
99.4/160
3.7
1.0
0.2
23
FBG-DCM(200)
124.2/200
3.7
1.0
0.2
23
FBG-DCM(240)
149.1/240
3.7
1.0
0.2
23
a: The Max. Allowable Power refers to the maximum input optical power allowed into the optical module without causing damage.
Table 11-3 Performance requirements for C-band DCMs (G.653 fibers) DCM Module
Transmission Distance (mi./ km)
Max. Insertion Loss (dB)
PMD (ps)
PDL (dB)
Max. Allowable Powera (dBm)
DCM(S)
3.1/5
2
0.2
0.1
20
DCM(T)
6.2/10
3
0.3
0.1
20
DCM(A)
12.4/20
5
0.5
0.1
20
a: The Max. Allowable Power refers to the maximum input optical power allowed into the optical module without causing damage.
Table 11-4 Performance requirements for C-band DCMs (TW-RS fibers) DCM Module
Transmission Distance (mi./ km)
Max. Insertion Loss (dB)
PMD (ps)
PDL (dB)
Max. Allowable Powera (dBm)
DCM(A)
12.4/20
2.3
0.3
0.1
20
DCM(B)
24.8/40
2.8
0.3
0.1
20
DCM(C)
37.3/60
3.3
0.4
0.1
20
DCM(D)
49.7/80
3.8
0.4
0.1
20
DCM(E)
62.1/100
4.2
0.5
0.1
20
DCM(F)
74.5/120
4.7
0.5
0.1
20
a: The Max. Allowable Power refers to the maximum input optical power allowed into the optical module without causing damage.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
210
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
Table 11-5 Mechanical specifications of the DCM frame Parameter
Specifications
Dimensions (H x W x D)
48 mm (1.9 in.) x 484 mm (19.1 in.) x 270.5 mm (10.6 in.)
Weight
1.5 kg (3.3 lb.)
11.2 CRPC Frame The CRPC frame holds a CRPC board, a fan tray assembly, and a power distribution unit. The frame is installed in an open rack. Figure 11-2 shows the appearance of the CRPC frame. Situated in the middle of the frame is a CRPC board. On the left of the frame is a fan tray assembly, and on the right is a power source with two power inputs in mutual backup. Figure 11-2 CRPC frame appearance
3
2 1
1: Fan tray assembly
Issue 03 (2013-05-16)
2: CRPC board
3: Power distribution box
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
211
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
Table 11-6 Mechanical specifications of the CRPC frame Parameter
Value
Dimensions (H x W x D)
86 mm (3.4 in.) x 535 mm (21.1 in.) x 257 mm (10.1 in.)
Weight
3 kg (6.6 lb)
Table 11-7 Voltage and current requirements for the CRPC frame Parameter
Specifications
Rated working current
10 A
Nominal working voltage
-48V DC/-60V DC
Working voltage range
-48V DC: -40V DC to -57.6V DC -60V DC: -48V DC to -72V DC
11.3 Fiber Spooling Frame The fiber spooling frame is used to store fiber jumpers in a coil.
Appearance The fiber spool box is installed at the bottom of the cabinet, more than 50 mm away from the chassis. Figure 11-3 shows a fiber spooling frame. Figure 11-3 Fiber spooling frame 1 2
3
4 5 6
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
212
OptiX OSN 8800/6800/3800 Hardware Description
11 Frames
1. Attenuator holder
2. Mechanical VOA pen
5. Mounting ear
6. Fiber spool
3. Captive screw
4. Fiber holder
Specifications of the Fiber Spooling Frame l
Dimensions: 101.6 mm (W) x 220 mm (D) x 264.6 mm (H) (4.0 in. (W) x 8.7 in. (D) x 10.4 in. (H))
l
Maximum Capacity: A maximum of 40 fibers can be threaded into an fiber spooling frame from each side, and the maximum total fiber length is 50 m.
l
Weight: 4.1 kg (0.22 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
213
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
12
Overview of Boards
About This Chapter 12.1 Board Appearance and Dimensions The board appearance and dimensions include the board appearance, dimensions, and the laser hazard level label. 12.2 Introduction to Working Modes of OTUs, Tributary Boards and Line Boards 12.3 Bar Code Overview There is a bar code on the front panel of each board, from which the basic information about the board can be obtained, such as the BOM code, delivery information, board version, board name, and board model number. The bar code of some of such boards also include a characteristic code. The board characteristic code comprises information about frequency of signals, type of the optical module, wavelength, and so on.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
214
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
12.1 Board Appearance and Dimensions The board appearance and dimensions include the board appearance, dimensions, and the laser hazard level label.
12.1.1 Appearance and Dimensions This section describes the appearance and dimensions of the board.
CAUTION Always wear a properly grounded ESD wrist strap when holding a board to prevent static from damaging the board. Table 12-1 shows the appearance and dimensions of the different board types. Table 12-1 Board appearance and dimensions Board Appearance
Width
Board Name
Numbe r of Slots Per Board
Heig ht (mm /in.)
Wi dt h (m m/ in. )
Dep th (m m/ in.)
TN11L4G
1
264.6 /10.4
25. 4/1 .0
220. 0/8. 7
Height
Depth
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
215
OptiX OSN 8800/6800/3800 Hardware Description
Board Appearance
Width
12 Overview of Boards
Board Name
Numbe r of Slots Per Board
Heig ht (mm /in.)
Wi dt h (m m/ in. )
Dep th (m m/ in.)
TN11OAU1
2
264.6 /10.4
50. 8
220. 0/8. 7
TN11M40
3
264.6 /10.4
76. 2
220. 0/8. 7
TN11AUX
1
107.6 /4.2
25. 4/1 .0
220. 0/8. 7
Height
Depth
Width
Height
Depth
Width
Height Depth
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
216
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Board Appearance
Width
Board Name
Numbe r of Slots Per Board
Heig ht (mm /in.)
Wi dt h (m m/ in. )
Dep th (m m/ in.)
TN11LSXL
4
264.6 /10.4
10 1.6 / 4.0
220. 0/8. 7
TN21MR4
1
118.9 /4.7
25. 4/1 .0
220. 0/8. 7
Height
Depth
Width
Height Depth
12.1.2 Symbols on Boards This section describes the symbols on boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
217
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Table 12-2 Symbols on Boards Label
Type
Description
Laser safety class label
Indicates that the laser safety class of boards is HAZARD LEVEL 1M and there may be laser radiation. It warns users not to directly look into fiber connectors without taking any protection measures; instead an optical instrument that can attenuate optical power must be used.
Fiber type label
Applies to TN15LSXL/ TN11LTX/ TN12LSC/ TN55NS3/TN54NS4 boards. It specifies the fiber type for the boards.
CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
NOTE To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Fiber type label
SM SFP WORK WITH G.657A2 FIBER ONLY 单模光模块仅配合使用 G.657A2 光纤
Applies to TN54THA boards. It specifies the fiber type for the boards. NOTE To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
警告:开启电源前, 务必连好光纤 WARNING:FIBERS MUST ! BE CONNECTED BEFORE POWER UP
Issue 03 (2013-05-16)
Warning label
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Applies to CRPC boards. It provides precautions for the boards.
218
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Label
Type
Description
Heat hazard label
Indicates that the board surface temperature is high and it may cause body injury.
12.2 Introduction to Working Modes of OTUs, Tributary Boards and Line Boards 12.2.1 Convergence and Non-convergence Applications of Tributary Boards This section introduces the concepts of convergence and non-convergence applications of tributary boards.
Convergence Application Convergence application means multiple client services are aggregated into one ODUk signal to improve the bandwidth utilization. Figure 12-1 uses the TOM board as an example to illustrate the convergence application. Figure 12-1 Convergence application Client-side
WDM-side
ESCON
ESCON
GE
GE
TOM board
ODU1 FC100
FC100
STM-1
STM-1
Line board
OTUk
ODU1 Aggregation
Non-convergence Application Non-convergence application means that each client service is directly mapped into an ODUk signal that matches the client service. In this application, flexible service grooming is achieved. Figure 12-2 uses the TQX board as an example to illustrate the non-convergence application. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
219
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-2 Non-convergence application WDM-side
Client-side
TQX board
FC800
FC800
ODU2
STM-64
STM-64
ODU2
10GE-WAN
10GE-WAN
ODU2
10GE-LAN
10GE-LAN
ODU2
Line board
Line board
OTUk
OTUk
Directly-Mapped 10Gbit/s Service
12.2.2 Convergent and Non-convergent OTUs This section introduces the concepts of convergent and non-convergent OTUs.
Convergent OTUs a convergent OTU board aggregates multiple client services into one ODUk signals, or aggregates multiplex multiple lower order ODUk signals into one higher order ODUk signals. Figure 12-3 uses the LQM board as an example to illustrate mapping client services into an ODU1 signals. Figure 12-4 uses the LOA board as an example to illustrate multiplexing lower order ODUk into higher order ODUk. Figure 12-3 Convergent OTU (mapping client services into an ODU1 signals)
WDM-side
Client-side LQM board ESCON
ESCON
GE
GE
OTU1 ODU1
Issue 03 (2013-05-16)
FC100
FC100
STM-1
STM-1
OTU1
ODU1 Aggregation
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
220
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-4 Convergent OTU (multiplexing lower order ODUk into higher order ODUk) WDM-side
Client-side
LOA board
STM-16/OC-48
STM-16/OC-48
ODU1
FC200
FC200
ODU1 ODU2
OTU1
OTU1
ODU1
HD-SDI
HD-SDI
ODU1
OTU2
OTU2
Four channels of ODU1 multiplex to one channel of ODU2.
Non-convergent OTUs A non-convergent OTU board maps one client services directly into an ODUk signals with a rate matching the client service, and maps one ODUk signals directly into one OTUk signals. Figure 12-5 uses the LDX board as an example to illustrate non-convergent OTUs. Figure 12-5 Non-convergence application (mapping one client services directly into an ODUk signals)
Client-side
WDM-side
LDX board
STM-64
STM-64
ODU2
OTU2
OTU2
10GE-LAN
10GE-LAN
ODU2
OTU2
OTU2
Directly-Mapped ODU2
12.2.3 Standard Mode and Compatible Mode Starting from V100R006C01, some boards support new board models. To distinguish new models from existing models, the new board models are marked as standard mode and the existing board models are marked as compatible mode. For boards in standard mode, only channels or physical ports are presented in the models and NMS, with service mapping paths displayed for the channels or physical ports. All ODU layers are allocated to the physical ports. When configuring cross-connections, users do not need to know the internal ports on the boards. Compared with the compatible mode, the standard mode makes operations easier and has fewer end-to-end trail layers, reducing maintenance costs. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
221
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Boards Supporting Standard Mode Table 12-3 lists the boards that support standard mode, the names of the boards on the NMS. Table 12-3 Names displayed on the NMS Name in Standard Mode (Standard Mode, adding logical board)
Name in Compatible Mode (Compatible Mode, adding logical board)
Name in Compatible Mode (NE Panel)
TN53TDX(STND)
53TDX
53TDX
TN54THA(STND)
TN54THA
54THA
TN54TOA(STND)
TN54TOA
54TOA
TN55TOX
-
55TOX
TN55TQX(STND)
TN55TQX
55TQX
TN54TSC
-
54TSC
TN54TSXL
-
54TSXL
TN54TTX
-
54TTX
TN52ND2(STND)
TN52ND2
52ND2
TN53ND2
TN53ND2(COMP)
53ND2
TN55NO2
-
55NO2
TN53NQ2
TN53NQ2(COMP)
53NQ2
TN52NS2(STND)
TN52NS2
52NS2
TN53NS2
TN53NS2(COMP)
53NS2
TN54NS3(STND)
54NS3
54NS3
TN55NS3
-
55NS3
TN54NS4
-
54NS4
TN54ENQ2(STND)
TN54ENQ2
54ENQ2
TN55NPO2(STND)
TN55NPO2
55NPO2
TN55NPO2E
-
55NPO2E
NOTE
TN55TOX/TN54TSC/TN54TSXL/TN54TTX/TN52ND2T04/TN55NO2/TN52NS2T04/TN52NS2T05/ TN52NS2T06/TN52NS201M01/TN52NS201M02/TN55NS3/TN54NS4/TN55NPO2E support only the standard mode.
The following uses the TN53NS2 board as an example to introduces the standard and compatible modes of a line board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
222
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Standard mode Figure 12-6 shows the board model of the TN53NS2 board in standard mode. Figure 12-6 Board model of the TN53NS2 board in standard mode IN/OUT-OCh:1-ODU2:1-ODUflex:(1~2) ODUflex:1 2XODUflex
ODU2:1
ODUflex:2
IN/OUT-OCh:1
OCh:1
OCh :1
Other tributary/line/PID board
1 xODU2/ 1xODU 2e
IN/OUT-OCh:1-ODU2:1-ODU1:(1~4) ODU1:1 ODU2:1
4 xODU1
OCh : 1 IN/OUT
ODU1:4
IN/OUT-OCh:1-ODU2:1-ODU1:(1~4)-ODU0:(1~2)
ODU0:1
ODU0:2 8 xODU0
ODU1:1 ODU2:1
ODU 0:1 ODU 0:2
OCh :1
ODU 1:4
IN/OUT-OCh:1-ODU2:1-ODU0:(1~8) ODU0:1 8 xODU0
ODU2:1
OCh :1
ODU0: 8
Backplane
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODUflex mapping path
ODU0 mapping path (ODU0–>ODU1– >ODU2)
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path (ODU0–>ODU2)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
223
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Table 12-4 Meaning of ports of the TN53NS2 board Port Name
Meaning
IN/OUT-OCh:1-ODU2:1ODU1:(1-4)-ODU0:(1-2)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU1->ODU2)
IN/OUT-OCh:1-ODU2:1ODU0:(1-8)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU2)
IN/OUT-OCh:1-ODU2:1ODU1:(1-4)
Mapping path for ODU1 signals received from the backplane
IN/OUT-OCh:1
Mapping path for ODU2/ODU2e signals received from the backplane
IN/OUT-OCh:1-ODU2:1ODUflex:(1-2)
Mapping path for ODUflex signals received from the backplane
IN/OUT
WDM-side optical ports
Compatible mode Figure 12-7 shows the board model of the TN53NS2 board in compatible mode. Figure 12-7 Board model of the TN53NS2 board in compatible mode Other tributary/ line/PID board
Other tributary/ line/PID board
8 x ODU0
Other tributary/ line/PID board
1 x ODU2/ODU2e
4 x ODU1
161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
Backplane
51 ODU1 (ODU1LP1/ODU1LP1)-1 71 (ODU2LP1/ODU2LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
Issue 03 (2013-05-16)
51 ODU1 (ODU1LP1/ODU1LP1)-4
1 (IN1/OUT1)-1
ODU2
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
224
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Table 12-5 Meaning of ports of the TN53NS2 board Port Name
Description
Automatic Cross-Connection
ODU0LP1ODU0LP4
Internal logical ports of the board. Each of the ports provides optical channels 1 and 2.
Automatic cross-connections are established between these ports and the ODU1LP port.
ODU1LP1
Internal logical ports. Each of the port provides optical channels 1, 2, 3, and 4.
Automatic cross-connections are established between these ports and the ODU2LP port
ODU2LP1
Internal logical ports of the board. Each of the ports provides optical channel 1.
Automatic cross-connections are established between these ports and the IN/OUT port
IN/OUT
WDM-side optical ports.
-
Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections.
Comparison of NMS GUIs for Different Modes Service creation operations on the NMS vary according to board models. Table 12-6 uses the TN53NS2 board as an example to illustrate the differences in the board operation GUIs.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
225
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Table 12-6 GUIs on the NMS GUI on the NMS
Navigation Path
Compatible Mode
Standard Mode
Path View
In the NE panel, select a board, double-click the board icon or right-click and choose Path View from the shortcut menu.
See Figure 12-8.
See Figure 12-9.
WDM Interface
In the NE Explorer, select the required board and choose Configuration > WDM Interface from the Function Tree. tab.
See Figure 12-10.
See Figure 12-11.
Create CrossConnection Service
In the NE Explorer, select the required NE and choose Configuration > WDM Service Management from the Function Tree.
See Figure 12-12.
See Figure 12-13.
Figure 12-8 Path View (compatible mode)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
226
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-9 Path View (standard mode)
Figure 12-10 WDM Interface (compatible mode)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
227
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-11 WDM Interface (standard mode)
Figure 12-12 Create Cross-Connection Service (compatible mode)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
228
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-13 Create Cross-Connection Service (standard mode)
12.3 Bar Code Overview There is a bar code on the front panel of each board, from which the basic information about the board can be obtained, such as the BOM code, delivery information, board version, board name, and board model number. The bar code of some of such boards also include a characteristic code. The board characteristic code comprises information about frequency of signals, type of the optical module, wavelength, and so on. NOTE
Such information as frequency of signals queried on the U2000 is a commissioning value, different from that on the bar code.
Figure 12-14 and Figure 12-15 show the bar codes of boards installed with optical modules. Figure 12-16 and Figure 12-17 show the bar codes of boards not installed with optical modules. Figure 12-14 Description of the bar code (example 1) Delivery information
Board version (TN12)
Board model number
2102314840107A000090 Y TN1M2 LSX 01 19210AG Serial number
Issue 03 (2013-05-16)
Manufacture month Manufacture year Vendor
BOM
Environmental Board friendliness flag name (Y: Environmentally friendly)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Characteristic code
229
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-15 Description of the bar code (example 2) Delivery information
Board version (TN12)
Board model number
2102315653108A000199 Y TN1M2 LSX T01 TPT Serial number
Manufacture month Manufacture year Vendor
BOM
Environmental friendliness flag
Board Tunable name
Characteristic code
(Y: Environmentally friendly)
Figure 12-16 Description of the bar code (example 3)
Delivery information
Board version (TN12)
Board name
2103070768107A000090 Y TN1M2 LSX 01 Serial number
Issue 03 (2013-05-16)
Manufacture month Manufacture year Vendor
BOM
Environmental Board model number friendliness flag (Y: Environmentally friendly)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
230
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Figure 12-17 Description of the bar code (example 4) Third and fourth numbers of the BOM
Delivery information
Board version (TN12)
Board name
030HFY 108A000199 Y TN12 LSX T01 Serial number
Manufacture month Manufacture year Vendor
The complete BOM should be 0303OHFY. "03" are taken out in the BOM above.
Environmental friendliness flag (Y: Environmentally friendly)
Board model number
The first four numbers in the board BOM indicate whether the board is installed with an optical module. Table 12-7 provides the meanings of the first four numbers in the board BOM. Table 12-7 Meanings of the first four numbers in the BOMs for OTN boards
Issue 03 (2013-05-16)
Board Configuration
First Four Numbers in the board BOM
Description
First Four Numbers in the BOM of the Required Optical Module
Board not installed with optical modules
0303
The board is installed with a wavelength tunable optical module on its WDM side. Client-side optical modules need to be selected as required for the board.
3406 or 0303 (client side)
0303
The board is not installed with any optical module. WDMand client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side and WDM side)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
231
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Board Configuration
Board installed with optical modules
First Four Numbers in the board BOM
Description
First Four Numbers in the BOM of the Required Optical Module
0307
The board is installed with a fixed optical module on its WDM side. Client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side)
0302
The board is not installed with any optical module. WDMand client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side and WDM side)
0231
Optical modules are installed on the client and WDM sides of the board.
N/A
Of the OCS boards, the SSN1SF64A and SSN3SLH41 boards are delivered as follows: l
For the SSN1SF64A board, the first four numbers in the BOM are 0303, indicating that the board is delivered with optical modules installed.
l
For the SSN3SLH41 board, – The first four numbers are 0303 when the board is delivered with optical modules not installed. The first four numbers in the BOMs of the optical modules required by the board are 3406. – When the board is delivered with optical modules installed, the first four numbers in the BOM are 0305.
Table 12-8 provides the meanings of the first four numbers in the BOMs for of other OCS boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
232
OptiX OSN 8800/6800/3800 Hardware Description
12 Overview of Boards
Table 12-8 Meanings of the first four numbers in the BOM for an OCS board (excluding SSN1SF64A and SSN3SLH41) Board Configuration
First Four Numbers in the board BOM
Description
First Four Numbers in the BOM of the Required Optical Module
Board not installed with optical modules
0302
The board is not installed with any optical module. Optical modules need to be selected for the board as required.
3406
Board installed with optical modules
0305
The board is installed optical modules.
N/A
Table 12-9 provides the description of the delivery information. Table 12-9 Description of the delivery information of a board
Issue 03 (2013-05-16)
Item
Description
Vendor
Indicates the vendor of a board. "10" indicates Huawei.
Manufacture Year
Indicates the last digit of the year when a board is manufactured. For example, "4" indicates 2004. From 2010 onwards, a letter is used to indicate the manufacture year. For example, the letter A indicates 2010, the letter B indicates 2011, and so on.
Manufacture Month
Indicates the month when a board is manufactured. The value is expressed in hexadecimal format. For example, the letter B indicates November.
Serial Number
Indicates the production serial number of a board. The value ranges from 000001 to 999999.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
233
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13
Optical Transponder Unit
About This Chapter 13.1 Overview An OTU (Optical Transponder Unit) board converts client-side services into standard optical signals after performing mapping, convergence, and other procedures. The board also performs the reverse process. 13.2 ECOM ECOM: enhanced communication interface unit 13.3 L4G L4G: line wavelength conversion unit with 4 x GE line capacity 13.4 LDGD LDGD: 2 x Gigabit Ethernet unit, dual fed and selective receiving 13.5 LDGS LDGS: 2 x Gigabit Ethernet unit, single fed and single receiving 13.6 LDM LDM: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board 13.7 LDMD LDMD: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, dual fed and selective receiving 13.8 LDMS LDMS: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, single fed and single receiving 13.9 LDX LDX: 2 x 10 Gbit/s wavelength conversion unit 13.10 LEM24 LEM24: 22 x GE + 2 x 10GE and 2 x OTU2 Ethernet Switch board 13.11 LEX4 LEX4: 4 x 10GE and 2 x OTU2 Ethernet Switch Board 13.12 LOA Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
234
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
LOA: 8 x Any-rate MUX OTU2 wavelength conversion board. 13.13 LOG LOG: 8 x Gigabit Ethernet unit 13.14 LOM LOM: 8-port multi-service multiplexing & optical wavelength conversion board 13.15 LQG LQG: 4 x GE-multiplex-optical wavelength conversion board 13.16 LQM LQM: 4-channel multi-rate (100Mbit/s-2.5Gbit/s) OTU1 wavelength conversion board 13.17 LQMD LQMD: 4-channel multi-rate (100 Mbit/s-2.5 Gbit/s) OTU1 wavelength conversion unit, dual fed and selective receiving 13.18 LQMS LQMS: 4-channel multi-rate (100 Mbit/s-2.5 Gbit/s) OTU1 wavelength conversion unit, single fed and single receiving 13.19 LSC LSC: 100Gbit/s wavelength conversion board 13.20 LSQ LSQ: 40 Gbit/s wavelength conversion board 13.21 LSX LSX: 10 Gbit/s wavelength conversion board 13.22 LSXL LSXL: 40 Gbit/s wavelength conversion board 13.23 LSXLR LSXLR: 40 Gbit/s wavelength conversion relay board 13.24 LSXR LSXR: 10 Gbit/s wavelength conversion relay board 13.25 LTX LTX: 10-Port 10Gbit/s Service Multiplexing & Optical Wavelength Conversion Board 13.26 LWX2 LWX2: arbitrary rate (16Mbit/s-2.7Gbit/s) dual-wavelength conversion board 13.27 LWXD LWXD: arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (double transmit) 13.28 LWXS LWXS: arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (single transmit) 13.29 TMX TMX: 4-channel STM-16/OC-48/OTU1 asynchronous mux OTU2 wavelength conversion board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
235
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.1 Overview An OTU (Optical Transponder Unit) board converts client-side services into standard optical signals after performing mapping, convergence, and other procedures. The board also performs the reverse process.
Positions of OTU Boards in a WDM System Figure 13-1 shows the positions of OTU boards in a WDM system. Figure 13-1 Positions of OTU boards in a WDM system Client-side services
WDM-side services
OTU OA
OM
FIU
SC1
OTU
WDM-side ODF
Client-side equipment
OTU
OA
OD
OTU
Types of OTU Boards OTU boards are classified into the following types according to the WDM-side rates and functions: l
2.5G OTU boards: For the main functions of these OTU boards, see Table 13-1.
l
10G OTU boards: For the main functions of these OTU boards, see Table 13-2.
l
40G OTU boards: For the main functions of these OTU boards, see Table 13-3.
l
100G OTU boards: For the main functions of these OTU boards, see Table 13-4.
l
Ethernet over WDM (EoW) boards: These OTU boards support Layer 2 processing of Ethernet services. For the main functions of these OTU boards, see Table 13-5.
l
Transparent transmission OTU boards: These OTU boards do not support OTN processing. They only convert client services into ITU-T G.694-compliant optical signals. For the main functions of these OTU boards, see Table 13-6.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
236
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-1 Main functions of 2.5G OTU boards Boar d
Type
Client-Side Service
Pluggable Optical Module
WDM Specificatio ns
Type
Max. Num ber
Client Side
WDM Side
DW DM
CW DM
TN11 LDG D
Conver gence
GE
2
Y
N
Y
Y
TN11 LDG S
Conver gence
GE
2
Y
N
Y
Y
TN12 LDM
Conver gence
STM-4, STM-1, OC-12, OC-3, FICON, FC100, GE, FE, DVB-ASI, SDI, ESCON, FDDI
2
Y
Y
Y
Y
OTU1, STM-16, OC-48, HD-SDI, FC200, FICON Express,
1
STM-4, STM-1, OC-12, OC-3, FICON, FC100, GE, FE, DVB-ASI, SDI, ESCON, FDDI
2
Y
N
Y
N
OTU1, STM-16, OC-48, HD-SDI, FC200, FICON Express,
1
STM-4, STM-1, OC-12, OC-3, FICON, FC100, GE, FE, DVB-ASI, SDI, ESCON, FDDI
2
Y
N
Y
N
OTU1, STM-16, OC-48, HD-SDI, FC200, FICON Express,
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI, SDI, FDDI
4
Y
Y
Y
Y
GE, FC100, FICON,
2
FC200, FICON Express, STM-16, OC-48, OTU1, HD-SDI,
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI
4
Y
N
Y
Y
GE, FC100, FICON,
2
FC200, FICON Express, STM-16, OC-48
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI, SDI, FDDI
4
Y
N
Y
Y
TN11 LDM D
TN11 LDM S
TN13 LQM
TN11 LQM D
TN12 LQM D
Conver gence
Conver gence
Conver gence
Conver gence
Conver gence
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
237
OptiX OSN 8800/6800/3800 Hardware Description
Boar d
TN11 LQM S
TN12 LQM S
Type
Conver gence
Conver gence
13 Optical Transponder Unit
Client-Side Service
Type
Max. Num ber
GE, FC100, FICON,
2
FC200, FICON Express, STM-16, OC-48, OTU1, HD-SDI,
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI
4
GE, FC100, FICON,
2
FC200, FICON Express, STM-16, OC-48
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI, SDI, FDDI
4
GE, FC100, FICON,
2
FC200, FICON Express, STM-16, OC-48, OTU1, HD-SDI,
1
Pluggable Optical Module
WDM Specificatio ns
Client Side
WDM Side
DW DM
CW DM
Y
N
Y
Y
Y
N
Y
Y
Table 13-2 Main functions of 10G OTU boards Boar d
Type
Client-Side Service
Pluggable Optical Module
WDM Specificatio ns
Type
Max. Num ber
Client Side
WDM Side
DW DM
CW DM
TN1 1LS X
Nonconverg ence
STM-64, OC-192, 10GE LAN, 10GE WAN, OTU2
1
Y
N
Y
N
TN1 2LS X
Nonconverg ence
STM-64, OC-192, FC1200, 10GE LAN, 10GE WAN, OTU2
1
Y
N
Y
N
TN1 3LS X
Nonconverg ence
STM-64, OC-192, FC1200, 10GE LAN, 10GE WAN, OTU2, OTU2e
1
Y
Y
Y
N
TN1 4LS X
Nonconverg ence
STM-64, OC-192, FC1200, 10GE LAN, 10GE WAN, OTU2, OTU2e
1
Y
N
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
238
OptiX OSN 8800/6800/3800 Hardware Description
Boar d
Type
13 Optical Transponder Unit
Client-Side Service
Pluggable Optical Module
WDM Specificatio ns
Type
Max. Num ber
Client Side
WDM Side
DW DM
CW DM
TN1 2LD X
Nonconverg ence
10GE LAN, 10GE WAN, STM-64, OC-192, OTU2, OTU2e
2
Y
Y
Y
N
TN1 1LO A
Converg ence
FE, FDDI, GE, STM-1, STM-4, OC-3, OC-12, FC100, FICON, DVB-ASI, ESCON, SDI
8
Y
Y
Y
N
HD-SDI, HD-SDIRBR, STM–16, OC-48, FC200, FICON Express, OTU1
4
3G-SDI, 3G-SDIRBR, FC400, FICON4G
2
FC800, FICON8G, 10GE LAN
1
TN1 1LO G
Converg ence
GE
8
Y
N
Y
N
TN1 2LO G
Converg ence
GE
8
Y
Y
Y
N
TN1 1LO M
Converg ence
GE, FC100, FICON, ISC 1G
8
Y
N
Y
N
FC200, FICON EXPRESS, ISC 2G
4
FC400, FICON4G
2
GE, FC100, FICON, ISC 1G
8
Y
Y
Y
N
FC200, FICON EXPRESS, ISC 2G, InfiniBand 2.5G,
4
FC400, FICON4G, InfiniBand 5G, 3GSDI
2
TN1 2LO M
Converg ence
TN1 1LS XR
Relay
N/A
1
N
N
Y
N
TN1 1TM X
Converg ence
STM-16, OC-48, OTU1
4
Y
N
Y
Y
TN1 2TM X
Converg ence
STM-16, OC-48, OTU1
4
Y
Y
Y
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
239
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-3 Main functions of 40G OTU boards Board
Type
Client-Side Service
Pluggable Optical Module
WDM Specificati ons
Type
Max. Number
Client Side
WDM Side
DW DM
CW DM
TN11LSQ
Nonconvergence
STM-256, OC-768, OTU3
1
N
N
Y
N
TN11LSXL
Nonconvergence
STM-256, OC-768
1
N
N
Y
N
TN12LSXL
Nonconvergence
STM-256, OC-768, OTU3
1
N
N
Y
N
TN15LSXL
Nonconvergence
STM-256, OC-768, OTU3
1
N
N
Y
N
TN11LSXLR
Relay
N/A
N/A
N
N
Y
N
TN12LSXLR a
a: Only TN12LSXLR supports OTU3e.
Table 13-4 Main functions of 100G OTU boards Board
Type
Client-Side Service
Pluggable Optical Module
WDM Specifications
Type
Max. Number
Client Side
WDM Side
DWDM
CWDM
TN12 LSC
Nonconvergence
100GE
1
Y
N
Y
N
TN11 LTX
Convergenc e
10GE LAN, 10GE WAN, STM-64, OC-192
10
Y
N
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
240
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-5 Main functions of EoW boards Board
Type
Client-Side Service
Pluggable Optical Module
WDM Specifications
Type
Max. Number
Client Side
WDM Side
DWDM
CWDM
Y
Y
Y
N
Y
Y
Y
N
TN11 LEM2 4
Convergenc e, L2 service processing
FE, GE
22
10GE-LAN, 10GEWAN
2
TN11 LEX4
Convergenc e, L2 service processing
10GE-LAN, 10GEWAN
4
Table 13-6 Main functions of transparent transmission OTU boards Board
Type
Client-Side Service
Pluggable Optical Module
WDM Specifications
Type
Max. Number
Client Side
WDM Side
DWDM
CWDM
TN11 LWX2
Transparent transmissio n
STM-16, STM-4, STM-1, OC-48, OC-12, OC-3, FC200, FC100, GE, FE, FDDI, ESCON, DVB-ASI, SDI, FICON, FICON Express, HDSDI
2
N
N
Y
Y
TN11 LWX D
Transparent transmissio n
STM-16, STM-4, STM-1, OC-48, OC-12, OC-3, FC200, FC100, GE, FE, FDDI, ESCON, DVB-ASI, SDI, FICON, FICON Express, HDSDI
1
N
N
Y
Y
TN11 LWXS
Transparent transmissio n
STM-16, STM-4, STM-1, OC-48, OC-12, OC-3, FC200, FC100, GE, FE, FDDI, ESCON, DVB-ASI, SDI, FICON, FICON Express, HDSDI
1
N
N
Y
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
241
OptiX OSN 8800/6800/3800 Hardware Description
Board
TN12 LWXS
Type
13 Optical Transponder Unit
Client-Side Service
Transparent transmissio n
Pluggable Optical Module
WDM Specifications
Type
Max. Number
Client Side
WDM Side
DWDM
CWDM
STM-16, STM-4, STM-1, OC-48, OC-12, OC-3, FC200, FC100, GE, FE, FDDI, ESCON, DVB-ASI, SDI, FICON, FICON Express, HDSDI, ISC 1G, ISC 2G, ETR, CLO
1
N
N
Y
Y
13.2 ECOM ECOM: enhanced communication interface unit
13.2.1 Version Description The available functional version of the ECOM board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 ECO M
N
N
N
N
Y
Y
13.2.2 Application The ECOM board is used to achieve the DCN communication between the OptiX OSN 6800/ 3800 and the OptiX OSN 900A, and to converge/deconverge 8xFE services to/from 1xGE service.
Application Scenario 1: Achieving DCN Communication between the OptiX OSN 6800/3800 and the OptiX OSN 900A The management signal and service signal of the OptiX OSN 900A are together transmitted to the OptiX OSN 6800/3800 over the line. The FIU board of the OptiX OSN 6800/3800 separates Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
242
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
the signal received into management signal and service signal. The service signal is processed by the OTU board. The management signal is accessed by the ECOM board through the FE port and then is transmitted to the SCC board through the backplane. For the position of the ECOM in the network built with the OptiX OSN 6800/3800 and OptiX OSN 900A, see Figure 13-2. Figure 13-2 Position of the ECOM board in the network built with the OptiX OSN 6800/3800 and OptiX OSN 900A Service signal
F I Management signal U
OptiX OSN 900A
×8
×8
Management signal F I Service signal U
OptiX OSN 900A
OTU
ECOM
OptiX OSN 6800/OptiX OSN 3800 SCC
ETH
OTU
NOTE
Each FIU board of the OptiX OSN 6800/3800 accesses the signals from only one OptiX OSN 900A.
Application Scenario 2: Converging/Deconverging 8xFE Services to/from 1xGE Service When used for convergence or deconvergence, the ECOM board can be used only in the CWDM system. For the position of the ECOM in the WDM system, see Figure 13-3. Figure 13-3 Position of the ECOM board in the WDM system GE
GE MUX
1
FE
DMUX
1
ECOM
FE
ECOM
8
DMUX GE
MUX
8 GE
Client side
Client side
NOTE
For the OptiX OSN 3800, the MUX and DMUX boards shown in the figure are the OADM boards used in the CWDM system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
243
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.2.3 Functions and Features The ECOM board is mainly used to achieve cross-connection at the electrical layer and loopback on the client side. For detailed functions and features, refer to Table 13-7. Table 13-7 Functions and features of the ECOM board Function and Feature
Description
Basic function
l Achieves the DCN communication between the OptiX OSN 6800/ 3800 and the OptiX OSN 900A. l Converges/deconverges 8xFE services to/from 1xGE service.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s
WDM specification
Supports the CWDM specifications.
Cross-connect capabilities
OptiX OSN 6800: Supports the transmission of one GE signal each to working/protection cross-connection boards respectively through the backplane. Supports the transmission of one GE signal to the paired slots through the backplane. OptiX OSN 3800: Supports the grooming of one GE signal from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
Issue 03 (2013-05-16)
Tunable wavelength function
Not Supported
PRBS function
Not Supported
Protection scheme
Not Supported
Alarms and performance events monitoring
l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Not Supported
Test frame
Not Supported
Optical-layer ASON
Not Supported
Electrical-layer ASON
Not Supported
l Detects the optical power and reports the alarms and performance events for the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
244
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
eSFP
Supports enhanced small form-factor pluggable optical modules on the client side. Supports enhanced small form-factor pluggable optical modules on the WDM side.
Loopback
WDM side
Client side
Inloop
Supported
Outloop
Not Supported
Inloop
Supported
Outloop
Supported
13.2.4 Working Principle and Signal Flow The ECOM board consists of the client-side optical module, WDM-side optical module, L2 switching module, cross-connect module, control and communication module, and power supply module. Figure 13-4 and Figure 13-5 show the functional modules and signal flow of the ECOM board. Figure 13-4 Functional modules and signal flow of the ECOM board Backplane(management signal transmission)
FE
WDM side
Client side RX1 RX2
O/E
E/O
RX8
L2 switching module
TX1 TX2
E/O
TX8
Client-side optical module
Cross-connect module
O/E
OUT
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
245
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Signal Flow (Achieving DCN Communication between the OptiX OSN 6800/3800 and the OptiX OSN 900A) The client side of the ECOM board accesses FE optical signals. In the signal flow of the ECOM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the ECOM to the SCC board, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of FE signals (management signals) from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the L2 switching module, and groomed by the backplane to the SCC board through the ETH interface.
l
Receive direction The L2 switching module receives FE signals from the SCC board, and then sends them to the client-side optical module. The client-side optical module performs E/O conversion of the FE electrical signals, and then outputs the optical signals through the TX1-TX8 optical interfaces.
Figure 13-5 Functional modules and signal flow of the ECOM Backplane(service cross-connection)
GE Client side RX1 RX2
WDM side O/E
E/O
RX8
L2 switching module
TX1 TX2
E/O
TX8
Client-side optical module
Cross-connect module
O/E
OUT
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow (Converging/Deconverging 8xFE Services to/from 1xGE Service) The client side of the ECOM board accesses FE optical signals. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
246
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
In the signal flow of the ECOM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the ECOM to the WDM side of the ECOM, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels of optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, the eight channels of electrical signals are sent to the L2 switching module. The module performs operations such as converging eight channels of FE signals into one channel of GE signals. Then, the module outputs one channel of GE signals to the cross-connect module. The cross-connect module performs operations such as service cross-connection of the GE signals. The GE signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.2-compliant at CWDM standard wavelengths GE optical signals through the OUT optical interface.
l
Receive direction The WDM-side optical module receives the ITU-T G.694.2-compliant GE optical signals at CWDM standard wavelengths from the WDM side through the IN optical interface. Then, the module performs O/E conversion. After the O/E conversion, the GE signals are sent to the cross-connect module. The module performs operations such as service cross-connection. Then, the module outputs one channel of GE signals. The L2 switching module deconverges the GE signals and sends a maximum of eight channels of FE signals to the client-side optical module. The client-side optical module performs E/O conversion of the eight channels of electrical signals, and then outputs eight channels of client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of eight channels of FE optical signals. – Client-side transmitter: Performs E/O conversion from eight channels of internal electrical signals to FE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of GE optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to GE optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l Issue 03 (2013-05-16)
L2 switching module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
247
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Forwards service signals. – Implements the convergence/deconvergence of the service signals. l
Cross-connect module – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals between the ECOM and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.2.5 Front Panel There are indicators and interfaces on the front panel of the ECOM board.
Appearance of the Front Panel Figure 13-6 shows the front panel of the ECOM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
248
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-6 Front panel of the ECOM board
ECOM STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8 OUT IN
ECOM
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-8 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
249
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-8 Types and functions of the interfaces on the ECOM board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX8
LC
Transmit service signals to client equipment.
RX1-RX8
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.2.6 Valid Slots One slot houses one ECOM board. Table 13-9 shows the valid slots for the ECOM board. Table 13-9 Valid slots for ECOM board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.2.7 Physical and Logical Ports This section describes the logical ports displayed on the NMS and the physical ports of the board.
Display of Physical Ports Table 13-10lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-10 Mapping between the physical ports on the ECOM board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN/OUT
1 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
250
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, AP1 is a logical port of the board. Figure 13-7 shows the application model of the ECOM board. Table 13-11 describes the meaning of each port. Figure 13-7 Port diagram of the ECOM board Client side
WDM side
PORT3 PORT4 PORT5 PORT6 PORT7 PORT8 PORT9 PORT10
VCTRUNK1
101( AP1/AP1)-1
L2 switching module
1(IN/OUT)-1
Cross-connect WDM-side optical module module
Table 13-11 Description of NM port of the ECOM board
Issue 03 (2013-05-16)
Port Name
Description
PORT3-PORT10
These ports correspond to the client-side optical interfaces RX1/TX1RX8/TX8.
VCTRUNK1
Internal virtual port. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
251
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Port Name
Description
AP1
Internal convergence port.
IN/OUT
Corresponding to the WDM-side optical interfaces.
13.2.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the ECOM board is used to transmit services, set Board Mode in Configuration > WDM interfaces on the U2000. The valid values of the board mode field are Service Mode and HUB Mode. NOTE
If the HUB mode need be configured, there must be one-to-one connection between ports, which need not be set on the U2000.
If the service mode need be configured, the following items must be created on the U2000: l
During creation of the Ethernet services on the U2000, create the cross-connection between the PORT and VCTRUNK ports. The cross-connect convergence between the eight channels of FE optical signals and one channel of GE electrical signals accessed from the client-side ports is implemented through the L2 switching module.
l
Between the VCTRUNK ports and the AP ports of the cross-connect module are one-toone port connections, which need not be set on the U2000.
l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the AP of the ECOM board and AP port of other boards (The GE services accessed from the client side of the ECOM board are cross-connected to the client in Figure side of other boards for the inter-board services deconvergence), as shown 13-8.
l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the AP of the ECOM board and LP port of other boards (The GE services accessed from the client side of the ECOM board are cross-connected to the WDM side of other boards for the inter-board services convergence), as shown 13-8.
l
Issue 03 (2013-05-16)
in Figure
During creation of the electrical cross-connect services on the U2000, create the crossconnections of GE level between the AP port and the IN/OUT port of the ECOM, realizing the cross-connect grooming of GE services.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
252
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-8 Cross-connection diagram of the ECOM Client side
Other board 101(AP1/AP1)-1
201(LP/LP)-1
102(AP2/AP2)-1
201(LP/LP)-2
103(AP3/AP3)-1
201(LP/LP)-3
104(AP4/AP4)-1
201(LP/LP)-4
WDM side
WDM side
Client side 1
ECOM
101(AP1/AP1)-1 2
The client side of the ECOM board are cross-connected to the client side of other boards The client side of the ECOM board are cross-connected to theWDM side of other boards
1 2
13.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of ECOM, refer to Table 13-12. Table 13-12 ECOM parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Issue 03 (2013-05-16)
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
253
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Off, On Default: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM
Board Mode
HUB Mode, Service Mode
Default: C
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. Used to configure the working mode of the board.
Default: HUB Mode
13.2.10 ECOM Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
254
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11E CO M
N/A
100 BASE-FX-10 km
N/A
1.25 Gbit/s Multirate (eSFP CWDM)-40 km
100 BASE-FX-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
100 BASE-FX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 13-13 Client-side pluggable optical module specifications (FE services) Parameter
Unit
Optical Module Type
Value 100 BASEFX-10 km
100 BASEFX-40 km
100 BASEFX-80 km
Line code format
-
NRZ
NRZ
NRZ
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
-3
0
5
Minimum mean launched power
dBm
-11.5
-4.5
-2
Minimum extinction ratio
dB
9
9
9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
255
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 100 BASEFX-10 km
100 BASEFX-40 km
100 BASEFX-80 km
1270 to 1355
1500 to 1580
Operating wavelength range
nm
1270 to 1355
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
Operating wavelength range
nm
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity (EOL)
dBm
-19
-20
-22
Minimum receiver overload
dBm
-3
-3
-3
Table 13-14 Client-side pluggable optical module specifications (colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
256
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
WDM-Side Pluggable Optical Module Table 13-15 CWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
257
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1
1
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Optical Module Type
Typical Power Consumption at 25°C (77°F)
Maximum Power Consumption at 55°C (131°F)
TN11ECOM
–
19.6
21.6
13.3 L4G L4G: line wavelength conversion unit with 4 x GE line capacity Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
258
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.3.1 Version Description The available functional version of the L4G board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 L4G
N
N
N
N
Y
Y
13.3.2 Application As a type of optical transponder unit, the L4G board implements the conversion between six channels of GE signals and WDM signals that comply with ITU-T Recommendations. For the position of the L4G board in the WDM system, see Figure 13-9. Figure 13-9 Position of the L4G board in the WDM system
RX1
RX1
4xGE
M U X IN / D OUT M U X
1×ODU5G
TX6
M U OUT X / IN D M U X
1×OTU5G/FEC5G
1×ODU5G
RX6
4×GE
GE
1×OTU5G/FEC5G
TX1
TX1
L4G
L4G
L2
GE TX6 RX6
L2 GE
GE
OptiX OSN 6800: From/To paired slot or cross-connect board OptiX OSN 3800: From/To mesh group slot
NOTE
The client-side six pairs of optical interfaces can access services at a maximum rate of 5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
259
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.3.3 Functions and Features The L4G is mainly used to achieve tunable wavelength and cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-16. Table 13-16 Functions and features of the L4G board Function and Feature
Description
Basic function
Converges up to six non-full bandwidth GE service signals into four GE service signals and multiplexes these four signals into an OTU 5G/FEC 5G signal. Converts the signals into standard DWDM wavelength compliant with ITU-T G.694.1. The reverse process is similar.
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s
Crossconnect capabilities
l OptiX OSN 6800: Supports the grooming of four channels of GE services each to working/protection cross-connection boards respectively through the backplane. Supports the transmission of four GE signals to the paired slots through the backplane. l OptiX OSN 3800: Supports the grooming of four GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Provides the OTU5G/FEC5G interface on WDM-side. l Supports TCM and PM functions for ODU5G. l Supports SM function for OTU5G.
Layer 2 switching
Supports the MAC address learning and aging.
WDM specification
Supports the DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Not supported
LPT function
Supported
Supports one VB.
NOTE The LPT function cannot be configured for EVPL services but only for bidirectional EPL services. When the LPT function is enabled, Source C-VLAN and Sink CVLAN of an EPL service must be left empty.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
260
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports VLAN SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection.
Loopback
WDM side
Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
MAC
Supported
PHY
Supported
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.1q VLAN All L2 protocols including xSTP, LACP, EthOAM, DHCP, and PPP MPLS protocols All L3 protocols including ARP, IGMP, OSPF, and IGRP
Protocols or standards for service processing (performance monitoring)
IEEE 802.3x pause frame IEEE 802.3ad LACP IEEE 802.1p priority IEEE 802.1q VLAN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
261
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.3.4 Working Principle and Signal Flow The L4G board consists of the client-side optical module, WDM-side optical module, L2 switching module, signal processing module, control and communication module, and power supply module. Figure 13-10 shows the functional modules and signal flow of the L4G board. Figure 13-10 Functional modules and signal flow of the L4G board Backplane(service cross-connection)
GE
WDM side
Client side RX1 RX2
O/E
6×GE
RX6 TX1 TX2 TX6
4×GE
L2 switching module
E/O
Client-side optical 6×GE module
E/O GE CrossOTN encapsulation connect processing and mapping module module module
4×GE
OUT
O/E IN WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the L4G board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the L4G to the WDM side of the L4G, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives a maximum of six channels of flat-rate GE optical signals from client equipment through the RX1-RX6 interfaces, and performs O/E conversion. After O/E conversion, the six channels of electrical signals are sent to the L2 switching module. The module performs operations such as convergence. Then, the module outputs a maximum of four channels of GE signals to the signal processing module. The signal processing module performs operations such as the service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU 5G/FEC 5G signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
262
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The OTU 5G/FEC 5G signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU 5G/FEC 5G optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface. l
Receive direction The WDM-side optical module receives OTU 5G/FEC 5G optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU 5G/FEC 5G signals are sent to the signal processing module. The module performs operations such as OTU 5G/FEC 5G framing, decoding of FEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs four channels of GE signals. The L2 switching module deconverges the GE signals and sends six channels of the signals with corresponding rates to the client-side optical module. The client-side optical module performs E/O conversion of the six channels of electrical signals, and then outputs six channels of client-side optical signals through the TX1-TX6 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of six channels of GE optical signals. – Client-side transmitter: Performs E/O conversion from six channels of internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU 5G/FEC 5G optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU 5G/FEC 5G optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
L2 switching module – Forwards service signals. – Implements the convergence/deconvergence of the service signals.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals between the L4G and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
263
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the OTU 5G/ FEC 5G payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module Frames OTU 5G/FEC 5G signals, processes overheads in OTU 5G/FEC 5G signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.3.5 Front Panel There are indicators and interfaces on the front panel of the L4G board.
Appearance of the Front Panel Figure 13-11 shows the front panel of the L4G board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
264
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-11 Front panel of the L4G board
L4G STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 OUT IN
L4G
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-17 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
265
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-17 Types and functions of the interfaces on the L4G board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX6
LC
Transmit service signals to client equipment.
RX1-RX6
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.3.6 Valid Slots One slot houses one L4G board. Table 13-18 shows the valid slots for the L4G board. Table 13-18 Valid slots for the L4G board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.3.7 Characteristic Code for the L4G The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.3.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-19 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. . Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
266
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-19 Mapping between the physical ports on the L4G board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, LP is a logical port of the board. Figure 13-12 describes the application model of the L4G board. Table 13-20 describes the meaning of each port. Figure 13-12 Port diagram of the L4G board Client side PORT3 PORT4 PORT5 PORT6 PORT7 PORT8
WDM side VCTRUNK1 101( AP1/AP1)-1
201(LP/LP)-1
VCTRUNK2 102( AP2/AP2)-1
201(LP/LP)-2
VCTRUNK3 103( AP3/AP3)-1
201(LP/LP)-3 201(LP/LP)-4
VCTRUNK4 104( AP4/AP4)-1 L2 swithing module
Cross-connect module
201(LP/LP)-1
Service processing module
1(IN/OUT)-1
WDM-side optical module
Table 13-20 Description of NM port of the L4G board
Issue 03 (2013-05-16)
Port Name
Description
PORT3-PORT8
These ports correspond to the client-side optical interfaces RX1/TX1-RX6/TX6 respectively.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
267
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Port Name
Description
VCTRUNK1-VCTRUNK4
Internal virtual ports.
AP1-AP4
Internal convergence ports.
LP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
IN/OUT
Corresponding to the WDM-side optical interfaces.
13.3.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the L4G board is used to transmit services, the following items must be created on the U2000: l
During creation of the Ethernet services on the U2000, create the cross-connection between the PORT and VCTRUNK ports. The cross-connect convergence between the six channels of GE optical signals and the four channels of GE electrical signals accessed from the clientside ports is realized through the L2 switching module. NOTE
One VCTRUNK port can be connected to multiple PORT ports. The maximum bandwidth of each VCTRUNK port is 1.25 Gbit/s.
l
There are one-to-one port connections between the VCTRUNK ports and the AP ports of the cross-connect module. These connections do not need to be set on the U2000.
l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the AP and LP ports. The cross-connect grooming of GE services is implemented through the cross-connect module. The following three cross-connections can be created: – Create the cross-connection between the internal AP and LP ports of the L4G board (create the internal straight-through and cross-connection of the board), as shown by and
in Figure 13-13.
– Create the cross-connection between the AP port of the L4G board and the LP port of other boards, as shown by 3 in Figure 13-13. (The GE services accessed from the client side of the L4G board are cross-connected to the WDM side of other boards for protection and inter-board service convergence.) – Create the cross-connection between the AP port or RX/TX port of other boards and the LP port of the L4G board, as shown by 4 in Figure 13-13. (The GE services accessed from the client side of other boards are cross-connected to the WDM side of the L4G board for protection and inter-board service convergence.) l
Create the cross-connection between the LP port of the L4G board and the LP port of other board, as shown by 5 in Figure 13-13. (This cross-connection enables the passing-through of the broadcast services.)
l
Create the cross-connection between the AP port of the L4G board and the AP port of other boards, as shown by
Issue 03 (2013-05-16)
6
in Figure 13-13. (The GE services accessed from the client side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
268
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
of the L4G board are cross-connected to the client side of other boards for protection and the inter-board service deconvergence.) l
The four paths of the LP port are converged into one channel, which is connected to the IN/OUT port. This connection does not need to be configured on the U2000.
Figure 13-13 Cross-connection diagram of the L4G board Client side
Other board 101(AP1/AP1)-1/3(RX1/TX1)-1 4
3
6
5
201(LP/LP)-2
102(AP2/AP2)-1/4(RX2/TX2)-1 103(AP3/AP3)-1/5(RX3/TX3)-1
WDM side
201(LP/LP)-1
201(LP/LP)-3
104(AP4/AP4)-1/6(RX4/TX4)-1
201(LP/LP)-4
101(AP1/AP1)-1
201(LP/LP)-1
Client side 102(AP2/AP2)-1
WDM side
201(LP/LP)-2 2
103(AP3/AP3)-1
1
104(AP4/AP4)-1
201(LP/LP)-3 201(LP/LP)-4
L4G 1
The straight-through of the board
2
The internal cross-connection of the board The client side of the L4G board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the L4G board The WDM side of the L4G board are cross-connected to the WDM side of other boards The client side of the L4G board are cross-connected to the client side of other boards
Other board
3 4 5 6
TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
13.3.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of L4G, refer to Table 13-21. Table 13-21 L4G parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
269
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Laser Status
Off, On
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: NonLoopback
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Service Mode
OTN, SDH
Default: Enabled
LPT Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Default: OTN
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information.
Disabled, Enabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled FEC Working State
Disabled, Enabled Default: Enabled
Issue 03 (2013-05-16)
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
270
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196 .050 to 80/1560.61/19 2.100
The Planned Wavelength No./Wavelength (nm)/ Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/20 8.170 to 18/1611.00/18 8.780 Default: /
Planned Band Type
C, CWDM
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DE G
Default: C
Default: None
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.3.11 L4G Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L 4G
N/A
2.125 Gbit/s Multirate-0.5 km
3400 ps/nm-C BandFixed WavelengthNRZ-APD
N/A
1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km
3400 ps/nm-C BandTunable WavelengthNRZ-APD
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
271
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 13-22 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
272
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Table 13-23 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type Issue 03 (2013-05-16)
-
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
APD 273
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
WDM-Side Fixed Optical Module Table 13-24 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 3400 ps/nm-C BandFixed WavelengthNRZ-APD
3400 ps/nm-C BandTunable Wavelength-NRZAPD
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-2
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
3400
3400
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
274
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 3400 ps/nm-C BandFixed WavelengthNRZ-APD
3400 ps/nm-C BandTunable Wavelength-NRZAPD APD
Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-25
-25
Minimum receiver overload
dBm
-9
-9
Maximum reflectance
dB
-27
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25° C ( 77°F ) (W)
Maximum Power Consumption at 55° C ( 131°F ) (W)
TN11L4 G
3400 ps/nm-C Band-Fixed Wavelength-NRZ-APD
50.0
55.0
3400 ps/nm-C BandTunable Wavelength-NRZAPD
53.0
58.0
13.4 LDGD LDGD: 2 x Gigabit Ethernet unit, dual fed and selective receiving
13.4.1 Version Description The available functional version of the LDGD board is TN11.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
275
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LDG D
N
N
N
N
Y
Y
13.4.2 Application As a type of optical transponder unit, the LDGD board implements the conversion between two channels of GE signals and WDM signals that comply with ITU-T Recommendation, and dually feeds and selectively receives signals on the WDM side. For the position of the LDGD board in the WDM system, see Figure 13-14. Figure 13-14 Position of the LDGD board in the WDM system
RX1
LDGD
OUT1
MUX/ IN1 DMUX
TX1
IN2 MUX/ DMUX OUT2
GE
RX1 1×ODU1
MUX/ IN2 DMUX
TX1
MUX/ DMUX OUT1
OUT2
TX2
LDGD
1×OTU1
1×OTU1
1×ODU1
GE RX2
IN1
GE TX2 RX2
GE
OptiX OSN 6800: From/To cross-connect board or paired slot OptiX OSN 3800: From/To mesh group slot
13.4.3 Functions and Features The LDGD board is mainly used to achieve tunable wavelength and cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-25. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
276
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-25 Functions and features of the LDGD board Function and Feature
Description
Basic function
LDGD converts signals: 2 x GE <-> 1 x OTU1/STM-16 Implements the dual fed and selective receiving function on the WDM side.
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s
Cross-connect capabilities
l OptiX OSN 6800: Supports the grooming of two channels of GE services each to working/protection cross-connection boards respectively through the backplane. Supports the transmission of two GE signals to the paired slots through the backplane. l OptiX OSN 3800: Supports the grooming of two GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Provides the OTU1 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Not supported.
LPT function
Supported
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures.
l Supports ITU-T G.694.2-compliant CWDM specifications.
l Monitors B1 bytes to help locate faults. l Monitors B2 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Issue 03 (2013-05-16)
Supports the ALS function on the client side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
277
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Test frame
Supported
Optical-layer ASON
Not supported
Electrical-layer ASON
Not supported
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Loopback
WDM side
Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3z
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
278
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.4.4 Working Principle and Signal Flow The LDGD board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-15 show the functional modules and signal flow of the LDGD board. Figure 13-15 Functional modules and signal flow of the LDGD board Backplane (service cross-connection) GE Client side
WDM side
RX1 RX2
O/E
TX1 TX2
E/O
GE OTN Cross- encapsulation connect and mapping Processing module module module
Client side Optical module
Signal processing module
E/O
Splitter
OUT1 OUT2 IN1 IN2
O/E WDM side Optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LDGD board accesses GE optical signals. In the signal flow of the LDGD board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LDGD to the WDM side of the LDGD, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of GE optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
279
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths OTU1 optical signals. An optical splitter converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1OUT2 optical interfaces. l
Receive direction The WDM-side optical module receives two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths OTU1 optical signals from the WDM side through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs two channels of GE signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of GE optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals between the LDGD and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
280
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.4.5 Front Panel There are indicators and interfaces on the front panel of the LDGD board.
Appearance of the Front Panel Figure 13-16 shows the front panel of the LDGD board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
281
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-16 Front panel of the LDGD board
LDGD STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT1 IN1 OUT2 IN2
LDGD
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-26 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
282
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-26 Types and functions of the interfaces on the LDGD board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.4.6 Valid Slots One slot houses one LDGD board. Table 13-27 shows the valid slots for the LDGD board. Table 13-27 Valid slots for LDGD board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.4.7 Characteristic Code for the LDGD The characteristic code for the LDGD board contains eight digits, respectively indicating the frequency values of two channels of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 13-28. Table 13-28 Characteristic code for the LDGD board
Issue 03 (2013-05-16)
Code
Description
Description
First four digits
The frequency of forth optical signal
The last four digits of the frequency value of the first channel of signals on the WDM side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
283
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Code
Description
Description
Last four digits
The frequency of forth optical signal
The last four digits of the frequency value of the second channel of signals on the WDM side.
For example, the characteristic code for the TN11LDGD board is 92109210. l
"92109210" indicates the frequency of the two channels of optical signals on the WDM side both are 192.10 THz.
13.4.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-29 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-29 Mapping between the physical ports on the LDGD board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, LP is a logical port of the board. Figure 13-17 shows the application model of the LDGD board. Table 13-30 describes the meaning of each port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
284
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-17 Port diagram of the LDGD board
3 (RX1/T X1)-1 4 (RX2/T X2)-1
201(LP/LP)-1
201(LP/LP)-1
201(LP/LP)-2
201(LP/LP)-2
Cross-connect mo dule
Servi ce p rocessing module
1(IN1/OUT1)-1 2(IN2 /OUT2)-1
WDM-si de opti cal modu le
Table 13-30 Description of NM port of the LDGD board Port Name
Description
RX1/TX1-RX2/TX2
These ports correspond to the client-side optical interfaces.
LP
Internal logical port. The optical paths are numbered 1 and 2.
IN1/OUT1-IN2/OUT2
These ports correspond to the WDM-side optical interfaces.
13.4.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LDGD board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the GE crossconnection between the RX/TX and LP ports. The cross-connect grooming of GE services is implemented through the cross-connect module. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and LP ports of the LDGD board (Create the internal straight-through and cross-connection of the board), as shown and
in Figure 13-18.
– Create the cross-connection between the RX/TX port of the LDGD board and the LP port of other boards (The GE services accessed from the client side of the LDGD board are cross-connected to the WDM side of other boards for protection and the inter-board service convergence), as shown
3
in Figure 13-18.
– Create the cross-connection between the RX/TX port of other boards and the LP port of the LDGD board (The GE services accessed from the client side of other boards are cross-connected to the WDM side of the LDGD board for protection and the inter-board service convergence), as shown
Issue 03 (2013-05-16)
4
in Figure 13-18.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
285
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit NOTE
One RX/TX port can be connected to only one optical path of the LP port.
l
Create the cross-connection between the LP port of the LDGD board and the LP port of other boards (The GE services accessed from the WDM side of the LDGD board are crossconnected to the WDM side of other board for the grooming of the WDM-side services), as shown
l
5
in Figure 13-18.
The two paths of the LP port are respectively connected to the IN1/OUT1 and IN2/OUT2 ports. There is no need for configuration on the U2000.
Figure 13-18 Cross-connection diagram of the LDGD board Client side
Other board 3(RX1/TX1)-1
WDM side
201(LP/LP)-1 4
4(RX2/TX2)-1
3 5
201(LP/LP)-2
WDM side
Client side 3(RX1/TX1)-1
201(LP/LP)-1 2
4(RX2/TX2)-1
1
201(LP/LP)-2
LDGD The straight-through of the board The internal cross-connection of the board The client side of the LDGD board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LDGD board The WDM side of the LDGD board are cross-connected to the WDM side of other boards
Other board
1 2 3 4 5
TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
13.4.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LDGD, refer to Table 13-31.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
286
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-31 LDGD parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Service Mode
OTN, SDH
Default: Enabled
Default: OTN LPT Enabled
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable the link passthrough (LPT) function.
FEC Working State
Disabled, Enabled
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDMside optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
287
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196. 050 to 80/1560.61/192 .100
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208 .170 to 18/1611.00/188 .780 Default: / Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M FullDuplex
Default: C
Default: 9600
Default: AutoNegotiation SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.4.11 LDGD Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
288
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L DG D
N/A
2.125 Gbit/s Multirate-0.5 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZAPD
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 13-32 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
289
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type Target transmission distance
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
290
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-33 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
291
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-34 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPIN
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPD
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels Tunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-4
-4
0
0
0
0
Minimum mean launched power
dBm
-8
-8
-5
-5
-5
-5
Minimum extinction ratio
dB
10
10
8.2
8.2
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1 - compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-18
Issue 03 (2013-05-16)
APD
1300 to 1575 -28
-18
-28
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
-28
-28
292
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPIN
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPD
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels Tunable)
Minimum receiver overload
dBm
0
-9
0
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
Table 13-35 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
–0.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤ ±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
293
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Bo ard
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F)
Maximum Power Consumption at 55°C (131°F)
TN 11L DG D
12800 ps/nm-C Band-Fixed WavelengthNRZ-PIN
34.0
37.4
38.0
41.8
12800 ps/nm-C Band-Fixed WavelengthNRZ-APD 6500 ps/nm-C Band-Fixed WavelengthNRZ-PIN 3200 ps/nm-C Band-Fixed WavelengthNRZ-APD 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD 12800 ps/nm-C Band-Tunable WavelengthNRZ-APD 6400 ps/nm-C Band-Tunable WavelengthNRZ-APD (Four Channels-Tunable)
13.5 LDGS LDGS: 2 x Gigabit Ethernet unit, single fed and single receiving
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
294
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.5.1 Version Description The available functional version of the LDGS board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LDG S
N
N
N
N
Y
Y
13.5.2 Application As a type of optical transponder unit, the LDGS implements the conversion between two channels of GE signals and WDM signals that comply with ITU-T Recommendations. For the position of the LDGS board in the WDM system, see Figure 13-19. Figure 13-19 Position of the LDGS board in the WDM system
RX1
LDGS
LDGS
TX1
TX1 RX1
GE
1×ODU1
M IN U X / D M OUT U X
1×OTU1
TX2
1×OTU1
1×ODU1
GE RX2
M OUT U X / D M IN U X
GE TX2 RX2
GE
OptiX OSN 6800: From/To cross-connect board or paired slot OptiX OSN 3800: From/To mesh group slot
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
295
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.5.3 Functions and Features The LDGS board is mainly used to achieve tunable wavelength and cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-36. Table 13-36 Functions and features of the LDGS board Function and Feature
Description
Basic function
LDGS converts signals: 2 x GE <-> 1 x OTU1/STM-16
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s
Crossconnect capabilities
l OptiX OSN 6800: Supports the grooming of two channels of GE services each to working/protection cross-connection boards respectively through the backplane. Supports the transmission of two GE signals to the paired slots through the backplane. l OptiX OSN 3800: Supports the grooming of two GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Provides the OTU1 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
PRBS test function
Not supported
LPT function
Supported
l Supports ITU-T G.694.2-compliant CWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
296
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors B2 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Opticallayer ASON
Not supported
Electricallayer ASON
Not supported
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports OWSP protection.
Loopback
WDM side
Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
IEEE 802.3z
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
297
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.5.4 Working Principle and Signal Flow The LDGS board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-20 shows the functional modules and signal flow of the LDGS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
298
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-20 Functional modules and signal flow of the LDGS board Backplane(service cross-connection) GE Client side
WDM side
RX1 RX2
O/E
TX1 TX2
E/O Client-side optical module
GE CrossOTN connect encapsulation processing module and mapping module module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LDGS board accesses GE optical signals. In the signal flow of the LDGS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LDGS to the WDM side of the LDGS, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of GE optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths OTU1 optical signals through the OUT optical interface.
l Issue 03 (2013-05-16)
Receive direction Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
299
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The WDM-side optical module receives one channel of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths OTU1 optical signals from the WDM side through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as OTU1 framing, decoding of FEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs two channels of GE signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of GE optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals between the LDGS and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
300
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.5.5 Front Panel There are indicators and interfaces on the front panel of the LDGS board.
Appearance of the Front Panel Figure 13-21 shows the front panel of the LDGS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
301
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-21 Front panel of the LDGS board
LDGS STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT IN
LDGS
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-37 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
302
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-37 Types and functions of the interfaces on the LDGS board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.5.6 Valid Slots One slot houses one LDGS board. Table 13-38 shows the valid slots for the LDGS board. Table 13-38 Valid slots for LDGS board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.5.7 Characteristic Code for the LDGS The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.5.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-39 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
303
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-39 Mapping between the physical ports on the LDGS board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, LP is a logical port of the board. Figure 13-22 shows the application model of the LDGS board. Table 13-40 describes the meaning of each port. Figure 13-22 Port diagram of the LDGS board Client side
WDM side 201(LP/LP)-1
3(RX1/TX1)-1
201(LP/LP)-1 201(LP/LP)-2
4(RX2/TX2)-1
Cross-connect module
Service processing module
1(IN/OUT)-1
WDM-side optical module
Table 13-40 Description of NM port of the LDGS board
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX2/TX2
These ports correspond to the client-side optical interfaces.
LP
Internal logical port. The optical paths are numbered 1 and 2.
IN/OUT
Corresponding to the WDM-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
304
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.5.9 Configuration of Cross-connection his section describes how to configure cross-connections on boards using the NMS. If the LDGS board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the GE crossconnection between the RX/TX and LP ports. The cross-connect grooming of GE services is implemented through the cross-connect module. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and LP ports of the LDGS board (Create the internal straight-through and cross-connection of the board), as shown and
in Figure 13-23.
– Create the cross-connection between the RX/TX port of the LDGS board and the LP port of other boards (The GE services accessed from the client side of the LDGS board are cross-connected to the WDM side of other boards for protection and the inter-board service convergence), as shown
3
in Figure 13-23.
– Create the cross-connection between the RX/TX port of other boards and the LP port of the LDGS board (The GE services accessed from the client side of other boards are cross-connected to the WDM side of the LDGS board for protection and the inter-board service convergence), as shown
4
in Figure 13-23.
NOTE
One RX/TX port can be connected to only one optical path of the LP port.
l
Create the cross-connection between the LP port of the LDGS board and the LP port of other boards (The GE services accessed from the WDM side of the LDGS board are crossconnected to the WDM side of other board for the grooming of the WDM-side services), as shown
l
Issue 03 (2013-05-16)
5
in Figure 13-23.
The two paths of the LP port are converged into one channel, which is connected to the IN/ OUT port. There is no need for configuration on the U2000
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
305
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-23 Cross-connection diagram of the LDGS board
Client side
Other board 3(RX1/TX1)-1
WDM side
201(LP/LP)-1 4
3
4(RX2/TX2)-1
5
201(LP/LP)-2
WDM side
Client side 3(RX1/TX1)-1
201(LP/LP)-1 2 1
4(RX2/TX2)-1
201(LP/LP)-2
LDGS 1
The straight-through of the board The internal cross-connection of the board The client side of the LDGS board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LDGS board The WDM side of the LDGS board are cross-connected to the WDM side of other boards
Other board
2 3 4 5
TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
13.5.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LDGS, refer to Table 13-41. Table 13-41 LDGS parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
306
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Channel Use Status
Used, Unused Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Laser Status
Off, On
Default: NonLoopback
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Service Mode
OTN, SDH
Default: Enabled
Default: OTN LPT Enabled
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable the link pass-through (LPT) function.
FEC Working State
Disabled, Enabled
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
307
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Max. Packet Length
1518 to 9600
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196 .050 to 80/1560.61/19 2.100
Default: 9600
l CWDM: 11/1471.00/20 8.170 to 18/1611.00/18 8.780
The Planned Wavelength No./Wavelength (nm)/ Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: / Planned Band Type
C, CWDM Default: C
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Ethernet Working Mode
AutoNegotiation, 1000M FullDuplex
The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
Default: AutoNegotiation SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.5.11 LDGS Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
308
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN 11L DG S
N/A
2.125 Gbit/s Multirate-0.5 km
WDM-Side Fixed Optical Module
12800 ps/nm-C BandFixed Wavelength-NRZ1000 BASE-LX-10 PIN km 12800 ps/nm-C Band1000 BASE-LX-40 Fixed Wavelength-NRZAPD km
WDM-Side Pluggable Optical Module N/A
1000 BASE-ZX-80 6500 ps/nm-C BandFixed Wavelength-NRZkm PIN 1.25 Gbit/s 3200 ps/nm-C BandMultirate (eSFP Fixed Wavelength-NRZCWDM)-40 km APD 2.67 Gbit/s 12800 ps/nm-C BandMultirate (eSFP Tunable WavelengthCWDM)-80 km NRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 13-42 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
309
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type Target transmission distance
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
310
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-43 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
311
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-44 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPIN
12800 ps/ nm-C BandFixed Waveleng th-NRZAPD
6500 ps/ nm-C BandFixed Waveleng th-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Waveleng th-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four Channels -Tunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-1
-1
3
3
3
3
Minimum mean launched power
dBm
-5
-5
-2
-2
-2
-2
Minimum extinction ratio
dB
10
10
8.2
8.2
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1-compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Issue 03 (2013-05-16)
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1300 to 1575
312
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPIN
12800 ps/ nm-C BandFixed Waveleng th-NRZAPD
6500 ps/ nm-C BandFixed Waveleng th-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Waveleng th-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four Channels -Tunable)
Receiver sensitivity
dBm
-18
-28
-18
-28
-28
-28
Minimum receiver overload
dBm
0
-9
0
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
Table 13-45 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
2.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
313
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Eye pattern mask
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption Bo ard
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F)
Maximum Power Consumption at 55°C (131°F)
TN 11L DG S
12800 ps/nm-C Band-Fixed WavelengthNRZ-PIN
32.0
35.2
36.0
39.6
12800 ps/nm-C Band-Fixed WavelengthNRZ-APD 6500 ps/nm-C Band-Fixed WavelengthNRZ-PIN 3200 ps/nm-C Band-Fixed WavelengthNRZ-APD 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD 12800 ps/nm-C Band-Tunable Wavelength-NRZ-APD 6400 ps/nm-C Band-Tunable Wavelength-NRZ-APD (Four ChannelsTunable)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
314
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.6 LDM LDM: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board
13.6.1 Version Description Only one functional version of the LDM board is available, that is, TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN12 LDM
Y
Y
N
Y
Y
Y
Type The system provides two types of the LDM board: One has a pair of input and output optical interfaces, and the other has two pairs of input and output optical interfaces. Table 13-46 lists the types of the LDM board. Table 13-46 Type description of the LDM board Board
Type
Description
LDM
One type is the single transmitting and single receiving board.
The WDM-side interfaces are IN1/OUT1.
Other type is the dual-fed selectively receiving board.
The WDM-side interfaces are IN1/OUT1 and IN2/OUT2.
NOTE
The WDM-side interfaces of LDM board are dynamic optical interfaces. Before configuring dual fed and selective receiving, make sure the optical interfaces have been uploaded manually on the U2000.
13.6.2 Application As a type of optical transponder unit, the LDM board converts between signals at the rate of 100 Mbit/s to 2.5 Gbit/s and WDM signals that comply with ITU-T Recommendations. For the position of the LDM board in the WDM system, see Figure 13-24 and Figure 13-25. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
315
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-24 Position of the LDM board in the WDM system (single fed and single receiving) LDM
RX1 TX1
M U IN1 X / D OUT1 M U X
TX1 RX1
1×ODU1
TX2
M U OUT1 X / IN1 D M U X
1×OTU1
1×OTU1
1×ODU1
100Mbit/s~2.5Gbit/s RX2
LDM
100Mbit/s~2.5Gbit/s TX2 RX2
Figure 13-25 Position of the LDM board in the WDM system (dual fed and selective receiving) LDM
RX1
OUT1 MUX/ IN1 DMUX
TX1
MUX/ IN2 DMUX
MUX/ DMUXOUT1
IN2 MUX/ DMUXOUT2
TX1 RX1
1×ODU1
TX2
OUT2
LDM
1×OTU1
1×OTU1
1×ODU1
100Mbit/s~2.5Gbit/s RX2
IN1
100Mbit/s~2.5Gbit/s TX2 RX2
NOTE
The total rate of two channels of services at the client side cannot exceed 2.5 Gbit/s. The LDM board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
13.6.3 Functions and Features The LDM board is mainly used to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-47. Table 13-47 Functions and features of the LDM board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
LDM converts signals: 2 x (100 Mbit/s to 2.5 Gbit/s signals) <-> 1 x OTU1 Implements the dual fed and selective receiving function or single fed and single receiving function on the WDM side according to the application scenario.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
316
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
OTN function
l Provides the OTU1 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Not supported
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
l Supports ITU-T G.694.2-compliant CWDM specifications.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
317
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Loopback
WDM side
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
318
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
319
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.6.4 Working Principle and Signal Flow The LDM board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-26 shows the functional modules and signal flow of the LDM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
320
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-26 Functional modules and signal flow of the LDM board WDM side
Client side RX1 RX2
O/E
TX1 TX2
E/O
E/O Service encapsulation and mapping module
Client-side optical module
OTN processing module
Signal processing module
O/E
OUT1 OUT2 IN1 IN2
WDM-side optical module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane ( controlled by SCC)
Signal Flow The client side of the LDM board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LDM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LDM to the WDM side of the LDM, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of the Any optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths OTU1 optical signals. A laser converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1-OUT2 optical interfaces.
l
Receive direction The WDM-side optical module receives two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
321
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
wavelengths OTU1 optical signals from the WDM side through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, and decapsulation processing. Then, the module outputs two channels of Any signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces. NOTE
Only one pair of WDM-side optical interfaces is used, the board implements the single fed and single receiving function on the WDM side.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the service encapsulation and mapping module, and OTN processing module. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
322
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.6.5 Front Panel There are indicators and interfaces on the front panel of the LDM board.
Appearance of the Front Panel Figure 13-27 shows the front panel of the LDM board. Figure 13-27 Front panel of the LDM board
LDM STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT1 IN1 OUT2 IN2
LDM
Indicators Four indicators are present on the front panel: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
323
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-48 lists the type and function of each interface. Table 13-48 Types and functions of the interfaces on the TN12LDM board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.6.6 Valid Slots One slot houses one LDM board. Table 13-49 shows the valid slots for the LDM board. Table 13-49 Valid slots for the LDM board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
324
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.6.7 Characteristic Code for the LDM The board characteristic code indicates information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.6.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-50 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-50 Mapping between the physical ports on the LDM board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LDM, refer to Table 13-51.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
325
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-51 LDM parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, FE, GE, GE (GFP-T), OTU-1, STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, FC-100, FC-200, FICON, FICON Express, HD-SDI, DVBASI, SDI, ESCON, FDDI Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/s)
100 to 2200
Laser Status
Off, On
Default: 0
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
326
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
LPT Enabled
Disabled, Enabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled FEC Working State
Disabled, Enabled
Band Type/ Wavelength No./ Wavelength (nm)/Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: Enabled
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Issue 03 (2013-05-16)
Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Default: C
Default: 9600
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
327
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
PRBS Test Status
Disabled, Enabled
NULL Mapping Status
Enabled, Disabled
Default: Disabled
Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.6.10 LDM Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
328
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side WDM-Side Fixed Optical Pluggable Optical Module Module
TN 12L DM
N/A
I-16-2 km
N/A
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
S-16.1-15 km
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16 module, S-16.1 module, L-16.1 module and L-16.2 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-52 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Issue 03 (2013-05-16)
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
329
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type Target transmission distance
Value I-16-2 km
-
S-16.1-15 km
2 km (1.2 mi.) 15 km (9.3 mi.)
L-16.1-40 km
L-16.2-80 km
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
330
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module, or 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, ESCON, STM-1, FE and DVB-ASI signals.
Table 13-53 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
331
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
9
9
9
Minimum extinction ratio
dB
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, ESCON, STM-1, FE, DVB-ASI signals. NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-54 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range Issue 03 (2013-05-16)
nm
1471 to 1611
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1471 to 1611
332
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP DWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-55 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
333
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Target transmission distance
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
334
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Pluggable Optical Module Table 13-56 CWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
Target transmission distance
-
80 km (49.7 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Operating wavelength range
nm
1471 to 1611
Central wavelength deviation
nm
±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.959.1 - compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1270 to 1620
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 13-57 DWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
NRZ
335
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Target transmission distance
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Center frequency
THz
192.10 to 196.00
Center frequency deviation
nm
±12.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (5% margin are required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
336
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN12LDM
22.6
24.8
13.7 LDMD LDMD: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, dual fed and selective receiving
13.7.1 Version Description Only one functional version of the LDMD board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1LD MD
Y
Y
N
N
Y
Y
13.7.2 Application As a type of optical transponder unit, the LDMD converts between signals at the rate of 100 Mbit/s to 2.5 Gbit/s and WDM signals that comply with ITU-T Recommendations, and dually feeds and selectively receives signals on the WDM side. For the position of the LDMD board in the WDM system, see Figure 13-28. Figure 13-28 Position of the LDMD board in the WDM system LDMD
RX1
MUX/ IN1 DMUX
TX1
MUX/ IN2 DMUX
LDMD
MUX/ DMUXOUT1
IN2 MUX/ DMUXOUT2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TX1 RX1
1×OTU1
OUT2
IN1
1×ODU1
1×OTU1
Issue 03 (2013-05-16)
1×ODU1
100Mbit/s~2.5Gbit/s RX2 TX2
OUT1
100Mbit/s~2.5Gbit/s TX2 RX2
337
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The total rate of two channels of services at the client side cannot exceed 2.5 Gbit/s. The LDMD board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
13.7.3 Functions and Features The LDMD board is mainly used to achieve tunable wavelength, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-58. Table 13-58 Functions and features of the LDMD board Function and Feature
Description
Basic function
LDMD converts signals: 2 x (100 Mbit/s to 2.5 Gbit/s) <-> 1 x OTU1
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s
Implements the dual fed and selective receiving function on the WDM side.
GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
OTN function
l Provides the OTU1 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
WDM specification
Issue 03 (2013-05-16)
Supports ITU-T G.694.1-compliant DWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
338
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU1.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
l Supports intra-board 1+1 protection.
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
339
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Client side
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
340
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.7.4 Working Principle and Signal Flow The LDMD board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-29 shows the functional modules and signal flow of the LDMD board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
341
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-29 Functional modules and signal flow of the LDMD board WDM side
Client side RX1 RX2
O/E
TX1 TX2
E/O
E/O Service encapsulation and mapping module
Client-side optical module
OTN processing module
Splitter
OUT1 OUT2 IN1 IN2
O/E WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module
Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LDMD board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LDMD board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LDMD to the WDM side of the LDMD, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of the Any optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU1 optical signals. An optical splitter converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1-OUT2 optical interfaces.
l
Receive direction The WDM-side optical module receives two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU1 optical signals from the WDM side through the IN1IN2 optical interfaces. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
342
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, and decapsulation processing. Then, the module outputs two channels of Any signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the service encapsulation and mapping module, and OTN processing module. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
343
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.7.5 Front Panel There are indicators and interfaces on the front panel of the LDMD board.
Appearance of the Front Panel Figure 13-30 shows the front panel of the LDMD board. Figure 13-30 Front panel of the LDMD board
LDMD STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT1 IN1 OUT2 IN2
LDMD
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
344
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-59 lists the type and function of each interface. Table 13-59 Types and functions of the interfaces on the LDMD board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.7.6 Valid Slots One slot houses one LDMD board. Table 13-60 shows the valid slots for the LDMD board. Table 13-60 Valid slots for the LDMD board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
345
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.7.7 Characteristic Code for the LDMD The characteristic code for the LDMD board contains eight digits, respectively indicating the frequency values of two channels of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 13-61. Table 13-61 Characteristic code for the LDMD board Code
Description
Description
First four digits
The frequency of forth optical signal
The last four digits of the frequency value of the first channel of signals on the WDM side.
Last four digits
The frequency of forth optical signal
The last four digits of the frequency value of the second channel of signals on the WDM side.
For example, the characteristic code for the TN11LDMD board is 92109210. l
"92109210" indicates the frequency of the two channels of optical signals on the WDM side both are 192.10 THz.
13.7.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-62 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-62 Mapping between the physical ports on the LDMD board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
346
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.7.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of LDMD, refer to Table 13-63. Table 13-63 LDMD Parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, FE, GE, GE (GFP-T), OTU-1, STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, FC-100, FC-200, FICON, FICON Express, HD-SDI, DVBASI, SDI, ESCON, FDDI Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/ s)
100 to 2200
Laser Status
Off, On
Default: 0
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
347
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Automatic Laser Shutdown
Disabled, Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
LPT Enabled
Disabled, Enabled
Default: Enabled
Default: Disabled FEC Working State
Disabled, Enabled
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: Enabled
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Issue 03 (2013-05-16)
Determines whether to enable the link pass-through (LPT) function.
Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Default: C
Default: 9600
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
348
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.7.10 LDMD Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
349
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L DM D
N/A
I-16-2 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD
N/A
S-16.1-15 km L-16.1-40 km
12800 ps/nm-C BandTunable WavelengthNRZ-APD
L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16 module, S-16.1 module, L-16.1 module and L-16.2 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-64 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Issue 03 (2013-05-16)
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
350
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type Target transmission distance
Value I-16-2 km
-
S-16.1-15 km
2 km (1.2 mi.) 15 km (9.3 mi.)
L-16.1-40 km
L-16.2-80 km
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
351
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s Multi-rate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, ESCON, STM-1, FE and DVB-ASI signals.
Table 13-65 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
352
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
9
9
9
Minimum extinction ratio
dB
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
The 1.25 Gbit/s Multi-rate module (eSFP CWDM) can be used to access GE, FC100, STM-4, ESCON, STM-1, FE, DVB-ASI signals. NOTE
The 2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-66 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range Issue 03 (2013-05-16)
nm
1471 to 1611
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1471 to 1611
353
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
The 2.67 Gbit/s Multi-rate module (eSFP DWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-67 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
354
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Target transmission distance
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
355
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-68 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/nmC Band-Fixed WavelengthNRZ-APD
12800 ps/nmC BandTunable WavelengthNRZ-APD
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four ChannelsTunable)
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-4
0
0
Minimum mean launched power
dBm
-8
-5
-5
Minimum extinction ratio
dB
10
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
35
Dispersion tolerance
ps/nm
12800
12800
6400
Eye pattern mask
-
G.959.1 - compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
APD
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
-28
-28
Minimum receiver overload
dBm
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
1300 to 1575
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
356
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.7 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11LDMD
26.9
29.6
13.8 LDMS LDMS: 2-channel multi-rate (100Mbit/s-2.5Gbit/s) wavelength conversion board, single fed and single receiving
13.8.1 Version Description Only one functional version of the LDMS board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Board
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11L DMS
Y
Y
N
N
Y
Y
13.8.2 Application As a type of optical transponder unit, the LDMS board converts between signals at the rate of 100 Mbit/s to 2.5 Gbit/s and WDM signals that comply with ITU-T Recommendations. For the position of the LDMS board in the WDM system, see Figure 13-31.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
357
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-31 Position of the LDMS board in the WDM system RX1
LDMS
TX1
M U IN X / D OUT M U X
TX1 RX1
1×ODU1
TX2
M U OUT X / IN D M U X
1×OTU1
1×OTU1
1×ODU1
100Mbit/s~2.5Gbit/s RX2
LDMS
100Mbit/s~2.5Gbit/s TX2 RX2
NOTE
The total rate of two channels of services at the client side cannot exceed 2.5 Gbit/s. The LDMS board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
13.8.3 Functions and Features The LDMS board is mainly used to achieve tunable wavelength, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-69. Table 13-69 Functions and features of the LDMS board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
LDMS converts signals: 2 x (100 Mbit/s to 2.5 Gbit/s) <-> 1 x OTU1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
358
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
OTN function
l Provides the OTU1 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM, and TCM functions for ODU1. l Supports SM function for OTU1.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU1. Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
359
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
l Supports OWSP protection.
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
360
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
361
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.8.4 Working Principle and Signal Flow The LDMS board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-32 shows the functional modules and signal flow of the LDMS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
362
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-32 Functional modules and signal flow of the LDMS board Client side
WDM side
RX1 RX2
O/E
TX1 TX2
E/O
E/O Service encapsulation and mapping module
Client-side optical module
OUT
OTN processing module
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LDMS board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LDMS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LDMS to the WDM side of the LDMS, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of the Any optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU1 optical signals through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU1 optical signals from the WDM side through the IN optical interface. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
363
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as OTU1 framing, decoding of FEC, demapping, and decapsulation processing. Then, the module outputs two channels of Any signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the service encapsulation and mapping module, and OTN processing module. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.8.5 Front Panel There are indicators and interfaces on the front panel of the LDMS board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
364
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Appearance of the Front Panel Figure 13-33 shows the front panel of the LDMS board. Figure 13-33 Front panel of the LDMS board
LDMS STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT IN
LDMS
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
365
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Interfaces Table 13-70 lists the type and function of each interface. Table 13-70 Types and functions of the interfaces on the LDMS board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.8.6 Valid Slots One slot houses one LDMS board. Table 13-71 shows the valid slots for the LDMS board. Table 13-71 Valid slots for the LDMS board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.8.7 Characteristic Code for the LDMS The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
366
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.8.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-72 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. . Table 13-72 Mapping between the physical ports on the LDMS board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.8.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of LDMS, refer to Table 13-73. Table 13-73 LDMS Parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Issue 03 (2013-05-16)
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
367
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, FE, GE, GE (GFP-T), OTU-1, STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, FC-100, FC-200, FICON, FICON Express, HD-SDI, DVBASI, SDI, ESCON, FDDI Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/ s)
100 to 2200
Laser Status
Off, On
Default: 0
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
LPT Enabled
Disabled, Enabled
Default: Enabled
Default: Disabled
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link pass-through (LPT) function.
FEC Working State
Disabled, Enabled
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
368
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
OTN Overhead Transparent Transmission
Enabled, Disabled
Default: C
Default: 9600
Default: Disabled
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
369
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
PRBS Test Status
Disabled, Enabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.8.10 LDMS Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L DM S
N/A
I-16-2 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD
N/A
S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km
12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
370
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Client-Side Pluggable Optical Module NOTE
I-16 module, S-16.1 module, L-16.1 module and L-16.2 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-74 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
371
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type Eye pattern mask
Value I-16-2 km
-
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, ESCON, STM-1, FE and DVB-ASI signals.
Table 13-75 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
372
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, ESCON, STM-1, FE, DVB-ASI signals. NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
373
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-76 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP DWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
374
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-77 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
375
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-78 WDM-side fixed optical module specificaitons Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/nmC Band-Fixed WavelengthNRZ-APD
12800 ps/nmC BandTunable WavelengthNRZ-APD
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four ChannelsTunable)
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-1
3
3
Minimum mean launched power
dBm
-5
-2
-2
Minimum extinction ratio
dB
10
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
35
Dispersion tolerance
ps/nm
12800
12800
6400
Eye pattern mask
-
G.959.1 - compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
APD
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
-28
-28
Minimum receiver overload
dBm
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
1300 to 1575
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
376
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11LDMS
26.9
29.6
13.9 LDX LDX: 2 x 10 Gbit/s wavelength conversion unit
13.9.1 Version Description Only one functional version of the LDX board is available, that is, TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2LD X
Y
Y
Y
Y
Y
Y
Variants The TN12LDX board has only one variant: TN12LDX01.
13.9.2 Application The LDX board is an optical transponder unit that converts two channels of 10 Gbit/s service signals into OTU2 or OTU2e signals and performs conversion between the 10 Gbit/s service signals and WDM signals that comply with ITU-T Recommendations. For the position of the LDX board in the WDM system, see Figure 13-34. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
377
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-34 Position of the LDX board in the WDM system RX1
OUT1
M U OUT1 X / D M IN2 U X OUT2
2×ODU2/ODU2e
M IN1 U X / D OUT2 M U IN2 X
LDX
IN1
2×OTU2/OTU2e
2×OTU2/OTU2e
2×ODU2/ODU2e
10GE LAN/ TX1 10GE WAN/ STM-64/ OC-192/ RX2 OTU2/ OTU2e TX2
LDX
TX1 RX1 10GE LAN/ 10GE WAN/ STM-64/ TX2 OC-192/ OTU2/ OTU2e RX2
13.9.3 Functions and Features The LDX board provides OTN interfaces and electrical supervisory channels (ESCs). For detailed functions and features, refer to Table 13-79. Table 13-79 Functions and features of the LDX board Function and Feature
Description
Basic function
LDX converts signals as follows: l 2 x 10GE LAN/10GE WAN/STM-64/OC-192/OTU2 <-> 2 x OTU2 l 2 x 10GE LAN/OTU2e <-> 2 x OTU2e
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s
OTN function
l Provides the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU2. l Supports SM function for OTU2.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of: 80 wavelengths in C-band with the channel spacing of 50 GHz. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
378
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU2/OTU2e.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
l Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN).
Regeneratio n board
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
Opticallayer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Ethernet service mapping mode
Issue 03 (2013-05-16)
Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
379
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Loopback
WDM side
Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ae
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.9.4 Working Principle and Signal Flow The LDX board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-35 shows the functional modules and signal flow of the LDX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
380
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-35 Functional modules and signal flow of the LDX board Client side RX1
TX1
O/E
E/O
WDM side
SDH/SONET encapsulation and mapping module
Client-side OTN 1 processing module 0
OTN processing module
E/O
OUT1
O/E
IN1
E/O
OUT2
O/E
IN2
10GE LAN encapsulation and mapping module
SDH/SONET encapsulation and mapping module
RX2
TX2
O/E Client-side OTN processing module
E/O Client-side optical module
OTN processing module
10GE LAN encapsulation and mapping module
WDM-side optical module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The transmit and the receive directions are defined in the signal flow of the LDX board. The transmit direction is defined as the direction from the client side of the LDX to the WDM side of the LDX. The receive direction is defined as the direction from the WDM side of the LDX to the client side of the LDX. The RX1/TX1 and RX2/TX2 ports independently process signals. The RX1/TX1 port corresponds to the OUT1/IN1 port, and the RX2/TX2 port corresponds to the OUT2/IN2 port. l Issue 03 (2013-05-16)
Transmit direction Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
381
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The client-side optical module receives two channel of the optical signals from client equipment through the RX1/RX2 optical interface and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. OTU2/ OTU2e signals are sent to the client-side OTN processing module for performance monitoring. Other types of signals are sent to different encapsulation and mapping modules for encapsulation and mapping. In the end, operations such as the OTN framing and FEC/ AFEC encoding processing are performed. Finally, the module outputs two channels of OTU2 /OTU2e electrical signals. The OTU2/OTU2e signals are sent to the WDM-side optical module. After E/O conversion, the module transmits OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT1 and OUT2 optical interfaces. l
Receive direction The WDM-side optical module receives two channel of OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN1 and IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU2/OTU2e signals are sent to the signal processing module. The module performs operations such as OTU2/OTU2e framing, decoding of FEC/AFEC, demapping, and decapsulation processing. Then, the module outputs two channels of OC-192, STM-64, 10GE LAN, 10GE WAN, or OTU2/OTU2e electrical signals. The client-side optical module performs E/O conversion of OC-192, STM-64, 10GE LAN, 10GE WAN, or OTU2/OTU2e electrical signals, and then outputs client-side optical signals through the TX1 and TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of OC-192/STM-64/10GE LAN/10GE WAN/OTU2/OTU2e optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to OC-192/STM-64/10GE LAN/10GE WAN/OTU2/OTU2e optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, client-side OTN processing module, and OTN processing module. – SDH/SONET encapsulation and mapping module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
382
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Encapsulates one channel of SDH/SONET signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates one channel of 10GE LAN signals and maps the signals into the OTU2/ OTU2e payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – Client-side OTN processing module Implements the OTN performance monitoring function. – OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs the FEC/AFEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.9.5 Front Panel There are indicators and interfaces on the front panel of the LDX board.
Appearance of the Front Panel Figure 13-36 shows the front panel of the LDX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
383
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-36 Front panel of the LDX board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-80 describes the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
384
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-80 Types and functions of the interfaces on the LDX board Interface
Type
Function
IN1-IN2
LC
Receives a wavelength from the optical demultiplexing unit or the optical add and drop multiplexing unit.
OUT1-OUT2
LC
Transmits a wavelength to the optical multiplexing unit or the optical add and drop multiplexing unit.
TX1-TX2
LC
Transmits service signals to the client-side equipment.
RX1-RX2
LC
Receives service signals from the client-side equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.9.6 Valid Slots One slot houses one LDX board. Table 13-81 shows the valid slots for the LDX board. Table 13-81 Valid slots for the LDX board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.9.7 Characteristic Code for the LDX The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.9.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
385
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Display of Physical Ports Table 13-82 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-82 Mapping between the physical ports on the LDX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
3
RX1/TX1
5
RX2/TX2
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.9.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of the LDX, refer to Table 13-83. Table 13-83 LDX Parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
386
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Service Type
None, 10GE LAN, 10GE WAN,FC-1200, OC-192, OTU-2, OTU-2e, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: 10GE LAN Port Mapping
Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G)
The Port Mapping parameter sets and queries the mapping mode of a port service. See D.28 Port Mapping (WDM Interface) for more information.
Default: Bit Transparent Mapping (11.1G) Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Default: Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s LPT Enabled
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
Determines whether to enable the link passthrough (LPT) function.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
387
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
388
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services.
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.9.10 LDX Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 12L DX
N/A
10 Gbit/s Multirate-10 km
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate -0.3 km
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
389
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The 10 Gbit/s multi-rate 10 km module, 10 Gbit/s multi-rate 40 km, and 10 Gbit/s multi-rate 80 km module can be used to access OC-192, STM-64, 10GE LAN, 10GE WAN, and OTU2/OTU2e signals. The 10Gbit/s single rate -0.3km module can be used only to access 10GE LAN signals.
Table 13-84 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
390
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
30
30
30
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.691-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
PIN
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
391
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-85 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
392
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Pluggable Optical Module Table 13-86 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
393
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-87 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.6 kg (3.5 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
394
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Bo ard
WDM-Side Optical Module
Typical Power Consumption at 25° C (77°F) (W)
Maximum Power Consumption at 55° C (131°F) (W)
LD X
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
44.5
51.2
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
45.5
52.2
13.10 LEM24 LEM24: 22 x GE + 2 x 10GE and 2 x OTU2 Ethernet Switch board
13.10.1 Version Description The available functional version of the LEM24 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1LE M24
Y
Y
Y
N
Y
Y
13.10.2 Application The LEM24 board is an optical transponder unit. As an OTU, the LEM24 board converts 22 channels of GE/FE services and two channels of 10GE WAN/10GE LAN services received directly on the client side, and two channels of 10GE services cross-connected from the backplane into two channels of standard WDM wavelength OTU2 signals. The LEM24 board also performs the reverse process. The LEM24 board supports convergence of multiple flat-rate GE or 10GE WAN/10GE LAN services into one channel of 10GE service. Further, the board supports transparent transmission of 16 channels of GE or two channels of 10GE WAN/10GE LAN services. Figure 13-37 shows the application of the LEM24 board in a WDM system. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
395
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-37 Application of the TN11LEM24 board in a WDM system LEM24
RX5
OUT3
TX5
L2 10GE
FE GE 10GE LAN TX28 10GE WAN
2X10GE
TX28
TX5 RX5
2×ODU2
2×OTU2
2×ODU2
2X10GE
FE GE 10GE LAN 10GE WANRX28
M U OUT3 X / D M IN4 U X OUT4
2×OTU2
M U X / D OUT4 M U IN4 X IN3
LEM24
IN3
RX28 L2 10GE
OptiX OSN 8800: N/A OptiX OSN 6800: From/To cross-connect board OptiX OSN 3800: N/A
NOTE
The RX5/TX5 and RX6/TX6 optical ports are capable of processing 10GE LAN and 10GE WAN services. The other optical ports on the board are capable of processing GE and FE services.
13.10.3 Functions and Features The LEM24 board supports electrical cross-connections, OTN interfaces, and the ESC function. Table 13-88 and Table 13-89 list the functions and features of the LEM24 board. NOTE
The 10GE cross-connections are supported only by OptiX OSN 6800.
Table 13-88 OTN Functions and features of the LEM24 board Function and Feature Basic function
Description l Converts 22 channels of GE/FE services and two channels of 10GE WAN/10GE LAN services received directly on the client side, and two channels of 10GE services cross-connected from the backplane into two channels of standard WDM wavelength OTU2 signals and performs the reverse process. l Converges multiple flat-rate GE or 10GE services into one channel of 10GE service.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
396
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature Client-side service type
Description FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s NOTE l The LEM24 board supports both FE/GE electrical signals and FE/GE optical signal. l When the LEM24 board transmits GE or FE electrical signals, to facilitate fiber routing, you are advised to install electrical modules at the RX21/TX21 and RX22/TX22 ports.
Cross-connect capabilities
OptiX OSN 8800: N/A. OptiX OSN 6800: Supports the cross-connection of two channels of 10GE electrical signals between the LEM24 board and the cross-connect board. OptiX OSN 3800: N/A.
OTN function
l Provides OTU2 interfaces on the WDM side. l Supports SM function for OTU2. l Supports PM and TCM functions for ODU2.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported
LPT
l Supports port-based LPT. l Supports service-based LPT.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports monitoring of performance events and alarms associated with FE, GE, 10GE WAN, and 10GE LAN services.
Issue 03 (2013-05-16)
Regeneration board
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2, TN11LSXR
ALS function
Supports the ALS function on the client side.
IEEE 1588v2
Supported in the WDM side.
Physical clock
Supported in the Client side and WDM side.
PRBS test function
Supports the PRBS function on the WDM side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
397
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Loopback
10GE optical interface
l Supports intra-board 1+1 protection. MAC
PHY
GE optical interface
MAC
PHY
GE electric interface
MAC
PHY
FE optical interface
MAC
PHY
FE electric interface
MAC
PHY
WDM side optical interface
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
398
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-89 Data features of the LEM24 board Function and Feature
Description
Interface characteristi cs
Port working mode
10GE optical port: 10GE LAN, 10GE WAN GE optical port: 1000MFULL, auto-negotiation GE electrical port: auto-negotiation FE optical port: 100MFULL FE electrical port: 10MHALF, 10MFULL, 100MHALF, 100MFULL, auto-negotiation
Multicast
Layer 2 switching
MTU
Supports a maximum of 9600 bytes frames.
VLAN multicast
Supported
IGMP snooping V2
Supported
Supports IEEE802.1Q, IEEE802.1ad, and IEEE 802.1D. Supports one VB. Supports MAC address learning and aging. Supports STP/RSTP and MSTP. Supports 32k MAC addresses.
Ethernet service
EPL EVPL(VLAN) EVPL(QinQ) EPLAN(IEEE 802.1D) EVPLAN(IEEE 802.1Q) EVPLAN(IEEE 802.1ad) NOTE "EVPL (VLAN)" is displayed as "EPL" on the NMS.
Protection schemes
VLAN SNCP
Supported
DBPS
Supported
ERPS
Supported
LAG
l Supports the IEEE802.3ad-compliant LAG protocol running at IP and trunk ports. l Supports manual and static LAGs. l Supports load-sharing and non-load-sharing LAGs.
Maintenance features
Issue 03 (2013-05-16)
ETH-OAM
Supports ETH OAM protocols defined by IEEE802.1ag and IEEE802.3ah.
RMON
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
399
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
QoS
Supports committed access rate (CAR) and class of service (CoS). Supports IEEE802.1p. Supports DSCP.
Flow control
Supports IEEE802.3X-compliant Ethernet flow control protocol and flow control termination.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.1q VLAN
Protocols or standards for service processing (performanc e monitoring)
IEEE 802.3x pause frame
All L2 protocols including xSTP, LACP, EthOAM, DHCP, PPP, etc. MPLS protocols All L3 protocols including ARP, IGMP, OSPF, IGRP etc.
IEEE 802.3ad LACP IEEE 802.1p priority IEEE 802.1q VLAN IEEE 802.1ag OAM IEEE 802.3ah OAM IEEE IGMP STP, RSTP, MSTP R-APS
13.10.4 Working Principle and Signal Flow The LEM24 board consists of the client-side optical module, WDM-side optical module, L2 switching module, OTN processing module, 1588v2 module, control and communication module, and power supply module. Figure 13-38 shows the functional modules and signal flow of the LEM24 board in the OptiX OSN 8800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
400
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-38 Functional modules and signal flow of the LEM24 board Backplane(service cross-connection)
10GE Client side
WDM side
RX5 RX6
10GE
O/E
RX28 TX5 TX6
L2 switching module
E/O
TX28
10GE
OTN processing module
E/O
OUT3
O/E
IN3 IN4
OUT4
WDM-side optical module
Client-side optical module
1588v2 module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
NOTE
The 10GE cross-connections are supported only by OptiX OSN 6800.
Signal Flow The backplane supports cross-connection of only 10GE signals from/to the LEM24 board. The transmit and the receive directions are defined in the signal flow of the LEM24 board. The transmit direction is the direction from the client side of the LEM24 to the WDM side of the LEM24. The receive direction is from the WDM side of the LEM24 to the client side of the LEM24. l
Transmit direction The RX5 to RX28 optical interfaces on the client side receive optical signals from client equipment and perform O/E conversion. After O/E conversion, the electrical signals are sent to the L2 switching module. The module performs operations, such as convergence. After convergence, the module outputs a maximum of two channels of 10GE signals to the OTN processing module. The OTN processing module then encapsulates and maps the two channels of 10GE signals into OTN frames, performs FEC for the OTN frames, and then outputs two channels of OTU2 signals compliant with ITU-T G.694.1 through the OUT3 and OUT4 optical ports.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
401
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Receive direction The WDM-side optical module receives two channels of OTU2 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN3-IN4 optical interfaces. After receiving the signals, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the OTN processing module. The module performs operations such as OTU2 framing, decoding of FEC. After performing the operation, the module sends out two channels of 10GE signals to the L2 switching module for service cross-connection. The L2 switching module deconverges the 10GE signals and sends 24 channels of the signals with corresponding rates to the client-side optical module. The client-side optical module performs E/O conversion of the 24 channels of electrical signals, and then outputs 24 channels of client-side optical signals through the TX5-TX28 optical interfaces. NOTE
The RX5/TX5 and RX6/TX6 optical ports can process 10GE LAN and 10GE WAN services. The other optical ports on the board can process GE and FE services.
The LEM24 board processes clock signals in two directions. l
Receives clock signals from a service board and sends the clock signals to the clock processing board through the communication module.
l
Receives clock signals from the clock processing module and sends the clock signals to the downstream NE through a service board. NOTE
10GE WAN and 10GE LAN signals are processed differently. Each 10GE WAN signal contains an SDH header, which is stripped off before the signal enters the Layer 2 module.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of the FE/GE/10GE LAN/10GE WAN signals. – Client-side transmitter: Performs E/O conversion of the FE/GE/10GE LAN/10GE WAN signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
L2 switching module – Learns, forwards or deletes MAC addresses. – Maps and demaps Ethernet packets.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
402
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs FEC encoding and decoding.
l
1588v2 module The 1588v2 module can send the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.10.5 Front Panel There are indicators and interfaces on the front panel of the LEM24 board.
Appearance of the Front Panel Figure 13-39 shows the front panel of the LEM24 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
403
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-39 Front panel of the LEM24 board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
404
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Interfaces Table 13-90 describes the type and function of each interface. Table 13-90 Types and functions of the interfaces on the LEM24 board Interface
Type
Function
RX5-RX28a
LC
Receive service signals from client equipment.
TX5-TX28a
LC
Transmit service signals to client equipment.
IN3-IN4
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT3-OUT4
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
a: The RX5/TX5 and RX6/TX6 optical ports are 10GE optical ports that can process 10GE LAN and 10GE WAN services. The other optical ports on the board are GE optical ports that can process GE and FE services.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.10.6 Valid Slots Two slots house one TN11LEM24 board. Table 13-91 shows the valid slots for the TN11LEM24 board. Table 13-91 Valid slots for the LEM24 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 6800 subrack
IU1-IU7, IU11-IU15
OptiX OSN 3800 subrack
IU2-IU5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
405
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The rear connector of the LEM24 board is mounted to the backplane along the left slot of the two occupied slots in the subrack. The slot number of the LEM24 board displayed on the NM is the number of the left slot. For example, if you install the LEM24 board in slots IU1 and IU2, the slot number of the LEM24 board displayed on the NM is IU1.
13.10.7 Characteristic Code for the LEM24 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For detailed descriptions of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.10.8 Physical and Logical Ports This section describes how the physical interfaces of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-92 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-92 Mapping between the physical ports on the LEM24 board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN3/OUT3
3
IN4/OUT4
4
TX5/RX5
5
TX6/RX6
6
TX7/RX7
7
TX8/RX8
8
TX9/RX9
9
TX10/RX10
10
TX11/RX11
11
TX12/RX12
12
TX13/RX13
13
TX14/RX14
14
TX15/RX15
15
TX16/RX16
16 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
406
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Physical Port
Port Number on the NMS
TX17/RX17
17
TX18/RX18
18
TX19/RX19
19
TX20/RX20
20
TX21/RX21
21
TX22/RX22
22
TX23/RX23
23
TX24/RX24
24
TX25/RX25
25
TX26/RX26
26
TX27/RX27
27
TX28/RX28
28
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ODU2LP is a logical port of the board. Figure 13-40 shows the application model of the LEM24 board. Table 13-93 describes the meaning of each port. Figure 13-40 Port diagram of the LEM24 board Client side PORT5 PORT6
VCTRUNK1
Service processing module 101(AP1/AP1)-1 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2LP2/ODU2LP2)-1
102(AP2/AP2)-1
WDM side
VCTRUNK2
3(IN3/OUT3)-1 4(IN4/OUT4)-1
VCTRUNK3 103(AP3/AP3)-1
PORT28
VCTRUNK4 104(AP4/AP4)-1
L2 switching module
Service processing module
Cross-connect module
WDM side optical module
Backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
407
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-93 Definition of NM port of the LEM24 board Port Name
Definition
PORT5 - PORT28
Respectively corresponds to the client-side optical interfaces: RX5/TX5 - RX28/TX28.
VCTRUNK1 - VCTRUNK4
Internal virtual ports.
AP1 - AP4
Internal convergence ports.
ClientLP1 - ClientLP2
Internal logical ports. The optical paths are numbered 1
ODU2LP1 - ODU2LP2
Internal logical ports.
IN3/OUT3 - IN4/OUT4
Corresponds to the WDM-side optical interfaces.
13.10.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LEM24 board is used to transmit services, the following items must be created on the U2000: l
During creation of the Ethernet services on the U2000, create cross-connections between the PORT and VCTRUNK ports. After the cross-connections between the PORT and VCTRUNK ports are created, the L2 switching module can perform cross-connections between the PORT and VCTRUNK ports, or converge optical signals received by the clientside optical modules into two channels of 10GE electrical signals. NOTE
l One VCTRUNK port can be connected to multiple PORT ports. l The maximum bandwidth of each VCTRUNK port is 10 Gbit/s.
l
One-to-one port connections are between the VCTRUNK ports and the AP ports of the cross-connect module. You are not required to set one-to-one port connections on the U2000.
l
Create a cross-connection between the AP port of the LEM24 board and the AP port of other boards, as shown in Figure 13-41. NOTE
Only the OptiX OSN 6800 supports this operation.
l
Issue 03 (2013-05-16)
The AP port connects to the ClientLP ports, the ClientLP port connects to the ODU2LP port, and the ODU2LP port connects to the IN/OUT port. There is no need for configuration of these connections on the U2000.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
408
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-41 Cross-connection diagram of the LEM24 board Client side
WDM side
103(AP3/AP3)-1
Other board 104(AP4/AP4)-1
Client side
WDM side 103(AP3/AP3)-1
LEM24
104(AP4/AP4)-1
Other board
TN11LEM24 / TN11LEX4
13.10.10 Parameters Can Be Set or Queried by NMS This section lists the LEM24 board parameters that can be set or queried by using the NMS.
Parameters for WDM Interfaces Table 13-94 Parameters for WDM Interfaces Field
Value
Description
Optical Interface/Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop Default: Non-Loopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
409
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: l WDM side: On l Client side: Off Automatic Laser Shutdown
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
410
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDMside port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
LPT Enabled
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Determines whether to enable the link pass-through (LPT) function.
411
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Enabled, Disabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Default: Enabled
FEC
FEC Mode
Default: FEC
Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./Wavelength (nm)/ Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/ Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
Issue 03 (2013-05-16)
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
412
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: Disabled
Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudorandom binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Parameters for Ethernet interfaces Table 13-95 TAG Attributes(Internal Port/External Port) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4. External ports are PORT5 to PORT28.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
413
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
TAG
Tag Aware, Access, Hybrid
Indicates the type of packets that can be processed by a port.
Default: Tag Aware
Tag Aware: The port transparently transmits the packets with VLAN IDs (Tag) and discards packets without VLAN IDs (Untag). If TAG is set to Tag Aware, VLAN priority and Default VLAN ID are invalid. Access: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and discards the packets that already have VLAN IDs (Tag). Hybrid: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and transparently transmits the packets that already have VLAN IDs (Tag). This parameter is valid only for UNI ports. NOTE This parameter is invalid for CAware and S-Aware ports.
Default VLAN ID
1 to 4095 Default: 1
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
VLAN Priority
0 to 7 Default: 0
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
Entry Detection
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Entry Detection parameter determines whether a port detects packets by tag identifier. 414
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-96 Network Attributes (Internal Port/External Port) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4. External ports are PORT5 to PORT28.
Port Attributes
UNI, NNI, C-Aware, SAware Default: UNI
A UNI port processes the TAG attributes of the 802.1Q-compliant packets. The port attributes include Tag Aware, Access, and Hybrid. An S-Aware port does not process the tag attributes of the 802.1Q-compliant packets. In this case, the port determines that the packets do not carry C-VLAN tags and processes only the packets that have S-VLAN tags. A C-Aware port does not process the tag attributes of the 802.1Q-compliant packets. In this case, the port determines that the packets do not carry S-VLAN tags and processes only the packets that have C-VLAN tags. NNI is a reserved port type and is not supported at present.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
415
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-97 Advanced attributes (Internal ports) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4.
Broadcast Packet Suppression
Enabled, Disabled Default: Disabled
Indicates whether to enable broadcast packet suppression. Click D.6 Enabling Broadcast Packet Suppression to view the details.
Broadcast Packet Suppression Threshold
10% to 100%, with a step of 10% Default: 30%
If broadcast packet suppression is enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. Click D.3 Broadcast Packet Suppression Threshold to view the details.
Table 13-98 Advanced Attributes (External Port) Field
Value
Description
Port
-
External ports are PORT5 to PORT28.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Default: Disabled
Click D.6 Enabling Broadcast Packet Suppression to view the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
416
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Broadcast Packet Suppression Threshold
10% to 100%, with a step of 10%
If broadcast packet suppression is enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth.
Default: 30%
Click D.3 Broadcast Packet Suppression Threshold to view the details. Loop Detection
Disabled, Enabled Default: Disabled
Loop Port Shutdown
Enabled, Disabled Default: Enabled
Threshold of Port Receiving Rates (Mbps)
PORT5 to PORT6: l 0 to 10000 l Default: 10000
Sets whether to enable loop detection, which is used to check whether a loop exists at the port. Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port. Indicates the rate threshold for an external port to receive traffic.
PORT7 to PORT28: l 0 to 1000 l Default: 1000 Port Rates Time Slice (m)
0 to 30 Default: 0
Indicates the traffic rate time window of an external port.
Table 13-99 Basic Attributes (External Port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
External ports are PORT5 to PORT28.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
417
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Enabled/Disabled
Enabled, Disabled
When the parameter value is set to Enabled for a port, the port is enabled and services are provisioned. When the parameter value is set to Disabled for a port, the services on the port are not processed. Therefore, you must enable a port when you configure services on the port.
Default: Disabled
Working Mode
PORT5 to PORT6: l 10G FULL_Duplex LAN, 10G FULL_Duplex WAN l Default: 10G FULL_Duplex LAN PORT7 to PORT28: l 1000M FULL_Duplex, Auto-Negotiation l Default: AutoNegotiation
Maximum Frame Length
1518 to 9600 Default: 1522
Indicates the working modes of an Ethernet port. Autonegotiation can automatically determine the optimal working modes of the connected ports. This mode is easy to maintain and is recommended. NOTE In the configuration process, ensure that working modes of the connected ports are consistent; otherwise, services are unavailable.
Specifies the maximum frame length supported by an Ethernet port. Click D.21 Maximum Frame Length to view the details.
Port Physical Parameters
-
Indicates the physical parameters of a port.
MAC LoopBack
Inloop, Outloop, NonLoopback
TheMAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path.
Default: Non-Loopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
418
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
PHY LoopBack
Inloop, Outloop, NonLoopback
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path.
Default: Non-Loopback
Table 13-100 Flow Control (External Port) Field
Value
Description
Port
-
External ports are PORT5 to PORT28.
Non-Autonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Specifies the flow control mode adopted when an Ethernet port does not work in auto-negotiation mode.
Default: Disable
Click D.23 NonAutonegotiation Flow Control Mode to view the details. Autonegotiation Flow Control Mode
Disabled, Enable Dissymmetric Flow Control, Enable Symmetric Flow Control, Enable Symmetric/ Dissymmetric Flow Control Default: Disable
Specifies the flow control mode adopted when an Ethernet port works in autonegotiation mode. Click D.1 Autonegotiation Flow Control Mode to view the details.
13.10.11 LEM24 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
419
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L EM 24
N/A
1000 BASE-SX-0.5 km (I-850-LC)
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
1000 BASE-LX-10 km (I-1310-LC) 10G BASE-SR-0.3 km (SFP+) 10G BASE-LR-10 km (SFP+)
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 13-101 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 1000 BASE-SX-0.5 km (I-850-LC)
1000 BASE-LX-10 km (I-1310-LC)
Line code format
-
NRZ
NRZ
Optical source type
-
MLM
SLM
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
830 to 860
1270 to 1355
Maximum mean launched power
dBm
-2.5
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
420
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1000 BASE-SX-0.5 km (I-850-LC)
1000 BASE-LX-10 km (I-1310-LC)
Minimum mean launched power
dBm
-9.5
-9.5
Minimum extinction ratio
dB
9
9
Eye pattern mask
-
IEEE802.3z –compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
770 to 860
1260 to 1620
Receiver sensitivity
dBm
-17
-20
Minimum receiver overload
dBm
0
-3
NOTE
The electrical interface specifications comply with IEEE Std 802.3 when receiving 1000 BASE-T services.
Table 13-102 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
Optical source type
-
MLM
SLM
Line code format
-
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
840 to 860
1260 to 1355
Maximum mean launched power
dBm
-1
0.5
Minimum mean launched power
dBm
-7.3
-8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
421
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Minimum extinction ratio
dB
3
3.5
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z–compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
Minimum receiver overload
dBm
-1
0.5
Maximum reflectance
dB
-12
-12
WDM-Side Pluggable Optical Module Table 13-103 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
422
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-104 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
423
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-105 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Line code format
-
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
424
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Minimum mean launched power
dBm
-6
-1
0
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11LEM24
81
83
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
425
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.11 LEX4 LEX4: 4 x 10GE and 2 x OTU2 Ethernet Switch Board
13.11.1 Version Description The available functional version of the LEX4 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1LE X4
Y
Y
Y
N
Y
N
13.11.2 Application The LEX4 board is an optical transponder unit. The LEX4 board converts four channels of 10GE WAN or 10GE LAN services received directly on the client side, or two channels of 10GE services cross-connected from the backplane, into two channels of standard WDM wavelength OTU2 signals. The LEX4 board also performs the reverse process. The LEX4 board supports convergence of multiple flat-rate 10GE services into one channel of 10GE service. The board also supports transparent transmission of two channels of 10GE services. Figure 13-42 shows the application of the LEX4 board in a WDM system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
426
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-42 Application of the TN11LEX4 board in a WDM system LEX4
RX1
OUT1
TX1
IN1
TX1 RX1
2X10GE
IN2
TX4
M U OUT1 X / D M IN2 U X OUT2
2×ODU2
OUT2
M U X / D M U X
2×OTU2
2×OTU2
2×ODU2
2X10GE
10GE LAN 10GE WAN RX4
LEX4
IN1
RX4
L2 10GE
10GE LAN 10GE WAN TX4
L2 10GE
OptiX OSN 8800: N/A OptiX OSN 6800: From/To cross-connect board
13.11.3 Functions and Features The LEX4 board provides electrical cross-connections, OTN interfaces, and the ESC function. Table 13-106 and Table 13-107 list the functions and features of the LEX4 board. NOTE
The 10GE cross-connections are only supported by the OptiX OSN 6800.
Table 13-106 OTN Functions and features of the LEX4 board Function and Feature Basic function
Description l Converts four channels of 10GE WAN or 10GE LAN services received directly on the client side, or two channels of 10GE services crossconnected from the backplane, into two channels of standard WDM wavelength OTU2 signals and performs the reverse process. l Converges multiple flat-rate 10GE services into one channel of 10GE service.
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s
Cross-connect capabilities
OptiX OSN 8800: N/A.
OTN function
l Provides OTU2 interfaces on the WDM side.
10GE WAN: Ethernet service at a rate of 9.95 Gbit/s
OptiX OSN 6800: Supports the cross-connection of two channels of 10GE electrical signals between the LEX4 board and the cross-connect board.
l Supports TCM and PM functions for ODU2. l Supports SM function for OTU2. WDM specification Issue 03 (2013-05-16)
Supports ITU-T G.694.1-compliant DWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
427
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
ESC function
Supported
LPT
l Supports port-based LPT. l Supports service-based LPT.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports monitoring of performance events and alarms associated with FE, GE, 10GE WAN, and 10GE LAN services.
Regeneration board
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2, TN11LSXR
ALS function
Supports the ALS function on the client side.
IEEE 1588v2
Supported in the WDM side.
Physical clock
Supported in the Client side and WDM side.
PRBS test function
Supports the PRBS function on the WDM side
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Loopback
10GE optical interface
l Supports intra-board 1+1 protection. MAC
PHY
WDM side optical interface
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
428
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-107 Data features of the LEX4 board Function and Feature
Description
Interface characteristi cs
Port working mode
10GE optical port: 10GE LAN full duplex , 10GE WAN full duplex
MTU
Supports a maximum of 9600 bytes frames.
Multicast
VLAN multicast
Supported
IGMP snooping V2
Supported
Layer 2 switching
Supports IEEE802.1Q, IEEE802.1ad, and IEEE 802.1D. Supports one VB. Supports MAC address learning and aging. Supports STP/RSTP and MSTP. Supports 32k MAC addresses.
Ethernet service
EPL EVPL(VLAN) EVPL(QinQ) EPLAN(IEEE 802.1D) EVPLAN(IEEE 802.1Q) EVPLAN(IEEE 802.1ad) NOTE "EVPL (VLAN)" is displayed as "EPL" on the NMS.
Protection schemes
VLAN SNCP
Supported
DBPS
Supported
ERPS
Supported
LAG
l Supports the IEEE802.3ad-compliant LAG protocol running at IP and trunk ports. l Supports manual and static LAGs. l Supports load-sharing and non-load-sharing LAGs.
Maintenance features
QoS
ETH-OAM
Supports ETH OAM protocols defined by IEEE802.1ag and IEEE802.3ah.
RMON
Supported
Supports committed access rate (CAR) and class of service (CoS). Supports IEEE802.1p. Supports DSCP.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
429
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Flow control
Supports IEEE802.3X-compliant Ethernet flow control protocol and flow control termination.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.1q VLAN
Protocols or standards for service processing (performanc e monitoring)
IEEE 802.3x pause frame
All L2 protocols including xSTP, LACP, EthOAM, DHCP, PPP, etc. MPLS protocols All L3 protocols including ARP, IGMP, OSPF, IGRP etc.
IEEE 802.3ad LACP IEEE 802.1p priority IEEE 802.1q VLAN IEEE 802.1ag OAM IEEE 802.3ah OAM IEEE IGMP STP, RSTP, MSTP R-APS
13.11.4 Working Principle and Signal Flow The LEX4 board consists of client-side optical module, WDM-side optical module, L2 switching module, OTN processing module, 1588v2 module, control and communication module, and a power supply module. Figure 13-43 shows the functional modules and signal flow of the LEX4 board in the OptiX OSN 8800. Figure 13-44 shows the functional modules and signal flow of the LEX4 board in the OptiX OSN 6800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
430
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-43 Functional modules and signal flow of the LEX4 board (OptiX OSN 8800) Client side RX1 RX2
WDM side
RX4 TX1 TX2 TX4
10GE
O/E
E/O
L2 switching module
10GE
OTN processing module
E/O
OUT1 OUT2
O/E
IN1 IN2
WDM-side optical module
Client-side optical module
1588v2 module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
431
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-44 Functional modules and signal flow of the LEX4 board (OptiX OSN 6800) Backplane(service cross-connection)
10GE Client side RX1 RX2
WDM side
10GE
O/E
RX4 TX1 TX2 TX4
L2 switching module
E/O
10GE
OTN processing module
E/O
OUT1 OUT2
O/E
IN1 IN2
WDM-side optical module
Client-side optical module
1588v2 module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The backplane supports cross-connection of only 10GE signals from/to the LEX4 board. In the signal flow of the LEX4 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LEX4 to the WDM side of the LEX4, and the receive direction is defined as the reverse direction. l
Transmit direction The RX1 to RX4 optical interfaces on the client side receive optical signals from client equipment and perform O/E conversion. After O/E conversion, the electrical signals are sent to the L2 switching module. The module performs operations such as convergence. Then, the module outputs a maximum of two channels of 10GE signals to the OTN processing module. The OTN processing module then encapsulates and maps the two channels of 10GE signals into OTN frames, performs FEC for the OTN frames, and then outputs two channels of OTU2 signals compliant with ITU-T G.694.1 through the OUT1 and OUT2 optical ports.
l
Issue 03 (2013-05-16)
Receive direction
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
432
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The WDM-side optical module receives two channels of OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the OTN processing module. The module performs operations such as OTU2 framing, decoding of FEC. Then, the module sends out two channels of 10GE signals to the L2 switching module for service crossconnection. The L2 switching module deconverges the 10GE signals and sends four channels of the signals with corresponding rates to the client-side optical module. The client-side optical module performs E/O conversion of the four channels of electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces. The LEX4 board processes clock signals in two directions. l
Receives clock signals from a service board and sends the clock signals to the clock processing board through the communication module.
l
Receives clock signals from the clock processing module and sends the clock signals to the downstream NE through a service board. NOTE
10GE WAN and 10GE LAN signals are processed differently. Each 10GE WAN signal contains an SDH header, which is stripped off before the signal enters the Layer 2 module.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of the 10GE LAN/10GE WAN signals. – Client-side transmitter: Performs E/O conversion of the 10GE LAN/10GE WAN signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
L2 switching module – Learns, forwards or deletes MAC addresses. – Maps and demaps Ethernet packets.
l
OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs FEC encoding and decoding.
l
1588v2 module The 1588v2 module can send the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
433
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.11.5 Front Panel There are indicators and interfaces on the front panel of the LEX4 board.
Appearance of the Front Panel Figure 13-45 shows the front panel of the LEX4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
434
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-45 Front panel of the LEX4 board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-108 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
435
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-108 Types and functions of the interfaces on the LEX4 board Interface
Type
Function
RX1-RX4
LC
Receive service signals from client equipment.
TX1-TX4
LC
Transmit service signals to client equipment.
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.11.6 Valid Slots One slot houses one TN11LEX4 board. Table 13-109 shows the valid slots for the TN11LEX4 board. Table 13-109 Valid slots for the LEX4 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
13.11.7 Characteristic Code for the LEX4 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
436
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.11.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-110 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-110 Mapping between the physical ports on the LEX4 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
3
IN2/OUT2
4
TX1/RX1
5
TX2/RX2
6
TX3/RX3
7
TX4/RX4
8
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ODU2LP is a logical port of the board. Figure 13-46 shows the application model of the LEX4 board. Table 13-111 describes the meaning of each port. Figure 13-46 Port diagram of the LEX4 board Client side
Service processing module 101(AP1/AP1)-1 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2LP2/ODU2LP2)-1
PORT5 PORT6
VCTRUNK1
PORT7
VCTRUNK3 103(AP3/AP3)-1
PORT8
VCTRUNK4 104(AP4/AP4)-1
102(AP2/AP2)-1
WDM side
VCTRUNK2
L2 switching module
Service processing module
Cross-connect module
3(IN1/OUT1)-1 4(IN2/OUT2)-1
WDM side optical module
Backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
437
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-111 Description of NM port of the LEX4 board Port Name
Description
PORT5 - PORT8
These ports correspond to the client-side optical interfaces: RX1/TX1 - RX4/TX4.
VCTRUNK1 - VCTRUNK4
Internal virtual ports.
AP1 - AP4
Internal convergence ports.
ClientLP1 - ClientLP2
Internal logical ports. The optical paths are numbered 1
ODU2LP1 - ODU2LP2
Internal logical ports.
IN1/OUT1 - IN2/OUT2
Corresponding to the WDM-side optical interfaces.
13.11.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LEX4 board is used to transmit services, the following items must be created on the U2000: l
During creation of the Ethernet services on the U2000, create the cross-connection between the PORT and VCTRUNK ports. After the cross-connections between the PORT and VCTRUNK ports are created, the L2 switching module can perform cross-connections between the PORT and VCTRUNK ports or converge the optical signals received by the client-side optical modules into two channels of 10GE electrical signals. NOTE
l One VCTRUNK port can be connected to multiple PORT ports. l The maximum bandwidth of each VCTRUNK port is 10 Gbit/s.
l
Between the VCTRUNK ports and the AP ports of the cross-connect module are one-toone port connections, which need not be set on the U2000.
l
Create the cross-connection between the AP port of the LEX4 board and the AP port of other boards, as shown in Figure 13-47. NOTE
Only the OptiX OSN 6800 supports this operation.
l
Issue 03 (2013-05-16)
The AP port connects to the ClientLP ports, the ClientLP port is connected to the ODU2LP port, and the ODU2LP port is connected to the IN/OUT port. There is no need for configuration on the U2000.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
438
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-47 Cross-connection diagram of the LEX4 board Client side
WDM side
103(AP3/AP3)-1
Other board 104(AP4/AP4)-1
Client side
WDM side 103(AP3/AP3)-1
LEX4 104(AP4/AP4)-1
Other board
TN11LEM24 / TN11LEX4
13.11.10 Parameters Can Be Set or Queried by NMS This section lists the LEX4 board parameters that can be set or queried by using the NMS.
Parameters for WDM Interfaces Table 13-112 Parameters for WDM Interfaces Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
439
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: l WDM side: On l Client side: Off Automatic Laser Shutdown
Enabled, Disabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
LPT Enabled
Enabled, Disabled Default: Disabled
FEC Working State
Enabled, Disabled Default: Enabled
Issue 03 (2013-05-16)
Determines whether to enable the link pass-through (LPT) function. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
440
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Mode
FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Default: FEC
Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM Default: C
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
441
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameters for Ethernet interfaces Table 13-113 TAG Attributes (Internal Port/External Port) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4. External ports are PORT5 to PORT8.
Tag Aware, Access, Hybrid
TAG
Default: Tag Aware
Indicates the type of packets that can be processed by a port. Tag Aware: The port transparently transmits the packets with VLAN IDs (Tag) and discards packets without VLAN IDs (Untag). If TAG is set to Tag Aware, VLAN priority and Default VLAN ID are invalid. Access: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and discards the packets that already have VLAN IDs (Tag). Hybrid: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and transparently transmits the packets that already have VLAN IDs (Tag). This parameter is valid only for UNI ports. NOTE This parameter is invalid for CAware and S-Aware ports.
Default VLAN ID
1 to 4095 Default: 1
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
442
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
VLAN Priority
0 to 7 Default: 0
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
Entry Detection
Enabled, Disabled Default: Enabled
The Entry Detection parameter determines whether a port detects packets by tag identifier.
Table 13-114 Network Attributes (Internal Port/External Port) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4. External ports are PORT5 to PORT8.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
443
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Port Attributes
UNI, NNI, C-Aware, SAware
A UNI port processes the TAG attributes of the 802.1Q-compliant packets. The port attributes include Tag Aware, Access, and Hybrid.
Default: UNI
An S-Aware port does not process the tag attributes of the 802.1Q-compliant packets. In this case, the port determines that the packets do not carry C-VLAN tags and processes only the packets that have S-VLAN tags. A C-Aware port does not process the tag attributes of the 802.1Q-compliant packets. In this case, the port determines that the packets do not carry S-VLAN tags and processes only the packets that have C-VLAN tags. NNI is a reserved port type and is not supported at present.
Table 13-115 Advanced Attributes (Internal Port) Field
Value
Description
Port
-
OptiX OSN 8800: Internal ports are VCTRUNK1 to VCTRUNK2. OptiX OSN 6800: Internal ports are VCTRUNK1 to VCTRUNK4.
Broadcast Packet Suppression
Enabled, Disabled Default: Disabled
Indicates whether to enable broadcast packet suppression. Click D.6 Enabling Broadcast Packet Suppression to view the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
444
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Broadcast Packet Suppression Threshold
10% to 100%, with a step of 10%
If broadcast packet suppression is enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth.
Default: 30%
Click D.3 Broadcast Packet Suppression Threshold to view the details.
Table 13-116 Advanced Attributes (External Port) Field
Value
Description
Port
-
External ports are PORT5 to PORT8.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Default: Disabled
Click D.6 Enabling Broadcast Packet Suppression to view the details. Broadcast Packet Suppression Threshold
10% to 100%, with a step of 10% Default: 30%
If broadcast packet suppression is enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. Click D.3 Broadcast Packet Suppression Threshold to view the details.
Loop Detection
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Sets whether to enable loop detection, which is used to check whether a loop exists at the port.
445
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Loop Port Shutdown
Enabled, Disabled
Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port.
Default: Enabled
Threshold of Port Receiving Rates (Mbps)
PORT5 to PORT8: l 0 to 10000 l Default: 10000
Port Rates Time Slice (m)
0 to 30 Default: 0
Indicates the rate threshold for an external port to receive traffic. Indicates the traffic rate time window of an external port.
Table 13-117 Basic Attributes (External Port) Field
Value
Description
Port
-
External ports are PORT5 to PORT8.
Enabled/Disabled
Enabled, Disabled
When the parameter value is set to Enabled for a port, the port is enabled and services are provisioned. When the parameter value is set to Disabled for a port, the services on the port are not processed. Therefore, you must enable a port when you configure services on the port.
Default: Disabled
Click D.6 Enabling Broadcast Packet Suppression to view the details. Working Mode
PORT5 to PORT8: l 10G FULL_Duplex LAN, 10G FULL_Duplex WAN l Default: 10G FULL_Duplex LAN
Indicates the working modes of an Ethernet port. Autonegotiation can automatically determine the optimal working modes of the connected ports. This mode is easy to maintain and is recommended. NOTE In the configuration process, ensure that working modes of the connected ports are consistent; otherwise, services are unavailable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
446
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Maximum Frame Length
1518 to 9600
Specifies the maximum frame length supported by an Ethernet port.
Default: 1522
Click D.21 Maximum Frame Length to view the details. Port Physical Parameters
-
Indicates the physical parameters of a port.
MAC LoopBack
Inloop, Outloop, NonLoopback
TheMAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path.
Default: Non-Loopback
PHY LoopBack
Inloop, Outloop, NonLoopback Default: Non-Loopback
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path.
Table 13-118 Flow Control (External Port) Field
Value
Description
Port
-
External ports are PORT5 to PORT8.
Non-Autonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Specifies the flow control mode adopted when an Ethernet port does not work in auto-negotiation mode.
Default: Disable
Click D.23 NonAutonegotiation Flow Control Mode to view the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
447
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Autonegotiation Flow Control Mode
Disabled, Enable Dissymmetric Flow Control, Enable Symmetric Flow Control, Enable Symmetric/ Dissymmetric Flow Control
Specifies the flow control mode adopted when an Ethernet port works in autonegotiation mode.
Default: Disable
Click D.1 Autonegotiation Flow Control Mode to view the details.
13.11.11 LEX4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L EX 4
N/A
10G BASE-SR-0.3 km (SFP+)
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
10G BASE-LR-10 km (SFP+)
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
448
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Client-Side Pluggable Optical Module Table 13-119 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
Optical source type
-
MLM
SLM
Line code format
-
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
840 to 860
1260 to 1355
Maximum mean launched power
dBm
-1
0.5
Minimum mean launched power
dBm
-7.3
-8.2
Minimum extinction ratio
dB
3
3.5
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z–compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
Minimum receiver overload
dBm
-1
0.5
Maximum reflectance
dB
-12
-12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
449
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Pluggable Optical Module Table 13-120 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
450
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-121 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Value
Optical Module Type
Line code format
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP -
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-122 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
451
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
452
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.7 kg (1.5 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11LEX4
64
67
13.12 LOA LOA: 8 x Any-rate MUX OTU2 wavelength conversion board.
13.12.1 Version Description The available functional version of the LOA board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LOA
Y
Y
Y
Y
Y
Y
13.12.2 Application Overview The LOA board converges a maximum of 8 x Any service signals at a rate ranging from 125 Mbit/s to 4.25 Gbit/sor 1 x FC800/FC1200/FICON10G/10GE LAN/FICON8G service signals into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITU-T G.694.1. The LOA board also performs the reverse process. Table 13-123 provides the application scenarios for the LOA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
453
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-123 Application scenarios for the LOA board Applica tion Scenari o
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capac ity (WD M Side)
Port Working Mode
Remarks
Scenario 1
8 x FE/FDDI/GE/ STM-1/STM-4/ OC-3/OC-12/FC100/ FICON/DVB-ASI/ ESCON/SDI
Anya>ODU0>ODU1>ODU2>OTU2 or Any->ODU0>ODU2>OTU2
1x OTU2
ODU0 nonconvergence mode (Any>ODU0[>ODU1]>ODU2>OTU2)
-
Scenario 2
4 x HD-SDI/HDSDIRBR/STM–16/ OC-48/FC200/ FICON Express/ OTU1
OTU1/Anya>ODU1>ODU2>OTU2
ODU1 nonconvergence mode (OTU1/ Any->ODU1>ODU2>OTU2)
-
Scenario 3
4 x OTU1
OTU1>ODU1>ODU0>ODU1>ODU2>OTU2 or OTU1>ODU1>ODU0>ODU2>OTU2
ODU1_ODU0 mode (OTU1>ODU1>ODU0[>ODU1]>ODU2>OTU2)
-
Scenario 4
l 2 x 3G-SDI/3GSDIRBR/FC400/ FICON4G
Anya>ODUflex>ODU2>OTU2
ODUflex nonconvergence mode (Any>ODUflex>ODU2>OTU2)
l Any two of the RX1/TX1 to RX8/TX8 ports receive and transmit 3G-SDI/FC400/ FICON4G services.
ODU2 nonconvergence mode (Any>ODU2>OTU2)
Only the RX1/TX1 port receives and transmits FC800/ FICON8G/FC1200/ FICON10G/10GE LANservices.
l 1 x FC800/ FICON8G
Scenario 5
1 x FC800/ FICON8G/FC1200/ FICON10G/10GE LAN
Issue 03 (2013-05-16)
Anya>ODU2>OTU2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
l Only the RX1/TX1 port receives and transmits FC800/FICON8G services
454
OptiX OSN 8800/6800/3800 Hardware Description
Applica tion Scenari o
Maximum Input Capacity (Client Side)
13 Optical Transponder Unit
Mapping Path
Maxi mum Outp ut Capac ity (WD M Side)
Port Working Mode
Remarks
a: "Any" in the table indicates the client-side service supported in the corresponding application scenario. Two service mapping paths are supported in scenarios 1 and 3. The service mapping path is ODU0->ODU2 mapping path when the ODU Timeslot Configuration Mode parameter is set to Assign random for the IN/OUT port while it is ODU0->ODU1->ODU2 when the parameter is set to Assign consecutive for the IN/OUT port. In application scenario 4, the board supports only the Any->ODUflex->ODU2->OTU2 service path and ODU Timeslot Configuration Mode must be set to Assign random for the IN/OUT port on the board. When the LOA board receives an FC800/FICON8G service from client equipment, the board cannot receive other types of services, because the board does not support hybrid transmission of FC800/FICON8G services and other types of services. In all the preceding scenarios, the LOA board supports hybrid transmission of any services except FC800/ FICON8G services. The LOA board provides a maximum of 10 Gbit/s total bandwidth.
13.12.3 Functions and Features The LOA board supports functions and features such as wavelength tunable, OTN functions, and ESC. For detailed functions and features, refer to Table 13-124. Table 13-124 Functions and features of the LOA board Function and Feature
Description
Basic function
LOA converts signals as follows: l 8 x (125 Mbit/s to 1.25 Gbit/s signals) <-> 1 x OTU2 l 4 x (1.49 Gbit/s to 2.67 Gbit/s signals)<-> 1 x OTU2 l 4 x OTU1 <-> 1 x OTU2 l 2 x 3G-SDI/3G-SDIRBR/FC400/FICON4G <-> 1 x OTU2 l 1 x FC800/FC1200/FICON10G/10GE LAN/FICON8G <-> 1 x OTU2 Supports hybrid transmission of signals at a rate of 4.25 Gibt/s or lower, but does not support hybrid transmission of FC800/FICON8G signals. The total rate of signals received at the client side cannot exceed 10 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
455
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FC400: SAN service at a rate of 4.25 Gbit/s FC800: SAN service at a rate of 8.5 Gbit/s FC1200: SAN service at a rate of 10.51 Gbit/s FICON4G: SAN service at a rate of 4.25 Gbit/s FICON8G: SAN service at a rate of 8.5 Gbit/s FICON10G: SAN service at a rate of 10.51 Gbit/s ESCON: SAN service at a rate of 200 Mbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s FDDI: SAN service at a rate of 125 Mbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s HD-SDIRBR: Bit-serial digital interface for high-definition television systems at a rate of 1.49/1.001 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s SDI: Serial digital interface at a rate of 270 Mbit/s DVB-ASI: Video service at a rate of 270 Mbit/s 3G-SDI: Video service at a rate of 2.97 Gbit/s 3G-SDIRBR: Video service at a rate of 2.97/1.001 Gbit/s NOTE The LOA board supports both GE electrical signal and GE optical signal. The LOA board supports access of SDI, HD-SDI, HD-SDIRBR, 3G-SDI, 3G-SDIRBR, and DVB-ASI electrical signals. When the board is used to accept these electrical signals, a digital video O/E converter must be used for O/E or E/O conversion and the optical module of the converter must agree with the board optical module specifications. The digital video O/E converter is a third-party device. Customers can purchase a digital video O/E converter by themselves. The FICON4G service and the FC400 service are processed identically. For the FICON4G service, you can configure it as the FC400 service on the U2000. The FICON8G service and the FC800 service are processed identically. For the FICON8G service, you can configure it as the FC800 service on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
456
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
OTN function
l Provides the OTU2 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM function for ODU0. l Supports PM and TCM functions for ODU1. l Supports PM and TCM functions for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU1. l Supports PM and TCM non-intrusive monitoring for ODU2. l Supports PM functions for ODUflex. l Supports PM non-intrusive monitoring for ODUflex. l Supports SM functions for OTU1. l Supports SM functions for OTU2.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for 80 wavelengths tunable in the C band with 50 GHz channel spacing.
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is GE/FE/10GE LAN.
FEC encoding
l Supports forward error correction (FEC) on the client side that complies with ITU-T G.709, only when the client side service type is OTU1.
NOTE The PRBS function on the client side is only supported when the client-side service type is STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, or OTU1.
l Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. l Supports advanced forward error correction (AFEC-2) on the WDM side that complies with ITU-T G.975.1. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
457
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Regeneratio n board
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is GE or FE.
Optical-layer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
l Supports intra-board 1+1 protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-T) and GE(TTT-GMP) modes. Supports encapsulation of 10GE LAN services in Bit Transparent Mapping (11.1G).
Ethernet port working mode
l FE: 100M Full-Duplex
Loopback
Channel Loopback
l Supports client 1+1 protection.
l GE(TTT-GMP): 1000M Full-Duplex, Auto-Negotiation
WDM side
Inloop Outloop
Supported NOTE For FC800/FICON8G services, Inloop is not supported only in ODUflex non-convergence mode (Any->ODUflex->ODU2->OTU2).
Inloop
Not supported
Outloop
Supported NOTE It is supported only in FC800/FC1200/ FICON10G/10GE LAN/FICON8G services in ODU2 non-convergence mode (Any->ODU2>OTU2).
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
NOTE It is not supported in FC800/FC1200/FICON10G/ 10GE LAN/FICON8G services.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
458
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FCPI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
459
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Protocols or standards for service processing (performanc e monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.12.4 Characteristic Code for the LOA The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.12.5 Physical Ports Displayed on NMS This section describes the physical ports displayed on the NMS. Table 13-125 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-125 Mapping between the physical ports on the LOA board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
460
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Physical Port
Port Number on the NMS
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.12.6 LOA Scenario 1: ODU0 non-convergence mode (Any>ODU0[->ODU1]->ODU2->OTU2) 13.12.6.1 Application The LOA board converges a maximum of eight channels of service at a rate ranging from 125 Mbit/s to 1.25 Gbit/s into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITU-T G.694.1. The LOA board also performs the reverse process. Figure 13-48 shows the details. Figure 13-48 Application of the LOA board in ODU0 non-convergence mode (Any->ODU0[>ODU1]->ODU2->OTU2) 1xOTU2 LOA
LOA
8×ODU0
4×ODU1
8×ODU0
8×ODU0
8×ODU0
8×ODU0
OUT
8×ODU0
IN
RX1 TX1
IN
8×ODU0
1×OTU2
1×ODU2
4×ODU1
8×ODU0
RX8
OUT
M U X / D M U X
1×OTU2
RX1
M U X / D M U X
1×ODU2
TX1
FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBASI/ESCON/SDI TX8
1xOTU2
FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBRX8 ASI/ESCON/SDI TX8
NOTE
In the figure, the ODU1 procedure is optional in the service mapping path, When ODU Timeslot Configuration Mode is set to Assign random, the service mapping path is Any->ODU0->ODU2->OTU2. When the parameter is set to Assign consecutive, the service mapping path is Any->ODU0->ODU1>ODU2->OTU2.
13.12.6.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. When the LOA board works in ODU0 non-convergence mode (Any->ODU0[->ODU1]>ODU2->OTU2), two port models are available. The mapping paths for the two port models Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
461
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
vary according to the ODU timeslot configuration mode. Figure 13-49 shows the port diagram when ODU Timeslot Configuration Mode is Assign random. Figure 13-50 shows the port diagram when ODU Timeslot Configuration Mode is Assign consecutive. Figure 13-49 Port diagram 1 of the LOA board in the ODU0 non-convergence mode (Any->ODU0->ODU2->OTU2) Client Side
WDM Side
201(ClientLP1/ClientLP1)-1/ 201(ClientLP1/ClientLP1)-2 to 208(ClientLP8/ClientLP8)-1/ 208(ClientLP8/ClientLP8)-2 201(ClientLP1/ClientLP1)-1
3(RX1/TX1)-1
IN/OUT-OCH:1-ODU2:1-ODU0:(1 to 8) ODU0:1
201(ClientLP1/ClientLP1)-2 4(RX2/TX2)-1
. . .
202(ClientLP2/ClientLP2)-1
ODU0:2
202(ClientLP2/ClientLP2)-2
. . .
. . . 208(ClientLP8/ClientLP8)-1
10(RX8/TX8)-1
ODU2:1
OCH:1
IN/OUT
ODU0:8
208(ClientLP8/ClientLP8)-2
Figure 13-50 Port diagram 2 of the LOA board in the ODU0 non-convergence mode (Any->ODU0->ODU1>ODU2->OTU2) Client Side
WDM Side
201(ClientLP1/ClientLP1)-1/ 201(ClientLP1/ClientLP1)-2 to 208(ClientLP8/ClientLP8)-1/ 208(ClientLP8/ClientLP8)-2
3(RX1/TX1)-1
201(ClientLP1/ ClientLP1)-1 201(ClientLP1/ ClientLP1)-2
4(RX2/TX2)-1
202(ClientLP2/ ClientLP2)-1 202(ClientLP2/ ClientLP2)-2
IN/OUT-OCH:1-ODU2:1-ODU1:(1 to 4)-ODU0:(1 to 2) ODU0:1 ODU1:1 ODU0:2
ODU2:1
9(RX7/TX7)-1
10(RX8/TX8)-1
207(ClientLP7/ ClientLP7)-1
ODU1:4 ODU0:2
208(ClientLP8/ ClientLP8)-2
Cross-connect module
Issue 03 (2013-05-16)
IN/OUT
ODU0:1
207(ClientLP7/ ClientLP7)-2 208(ClientLP8/ ClientLP8)-1
OCH:1
Cross-connection that must be configured on the NMS.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
462
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit Service processing module
NOTE
When the LOA board connects to a TOM board that uses 20x(ClientLPx/ClientLPx)-2, a client-side optical port on the LOA board must be cross-connected to 20x(ClientLPx/ClientLPx)-2 of the LOA board. In other cases, configure cross-connections from 20x(ClientLPx/ClientLPx)-1 port of the TOM board to the clientside ports on the LOA board.
Table 13-126 Description of NM port of the LOA board Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
201(ClientLP1/ClientLP1)-1/2 to 208 (ClientLP8/ClientLP8)-1/2
Internal logical port. The paths are numbered 1 to 2.
IN/OUT–OCH:1–ODU2:1–ODU0:(1–8)
Indicates mapping path when the board works in ODU0 non-convergence mode (Any->ODU0>ODU2->OTU2)
IN/OUT–OCH:1–ODU2:1–ODU1:(1– 4)–ODU0:(1–2)
Indicates mapping path when the board works in ODU0 non-convergence mode (Any->ODU0>ODU1->ODU2->OTU2)
13.12.6.3 Configuring Cross-Connections l
On the U2000, set the Port Working Mode to ODU0 non-convergence mode (Any>ODU0[->ODU1]->ODU2->OTU2).
l
For the IN/OUT port, set ODU Timeslot Configuration Mode to Assign random or Assign consecutive. When the parameter is set to Assign random, the board supports the Any->ODU0->ODU2->OTU2 service mapping path, as shown in Figure 13-51. When the parameter is set to Assign consecutive, the board supports the Any->ODU0->ODU1>ODU2->OTU2 service mapping path, as shown in Figure 13-52.
l
Specify required services types for the board.
l
On the U2000, create electrical cross-connections between the internal RX/TX and in Figure 13-51, Figure 13-52. The electrical crossClientLP ports. For details, see connections between the RX/TX and ClientLP ports are fixed. The RX1/TX1 port is crossconnected to the ClientLP1 port, the RX2/TX2 port is cross-connected to the ClientLP2 port, and so on.
l
On the U2000, create electrical cross-connections between the internal ClientLP and ODU0 in Figure 13-51, Figure 13-52. The electrical cross-connections ports. For details, see between the ClientLP and ODU0 ports are random but channel 1 on each ClientLP port is used in the cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
463
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
If all client-side ports on the LOA board always work in ODU0 non-convergence mode with mapping path Any->ODU0->ODU2->OTU2, and GE(TTT-GMP) services are supported on the client side of the LOA board accordingly. users can apply the 8*GE->8*ODU0 service package to the board on the NMS. This simultaneously sets the Port Working Mode to ODU0 non-convergence mode (Any->ODU0[->ODU1]>ODU2->OTU2) and the Service Type to GE(TTT-GMP) for the 8 ports. When the LOA board connects to a TOM board that uses optical channel 2 on the ClientLP port, a clientside optical port on the LOA board must be cross-connected to optical channel 2 on the ClientLP port of the LOA board. In other cases, configure cross-connections from optical channel 1 on the ClientLP port of the TOM board to the client-side ports on the LOA board.
Figure 13-51 Cross-connections of the LOA board (Any->ODU0->ODU2->OTU2)
Client side
WDM side 1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
1 1 1 1 1 1 1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
IN/OUT–OCH:1–ODU2:1–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU0:2 2
IN/OUT–OCH:1–ODU2:1–ODU0:3 IN/OUT–OCH:1–ODU2:1–ODU0:4 IN/OUT–OCH:1–ODU2:1–ODU0:5 IN/OUT–OCH:1–ODU2:1–ODU0:6 IN/OUT–OCH:1–ODU2:1–ODU0:7 IN/OUT–OCH:1–ODU2:1–ODU0:8
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
464
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-52 Cross-connections of the LOA board (Any->ODU0->ODU1->ODU2->OTU2) WDM side
Client side 1 3(RX1/TX1)-1 1
4(RX2/TX2)-1
1
5(RX3/TX3)-1
1
6(RX4/TX4)-1
1
7(RX5/TX5)-1
1
8(RX6/TX6)-1
1
9(RX7/TX7)-1
1
10(RX8/TX8)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
IN/OUT–OCH:1–ODU2:1–ODU1:1–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:1–ODU0:2 2
IN/OUT–OCH:1–ODU2:1–ODU1:2–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:2–ODU0:2 IN/OUT–OCH:1–ODU2:1–ODU1:3–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:3–ODU0:2 IN/OUT–OCH:1–ODU2:1–ODU1:4–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:4–ODU0:2
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS
13.12.7 LOA Scenario 2: ODU1 non-convergence mode (OTU1/Any>ODU1->ODU2->OTU2) 13.12.7.1 Application The LOA board converges a maximum of four channels of service signals at a rate ranging from 1.49 Gbit/s to 2.67 Gbit/s into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITU-T G.694.1. The LOA board also performs the reverse process. Figure 13-53 shows the details. Figure 13-53 Application of the LOA board in ODU1 non-convergence mode (OTU1/Any>ODU1->ODU2->OTU2) 1xOTU2 LOA
LOA
4×ODU1
8×ODU0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
8×ODU0
8×ODU0
RX1 TX1
8×ODU0
1×OTU2
Issue 03 (2013-05-16)
1×ODU2
RX8
4×ODU1
TX8
M U X IN / OUT D M U X
1×ODU2
RX1
M U OUT X / IN D M U X
1×OTU2
TX1 HD-SDI/HD-SDIRBR/ STM–16/OC-48/ 4 FC200/FICON Express/OTU1
1xOTU2
4 RX8
HD-SDI/HD-SDIRBR/ STM–16/OC-48/ FC200/FICON Express/OTU1
TX8
465
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
In this scenario, any four of the RX1/TX1–RX8/TX8 ports can receive and transmit services.
13.12.7.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. Figure 13-54 shows the port diagrams for the LOA. Figure 13-54 Port diagram of the LOA board (ODU1 non-convergence mode (OTU1/Any->ODU1->ODU2>OTU2)) WDM Side
Client Side 201(ClientLP1/ClientLP1)-1~ 208(ClientLP8/ClientLP8)-1 3(RX1/TX1)-1 4(RX2/TX2)-1
IN/OUT-OCH:1-ODU2:1-ODU1:(1~4)
201(ClientLP1/ClientLP1)-1
ODU1:1
202(ClientLP2/ClientLP2)-1
ODU1:2
ODU2:1
9(RX7/TX7)-1 10(RX8/TX8)-1
207(ClientLP7/ClientLP7)-1
ODU1:3
208(ClientLP8/ClientLP8)-1
ODU1:4
Cross-connect module
OCH:1
IN/OUT
Service processing module
Cross-connection that must be configured on the NMS.
NOTE
In this scenario, any four of the RX1/TX1–RX8/TX8 ports can receive and transmit services.
Table 13-127 Description of the LOA board's ports on the NMS
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
201(ClientLP1/ClientLP1)-1 to 208 (ClientLP8/ClientLP8)-1
Internal logical port. The paths are numbered 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
466
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Port Name
Description
IN/OUT–OCH:1–ODU2:1–ODU1: (1–4)
Indicates the mapping path when the board works in ODU1 non-convergence mode (OTU1/Any>ODU1->ODU2->OTU2).
13.12.7.3 Configuring Cross-Connections l
On the U2000, set the Port Working Mode to ODU1 non-convergence mode (OTU1/ Any->ODU1->ODU2->OTU2).
l
Specify required services types for the board.
l
On the U2000 create electrical cross-connections between the internal ClientLP and ODU1 in Figure 13-55. The cross-connections between the ClientLP ports. For details, see and ODU1 ports are random and at most four cross-connections between them can be used.
Figure 13-55 Cross-connections of the LOA board (OTU1/Any->ODU1->ODU2->OTU2)
WDM side
Client side
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)-1
202(ClientLP2/ClientLP2)-1
5(RX3/TX3)-1
203(ClientLP3/ClientLP3)-1
6(RX4/TX4)-1
204(ClientLP4/ClientLP4)-1
7(RX5/TX5)-1
205(ClientLP5/ClientLP5)-1
8(RX6/TX6)-1
206(ClientLP6/ClientLP6)-1
9(RX7/TX7)-1
207(ClientLP7/ClientLP7)-1
10(RX8/TX8)-1
208(ClientLP8/ClientLP8)-1
IN/OUT–OCH:1–ODU2:1–ODU1:1
1 IN/OUT–OCH:1–ODU2:1–ODU1:2
IN/OUT–OCH:1–ODU2:1–ODU1:3
Cross-connect module
IN/OUT–OCH:1–ODU2:1–ODU1:4
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The internal cross-connection of the board, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
467
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.12.8 LOA Scenario 3: ODU1_ODU0 mode (OTU1->ODU1>ODU0[->ODU1]->ODU2->OTU2) 13.12.8.1 Application The LOA board converges a maximum of 4 x OTU1 service signals into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITUT G.694.1. The LOA board also performs the reverse process. Figure 13-56 shows the details. Figure 13-56 Application of the LOA board in ODU1_ODU0 mode (OTU1->ODU1->ODU0 [->ODU1]->ODU2->OTU2) 1xOTU2 LOA
LOA
4×ODU1
8×ODU0
4×ODU1
8×ODU0
8×ODU0
8×ODU0
8×ODU0
8×ODU0
8×ODU0
8×ODU0
IN
RX1 TX1
8×ODU0
1×OTU2
1×ODU2
4×ODU1
RX8
8×ODU0
TX8
4×ODU1
4
OUT
M U X IN / OUT D M U X
1×ODU2
RX1
M U X / D M U X
1×OTU2
TX1
OTU1
1xOTU2
4 OTU1 RX8 TX8
NOTE
In this scenario, any four of the RX1/TX1–RX8/TX8 ports can receive and transmit services.
13.12.8.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. When the LOA board works in ODU1_ODU0 mode (OTU1->ODU1->ODU0[->ODU1]>ODU2->OTU2), two port models are available. The mapping paths for the two port models vary according to the ODU timeslot configuration mode. Figure 13-57 shows the port diagram when ODU Timeslot Configuration Mode is Assign random. Figure 13-58 shows the port diagram when ODU Timeslot Configuration Mode is Assign consecutive.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
468
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-57 Port diagram of the LOA board in the ODU1_ODU0 mode (OTU1->ODU1>ODU0->ODU2->OTU2) Client side
3(RX1/TX1)-1
4(RX2/TX2)-1
10(RX8/TX8)-1
WDM side
201(ClientLP1/ClientLP1)~ IN/OUT-OCH:1-ODU2:1-ODU0(1~8) 208(ClientLP8/ClientLP8) 201(ClientLP1/ ClientLP1)-1 ODU0:1 201(ClientLP1/ ClientLP1)-2
ODU0:2
202(ClientLP2/ ClientLP2)-1
ODU0:3
202(ClientLP2/ ClientLP2)-2
ODU0:4
ODU2:1
208(ClientLP8 /ClientLP8)-1
ODU0:7
208(ClientLP8 /ClientLP8)-2
ODU0:8
IN/OUT
OCH:1
Figure 13-58 Port diagram of the LOA board in the ODU1_ODU0 mode (OTU1->ODU1>ODU0->ODU1->ODU2->OTU2) Client side
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)~ IN/OUT-OCH:1-ODU2:1-ODU1(1~4)-ODU0(1~2) 208(ClientLP8/ClientLP8) 201(ClientLP1/ ClientLP1)-1 ODU0:1 ODU1:1 201(ClientLP1/ ClientLP1)-2 ODU0:2 202(ClientLP2/ ClientLP2)-1
4(RX2/TX2)-1
10(RX8/TX8)-1
202(ClientLP2/ ClientLP2)-2
ODU0:1 ODU1:2
OCH:1
IN/OUT
ODU0:2
208(ClientLP8 /ClientLP8)-1
ODU0:1
208(ClientLP8 /ClientLP8)-2
ODU0:2
Cross-connect module
ODU2:1
WDM side
ODU1:4
Cross-connection that must be configured on the NMS.
Service processing module
NOTE
In this mode, any four of the RX1/TX1–RX8/TX8 ports can receive services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
469
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-128 Description of NM port of the LOA board Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
201(ClientLP1/ClientLP1)-1/2 to 208 (ClientLP8/ClientLP8)-1/2
Internal logical port. The paths are numbered 1 to 2.
IN/OUT–OCH:1–ODU2:1–ODU0:(1–8)
Indicates mapping path when the board works in ODU1_ODU0 mode (OTU1->ODU1->ODU0>ODU2->OTU2).
IN/OUT–OCH:1–ODU2:1–ODU1:(1– 4)–ODU0:(1–2)
Indicates mapping path when the board works in ODU1_ODU0 mode (OTU1->ODU1->ODU0>ODU1->ODU2->OTU2).
13.12.8.3 Configuring Cross-Connections l
On the U2000, set Port Working Mode to ODU1_ODU0 mode (OTU1->ODU1->ODU0 [->ODU1]->ODU2->OTU2).
l
For the IN/OUT port, set ODU Timeslot Configuration Mode to Assign random or Assign consecutive. When the parameter is set to Assign random, the service mapping path is OTU1->ODU1->ODU0->ODU2->OTU2. For details, see Figure 13-59. When the parameter is set to Assign consecutive, the service mapping path is OTU1->ODU1>ODU0->ODU1->ODU2->OTU2. For details, see Figure 13-60.
l
Specify required services types for the board.
l
On the U2000 create electrical cross-connections between the internal ClientLP and ODU0 in Figure 13-59, Figure 13-60. The cross-connections between ports. For details, see the ClientLP and ODU0 ports are random and at most 8 cross-connections between the ports can be used. NOTE
A maximum of four cross-connections between the RX/TX and ClientLP ports can be used. The 3(RX1/TX1)-1 port are cross-connected to the 201(ClientLP1/ClientLP1/)-1 and 201(ClientLP1/ClientLP1/)-2 ports, the 4 (RX2/TX2)-1 port are cross-connected to the 202(ClientLP2/ClientLP2/)-1 and 202(ClientLP2/ClientLP2/)-2 ports, and so on.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
470
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-59 Cross-connections of the LOA board (OTU1->ODU1->ODU0->ODU2->OTU2)
WDM side
Client side
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
IN/OUT–OCH:1–ODU2:1–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU0:2 1
IN/OUT–OCH:1–ODU2:1–ODU0:3 IN/OUT–OCH:1–ODU2:1–ODU0:4 IN/OUT–OCH:1–ODU2:1–ODU0:5 IN/OUT–OCH:1–ODU2:1–ODU0:6 IN/OUT–OCH:1–ODU2:1–ODU0:7 IN/OUT–OCH:1–ODU2:1–ODU0:8
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The internal cross-connection of the board, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
471
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-60 Cross-connections of the LOA board (OTU1->ODU1->ODU0->ODU1->ODU2->OTU2) WDM side
Client side
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
Cross-connect module
IN/OUT–OCH:1–ODU2:1–ODU1:1–ODU0:1 1
IN/OUT–OCH:1–ODU2:1–ODU1:1–ODU0:2 IN/OUT–OCH:1–ODU2:1–ODU1:2–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:2–ODU0:2 IN/OUT–OCH:1–ODU2:1–ODU1:3–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:3–ODU0:2 IN/OUT–OCH:1–ODU2:1–ODU1:4–ODU0:1 IN/OUT–OCH:1–ODU2:1–ODU1:4–ODU0:2
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The internal cross-connection of the board, which does not need to be configured on the NMS
13.12.9 LOA Scenario 4: ODUflex non-convergence mode (Any>ODUflex->ODU2->OTU2) 13.12.9.1 Application The LOA board converges a maximum of 2 x 3G-SDI/3G-SDIRBR, 2 x FC400/FICON4G, or 1 x FC800/FICON8G service signals into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITU-T G.694.1. The LOA board also performs the reverse process. Figure 13-61 shows the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
472
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-61 Application of the LOA board in ODUflex non-convergence mode (Any>ODUflex->ODU2->OTU2) 1xOTU2
1xOTU2
LOA
LOA
2×ODUflex
1×ODU2
8×ODU0
8×ODU0
1 3G-SDI/3G-SDIRBR/ FC400/ FICON4/FC800/ FICON8G
8×ODU0
2
M U X / D M U X
8×ODU0
1×OTU2
1×ODU2
2×ODUflex
3G-SDI/3G-SDIRBR/ FC400/ FICON4/FC800/ FICON8G
M U X / D M U X
1×OTU2
1
2
NOTE
In this scenario, any two of the RX1/TX1 to RX8/TX8 ports receive and transmit 3G-SDI/3G-SDIRBRI/ FC400/FICON4G services, and only the RX1/TX1 port receives and transmits FC800/FICON8G services.
13.12.9.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. Figure 13-62 shows the port diagrams for the LOA. Figure 13-62 Port diagram of the LOA board in the ODUflex non-convergence mode (Any>ODUflex->ODU2->OTU2) Client Side
3(RX1/TX1)-1
201(ClientLP1/ClientLP1) to 208(ClientLP2/ClientLP8) 201(ClientLP1/ ClientLP1)-1
WDM Side IN/OUT-OCH:1-ODU2:1-ODUflex:(1 to 2)
ODUflex:1 ODU2:1
10(RX8/TX8)-1
208(ClientLP8/ ClientLP8)-1
Cross-connect module
OCH:1
IN/OUT
ODUflex:2
Cross-connection that must be configured on the NMS.
Service processing module
NOTE
l Any two of the RX1/TX1 to RX8/TX8 ports can receive 3G-SDI/FC400/FICON4G services as shown in the figure (the RX1/TX1 ports are used as an example). l Only the RX1/TX1 port can receive FC800/FICON8G services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
473
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-129 Description of NM port of the LOA board Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
201(ClientLP1/ClientLP1)-1 to 208 (ClientLP8/ClientLP8)-1
Internal logical port. The paths is numbered 1.
IN/OUT–OCH:1–ODU2:1–ODUflex:(1– 2)
Indicates the mapping path when the board works in ODUflex non-convergence mode (Any->ODUflex->ODU2->OTU2).
13.12.9.3 Configuring Cross-Connections l
On the U2000, set the Port Working Mode to ODUflex non-convergence mode (Any>ODUflex->ODU2->OTU2). NOTE
The board supports only the Any->ODUflex->ODU2->OTU2 service path and ODU Timeslot Configuration Mode must be set to Assign random for the IN/OUT port on the board.
l
Specify required services types for the board.
l
U2000 Create electrical cross-connections between the internal ClientLP and ODUflex ports. For details, see in Figure 13-63. The cross-connections between the ClientLP and ODUflex ports are random. NOTE
When configuring cross-connections, specify the number of ODUflex timeslots. Table 13-130 provides the number of ODUflex timeslots required by a client service. The cross-connections between the RX/TX and ClientLP ports are fixed. For example, the 3(RX1/TX1)-1 port is cross-connected to the 201(ClientLP1/ClientLP1/)-1, the 4(RX2/TX2)-1 port is cross-connected to the 202 (ClientLP2/ClientLP)-1 port, and son on. For the FC400/FICON4G service, only two cross-connections are allowed between the RX/TX and ClientLP ports. For the FC800/FICON8G service, only one cross-connection is allowed between the RX/TX and ClientLP ports.
Table 13-130 ODUflex timeslot
Issue 03 (2013-05-16)
Client service type
ODUflex Timeslot
3G-SDI
3
3G-SDIRBR
3
FC400/FICON4G
4
FC800/FICON8G
7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
474
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-63 Cross-connections of the LOA board (Any->ODUflex->ODU2->OTU2)
WDM side
Client side
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)-1
202(ClientLP2/ClientLP2)-1
5(RX3/TX3)-1
203(ClientLP3/ClientLP3)-1
6(RX4/TX4)-1
204(ClientLP4/ClientLP4)-1
7(RX5/TX5)-1
205(ClientLP5/ClientLP5)-1
8(RX6/TX6)-1
206(ClientLP6/ClientLP6)-1
9(RX7/TX7)-1
207(ClientLP7/ClientLP7)-1
10(RX8/TX8)-1
208(ClientLP8/ClientLP8)-1
Cross-connect module
1
IN/OUT-OCH:1-ODU2:1-ODUflex:1
IN/OUT-OCH:1-ODU2:1-ODUflex:2
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The internal cross-connection of the board, which does not need to be configured on the NMS
13.12.10 LOA Scenario 5: ODU2 non-convergence mode (Any>ODU2->OTU2) 13.12.10.1 Application The LOA board converges 1 x FC800/FICON8G service signals into 1 x OTU2 optical signals, and then converts the signals into standard DWDM wavelengths that comply with ITU-T G. 694.1. The LOA board also performs the reverse process. Figure 13-64 shows the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
475
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-64 Application of the LOA board in ODU2 non-convergence mode (Any->ODU2>OTU2) 1xOTU2
1xOTU2
LOA
FC800/ FC1200/FICON 8G/FICON10G/ 10GE LAN
1×ODU2
1×OTU2
8×ODU0
M U X / D M U X
8×ODU0
1×OTU2
1×ODU2
FC800/ FC1200/FICON 8G/FICON10G/ 10GE LAN
LOA M U X / D M U X
NOTE
In this scenario, only the RX1/TX1 can receive and transmit FC800/FC1200/FICON8G/FICON10G/10GE LAN services. When the LOA board receives an FC800/FICON8G service from client equipment, the board cannot receive other types of services, because the board does not support hybrid transmission of FC800/FICON8G services and other types of services.
13.12.10.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. Figure 13-65 shows the port diagrams for the LOA. Figure 13-65 Port diagram of the LOA board in the ODU2 non-convergence mode (Any>ODU2->OTU2) WDM Side
Client Side
3(RX1/TX1)-1
IN/OUT-OCH:1-ODU2:1
201(ClientLP1/ClientLP1)-1
Cross-connect module
ODU2:1
OCH:1
IN/OUT
Cross-connection that must be configured on the NMS.
Service processing module
NOTE
In this scenario, Olny RX1/TX1 ports can receive and transmit services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
476
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-131 Description of the LOA board's ports on the NMS Port Name
Description
RX1/TX1
These ports correspond to the client-side optical interfaces.
201(ClientLP1/ClientLP1)-1
Internal logical port. The paths are numbered 1.
IN/OUT–OCH:1–ODU2:1
Indicates the mapping path when the board works in ODU2 non-convergence mode (Any>ODU2->OTU2).
13.12.10.3 Configuring Cross-Connections l
On the U2000, set the Port Working Mode to ODU2 non-convergence mode (Any>ODU2->OTU2).
l
Specify required services types for the board.
l
On the U2000 create electrical cross-connections between the internal ClientLP and ODU1 ports. For details, see in Figure 13-66 NOTE
In this scenario, Olny RX1/TX1 ports can receive and transmit services.
Figure 13-66 Cross-connections of the LOA board (Any->ODU2->OTU2) WDM side
Client side
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
Cross-connect module
1 IN/OUT-OCH:1-ODU2:1
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The internal cross-connection of the board, which does not need to be configured on the NMS
13.12.11 Working Principle and Signal Flow The LOA board consists of the client-side optical module, WDM side optical module, signal processing module, control and communication module, and power supply module. Figure 13-67 shows the block diagram of the functions of the LOA board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
477
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-67 Functional modules and signal flow of the LOA board Client side RX1 RX2
WDM side
O/E
RX8 TX1 TX2
E/O
TX8
Client-side optical module
Service encapsulation and mapping module
E/O OTN processing module
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal flow The LOA board can receive Any optical signals on the client side (signals at a rate ranging from 125 Mbit/s to 4.25 Gibt/s or FC800//FC1200/FICON8G/FICON10G/10GE LAN signals). NOTE
The LOA board supports hybrid transmission of signals at a rate of 4.25 Gibt/s or lower, but does not support hybrid transmission of FC800/FICON8G signals and low-rate signals. The total rate of signals received at the client side cannot exceed 10 Gbit/s. For details on the signal types, see 13.12.3 Functions and Features.
In the signal flow of the LOA board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LOA to the WDM side of the LOA, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels of any optical signals from client equipment through the RX1-RX8 ports, and performs O/E conversion. After O/E conversion, the eight channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC/AFEC. Then, the module outputs one channel of OTU2 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
478
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The OTU2 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical port. l
Receive direction The WDM-side optical module receives one channel of OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical port. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the signal processing module. The module performs operations such as OTU2 framing, decoding of FEC/AFEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs eight channels of any signals. The client-side optical module performs E/O conversion of the eight channels of electrical signals, and then outputs eight channels of client-side optical signals through the TX1-TX8 optical ports.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of eight channels of any optical signals. – Client-side transmitter: Performs E/O conversion from eight channels of the internal electrical signals to any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of service encapsulation and mapping module and OTN processing module. – Service encapsulation and mapping module The module encapsulates multiple channels of Any signals and maps them into OTU2 payload. It also performs the reversion operations. The module also monitors performance of Any signals. – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs the FEC/ AFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
479
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.12.12 Front Panel There are indicators and interfaces on the front panel of the LOA board.
Appearance of the Front Panel Figure 13-68 shows the front panel of the LOA board. Figure 13-68 Front panel of the LOA board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
480
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
To prevent the cabinet door from squeezing fibers, IN and OUT interface can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-132 lists the type and function of each interface. Table 13-132 Types and functions of the interfaces on the LOA board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX8
LC
Transmit service signals to client equipment.
RX1-RX8
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.12.13 Valid Slots One slot houses one LOA board. Table 13-133 shows the valid slots for the LOA board. Table 13-133 Valid slots for the LOA board
Issue 03 (2013-05-16)
Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, IU29–IU36
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
481
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid slots
OptiX OSN 8800 T16 subrack
IU1–IU8, IU11–IU18
OptiX OSN 8800 platform subrack
IU1–IU16
OptiX OSN 6800 subrack
IU1–IU8, IU11–IU16
OptiX OSN 3800 chassis
IU2–IU5
13.12.14 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LOA, refer to Table 13-134. Table 13-134 LOA parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Query or set the Channel Loopback.
Default: NonLoopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
482
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Service Type
None, DVB-ASI, ESCON, FC100, FC200, FC400, FC800, FC1200, FICON10G, FDDI, FE, FICON, FICON Express, SDI, GE(TTT-GMP), GE (GFP-T), HDSDI, 10GE LAN, HDSDIRBR, OC-3, OC-12, OC-48, OTU-1, STM-1, STM-4, STM-16, 3GSDI, 3GSDIRBR
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None
NOTE GE services can be encapsulated in two formats. When Service Type is GE(TTTGMP), the encapsulation format is TTTGMP; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE (TTT-GMP) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format. NOTE The LOA board's ports may work in any of five working modes and the type of the clientside services received by the ports varies with the working modes. l ODU0 non-convergence mode (Any>ODU0[->ODU1]->ODU2->OTU2): Supports FE, GE, STM-1, OC-3, STM-4, OC-12, FC100, ESCON, FICON, FDDI, SDI, and DVB-ASI services. l ODU1 non-convergence mode (Any>ODU1->ODU2->OTU2): Supports HDSDI, HDSDIRBR, FC200, FICON Express, OTU1, STM-16, and OC-48 services. l ODU1_ODU0 mode (OTU1->ODU1>ODU0[->ODU1]->ODU2->OTU2): Supports OTU1 service. l ODUflex non-convergence mode (Any>ODUflex->ODU2->OTU2): Supports 3G-SDI, 3GSDIRBR, FC400, FC800 services. l ODU2 non-convergence mode (Any>ODU2->OTU2): Supports FC800, FC1200, FICON10G, and 10GE LANservice. NOTE The FICON4G service and the FC400 service are processed identically. For the FICON4G service, you can configure it as the FC400 service on the U2000. The FICON8G service and the FC800 service are processed identically. For the FICON8G service, you can configure it as the FC800 service on the U2000.
Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
483
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Automatic Laser Shutdown
Disabled, Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Default: Enabled
Default: FW_Defect
Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
484
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s LPT Enabled
Enabled, Disabled Default: Disabled
Service Mode
Client Mode, OTN Mode Default: Client Mode
FEC Working State
Disabled, Enabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
AFEC Grade
1, 2, 3 Default: 3
Issue 03 (2013-05-16)
Determines whether to enable the link pass-through (LPT) function. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information. A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
485
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: 1000M FullDuplex
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
486
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
PRBS Test Status
Enabled, Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled
ODUflex Tolerance (ppm)
0 to 100
Default: Disabled
Default: 100
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Specifies the tolerance of deviation between the actual client-side service rate and the specified rate when the service type is ODUflex. NOTE When the LOA board receives 3G-SDI services from client equipment, set this parameter to 10. If the LOA board receives other services, set it to 100.
ODU Timeslot Configuration Mode
Assign random, Assign consecutive Default: Assign random
Issue 03 (2013-05-16)
When the ODU timeslot configuration mode is Assign consecutive, the internal ODU0 mapping path is: ODU0–>ODU1– >ODU2. When the mode is set to Assign random, the internal ODU0 mapping path is: ODU0–>ODU2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
487
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Port Working Mode
ODU0 nonconvergence mode (Any->ODU0[>ODU1]->ODU2>OTU2), ODU1 nonconvergence mode (OTU1/Any->ODU1>ODU2->OTU2), ODU1_ODU0 mode (OTU1->ODU1>ODU0[->ODU1]>ODU2->OTU2), ODUflex nonconvergence mode (Any->ODUflex>ODU2->OTU2), and ODU2 nonconvergence mode (Any->ODU2>OTU2).
This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail.
Default: ODU0 nonconvergence mode (Any->ODU0[>ODU1]->ODU2>OTU2)
13.12.15 LOA Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
488
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L OA
N/A
I-16-2 km
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
S-16.1-15 km L-16.1-40 km L-16.2-80 km 1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km
800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
1000 BASE-LX-40 km 1000 BASE-ZX-80 km 270 Mbit/s to 3 Gbit/s multirate (Video eSFP)-10 km 4.25 Gbit/s Multirate-0.3 km 4.25 Gbit/s Multirate-10 km 1600-M5E-SN-I-0.3 km (SFP+) 1600-SM-LC-L-10 km (SFP+) 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km 10G BASE-SR-0.3km(SFP +) 10G BASE-LR-10km(SFP +) 10G BASE-LR(SFP+) 10G BASE-ER(SFP+)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
489
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16-2 km module, S-16.1-15 km module, L-16.1-40 km module and L-16.2-80 km module can be used to access OTU1, STM-16, OC-48, FC200, FC100, FDDI, FICON, FICON Express, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-135 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
490
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 13-136 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
491
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Maximum reflectance
dB
-12
-12
-12
-12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
492
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
2.125 Gbit/s Multi-rate module can be used to access FC200, GE, FC100, FDDI, FICON, FICON Express, and FE signals. 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FDDI, FICON, FE, and DVB-ASI signals. When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 13-137 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
493
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
SDI module can be used to access SDI, HD-SDI, HD-SDIRBR, 3G-SDI, and 3G-SDIRBR signals.
Table 13-138 Client-side pluggable optical module specifications (SDI services) Parameter
Unit
Optical Module Type
Value 270 Mbit/s to 3 Gbit/s Multirate (Video eSFP)-10 km
Line code format
-
NRZ
Target transmission distance
-
10 km (6.2 mi.)
Service rate
Gbit/s
≤3
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-7
Minimum extinction ratio
dB
5
Maximum -20 dB spectral width
nm
3.0
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1260 to 1620
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
494
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
270 Mbit/s to 3 Gbit/s Multirate (Video eSFP)-10 km
Maximum reflectance
dB
-27
NOTE
4.25 Gbit/s Multirate-0.3 km, 4.25 Gbit/s Multirate-10 km module can be used to access FC400, and FICON4G signals.
Table 13-139 Client-side pluggable optical module specifications (FC services) Parameter
Unit
Optical Module Type
Value 4.25 Gbit/s Multirate-0.3 km
4.25 Gbit/s Multirate-10 km
Line code format
-
NRZ
NRZ
Optical source type
-
MLM
SLM
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Transmitter parameter specifications at point S
nm
830 to 860
1270 to 1355
Maximum mean launched power
dBm
-1.1
-1
Minimum mean launched power
dBm
-9
-8.4
Eye pattern mask
-
Compliant with Fiber Channel-physical interface (FC-PI-2) parameter template
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
Operating wavelength range
nm
770 to 860
1260 to 1600
Receiver sensitivity
dBm
-15
-18
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-12
-12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
495
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-140 Client-side pluggable optical module specifications (FC800/FICON8G services) Parameter
Unit
Optical Module Type
Value 1600-M5E-SNI-0.3 km (SFP+)
1600-SM-LC-L-10 km (SFP+)
Optical interface service rate
Gbit/s
8.5
8.5
Optical source type
-
MLM
SLM
Line code format
-
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
840 to 860
1260 to 1355
Maximum mean launched power
dBm
-1
-0.5
Minimum mean launched power
dBm
-7.3
-8.2
Minimum extinction ratio
dB
3
3.5
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
Receiver sensitivity
dBm
-11.1
-12.6
Minimum receiver overload
dBm
-1
0.5
Maximum reflectance
dB
-12
-12
NOTE
1.25 Gbit/s Multi-rate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FDDI, FICON, FE, and DVB-ASI signals. 2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, FDDI, FICON, FICON Express, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, and FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
496
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-141 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
497
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
2.67 Gbit/s Multi-rate module (eSFP DWDM) module can be used to access OTU1, STM-16, OC-48, FC200, FC100, FDDI, FICON, FICON Express, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, and FE signals.
Table 13-142 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
498
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type Maximum reflectance
2.67 Gbit/s Multirate (eSFP DWDM)-120 km dB
-27
NOTE
10G BASE-LR(SFP+) and 10G BASE-ER(SFP+) module can be used to access 10GE LAN, FC800, FICON8G, FC1200, and FICON10G signals.
Table 13-143 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10G BASE-LR(SFP+)
10G BASE-ER(SFP+)
Line code format
-
NRZ
NRZ
Optical source type
-
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1355
1530 to 1565
Maximum mean launched power
dBm
-1
3
Minimum mean launched power
dBm
-6
-2
Minimum extinction ratio
dB
3.5
8.2
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1260 to 1355
1260 to 1605
Receiver sensitivity
dBm
-14.4
-14 (11.1G) -15.8 (10.3125G)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
499
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10G BASE-LR(SFP+)
10G BASE-ER(SFP+)
Minimum receiver overload
dBm
0.5
-1
reflectance
dB
-12
-27
NOTE
10G BASE-SR-0.3 km (SFP+) and 10G BASE-LR-10 km (SFP+) module can be used to access FC800/ FICON8G/10GE LAN signals
Table 13-144 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
Optical source type
-
MLM
SLM
Line code format
-
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
840 to 860
1260 to 1355
Maximum mean launched power
dBm
-1
0.5
Minimum mean launched power
dBm
-7.3
-8.2
Minimum extinction ratio
dB
3
3.5
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z–compliant
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
500
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Operating wavelength range
nm
840 to 860
1260 to 1355
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
Minimum receiver overload
dBm
-1
0.5
Maximum reflectance
dB
-12
-12
WDM-Side Pluggable Optical Module Table 13-145 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN 501
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-146 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
502
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-147 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Line code format
-
NRZ
NRZ
Optical source type
-
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
Maximum mean launched power
dBm
-1
2
Minimum mean launched power
dBm
-6
-1
Minimum extinction ratio
dB
6
8.2
Maximum -20 dB spectral width
nm
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
Operating wavelength range
nm
1290 to 1565
1260 to 1605
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
503
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Receiver sensitivity
dBm
-11
-14
Minimum receiver overload
dBm
-1
-1
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.19 kg (2.64b.)
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LOA
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
31.8
36
32.8
37
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP
13.13 LOG LOG: 8 x Gigabit Ethernet unit
13.13.1 Version Description The available functional versions of the LOG board are TN11 and TN12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
504
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LOG
Y
Y
N
N
Y
Y
TN12 LOG
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Function: – The TN11LOG supports AFEC, and the TN12LOG supports AFEC-2. Boards that use different FEC modes cannot interoperate with each other. – The TN12LOG supports both GE electrical signal and GE optical signal, while the TN11LOG supports only the GE optical signal. – The TN12LOG board supports pluggable optical modules on the WDM side, whereas the TN11LOG does not. For details, see 13.13.3 Functions and Features.
l
Specification: – For the power consumption and specification of each version, see 13.13.11 LOG Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11LOG
TN12LOG
The TN12LOG can be created as TN11LOG on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12LOG functions as the TN11LOG. NOTE l When both the receive and transmit boards employ FEC, the substitution applies; when both the receive board and transmit board employs AFEC, the substitution does not apply. l A board equipped with a PIN receiver cannot substitute for a board equipped with an APD receiver, because the two types of receives support different input power ranges.
TN12LOG
Issue 03 (2013-05-16)
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
505
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.13.2 Application As a type of optical transponder unit, the LOG board implements conversion between eight channels of GE optical signals and OTU2 optical signals that comply with ITU-T Recommendations. For the position of the LOG board in the WDM system, see Figure 13-69. Figure 13-69 Position of the LOG board in the WDM system LOG
LOG
8
1
1×OTU2
1×OTU2
1×ODU2
GE
M U X / D M U X
GE
1×ODU2
M U X / D M U X
1
GE
8
GE
OptiX OSN 6800 subrack: from paired slot or cross-connect board OptiX OSN 3800 subrack: from mesh group slot OptiX OSN 8800 platform subrack: N/A
13.13.3 Functions and Features The LOG board is mainly used to achieve tunable wavelengths, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-148. Table 13-148 Functions and features of the LOG board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
LOG converts signals: 8 x GE <->1 x OTU2
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s NOTE The TN12LOG board supports both GE electrical signal and GE optical signal.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
506
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Cross-connect capabilities
OptiX OSN 8800 subrack: N/A. OptiX OSN 8800 platform subrack: N/A. OptiX OSN 6800 subrack: Supports grooming of eight channels of GE services each to working/protection cross-connect boards respectively through the backplane. Supports the transmission of eight GE signals to the paired slots through the backplane. OptiX OSN 3800 subrack: Supports grooming of eight GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Provides the OTU2 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports SM function for OTU2.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
Supported
FEC encoding
TN11LOG:
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN12LOG: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
507
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Regeneration board
l TN11LOG: TN11LSXR l TN12LOG: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Optical-layer ASON
Supported by the TN12LOG
Electrical-layer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection. NOTE OptiX OSN 8800 only supports client-side 1+1 protection, intra-board 1+1 protection and the OWSP protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
IEEE 802.3z
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
508
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.13.4 Working Principle and Signal Flow The LOG board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-70 and Figure 13-71 show the functional modules and signal flow of the LOG board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
509
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-70 Functional modules and signal flow of the LOG board (OptiX OSN 6800/3800) Backplane(service cross-connection)
8
GE WDM side
Client side RX1 RX2
O/E
RX8 TX1 TX2 TX8
E/O
E/O GE OTN Crossencapsulation processing connect and mapping module module module
Client-side optical module
Signal processing module
O/E
OUT
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
510
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-71 Functional modules and signal flow of the LOG board (OptiX OSN 8800) WDM side
Client side RX1 RX2
O/E
RX8 TX1 TX2
E/O
TX8
Client-side optical module
E/O GE encapsulation and mapping module
OTN processing module
Signal processing module
O/E
OUT
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow NOTE
The client-side GE optical module can be replaced with the electrical module to access the corresponding electrical signals on the TN12LOG. It is recommended to change RX1/TX1, RX2/TX2 optical interfaces to electrical interfaces only. The processing of electrical signals is similar to that of optical signals. The processing of optical signals is considered as an example.
The client side of the LOG board accesses GE optical signals. In the signal flow of the LOG board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LOG to the WDM side of the LOG, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels of GE optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, the eight channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC/AFEC. Then, the module outputs one channel of OTU2 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
511
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The OTU2 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface. l
Receive direction The WDM-side optical module receives one channel of OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the signal processing module. The module performs operations such as OTU2 framing, decoding of FEC/AFEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs eight channels of GE signals. The client-side optical module performs E/O conversion of the eight channels of electrical signals, and then outputs eight channels of client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of eight channels of GE optical signals. – Client-side transmitter: Performs E/O conversion from eight channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 8800: N/A. – OptiX OSN 6800: Implements the cross-connection and pass through between the client-side signals and the WDM-side signals of the board. And also grooms the electrical signals between the LOG and the board in the paired slot or the crossconnect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass through between the client-side signals and the WDM-side signals of the board. And also grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals. – GE encapsulation and mapping module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
512
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Encapsulates multiple channels of GE signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs the FEC/ AFEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.13.5 Front Panel There are indicators and interfaces on the front panel of the LOG board.
Appearance of the Front Panel Figure 13-72 shows the front panel of the LOG board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
513
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-72 Font panel of the LOG board
LOG STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8 OUT IN
LOG
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-149 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
514
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-149 Types and functions of the interfaces on the LOG board Interface
Type
Function
INa
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUTa
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX8
LC
Transmit service signals to client equipment.
RX1-RX8
LC
Receive service signals from client equipment.
a: Only the G.657A2 fiber can be used in "IN" and "OUT" interface of TN12LOG.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.13.6 Valid Slots One slot houses one LOG board. Table 13-150 shows the valid slots for the TN11LOG board. Table 13-150 Valid slots for TN11LOG board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 13-151 shows the valid slots for the TN12LOG board. Table 13-151 Valid slots for TN12LOG board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
515
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.13.7 Characteristic Code for the LOG The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.13.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-152 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-152 Mapping between the physical ports on the LOG board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
516
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, LP is a logical port of the board. Figure 13-73 shows the application model of the LOG board. Table 13-153 describes the meaning of each port. Figure 13-73 Port diagram of the LOG board Client side
WDM side 201(LP/LP)-1 201(LP/LP)-2 201(LP/LP)-3 201(LP/LP)-4 201(LP/LP)-5 201(LP/LP)-6 201(LP/LP)-7 201(LP/LP)-8
3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5) 8(RX6/TX6) 9(RX7/TX7) 10(RX8/TX8)
201(LP/LP)-1 1(IN/OUT)-1
Service processing module
Cross-connect module
WDM-side opticalmodule
Table 13-153 Description of NM port of the LOG board Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
LP
Internal logical port. The optical paths are numbered 1, 2, 3, 4, 5, 6, 7 and 8.
IN/OUT
These ports correspond to the WDM-side optical interfaces.
13.13.9 Configuration of Cross-connection This section describes how to configure cross-connections between LOG boards and other boards on the NMS. If the LOG board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the GE crossconnection between the RX/TX and LP ports. The cross-connect grooming of GE services is implemented through the cross-connect module. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and LP ports of the LOG board (create the internal straight-through and cross-connection of the board), as shown by and
in Figure 13-74.
– Create the cross-connection between the RX/TX port of the LOG board and the LP port of other boards, as shown by Issue 03 (2013-05-16)
3
in Figure 13-74. (The GE services accessed from the
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
517
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
client side of the LQG board are cross-connected to the WDM side of other boards for protection and the inter-board service convergence.) – Create the cross-connection between the RX/TX port of other boards and the LP port of the LOG board, as shown by 4 in Figure 13-74. (The GE services accessed from the client side of other boards are cross-connected to the WDM side of the LOG board for protection and the inter-board service convergence.) NOTE
One optical path of the LP port can be created with a connection to only one RX/TX port. There should be no more than eight cross-connections between the RX/TX ports of the local board or other boards and the LP port of the local board.
l
Create the cross-connection between the LP port of the LOG board and the LP port of other boards, as shown by 5 in Figure 13-74. (The GE services accessed from the WDM side of the LOG board are cross-connected to the WDM side of other board for the grooming of the WDM-side services.)
l
The eight paths of the LP port are converged into one channel, which is connected to the IN/OUT port. There is no need for configuration on the U2000. NOTE
The OptiX OSN 8800 only supports the cross-connections shown by
and
in Figure 13-74.
Figure 13-74 Cross-connection diagram of the LOG board Client side
Other board 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
WDM side
201(LP/LP)-1 201(LP/LP)-2 201(LP/LP)-3 201(LP/LP)-4 201(LP/LP)-5 201(LP/LP)-6 201(LP/LP)-7 201(LP/LP)-8
5 3
4 2 1
WDM side
201(LP/LP)-1 201(LP/LP)-2 201(LP/LP)-3 201(LP/LP)-4 201(LP/LP)-5 201(LP/LP)-6 201(LP/LP)-7 201(LP/LP)-8
LOG The straight-through of the board The internal cross-connection of the board The client side of the LOG board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LOG board The WDM side of the LOG board are cross-connected to the WDM side of other boards
1 2 3 4 5
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
518
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.13.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of LOG, refer to Table 13-154. Table 13-154 LOG Parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
GE, GE(GFP-T) Default: GE
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFPT), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Off, On
Laser Status
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
519
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only the TN12LOG supports this parameter.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN12LOG supports this parameter.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers. NOTE Only the TN12LOG supports this parameter.
Default: 0s LPT Enabled
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
Determines whether to enable the link passthrough (LPT) function.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
520
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
FEC Mode
FEC, AFEC
Default: Enabled
Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: C
Default: 9600
Default: 1000M FullDuplex
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
521
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only TN12LOG supports this parameter.
13.13.11 LOG Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
522
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L OG
N/A
2.125 Gbit/s Multirate-0.5 km
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
N/A
1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
800 ps/nm-C BandFixed WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-APD 4800 ps/nm-C BandTunable WavelengthODB-APD 800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
TN 12L OG
N/A
2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN 800 ps/nm-C BandTunable WavelengthNRZ-PIN
1000 BASE-ZX-80 km 1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP 800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
523
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 13-155 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
524
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 13-156 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
525
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Maximum reflectance
dB
-12
-12
-12
-12
Table 13-157 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
526
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
WDM-Side Fixed Optical Module Table 13-158 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
527
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
528
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-159 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
-
Line code format
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
NRZ
NRZ
ODB
DRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
35
Dispersion tolerance
ps/ nm
1200
1200
4800
800
800
APD
PIN
PIN
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
529
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
-16
Minimum receiver overload
dBm
0
-9
-9
0
0
Maximum reflectance
dB
-27
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
WDM-Side Pluggable Optical Module Table 13-160 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
530
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-161 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
531
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-162 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Line code format
-
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
532
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11LOG: 1.6 kg (3.5 lb.) TN12LOG: 1.1 kg (2.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
533
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1LO G
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
40
45
43
48
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
43.5
48.5
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
55.0
60.5
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
37.0
41.44
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
38.0
42.44
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
41.61
46.6
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
43.04
48.0
800 ps/nm-C Band-Fixed WavelengthNRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
TN1 2LO G
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
13.14 LOM LOM: 8-port multi-service multiplexing & optical wavelength conversion board
13.14.1 Version Description The available functional versions of the LOM board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
534
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1LO M
Y
Y
N
N
Y
Y
TN1 2LO M
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Function: – The TN11LOM supports AFEC, and the TN12LOM supports AFEC-2. Boards using different FEC codes cannot interconnect with each other. For details, see 13.14.3 Functions and Features. – Only the TN12LOM supports 3G-SDI, InfiniBand 2.5G and InfiniBand 5G. For details, see 13.14.3 Functions and Features.
l
Appearance: – The TN11LOM and TN12LOM versions use different front panels. For details, see 13.14.5 Front Panel.
l
Specification: – For the specification of each version, see 13.14.10 LOM Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11LOM
TN12LOM
The TN12LOM can be created as TN11LOM on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12LOM functions as the TN11LOM. NOTE l When both the receive and transmit boards employ FEC, the substitution applies; when both the receive board and transmit board employs AFEC, the substitution does not apply. l A board equipped with a PIN receiver cannot substitute for a board equipped with an APD receiver, because the two types of receives support different input power ranges.
TN12LOM
None
-
13.14.2 Application As a type of optical transponder unit, the LOM board multiplexes a maximum of eight channels of GE/FC100/FICON/ISC 1G, four channels of FC200/FICON Express/ISC 2G/InfiniBand Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
535
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
2.5G, or two channels of 3G-SDI/FC400/FICON4G/InfiniBand 5G signals into one channel of OTU2 signals. It also implements conversion between these signals and WDM signals that comply with ITU-T Recommendations. The LOM board supports FC extension and ensures that the signal width does not decrease during long-haul transmission of FC services. The LOM board also supports hybrid transmission of the services mentioned above. For the position of the LOM board in the WDM system, see Figure 13-75 and Figure 13-76. Figure 13-75 Position of the TN11LOM board in the WDM system LOM
LOM M U X / D M U X
1×ODU2
M U X / D M U X
1×OTU2
1×OTU2
1×ODU2
GE ISC 1G 1 ISC 2G FC100 FC200 FC400 FICON 8 FICON4G FICON Express
GE ISC 1G 1 ISC 2G FC100 FC200 FC400 FICON 8 FICON4G FICON Express
Figure 13-76 Position of the TN12LOM board in the WDM system LOM
LOM M U X / D M U X
1
1×ODU2
M U X / D M U X
1×OTU2
1×OTU2
1×ODU2
GE ISC 1G ISC 2G FC100 1 FC200 FC400 FICON FICON4G FICON Express 8 InfiniBand 2.5G InfiniBand 5G 3G-SDI
8
GE ISC 1G ISC 2G FC100 FC200 FC400 FICON FICON4G FICON Express InfiniBand 2.5G InfiniBand 5G 3G-SDI
NOTE
For ISC 1G, GE, FC100, and FICON services, the eight pairs of optical interfaces on the client side are all available. For FICON Express, ISC 2G, InfiniBand 2.5G and FC200 services, the client-side TX1/RX1, TX3/RX3, TX5/RX5 and TX7/RX7 are available. For 3G-SDI, FC400, InfiniBand 5G and FICON4G services, the client-side TX1/RX1 and TX5/RX5 are available. The total rate of eight channels of services at the client side cannot exceed 10 Gbit/s. The client-side interfaces are divided into two groups: RX1/TX1-RX4/TX4 and RX5/TX5-RX8/TX8. Each group of these optical interfaces can access services at a maximum rate of 5 Gbit/s.
13.14.3 Functions and Features The LOM board is mainly used to achieve tunable wavelength, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-163. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
536
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-163 Functions and features of the LOM board Function and Feature
Description
Basic function
LOM converts signals as follows: l 8 x GE/FC100/FICON/ISC 1G <->1 x OTU2 l 4 x FC200/FICON Express/ISC 2G/InfiniBand 2.5G <->1 x OTU2 l 2 x 3G-SDI/FC400/FICON4G/InfiniBand 5G <->1 x OTU2 Supports hybrid transmission of the services mentioned above. The overall bandwidth of the first and last four optical interfaces should be equal to or less than 5 Gbit/s, respectively. Supports FC extension and ensures that the data width does not decrease during long-haul transmission of FC services. For FC100/FC200/FC400 services, the maximum transmission distance of the WDM side is 3000 km.
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FC400: SAN service at a rate of 4.25 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s FICON4G: SAN service at a rate of 4.25 Gbit/s ISC 1G: SAN service at a rate of 1.06 Gbit/s ISC 2G: SAN service at a rate of 2.12 Gbit/s InfiniBand 2.5G: SAN service at a rate of 2.5 Gbit/s InfiniBand 5G: SAN service at a rate of 5 Gbit/s 3G-SDI: Video service at a rate of 2.97 Gbit/s NOTE The LOM board supports both GE electrical signal and GE optical signal. Only the TN12LOM supports InfiniBand 2.5G, InfiniBand 5G and 3G-SDI.
OTN function
l Provides the OTU2 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports SM function for OTU2.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
537
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
The board supports the LPT function only when the client-side service type is GE.
FEC encoding
TN11LOM: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN12LOM: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Alarms and performance events monitoring
l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services. l TN11LOM:
Regeneration board
TN11LSXR l TN12LOM: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is GE.
Optical-layer ASON
Supported by the TN12LOM
Electrical-layer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Ethernet service mapping mode
Issue 03 (2013-05-16)
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
538
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Ethernet port working mode
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
Client side
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
IEEE 802.3z NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FCLS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FCBB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) IBM GDPS( Geographically Dispersed Parallel Sysplex) Protocol IBM Private Protocol NOTE Only the TN12LOM supports IBM Private Protocol.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
539
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.14.4 Working Principle and Signal Flow The LOM board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-77 and Figure 13-78 show the functional modules and signal flow of the LOM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
540
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-77 Functional modules and signal flow of the TN11LOM board
Client side
GE encapsulation and mapping module
O/E
RX1 RX2 RX8 TX1 TX2 TX8
E/O Client-side optical module
FC encapsulation and mapping module FICON encapsulation and mapping module
WDM side
E/O OTN processing module
OUT
O/E IN
ISC encapsulation and mapping module Signal processing module
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
541
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-78 Functional modules and signal flow of the TN12LOM board GE encapsulation and mapping module FC encapsulation and mapping module
Client side RX1 RX2
O/E
RX8 TX1 TX2
E/O
TX8
Client-side optical module
FICON encapsulation and mapping module ISC encapsulation and mapping module
WDM side OTN processing module
E/O
O/E
InfiniBand encapsulation and mapping module
OUT
IN
WDM-side optical module
Any encapsulation and mapping module Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow NOTE
The client-side GE optical module can be replaced with the electrical module to access the corresponding electrical signals. Suggest change RX1/TX1, RX2/TX2 optical interfaces to electrical interfaces only. The processing of electrical signals is similar to that of optical signals. The processing of optical signals is considered as an example.
In the signal flow of the LOM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LOM to the WDM side of the LOM, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels or four channels or two channels of the optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
542
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, different types of signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC/AFEC. Then, the module outputs one channel of OTU2 signals. The OTU2 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface. l
Receive direction The WDM-side optical module receives one channel of OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the signal processing module. The module performs operations such as OTU2/OTU2e framing, decoding of FEC/AFEC, demapping, and decapsulation processing. Then, the module outputs eight channels or four channels or two channels of the electrical signals. The client-side optical module performs E/O conversion of the eight channels or four channels or two channels of the electrical signals, and then outputs client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of eight channels or four channels or two channels of the optical signals. – Client-side transmitter: Performs E/O conversion from eight or four or two channels of the internal electrical signals to the corresponding optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the GE encapsulation and mapping module, ISC encapsulation and mapping module, FC encapsulation and mapping module, FICON encapsulation and mapping module, and OTN processing module. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and monitors GE performance. – ISC encapsulation and mapping module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
543
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Encapsulates multiple channels of ISC signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and monitors ISC performance. – FC encapsulation and mapping module Encapsulates multiple channels of FC signals and maps the signals into the OTU2e payload area. The module also performs the reverse process and monitors FC performance. – FICON encapsulation and mapping module Encapsulates multiple channels of FICON signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and monitors FICON performance. – InfiniBand encapsulation and mapping module Encapsulates multiple channels of InfiniBand signals and maps the signals into the OTU2e payload area. The module also performs the reverse process and monitors InfiniBand performance. – Any encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and monitors Any performance. – OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs FEC/AFEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.14.5 Front Panel There are indicators and interfaces on the front panel of the LOM board.
Appearance of the Front Panel Figure 13-79 and Figure 13-80 show the front panel of the LOM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
544
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-79 Front panel of the TN11LOM board
LOM STAT ACT PROG SRV
LINK/ACT1 LINK/ACT2 LINK/ACT3 LINK/ACT4 LINK/ACT5 LINK/ACT6 LINK/ACT7 LINK/ACT8
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 RX5
OUT IN
TX5 TX6 RX6 TX7 RX7 TX8 RX8
LOM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
545
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-80 Front panel of the TN12LOM board LOM STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8 OUT IN
LOM
Indicators Twelve indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
l
Data port connection/data transceiver indicator (LINK/ACTn) - green
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
546
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Only the TN11LOM board has the data port connection/data transceiver indicator (LINK/ACTn).
Interfaces Table 13-164 lists the type and function of each interface. Table 13-164 Types and functions of the interfaces on the LOM board Interface
Type
Function
INa
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUTa
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX8
LC
Transmit service signals to client equipment. Transmits the optical service signal to the client-side equipment when the optical module is used. Transmits the electrical service signal to the client-side equipment when the electrical module is used.
RX1-RX8
LC
Receive service signals from client equipment. Receives the optical service signal from the client-side equipment when the optical module is used. Receives the electrical service signal from the clientside equipment when the electrical module is used.
a: Only the G.657A2 fiber can be used in "IN" and "OUT" interface of TN12LOM.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.14.6 Valid Slots Two slots house one TN11LOM board. One slot houses one TN12LOM board. Table 13-165 and Table 13-166 show the valid slots for the LOM board. Table 13-165 Valid slots for the TN11LOM board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
547
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29IU35
OptiX OSN 6800 subrack
IU1-IU16
OptiX OSN 3800 chassis
IU3-IU5
NOTE OptiX OSN 8800/OptiX OSN 6800: The rear connector of the board is mounted to the backplane along the left slot of the two occupied slots in the subrack. Therefore, the slot number of the TN11LOM board displayed on the NM is the number of the left slot. For example, if slots IU1 and IU2 house the TN11LOM board, the slot number of the TN11LOM board displayed on the NM is IU1. OptiX OSN 3800: The rear connector of the board is mounted to the backplane along the bottom slot of the two occupied slots in the chassis. Therefore, the slot number of the TN11LOM board displayed on the NM is the number of the bottom slot. For example, if slots IU2 and IU3 house the TN11LOM board, the slot number of the TN11LOM board displayed on the NM is IU3.
Table 13-166 Valid slots for TN12LOM board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.14.7 Characteristic Code for the LOM The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.14.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-167 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
548
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-167 Mapping between the physical ports on the LOM board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
l
Issue 03 (2013-05-16)
The LOM board maps a client service into an STM-64 signal and then multiplexes the STM-64 signal into an OTU2. The STM-64 signal contains eight timeslots, each having a bandwidth of 1.24 Gbit/s. Different client service requires different number of timeslots. The number of timeslots required by each type of client service is listed below. Service Type
Number of Timeslots
GE
1
FC100
1
FC200
2
FC400
4
FICON
1
FICON4G
4
FICON Express
2
ISC 1G
1
ISC 2G
2
3G-SDI
4
InfiniBand 2.5G
2
InfiniBand 5G
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
549
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.14.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of LOM, refer to Table 13-168. Table 13-168 LOM Parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
l TN11LOM: None, FC-100, FC-200, FC-400, FICON, FICON Express, FICON4G, GE, GE (GFP-T), ISC 1G, ISC 2G l TN12LOM: None, Any, FC-100, FC-200, FC-400, FICON, FICON Express, FICON4G, GE, GE (GFP-T), ISC 1G, ISC 2G, InfiniBand 2.5G, InfiniBand 5G, 3G-SDI
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFPT), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Default: None
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
550
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Client Service Bearer Rate (Mbit/s)
270 to 5000
sets the rate of the accessed service at the optical interface on the client side of a board.
Default: 622
NOTE This parameter is supported only by the TN12LOM.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. Off, On
Laser Status
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only the TN12LOM supports this parameter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
551
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN12LOM supports this parameter.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers. NOTE Only the TN12LOM supports this parameter.
Default: 0s Disabled, Enabled
LPT Enabled
Default: Disabled FC Internal Working Mode
Normal Mode, Special Mode Default: Normal Mode
Determines whether to enable the link passthrough (LPT) function. In different internal working mode, the board can work with the FC storage equipment of different vendors. l Normal mode: In this mode, the board can work with the mainstream FC switch storage equipment (such as the Brocade switch). Such equipment inserts the 10B_ERR alarm after detecting a link failure. l Special mode: In this mode, the board can work with the switch storage equipment (such as the McData switch) that uses special processing standard. Such equipment inserts the NOS alarm after detecting a link failure.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
552
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OFC Enabled
Disabled, Enabled
The open fiber control (OFC) function controls the transmit power of the laser when the fiber is disconnected. When the OFC function is enabled, the laser sends short pulse, rather than remains in the enabled state, to check whether the fiber is connected. In this way, the output optical power of the laser is cut, which prevents eye injury.
Default: Disabled
NOTE l Set the LPT and ALS functions to Disabled after the OFC function is enabled. l The OFC function cannot coexist with protection. l This parameter is valid only when the Service Type parameter is set to ISC 1G or ISC 2G.
FEC Working State
Disabled, Enabled
FEC Mode
FEC, AFEC
Default: Enabled
Default: FEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: /
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
553
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Band Type
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: C
Default: 9600
Default: 1000M FullDuplex FC Distance Extension
Disabled, Enabled
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: Disabled
Default: None
PRBS Test Status
Disabled, Enabled Default: Disabled
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. A flow control mechanism is applied between FC service client-side equipment and between two FCE boards to provide the far-reaching function of FC services, which ensures that the bandwidth does not decrease during long haul transmission of FC services. See D.8 FC Distance Extension (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. NOTE Only TN11LOM supports this parameter.
See D.29 PRBS Test Status (WDM Interface) for more information. NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning NOTE Only TN12LOM supports this parameter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
554
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.14.10 LOM Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L OM
N/A
2.125 Gbit/s Multirate-0.5 km
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
N/A
1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km FC400/FICON4G Module-0.3 km (Multimode) FC400/FICON4G Module-10 km (Single mode) FC100/FC200/ FICON/FICON Express Module-0.5 km (Multimode) FC100/FC200/ FICON/FICON Express Module-2 km (Single mode)
800 ps/nm-C BandFixed WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-APD 4800 ps/nm-C BandTunable WavelengthODB-APD 800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
555
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 12L OM
N/A
2.125 Gbit/s Multirate-0.5 km
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP
1000 BASE-LX-10 km 1000 BASE-LX-40 km
800 ps/nm-C BandTunable WavelengthNRZ-PIN
1000 BASE-ZX-80 km
800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP
1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D FC400/FICON4G Module-0.3 km (Multimode) FC400/FICON4G Module-10 km (Single mode) FC100/FC200/ FICON/FICON Express Module-0.5 km (Multimode) FC100/FC200/ FICON/FICON Express Module-2 km (Single mode) 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
556
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Client-Side Pluggable Optical Module NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 13-169 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
557
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Minimum receiver overload
dBm
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
0
-3
-3
-3
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 13-170 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
558
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Maximum reflectance
dB
-12
-12
-12
-12
Table 13-171 Client-side pluggable optical module specifications (FC services) Parameter
Unit
Optical Module Type
Value FC400/ FICON4G Module-0.3 km (Multi mode)
FC400/ FICON4G Module-10 km (Single mode)
FC100/ FC200/ FICON/ FICON Express Module-0.5 km (Multimode)
FC100/ FC200/ FICON/ FICON Express Module-2 km (Single mode)
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
0.5 km (0.3 mi.)
2 km (1.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Transmitter parameter specifications at point S
nm
830 to 860
1270 to 1355
830 to 860
1266 to 1360
Maximum mean launched power
dBm
-1.1
-1
-2.5
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
559
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value FC400/ FICON4G Module-0.3 km (Multi mode)
FC400/ FICON4G Module-10 km (Single mode)
FC100/ FC200/ FICON/ FICON Express Module-0.5 km (Multimode)
FC100/ FC200/ FICON/ FICON Express Module-2 km (Single mode)
-8.4
-9.5
-10
Minimum mean launched power
dBm
-9
Eye pattern mask
-
Compliant with Fiber Channel-physical interface (FC-PI-2) parameter template
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1260 to 1600
770 to 860
1270 to 1580
Receiver sensitivity
dBm
-15
-18
-17
-18
Minimum receiver overload
dBm
0
0
0
0
Maximum reflectance
dB
-12
-12
-12
-27
Table 13-172 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
560
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
561
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-173 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
562
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-174 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
-
Line code format
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
NRZ
NRZ
ODB
DRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
35
Dispersion tolerance
ps/ nm
1200
1200
4800
800
800
APD
PIN
PIN
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
563
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
-16
Minimum receiver overload
dBm
0
-9
-9
0
0
Maximum reflectance
dB
-27
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
WDM-Side Pluggable Optical Module Table 13-175 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
564
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-176 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
565
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications TN11LOM: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.3 kg (5.1 lb.)
TN12LOM: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.42 lb.)
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1LO M
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
92.7
101.7
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
566
OptiX OSN 8800/6800/3800 Hardware Description
Boar d
13 Optical Transponder Unit
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
92.9
101.9
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
93.4
102.7
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
98.2
108.0
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
61.8
69.2
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
62.8
70.2
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
64.8
72.6
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
66.7
75.0
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
TN1 2LO M
NOTE When the FC extension function of the TN12LOM board is used, the power consumption of the board increases by another 2 W.
13.15 LQG LQG: 4 x GE-multiplex-optical wavelength conversion board
13.15.1 Version Description The available functional version of the LQG board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
567
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1LQ G
N
N
N
N
Y
Y
13.15.2 Application As a type of optical transponder unit, the LQG board implements the conversion between four channels of GE signals and WDM signals that comply with ITU-T Recommendations. For the position of the LQG board in the WDM system, see Figure 13-81. Figure 13-81 Position of the LQG board in the WDM system LQG
LQG
1
1×ODU5G
4
M U X / D M U X
1×OTU5G/FEC5G
1×ODU5G
GE
1×OTU5G/FEC5G
1
M U X / D M U X
GE
4 GE
GE
OptiX OSN 6800: From/To paired slot or cross-connect board OptiX OSN 3800: From/To mesh group slot
13.15.3 Functions and Features The LQG board is mainly used to achieve wavelength tunable and cross-connect at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-177. Table 13-177 Functions and features of the LQG board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
LQG converts signals: 4 x GE <-> 1 x OTU5G/FEC5G
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
568
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Crossconnect capabilities
l OptiX OSN 6800: Supports the grooming of four channels of GE services each to working/protection cross-connection boards respectively through the backplane, and supports the transmission of four GE signals to the paired slots through the backplane. l OptiX OSN 3800: Supports the grooming of four GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Provides the OTU5G/FEC5G interface on WDM-side. l Supports PM and TCM function for ODU5G. l Supports SM functions for OTU5G.
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
Supported
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures.
l Supports ITU-T G.694.2-compliant CWDM specifications.
l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
569
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
IEEE 802.3z
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
570
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.15.4 Working Principle and Signal Flow The LQG board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-82 shows the functional modules and signal flow of the LQG board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
571
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-82 Functional modules and signal flow of the LQG board Backplane (service corss-connection)
GE
Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
E/O GE OTN Crossencapsulation processing connect and mapping module module module
Client-side
optical module
O/E
OUT
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LQG board accesses GE optical signals. In the signal flow of the LQG board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LQG to the WDM side of the LQG, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of GE optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the four channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU5G/FEC5G signals. The OTU5G/FEC5G signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU5G/FEC5G optical signals through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of the ITU-T G.694.1-compliant at DWDM standard wavelengths OTU5G/FEC5G optical signals from the WDM side through the IN optical interface. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
572
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, the OTU5G/FEC5G signals are sent to the signal processing module. The module performs operations such as OTU5G/FEC5G framing, decoding of FEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs four channels of GE signals. The client-side optical module performs E/O conversion of the four channels of electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of GE optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU5G/FEC5G optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU5G/FEC5G optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. And also grooms the electrical signals between the LQG and the board in the paired slot or the crossconnect board through the backplane. The grooming service signals are GE signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. And also grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE signals. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the OTU5G/ FEC5G payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module Frames OTU5G/FEC5G signals, processes overheads in OTU5G/FEC5G signals, and performs FEC encoding and decoding.
l
Control and communication module – Controls operations on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
573
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.15.5 Front Panel There are indicators and interfaces on the front panel of the LQG board.
Appearance of the Front Panel Figure 13-83 shows the front panel of the LQG board. Figure 13-83 Front panel of the LQG board
LQG STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 OUT IN
LQG
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
574
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-178 lists the type and function of each interface. Table 13-178 Types and functions of the interfaces on the LQG board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.15.6 Valid Slots One slot houses one LQG board.
Valid Slots Table 13-179 shows the valid slots for the LQG board. Table 13-179 Valid slots for the LQG board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
575
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 3800 chassis
IU2-IU5
13.15.7 Characteristic Code for the LQG The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.15.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-180 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-180 Mapping between the physical ports on the LQG board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, LP is a logical port of the board. Figure 13-84 shows the application model of the LQG board. Table 13-181 describes the meaning of each port. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
576
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-84 Port diagram of the LQG board WDM side
Client side 201(LP/LP)-1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(LP/LP)-2 201(LP/LP)-3 201(LP/LP)-4 Cross-connect module
201(LP/LP)-1
Service processing module
1(IN/OUT)-1
WDM-side optical module
Table 13-181 Description of NM port of the LQG board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
LP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
IN/OUT
Corresponding to the WDM-side optical interfaces.
13.15.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LQG board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the GE crossconnection between the RX/TX and LP ports. The cross-connect grooming of GE services is implemented through the cross-connect module. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and LP ports of the LQG board (Create the internal straight-through and cross-connection of the board), as shown and
in Figure 13-85.
– Create the cross-connection between the RX/TX port of the LQG board and the LP port of other boards (The GE services accessed from the client side of the LQG board are cross-connected to the WDM side of other boards for protection and the inter-board service convergence), as shown
3
in Figure 13-85.
– Create the cross-connection between the RX/TX port of other boards and the LP port of the LQG board (The GE services accessed from the client side of other boards are cross-connected to the WDM side of the LQG board for protection and the inter-board service convergence), as shown
4
in Figure 13-85.
NOTE
One optical path of the LP port can be created with a connection to only one RX/TX port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
577
OptiX OSN 8800/6800/3800 Hardware Description
l
Create the cross-connection between the LP port of the LQG board and the LP port of other boards (The GE services accessed from the WDM side of the LQG board are crossconnected to the WDM side of other board for the grooming of the WDM-side services), as shown
l
13 Optical Transponder Unit
5
in Figure 13-85.
The four paths of the LP port are converged into one channel, which is connected to the IN/OUT port. There is no need for configuration on the U2000.
Figure 13-85 Cross-connection diagram of the LQG board Client side
Other board
Client side
3(RX1/TX1)-1
201(LP/LP)-1
4(RX2/TX2)-1
201(LP/LP)-2
5(RX3/TX3)-1
201(LP/LP)-3
6(RX4/TX4)-1
201(LP/LP)-4
5
3(RX1/TX1)-1 4(RX2/TX2)-1
3
5(RX3/TX3)-1 6(RX4/TX4)-1
4 2 1
201(LP/LP)-1
WDM side
WDM side
201(LP/LP)-2 201(LP/LP)-3 201(LP/LP)-4
LQG The straight-through of the board
1
The internal cross-connection of the board
2
The client side of the LQG board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LQG board The WDM side of the LQG board are cross-connected to the WDM side of other boards
3 4 5
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
13.15.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of LQG, refer to Table 13-182. Table 13-182 LQG Parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
578
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
GE, GE(GFP-T) Default: GE
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Off, On
Laser Status
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Service Mode
OTN, SDH
Default: Enabled
Default: OTN LPT Enabled
Disabled, Enabled Default: Disabled
FEC Working State
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable the link pass-through (LPT) function. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
579
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: 9600
Default: 1000M FullDuplex
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. Click D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
580
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
PRBS Test Status
Disabled, Enabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.15.11 LQG Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L QG
N/A
2.125 Gbit/s Multirate-0.5 km
3400 ps/nm-C BandFixed WavelengthNRZ-APD
5 Gbit/s Multirate (eSFP CWDM)-50 km
3400 ps/nm-C BandTunable WavelengthNRZ-APD
5 Gbit/s Multirate (eSFP CWDM)-70 km
1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
581
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Client-Side Pluggable Optical Module Table 13-183 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
582
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-184 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
583
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-185 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 3400 ps/nm-C BandFixed WavelengthNRZ-APD
3400 ps/nm-C BandTunable Wavelength-NRZAPD
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-2
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
3400
3400
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-25
-25
Minimum receiver overload
dBm
-9
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
APD
584
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Pluggable Optical Module Table 13-186 CWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 5 Gbit/s Multirate (eSFP CWDM)-50 km
5 Gbit/s Multirate (eSFP CWDM)-70 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
50 km (31.1 mi.)
70 km (43.5 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
2
2
Minimum extinction ratio
dB
5
5
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Dispersion tolerance
ps/nm
1000
1400
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1450 to 1620
1450 to 1620
Receiver sensitivity
dBm
-18
-28
Minimum receiver overload
dBm
0
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
585
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.3 kg (2.9 lb.)
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LQG
3400 ps/nm-C BandFixed WavelengthNRZ-APD
28.4
32
3400 ps/nm-C BandTunable Wavelength-NRZAPD
31.0
34.4
5 Gbit/s Multirate (eSFP CWDM)-50 km
23.18
26
5 Gbit/s Multirate (eSFP CWDM)-70 km
13.16 LQM LQM: 4-channel multi-rate (100Mbit/s-2.5Gbit/s) OTU1 wavelength conversion board
13.16.1 Version Description The available functional version of the LQM board is TN13.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 3LQ M
Y
Y
N
Y
Y
Y
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
586
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Type The system provides two types of the LQM: One has a pair of input and output optical interfaces, and the other has two pairs of input and output optical interfaces. Table 13-187 lists the types of the LQM. Table 13-187 LQM type description Board
Type
Description
LQM
Single transmitting and single receiving board
The WDM-side interfaces are IN1/ OUT1.
Dual-fed selective receiving board
The WDM-side interfaces are IN1/ OUT1 and IN2/OUT2.
NOTE
The WDM-side interfaces of the LQM board are dynamic optical interfaces. Before configuring dual fed and selective receiving, make sure the optical interfaces have been uploaded manually on the U2000.
13.16.2 Application The LQM is a type of optical transponder unit. The LQM converts between signals at the rate between 100 Mbit/s-2.5 Gbit/s and ITU-T Recommendation-compliant WDM signals. For the position of the LQM in the WDM system, see Figure 13-86 and Figure 13-87. Figure 13-86 Position of the LQM in the WDM system (single fed and single receiving) RX1
LQM
LQM
TX1
RX1
100Mbit/s – 2.5Gbit/s
1×ODU1
TX4
M U X IN1 / D OUT1 M U X
1×OTU1
1×OTU1
1×ODU1
100Mbit/s – 2.5Gbit/s RX4
M U OUT1 X / IN1 D M U X
TX1
100Mbit/s – 2.5Gbit/s TX4 RX4 100Mbit/s – 2.5Gbit/s
OptiX OSN 8800: N/A OptiX OSN 6800: l GE: From/To cross-connect board l 100 Mbit/s to 2.5 Gbit/s signals: From/To paired slot OptiX OSN 3800: From/To mesh group slot
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
587
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-87 Position of the LQM in the WDM system (dual fed and selective receiving) RX1
LQM
MUX/ IN1 DMUX
TX1
MUX/ IN2 DMUX
TX4
LQM
TX1
MUX/ DMUX OUT1
IN2 MUX/ DMUX OUT2
RX1
1×ODU1
OUT2
IN1
1×OTU1
1×OTU1
1×ODU1
100Mbit/s – 2.5Gbit/s RX4
OUT1
100Mbit/s – 2.5Gbit/s
100Mbit/s – 2.5Gbit/s TX4 RX4 100Mbit/s – 2.5Gbit/s
OptiX OSN 8800: N/A OptiX OSN 6800: l GE: From/To cross-connect board l 100 Mbit/s to 2.5 Gbit/s signals: From/To paired slot OptiX OSN 3800: From/To mesh group slot
NOTE
The total rate of four channels of services at the client side cannot exceed 2.5 Gbit/s. The LQM board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
13.16.3 Functions and Features The main functions and features supported by the LQM are cross-connection at the electrical layer, OTN interfaces and ESC. For detailed functions and features, refer to Table 13-188. Table 13-188 Functions and features of the LQM Function and Feature
Description
Basic function
LQM converts signals: l 4 x (100 Mbit/s to 2.5 Gbit/s) signals<-> 1 x OTU1. l Implements the dual fed and selective receiving function or single fed and single receiving function on the WDM side according to the application scenario.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
588
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
Crossconnect capabilities
OptiX OSN 8800: N/A. OptiX OSN 6800: l Supports the grooming of four channels of GE services each to working/ protection cross-connection boards respectively through the backplane. l Supports the transmission of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s to the paired slots through the backplane. OptiX OSN 3800: l Supports the grooming of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. l Supports the grooming of four GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l The encapsulation and mapping process is compliant with GDPS, ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported
l Supports ITU-T G.694.2-compliant CWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
589
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
PRBS test function
Supports the PRBS function on the client side and WDM side.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
The board supports the test frame function only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection. NOTE OptiX OSN 8800 supports client-side 1+1 protection, intra-board 1+1 protection and the OWSP protection.
Issue 03 (2013-05-16)
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
590
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Loopback
WDM side
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
591
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
592
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.16.4 Working Principle and Signal Flow The LQM board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-88 and Figure 13-89 show the functional modules and signal flow of the LQM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
593
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-88 Functional modules and signal flow of the LQM (OptiX OSN 8800) Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
Service encapsulation and mapping module
Client-side optical module
E/O OTN processing module
Signal processing module
O/E
OUT1 OUT2 IN1 IN2
WDM-side optical module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
594
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-89 Functional modules and signal flow of the LQM (OptiX OSN 6800/3800) Backplane(service cross-connection) 100Mbit/s-2.5Gbit/s
Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
Crossconnect module
Client-side optical module
Service OTN encapsulation processing and mapping module module
E/O
O/E
OUT1 OUT2 IN1 IN2
WDM-side optical module
Signal processing module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LQM board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LQM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LQM to the WDM side of the LQM, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the Any optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the four channels of electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2. A laser converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1-OUT2 optical interfaces.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
595
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Receive direction The WDM-side optical module receives two channels of OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2 through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, and decapsulation processing. Then, the module outputs four channels of Any signals. The client-side optical module performs E/O conversion of the four channels of electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces. NOTE
Only one pair of WDM-side optical interfaces is used, the board implements the single fed and single receiving function on the WDM side.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 8800: N/A. – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. And also grooms the electrical signals between the LQM and the board in the paired slot or the crossconnect board through the backplane. The grooming service signals are Any signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. The signaling module also grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are Any signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
596
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.16.5 Front Panel There are indicators and interfaces on the front panel of the LQM board.
Appearance of the Front Panel Figure 13-90 shows the front panel of the LQM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
597
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-90 Front panel of the LQM board
LQM STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 OUT1 IN1 OUT2 IN2
LQM
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-189 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
598
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-189 Types and functions of the LQM interfaces Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.16.6 Valid Slots The LQM occupies one slot. Table 13-190 shows the valid slots for the LQM board. Table 13-190 Valid slots for the LQM board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
13.16.7 Characteristic Code for the LQM The board characteristic code comprises the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.16.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
599
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Display of Physical Ports Table 13-191 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-191 Mapping between the physical ports on the LQM board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 13-91 shows the application model of the LQM board. Table 13-192 describes the meaning of each port. Figure 13-91 Port diagram of the LQM Client side
WDM side 201(ClientLP/ClientLP)-1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(ClientLP/ClientLP)-1
201(ClientLP/ClientLP)-2 201(ClientLP/ClientLP)-3 201(ClientLP/ClientLP)-4 Cross-connect module
201(ClientLP/ClientLP)-2
Service processing module
1(IN1/OUT1)-1 2(IN2/OUT2)-1
WDM-side optical module
Table 13-192 Description of NM port of the LQM
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
600
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Port Name
Description
ClientLP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
IN1/OUT1-IN2/OUT2
These ports correspond to the WDM-side optical interfaces.
Configuration Principle of Timeslots : l
The transmit and receive timeslots should be specified for each board. In one direction, a timeslot cannot be shared by multiple services.
l
In one direction of one service, the timeslot of the receive end must be the same as that of the transmit end.
l
For each LQM board, the number of timeslots occupied by all services should not exceed 16.
l
For FC200, FICON Express, OC-48, STM-16, OTU1 and HD-SDI services, timeslots can be configured only in channel 1 of the LQM board.
l
Different service requires different number of timeslots. The number of timeslots required by each type of service is listed below.
Issue 03 (2013-05-16)
Service Type
Number of Timeslots
GE
7
FE
1
OTU1
16
STM-1
1
STM-4
4
STM-16
16
OC-3
1
OC-12
4
OC-48
16
FC100
6
FC200
12
FICON
6
FICON Express
12
HD-SDI
11
DVB-ASI
2
SDI
3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
601
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Service Type
Number of Timeslots
ESCON
2
FDDI
1
13.16.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LQM board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the RX/TX and ClientLP ports according to the actual service level (GE/Any/OTU1) and service type. The cross-connect grooming of GE/Any/OTU1 services is implemented through the cross-connect module. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and ClientLP ports of the LQM board (create the internal straight-through and cross-connection of the board), as shown by
and
in Figure 13-92.
– Create the cross-connection between the RX/TX port of the LQM board and the ClientLP port of other boards, as shown by 3 in Figure 13-92. (The GE/Any/OTU1 services accessed from the client side of the LQM board are cross-connected to the WDM side of other boards for protection and inter-board service convergence.) – Create the cross-connection between the RX/TX port of other boards and the ClientLP port of the LQM board, as shown by 4 in Figure 13-92. (The GE/Any/OTU1 services accessed from the client side of other boards are cross-connected to the WDM side of the LQM board for protection and inter-board service convergence.) NOTE
One RX/TX port can be connected to only one optical path of the ClientLP port. Only the first optical path of ClientLP ports supports OTU1 services.
l
Create the cross-connection between the ClientLP port of the LQM board and the ClientLP port of other boards, as shown by 5 in Figure 13-92. (The GE/Any/OTU1 services accessed from the WDM side of the LQM board are cross-connected to the WDM side of other board for the grooming of the WDM-side services.)
l
The two paths of the ClientLP port are respectively connected to the IN1/OUT1 and IN2/ OUT2 ports. There is no need for configuration on the U2000.
l
According to the service type configured on the ClientLP port, configure the transmit and receive timeslots. For details, see 13.16.8 Physical and Logical Ports.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
602
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-92 Cross-connection diagram of the LQM Client side
Client side
Other board 3(RX1/TX1)-1
201(ClientLP/ClientLP)-1
4(RX2/TX2)-1
201(ClientLP/ClientLP)-2
5(RX3/TX3)-1
201(ClientLP/ClientLP)-3
6(RX4/TX4)-1
201(ClientLP/ClientLP)-4
5
3(RX1/TX1)-1 4(RX2/TX2)-1
3
5(RX3/TX3)-1 6(RX4/TX4)-1
4 2 1
201(ClientLP/ClientLP)-1
WDM side
WDM side
201(ClientLP/ClientLP)-2 201(ClientLP/ClientLP)-3 201(ClientLP/ClientLP)-4
LQM 1
The straight-through of the board
2
The internal cross-connection of the board The client side of the LQM board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LQM board The WDM side of the LQM board are cross-connected to the WDM side of other boards
3 4 5
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
NOTE
The OptiX OSN 8800 supports only the cross-connections shown by (1) and (2) in Figure 13-92.
13.16.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For the parameters of the LQM, refer to Table 13-193. Table 13-193 LQM Parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
603
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, Any, FE, GE, GE(GFP-T), OTU-1, STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, FC-100, FC-200, FICON, FICON Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI Default: None
Client Service Bearer Rate (Mbit/s)
100 to 2200
Laser Status
Off, On
Default: 0
Default: l WDM side: On
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFPT), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
LPT Enabled
Disabled, Enabled
Default: Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link passthrough (LPT) function. Used to set the service mode of the board.
Default: Client Mode
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
604
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: Enabled
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: C
Default: 9600
Default: 1000M FullDuplex
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
605
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services.
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
SD Trigger Condition
Default: None
PRBS Test Status
Disabled, Enabled
NULL Mapping Status
Enabled, Disabled
Default: Disabled
Default: Disabled
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.16.11 LQM Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
606
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side WDM-Side Fixed Optical Pluggable Optical Module Module
TN 13L QM
N/A
I-16-2 km
N/A
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
S-16.1-15 km
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16/SR-1 OC-48 module, S-16.1/IR-1 OC-48 module, L-16.1/LR-1 OC-48 module and L-16.2/LR-2 OC-48 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-194 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
607
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
SLM
SLM
SLM
40 km (24.9 mi.)
80 km (49.7 mi.)
Optical source type
-
MLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
608
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE and DVB-ASI signals.
Table 13-195 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
609
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
9
9
9
Minimum extinction ratio
dB
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
The 1.25 Gbit/s Multi-rate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, DVB-ASI signals. NOTE
The 2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals.
Table 13-196 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
610
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
The 2.67 Gbit/s Multi-rate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
611
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-197 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
612
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Pluggable Optical Module Table 13-198 CWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
Target transmission distance
-
80 km (49.7 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Operating wavelength range
nm
1471 to 1611
Central wavelength deviation
nm
±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.959.1 - compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1270 to 1620
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 13-199 DWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
NRZ
613
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type Target transmission distance
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Center frequency
THz
192.10 to 196.00
Center frequency deviation
nm
±12.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (5% margin are required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
614
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN13LQM
32.6
35.9
13.17 LQMD LQMD: 4-channel multi-rate (100 Mbit/s-2.5 Gbit/s) OTU1 wavelength conversion unit, dual fed and selective receiving
13.17.1 Version Description The available functional versions of the LQMD board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LQM D
N
N
N
N
Y
Y
TN12 LQM D
Y
Y
N
N
Y
Y
Differences Between Versions l Board
Function: OTU1/HD-SDI/ SDI/FDDI services
WDM Specification
PRBS function Client side
WDM side
TN11LQMD
N
CWDM/DWDM
N
Y
TN12LQMD
Y
DWDM
Y
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
615
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
For details, see 13.17.3 Functions and Features. l
Specification: – For the specification of each version, see 13.17.11 LQMD Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11LQMD
TN12LQMD
The TN12LQMD can be created as TN11LQMD on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12LQMD functions as the TN11LQMD. NOTE A board equipped with a PIN receiver cannot substitute for a board equipped with an APD receiver, because the two types of receives support different input power ranges.
TN12LQMD
None
-
13.17.2 Application As a type of optical transponder unit, the LQMD board converts between signals at the rate of 100 Mbit/s to 2.5 Gbit/s and WDM signals that comply with ITU-T Recommendations, and dually feeds and selectively receives signals on the WDM side. For the position of the LQMD board in the WDM system, see Figure 13-93. Figure 13-93 Position of the LQMD board in the WDM system LQMD
RX1
IN1
TX1
MUX/ DMUX
MUX/ DMUX
LQMD
IN2 MUX/ DMUX OUT2
TX1 RX1
OUT1
1×ODU1
OUT2 IN2
TX4
MUX/ DMUX
1×OTU1
1×OTU1
1×ODU1
100Mbit/s – 2.5Gbit/s RX4
IN1
OUT1
100Mbit/s – 2.5Gbit/s
100Mbit/s – 2.5Gbit/s TX4 RX4 100Mbit/s – 2.5Gbit/s
OptiX OSN 8800: N/A OptiX OSN 6800: l GE: From/To cross-connect board l 100 Mbit/s to 2.5 Gbit/s signals: From/To paired slot OptiX OSN 3800: From/To mesh group slot
NOTE
The total rate of four channels of services at the client side cannot exceed 2.5 Gbit/s. The LQMD board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
616
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.17.3 Functions and Features The LQMD board is mainly used to achieve wavelength tunable and cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-200. Table 13-200 Functions and features of the LQMD board Function and Feature
Description
Basic function
LQMD converts signals as follows: l 4 x (100 Mbit/s to 2.5 Gbit/s)<-> 1 x OTU1. l Implements the dual fed and selective receiving function on the WDM side.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE Only TN12LQMD supports OTU1, HD-SDI, SDI and FDDI services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
617
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Crossconnect capabilities
OptiX OSN 8800: N/A. OptiX OSN 6800: l Supports the grooming of four channels of GE services each to working/ protection cross-connection boards respectively through the backplane. l Supports the transmission of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s to the paired slots through the backplane. OptiX OSN 3800 l Supports the grooming of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. l Supports the grooming of four GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l The encapsulation and mapping process is compliant with ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
WDM specification
TN11LQMD: l Supports ITU-T G.694.1-compliant DWDM specifications. l Supports ITU-T G.694.2-compliant CWDM specifications. TN12LQMD: Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
TN11LQMD: supports the PRBS function on the WDM side. TN12LQMD: supports the PRBS function on the client side and WDM side. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
Issue 03 (2013-05-16)
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
618
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services. NOTE TN11LQMD only supports Poisson mode.
ALS function
Supports the ALS function on the client side.
Test frame
TN11LQMD: not supported TN12LQMD: The board supports the test frame only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection. NOTE OptiX OSN 8800 supports client-side 1+1 protection, intra-board 1+1 protection and the OWSP protection.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
FE: 100M Full-Duplex
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
619
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
620
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.17.4 Working Principle and Signal Flow The LQMD board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-95 and Figure 13-94 show the functional modules and signal flow of the LQMD board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
621
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-94 Functional modules and signal flow of the LQMD board (OptiX OSN 8800) Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
E/O
Service encapsulation and mapping module
Client-side optical module
OTN processing module
Splitter
OUT1 OUT2 IN1 IN2
O/E WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
622
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-95 Functional modules and signal flow of the LQMD board (OptiX OSN 6800/OptiX OSN 3800) Backplane(service cross-connection)
100Mbit/s - 2.5Gbit/s
Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
Service encapsulation and mapping module
Client-side optical module
E/O OTN Crossprocessing connect module module
Splitter
O/E WDM-side optical module
Signal processing module
OUT1 OUT2 IN1 IN2
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LQMD board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LQMD board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LQMD to the WDM side of the LQMD, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the Any optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the four channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2. An optical splitter converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1-OUT2 optical interfaces.
l Issue 03 (2013-05-16)
Receive direction Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
623
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The WDM-side optical module receives two channels of OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, cross-connection and service decapsulation processing. Then, the module outputs four channels of Any signals. The client-side optical module performs E/O conversion of the four channels of electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 8800: not applicable. – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. The cross-connect module also grooms the electrical signals between the LQMD and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are Any signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. The cross-connect module also grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are Any signals. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
624
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.17.5 Front Panel There are indicators and interfaces on the front panel of the LQMD board.
Appearance of the Front Panel Figure 13-96 shows the front panel of the LQMD board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
625
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-96 Front panel of the LQMD board
LQMD STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 OUT1 IN1 OUT2 IN2
LQMD
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-201 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
626
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-201 Types and functions of the interfaces on the LQMD board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.17.6 Valid Slots One slot houses one LQMD board. Table 13-202 shows the valid slots for the TN11LQMD board. Table 13-202 Valid slots for TN11LQMD board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 13-203 shows the valid slots for the TN12LQMD board. Table 13-203 Valid slots for TN12LQMD board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
627
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.17.7 Characteristic Code for the LQMD The characteristic code for the LQMD board contains eight digits, respectively indicating the frequency values of two channels of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 13-204. Table 13-204 Characteristic code for the LQMD board Code
Description
Description
First four digits
Frequency of the forth optical signal
The last four digits of the frequency value of the first channel of signals on the WDM side.
Last four digits
Frequency of the forth optical signal
The last four digits of the frequency value of the second channel of signals on the WDM side.
For example, the characteristic code for the LQMD board is 92109210. "92109210" indicates the frequency of the two channels of optical signals on the WDM side is 192.10 THz.
13.17.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-205 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-205 Mapping between the physical ports on the LQMD board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
628
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 13-97 shows the application model of the LQMD board. Table 13-206 describes the meaning of each port. Figure 13-97 Port diagram of the LQMD board Client side
WDM side 201(ClientLP/ClientLP)-1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(ClientLP/ClientLP)-1
201(ClientLP/ClientLP)-2 201(ClientLP/ClientLP)-3 201(ClientLP/ClientLP)-4
201(ClientLP/ClientLP)-2
Service processing module
Cross-connect module
1(IN1/OUT1)-1 2(IN2/OUT2)-1
WDM-side optical module
NOTE
TN11LQMD: The optical paths of internal logical port are 201 (LP/LP)-1 to 201 (LP/LP)-4. TN12LQMD: The optical paths of internal logical port are 201 (ClientLP/ClientLP)-1 to 201 (ClientLP/ ClientLP)-4.
Table 13-206 Description of NM port of the LQMD board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
ClientLP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
IN1/OUT1-IN2/OUT2
These ports correspond to the WDM-side optical interfaces.
Configuration Principle of Timeslots : l
The transmit and receive timeslots should be specified for each board. In one direction, a timeslot cannot be shared by multiple services.
l
In one direction of one service, the timeslot of the receive end must be the same as that of the transmit end.
l
For each LQMD board, the number of timeslots occupied by all services should not exceed 16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
629
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
For FC200, FICON Express, OC-48, STM-16, OTU1, HD-SDI services, timeslots can be configured only in channel 1 of the LQMD board.
l
Different service requires different number of timeslots. The number of timeslots required by each type of service is listed below. Service Type
Number of Timeslots
GE
7
FE
1
OTU1
16
STM-1
1
STM-4
4
STM-16
16
OC-3
1
OC-12
4
OC-48
16
FC100
6
FC200
12
FICON
6
FICON Express
12
HD-SDI
11
DVB-ASI
2
SDI
3
ESCON
2
FDDI
1
13.17.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LQMD board is used to transmit services, the following items must be created on the U2000: l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the RX/TX and ClientLP ports according to the actual service level (GE/Any/OTU1) and service type. The cross-connect grooming of GE/Any/OTU1 services is implemented through the cross-connect module. The following three cross-connections can be created.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
630
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Create the cross-connection between the internal RX/TX and ClientLP ports of the LQMD board (create the internal straight-through and cross-connection of the board), as shown by
and
in Figure 13-98.
– Create the cross-connection between the RX/TX port of the LQMD board and the ClientLP port of other boards, as shown by 3 in Figure 13-98. (The GE/Any/OTU1 services accessed from the client side of the LQMD board are cross-connected to the WDM side of other boards for protection and inter-board service convergence.) – Create the cross-connection between the RX/TX port of other boards and the ClientLP port of the LQMD board, as shown by 4 in Figure 13-98. (The GE/Any/OTU1 services accessed from the client side of other boards are cross-connected to the WDM side of the LQMD board for protection and inter-board service convergence.) NOTE
One RX/TX port can be connected to only one optical path of the ClientLP port. Only the first optical path of ClientLP port supports OTU1 services.
l
Create the cross-connection between the ClientLP port of the LQMD board and the ClientLP port of other boards (The GE/Any/OTU1 services accessed from the WDM side of the LQMD board are cross-connected to the WDM side of other board for the grooming of the WDM-side services), as shown by
5
in Figure 13-98.
l
The two paths of the ClientLP port are respectively connected to the IN1/OUT1 and IN2/ OUT2 ports. There is no need for configuration on the U2000.
l
According to the service type configured on the ClientLP port, configure the transmit and receive timeslots. For details, see 13.17.8 Physical and Logical Ports. NOTE
The OptiX OSN 8800 only supports the cross-connections shown by
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
and
in Figure 13-98.
631
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-98 Cross-connection diagram of the LQMD board Client side
Client side
Other board 3(RX1/TX1)-1
201(ClientLP/ClientLP)-1
4(RX2/TX2)-1
201(ClientLP/ClientLP)-2
5(RX3/TX3)-1
201(ClientLP/ClientLP)-3
6(RX4/TX4)-1
201(ClientLP/ClientLP)-4
5
3(RX1/TX1)-1 4(RX2/TX2)-1
3
5(RX3/TX3)-1 6(RX4/TX4)-1
201(ClientLP/ClientLP)-1
4
WDM side
WDM side
201(ClientLP/ClientLP)-2
2
201(ClientLP/ClientLP)-3
1
201(ClientLP/ClientLP)-4
LQMD 1
The straight-through of the board
2
The internal cross-connection of the board The client side of the LQMD board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LQMD board The WDM side of the LQMD board are cross-connected to the WDM side of other boards
3 4 5
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
13.17.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LQMD, refer to Table 13-207. Table 13-207 LQMD parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
632
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Default: Used
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, Any, DVBASI, SDI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, GE(GFP-T), HD-SDI, OC-3, OC-12, OC-48, OTU-1, STM-1, STM-4, STM-16 Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only the TN12LQMD supports Any, SDI, FDDI, HD-SDI, and OTU-1 services. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFPT), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/s)
100 to 2200 Default: 0
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE Only TN12LQMD supports this parameter.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. Off, On
Laser Status
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
LPT Enabled
Disabled, Enabled
Default: Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link passthrough (LPT) function. Specifies the service mode for a board. NOTE Only TN12LQMD supports this parameter.
See D.32 Service Mode (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
633
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.05 0 to 80/1560.61/192.1 00
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: Enabled
l CWDM: 11/1471.00/208.1 70 to 18/1611.00/188.7 80 Default: / Planned Band Type
C, CWDM
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: C
Default: 9600
Default: 1000M FullDuplex
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
634
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services. Only the TN12LQMD supports this parameter.
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
SD Trigger Condition
Default: None
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only the TN12LQMD supports this parameter.
13.17.11 LQMD Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
635
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L QM D
N/A
I-16-2 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
TN 12L QM D
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD
N/A
12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
For information about the boards supported by the equipment, see Mappings Between the Board and Equipment in the Hardware Description.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
636
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16/SR-1 OC-48 module, S-16.1/IR-1 OC-48 module, L-16.1/LR-1 OC-48 module and L-16.2/LR-2 OC-48 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-208 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
637
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE and DVB-ASI signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
638
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-209 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
639
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, DVB-ASI signals. NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals.
Table 13-210 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
640
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals.
Table 13-211 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
641
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 13-212 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPIN
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPD
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels Tunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-4
-4
0
0
0
0
Minimum mean launched power
dBm
-8
-8
-5
-5
-5
-5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
642
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPIN
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPD
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels Tunable)
10
8.2
8.2
10
8.2
Minimum extinction ratio
dB
10
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1 - compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-18
-28
-18
-28
-28
-28
Minimum receiver overload
dBm
0
-9
0
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
Issue 03 (2013-05-16)
APD
1300 to 1575
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
643
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-213 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
–0.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤ ±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
644
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11 LQM D
12800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
57.1
65.7
61.1
67.2
31.1
34.3
12800 ps/nm-C Band-Fixed Wavelength-NRZ-APD 6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD 12800 ps/nm-C Band-Tunable Wavelength-NRZ-APD 6400 ps/nm-C Band-Tunable Wavelength-NRZ-APD (Four Channels-Tunable)
TN12 LQM D
-
13.18 LQMS LQMS: 4-channel multi-rate (100 Mbit/s-2.5 Gbit/s) OTU1 wavelength conversion unit, single fed and single receiving
13.18.1 Version Description The available functional versions of the LQMS board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
645
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LQM S
N
N
N
N
Y
Y
TN12 LQM S
Y
Y
N
N
Y
Y
Differences Between Versions l
Function:
Board
OTU1/HD-SDI/SDI/ FDDI services on client-side
WDM Specification
Grooming of ODU1 signal
TN11LQMS
N
CWDM/DWDM
N
TN12LQMS
Y
DWDM
Y
For details, see 13.18.3 Functions and Features. l
Specification: – For the specification of each version, see 13.18.11 LQMS Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11LQMS
TN12LQMS
The TN12LQMS can be created as TN11LQMS on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12LQMS functions as the TN11LQMS. NOTE A board equipped with a PIN receiver cannot substitute for a board equipped with an APD receiver, because the two types of receives support different input power ranges.
TN12LQMS
None
-
13.18.2 Application As a type of optical transponder unit, the LQMS board converts between signals at the rate of 100 Mbit/s to 2.5 Gbit/s and WDM signals that comply with ITU-T Recommendations or between ODU1 signals and WDM signals that comply with ITU-T Recommendations. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
646
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Application Scenario 1 for the TN11LQMS and TN12LQMS: Conversion Between Signals at the Rate of 100 Mbit/s to 2.5 Gbit/s and ITU-T RecommendationCompliant WDM Signals Figure 13-99 Position of the LQMS board in the WDM system (LQM Mode) RX1
LQMS
LQMS
OUT IN
TX4
RX1 100Mbit/s – 2.5Gbit/s TX4
1×ODU1
1×OTU1
1×ODU1
100Mbit/s – 2.5Gbit/s RX4
M U IN X / D OUT M U X
1×OTU1
M U X / D M U X
TX1
TX1
RX4 100Mbit/s – 2.5Gbit/s
100Mbit/s – 2.5Gbit/s OptiX OSN 8800: N/A OptiX OSN 6800: l GE: From/To cross-connect board l 100 Mbit/s to 2.5 Gbit/s signals: From/To paired slot OptiX OSN 3800: From/To mesh group slot
NOTE
The total rate of four channels of services at the client side cannot exceed 2.5 Gbit/s. The LQMS board can receive and transmit only one client service at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI) using its RX1/TX1 port pair.
Application Scenario 2 for the TN12LQMS: Conversion Between ODU1 Electrical Signals and ITU-T Recommendation-Compliant WDM Signals Figure 13-100 Position of the LQMS board in the WDM system (NS1 Mode) Client services
1xODU1
1xODU1
LQMS 1
LQMS
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1 1×ODU1
M U X IN / D OUT M U X
1×ODU1
M U OUT X / IN D M U X
1×OTU1
1×OTU1
Issue 03 (2013-05-16)
1×ODU1
8
1×ODU1
TOM
Client services
TOM 8
647
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Scenario 2 is supported on the OptiX OSN 6800/OptiX OSN 3800.
13.18.3 Functions and Features The LQMS board is mainly used to achieve wavelength tunable and cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-214. Table 13-214 Functions and features of the LQMS board Function and Feature
Description
Basic function
LQMS converts signals as follows: l 4 x (100 Mbit/s to 2.5 Gbit/s)<-> 1 x OTU1. l Maps ODU1 signal into OTU1 optical signal and converts it into the standard DWDM wavelength compliant with ITU-T G.694.1. The reverse process is similar.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE Only TN12LQMS supports OTU1,HD-SDI,SDI and FDDI services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
648
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Crossconnect capabilities
OptiX OSN 8800: N/A. OptiX OSN 6800: l TN11LQMS: – Supports the grooming of four channels of GE services each to working/protection cross-connection boards respectively through the backplane. – Supports the transmission of four signals at the rate between 100 Mbit/ s and 2.5 Gbit/s to the paired slots through the backplane. l TN12LQMS: – Supports the grooming of four GE signals or one ODU1 signal each to working/protection cross-connection boards respectively through the backplane. – Supports the transmission of four signals at the rate between 100 Mbit/ s and 2.5 Gbit/s to the paired slots through the backplane. OptiX OSN 3800 l TN11LQMS: – Supports the grooming of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. – Supports the grooming of four GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. l TN12LQMS: – Supports the grooming of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. – Supports the grooming of four GE signals or one ODU1 signal from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l The encapsulation and mapping process is compliant with ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports SM function for OTU1.
WDM specification
TN11LQMS: l Supports ITU-T G.694.1-compliant DWDM specifications. l Supports ITU-T G.694.2-compliant CWDM specifications. TN12LQMS: Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Issue 03 (2013-05-16)
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
649
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
ESC function
Supported.
PRBS test function
TN11LQMS: supports the PRBS function on the WDM side. TN12LQMS: supports the PRBS function on the client side and WDM side. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, or STM-16/OC-48.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services. NOTE TN11LQMS only supports Poisson mode.
ALS function
Supports the ALS function on the client side.
Test frame
TN11LQMS: not supported TN12LQMS: the board supports the test frame function only when the clientside service type is FE or GE.
Opticallayer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports client 1+1 protection. l Supports OWSP protection. l Supports MS SNCP protection. l Supports the tributary SNCP protection (NS1 Mode). l Supports the ODUk SNCP (NS1 Mode). NOTE OptiX OSN 8800 supports client-side 1+1 protection and the OWSP protection.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
650
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
FE: 100M Full-Duplex
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
GE(GFP-F): 1000M Full-Duplex, Auto-Negotiation
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
651
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
652
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.873.1 ITU-T G.8201 ITU-T G.694.1 ITU-T G.694.2
13.18.4 Working Principle and Signal Flow The LQMS board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-101, Figure 13-102 and Figure 13-103 show the functional modules and signal flow of the LQMS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
653
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-101 Functional modules and signal flow of the TN12LQMS board (OptiX OSN 8800) Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O Client-side optical module
Service encapsulation and mapping module
OTN processing module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
654
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-102 Functional modules and signal flow of the TN11LQMS and TN12 LQMS board (LQM mode) (OptiX OSN 6800/OptiX OSN 3800) Backplane(service cross-connection) 100Mbit/s - 2.5Gbit/s Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
Service CrossOTN connect encapsulation processing module and mapping module module
Client-side optical module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow (Conversion Between Signals at the Rate of 100 Mbit/s to 2.5 Gbit/s and ITU-T Recommendation-Compliant WDM Signals) The client side of the LQMS board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s). In the signal flow of the LQMS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LQMS to the WDM side of the LQMS, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the Any optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the four channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU1 optical signals at DWDM wavelengths that comply
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
655
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2 through the OUT optical interface. l
Receive direction The WDM-side optical module receives one channel of OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as OTU1 framing, decoding of FEC, demapping, decapsulation processing and service cross-connection. Then, the module outputs four channels of Any signals. The client-side optical module performs E/O conversion of the four channels of electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Figure 13-103 Functional modules and signal flow of the TN12LQMS board (NS1 mode)(OptiX OSN 6800/OptiX OSN 3800) ODU1
Backplane(service cross-connection) WDM side E/O
Crossconnect module
OTN processing module
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
656
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Signal Flow (Conversion Between ODU1 Electrical Signals and ITU-T Recommendation-Compliant WDM Signals) In the signal flow of the LQMS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LQMS to the backplane of the LQMS, and the receive direction is defined as the reverse direction. l
Transmit direction The signal processing module receives ODU1 electrical signals sent from the backplane. The module performs operations such as OTN framing, and encoding of FEC. Then, the module outputs one channel of OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU1 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as OTU1 framing and decoding of FEC. Then, the module sends out one channel of ODU1 signals to the backplane for service cross-connection.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU1 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU1 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 8800: N/A. – OptiX OSN 6800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. The cross-connect module also grooms the electrical signals between the LQMS and the board in the
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
657
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
paired slot or the cross-connect board through the backplane. The grooming service signals are Any/ODU1 signals. – OptiX OSN 3800: Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board. The cross-connect module also grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are Any/ODU1 signals. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and monitors Any performance. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.18.5 Front Panel There are indicators and interfaces on the front panel of the LQMS board.
Appearance of the Front Panel Figure 13-104 shows the front panel of the LQMS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
658
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-104 Front panel of the LQMS board
LQMS STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 OUT IN
LQMS
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-215 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
659
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-215 Types and functions of the interfaces on the LQMS board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.18.6 Valid Slots One slot houses one LQMS board. Table 13-216 shows the valid slots for the TN11LQMS board. Table 13-216 Valid slots for TN11LQMS board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 13-217 shows the valid slots for the TN12LQMS board. Table 13-217 Valid slots for TN12LQMS board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
660
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.18.7 Characteristic Code for the LQMS The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.18.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-218 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-218 Mapping between the physical ports on the LQMS board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 13-105 and Figure 13-106 show the application model of the LQMS board. Table 13-219 describes the meaning of each port. Figure 13-105 Port diagram of the TN11LQMS/TN12LQMS board (LQM Mode) Client side 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
WDM side 201(ClientLP/ClientLP)-1 201(ClientLP/ClientLP)-2
Cross-connect module
Issue 03 (2013-05-16)
201(ClientLP/ClientLP)-1
201(ClientLP/ClientLP)-3 201(ClientLP/ClientLP)-4 Service processing module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1(IN1/OUT1)-1
WDM-side optical module
661
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
TN11LQMS: The optical paths of internal logical port are 201 (LP/LP)-1 to 201 (LP/LP)-4. TN12LQMS (LQM Mode): The optical paths of internal logical port are 201 (ClientLP/ClientLP)-1 to 201 (ClientLP/ClientLP)-4.
Figure 13-106 Port diagram of the TN12LQMS board (NS1 Mode) WDM side 51(ODU1LP/ODU1LP)-1
Cross-connect module
51(ODU1LP/ODU1LP)-1
Service processing module
1(IN1/OUT1)-1
WDM-side optical module
Table 13-219 Description of NM port of the LQMS board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
ClientLP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
ODU1LP
Internal logical port.
IN/OUT
These ports correspond to the WDM-side optical interfaces.
Configuration Principle of Timeslots : l
The transmit and receive timeslots should be specified for each board. In one direction, a timeslot cannot be shared by multiple services.
l
In one direction of one service, the timeslot of the receive end must be the same as that of the transmit end.
l
For each LQMS board, the number of timeslots occupied by all services should not exceed 16.
l
For FC200, FICON Express, OC-48, STM-16, OTU1, and HD-SDI services, timeslots can be configured only in channel 1 of the LQMS board.
l
Different service requires different number of timeslots. The number of timeslots required by each type of service is listed below.
Issue 03 (2013-05-16)
Service Type
Number of Timeslots
GE
7 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
662
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Service Type
Number of Timeslots
FE
1
OTU1
16
STM-1
1
STM-4
4
STM-16
16
OC-3
1
OC-12
4
OC-48
16
FC100
6
FC200
12
FICON
6
FICON Express
12
HD-SDI
11
DVB-ASI
2
SDI
3
ESCON
2
FDDI
1
13.18.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the LQMS board is used to transmit services, set Board Mode in Configuration > WDM interfaces on the U2000. The valid values of the board mode field are LQM Mode and NS1 Mode. NOTE
The TN11LQMS board does not require the configuration of the board mode. The electrical cross-connect services of the TN11LQMS are created in the same way as the electrical cross-connect services of the TN12LQMS in the LQM mode.
LQM Mode: l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the RX/TX and ClientLP ports according to the actual service level (GE/Any/OTU1) and service type. The cross-connect grooming of GE/Any/OTU1 services is implemented through the cross-connect module. The following three cross-connections can be created.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
663
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Create the cross-connection between the internal RX/TX and ClientLP ports of the LQMS board (create the internal straight-through and cross-connection of the board), as shown by
and
in Figure 13-107.
– Create the cross-connection between the RX/TX port of the LQMS board and the ClientLP port of other boards, as shown by 3 in Figure 13-107. (The GE/Any/OTU1 services accessed from the client side of the LQMS board are cross-connected to the WDM side of other boards for protection and inter-board service convergence.) – Create the cross-connection between the RX/TX port of other boards and the ClientLP port of the LQMS board, as shown by 4 in Figure 13-107. (The GE/Any/OTU1 services accessed from the client side of other boards are cross-connected to the WDM side of the LQMS board for protection and inter-board service convergence.) NOTE
One RX/TX port can be connected to only one optical path of the ClientLP port. Only the first optical path of ClientLP ports supports OTU1 services.
l
Create the cross-connection between the ClientLP port of the LQMS board and the ClientLP port of other boards, as shown by 5 in Figure 13-107. (The GE/Any/OTU1 services accessed from the WDM side of the LQMS board are cross-connected to the WDM side of other board for the grooming of the WDM-side services.)
l
The two paths of the ClientLP port are respectively connected to the IN/OUT ports. There is no need for configuration on the U2000.
l
According to the service type configured on the ClientLP port, configure the transmit and receive timeslots. For details, see 13.18.8 Physical and Logical Ports.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
664
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-107 Cross-connection diagram of the LQMS board Client side
201(ClientLP/ClientLP)-1
3(RX1/TX1)-1
201(ClientLP/ClientLP)-2
4(RX2/TX2)-1
Client side
WDM side
Other board
5(RX3/TX3)-1
201(ClientLP/ClientLP)-3
6(RX4/TX4)-1
201(ClientLP/ClientLP)-4
5
3(RX1/TX1)-1 4(RX2/TX2)-1
3
5(RX3/TX3)-1 6(RX4/TX4)-1
4 2 1
201(ClientLP/ClientLP)-1
WDM side
201(ClientLP/ClientLP)-2 201(ClientLP/ClientLP)-3 201(ClientLP/ClientLP)-4
LQMS 1
The straight-through of the board
2
The internal cross-connection of the board The client side of the LQMS board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the LQMS board The WDM side of the LQMS board are cross-connected to the WDM side of other boards
3 4 5
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
NOTE
The OptiX OSN 8800 supports only the cross-connections shown by
and
in Figure 13-107.
NS1 Mode (Supported only by the OptiX OSN 6800 and OptiX OSN 3800): l
Create the cross-connection between the ODU1LP port of the LQMS board and the ClientLP port of other boards shown in Figure 13-108.
l
The four paths of the ODU1LP port are respectively connected to the IN/OUT ports. There is no need for configuration on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
665
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-108 Cross-connection diagram of the LQMS board Client side
Other board 3(RX1/TX1)-1
201(ClientLP/ClientLP)-1
4(RX2/TX2)-1
201(ClientLP/ClientLP)-2
5(RX3/TX3)-1
201(ClientLP/ClientLP)-3
6(RX4/TX4)-1
201(ClientLP/ClientLP)-4
WDM side
WDM side
51(ODU1LP/ODU1LP)-1
LQMS The WDM side of the LQMS board are cross-connected to the WDM side of other boards
Other board TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
13.18.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LQMS, refer to Table 13-220. Table 13-220 LQMS parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queryies the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Issue 03 (2013-05-16)
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
666
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, DVB-ASI, SDI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, GE(GFPT), HD-SDI, OC-3, OC-12, OC-48, OTU-1, STM-1, STM-4, STM-16 Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only the TN12LQMS supports Any, SDI, FDDI, HD-SDI, and OTU-1 services. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/ s)
100 to 2200 Default: 0
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE Only TN12LQMS supports this parameter.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. Off, On
Laser Status
Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
LPT Enabled
Disabled, Enabled
Default: Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link pass-through (LPT) function. Specifies the service mode for a board. NOTE Only TN12LQMS supports this parameter.
See D.32 Service Mode (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
667
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Default: Enabled
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM Default: C
Max. Packet Length
1518 to 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex
Default: 9600
Default: 1000M FullDuplex
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
668
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services. Only the TN12LQMS supports this parameter.
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
SD Trigger Condition
Default: None
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled
Board Mode
LQM Mode, NS1 Mode
Default: Disabled
Default: LQM Mode
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Specifies the board mode depending on the service application scenario. NOTE This parameter is only available for TN12LQMS.
See D.2 Board Mode (WDM Interface) for more information.
13.18.11 LQMS Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
669
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L QM S
N/A
I-16-2 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
TN 12L QM S
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD
N/A
12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
For information about the boards supported by the equipment, see Mappings Between the Board and Equipment in the Hardware Description.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
670
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16/SR-1 OC-48 module, S-16.1/IR-1 OC-48 module, L-16.1/LR-1 OC-48 module and L-16.2/LR-2 OC-48 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 13-221 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
671
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE and DVB-ASI signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
672
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-222 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
673
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, or DVB-ASI signals. The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Table 13-223 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
674
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Maximum reflectance
dB
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
-27
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Table 13-224 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
675
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 13-225 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPIN
12800 ps/ nm-C BandFixed Waveleng th-NRZAPD
6500 ps/ nm-C BandFixed Waveleng th-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Waveleng th-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four Channels -Tunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-1
-1
3
3
3
3
Minimum mean launched power
dBm
-5
-5
-2
-2
-2
-2
Minimum extinction ratio
dB
10
10
8.2
8.2
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
676
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPIN
12800 ps/ nm-C BandFixed Waveleng th-NRZAPD
6500 ps/ nm-C BandFixed Waveleng th-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Waveleng th-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four Channels -Tunable)
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1-compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-18
-28
-18
-28
-28
-28
Minimum receiver overload
dBm
0
-9
0
-9
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
1300 to 1575
Table 13-226 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
677
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
2.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.3 kg (2.9 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
678
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1LQ MS
12800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
56.3
64.5
60.4
66.4
29
32.3
12800 ps/nm-C Band-Fixed Wavelength-NRZ-APD 6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD 12800 ps/nm-C Band-Tunable Wavelength-NRZ-APD 6400 ps/nm-C Band-Tunable Wavelength-NRZ-APD (Four Channels-Tunable)
TN1 2LQ MS
-
13.19 LSC LSC: 100Gbit/s wavelength conversion board
13.19.1 Version Description The available functional version of the LSC board is TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN12 LSC
Y
Y
Y
Y
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
679
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Variants Table 13-227 Available variants of the TN12LSC board Variant
WDM-Side Fixed Optical Module
FEC Encoding
T01
40000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
HFEC
T11
55000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(SDFEC. RZ)-PIN
SDFEC
13.19.2 Application The LSC board is a wavelength conversion board and applies to coherent systems. In the receive direction, the board receives one 100GE optical signal from the client equipment, maps the optical signal into an OTU4 signal, and converts the OTU4 signal into a standard WDM wavelength. For the position of the LSC board in the WDM system, see Figure 13-109. Figure 13-109 Position of the LSC board in the WDM system
LSC M U X / D M U X
1×ODU4
M U X / D M U X
1×OTU4
1×OTU4
1×ODU4
100GE
LSC
100GE
13.19.3 Functions and Features The LSC board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, see Table 13-228.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
680
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-228 Functions and features of the LSC board Function and Feature
Description
Basic function
LSC converts signal as follows: l 1x 100GE<->1x OTU4
Client-side service type
100GE: Ethernet service at a rate of 103.125 Gbit/s.
OTN function
l Provides the OTU4 interface on WDM-side. l Supports the OTN frame format and overhead processing compliant with ITU-T G.709. l Supports PM and TCM functions for ODU4. l Supports TCM non-intrusive monitoring for ODU4. l Supports SM function for OTU4.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
The board can tune the optical signal output on the WDM side within the range of 80 wavelengths in C-band with the channel spacing of 50 GHz.
ESC function
Supported
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encoding
Supports HFEC and SDFEC on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services. l Supports the monitoring of CD and PMD performance.
Issue 03 (2013-05-16)
Regeneration board
WDM-side signals from this board can be regenerated by another TN11LTX or TN54NS4
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Optical-layer ASON
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
681
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Loopback
Client side
l Supports intra-board 1+1 protection. Inloop
Supported
Outloop WDM side
Inloop
Supported
Outloop Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ba
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.19.4 Working Principle and Signal Flow The LSC board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-110 shows the functional modules and signal flow of the LSC.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
682
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-110 Functional modules and signal flow of the LSC board Client side RX TX
WDM side O/E
100GE OTN Service processing encapsulation module and mapping module
E/O Clientside optical module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control Memory
Communication
CPU
Control and communication module
Fuse
Power supply module
Required voltage
DC power supply from the backplane
SCC
Backplane (controlled by the SCC)
Signal Flow In the signal flow of the LSC board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LSC to the WDM side of the LSC, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of the optical signal from client equipment through the RX interface, and performs O/E conversion. After performing the O/E conversion, the client-side optical module sends the electrical signal to the signal processing module. Then, the signal processing module performs encapsulation, OTN framing, and HFEC/SDFEC coding and outputs one channel of OTU4 signal to the WDM-side optical module. After receiving the OTU4 signal, the WDM-side optical module performs E/O conversion, generates OTU4 signal at DWDM wavelength that complies with ITU-T G.694.1, and then outputs the OTU4 signal through the OUT optical interfaces.
l
Receive direction The WDM-side optical module receives one channel of standard DWDM optical signal compliant with ITU-T G.694.1 through the IN optical interface. The WDM-side optical module then converts the OTU4 optical signal into electrical signal.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
683
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After the O/E conversion, the electrical signal is sent to the signal processing module, which performs OTU4 framing, HFEC/SDFEC decoding, demapping, and decapsulation for the signal and then outputs one channel of the client-side electrical signal. The channel of the client-side electrical signal is sent to the client-side optical module, which converts the electrical signal into optical signal and then outputs the optical signal through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: performs O/E conversion for one channel of 100GE optical signal. – Client-side transmitter: converts one channel of electrical signal into one channel of 100GE optical signal. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of the OTU4 optical signal. – WDM-side transmitter: Performs E/O conversion from the internal electrical signal to OTU4 optical signal. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of a service encapsulation and mapping module and an OTN processing module. – Service encapsulation and mapping module Encapsulates one channel of 100GE signal, maps the signal into the payload of an OTU4 frame, and performs the reverse process. The service encapsulation and mapping module supports monitoring of 100GE signal performance. – OTN processing module Frames OTU4 signal, processes overheads in OTU4 signal, and performs the HFEC/ SDFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.19.5 Front Panel There are indicators and interfaces on the front panel of the LSC board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
684
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Appearance of the Front Panel Figure 13-111 show the front panel of the TN12LSC board. Figure 13-111 Front panel of the TN12LSC board
LSC STAT ACT PROG SRV
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
OUT IN
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
TX RX
LSC
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
685
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-229 lists the type and function of each interface. Table 13-229 Types and functions of the interfaces on the LSC board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.19.6 Valid Slots Four slots house one TN12LSC board. Table 13-230 shows the valid slots for the TN12LSC board. Table 13-230 Valid slots for the TN12LSC board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU5, IU11-IU15, IU19-IU23, IU27IU31, IU35-IU39, IU45-IU49, IU53-IU57, IU61-IU65
OptiX OSN 8800 T32 subrack
IU1-IU5, IU12-IU16, IU20-IU24, IU29IU33
OptiX OSN 8800 T16 subrack
IU1-IU5, IU11-IU15
OptiX OSN 8800 platform subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
686
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU14
NOTE
The LSC board occupies four slots. The rear connector for connecting the LSC board to the backplane is located in the left slot of the four slots. Therefore, the slot number for the LSC board is displayed as the left slot of the four slots on the NMS. For example, if the LSC board is housed in the slots IU1, IU2, IU3, and IU4, then the slot number for the LSC board is displayed as IU1 on the NMS.
13.19.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS.
Display of Physical Ports Table 13-231 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-231 Mapping between the physical ports on the LSC board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.19.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LSC, refer to Table 13-232. Table 13-232 LSC parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
687
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Service Type
100GE
Optical Interface Loopback
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: 100GE
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
688
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS , BW_WDM_Defect, FW_OPUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
689
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Default: Enabled
FEC Mode
HFEC, SDFEC
Queries the FEC mode of the current optical interface.
Receive Wavelength
l C: 1/1529.16/196.0 50 to 80/1560.61/192. 100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
Default: /
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE In the case of ASON services, this parameter must be set to the default value.
Receive Band Type
C Default: C
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.0 50 to 80/1560.61/192. 100
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Default: /
Issue 03 (2013-05-16)
The Receive Band Typeparameter sets the receive band type of a board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
690
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Band Type
C
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Default: C
PRBS Test Status
Disabled, Enabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Dispersion Compensation Value
-
Queries the dispersion compensation value of the board.
PMD Threshold (ps)
-
Queries the PMD threshold of the board.
NULL Mapping Status
Enabled, Disabled
This parameter is reserved for future use.
Default: Disabled
13.19.9 LSC Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 12L SC
N/A
100GBASE-10×10G10 km(CFP)
40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)PIN
N/A
100GBASE-LR4-10 km(CFP)
55000 ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
NOTE
A 100GBASE-10×10G-10km optical module cannot connect to an IEEE 100GBASE-SR10 module. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
691
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Client-Side Pluggable Optical Module Table 13-233 Client-side pluggable optical module specifications (100GE services) Parameter
Unit
Optical Module Type Line code format
Value 100G BASE-LR4-10 km (CFP)
-
NRZ
Transmitter parameter specifications at point S Signaling Speed per Lane
Gbit/s
25.78125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1294.53 1299.02 1303.54 1308.09
Maximum Lane Center Wavelength
nm
1296.59 1301.09 1305.63 1310.19
Total Average Launch Power (Min)
dBm
1.7
Total Average Launch Power (Max)
dBm
10.5
Transmit OMA per Lane (Min)
dBm
-1.3
Transmit OMA per Lane (Max)
dBm
4.5
Average Launch Power per Lane (Min)
dBm
-4.3
Average Launch Power per Lane (Max)
dBm
4.5
Optical Extinction Ratio (Min)
dB
4
Side Mode Suppression Ratio (Min)
dB
30
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
692
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 100G BASE-LR4-10 km (CFP)
Receiver type
-
PIN
Signaling Speed per Lane
Gbit/s
25.78125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1294.53 1299.02 1303.54 1308.09
Maximum Lane Center Wavelength
nm
1296.59 1301.09 1305.63 1310.19
Average Receiver Power per Lane (Min)
dBm
-10.6
Average Receiver Power per Lane (Max)
dBm
4.5
Minimum receiver overload (OMA) per Lane
dBm
4.5
Receiver Sensitivity (OMA) per Lane
dBm
-8.6
Maximum reflectance
dB
-26
NOTE The OMA values are designed to ensure normal equipment operation. They are not provided for equipment commissioning. In practical, equipment commissioning is performed based on the average receiver power per lane and total average launched power. It is recommended that the total average launched power be used as the reference for equipment commissioning.
Table 13-234 Client-side pluggable optical module specifications (100GE services) Parameter
Unit
Optical Module Type Line code format
Value 100G BASE-10×10G-10 km (CFP)
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
693
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 100G BASE-10×10G-10 km (CFP)
Signaling Speed per Lane
Gbit/s
10.3125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1521 1529 1537 1545 1553 1561 1569 1577 1585 1593
Maximum Lane Center Wavelength
nm
1525 1533 1541 1549 1557 1565 1573 1581 1589 1597
Issue 03 (2013-05-16)
Total Average Launch Power (Min)
dBm
4.2
Total Average Launch Power (Max)
dBm
13.5
Average Launch Power per Lane (Min)
dBm
-5.8
Average Launch Power per Lane (Max)
dBm
3.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
694
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 100G BASE-10×10G-10 km (CFP)
Transmit OMA per Lane (Min)
dBm
-2.8
Transmit OMA per Lane (Typ)
dBm
-0.8
Transmit OMA per Lane (Max)
dBm
3.5
Optical Extinction Ratio (Min)
dB
2.5
Side Mode Suppression Ratio (Min)
dB
30
Receiver parameter specifications at point R Receiver type
-
PIN
Signaling Speed per Lane
Gbit/s
10.3125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1521 1529 1537 1545 1553 1561 1569 1577 1585 1593
Maximum Lane Center Wavelength
nm
1525 1533 1541 1549 1557 1565
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
695
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 100G BASE-10×10G-10 km (CFP) 1573 1581 1589 1597
Receiver Power per Lane (Min)
dBm
-10.8
Receiver Power per Lane (Max)
dBm
3.5
Minimum receiver overload (OMA) per Lane
dBm
3.5
Receiver Sensitivity (OMA) per Lane
dBm
-8.8
Maximum reflectance
dB
-26
NOTE The OMA values are designed to ensure normal equipment operation. They are not provided for equipment commissioning. In practical, equipment commissioning is performed based on the average receiver power per lane and total average launched power. It is recommended that the total average launched power be used as the reference for equipment commissioning.
WDM-Side Fixed Optical Module Table 13-235 WDM-side fixed optical module specifications (tunable wavelengths, HFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
-
ePDM-QPSK(HFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
696
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
Minimum extinction ratio
dB
N/A
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.35
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
40000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Table 13-236 WDM-side fixed optical module specifications (tunable wavelengths, SDFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
-
ePDM-QPSK(SDFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Minimum extinction ratio
dB
N/A
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
697
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.4
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
55000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 101.6 mm (4.0 in.) x 220 mm (8.7 in.)
l
Weight: 4.5 kg (9.9 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
WDM-Side Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN12LSC
40000 ps/nm-C Band-Tunable Wavelength-ePDMQPSK(HFEC, RZ)PIN
240
265
55000 ps/nm-C Band-Tunable Wavelength-ePDMQPSK(SDFEC, RZ)PIN
255
285
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
698
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.20 LSQ LSQ: 40 Gbit/s wavelength conversion board
13.20.1 Version Description Only one functional version of the LSQ board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LSQ
Y
Y
Y
Y
Y
N
Variants Table 13-237 Available variants of the TN11LSQ board Variant
WDM-Side Fixed Optical Module
T01
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T02
800 ps/nm-C Band-Tunable Wavelength-ODB-PIN
13.20.2 Application As a type of optical transponder unit, the LSQ board converts between one channel of STM-256/ OC-768/OTU3 signals and OTU3 signals that comply with ITU-T G.694.1 Recommendations. For the position of the LSQ board in the WDM system, see Figure 13-112. Figure 13-112 Position of the LSQ board in the WDM system LSQ
IN
M U X / D M U X
IN OUT
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TX
1×ODU3
OUT
M U X / D M U X
1×OTU3
1×OTU3
Issue 03 (2013-05-16)
1×ODU3
RX STM-256/ OC-768/ TX OTU3
LSQ
STM-256/ RX OC-768/ OTU3
699
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.20.3 Functions and Features The LSQ board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-238. Table 13-238 Functions and features of the LSQ board Function and Feature
Description
Basic function
LSQ converts signals as follows: l 1x STM-256/OC-768/OTU3<->1x OTU3
Client-side service type
STM-256/OC-768: SDH/SONET service at a rate of 39.81 Gbit/s
OTN function
l Provides the OTU3 interface on WDM-side.
OTU3: OTN service at a rate of 43.02 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU3. l Supports PM and TCM non-intrusive monitoring for ODU3. l Supports SM function for OTU3. WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS test function
Supports the PRBS function on the client side.
LPT function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU3.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE The PRBS function of LSQ on the client side is supported only when the client-side service type is STM-256/OC-768.
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
700
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser.
Regeneration board
TN54NS3
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Loopback
Client side
Inloop
Supported
Outloop WDM side
Inloop
Supported
Outloop Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (non-performance monitoring)
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
701
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.20.4 Working Principle and Signal Flow The LSQ board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-113 shows the functional modules and signal flow of the LSQ.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
702
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-113 Functional modules and signal flow of the LSQ board Client side RX
TX
O/E
E/O
SDH/SONET encapsulation and mapping module
WDM side E/O OTN processing module
O/E
Client-side OTN processing module
Client-side optical module
OUT
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the LSQ board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LSQ to the WDM side of the LSQ, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of the optical signals from client equipment through the RX interface, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. OTU3 signals are sent to the client-side OTN processing module for performance monitoring. Other types of signals are sent to different encapsulation and mapping modules for encapsulation and mapping. In the end, operations such as the OTN framing and FEC/ AFEC encoding processing are performed. Then, the module outputs one channel of OTU3 electrical signals. The OTU3 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU3 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU3 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
703
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, the OTU3 signals are sent to the signal processing module. The module performs operations such as OTU3 framing, decoding of FEC/AFEC, demapping, and decapsulation processing. Then, the module outputs one channel of STM-256/OC-768/ OTU3 electrical signals. The client-side optical module performs E/O conversion of the one channel of electrical signals, and then outputs one channel of client-side optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of STM-256/OC-768/OTU3 optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to STM-256/OC-768/OTU3 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU3 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU3 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of an SDH/SONET encapsulation and mapping module, a client-side OTN processing module, and an OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates one channel of SDH/SONET signals and maps the signals into the OTU3 payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – Client-side OTN processing module Monitors OTN performance. – OTN processing module Frames OTU3 signals, processes overheads in OTU3 signals, and performs the FEC/ AFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
704
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Converts the DC power supplied by the backplane into the power required by each module on the board.
13.20.5 Front Panel There are indicators and interfaces on the front panel of the LSQ board.
Appearance of the Front Panel Figure 13-114 shows the front panel of the LSQ board. Figure 13-114 Front panel of the LSQ board
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
705
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-239 lists the type and function of each interface. Table 13-239 Types and functions of the interfaces on the LSQ board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.20.6 Valid Slots Two slots houses one LSQ board. Table 13-240 shows the valid slots for the LSQ board. Table 13-240 Valid slots for the LSQ board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack
IU2-IU17
OptiX OSN 6800 subrack
IU2-IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
706
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The rear connector of the LSQ is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the LSQ board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the LSQ board, the slot number of the LSQ board displayed on the NM is IU2.
13.20.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS.
Display of Physical Ports Table 13-241 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-241 Mapping between the physical ports on the LSQ board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.20.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LSQ, refer to Table 13-242. Table 13-242 LSQ parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
707
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, OC-768, OTU-3, STM-256 Default: STM-256
Laser Status
Off, On Default: l WDM side: On
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
FEC Working State
Disabled, Enabled
Default: Enabled
Default: Enabled
FEC Mode
FEC, AFEC Default: AFEC
AFEC Grade
1, 2, 3 Default: 3
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information. A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
708
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Receive Wavelength
l C: 1/1529.16/196.050 to 80/1560.61/192.100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE In the case of ASON services, this parameter must be set to the default value. Only support C band.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Issue 03 (2013-05-16)
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
709
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Band Type
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: Disabled
Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.20.9 LSQ Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
710
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L SQ
40G Transponder
N/A
800 ps/nm-C BandTunable WavelengthODB-PIN
N/A
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Fixed Optical Module Table 13-243 Client-side fixed optical module specifications Parameter
Unit
Optical Module Type Line code format
Value 40G Transponder
-
NRZ
Operating wavelength range
nm
1530 to 1565
Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
40
Receiver type
-
PIN
Operating wavelength range
nm
1290 to 1570
Receiver sensitivity
dBm
-6
Minimum receiver overload
dBm
3
Maximum reflectance
dB
-27
Transmitter parameter specifications at point S
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
711
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-244 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type Line code format
-
Value 800 ps/nm-C BandTunable WavelengthODB-PIN
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
ODB
DQPSK
Transmitter parameter specifications at point S Operating frequency range
THz
192.10 to 196.05
192.10 to 196.05
Maximum mean launched power
dBm
0
0
Minimum mean launched power
dBm
-5
-5
Minimum extinction ratio
dB
8.2
N/A
Center frequency deviation
GHz
±2.5
±2.5
Maximum -20 dB spectral width
nm
0.6
N/A
Maximum -3 dB spectral width
nm
N/A
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
-800 to 800
-800 to 800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
Operating wavelength range
nm
1529 to 1561
1529 to 1561
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload (FEC on)
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
712
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 lb.)
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LS Q
800 ps/nm-C Band-Tunable Wavelength-ODB-PIN
75.0
82.0
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
82.0
89.0
13.21 LSX LSX: 10 Gbit/s wavelength conversion board
13.21.1 Version Description The available functional versions of the LSX board are TN11, TN12, TN13, and TN14.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LSX
N
N
N
N
Y
Y
TN12 LSX
Y
Y
N
Y
Y
Y
TN13 LSX
Y
Y
Y
Y
Y
Y
TN14 LSX
Y
Y
Y
Y
Y
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
713
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Variants The difference between the LSX board variants lies in the WDM-side optical module. Table 13-245 Available variants of the TN11LSX board Variants
WDM-Side Fixed Optical Module
01M02
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN (01M02 for even wavelengths and 01M03 for odd wavelengths)
01M03 01M04
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
T02
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T03
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
T04
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Table 13-246 Available variants of the TN12LSX board Variants
WDM-Side Fixed Optical Module
01M02
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN (01M02 for even wavelengths and 01M03 for odd wavelengths)
01M03 01M04
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
T02
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T03
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
T04
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Table 13-247 Available variants of the TN13LSX board Variants
WDM-Side Optical Module
T01
Fixed Optical Module: 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T02
Fixed Optical Module: 800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
B
The variant is equipped with pluggable optical modules. For details 13.21.10 LSX Specifications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
714
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-248 Available variants of the TN14LSX board Variants
WDM-Side Fixed Optical Module
01M01
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN (01M01 for even wavelengths and 01M02 for odd wavelengths)
01M02 T02
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Differences Between Versions l Board
TN11LSX
Function:
FEC Encoding
FEC/AFEC
Client-side services OTU2e
FC1200
N
N
Ethernet Service Mapping Mode
WDM-Side Pluggable Optical Module
l Bit Transparent Mapping (11.1G)
N
l MAC Transparent Mapping (10.7G) l Bit Transparent Mapping (10.7G) TN12LSX
FEC/AFEC
N
Y
l Bit Transparent Mapping (11.1G)
N
l Bit Transparent Mapping (10.7G) TN13LSX
FEC/AFEC-2
Y
Y
l Bit Transparent Mapping (11.1G)
Y
l MAC Transparent Mapping (10.7G)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
715
OptiX OSN 8800/6800/3800 Hardware Description
Board
TN14LSX
13 Optical Transponder Unit
FEC Encoding
Client-side services
FEC/AFEC-2
OTU2e
FC1200
Y
Y
Ethernet Service Mapping Mode
WDM-Side Pluggable Optical Module
l Bit Transparent Mapping (11.1G)
N
l MAC Transparent Mapping (10.7G)
For details, see 13.21.3 Functions and Features. l
Specification: – For the specification of each version, see 13.21.10 LSX Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11LSX
TN12LSX
The TN12LSX can be created as TN11LSX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12LSX functions as the TN11LSX. NOTE After the substitution, the TN12LSX board supports only Bit Transparent Mapping (11.1G) for 10GE LAN services. A board with PIN as the receiver type cannot substitute for a board with APD as the receiver type, because their ranges of received optical power are different.
TN13LSX
The TN13LSX can be created as TN11LSX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN13LSX functions as the TN11LSX. NOTE After the substitution, the TN13LSX board supports only Bit Transparent Mapping (11.1G) for 10GE LAN services. When both the receive board and transmit board adopt the FEC code pattern, the substitution applies; when both the receive board and transmit board adopt the AFEC code pattern, the substitution does not apply. A board with PIN as the receiver type cannot substitute for a board with APD as the receiver type, because their ranges of receive optical power are different.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
716
OptiX OSN 8800/6800/3800 Hardware Description
Original Board
13 Optical Transponder Unit
Substitute Board
Substitution Rules
TN14LSX
The TN14LSX can be created as TN11LSX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN14LSX functions as the TN11LSX. NOTE After the substitution, the TN14LSX board supports only Bit Transparent Mapping (11.1G) for 10GE LAN services. A board with PIN as the receiver type cannot substitute for a board with APD as the receiver type, because their ranges of receive optical power are different.
TN12LSX
TN13LSX
The TN13LSX can be created as TN12LSX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN13LSX functions as the TN12LSX. NOTE After the substitution, the TN13LSX board supports only Bit Transparent Mapping (11.1G) for 10GE LAN services. When both the receive board and transmit board adopt the FEC code pattern, the substitution applies; when both the receive board and transmit board adopt the AFEC code pattern, the substitution does not apply. A board with PIN as the receiver type cannot substitute for a board with APD as the receiver type, because their ranges of receive optical power are different.
TN14LSX
The TN14LSX can be created as TN12LSX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN14LSX functions as the TN12LSX. NOTE After the substitution, the TN14LSX board supports only Bit Transparent Mapping (11.1G) for 10GE LAN services. A board with PIN as the receiver type cannot substitute for a board with APD as the receiver type, because their ranges of receive optical power are different.
TN13LSX/ TN14LSX
None
-
13.21.2 Application As a type of optical transponder unit, the LSX board maps one channel of 10 Gbit/s service signals into OTU2 or OTU2e signals and performs conversion between the 10 Gbit/s service signal and WDM signals that comply with ITU-T Recommendations. For the position of the LSX board in the WDM system, see Figure 13-115.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
717
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-115 Position of the LSX board in the WDM system LSX M U X IN / D OUT M U X
1×ODU2/ODU2e
M U OUT X / IN D M U X
1×OTU2/OTU2e
1×OTU2/OTU2e
1×ODU2/ODU2e
10GE LAN/ 10GE WAN/ RX STM-64/ OC-192/ TX OTU2/ OTU2e/ FC1200
LSX 10GE LAN/ TX 10GE WAN/ STM-64/ RX OC-192/ OTU2/ OTU2e/ FC1200
NOTE
The FC1200 service is only supported by the TN12LSX /TN13LSX/TN14LSX. When an XFP module is used as a WDM-side module on the TN13LSX board, the TN13LSX board does not support FC1200. The OTU2e service is only supported by the TN13LSX/TN14LSX.
13.21.3 Functions and Features The LSX board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-249. Table 13-249 Functions and features of the LSX board Function and Feature
Description
Basic function
LSX converts signals as follows: l 1 x 10GE LAN/10GE WAN/STM-64/OC-192/OTU2 <-> 1 x OTU2 l 1 x FC1200/10GE LAN/OTU2e <-> 1 x OTU2e
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s FC1200: SAN service at a rate of 10.51 Gbit/s NOTE The FC1200 service is only supported by the TN12LSX /TN13LSX/TN14LSX. When an XFP module is used as a WDM-side module on the TN13LSX board, the TN13LSX board does not support FC1200. The OTU2e service is only supported by the TN13LSX/TN14LSX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
718
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
OTN function
l Provides the OTU2/OTU2e interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU2. l Supports SM function for OTU2.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
TN11LSX/TN12LSX:
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE The PRBS function on the client side is only supported when the client-side service type is STM-64/OC-192/OTU2/OTU2e.
l Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU2. l Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. l Supports advanced forward error correction (AFEC) on the WDM side that complies with ITU-T G.975.1. TN13LSX/TN14LSX: l Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU2/OTU2e. l Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. l Supports advanced forward error correction (AFEC-2) on the WDM side that complies with ITU-T G.975.1. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
719
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN).
Regeneratio n board
l TN11LSX/TN12LSX: TN11LSXR l TN13LSX/TN14LSX: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
IEEE 1588v2
Not supported
Physical clock
When the board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) or is Bit Transparent Mapping (10.7 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing.
Opticallayer ASON
Supported by the TN12LSX/TN13LSX/TN14LSX
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Ethernet service mapping mode
l TN11LSX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping (10.7G), Bit Transparent Mapping(10.7G) l TN12LSX: Bit Transparent Mapping(11.1G), Bit Transparent Mapping (10.7G) l TN13LSX/TN14LSX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G)
Issue 03 (2013-05-16)
Port MTU
9600 bytes.
Loopback
WDM side
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
720
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description
Client side
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH)
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.21.4 Working Principle and Signal Flow The LSX board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
721
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-116 shows the functional modules and signal flow of the TN11LSX. Figure 13-117 shows the functional modules and signal flow of the TN12LSX/TN13LSX/ TN14LSX. Figure 13-116 Functional modules and signal flow of the TN11LSX board Client side RX
O/E
SDH/SONET encapsulation and mapping module Client-side OTN processing module
TX
E/O Client-side optical module
WDM side E/O
OTN processing module
10GE LAN encapsulation and mapping module Signal processing module
O/E
OUT
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
722
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-117 Functional modules and signal flow of the TN12LSX/TN13LSX/TN14LSX board Client side RX
TX
WDM side
SDH/SONET encapsulation and mapping module
O/E
E/O Client-side optical module
Client-side OTN processing module 10GE LAN encapsulation and mapping module
OTN processing module
FC encapsulation and mapping module Signal processing module
E/O
OUT
O/E
IN
WDM-side optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the LSX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LSX to the WDM side of the LSX, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of the optical signals from client equipment through the RX optical interface, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. OTU2/ OTU2e signals are sent to the client-side OTN processing module for performance monitoring. Other types of signals are sent to different encapsulation and mapping modules for encapsulation and mapping. In the end, operations such as the OTN framing and FEC/ AFEC encoding processing are performed. Then, the module outputs one channel of OTU2/ OTU2e electrical signals. The OTU2/OTU2e signals are sent to the WDM-side optical module. After performing E/ O conversion, the module sends out OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l Issue 03 (2013-05-16)
Receive direction Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
723
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The WDM-side optical module receives one channel of OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU2/OTU2e signals are sent to the signal processing module. The module performs operations such as OTU2/OTU2e framing, decoding of FEC/AFEC, demapping, and decapsulation processing. Then, the module outputs one channel of OC-192/STM-64/10GE LAN/10GE WAN/OTU2/OTU2e/FC1200 electrical signals. The client-side optical module performs E/O conversion of OC-192/STM-64/10GE LAN/ 10GE WAN/OTU2/OTU2e/FC1200 electrical signals, and then outputs client-side optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of OC-192/STM-64/10GE LAN/10GE WAN/OTU2/OTU2e/FC1200 optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to OC-192/STM-64/10GE LAN/10GE WAN/OTU2/OTU2e/FC1200 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, client-side OTN processing module, FC encapsulation and mapping module, and OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates one channel of SDH/SONET signals and maps the signals into the OTU2/ OTU2e payload area. The module also performs the reverse process and has the SDH/ SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates one channel of 10GE LAN signals and maps the signals into the OTU2/ OTU2e payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – FC encapsulation and mapping module Encapsulates one channel of FC signals and maps the signals into the OTU2/OTU2e payload area. The module also performs the reverse process and has the FC performance monitoring function. – Client-side OTN processing module Implements the OTN performance monitoring function.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
724
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs the FEC/AFEC encoding and decoding. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.21.5 Front Panel There are indicators and interfaces on the LSX front panel.
Appearance of the Front Panel Figure 13-118 and Figure 13-119 show the LSX front panel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
725
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-118 Front panel of the TN11LSX/TN12LSX/TN13LSXT01/TN13LSXT02/ TN14LSX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
726
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-119 Front panel of the TN13LSXB board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-250 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
727
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-250 Types and functions of the interfaces on the LSX board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.21.6 Valid Slots One slot houses one LSX board.
Valid Slots Table 13-251 shows the valid slots for the TN11LSX board. Table 13-251 Valid slots for the TN11LSX board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 13-252 shows the valid slots for the TN12LSX board. Table 13-252 Valid slots for the TN12LSX board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
728
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-253 shows the valid slots for the TN13LSX/TN14LSX board. Table 13-253 Valid slots for the TN13LSX/TN14LSX board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.21.7 Characteristic Code for the LSX The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.21.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-254 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-254 Mapping between the physical ports on the LSX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.21.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
729
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
For parameters of LSX, refer to Table 13-255. Table 13-255 LSX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, 10GE LAN, 10GE WAN,FC-1200, OC-192, OTU-2, OTU-2E, STM-64 Default: 10GE LAN
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only TN12LSX/TN13LSX/TN14LSX support the FC-1200 service. Only TN 13LSX/TN14LSX support the OTU-2E service.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
730
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Port Mapping
l TN11LSX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G), Bit Transparent Mapping(10.7G)
The Port Mapping parameter sets and queries the mapping mode of a port service. See D.28 Port Mapping (WDM Interface) for more information.
l TN12LSX: Bit Transparent Mapping(11.1G), Bit Transparent Mapping(10.7G) l TN13LSX/ TN14LSX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G) Default: Bit Transparent Mapping (11.1G) Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Default: Enabled
Default: 0s
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN13LSX/TN14LSX supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
731
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF Default: FW_Defect
NOTE Only the TN13LSX/TN14LSX supports this parameter.
Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
LPT Enabled
Disabled, Enabled Default: Disabled
FEC Working State
Disabled, Enabled Default: Enabled
Issue 03 (2013-05-16)
Determines whether to enable the link passthrough (LPT) function. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
732
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Mode
FEC, AFEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Default: FEC
AFEC Grade
1, 2, 3 Default: 3
A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay. NOTE Only the TN13LSX/TN14LSX supports this parameter.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
733
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services.
PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only TN13LSX/TN14LSX supports this parameter.
13.21.10 LSX Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
734
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
ClientSide Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L SX
N/A
10 Gbit/s Multirate-10 km
800 ps/nm-C Band (odd & even wavelengths)Fixed WavelengthNRZ-PIN
N/A
10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate -0.3 km
800 ps/nm-C BandFixed WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-APD 4800 ps/nm-C BandTunable WavelengthODB-APD 800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
TN 12L SX
N/A
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate -0.3 km
800 ps/nm-C Band (odd & even wavelengths)Fixed WavelengthNRZ-PIN
N/A
800 ps/nm-C BandFixed WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-PIN 1200 ps/nm-C BandTunable WavelengthNRZ-APD 4800 ps/nm-C BandTunable WavelengthODB-APD 800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
735
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
ClientSide Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 13L SX
N/A
10 Gbit/s Multirate-10 km
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
800 ps/nm-C BandTunable WavelengthNRZ-PIN
10 Gbit/s Single Rate -0.3 km
800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP TN 14L SX
N/A
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate -0.3 km
800 ps/nm-C Band (odd & even wavelengths)Fixed WavelengthNRZ-PIN
N/A
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN 800 ps/nm-C BandTunable WavelengthNRZ-PIN
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The 10 Gbit/s multirate 10 km module, 10 Gbit/s multirate 40 km module, and 10 Gbit/s multirate 80 km module can be used to access OC-192, STM-64, 10GE LAN, 10GE WAN, FC1200, and OTU2/OTU2e signals. The 10 Gbit/s single-rate 0.3 km module can be used to access 10GE LAN and FC1200 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
736
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-256 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
APD
PIN
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
737
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Table 13-257 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
738
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 13-258 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
739
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Table 13-259 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
NRZ
NRZ
ODB
DRZ
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
740
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
Maximum mean launched power
dBm
2
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
35
Dispersion tolerance
ps/ nm
1200
1200
4800
800
800
APD
APD
PIN
PIN
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
-16
Minimum receiver overload
dBm
0
-9
-9
0
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
741
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
dB
Maximum reflectance
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
-27
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
WDM-Side Pluggable Optical Module Table 13-260 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
742
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-261 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
743
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11LSX: 1.3 kg (2.9 lb.) TN12LSX: 1.4 kg (3.1 lb.) TN13LSX: 1.1 kg (2.4 lb.) TN14LSX: 1.2 kg (2.6 lb.)
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1LS X
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
47.7
50.1
47.9
50.9
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
49.7
52.7
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
52.7
55.7
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
744
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 2LS X
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
30.5
36.6
30.7
36.8
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
32.5
39
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
35.5
42.6
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
29.4
32.8
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
29.5
33.9
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
27
30.4
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
28
31.4
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
27
30
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
TN1 3LS X
TN1 4LS X
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
13.22 LSXL LSXL: 40 Gbit/s wavelength conversion board
13.22.1 Version Description The available functional versions of the LSXL board are TN11, TN12, and TN15.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
745
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LSXL
N
N
N
N
Y
N
TN12 LSXL
Y
Y
N
Y
Y
N
TN15 LSXL
Y
Y
N
N
Y
N
Variants The difference between the LSXL board variants lies in the WDM-side optical module. Table 13-262 Available variants of the TN12LSXL board Variant
WDM-Side Optical Module
T01
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T03
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
Table 13-263 Available variants of the TN15LSXL board Variant
WDM-Side Optical Module
T01
60000 ps/nm-C Band-Tunable Wavelength-ePDM-BPSK-PIN
Differences Between Versions l
Function:
Board
Coherent System
FEC Encoding
OTU3 services on client-side
TN11LSXL
N
FEC/AFEC
N
TN12LSXL
N
FEC/AFEC
Y
TN15LSXL
Y
HFEC
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
746
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
For details, see 13.22.2 Application. l
Appearance: – The LSXL boards of TN11, TN12 , and TN15 versions use different front panels. For details, see 13.22.5 Front Panel.
l
Specification: – For the specification of each version, see 13.22.9 LSXL Specifications.
Substitution Relationship The LSXL boards of different versions cannot replace each other.
13.22.2 Application As a type of optical transponder unit, the LSXL board converts between one channel of STM-256/OC-768/OTU3 signals and OTU3 signals that comply with ITU-T G.694.1 Recommendations. The TN15LSXL board uses coherent receive technology. Therefore, the board is intended for coherent systems. For the position of the LSXL board in the WDM system, see Figure 13-120. Figure 13-120 Position of the LSXL board in the WDM system LSXL
IN
M U X / D M U X
IN OUT
TX
1×ODU3
OUT
M U X / D M U X
1×OTU3
1×OTU3
1×ODU3
RX STM-256/ OC-768/ TX OTU3
LSXL
RX
STM-256/ OC-768/ OTU3
NOTE
l Client-side service types of the TN11LSXL board are STM-256 and OC-768. l Client-side service types of the TN12LSXL/TN15LSXL board are STM-256, OC-768, and OTU3.
13.22.3 Functions and Features The LSXL board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-264.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
747
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-264 Functions and features of the LSXL board Function and Feature
Description
Basic function
LSXL converts signals as follows: l 1x STM-256/OC-768/OTU3<->1x OTU3
Client-side service type
STM-256/OC-768: SDH/SONET service at a rate of 39.81 Gbit/s OTU3: OTN service at a rate of 43.02 Gbit/s NOTE Only TN12LSXL/TN15LSXL support OTU3 services.
OTN function
l Provides the OTU3 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU3. l Supports PM and TCM non-intrusive monitoring for ODU3. l Supports SM functions for OTU3.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
l 40 wavelengths in C-band with the channel spacing of 100 GHz
ESC function
Supported
PRBS test function
l TN11LSXL: Not supported.
l 80 wavelengths in C-band with the channel spacing of 50 GHz
l TN12LSXL: Supports the PRBS function on the client side. l TN15LSXL: Supports the PRBS function on the client and WDM sides. NOTE The PRBS function of TN12LSXL on the client side is supported only when the client-side service type is STM-256/OC-768.
LPT function
Not supported
FEC encoding
TN11LSXL/TN12LSXL: l Supports forward error correction (FEC) on the WDM side that complies with ITU-T G.709. l Supports advanced forward error correction (AFEC) on the WDM side that complies with ITU-T G.975.1. TN15LSXL: Supports HFEC on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
748
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services. TN11LSXL: TN11LSXLR
Regeneration board
TN12LSXL: TN12LSXLR TN15LSXL: TN55NS3
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
Optical-layer ASON
Supported by the TN12LSXL/TN15LSXL.
Electrical-layer ASON
Not supported
Protection scheme
TN11LSXL: l Supports client 1+1 protection. l Supports OWSP protection. TN12LSXL: l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. TN15LSXL: l Supports client 1+1 protection. l Supports intra-board 1+1 protection.
Loopback
Issue 03 (2013-05-16)
l Not supported by the TN11LSXL l Supported by the TN12LSXL/ TN15LSXL
Client side
Inloop
WDM side
Inloop
Supported
Outloop
Supported
Outloop
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
749
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protoc ols or standar ds for transpa rent transmi ssion (nonperfor mance monito ring)
ITU-T G.707
Protoc ols or standar ds for service process ing (perfor mance monito ring)
ITU-T G.805
ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.22.4 Working Principle and Signal Flow The LSXL board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-121 shows the functional modules and signal flow of the TN11LSXL. Figure 13-122 shows the functional modules and signal flow of the TN12LSXL and TN15LSXL.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
750
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-121 Functional modules and signal flow of the TN11LSXL board WDM side
Client side RX
TX
O/E
E/O
SDH/SONET encapsulation and mapping module
Client-side optical module
E/O
OTN processing module
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
751
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-122 Functional modules and signal flow of the TN12LSXL/TN15LSXL board Client side RX
TX
O/E
E/O
SDH/SONET encapsulation and mapping module
WDM side E/O OTN processing module
O/E
Client-side OTN processing module
Client-side optical module
OUT
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the LSXL board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LSXL to the WDM side of the LSXL, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of the optical signals from client equipment through the RX interface, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. OTU3 signals are sent to the client-side OTN processing module for performance monitoring. Other types of signals are sent to different encapsulation and mapping modules for encapsulation and mapping. In the end, operations such as the OTN framing and FEC/ AFEC/HFEC encoding processing are performed. Then, the module outputs one channel of OTU3 electrical signals. The OTU3 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU3 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU3 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
752
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After O/E conversion, the OTU3 signals are sent to the signal processing module. The module performs operations such as OTU3 framing, decoding of FEC/AFEC/HFEC, demapping, and decapsulation processing. Then, the module outputs one channel of STM-256/OC-768/OTU3 electrical signals. The client-side optical module performs E/O conversion of the one channel of electrical signals, and then outputs one channel of client-side optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of STM-256/OC-768/OTU3 optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to STM-256/OC-768/OTU3 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU3 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU3 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of an SDH/SONET encapsulation and mapping module, a client-side OTN processing module, and an OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates one channel of SDH/SONET signals and maps the signals into the OTU3 payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – Client-side OTN processing module Monitors OTN performance. – OTN processing module Frames OTU3 signals, processes overheads in OTU3 signals, and performs the FEC/ AFEC/HFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
753
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Converts the DC power supplied by the backplane into the power required by each module on the board.
13.22.5 Front Panel There are indicators and interfaces on the front panel of the LSXL board.
Appearance of the Front Panel Figure 13-123, Figure 13-124 and Figure 13-125 show the front panel of the LSXL board. Figure 13-123 Front panel of the TN11LSXL board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
754
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-124 Front panel of the TN12LSXL board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
755
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-125 Front panel of the TN15LSXL board
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
756
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Interfaces Table 13-265 lists the type and function of each interface. Table 13-265 Types and functions of the interfaces on the LSXL board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.22.6 Valid Slots Four slots house one TN11LSXL board. Three slots house one TN12LSXL/TN15LSXL board. Table 13-266 shows the valid slots for the TN11LSXL board. Table 13-266 Valid slots for the TN11LSXL board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU14
NOTE
The rear connector of the TN11LSXL is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN11LSXL board displayed on the NMS is the number of the left one of the four slots. For example, if slots IU1, IU2, IU3, and IU4 house the TN11LSXL board, the slot number of the TN11LSXL board displayed on the NMS is IU1.
Table 13-267 shows the valid slots for the TN12LSXL board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
757
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-267 Valid slots for the TN12LSXL board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU3-IU8, IU13-IU18, IU21-IU26, IU29IU34, IU37-IU42, IU47-IU52, IU55-IU60, IU63-IU68
OptiX OSN 8800 T32 subrack
IU3-IU8, IU14-IU19, IU22-IU27, IU31IU36
OptiX OSN 8800 platform subrack
IU3-IU18
OptiX OSN 6800 subrack
IU3-IU17
NOTE
The rear connector of the TN12LSXL is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the TN12LSXL board displayed on the NMS is the number of the right one of the three slots. For example, if slots IU1, IU2, and IU3 house the TN12LSXL board, the slot number of the TN12LSXL board displayed on the NMS is IU3.
Table 13-268 shows the valid slots for the TN15LSXL board. Table 13-268 Valid slots for the TN15LSXL board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU7, IU12-IU17, IU20-IU25, IU28IU33, IU36-IU41, IU46-IU51, IU54-IU59, IU62-IU67
OptiX OSN 8800 T32 subrack
IU2-IU7, IU13-IU18, IU21-IU26, IU30IU35
OptiX OSN 8800 T16 subrack
IU2-IU7, IU12-IU17
OptiX OSN 6800 subrack
IU2-IU16
NOTE
The rear connector of the TN15LSXL is mounted to the backplane along the middle slot in the subrack. Therefore, the slot number of the TN15LSXL board displayed on the NMS is the number of the middle one of the three slots. For example, if slots IU1, IU2, and IU3 house the TN15LSXL board, the slot number of the TN15LSXL board displayed on the NMS is IU2.
13.22.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
758
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Display of Physical Ports Table 13-269 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-269 Mapping between the physical ports on the LSXL board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.22.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LSXL, refer to Table 13-270. Table 13-270 LSXL parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, OC-768, OTU-3, STM-256 Default: STM-256
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only the TN12LSXL/TN15LSXL supports the OTU-3 services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
759
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: l WDM side: On l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only TN15LSXL supports this parameter.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s Default: 0s
Issue 03 (2013-05-16)
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only TN15LSXL supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
760
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers. NOTE Only TN15LSXL supports this parameter.
Default: 0s FEC Working State
Disabled, Enabled Default: Enabled
FEC Mode
TN11LSXL/ TN12LSXL: l FEC, AFEC l Default: AFEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
TN15LSXL: l HFEC l Default: HFEC Receive Wavelength
l C: 1/1529.16/196.050 to 80/1560.61/192.100 l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows: l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE In the case of ASON services, this parameter must be set to the default value. Only support C band.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
761
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Receive Band Type
C, CWDM
The Receive Band Type parameter sets the receive band type of a board.
Default: C
NOTE Only support C band.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
Planned Band Type
NOTE Only support C band.
Default: /
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
l TN12LSXL: – Enabled, Disabled – Default: Disabled l TN15LSXL: – Disabled, GC1C +GCC2 Enabled, Only GCC1 Enabled, Only GCC2 Enabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE Only TN12LSXL/TN15LSXL supports this parameter.
– Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
762
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
SD Trigger Condition
B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides.
Default: None
NOTE Only TN12LSXL supports this parameter.
See D.31 SD Trigger Condition (WDM Interface) for more information. PRBS Test Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. NOTE Only TN12LSXL/TN15LSXL supports this parameter.
See D.29 PRBS Test Status (WDM Interface) for more information. Dispersion Compensation Value
-
PMD Threshold(ps)
-
Queries the dispersion compensation value of the board. NOTE Only TN15LSXL supports this parameter.
Queries the PMD threshold of the board. NOTE Only TN15LSXL supports this parameter.
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
13.22.9 LSXL Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
763
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L SX L
40G Transponder
N/A
500 ps/nm-C BandTunable WavelengthODB-PIN
N/A
TN 12L SX L
40G Transponder
TN 15L SX L
40G Transponder
400 ps/nm-C BandTunable Wavelength-(D) RZ-PIN N/A
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
N/A
500 ps/nm-C BandTunable WavelengthODB-PIN N/A
60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
N/A
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Fixed Optical Module Table 13-271 Client-side fixed optical module specifications Parameter
Unit
Optical Module Type Line code format
Value 40G Transponder
-
NRZ
Operating wavelength range
nm
1530 to 1565
Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
764
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 40G Transponder
Minimum extinction ratio
dB
8.2
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
40
Receiver type
-
PIN
Operating wavelength range
nm
1290 to 1570
Receiver sensitivity
dBm
-6
Minimum receiver overload
dBm
3
Maximum reflectance
dB
-27
Receiver parameter specifications at point R
WDM-Side Fixed Optical Module Table 13-272 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 500 ps/nm-C Band-Tunable WavelengthDQPSK-PIN
500 ps/nm-C Band-Tunable WavelengthODB-PIN
400 ps/nm-C Band-Tunable WavelengthDRZ-PIN
DQPSK
ODB
DRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating frequency range
THz
192.10 to 196.05
192.10 to 196.05
192.10 to 196.00
Maximum mean launched power
dBm
0
0
0
Minimum mean launched power
dBm
-5
-5
-5
Minimum extinction ratio
dB
N/A
8.2
8.2
Center frequency deviation
GHz
±2.5
±2.5
±5
Maximum -20 dB spectral width
nm
N/A
0.6
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
765
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
500 ps/nm-C Band-Tunable WavelengthDQPSK-PIN
500 ps/nm-C Band-Tunable WavelengthODB-PIN
400 ps/nm-C Band-Tunable WavelengthDRZ-PIN
Maximum -3 dB spectral width
nm
0.3
N/A
N/A
Minimum side mode suppression ratio
dB
35
35
35
Dispersion tolerance
ps/nm
±500
±500
±400
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
Operating wavelength range
nm
1529 to 1561
1529 to 1561
1529 to 1561
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
-16
Minimum receiver overload (FEC on)
dBm
0
0
0
Maximum reflectance
dB
-27
-27
-27
Table 13-273 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
-
ePDM-BPSK
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.35
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
766
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
60000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications TN11LSXL l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 101.6 mm (4.0 in.) x 220 mm (8.7 in.)
l
Weight: 5.0 kg (11.0 lb.)
TN12LSXL l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 4.1 kg (9.1 lb.)
TN15LSXL l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.8 kg (8.4 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LS XL
400 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
103.0
110.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
767
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Board
TN12LS XL
TN15LS XL
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
98.0
101.0
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
74.0
81.0
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
84.0
94.0
60000 ps/nm-C Band-Tunable Wavelength-ePDM-BPSK-PIN
140.0
155.0
13.23 LSXLR LSXLR: 40 Gbit/s wavelength conversion relay board
13.23.1 Version Description The available functional version of the LSXLR board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Board
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11L SXLR
N
N
N
N
Y
N
TN12L SXLR
Y
Y
N
Y
Y
N
Variants Table 13-274 Available variants of the TN12LSXLR board Variant
WDM-Side Fixed Optical Module
T01
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T03
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
768
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Differences Between Versions l
Function:
Board
OTU3e services
TN11LSXLR
N
TN12LSXLR
Y
For details, see 13.23.3 Functions and Features. l
Appearance: – The TN11LSXLR and TN12LSXLR versions use different front panels. For details, see 13.23.5 Front Panel.
l
Specification: – For the specification of each version, see 13.23.9 LSXLR Specifications.
Substitution Relationship The LSXLR boards of different versions cannot replace each other.
13.23.2 Application The LSXLR board is used in an electrical REG station in the system to implement electrical regeneration of OTU3/OTU3e optical signals. For the position of the LSXLR board in the WDM system, see Figure 13-126. Figure 13-126 Position of the LSXLR board in the WDM system
LSXLR IN
1×OTU3/OTU3e 1×OTU3/OTU3e
DMUX
OUT
MUX
LSXLR
Issue 03 (2013-05-16)
OUT
1×OTU3/OTU3e 1×OTU3/OTU3e
MUX
IN
DMUX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
769
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.23.3 Functions and Features The LSXLR board is used to achieve wavelength tunable, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-275. Table 13-275 Functions and features of the LSXLR board Function and Feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regenerati ng rate
OTU3: OTN service at a rate of 43.02 Gbit/s OTU3e: OTN service at a rate of 44.57 Gbit/s NOTE Only TN12LSXLR supports OTU3e service.
OTN function
l Provides the OTU3/OTU3e interface on WDM-side. l Supports the OTN frame format and overhead processing by complying with the ITU-T G.709. l Supports PM and TCM functions for ODU3. l Supports PM and TCM non-intrusive monitoring for ODU3. l Supports SM function for OTU3.
WDM specificati on
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelengt h function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
770
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Alarms and performan ce events monitorin g
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
Opticallayer ASON
Supported by the TN12LSXLR
Electricallayer ASON
Not supported
Protection scheme
Not supported
Protocols or standards complianc e
Protocols or standards for transparent transmission (non-performance monitoring)
-
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser.
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
771
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.23.4 Working Principle and Signal Flow The LSXLR board consists of the optical receiving module, optical transmitting module, signal processing module, control and communication module, and power supply module. Figure 13-127 shows the functional modules and signal flow of the LSXLR board. Figure 13-127 Functional modules and signal flow of the LSXLR board
WDM side IN
Decoding module
O/E Optical receiving module
Overhead module
Encoding module
WDM side E/O
OUT
Optical transmitting module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The LSXLR board implements the regeneration of one channel of unidirectional optical signals. The wavelengths at the receive and transmit ends of the board are OTU3/OTU3e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN interface, and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After encoding, the signals are sent to an optical transmitting module. After performing E/O conversion, the module transmits OTU3/OTU3e signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
772
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Module Function l
Optical receiving module – Performs O/E conversion of OTU3/OTU3e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Optical transmitting module – Performs E/O conversion from the internal electrical signals to OTU3/OTU3e optical signals at DWDM wavelengths that comply with ITU-T G.694.1. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
The signal processing module The module consists of the decoding module, overhead module, and encoding module. – Decoding module Performs the FEC/AFEC decoding of OTU3/OTU3e signals, and monitors the performance of WDM-side services. – Encoding module Performs the FEC/AFEC encoding of OTU3/OTU3e signals. – Overhead module Performs overhead processing of OTU3/OTU3e signals, and monitors the performance of WDM-side services.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.23.5 Front Panel There are indicators, and interfaces on the front panel of the LSXLR board.
Appearance of the Front Panel Figure 13-128 and Figure 13-129 show the front panel of the LSXLR board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
773
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-128 Front panel of the TN11LSXLR board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
774
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-129 Front panel of the TN12LSXLR board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-276 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
775
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-276 Types and functions of the interfaces on the LSXLR board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.23.6 Valid Slots Four slots house one TN11LSXLR board. Two slots house one TN12LSXLR board. Table 13-277 shows the valid slots for the TN11LSXLR board. Table 13-277 Valid slots for the TN11LSXLR board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU14
The rear connector of the TN11LSXLR is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN11LSXLR board displayed on the NM is the number of the left one of the four slots. For example, if slots IU1, IU2, IU3, and IU4 house the TN11LSXLR board, the slot number of the TN11LSXLR board displayed on the NM is IU1. When the TN11LSXLR boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. The TN11LSXLR boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU5, IU9 and IU13. Table 13-278 shows the valid slots for the TN12LSXLR board. Table 13-278 Valid slots for the TN12LSXLR board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
776
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU2-IU8, IU13-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 platform subrack
IU2-IU18
OptiX OSN 6800 subrack
IU2-IU17
The rear connector of the TN12LSXLR board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the TN12LSXLR board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the TN12LSXLR board, the slot number of the TN12LSXLR board displayed on the NM is IU2. When the TN12LSXLR boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
OptiX OSN 8800 T64: The TN12LSXLR boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU12 and IU14, IU16 and IU18, IU20 and IU22, IU24 and IU26, IU28 and IU30, IU32 and IU34, IU36 and IU38, IU40 and IU42, IU46 and IU48, IU50 and IU52, IU54 and IU56, IU58 and IU60, IU62 and IU64, or IU66 and IU68.
l
OptiX OSN 8800 T32: The TN12LSXLR boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU13 and IU15, IU17 and IU19, IU21 and IU23, IU25 and IU27, IU30 and IU32, or IU34 and IU36.
l
OptiX OSN 8800 platform subrack: The TN12LSXLR boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU10 and IU12, or IU14 and IU16.
l
OptiX OSN 6800: The TN12LSXLR boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU10 and IU12, or IU14 and IU16.
13.23.7 Physical and Logical Ports This section describes how the physical interfaces of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-279 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-279 Mapping between the physical ports on the LSXLR board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN/OUT
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
777
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.23.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the LSXLR, refer to Table 13-280. Table 13-280 LSXLR parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Laser Status
Off, On Default: l WDM side: On
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Enable AutoSensing
Disabled, Enabled Default: Enabled
Set the Enable Auto-Sensing function of the board to Enabled or Disabled. l When it is set to Enabled, the board supports Line Rate of the received signals in auto-sensing mode, and thus no manual setting is required. l When it is set to Disabled, Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE In the case of ASON services, this parameter must be set to Enabled.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
778
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
FEC Working State
Disabled, Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
FEC Mode
FEC, AFEC
Receive Wavelength
Default: Enabled
Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
l C: 1/1529.16/196.050 to 80/1560.61/192.100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically.
Default: /
l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE In the case of ASON services, this parameter must be set to the default value. Only support C band.
Issue 03 (2013-05-16)
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
779
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. PMD Threshold (ps)
-
Queries the PMD threshold of the board.
Board Mode
Electrical Relay Mode, Optical Relay Mode
Specifies the board mode depending on the service application scenario. See D.2 Board Mode (WDM Interface) for more information.
Default: Electrical Relay Mode
13.23.9 LSXLR Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN11LS XLR
500 ps/nm-C Band-Tunable Wavelength-ODBPIN
N/A
400 ps/nm-C Band-Tunable Wavelength-(D)RZPIN TN12LS XLR
500 ps/nm-C Band-Tunable WavelengthDQPSK-PIN
N/A
500 ps/nm-C Band-Tunable Wavelength-ODBPIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
780
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
For information about the boards supported by the equipment, see Mappings Between the Board and Equipment. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Fixed Optical Module Table 13-281 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 500 ps/nm-C Band-Tunable WavelengthDQPSK-PIN
500 ps/nm-C Band-Tunable WavelengthODB-PIN
400 ps/nm-C Band-Tunable WavelengthDRZ-PIN
DQPSK
ODB
DRZ
Transmitter parameter specifications at point S Operating frequency range
THz
192.10 to 196.05
192.10 to 196.05
192.10 to 196.00
Maximum mean launched power
dBm
0
0
0
Minimum mean launched power
dBm
-5
-5
-5
Minimum extinction ratio
dB
N/A
8.2
8.2
Center frequency deviation
GHz
±2.5
±2.5
±5
Maximum -20 dB spectral width
nm
N/A
0.6
1
Maximum -3 dB spectral width
nm
0.3
N/A
N/A
Minimum side mode suppression ratio
dB
35
35
35
Dispersion tolerance
ps/nm
±500
±500
±400
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
781
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 500 ps/nm-C Band-Tunable WavelengthDQPSK-PIN
500 ps/nm-C Band-Tunable WavelengthODB-PIN
400 ps/nm-C Band-Tunable WavelengthDRZ-PIN
Receiver type
-
PIN
PIN
PIN
Operating wavelength range
nm
1529 to 1561
1529 to 1561
1529 to 1561
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
-16
Minimum receiver overload (FEC on)
dBm
0
0
0
Maximum reflectance
dB
-27
-27
-27
Mechanical Specifications TN11LSXLR l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 101.6 mm (4.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.1 kg (6.7 lb.)
TN12LSXLR l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11 LSXL R
400 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
87.0
90.0
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
82.0
85.0
TN12 LSXL R
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
75.0
79.0
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
67.0
70.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
782
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.24 LSXR LSXR: 10 Gbit/s wavelength conversion relay board
13.24.1 Version Description The available functional version of the LSXR board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LSXR
Y
Y
N
Y
Y
Y
Variants Table 13-282 Available variants of the TN11LSXR board Variant
WDM-Side Fixed Optical Module
01M02
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN (01M02 for even wavelengths and 01M03 for odd wavelengths)
01M03 01M04
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
T02
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
T03
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T04
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
13.24.2 Application As a type of optical transponder unit, the LSXR board is used in an electrical REG station in the system to implement electrical regeneration of OTU2/OTU2e optical signals. For the position of the LSXR board in the WDM system, see Figure 13-130. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
783
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-130 Position of the LSXR board in the WDM system
LSXR 1×OTU2/OTU2e 1×OTU2/OTU2e
DMUX
IN
OUT
MUX
LSXR OUT
1×OTU2/OTU2e 1×OTU2/OTU2e
MUX
IN
DMUX
13.24.3 Functions and Features The LSXR is mainly used to achieve wavelength tunable, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-283. Table 13-283 Functions and features of the LSXR board Function and Feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regenerati ng rate
OTU2: OTN service at a rate of 10.71 Gbit/s
OTN function
l Provides the OTU2/OTU2e interface on WDM-side.
OTU2e: OTN service at a rate of 11.1 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU2. l Supports SM function for OTU2.
WDM specificati on Issue 03 (2013-05-16)
Supports ITU-T G.694.1-compliant DWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
784
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Tunable wavelengt h function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Alarms and performan ce events monitorin g
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
Opticallayer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
Not supported
Protocols or standards complianc e
Protocols or standards for transparent transmission (non-performance monitoring)
l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser.
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
785
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.24.4 Working Principle and Signal Flow The LSXR board consists of the optical receiving module, optical transmitting module, signal processing module, control and communication module, and power supply module. Figure 13-131 shows the functional modules and signal flow of the LSXR board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
786
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-131 Functional modules and signal flow of the LSXR board
WDM side IN
Decoding module
O/E Optical receiving module
Overhead module
WDM side
Encoding module
E/O
OUT
Optical transmitting module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The LSXR board implements the regeneration of one channel of unidirectional optical signals. The signals at the receive and transmit ends of the board are OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN interface, and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After being encoded, the signals are sent to the optical transmitting module. After performing E/O conversion, the module sends out OTU2/OTU2e signals at DWDM wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT interface.
Module Function l
Optical receiving module – Performs O/E conversion of OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
787
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Optical transmitting module – Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals at DWDM wavelengths that comply with ITU-T G.694.1. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
The signal processing module The module consists of the decoding module, overhead module, and encoding module. – Decoding module Performs the FEC/AFEC decoding of OTU2/OTU2e signals, and monitors the performance of WDM-side services. – Encoding module Performs the FEC/AFEC encoding of OTU2/OTU2e signals. – Overhead module Performs overhead processing of OTU2/OTU2e signals, and monitors the performance of WDM-side services.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.24.5 Front Panel There are indicators and interfaces on the front panel of the LSXR.
Appearance of the Front Panel Figure 13-132 shows the front panel of the LSXR.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
788
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-132 Front panel of the LSXR
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-284 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
789
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-284 Types and functions of the interfaces on the LSXR board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.24.6 Valid Slots One slot houses one LSXR board. Table 13-285 shows the valid slots for the LSXR board. Table 13-285 Valid slots for LSXR board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
When the LSXR boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
OptiX OSN 8800 T64: The LSXR boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU11 and IU12, IU13 and IU14, IU15 and IU16, IU17 and IU18, IU19 and IU20, IU21 and IU22, IU23 and IU24, IU25 and IU26, IU27 and IU28, IU29 and IU30, IU31 and IU32, IU33 and IU34, IU35 and IU36, IU37 and IU38, IU39 and IU40, IU41 and IU42, IU45 and IU46, IU47 and IU48, IU49 and IU50, IU51 and IU52, IU53 and IU54, IU55 and IU56, IU57 and IU58, IU59 and IU60, IU61 and IU62, IU63 and IU64, IU65 and IU66, or IU67 and IU68.
l
OptiX OSN 8800 T32: The LSXR boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU12 and IU13, IU14 and IU15, IU16 and IU17, IU18 and IU19, IU20 and IU21, IU22
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
790
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
and IU23, IU24 and IU25, IU26 and IU27, IU29 and IU30, IU31 and IU32, IU33 and IU34, or IU35 and IU36. l
OptiX OSN 8800 platform subrack: The LSXR boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU9 and IU10, IU11 and IU12, IU13 and IU14, IU15 and IU16, or IU17 and IU18.
l
OptiX OSN 6800: The LSXR boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU9 and IU10, IU11 and IU12, IU13 and IU14, or IU15 and IU16.
13.24.7 Characteristic Code for the LSXR The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.24.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-286 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-286 Mapping between the physical ports on the LSXR board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.24.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the LSXR, refer to Table 13-287. Table 13-287 LSXR parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
791
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Laser Status
Off, On Default: On
Enable AutoSensing
Disabled, Enabled Default: Enabled
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Set the Enable Auto-Sensing function of the board to Enabled or Disabled. l When it is set to Enabled, the board supports FEC Type and Line Rate of the received signals in auto-sensing mode, and thus no manual setting is required. l When it is set to Disabled, FEC Type and Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE In the case of ASON services, this parameter must be set to Enabled.
FEC Working State
Disabled, Enabled
FEC Mode
FEC, AFEC
Default: Enabled
Default: FEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. NOTE This parameter can be set only when Enable Auto-Sensing is set to Disabled
See D.9 FEC Mode (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
792
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
Line Rate
Standard Mode, Speedup Mode
The Line Rate parameter provides an option to set the OTN line rate.
Default: Standard Mode
NOTE This parameter can be set only when Enable Auto-Sensing is set to Disabled
See D.16 Line Rate for more information. Board Mode
Electrical Relay Mode, Optical Relay Mode Default: Electrical Relay Mode
Issue 03 (2013-05-16)
Specifies the board mode depending on the service application scenario. See D.2 Board Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
793
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.24.10 LSXR Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN11L SXR
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
N/A
800 ps/nm-C Band-Fixed WavelengthNRZ-PIN 1200 ps/nm-C Band-Tunable WavelengthNRZ-PIN 1200 ps/nm-C Band-Tunable WavelengthNRZ-APD 4800 ps/nm-C Band-Tunable WavelengthODB-APD 800 ps/nm-C Band-Tunable Wavelength(D)RZ-PIN
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Fixed Optical Module Table 13-288 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
794
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Table 13-289 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 1200 ps/ nm-C BandTunable Wavelengt h-NRZPIN
1200 ps/ nm-C BandTunable Wavelengt h-NRZAPD
4800 ps/nmC BandTunable Wavelengt h-ODBAPD
800 ps/nm-C BandTunable WavelengthDRZ-PIN
NRZ
NRZ
ODB
DRZ
Transmitter parameter specifications at point S Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
795
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelengt h-NRZPIN
1200 ps/ nm-C BandTunable Wavelengt h-NRZAPD
4800 ps/nmC BandTunable Wavelengt h-ODBAPD
800 ps/nm-C BandTunable WavelengthDRZ-PIN
Maximum mean launched power
dBm
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
Dispersion tolerance
ps/nm
1200
1200
4800
800
APD
APD
PIN
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
Minimum receiver overload
dBm
0
-9
-9
0
Maximum reflectance
dB
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
796
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg. (2.6 lb)
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1LS XR
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
34.8
37.8
35.0
38.0
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
36.8
39.8
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
39.8
42.8
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
13.25 LTX LTX: 10-Port 10Gbit/s Service Multiplexing & Optical Wavelength Conversion Board
13.25.1 Version Description The available functional version of the LTX board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LTX
Y
Y
Y
Y
Y
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
797
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Variants Table 13-290 Available variants of the TN11LTX board Variant
WDM-Side Fixed Optical Module
FEC Encoding
T01
40000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
HFEC
T11
55000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
SDFEC
13.25.2 Application The LTX board is a wavelength conversion board and applies to coherent systems. In the receive direction, the board can receive ten 10GE LAN, 10GE WAN, STM-64, or OC-192 signals from client equipment, maps the optical signals into an OTU4 signal, and converts the OTU4 signal into a standard DWDM wavelength compliant with ITU-T G.694.1. In the transmit direction, the process is reverse. The LTX board can also apply to electrical regeneration sites to perform electrical regeneration of OTU4 optical signals. The WDM-side service rate for the LTX board is 100 Gbit/s. Therefore, the board is intended for 100G transmission systems. For the position of the LTX board in the WDM system, see Figure 13-133 and Figure 13-134. Figure 13-133 Position of the LTX board in the WDM system (OTU mode) LTX
RX1
OUT
TX1 10×ODU2/ODU2e
IN
1×OTU4
M U X / D M U X
1×ODU4
1×OTU4
TX10
1×ODU4
RX10
10×ODU2/ODU2e
TX1 10GE LAN/ 10GE WAN/ STM-64/OC-192
LTX M U OUT X / IN D M U X
RX1 10GE LAN/ 10GE WAN/ TX10 STM-64/OC-192
RX10
NOTE
In this application scenario, the Board Mode parameter of the LTX board must be set to Line Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
798
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-134 Position of the LTX board in the WDM system (regeneration mode)
LTX IN
1×OTU4 1×OTU4
DMUX
OUT
MUX
LTX OUT
1×OTU4 1×OTU4
MUX
IN
DMUX
NOTE
In this application scenario, the Board Mode parameter of the LTX board must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. The input and output wavelengths can be different.
13.25.3 Functions and Features The LTX board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, see Table 13-291 and Table 13-292. Table 13-291 Functions and features of the LTX board (OTU mode) Function and Feature
Description
Basic function
LTX converts signal as follows: l 10x10GE LAN/10GE WAN/STM-64/OC-192<->1xOTU4
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
799
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
OTN function
l Provides the OTU4 interface on WDM-side. l Supports the OTN frame format and overhead processing compliant with ITU-T G.709. l Supports PM functions for ODU2. l Supports PM and TCM functions for ODU4. l Supports TCM non-intrusive monitoring for ODU4. l Supports SM function for OTU4.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
The board can tune the optical signal output on the WDM side within the range of 80 wavelengths in C-band with the channel spacing of 50 GHz.
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
Supports HFEC and SDFEC on the WDM side.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192.
l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN). l Supports the monitoring of CD and PMD performance.
Issue 03 (2013-05-16)
Regeneration board
TN11LTX, TN54NS4
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
800
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protection scheme
l Supports client 1+1 protection.
Ethernet service mapping mode
Bit Transparent Mapping (11.1G)
Loopback
Client side
l Supports intra-board 1+1 protection.
Inloop
Supported
Outloop WDM side
Inloop
Supported
Outloop Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
Table 13-292 Functions and features of the LTX board (regeneration mode)
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
801
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Regenerating rate
OTU4: OTN service at a rate of 111.81 Gbit/s
OTN function
l Provides the OTU4 interface on WDM-side. l Supports the OTN frame format and overhead processing compliant with ITU-T G.709. l Supports PM and TCM functions for ODU4. l Supports TCM non-intrusive monitoring for ODU4. l Supports SM functions for OTU4.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
The board can tune the optical signal output on the WDM side within the range of 80 wavelengths in C-band with the channel spacing of 50 GHz.
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
FEC encoding
Supports HFEC and SDFEC on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser.
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
802
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.25.4 Working Principle and Signal Flow The LTX board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow (OTU mode) Figure 13-135 shows the functional modules and signal flow of the LTX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
803
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-135 Functional modules and signal flow of the LTX board (OTU mode) Client side RX1
SDH/SONET encapsulation and mapping module
O/E
RX10 TX1 TX10
10GE LAN encapsulation and mapping module
E/O Client-side optical module
WDM side E/O
OTN processing module
Signal processing module
O/E
OUT
IN
WDM-side optical module
Control Memory
Communication
CPU
Control and communication module
Fuse
Power supply module
Required voltage
DC power supply from the backplane
SCC
Backplane (controlled by the SCC)
In the signal flow of the LTX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LTX to the WDM side of the LTX, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives 10 channels of the optical signals from client equipment through the RX interface, and performs O/E conversion. After performing the O/E conversion, the client-side optical module sends the electrical signals to the signal processing module. Then, the signal processing module performs encapsulation, OTN framing, and HFEC/SDFEC coding and outputs one channel of OTU4 signals to the WDM-side optical module. After receiving the OTU4 signals, the WDM-side optical module performs E/O conversion, generates OTU4 signals over a DWDM wavelength that complies with ITU-T G.694.1, and then outputs the OTU4 signals through the OUT optical interfaces.
l
Receive direction The WDM-side optical module receives one channel of standard DWDM optical signals compliant with ITU-T G.694.1 through the IN optical interfaces. The WDM-side optical module then converts the optical signals into electrical signals. After the O/E conversion, the electrical signals are sent to the signal processing module, which performs OTU4 framing, HFEC/SDFEC decoding, demapping, and decapsulation for the signals and then outputs 10 channels of 10GE LAN/10GE WAN/STM-64/OC-192 electrical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
804
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
The 10 channels of 10GE LAN/10GE WAN/STM-64/OC-192 signals are sent to the clientside optical module, which converts the electrical signals into optical signals and then outputs the optical signals through the TX optical interface.
Functional Modules and Signal Flow (regeneration mode) Figure 13-136 shows the functional modules and signal flow of the LTX. Figure 13-136 Functional modules and signal flow of the LTX board (regeneration mode)
WDM side IN
OTN processing module
O/E Optical receiving module
WDM side OUT
E/O Optical transmitting module
Control Memory
Communication CPU Control and communication module Power supply module
Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
The LTX board implements the regeneration of one channel of unidirectional optical signals. The wavelengths at the receive and transmit ends of the board are OTU4 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN interface, and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After encoding, the signals are sent to an optical transmitting module. After performing E/O conversion, the module transmits OTU4 signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
805
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion for 10 channels of 10GE LAN/10GE WAN/STM-64/OC-192 optical signals. – Client-side transmitter: Performs E/O conversion for 10 channels of 10GE LAN/10GE WAN/STM-64/OC-192 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of the OTU4 optical signal. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU4 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, and OTN processing module. – SDH/SONET encapsulation and mapping module: Encapsulates ten channels of SDH/SONET and 10GE WAN signals and maps the signals into the OTU4 payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – 10GE LAN encapsulation and mapping module: Encapsulates ten channels of 10GE LAN signals and maps the signals into the OTU4 payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – OTN processing module Frames OTU4 signals, processes overheads in OTU4 signals, and performs the HFEC/SDFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.25.5 Front Panel There are indicators and interfaces on the front panel of the LTX board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
806
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Appearance of the Front Panel Figure 13-137 shows the front panel of the LTX board. Figure 13-137 Font panel of the LTX board
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
LTX STAT ACT PROG SRV
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
OUT IN
TX2 RX2
RX1 TX1
TX4 RX4
RX3 TX3
TX6 RX6
RX5 TX5
TX8 RX8
RX7 TX7
TX10 RX10
RX9 TX9
LTX
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
807
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-293 lists the type and function of each interface. Table 13-293 Types and functions of the interfaces on the LTX board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX10
LC
Transmit service signals to client equipment.
RX1-RX10
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.25.6 Valid Slots Four slots house one LTX board. Table 13-294 shows the valid slots for the LTX board. Table 13-294 Valid slots for the LTX board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU6, IU12-IU16, IU20-IU24, IU28IU32, IU36-IU40, IU46-IU50, IU54-IU58, IU62-IU66
OptiX OSN 8800 T32 subrack
IU2-IU6, IU13-IU17, IU21-IU25, IU30IU34
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
808
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU2-IU6, IU12-IU16
OptiX OSN 8800 platform subrack
IU2-IU16
OptiX OSN 6800 subrack
IU2-IU15
NOTE
The rear connector of the LTX is mounted to the backplane along the second slot from the left in the subrack. Therefore, the slot number of the LTX board displayed on the NM is the number of the second one of the four slots from left. For example, if slots IU1, IU2, IU3 and IU4 house the LTX board, the slot number of the LTX board displayed on the NM is IU2.
When the LTX boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
OptiX OSN 8800 T64: The LTX boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU6, IU12 and IU16, IU20 and IU24, IU36 and IU40, IU46 and IU50, IU54 and IU58, IU62 and IU66.
l
OptiX OSN 8800 T32: The LTX boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU6, IU13 and IU17, IU21 and IU25, IU30 and IU34.
l
OptiX OSN 8800 T16: The LTX boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU6, IU12 and IU16.
l
OptiX OSN 8800 platform subrack: The LTX boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU6, IU10 and IU14.
l
OptiX OSN 6800: The LTX boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU6, IU10 and IU14.
13.25.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS.
Display of Physical Ports Table 13-295 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-295 Mapping between the physical ports on the LTX board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
809
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Physical Port
Port Number on the NMS
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
TX9/RX9
11
TX10/RX10
12
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.25.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LTX, refer to Table 13-296. Table 13-296 LTX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
10GE LAN, 10GE WAN, OC-192, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: 10GE LAN Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
810
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: l WDM side: On l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS , BW_WDM_Defect, FW_OPUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
811
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s LPT Enabled
Enabled, Disabled Default: Disabled
FEC Working State
Disabled, Enabled Default: Enabled
Determines whether to enable the link passthrough (LPT) function. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
FEC Mode
HFEC, SDFEC
Queries the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Receive Wavelength
C: 1/1529.16/196.050 to 80/1560.61/192.100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
Default: /
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE In the case of ASON services, this parameter must be set to the default value. Only support C band.
Receive Band Type
C Default: C
Issue 03 (2013-05-16)
The Receive Band Typeparameter sets the receive band type of a board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
812
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
Default: /
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. Planned Band Type
C Default: C
PRBS Test Status
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Dispersion Compensation Value
-
Queries the dispersion compensation value of the board.
PMD Threshold (ps)
-
Queries the PMD threshold of the board.
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Default: Disabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
813
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
OTN Overhead Transparent Transmission
l Disabled, GCC1 +GCC2 Enabled, Only GCC1 Enabled, Only GC2 Enabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Board Mode
l Default: Disabled
NOTE This parameter is only valid when the Board Mode is set to Electrical Relay Mode or Optical Relay Mode.
Line Mode, Electrical Relay Mode, Optical Relay Mode
Specifies the board mode depending on the service application scenario. See D.2 Board Mode (WDM Interface) for more information.
Default: Electrical Relay Mode
13.25.9 LTX Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L TX
N/A
10 Gbit/s Multirate-10 km
40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
N/A
10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km
55000 ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Specifications of optical modules on the client side NOTE
The 10 Gbit/s multi-rate 10 km module, 10 Gbit/s multi-rate 40 km, and 10 Gbit/s multi-rate 80 km module can be used to access OC-192, STM-64, 10GE LAN and 10GE WAN signals. The 10Gbit/s single rate -0.3km module can be used only to access 10GE LAN signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
814
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-297 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
APD
PIN
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
815
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Specifications of optical modules on the DWDM side Table 13-298 WDM-side fixed optical module specifications (tunable wavelengths, HFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
-
ePDM-QPSK(HFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
816
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
Minimum mean launched power
dBm
-5
Minimum extinction ratio
dB
N/A
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.35
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
40000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Table 13-299 WDM-side fixed optical module specifications (tunable wavelengths, SDFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
-
ePDM-QPSK(SDFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
817
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
Minimum extinction ratio
dB
N/A
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.4
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
55000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 101.6 mm (4.0 in.) x 220 mm (8.7 in.)
l
Weight: 5.8 kg (12.8 lb.)
Power Consumption Board
WDM-Side Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LTX (OTU mode)
40000 ps/nm-C Band-Tunable Wavelength-ePDMQPSK(HFEC, RZ)PIN
248
273
235
247
55000 ps/nm-C Band-Tunable Wavelength-ePDM-
270
300
TN11LTX (regeneration mode) TN11LTX (OTU mode)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
818
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Board
WDM-Side Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11LTX (regeneration mode)
QPSK(SDFEC, RZ)PIN
250
275
13.26 LWX2 LWX2: arbitrary rate (16Mbit/s-2.7Gbit/s) dual-wavelength conversion board
13.26.1 Version Description Only one functional version of the LWX2 board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1L WX 2
N
N
N
Y
Y
Y
13.26.2 Application As a type of optical transponder unit, the LWX2 board implements the conversion between two channels of optical signals at the rate in the range of 16 Mbit/s to 2.7 Gbit/s and WDM signals that comply with ITU-T Recommendations. For the position of the LWX2 board in the WDM system, see Figure 13-138. Figure 13-138 Position of the LWX2 board in the WDM system LWX2
MUX/ DMUX
MUX/ DMUX
MUX/ DMUX
Transparent transmission
Issue 03 (2013-05-16)
Transparent transmission
16Mbit/s – 2.7Gbit/s
LWX2 MUX/ DMUX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
16Mbit/s – 2.7Gbit/s
819
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.26.3 Functions and Features The LWX2 is mainly used to achieve wavelength tunable and provide ESC. For detailed functions and features, refer to Table 13-300. Table 13-300 Functions and features of the LWX2 board Function and Feature
Description
Basic function
LWX2 converts signals as follows:
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s
l 2 x (16 Mbit/s to 2.7 Gbit/s signals)<->2 x (16 Mbit/s to 2.7 Gbit/s signals)
GE: Ethernet service at a rate of 1.25 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. In the case of configuring four-wavelength tunable optical module, configure every four continuous wavelengths (first group started with the 1st wavelength) in the C band with 100 GHz channel spacing as one group. In this way, the optical signal output on the WDM side are tunable within the four wavelengths of every group.
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
Alarms and performance events monitoring
Monitors items such as the bias current and temperature of the laser as well as the optical power.
ALS function
Supports the ALS function on the client and WDM sides.
l Supports ITU-T G.694.2-compliant CWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
820
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Test frame
Not supported
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Loopback
WDM side
l Supports OWSP protection.
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
821
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Protocols or standards for service processing (performance monitoring)
Issue 03 (2013-05-16)
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
822
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.26.4 Working Principle and Signal Flow The LWX2 board consists of the client-side optical module, WDM-side optical module, service processing module, control and communication module, and power supply module. Figure 13-139 shows the functional modules and signal flow of the LWX2 board. Figure 13-139 Functional modules and signal flow of the LWX2 board Client side RX1
WDM side O/E
OUT1
E/O
RX2
OUT2
TX1
E/O
TX2
Client-side optical module
Service processing module
IN1
O/E WDM-side optical module
IN2
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LWX2 board accesses Any optical signals (Any optical signals at a rate ranging from 16 Mbit/s to 2.7 Gbit/s). NOTE
For the types of the signals that the client side accesses, refer to 13.26.3 Functions and Features.
In the signal flow of the LWX2 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LWX2 to the WDM side of the LWX2, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of the optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After the O/E conversion, the two channels of electrical signals are sent to the service processing module. The module performs operations such as the regeneration of Any
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
823
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
signals and the performance monitoring of SDH and GE signals. Then, the module sends the signals to the WDM-side optical module. After performing E/O conversion, the WDM-side optical module sends out two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2compliant at CWDM standard wavelengths Any optical signals through the OUT1-OTU2 optical interfaces. l
Receive direction The WDM-side optical module receives two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths Any optical signals from the WDM side through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the Any electrical signals are sent to the signal processing module. The module performs operations such as the regeneration of Any signals and the performance monitoring of SDH and GE signals. Then, the module outputs two channels of Any signals. The client-side optical module performs E/O conversion of the two channels of electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of Any optical signals. – Client-side transmitter: Performs E/O conversion from two channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of Any optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to Any optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Service processing module – Regenerates Any signals in two directions. – Monitors the performance of SDH and GE signals in two directions.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
824
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Converts the DC power supplied by the backplane into the power required by each module on the board.
13.26.5 Front Panel There are indicators and interfaces on the front panel of the LWX2 board.
Appearance of the Front Panel Figure 13-140 shows the front panel of the LWX2 board. Figure 13-140 Front panel of the LWX2 board
LWX2 STAT ACT PROG SRV
TX1 RX1 TX2 RX2 OUT1 IN1 OUT2 IN2
LWX2
NOTE
The WDM-side optical modules must be inserted in the IN1/OUT1 and IN2/OUT2 interfaces in an ascending order of signal frequencies supported by these WDM-side optical modules.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
825
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-301 lists the type and function of each interface. Table 13-301 Types and functions of the interfaces on the LWX2 board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.26.6 Valid Slots One slot houses one LWX2 board. Table 13-302 shows the valid slots for the LWX2 board. Table 13-302 Valid slots for the LWX2 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
826
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.26.7 Characteristic Code for the LWX2 The characteristic code for the LWX2 board contains eight digits, respectively indicating the frequency values of two channels of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 13-303. Table 13-303 Characteristic code for the LWX2 board Code
Description
Description
First four digits
The frequency of forth optical signal
The last four digits of the frequency value of the first channel of signals on the WDM side.
Last four digits
The frequency of forth optical signal
The last four digits of the frequency value of the second channel of signals on the WDM side.
For example, the characteristic code for the TN11LWX2 board is 92109220. l
"9210" indicates the frequency of the first channel of optical signals on the WDM side is 192.10 THz.
l
"9220" indicates the frequency of the second channel of optical signals on the WDM side is 192.20 THz.
13.26.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-304 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-304 Mapping between the physical ports on the LWX2 board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
3
TX1/RX1
5
TX2/RX2
6
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
827
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.26.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LWX2, refer to Table 13-305 Table 13-305 LWX2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, OC-3, OC-12, OC-48, STM-1, STM-4, STM-16
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: Any Client Service Bearer Rate (Mbit/s)
16 to 2500
Laser Status
Off, On
Default: 2500
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
828
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Automatic Laser Shutdown
Disabled, Enabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Default: l WDM side: Disabled l Client side: Enabled
Current Bearer Rate (M)
-
parameter provides an option to query the rate of services accessed at the optical interface on the client side for the OTUs at any rate.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM Default: C
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.26.10 LWX2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
829
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L WX 2
N/A
2.125 Gbit/s Multirate-0.5 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
I-16-2 km S-16.1-15 km L-16.2-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16 module, S-16.1 module, and L-16.2 module can be used to access STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module. NOTE
The 2.125 Gbit/s multirate module is used to access FC200, GE, FC100 and FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
830
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-306 Client-side pluggable optical module specifications Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
MLM
SLM
SLM
Target transmission distance
-
0.5 km (0.3 mi.)
2 km (1.2 mi.)
15 km (9.3 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
830 to 860
1266 to 1360
1260 to 1360
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
3
Minimum mean launched power
dBm
-9.5
-10
-5
-2
Minimum extinction ratio
dB
9
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
N/A
1
1
Minimum side mode suppression ratio
dB
N/A
N/A
30
30
Eye pattern mask
-
IEEE802.3zcompliant
G.957-compliant
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
APD
831
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Operating wavelength range
nm
770 to 860
1270 to 1580
1270 to 1580
1500 to 1580
Receiver sensitivity
dBm
-17
-18
-18
-28
Minimum receiver overload
dBm
0
-3
0
-9
Maximum reflectance
dB
N/A
-27
-27
-27
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, ESCON, STM-1, FE, DVB-ASI signals. NOTE
The 2.5 Gbit/s multirate module (eSFP CWDM) can be used to access STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-307 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
832
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Table 13-308 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
833
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 13-309 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format Issue 03 (2013-05-16)
-
Value 12800 ps/ nm-C BandFixed Wavelength -NRZ-PINa
12800 ps/ nm-C BandFixed Wavelength -NRZ-APDa
6500 ps/nmC BandFixed Wavelength -NRZ-PIN
3200 ps/nmC BandFixed Wavelength -NRZ-PIN
6400 ps/nmC BandTunable Wavelength -NRZ-APD (Four ChannelsTunable)
NRZ
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
834
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Wavelength -NRZ-PINa
12800 ps/ nm-C BandFixed Wavelength -NRZ-APDa
6500 ps/nmC BandFixed Wavelength -NRZ-PIN
3200 ps/nmC BandFixed Wavelength -NRZ-PIN
6400 ps/nmC BandTunable Wavelength -NRZ-APD (Four ChannelsTunable)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-1
-1
3
3
3
Minimum mean launched power
dBm
-5
-5
-2
-2
-2
Minimum extinction ratio
dB
10
10
8.2
8.2
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
6400
Eye pattern mask
-
G.959.1-compliant
PIN
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating nm wavelength range
1200 to 1650
1300 to 1575
Receiver sensitivity
dBm
-18
-28
-18
-26
-28
Minimum receiver overload
dBm
0
-9
0
-10
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
a: The 12800ps/nm-PIN and 12800ps/nm-APD modules do not support pilot tone modulation mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
835
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-310 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
2.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
NOTE
l When SDH or OTN services are provisioned on the WDM side, the line code on the WDM side must be NRZ. l When SDH or OTN services are provisioned on the WDM side, the eye pattern on the WDM side complies with the template defined in ITU-T G.957.
Mechanical Specifications l
Issue 03 (2013-05-16)
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
836
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Weight: 1.3 kg (2.9 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131° F) (W)
LWX2
38.5
42.4
13.27 LWXD LWXD: arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (double transmit)
13.27.1 Version Description Only one functional version of the LWXD board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1L WX D
N
N
N
N
Y
Y
13.27.2 Application As a type of optical transponder unit, the LWXD board implements the conversion between the optical signal at the rate between 16 Mbit/s and 2.7 Gbit/s and WDM signals that comply with ITU-T Recommendations, and dually feeds and selectively receives signals on the WDM side. For the position of the LWXD board in the WDM system, see Figure 13-141. Figure 13-141 Position of the LWXD board in the WDM system LWXD
MUX/ DMUX
MUX/ DMUX
MUX/ DMUX
Transparent transmission
Issue 03 (2013-05-16)
Transparent transmission
16Mbit/s – 2.7Gbit/s
LWXD MUX/ DMUX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
16Mbit/s – 2.7Gbit/s
837
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.27.3 Functions and Features The LWXD board is used to achieve wavelength tunable and to provide ESC. For detailed functions and features, refer to Table 13-311. Table 13-311 Functions and features of the LWXD board Function and Feature
Description
Basic function
LWXD converts signals as follows: l 2 x (16 Mbit/s to 2.7 Gbit/s signals)<->2 x (16 Mbit/s to 2.7 Gbit/s signals) l Implements the dual fed and selective receiving function on the WDM side.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
Alarms and performance events monitoring
Monitors items such as the bias current and temperature of the laser as well as the optical power.
ALS function
Supports the ALS function on the client and WDM sides.
l Supports ITU-T G.694.2-compliant CWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
838
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Test frame
Not supported
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Loopback
WDM side
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
839
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Protocols or standards for service processing (performance monitoring)
Issue 03 (2013-05-16)
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
840
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.27.4 Working Principle and Signal Flow The LWXD board consists of the client-side optical module, WDM-side optical module, service processing module, control and communication module, and power supply module. Figure 13-142 shows the functional modules and signal flow of the LWXD board. Figure 13-142 Functional modules and signal flow of the LWXD board WDM side
Client side RX
O/E
TX
E/O
Splitter
E/O Service processing module
IN1 IN2
O/E
Client-side optical module
OUT1 OUT2
WDM-side optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The client side of the LWXD board accesses Any optical signals (Any optical signals at a rate ranging from 16 Mbit/s to 2.7 Gbit/s). NOTE
For the types of the signals that the client side accesses, refer to 13.27.3 Functions and Features.
In the signal flow of the LWXD board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LWXD to the WDM side of the LWXD, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of the optical signals from client equipment through the RX interface, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the service processing module. The module performs operations such as the regeneration of Any signals and the performance monitoring of SDH and GE signals. Then, the module sends the signals to the WDM-side optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
841
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
After performing the E/O conversion, the WDM-side optical module sends out the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths Any optical signals. An optical splitter converts the OTU1 optical signals into two channels of identical optical signals, and then the two channels signals are output through the OUT1-OUT2 optical interfaces. l
Receive direction The WDM-side optical module receives two channels of the ITU-T G.694.1-compliant at DWDM standard wavelengths or the ITU-T G.694.2-compliant at CWDM standard wavelengths Any optical signals from the WDM side through the IN1-IN2 optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the Any electrical signals are sent to the signal processing module. The module performs operations such as received signal selection, the regeneration of Any signals and the performance monitoring of SDH and GE signals. Then, the module outputs one channel of Any signals. The client-side optical module performs E/O conversion of the electrical signals, and then outputs one channel of client-side optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of Any optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of Any optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to Any optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Service processing module – Regenerates Any signals in two directions. – Monitors the performance of SDH and GE signals in two directions.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
842
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.27.5 Front Panel There are indicators and interfaces on the front panel of the LWXD board.
Appearance of the Front Panel Figure 13-143 shows the front panel of the LWXD board. Figure 13-143 Front panel of the LWXD board
LWXD STAT ACT PROG SRV
TX1 RX1 OUT1 IN1 OUT2 IN2
LWXD
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
843
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-312 lists the type and function of each interface. Table 13-312 Types and functions of the interfaces on the LWXD board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.27.6 Valid Slots One slot houses one LWXD board. Table 13-313 shows the valid slots for the LWXD board. Table 13-313 Valid slots for the LWXD board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.27.7 Characteristic Code for the LWXD The characteristic code for the LWXD board contains eight digits, respectively indicating the frequency values of two channels of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 13-314. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
844
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-314 Characteristic code for the LWXD board Code
Description
Description
First four digits
The frequency of forth optical signal
The last four digits of the frequency value of the first channel of signals on the WDM side.
Last four digits
The frequency of forth optical signal
The last four digits of the frequency value of the second channel of signals on the WDM side.
For example, the characteristic code for the TN11LWXD is 92109210. l
"92109210" indicates the frequency of the two channels of optical signals on the WDM side both are 192.10 THz.
13.27.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-315 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-315 Mapping between the physical ports on the LWXD board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.27.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of LWXD, refer to Table 13-316
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
845
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-316 LWXD parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and querses the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, OC-3, OC-12, OC-48, STM-1, STM-4, STM-16
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: Any Client Service Bearer Rate (Mbit/s)
16 to 2500
Laser Status
Off, On
Default: 2500
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled Default: l WDM side: Disabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
l Client side: Enabled Current Bearer Rate (M)
Issue 03 (2013-05-16)
-
parameter provides an option to query the rate of services accessed at the optical interface on the client side for the OTUs at any rate.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
846
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.27.10 LWXD Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
847
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L WX D
N/A
2.125 Gbit/s Multirate-0.5 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
I-16-2 km S-16.1-15 km L-16.2-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16 module, S-16.1 module, and L-16.2 module can be used to access STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module. NOTE
The 2.125 Gbit/s multirate module is used to access FC200, GE, FC100 and FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
848
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-317 Client-side pluggable optical module specifications Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
MLM
SLM
SLM
Target transmission distance
-
0.5 km (0.3 mi.)
2 km (1.2 mi.)
15 km (9.3 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
830 to 860
1266 to 1360
1260 to 1360
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
3
Minimum mean launched power
dBm
-9.5
-10
-5
-2
Minimum extinction ratio
dB
9
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
N/A
1
1
Minimum side mode suppression ratio
dB
N/A
N/A
30
30
Eye pattern mask
-
IEEE802.3zcompliant
G.957-compliant
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
APD
849
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Operating wavelength range
nm
770 to 860
1270 to 1580
1270 to 1580
1500 to 1580
Receiver sensitivity
dBm
-17
-18
-18
-28
Minimum receiver overload
dBm
0
-3
0
-9
Maximum reflectance
dB
N/A
-27
-27
-27
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, ESCON, STM-1, FE, DVB-ASI signals. NOTE
The 2.5 Gbit/s multirate module (eSFP CWDM) can be used to access STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-318 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
850
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Table 13-319 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
851
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
852
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-320 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPINa
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPDa
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gthNRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels -Tunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-4
-4
0
0
0
0
Minimum mean launched power
dBm
-8
-8
-5
-5
-5
-5
Minimum extinction ratio
dB
10
10
8.2
8.2
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1-compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-18
Issue 03 (2013-05-16)
APD
1300 to 1575 -28
-18
-26
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
-28
-28
853
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Wavelen gth-NRZPINa
12800 ps/ nm-C BandFixed Wavelen gth-NRZAPDa
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Wavelen gth-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gthNRZAPD
6400 ps/ nm-C BandTunable Wavelen gth-NRZAPD (Four Channels -Tunable)
Minimum receiver overload
dBm
0
-9
0
-10
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
a: The 12800ps/nm-PIN and 12800ps/nm-APD modules do not support pilot tone modulation mode.
Table 13-321 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
–0.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤ ±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
854
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
NOTE
l When SDH or OTN services are provisioned on the WDM side, the line code on the WDM side must be NRZ. l When SDH or OTN services are provisioned on the WDM side, the eye pattern on the WDM side complies with the template defined in ITU-T G.957.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131° F) (W)
LWXD
35.8
39.4
13.28 LWXS LWXS: arbitrary rate (16Mbit/s-2.7Gbit/s) wavelength conversion board (single transmit)
13.28.1 Version Description The available functional versions of the LWXS board are TN11 and TN12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
855
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 LWX S
N
N
N
N
Y
Y
TN12 LWX S
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Functions: – The TN11LWXS board does not support access ETR/CLO services, whereas the TN12LWXS board supports, see 13.28.3 Functions and Features.
Substitution Relationship The LWXS boards of different versions cannot replace each other.
13.28.2 Application As a type of optical transponder unit, the LWXS board implements the conversion between the optical signals at the rate of 16 Mbit/s to 2.7 Gbit/s and WDM signals that comply with ITU-T Recommendations. For the position of the LWXS board in the WDM system, see Figure 13-144. Figure 13-144 Position of the LWXS board rate in the WDM system
LWXS
LWXS M U X / D M U X
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Transparent transmission
Issue 03 (2013-05-16)
Transparent transmission
16 Mbit/s – 2.7 Gbit/s
M U X / D M U X
16 Mbit/s – 2.7 Gbit/s
856
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.28.3 Functions and Features The LWXS board is mainly used to achieve wavelength tunable and to provide ESC. For detailed functions and features, refer to Table 13-322. Table 13-322 Functions and features of the LWXS board Function and Feature
Description
Basic function
LWXS converts signals as follows:
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s
l 2 x (16 Mbit/s to 2.7 Gbit/s signals)<->2 x (16 Mbit/s to 2.7 Gbit/s signals)
GE: Ethernet service at a rate of 1.25 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s ETR: SAN service at a rate of 16 Mbit/s CLO: SAN service at a rate of 16 Mbit/s NOTE Only TN12LWXS supports ETR and CLO services.
Issue 03 (2013-05-16)
WDM specification
l Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports the tunable wavelength optical module. Equipped with this module, the board can tune the optical signal output on the WDM side within the range of the 40 wavelengths in C-band with the channel spacing of 100 GHz.
ESC function
Supported
PRBS test function
Not supported
LPT function
Not supported
Alarms and performance events monitoring
Monitors items such as the bias current and temperature of the laser as well as the optical power.
l Supports ITU-T G.694.2-compliant CWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
857
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
ALS function
Supports the ALS function on the client and WDM sides.
Test frame
Not supported
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client 1+1 protection.
Loopback
WDM side
l Supports OWSP protection.
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
858
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM) IBM GDPS( Geographically Dispersed Parallel Sysplex) Protocol NOTE Only TN12LWXS supports IBM GDPS( Geographically Dispersed Parallel Sysplex) Protocol.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
859
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
13 Optical Transponder Unit
Description Protocols or standards for service processing (performance monitoring)
-
13.28.4 Working Principle and Signal Flow The LWXS board consists of the client-side optical module, WDM-side optical module, service processing module, control and communication module, and power supply module. Figure 13-145 shows the functional modules and signal flow of the LWXS board. Figure 13-145 Functional modules and signal flow of the LWXS board Client side
WDM side
RX
O/E
TX
E/O
Service processing module
Client-side optical module
E/O
OUT
O/E
IN
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the LWXS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the LWXS to the WDM side of the LWXS, and the receive direction is defined as the reverse direction. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
860
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Transmit direction The client-side optical module receives one channel of the optical signals from client equipment through the RX interface, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the service processing module. The module performs operations such as the regeneration of Any signals and the performance monitoring of SDH/SONET and GE signals. Then, the module sends the signals to the WDM-side optical module. After performing E/O conversion, the WDM-side optical module sends out Any optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of Any optical signals at DWDM wavelengths that comply with ITU-T G.694.1 or CWDM wavelengths that comply with ITU-T G.694.2 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the Any electrical signals are sent to the signal processing module. The module performs operations such as the regeneration of Any signals and the performance monitoring of SDH/SONET and GE signals. Then, the module outputs one channel of Any electrical signals. The client-side optical module performs E/O conversion of the electrical signals, and then outputs one channel of client-side optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of Any optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of Any optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to Any optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Service processing module – Regenerates Any signals in two directions. – Monitors the performance of SDH/SONET and GE signals in two directions.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
861
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
– Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
13.28.5 Front Panel There are indicators and interfaces on the front panel of the LWXS board.
Appearance of the Front Panel Figure 13-146 shows the front panel of the LWXS board. Figure 13-146 Front panel of the LWXS board
LWXS STAT ACT PROG SRV
TX1 RX1 OUT IN
LWXS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
862
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-323 lists the type and function of each interface. Table 13-323 Types and functions of the interfaces on the LWXS board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX
LC
Transmit service signals to client equipment.
RX
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.28.6 Valid Slots One slot houses one LWXS board. Table 13-324 shows the valid slots for the TN11LWXS board. Table 13-324 Valid slots for theTN11LWXS board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 13-325 shows the valid slots for the TN12LWXS board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
863
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-325 Valid slots for theTN12LWXS board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.28.7 Characteristic Code for the LWXS The board characteristic code indicates the information about frequency of signals, type of the optical module, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.28.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-326 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-326 Mapping between the physical ports on the LWXS board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
13.28.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the LWXS, refer to Table 13-327 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
864
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-327 LWXS parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, OC-3, OC-12, OC-48, STM-1, STM-4, STM-16, ETR, CLO
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only TN12LWXS supports ETR, and CLO services.
Default: Any Client Service Bearer Rate (Mbit/ s)
16 to 2500
Laser Status
Off, On
Default: 2500
Default: l WDM side: On
sets the rate of the accessed service at the optical interface on the client side of a board. See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled Default: l WDM side: Disabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
l Client side: Enabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
865
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Current Bearer Rate(Mbit/s)
-
parameter provides an option to query the rate of services accessed at the optical interface on the client side for the OTUs at any rate.
OFC Enabled
Disabled, Enabled
The open fiber control (OFC) function controls the transmit power of the laser when the fiber is disconnected. When the OFC function is enabled, the laser sends short pulse, rather than remains in the enabled state, to check whether the fiber is connected. In this way, the output optical power of the laser is cut, which prevents eye injury.
Default: Disabled
NOTE l Set the LPT and ALS functions to Disabled after the OFC function is enabled. l The OFC function cannot coexist with protection. l Only the TN12LWXS supports this parameter. l This parameter is valid only when the Service Type parameter is set to ISC 1G or ISC 2G.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: /
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
866
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Planned Band Type
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: C
Default: None
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
13.28.10 LWXS Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11L WX S
N/A
2.125 Gbit/s Multirate-0.5 km
12800 ps/nm-C BandFixed WavelengthNRZ-PIN
N/A
TN 12L WX S
I-16-2 km S-16.1-15 km L-16.2-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
12800 ps/nm-C BandFixed WavelengthNRZ-APD 6500 ps/nm-C BandFixed WavelengthNRZ-PIN 3200 ps/nm-C BandFixed WavelengthNRZ-APD 12800 ps/nm-C BandTunable WavelengthNRZ-APD 6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable) 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
867
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
For information about the boards supported by the equipment, see Mappings Between the Board and Equipment in the Hardware Description. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16/SR-1 OC-48 module, S-16.1/IR-1 OC-48 module, and L-16.2/LR-2 OC-48 can be used to access ETR, CLO, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module. NOTE
The 2.125 Gbit/s multirate module is used to access FC200, GE, FC100 and FE signals.
Table 13-328 Client-side pluggable optical module specifications Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
MLM
SLM
SLM
Target transmission distance
-
0.5 km (0.3 mi.)
2 km (1.2 mi.)
15 km (9.3 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
830 to 860
1266 to 1360
1260 to 1360
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
3
Minimum mean launched power
dBm
-9.5
-10
-5
-2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
868
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
I-16-2 km
S-16.1-15 km
L-16.2-80 km
Minimum extinction ratio
dB
9
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
N/A
1
1
Minimum side mode suppression ratio
dB
N/A
N/A
30
30
Eye pattern mask
-
IEEE802.3zcompliant
G.957-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
APD
Operating wavelength range
nm
770 to 860
1270 to 1580
1270 to 1580
1500 to 1580
Receiver sensitivity
dBm
-17
-18
-18
-28
Minimum receiver overload
dBm
0
-3
0
-9
Maximum reflectance
dB
N/A
-27
-27
-27
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access ETR, CLO, GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, or DVB-ASI signals. NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access ETR, CLO, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
869
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-329 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
870
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-330 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
871
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
WDM-Side Fixed Optical Module Table 13-331 WDM-side fixed optical module specifications Parameter
Unit
Optical Module Type
Line code format
-
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPINa
12800 ps/ nm-C BandFixed Waveleng th-NRZAPDa
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four ChannelsTunable)
NRZ
NRZ
NRZ
NRZ
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-1
-1
3
3
3
3
Minimum mean launched power
dBm
-5
-5
-2
-2
-2
-2
Minimum extinction ratio
dB
10
10
8.2
8.2
10
8.2
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.2
0.2
0.5
0.5
0.2
0.5
Minimum side mode suppression ratio
dB
35
35
30
30
35
35
Dispersion tolerance
ps/nm
12800
12800
6500
3200
12800
6400
Eye pattern mask
-
G.959.1-compliant
PIN
APD
APD
APD
Receiver parameter specifications at point R Receiver type
-
Issue 03 (2013-05-16)
PIN
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
872
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
Unit
Optical Module Type
13 Optical Transponder Unit
Value 12800 ps/ nm-C BandFixed Waveleng th-NRZPINa
12800 ps/ nm-C BandFixed Waveleng th-NRZAPDa
6500 ps/ nm-C BandFixed Wavelen gth-NRZPIN
3200 ps/ nm-C BandFixed Waveleng th-NRZAPD
12800 ps/ nm-C BandTunable Wavelen gth-NRZAPD
6400 ps/ nm-C BandTunable Waveleng th-NRZAPD (Four ChannelsTunable)
Operating wavelength range
nm
1200 to 1650
1300 to 1575
Receiver sensitivity
dBm
-18
-28
-18
-26
-28
-28
Minimum receiver overload
dBm
0
-9
0
-10
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
-27
-27
a: The 12800ps/nm-PIN and 12800ps/nm-APD modules do not support pilot tone modulation mode.
Table 13-332 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type Line code format
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
2.5
Minimum extinction ratio
dB
8.2
Central wavelength
nm
1271 to 1611
Central wavelength deviation
nm
≤±6.5
Maximum -20 dB spectral width
nm
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
873
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1600 ps/nm-CWDM Band-Fixed Wavelength-NRZ-APD
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
1600
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
NOTE
l When SDH or OTN services are provisioned on the WDM side, the line code on the WDM side must be NRZ. l When SDH or OTN services are provisioned on the WDM side, the eye pattern on the WDM side complies with the template defined in ITU-T G.957.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131° F) (W)
LWXS
33.9
37.3
13.29 TMX TMX: 4-channel STM-16/OC-48/OTU1 asynchronous mux OTU2 wavelength conversion board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
874
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.29.1 Version Description The available functional versions of the TMX board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 TMX
Y
Y
N
N
Y
Y
TN12 TMX
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Function: – TN11TMX supports AFEC, and the TN12TMX supports AFEC-2. Boards that use different FEC modes cannot interoperate with each other. For details, see 13.29.3 Functions and Features.
l
Specification: – The TN11TMX board supports fixed optical module and tunable optical module on the WDM side. The TN12TMX board supports fixed optical module, tunable optical module, XFP module and gray optical module on the WDM side. For specifications of each version, see 13.29.10 TMX Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11TMX
TN12TMX
The TN12TMX can be created as TN11TMX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12TMX functions as the TN11TMX. NOTE l When both the receive and transmit boards employ FEC, the substitution applies; when both the receive board and transmit board employs AFEC, the substitution does not apply. l A board equipped with a PIN receiver cannot substitute for a board equipped with an APD receiver, because the two types of receives support different input power ranges.
TN12TMX
Issue 03 (2013-05-16)
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
875
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.29.2 Application As a type of optical transponder unit, the TMX board multiplexes four channels of STM-16/ OC-48/OTU1 service signals into one channel of OTU2 signals, and implements conversion between these service signals and WDM signals that comply with ITU-T Recommendations. For the position of the TMX board in the WDM system, see Figure 13-147. Figure 13-147 Position of the TMX board in the WDM system TMX
TMX
1
1 STM-16 OC-48 OTU1
4×ODU1
1×ODU2
M U X / D M U X
1×OTU2
4
1×OTU2
1×ODU2
4×ODU1
STM-16 OC-48 OTU1
M U X / D M U X
4
13.29.3 Functions and Features The TMX board is mainly used to achieve wavelength tunable and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 13-333. Table 13-333 Functions and features of the TMX board Function and Feature
Description
Basic function
TMX converts signals as follows: l 4x STM-16/OC-48/OTU1<->1x OTU2
Client-side service type
STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s
OTN function
l Provides the OTU2 interface on WDM-side.
OTU1: OTN service at a rate of 2.67 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU1. l Supports PM and TCM non-intrusive monitoring for ODU1. l Supports SM function for OTU1. l Supports PM and TCM functions for ODU2. l Supports SM function for OTU2.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for: l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
876
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description
ESC function
Supported
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
Not supported
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU1. TN11TMX: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN12TMX: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Alarms and performance events monitoring
l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser.
Regeneration board
TN11TMX: TN11LSXR TN12TMX: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection.
Loopback
Issue 03 (2013-05-16)
WDM side
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
877
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Function and Feature
Description Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.707
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
13.29.4 Working Principle and Signal Flow The TMX board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module. Figure 13-148 shows the functional modules and signal flow of the TMX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
878
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Figure 13-148 Functional modules and signal flow of the TMX board Client side
WDM side
RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
SDH/SONET encapsulation and mapping module
Client-side optical module
Client-side OTN processing module
OTN processing module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow In the signal flow of the TMX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TMX to the WDM side of the TMX, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After the O/E conversion, the four channels of electrical signals are sent to the signal processing module. OTU1 signals are sent to the client-side OTN processing module for performance monitoring. Other types of signals are sent to the SDH/SONET encapsulation and mapping modules for encapsulation and mapping. In the end, operations such as the OTN framing and FEC/AFEC encoding processing are performed. Then, the module outputs one channel of OTU2 electrical signals. The OTU2 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU2 optical signals at DWDM wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the signal processing module. The module performs operations such as OTU2 framing, decoding of FEC/AFEC, demapping,
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
879
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
and decapsulation processing. Then, the module outputs four channels of STM-16/OC-48/ OTU1 electrical signals. The client-side optical module performs E/O conversion of STM-16/OC-48/OTU1 electrical signals, and then outputs client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of STM-16/OC-48/ OTU1 optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to STM-16/OC-48/OTU1 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, client-side OTN processing module, and OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates multiples channel of SDH/SONET signals and maps the signals into the OTU2 payload area. The module also performs the reverse process and has the SDH/ SONET performance monitoring function. – Client-side OTN processing module Monitors OTN performance. – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs the FEC/ AFEC encoding and decoding.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
880
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.29.5 Front Panel There are indicators and interfaces on the front panel of the TMX board.
Appearance of the Front Panel Figure 13-149 shows the front panel of the TMX board. Figure 13-149 Front panel of the TMX board
TMX STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 OUT IN
TMX
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
881
OptiX OSN 8800/6800/3800 Hardware Description
l
13 Optical Transponder Unit
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 13-334 lists the type and function of each interface. Table 13-334 Types and functions of the interfaces on the TMX board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
13.29.6 Valid Slots One slot houses one TMX board. Table 13-335 shows the valid slots for the TN11TMX board. Table 13-335 Valid slots for TN11TMX board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 13-336 shows the valid slots for the TN12TMX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
882
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-336 Valid slots for TN12TMX board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
13.29.7 Characteristic Code for the TMX The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.2 Characteristic Code for OTUs.
13.29.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 13-337 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 13-337 Mapping between the physical ports on the TMX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
883
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
13.29.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TMX, refer to Table 13-338. Table 13-338 TMX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, OTU-1, OC-48, STM-16 Default: OTU-1
Laser Status
Off, On Default: l WDM side: On
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Disabled, Enabled
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Default: Enabled
Default: 0s
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN12TMX supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
884
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s FEC Working State
Disabled, Enabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
NOTE Only the TN12TMX supports this parameter.
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Planned Band Type
C, CWDM Default: C
NOTE Only support C band.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only support C band.
See D.26 Planned Band Type (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
885
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides.
Default: None
NOTE Only TN11TMX supports this parameter.
See D.31 SD Trigger Condition (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services. Only TN12TMX supports this parameter.
PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only TN12TMX supports the parameter.
13.29.10 TMX Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
886
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11T MX
N/A
I-16-2 km
N/A
L-16.2-80 km
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
800 ps/nm-C BandFixed WavelengthNRZ-PIN
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
S-16.1-15 km L-16.1-40 km
1200 ps/nm-C BandTunable WavelengthNRZ-APD 4800 ps/nm-C BandTunable WavelengthODB-APD 800 ps/nm-C BandTunable Wavelength(D)RZ-PIN TN 12T MX
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN 800 ps/nm-C BandTunable WavelengthNRZ-PIN
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP 800 ps/nm-C BandTunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
887
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16 module, S-16.1 module, L-16.1 module and L-16.2 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, and FE signals.
Table 13-339 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
888
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
13 Optical Transponder Unit
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
30
30
30
Minimum side mode suppression ratio
dB
N/A
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-340 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
Target transmission distance
-
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
Maximum mean launched power
dBm
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
889
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Central wavelength deviation
nm
±6.5
Maximum -20 dB spectral width
nm
1.0
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1270 to 1620
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, FC200, FC100, GE, STM-4, ESCON, STM-1, DVB-ASI, FE signals.
Table 13-341 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
890
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 13-342 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Issue 03 (2013-05-16)
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
891
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
892
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Table 13-343 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
-
Line code format
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
NRZ
NRZ
ODB
DRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
35
Dispersion tolerance
ps/ nm
1200
1200
4800
800
800
APD
PIN
PIN
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
893
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
-16
Minimum receiver overload
dBm
0
-9
-9
0
0
Maximum reflectance
dB
-27
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
WDM-Side Pluggable Optical Module Table 13-344 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
894
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-345 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
895
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 13-346 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Line code format
-
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
896
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11TMX: 1.4 kg (3.1 lb.) TN12TMX: 1.1 kg (2.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
897
OptiX OSN 8800/6800/3800 Hardware Description
13 Optical Transponder Unit
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1TM X
800 ps/nm-C Band (odd & even wavelengths)-Fixed WavelengthNRZ-PIN
40.3
44.3
42.1
46.4
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
44.5
51.2
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
48.4
55.7
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
31.4
36.1
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
32.4
37.1
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
41
45.5
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
39
43.7
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
TN1 2TM X
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
898
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14
Tributary Board and Line Board
About This Chapter 14.1 Overview A tributary board receives client-side services, performs O-E conversion, maps the services into ODUk containers, and lastly sends the ODUk electrical signals to cross-connect board for centralized cross-connection. A line board multiplexes and maps ODUk electrical signals crossconnected from cross-connect board and performs conversion between OTUk optical signals and standard wavelengths. 14.2 ND2 ND2: 2 x 10G line service processing board 14.3 NO2 NO2: 8 x 10G Line Service Processing Board 14.4 NQ2 NQ2: 4 x 10G Line Service Processing Board 14.5 NS2 NS2: 10G Line Service Processing Board 14.6 NS3 NS3: 40G line service processing board 14.7 NS4 NS4: 100G line service processing board 14.8 TBE TBE: 10 Gigabit Ethernet tributary board 14.9 TDG TDG: 2 x GE tributary service processing board 14.10 TDX TDX: 2 x 10G tributary service processing board 14.11 TEM28 TEM28: 24xGE+4x10GE Ethernet tributary unit 14.12 THA Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
899
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
THA: 16 Any-rate Ports Service Processing Board 14.13 TOA TOA: 8 Any-rate Ports Service Processing Board 14.14 TOG TOG: 8 x GE tributary service processing board 14.15 TOM TOM: 8 x multi-rate ports service processing board 14.16 TOX TOX: 8 x 10 Gbit/s tributary service processing board 14.17 TQM TQM: 4 x multi-rate tributary service processing board 14.18 TQS TQS: 4 x STM-16/OC-48/OTU1 tributary service processing board 14.19 TQX TQX: 4 x 10 Gbit/s tributary service processing board 14.20 TSC TSC: 100G tributary service processing board 14.21 TSXL TSXL: 40 Gbit/s tributary service processing board 14.22 TTX TTX: 10 x 10G tributary service processing board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
900
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.1 Overview A tributary board receives client-side services, performs O-E conversion, maps the services into ODUk containers, and lastly sends the ODUk electrical signals to cross-connect board for centralized cross-connection. A line board multiplexes and maps ODUk electrical signals crossconnected from cross-connect board and performs conversion between OTUk optical signals and standard wavelengths.
Positions of Tributary and Line Boards in a WDM System A tributary board receives client-side services, performs O-E conversion, maps the services into ODUk containers, and lastly sends the ODUk electrical signals to cross-connect board for centralized cross-connection. A line board multiplexes and maps ODUk electrical signals crossconnected from cross-connect board and performs conversion between OTUk optical signals and standard wavelengths. Figure 14-1 shows the positions of tributary and line boards in a WDM system. Figure 14-1 Positions of tributary and line boards in a WDM system Client-side services
ODUk
WDM-side services
ODUk
Tributary board
Line Board
Tributary board
Line Board
SC1
WDM-side ODF
Line Board
FIU
Tributary board
OA
Line Board OM
OA
OD
Client-side equipment
Tributary board
Types of Tributary Boards The differences between different types of tributary boards lie in the type and number of clientside signals, and the type and number of electrical signals sent to the cross-connect board. Table 14-1 provides the main functions of the tributary boards. The THA, TOA, and TOM tributary boards can apply to multiple scenarios. For details on these scenarios, see 14.12 THA, 14.13 TOA, and 14.15 TOM. The TEM28 tributary board supports Layer 2 processing of Ethernet services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
901
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-1 Main functions of tributary boards Board
TN11TDG
Client-Side Service
Backplane-Side Signal
Type
Max. Number
Type
Max. Number
GE
2
GE
2
ODU1
1
Pluggable Optical Module
Y
TN11TDX
10GE LAN, 10GE WAN, STM-64, OC-192
2
ODU1
8
Y
TN12TDX
10GE LAN, 10GE WAN, STM-64, OC-192
2
ODU2, ODU2e
2
Y
TN52TDX
10GE LAN, 10GE WAN, STM-64, OC-192, OTU2, OTU2e
2
ODU2, ODU2e
2
Y
TN53TDX
10GE LAN, 10GE WAN, STM-64, OC-192, OTU2, OTU2e, FC800, FC1200
2
ODU2, ODU2e
2
Y
FC800
2
ODUflex
2
Y
FE, FDDI, GE, STM-1, STM-4, OC-3, OC-12, FC100, FICON, DVB-ASI, ESCON, OTU1
See 14.12.2 Applicati on Overview .
ODU0
See 14.12.2 Application Overview.
Y
TN54THA
FE, GE, OTU1, STM-1, OC-3, STM-4, OC-12, STM-16, OC-48, FC100, FC200, FICON, FICON Express, DVBASI, ESCON, FDDI
Issue 03 (2013-05-16)
ODU1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
902
OptiX OSN 8800/6800/3800 Hardware Description
Board
TN54TOA
TN52TOG
14 Tributary Board and Line Board
Client-Side Service
Backplane-Side Signal
Type
Max. Number
Type
Max. Number
FE, FDDI, GE, STM-1, STM-4, OC-3, OC-12, FC100, FICON, DVB-ASI, ESCON, SDI, OTU1
See 14.13.2 Applicati on Overview .
ODU0
See 14.13.2 Application Overview.
Y
ODU0
8
Y
ODU1
4
FE, FDDI, STM-1, OC-3, DVB-ASI, SDI, ESCON, STM-4, OC-12, GE, FC100, FICON, STM-16, FC200, FICON Express, HD-SDI, HDSDIRBR, OTU1
ODU1
3G-SDI, 3GSDIRBR, FC400, FICON4G
ODUflex
GE
8
Pluggable Optical Module
TN11TOM
FC100, FICON, GE, STM-4, OC-12, DVBASI, ESCON, FDDI, FE, SDI, STM-1, OC-3, FC200, FICON Express, HDSDI, STM-16, OC-48, OTU1
See 14.15.2.4 Applicati on Scenario Overview of TN11TO M.
ODU1
See 14.15.2.4 Application Scenario Overview of TN11TOM.
Y
TN52TOM
FE, FDDI, DVBASI, SDI, ESCON, GE, FC100, FICON, OTU1
See 14.15.2.3 Applicati on Scenario Overview of TN52TO M.
ODU0
See 14.15.2.3 Application Scenario Overview of TN52TOM.
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
903
OptiX OSN 8800/6800/3800 Hardware Description
Board
14 Tributary Board and Line Board
Client-Side Service
Backplane-Side Signal
Type
Type
Max. Number
FE, FDDI, STM-1, OC-3, DVB-ASI, SDI, ESCON, STM-4, OC-12, GE, FC100, FICON, STM-16, OC-48, FC200, FICON Express, HDSDI, OTU1
Max. Number
Pluggable Optical Module
ODU1
TN55TOX
STM-64, OC-192, 10GE LAN, 10GE WAN, OTU2, OTU2e,
8
ODU2, ODU2e
8
Y
TN11TQM
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI, SDI, ESCON
4
ODU1
1
Y
GE, FC100, FICON
2
FC200, FICON Express, STM-16, OC-48
1
STM-4, STM-1, OC-12, OC-3, FE, ESCON, DVB-ASI, SDI, ESCON, FDDI
4
ODU1
1
Y
GE, FC100, FICON
2
FC200, FICON Express, STM-16, OC-48, OTU1, HD-SDI
1
STM-16, OC-48, OTU1
4
ODU1
4
Y
TN12TQM
TN11TQS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
904
OptiX OSN 8800/6800/3800 Hardware Description
Board
14 Tributary Board and Line Board
Client-Side Service
Backplane-Side Signal
Type
Max. Number
Type
Max. Number
TN11TQX
STM-64, OC-192, 10GE LAN, 10GE WAN
4
ODU2
4
Y
TN52TQX
STM-64, OC-192, 10GE LAN, 10GE WAN, OTU2, OTU2e,
4
ODU2, ODU2e
4
Y
TN53TQX
STM-64, OC-192, 10GE LAN, 10GE WAN, OTU2, OTU2e, FC800, FC1200
4
ODU2, ODU2e
4
Y
TN55TQX
STM-64, OC-192, 10GE LAN, 10GE WAN, OTU2, OTU2e, FC800, FC1200
4
ODU2, ODU2e
4
Y
FC800
4
ODUflex
4
TN54TSC
100GE
1
ODU4
1
Y
TN11TSX L
STM-256, OC-768
1
ODU2
4
N
TN53TSX L
STM-256, OC-768, OTU3
1
ODU3
1
N
TN54TSX L
40GE
1
ODU3
1
Y
TN54TTX
10GE LAN, 10GE WAN, STM-64, OC-192, OTU2, OTU2e
10
ODU2, ODU2e
10
Y
TN54TEM 28
FE, GE
24
10GE LAN, 10GE WAN
4
16 x ODU0, 8 x ODU1, 2 x ODU2, 8 x ODUflex. The total bandwidth is 20G bit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Pluggable Optical Module
Y
905
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line Boards The differences between different types of line boards lie in the rate and number of line-side signals and the type and number of electrical signals from the cross-connect board. Table 14-2 provides the main functions of line boards. Table 14-2 Main functions of line boards Board
TN11ND2
TN12ND2
TN52ND2
TN53ND2
TN55NO2
TN51NQ2
TN52NQ2 TN54NQ2
TN53NQ2
Backplane-Side Signal
WDM-Side Signal
Type
Max. Number
Type
Max. Number
ODU1
8
ODU2, ODU2e
2
OTU2, OTU2e
ODU1
8
ODU2, ODU2e
2
ODU0
16
ODU1
8
ODU2, ODU2e
2
ODUflex
4
ODU0
16
ODU1
8
ODU2, ODU2e
2
ODUflex
4
ODU0
64
ODU1
32
ODU2, ODU2e
8
ODU1
16
ODU2, ODU2e
4
ODU0
32
ODU1
16
ODU2, ODU2e
4
ODU0
32
ODU1
16
ODU2, ODU2e
4
8xODUflex
4
Issue 03 (2013-05-16)
Pluggabl e Optical Module
WDM Specifications DWDM
CWDM
2
N
Y
N
OTU2, OTU2e
2
Y
Y
N
OTU2, OTU2e
2
N
Y
N
OTU2, OTU2e
2
Y
Y
N
OTU2, OTU2e
8
Y
Y
N
OTU2, OTU2e
4
Y
Y
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
906
OptiX OSN 8800/6800/3800 Hardware Description
Board
14 Tributary Board and Line Board
Backplane-Side Signal
WDM-Side Signal
Type
Max. Number
Type
Max. Number
TN11NS2
ODU1
4
OTU2
TN12NS2
ODU1
4
ODU2, ODU2e
1
ODU0
8
ODU1
4
ODU2, ODU2e
1
ODUflex
2
ODU0
8
ODU1
4
ODU2, ODU2e
1
ODUflex
2
TN11NS3
ODU2, ODU2e
TN52NS3
TN52NS2
TN53NS2
TN54NS3 TN55NS3
TN54NS4
Pluggabl e Optical Module
WDM Specifications DWDM
CWDM
1
N
Y
N
OTU2, OTU2e
1
Y
Y
N
OTU2, OTU2e
1
N
Y
N
OTU2, OTU2e
1
Y
Y
N
4
OTU3, OTU3e
1
N
Y
N
ODU0
32
1
N
ODU1
16
OTU3, OTU3e
ODU2, ODU2e
4
ODU0
32
1
N
ODU1
16
OTU3, OTU3e
ODU2, ODU2e
4
ODU3
1
ODU0
80
OTU4
1
N
Y
N
ODUflex
80
ODU1
40
ODU2, ODU2e
10
ODU3
2
ODU4
1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
907
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.2 ND2 ND2: 2 x 10G line service processing board
14.2.1 Version Description The available functional versions of the ND2 board are TN11, TN12, TN52, and TN53.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 ND2
N
N
N
N
Y
N
TN12 ND2
N
N
N
Y
Y
N
TN52 ND2
Y
Y
Y
Y
Y
N
TN53 ND2
Y
Y
Y
Y
Y
N
NOTE
The TN12ND2/TN52ND2/TN53ND2 board for the OptiX OSN 8800 platform subrack only supports relay mode.
Variants The difference between the ND2 board variants lies in the WDM-side optical module. Table 14-3 Available variants of the TN11ND2 board Variant
WDM-Side Fixed Optical Module
01M01
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZ-PIN
T01
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T02
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
908
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-4 Available variants of the TN12ND2 board Variant
WDM-Side Optical Module
T01
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T02
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
B
The WDM-side optical modules are pluggable. For details, see 14.2.11 ND2 Specifications.
Table 14-5 Available variants of the TN52ND2 board Variant
WDM-Side Fixed Optical Module
ODUflex
Direct Mapping of ODU0 to ODU2
IEEE 1588v2
Physic alLayer Clock
T01
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
N
N
Y
Y
T02
800 ps/nm-C BandTunable WavelengthNRZ-PIN
N
N
Y
Y
T04
800 ps/nm-C BandTunable Wavelength(D)RZ-PIN
Y
Y
N
N
Table 14-6 Available variants of the TN53ND2 board Variant
Description
01
The WDM-side optical modules are pluggable. For details, see 14.2.11 ND2 Specifications.
Differences Between Versions Function: Board
TN11N D2
CrossConnet Granulari ty
FEC Encodin g
IEEE 1588v2
ODU1 and ODU2
FEC/ AFEC
N
Issue 03 (2013-05-16)
Physical Clock
N
Relay Mode
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
WDM-Side Pluggable Optical Module Fixed Wave lengt h
Tuna bleWavel ength
Gray Light
N
N
N
909
OptiX OSN 8800/6800/3800 Hardware Description
Board
14 Tributary Board and Line Board
CrossConnet Granulari ty
FEC Encodin g
IEEE 1588v2
Physical Clock
TN12N D2
ODU1 and ODU2
FEC/ AFEC-2
Y
Y
TN52N D2T01 TN52N D2T02
ODU0, ODU1 and ODU2
FEC/ AFEC-2
Y
TN52N D2T04
ODU0, ODU1, ODU2 and ODUflex
FEC/ AFEC-2
TN53N D2
ODU0, ODU1, ODU2 and ODUflex
FEC/ AFEC-2
Relay Mode
WDM-Side Pluggable Optical Module Fixed Wave lengt h
Tuna bleWavel ength
Gray Light
Y
Y
N
Y
Y
Y
N
N
N
N
N
Y
N
N
N
Y
Y
Y
Y
Y
Y
For details, see 14.2.3 Functions and Features. Specification: l
The specifications vary according to the version of board that you use. For details, see 14.2.11 ND2 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11ND2
TN12ND2/ TN52ND2
The TN12ND2/TN52ND2 can be created as TN11ND2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12ND2/TN52ND2 functions as the TN11ND2. NOTE When both the receive board and transmit board adopt the FEC code pattern, the substitution applies; when both the receive board and transmit board adopt the AFEC code pattern, the substitution does not apply. The TN52ND2 board can substitute for the TN11ND2 board only when they use 800ps/ nm-C-band-tunable wavelength-(D)RZ-PIN optical modules.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
910
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Original Board
Substitute Board
Substitution Rules
TN12ND2
TN52ND2/ TN53ND2
The TN52ND2/TN53ND2 can be created as TN12ND2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN52ND2/TN53ND2 functions as the TN12ND2. NOTE The TN53ND2 does not support OTU2e services at rate 11.3 Gbit/s on the WDM side and it cannot substitute for the TN12ND2 in relay mode at rate 11.3 Gbit/s. The TN52ND2 board can substitute for the TN12ND2 board only when they use 800ps/ nm-C-band-tunable wavelength-(D)RZ-PIN optical modules.
TN52ND2
TN53ND2
The TN53ND2 can be created as TN52ND2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53ND2 functions as the TN52ND2. NOTE The TN53ND2 does not support OTU2e services at rate 11.3 Gbit/s on the WDM side and it cannot substitute for the TN52ND2 in relay mode at rate 11.3 Gbit/s.
TN53ND2
None
-
14.2.2 Application As a type of line board, the ND2 board converts 16 ODU0, eight ODU1, four ODUflex, or two ODU2 into two ITU-T G.694.1 OTU2 signals or converts two ODU2e signals into two ITU-T G.694.1 OTU2e signals. The board supports hybrid transmission of the ODU0 service, ODU1 service, ODUflex service and the ODU2/ODU2e service.
Application scenario 1 of the TN11ND2/TN12ND2/TN52ND2/TN53ND2: conversion between eight channels of ODU1 signals and two channels of OTU2 signals Figure 14-2 Position of the ND2 board in the WDM system (application scenario 1) 8xODU1
8xODU1
1
1
4
1
1
M U X / D M U X
1 TOM
4
4
8
1
1
1
ND2
OUT2
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
4×ODU1
IN2
1×ODU2
IN2
M U X / D M U X
1×OTU2
Issue 03 (2013-05-16)
4
1×OTU2
8
1×ODU2
4×ODU1
TOM
OUT2
OUT1
1
4×ODU1
IN1
1×ODU2
OUT1
ND2
1
IN1
1×OTU2
1×OTU2
4
1×ODU2
4×ODU1
TOM 8
1
1
TOM 4
4
8
911
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
In this application scenario, the Board Mode parameter of the TN12ND2/TN52ND2/TN53ND2 board must be set to Line Mode.
Application scenario 2 of the TN11ND2/TN12ND2/TN52ND2/TN53ND2: conversion between two channels of ODU2/ODU2e signals and two channels of OTU2/OTU2e signals Figure 14-3 Position of the ND2 board in the WDM system (application scenario 2) 2xODU2/ODU2e
2xODU2/ODU2e
IN1
OUT1
ND2
ND2
IN2 OUT2
TDX
1×ODU2/ODU2e
IN2
M U X / D M U X
1×OTU2/ODU2e
1×OTU2/OTU2e
1×ODU2/ODU2e
OUT2
M U X / D M U X
1×ODU2/ODU2e
IN1
1×OTU2/OTU2e
1×OTU2/OTU2e
1×ODU2/ODU2e
TDX
OUT1
NOTE
In the application scenario with the TN11TDX board, the ND2 board receives eight channels of ODU1 signals. In the application scenario with the TN12TDX/TN52TDX/TN53TDX board, the ND2 board receives two channels of ODU2/ODU2e signals. In this application scenario, the Board Mode parameter of the TN12ND2/TN52ND2/TN53ND2 board must be set to Line Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
912
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 3 of the TN12ND2/TN52ND2/TN53ND2: regeneration of OTU2/OTU2e optical signals Figure 14-4 Position of the ND2 board in the WDM system (application scenario 3) 1×OTU2/OTU2e
IN1
1×OTU2/OTU2e
DMUX
OUT1
MUX
ND2 1×OTU2/OTU2e
OUT2
1×OTU2/OTU2e
MUX
IN2
DMUX
NOTE
The TN12ND2/TN52ND2/TN53ND2 board for the OptiX OSN 8800 platform subrack only supports relay mode. In this application scenario, the Board Mode parameter of the TN12ND2/TN52ND2/TN53ND2 board must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a nonASON system; otherwise, end-to-end management of ASON services is not available. The input and output wavelengths can be different. Only the TN12ND2/TN52ND2 board equipped with an 800 ps/nm (D)RZ tunable optical module supports regeneration of 11.3 Gbit/s OTU2e.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
913
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 4 of the TN52ND2/TN53ND2: conversion between 16 channels of ODU0 signals and two channels of OTU2 signals (only for OptiX OSN 8800) Figure 14-5 Position of the ND2 board in the WDM system (application scenario 4)
1
16xODU0
16xODU0
1
1
1
OUT1
8 ND2
8xODU0
4xODU1
IN2 OUT2
IN2
TOM 8
8
8
1
1
1
ND2
1×ODU2
OUT2
M U X / D M U X
1×OTU2
1×OTU2
8
8
1×ODU2
TOM
4xODU1
1
8xODU0
1
1
M U X / D M U X
8xODU0
IN1
4xODU1
IN1
1×ODU2
OUT1
1×OTU2
1×OTU2
1×ODU2
8
8
4xODU1
8xODU0
TOM
1
1
TOM
8
8
8
8
NOTE
In this application scenario, the Board Mode parameter of the TN52ND2/TN53ND2 board must be set to Line Mode. For the TN52ND2T04/TN53ND2 board: l When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign consecutive, the board supports the ODU0–>ODU1–>ODU2 service mapping path. l When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign random, the board supports the ODU0–>ODU2 service mapping path. l When the board works in compatible mode, the board does not support the configuration of the timeslot allocation mode, and it only supports the ODU0–>ODU1–>ODU2 service mapping path.
Application scenario 5 of the TN52ND2/TN53ND2: conversion between four channels of ODUflex signals and two channels of OTU2 signals (only for OptiX OSN 8800) Figure 14-6 Position of the ND2 board in the WDM system (application scenario 5) 4xODUflex
4xODUflex
ND2
1×ODU2
2xODUflex
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1×ODU2
M U OUT1 X / D IN2 M U OUT2 X
1×OTU2
IN2
IN1
2xODUflex
OUT2 1×OTU2
4
1×ODU2
Issue 03 (2013-05-16)
4
2xODUflex
4
IN1
ND2 M U X / D M U X
1×OTU2
TQX
1×OTU2
1
1×ODU2
1
2xODUflex
1
OUT1
1
1
1 TQX
4
4
4
914
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
In this application scenario, the Board Mode parameter of the TN52ND2T04/TN53ND2 board must be set to Line Mode. The total bandwidth of two channels of ODUflex signals corresponding to one channel of OTU2 signals cannot exceed 10 Gbit/s. TN52ND2T04/TN53ND2 supports ODUflex only when it works in standard mode. The line boards at the two add/drop sites must have the same ODU timeslot allocation mode. When a TN53ND2 board is connected to a board that does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53ND2 board. For example, when a TN53ND2 board is connected to a TN52ND2T01 board, which does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53ND2 board. Only the TN53ND2/TN53NQ2/TN53NS2 board supports the ODU Timeslot Configuration Mode parameter.
Application scenario 6: hybrid transmission scenario Figure 14-7 Position of the ND2 board in the WDM system (application scenario 6) 2xOTU2/ 2xOTU2e
ODU0 TOM TOM
ODU0
OUT1 M IN1
ODU1
NS2 ODUflex
ND2
TDX/ ODU2/ ND2 ODU2e
OUT2 IN2
U X / D M U X
M IN1 U X OUT1 / D M U X
IN2 OUT2
ODU0 ODU0 ODU1 ND2
TOM
TOM
ODUflex NS2 ODU2/ TDX/ ODU2e ND2
NOTE
The same IN/OUT port can transmit a mixture of ODU0, ODU1, and ODUflex signals, the total bandwidth cannot exceed 10 Gbit/s. The same board can transmit a mixture of ODU0, ODU1, ODU2/ODU2e and ODUflex signals. Different IN/OUT ports can work in different service modes. For the TN11ND2 board, changing the service mode for one IN/OUT port will cause the board to reset, which in return leads to service interruption. Therefore, before changing the service mode for one IN/OUT port, delete all service cross-connections for the other IN/ OUT port. Only TN52ND2/TN53ND2 supports ODU0. TN52ND2T04/TN53ND2 supports ODUflex only when it works in standard mode.
14.2.3 Functions and Features The ND2 board is mainly used to achieve cross-connection at the electrical layer, and to provide OTN interfaces and ESC. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
915
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
For detailed functions and features, refer to Table 14-7 and Table 14-8. NOTE
Only the OptiX OSN 8800 supports ODU0/ODUflex. The relay mode is supported only by the TN12ND2/TN52ND2/TN53ND2.
Table 14-7 Functions and features of the ND2 board (Line Mode) Functio n and feature
Description
Basic function
The ND2 board converts signals as follows: l TN11ND2/TN12ND2: – 8 x ODU1/2 x ODU2<->2 x OTU2 – 2 x ODU2e<->2 x OTU2e l TN52ND2T01/TN52ND2T02: – 16 x ODU0/8 x ODU1/2 x ODU2<->2 x OTU2 – 2 x ODU2e<->2 x OTU2e l TN52ND2T04/TN53ND2: – 16 x ODU0/8 x ODU1/2 x ODU2/4 x ODUflex<->2 x OTU2 – 2 x ODU2e<->2 x OTU2e Supports hybrid transmission of the ODU0 signals, ODU1 signals , ODUflex signals and the ODU2/ ODU2e signals.
Crossconnect capabilit ies
Supports cross-connections with cross-connect boards. l TN11ND2/TN12ND2: 8 x ODU1/2 x ODU2/2 x ODU2e l TN52ND2T01/TN52ND2T02: 16 x ODU0/8 x ODU1/4 x ODUflex/2 x ODU2/2 x ODU2e l TN52ND2T04/TN53ND2: 16 x ODU0/8 x ODU1/4 x ODUflex/2 x ODU2/2 x ODU2e
OTN function
l Supports the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU0 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODUflex layer: supports the PM function and PM non-intrusive monitoring functions. NOTE Only the TN52ND2T04/TN53ND2 supports TCM and TCM non-intrusive monitoring for ODU0.
WDM specific ation
Supports ITU-T G.694.1-compliant DWDM specifications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
916
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functio n and feature
Description
Tunable wavelen gth function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
PRBS function
Supports the PRBS function on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE If the TN52ND2T04/TN53ND2 board interconnects with another line board, PRBS must be enabled for the TN52ND2T04/TN53ND2 board and the connected line board. In addition, the PRBS function can take effect on the boards only when the following condition is met: The TN52ND2T04/TN53ND2 board works in standard mode and ODU0, ODU1, or ODUflex cross-connections are configured for the TN52ND2T04/TN53ND2 board, or the TN52ND2T04/TN53ND2 board works in compatible mode but no cross-connection is configured for it.
LPT function
Not supported
FEC encodin g
TN11ND2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN12ND2/TN52ND2/TN53ND2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarm and perform ance event monitori ng
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Regener ation board
l TN11ND2:
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
TN11LSXR l TN12ND2/TN52ND2/TN53ND2: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS function
Not supported
Test frame
Not supported
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
917
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functio n and feature
Description
IEEE 1588v2
The TN12ND2/TN52ND2T01/TN52ND2T02/TN53ND2 board supports the BC and OC modes; it does not support the TC or TC+OC mode.
Physical clock
The TN12ND2 board supports this feature only when ODU1 signals are cross-connected from the backplane. The TN52ND2T01/TN52ND2T02 board supports this feature only when ODU0 or ODU1 signals are cross-connected from the backplane. The TN53ND2 board supports this feature only when ODU0, ODU1, ODUflex signals are crossconnected from the backplane.
Opticallayer ASON
Supported
Electric al-layer ASON
Supported by the TN52ND2/TN53ND2
Protecti on scheme
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports ODUk SPRing protection. l Supports tributary SNCP protection. NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection.
Loopbac k
Board
WDM Side
ODU0 Channel Loopback
ODU1 Channel Loopback
ODUflex Channel Loopback
TN11ND2
Supported
Not supported
Supported
Not supported
TN12ND2
Supported
Not supported
Supported
Not supported
TN52ND2T01
Supported
Supported
Supported
Not supported
Supported only when ODU2/ ODU2e signals are received from the backplane.
Supported
Supported only when ODU1 signals are received from the backplane.
Supported
TN52ND2T02 TN52ND2T04 TN53ND2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
918
OptiX OSN 8800/6800/3800 Hardware Description
Functio n and feature
Description
Protocol s or standard s complia nce
Protocols or standards for transparent transmission (nonperformance monitoring)
14 Tributary Board and Line Board
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FCPH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
919
OptiX OSN 8800/6800/3800 Hardware Description
Functio n and feature
14 Tributary Board and Line Board
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Table 14-8 Functions and features of the ND2 board (Relay Mode) Function and feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regenerating rate
OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s or 11.3Gbit/s NOTE Only the TN12ND2/TN52ND2 board equipped with an 800 ps/nm (D)RZ tunable optical module supports regeneration of 11.3 Gbit/s OTU2e.
OTN function
l Provides the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for: l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
920
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
ESC function
Supports the ESC function, which enables the transmission of a supervisory signal inside a service signal.
PRBS test function
Not supported
FEC encoding
TN12ND2/TN52ND2/TN53ND2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarm and performance event monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
ALS function
Not supported
Test frame
Not supported
IEEE 1588v2
Not supported
Physical clock
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
Not supported
Loopback
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
Issue 03 (2013-05-16)
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
921
OptiX OSN 8800/6800/3800 Hardware Description
Function and feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
14.2.4 Working Principle and Signal Flow The ND2 board consists of the WDM-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow (Line Mode) Figure 14-8 shows the functional modules and signal flow of the ND2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
922
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-8 Functional modules and signal flow (Line Mode) Backplane (service cross-connection)
n X ODUk
WDM side Crossconnect module
1588v2 module
E/O OTN processing module
O/E
OUT1 OUT2 IN1 IN2
WDM-side optical module
Signal processing Signal processing module module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
Backplane SCC (controlled by SCC)
NOTE
Only the TN12ND2 /TN52ND2T01/TN52ND2T02/TN53ND2 board supports the IEEE 1588v2 module.
In Figure 14-8. n x ODUk indicates the service cross-connections from the ND2 board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity. Table 14-9 Service cross-connections from the ND2 board to the backplane
Issue 03 (2013-05-16)
Board
Service Cross-connection
TN11N D2/ TN12N D2
A maximum of 8xODU1/2xODU2/2xODU2e
TN52N D2T01/ TN52N D2T02
A maximum of 16xODU0/8xODU1/2xODU2/2xODU2e
TN52N D2T04/ TN53N D2
A maximum of 16xODU0/8xODU1/4xODUflex/2xODU2/2xODU2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
923
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The signal processing module of the ND2 board can access the following optical signals: The transmit and the receive directions are defined in the signal flow of the ND2 board. The transmit direction is defined as the direction from the backplane of the ND2 to the WDM side of the ND2. The receive direction is defined as the reverse direction. l
Transmit direction The cross-connect module can receive ODUk signals from the cross-connection board through the backplane. The OTN processing module performs operations such as OTN framing, and encoding of FEC. After processing, the signal processing module outputs two channels of OTU2/OTU2e signals. The OTU2/OTU2e signals are transmitted to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the OUT1-OUT2 optical interfaces.
l
Receive direction The WDM-side optical module receives two channels of the OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN1-IN2 optical interfaces. The module performs O/E conversion. After O/E conversion, the OTU2/OTU2e signals are sent to the signal processing module. The OTN processing module module performs operations such as OTU2 framing and decoding of FEC. Then, the cross-connect module sends out ODUk signals to the backplane for service cross-connection.
The TN12ND2/TN52ND2/TN53ND2 board processes clock signals in two directions. l
Receives clock signals from a service board and sends the clock signals to the clock processing board through the communication module.
l
Receives clock signals from the clock processing module and sends the clock signals to the downstream NE through a service board.
Functional Modules and Signal Flow (Relay Mode) Figure 14-9 shows the functional modules and signal flow of the ND2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
924
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-9 Functional modules and signal flow of the ND2 (Relay Mode) WDM side
WDM side
IN1
O/E
OUT2
E/O
OTN processing module
WDM-side optical module
E/O
OUT1
O/E
IN2
WDM-side optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
NOTE
The relay mode is only supported by the TN12ND2/TN52ND2/TN53ND2 board.
The ND2 board regenerates two channels of optical signals. The signals at the receive and transmit ends of the board are OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN1-IN2 optical interfaces and performs O/E conversion. The signal processing module performs decoding, overhead processing, and signal encoding. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After encoding, the signals are sent to the optical transmitting module. After performing E/O conversion, the module transmits OTU2/OTU2e signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT1-OUT2 optical interfaces.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
925
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser. l
Signal processing module The module consists of an OTN processing modulea and cross-connect module. – OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs FEC encoding and decoding. – Cross-connect module Grooms electrical signals between the ND2 and the cross-connect board through the backplane.
l
1588v2 module The 1588v2 module sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board. NOTE
The IEEE 1588v2 function is not supported if the working mode of the TN12ND2/TN52ND2/ TN53ND2 board is Optical Relay Mode or Electrical Relay Mode.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.2.5 Front Panel There are indicators and interfaces on the front panel of the ND2 board.
Appearance of the Front Panel Figure 14-10 and Figure 14-11 show the front panel of the ND2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
926
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-10 Front panel of the TN11ND2/TN12ND2T01/TN12ND2T02/TN52ND2 board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
927
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-11 Front panel of the TN12ND2B/TN53ND2 board
NOTE
You are advised to insert the WDM-side optical modules in the IN1/OUT1 and IN2/OUT2 interfaces in ascending order of signal frequencies supported by these WDM-side optical modules.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
928
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-10 lists the type and function of each interface. Table 14-10 Types and functions of the interfaces on the ND2 board Interface
Type
Function
IN1-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.2.6 Valid Slots One slot houses one ND2 board. Table 14-11 shows the valid slots for the TN11ND2 board. Table 14-11 Valid slots for the TN11ND2 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Table 14-12 shows the valid slots for the TN12ND2 board. Table 14-12 Valid slots for the TN12ND2 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
Table 14-13 shows the valid slots for the TN52ND2/TN53ND2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
929
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-13 Valid slots for the TN52ND2/TN53ND2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
14.2.7 Characteristic Code for the ND2 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.3 Characteristic Code of a Line Unit.
14.2.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-14 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-14 Mapping between the physical ports on the ND2 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
930
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The ND2 board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-15 Port diagram and port description Board
Mode
Port Diagram
Port Descripti on
Board Name Displayed on the NMS
TN53N D2
Standard mode
Figure 14-12
Table 14-16
53ND2
Compatible mode
Figure 14-13
Table 14-17
53ND2(COMP)
Standard mode
Figure 14-12
Table 14-16
52ND2(STND)
Compatible mode
Figure 14-13
Table 14-17
52ND2
TN12N D2
Compatible mode
Figure 14-14
Table 14-17
12ND2
TN11N D2
Compatible mode
Figure 14-14
Table 14-17
ND2
TN52N D2a
a: The TN52ND2T01/TN52ND2T02 board can work only in compatible mode.
NOTE
For the TN12ND2/TN52ND2/TN53ND2: ODUk cross-connections through the backplane are only supported when Board Mode is set to Line Mode. For the TN52ND2/TN53ND2: The OptiX OSN 6800 only supports signal grooming at the ODU1 and ODU2 levels from the backplane. The cross-connection granularities supported by the board in a subrack is consistent with the cross-connection granularities supported by the cross-connect board in the subrack. For details on the cross-connect board, see 21 Cross-Connect Board and System and Communication Board. NOTE
When the ND2 board works in compatible mode, or when the board works in standard mode and ODU Timeslot Configuration Mode is Assign consecutive, observe the following points: l If any of the ODU2 channels has been configured with a service, the corresponding ODU1 and ODU0 channels cannot be configured with other services. On the opposite, if the ODU1 and ODU0 channels have been configured with services, the corresponding ODU2 channel cannot be configured with other services. l If any of the ODU1 channels has been configured with a service, the corresponding ODU0 channels cannot be configured with other services. On the opposite, if the ODU0 channels have been configured with services, the corresponding ODU1 channel cannot be configured with other services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
931
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-12 TN52ND2/TN53ND2 board model (standard mode) Baclplane
IN(1-2)/OUT(1-2)-OCh:1-ODU2:1-ODUflex:(1~2) ODUflex:1 ODU2:1
OCh:1
ODU2:1
OCh:1
ODUflex:2 4XODUflex
ODUflex:1 ODUflex:2
IN(1-2)/OUT(1-2)-OCh:1 2 xODU2/ 2xODU 2e
ODU2:1
OCh :1
ODU2:1
OCh :1
IN(1-2)/OUT(1-2)-OCh:1-ODU2:1-ODU1:(1-4)
Other tributary/line/PID board
ODU1:1
8xODU1
ODU 2: 1
OCh :1
ODU 2: 1
OCh :1
ODU1:4 ODU1:1 ODU1:4
1(N1/OUT1)
IN(1-2)/OUT(1-2)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)
2(N2/OUT2)
ODU0:1 ODU0:2 ODU 0:1 ODU 0:2 16 xODU0
ODU 0:1 ODU 0:2 ODU0:1
ODU 1:1 ODU 2:1
OCh :1
ODU 1:4
ODU 1:1 ODU 2:1
OCh :1
ODU1:4
ODU 0:2
IN(1-2)/OUT(1-2)-OCh:1-ODU2:1-ODU0:(1-8) ODU0:1
16 xODU0
ODU0: 8 ODU0:1
ODU2:1
OCh :1
ODU2:1
OCh:1
ODU0: 8
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODUflex mapping path
ODU0 mapping path (ODU0– >ODU1– >ODU2)
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path (ODU0– >ODU2)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
932
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
When ODU Timeslot Configuration Mode is Assign random, the service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping paths are ODU0–>ODU2, ODU1–>ODU2, and ODUflex->ODU2. When ODU Timeslot Configuration Mode is Assign consecutive, the service rate can be ODU0, ODU1, or ODU2 and the mapping paths are ODU0–>ODU1–>ODU2 and ODU1->ODU2.
Figure 14-13 Port diagram for the TN52ND2/TN53ND2 board (compatible mode) Other tributary/ line/PID board
Other tributary/ line/PID board
Other tributary/ line/PID board
Backplane 16 x ODU0
2 x ODU2/ODU2e
8 x ODU1
161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
51 ODU1 (ODU1LP1/ODU1LP1)-1
71 ODU2 (ODU2LP1/ODU2LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
51 ODU1 (ODU1LP1/ODU1LP1)-4
165 (ODU0LP5/ODU0LP5)-1 165 (ODU0LP5/ODU0LP5)-2
52 ODU1 (ODU1LP2/ODU1LP2)-1 72 ODU2 (ODU2LP2/ODU2LP2)-1
168 (ODU0LP8/ODU0LP8)-1 168 (ODU0LP8/ODU0LP8)-2
Issue 03 (2013-05-16)
1 (IN1/OUT1)-1
2 (IN2/OUT2)-1
52 ODU1 (ODU1LP2/ODU1LP2)-4
Crossconnect module
ODU1 mapping path
Multiplexin g module
ODU2 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
933
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-14 Port diagram for the TN11ND2/TN12ND2 board (compatible mode) Other tributary/line/PID board
Other tributary/line/PID board
Backplane 2 x ODU2/ODU2e
8 x ODU1 51 (ODU1LP1/ODU1LP1)-1
ODU2
71 (ODU2LP1/ODU2LP1)-1
1 (IN1/OUT1)-1
ODU2
72 (ODU2LP2/ODU2LP2)-1
2 (IN2/OUT2)-1
51 (ODU1LP1/ODU1LP1)-4
52 (ODU1LP2/ODU1LP2)-1
52 (ODU1LP2/ODU1LP2)-4
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU1 signals are required, users only need to configure a cross-connection from another board to the ODU1LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
934
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-16 Descriptions of the ports on the TN52ND2/TN53ND2 board (standard mode) Port Name
Description
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1: (1-4)-ODU0:(1-2)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU1->ODU2)
2(IN2/OUT2)-OCh:1-ODU2:1-ODU1: (1-4)-ODU0:(1-2) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU0: (1-8)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU2)
2(IN2/OUT2)-OCh:1-ODU2:1-ODU0: (1-8) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1: (1-4)
Mapping path for ODU1 signals received from the backplane
2(IN2/OUT2)-OCh:1-ODU2:1-ODU1: (1-4) 1(IN1/OUT1)-OCh:1 2(IN2/OUT2)-OCh:1
Mapping path for ODU2 signals received from the backplane
1(IN1/OUT1)-OCh:1-ODU2:1ODUflex:(1-2)
Mapping path for ODUflex signals received from the backplane
2(IN2/OUT2)-OCh:1-ODU2:1ODUflex:(1-2) 1(IN1/OUT1)
WDM-side optical ports
2(IN2/OUT2)
Table 14-17 Descriptions of the ports on the ND2 board (compatible mode) Port Name
Description
Automatic Cross-Connection
ODU0LP1ODU0LP8
Internal logical ports of the board. Each of the ports provides optical channels 1 and 2.
Automatic cross-connections are established between these ports and the ODU1LP ports.
ODU1LP1ODU1LP2
Internal logical ports. Each of the port provides optical channels 1, 2, 3, and 4.
Automatic cross-connections are established between these ports and the ODU2LP ports.
ODU2LP1ODU2LP2
Internal logical ports of the board. Each of the ports provides optical channel 1.
Automatic cross-connections are established between these ports and the IN/OUT ports.
1(IN1/ OUT1)
WDM-side optical ports.
-
2(IN2/ OUT2)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
935
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.2.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
When the system uses electrical-layer ASON, the boards in standard mode cannot interconnect with those in compatible mode on the WDM side. The ND2 board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
ODU0 Cross-Connections Figure 14-15 and Figure 14-16 show the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
936
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-15 TN52ND2/TN53ND2 board cross-connections (ODU0 level: ODU0->ODU1->ODU2) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
Tributary board a
1
203(ClientLP3/ClientLP3)-1
(compatible mode)
204(ClientLP4/ClientLP4)-1
Tributary board b
3(TX1/RX1)-1 4(TX2/RX2)-1
(standard mode)
5(TX3/RX3)-1 6(TX4/RX4)-1
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 2
compatible mode
168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2
ND2
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
standard mode
2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2
Line board c (compatible mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Line board d 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:2
(standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8 2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:1
Line board e (standard mode)
2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:8
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
937
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutive. The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign random. Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
938
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-16 TN52ND2/TN53ND2 board cross-connections (ODU0 level: ODU0->ODU2) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board a (compatible mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1
ND2 (standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8 2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:1
2
2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:8
WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8 2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:1
Line board c (standard mode)
2(IN2/OUT2)-OCH:1-ODU2:1-ODU0:8 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2
Line board d (standard mode)
Line board e (compatible mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2 NOTE
The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutive. The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign random. Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
939
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b
TN54THA / TN54TOA
Line board c
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
ODU1 Cross-Connections Figure 14-17 and Figure 14-18 show the created ODU1 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
940
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-17 TN11ND2/TN12ND2 board cross-connections (ODU1 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
1
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side
ND2 (compatible mode)
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP2/ODU1LP2)-1 52(ODU1LP2/ODU1LP2)-2 52(ODU1LP2/ODU1LP2)-3 52(ODU1LP2/ODU1LP2)-4
2
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4
Line board b (compatible mode)
Line board c (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2
Tributary board a
TN11TDG / TN11TDX / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS
Line board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Line board c
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
941
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
14 Tributary Board and Line Board
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
942
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-18 TN52ND2/TN53ND2 board cross-connections (ODU1 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 201(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4
ND2
2
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:4
compatible mode
standard mode
Cross-connect module WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2
Tributary board a
TN11TDG / TN11TDX /TN54TEM28 / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS / TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
943
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b
TN54THA / TN54TOA
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODU2 Cross-Connections Figure 14-19 and Figure 14-20 show the created ODU2 cross-connections. Figure 14-19 TN11ND2/TN12ND2 board cross-connections (ODU2 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1
ND2 (compatible mode)
72(ODU2LP2/ODU2LP2)-1
Cross-connect module
WDM side 2
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1
Line board b (compatible mode)
Line board c (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2
Tributary board a
TN12TDX / TN52TDX / TN53TDX / TN55TQX / TN11TQX / TN52TQX / TN11TSXL
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
944
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX
Line board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Figure 14-20 TN52ND2/TN53ND2 board cross-connections (ODU2 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
Tributary board b (standard mode)
1
3(TX1/RX1)-1 4(TX1/RX1)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
ND2
compatible mode
1(IN1/OUT1)-OCH:1-ODU2:1
standard mode 2(IN2/OUT2)-OCH:1-ODU2:1 Cross-connect module
WDM side
2
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the ND2 The WDM side of line boards are cross-connected to the WDM side of the ND2
Tributary board a
TN12TDX / TN52TDX / TN53TDX / TN54TEM28 / TN11TQX / TN52TQX / TN53TQX / TN55TQX / TN11TSXL / TN54TTX
Tributary board b
TN53TDX / TN55TOX / TN55TQX
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
945
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODUflex Cross-Connections Figure 14-21 shows the created ODUflex cross-connections. Figure 14-21 TN52ND2/TN53ND2 board cross-connections (ODUflex level) Client side
Tributary board a (compatible mode)
Tributary board b (standard mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:2
ND2
WDM side 2
Line board c
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:2
The client side of tributary boards are cross-connected to the WDM side of the ND2 board The WDM side of the ND2 board are cross-connected to the WDM side of line boards NOTE
The IN/OUT optical port supports ODUflex when ODU Timeslot Configuration Mode is Assign randomRANDOM. Tributary board a TN53TDX / TN54TEM28 / TN55TQX / TN54THA / TN54TOA Tributary board b TN53TDX / TN54TOA / TN55TQX Line board c
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
14.2.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
946
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
For parameters of the ND2, refer to Table 14-18. Table 14-18 ND2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets the optical interface name.
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Sets the channel loopback.
Default: NonLoopback Service Mode
l TN11ND2: ODU1, ODU2 Default: ODU1 l TN12ND2: Automatic, ODU1, ODU2 Default: Automatic
Specifies the service mode for a board. NOTE The parameter is supported by the TN52ND2/TN53ND2 only in the compatible mode.
See D.32 Service Mode (WDM Interface) for more information.
l TN52ND2/ TN53ND2: Automatic, ODU0, ODU1, ODU2 Default: Automatic Laser Status
Off, On Default: On
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
947
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Enable Auto-Sensing
Disabled, Enabled
Sets the Enable Auto-Sensing function of the board to Enabled or Disabled.
Default: Enabled
l When it is set to Enabled, the board supports FEC Type and Line Rate of the received signals in autosensing mode, and thus no manual setting is required. l When it is set to Disabled, FEC Type and Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE This parameter is only valid when the Board Mode is set to Electrical Relay Mode or Optical Relay Mode. This parameter is supported only by the TN12ND2 /TN52ND2//TN53ND2. In the case of ASON services, this parameter must be set to Enabled.
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
AFEC Grade
1, 2, 3 Default: 3
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information. A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay. NOTE Only the TN52ND2/TN53ND2 support this parameter.
Issue 03 (2013-05-16)
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
948
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM Default: C
NOTE CBAND is the only band now supported.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE CBAND is the only band now supported.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled
Enable Line Rate
Enabled, Disabled
Default: Disabled
Default: Enabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. Determines whether to automatically switch between the standard mode and speedup mode for the line rate upon a rerouting event in ASON scenarios. NOTE The parameter is supported only by the TN52ND2/TN53ND2 in the standard mode.
Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The Line Rate parameter provides an option to set the OTN line rate. See D.16 Line Rate for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
949
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
ODUflex Tolerance (ppm)
0 to 100
Default: Disabled
Default: 100
Specifies the tolerance of deviation between the actual client-side service rate and the specified rate when the client-side service type is ODUflex. NOTE When the tributary board that connects to the ND2 board receives 3G-SDI services from client equipment, set this parameter to 10. If the tributary board receives other services, set it to 100. NOTE The parameter is supported only by the TN52ND2/TN53ND2 in the standard mode.
ODU Timeslot Configuration Mode
Assign random, Assign consecutive
Sets ODU Timeslot Configuration Mode of the board.
Default: Assign random
Assign random: The service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping path is ODU0–>ODU2, ODU1–>ODU2, and ODUflex->ODU2. Assign consecutive: The service rate can be ODU0, ODU1, or ODU2 and the mapping path is ODU0–>ODU1– >ODU2, or ODU1->ODU2. NOTE The parameter is supported only by the TN52ND2/TN53ND2 in the standard mode. For the TN52ND2/TN53ND2 board in an OptiX OSN 6800 NE, this parameter must be set to Assign consecutive.
Line Mode, Electrical Relay Mode, Optical Relay Mode
Board Mode
Default: Line Mode
Specifies the board mode depending on the service application scenario. See D.2 Board Mode (WDM Interface) for more information. NOTE This parameter is supported only by the TN12ND2/TN52ND2/TN53ND2.
14.2.11 ND2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
950
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN11ND 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
N/A
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN TN12ND 2
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
TN52ND 2
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
N/A
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN TN53ND 2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
951
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
WDM-Side Fixed Optical Module Table 14-19 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
952
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-20 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C BandTunable Wavelength-NRZPIN
800 ps/nm-C BandTunable WavelengthDRZ-PIN
NRZ
DRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
953
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
WDM-Side Pluggable Optical Module Table 14-21 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
954
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-22 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Value
Optical Module Type
Line code format
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP -
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-23 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
955
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
956
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11ND2/TN12ND2: 1.6 kg (3.5 lb. ) TN52ND2: 1.4 kg (3.1 lb.) TN53ND2: 1.2 kg (2.7 lb.)
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN1 1ND 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
61.1
68.4
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN
62.7
70.2
800 ps/nm-C Band-Tunable Wavelength(D)RZ-PIN
68.4
76.6
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN
57.2
64
800 ps/nm-C Band-Tunable Wavelength(D)RZ-PIN
62
69
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
46
52
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN
70.5
77.5
800 ps/nm-C Band-Tunable Wavelength(D)RZ-PIN
TN52ND2T01: 67.8
TN52ND2T01: 74.6
TN52ND2T04: 35
TN52ND2T04: 37
TN1 2ND 2
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km TN5 2ND 2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
957
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN5 3ND 2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
25
28
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
14.3 NO2 NO2: 8 x 10G Line Service Processing Board
14.3.1 Version Description The available functional version of the NO2 board is TN55.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN55 NO2
Y
Y
Y
N
N
N
NOTE
In the enhanced OptiX OSN 8800 T64 subrack, enhanced OptiX OSN 8800 T32 subrack , and OptiX OSN 8800 T16 subrack, the NO2 board can work either in line mode or relay mode. When the NO2 board works in line mode, the enhanced OptiX OSN 8800 T64 subrack must use the TNK2USXH +TNK2UXCT boards and the enhanced OptiX OSN 8800 T32 subrack must use the TN52UXCH/ TN52UXCM board and the OptiX OSN 8800 T16 subrack must use the TN16UXCM board. In the general OptiX OSN 8800 T64 subrack, and general OptiX OSN 8800 T32 subrack, the NO2 board can work only in relay mode.
Variants The TN55NO2 board has only one variant: TN55NO201. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
958
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.3.2 Application As a type of line board, the NO2 board converts 64 ODU0, 32 ODU1, or eight ODU2 into eight ITU-T G.694.1 OTU2 signals or converts eight ODU2e signals into eight ITU-T G.694.1 OTU2e signals. The board supports hybrid transmission of the ODU0 service, ODU1 service and the ODU2/ODU2e service.
Application scenario 1 of the NO2: conversion between 64 channels of ODU0 and eight channels of OTU2 signals Figure 14-22 Position of the NO2 board in the WDM system (application scenario 1) 64xODU0
1
1
1
M U X / D M U X
TOA 8
NO2
8
8
8xODU0
OUT8
4xODU1
IN8
1×OTU2
IN8
8
8
8
1×ODU2
OUT8
1
1
8xODU0
M U X / D M U X
4xODU1
OUT1
1 1×OTU2
IN1
NO2
1×OTU2
4xODU1
1×ODU2
8
8xODU0
1
TOA 8
IN1
1×ODU2
8
1
OUT1
8
8
1
1×OTU2
4xODU1
8
1×ODU2
8xODU0
TOA 8
64xODU0
1
1
1 TOA
8
8
8
NOTE
This application scenario is supported only when the 55NO2 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
959
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 2 of the NO2: conversion between 32 channels of ODU1 and eight channels of OTU2 signals Figure 14-23 Position of the NO2 board in the WDM system (application scenario 2) 32xODU1
1
1
1
1
IN8
8
8
4
1
1
4×ODU1
OUT8
8
8
NO2
1 TOA
8
1×ODU2
IN8
M U X / D M U X
1×OTU2
1×OTU2
8
1×ODU2
TOA
OUT8 4×ODU1
1
M U X / D M U X
1
4×ODU1
OUT1
1×ODU2
IN1
1×OTU2
IN1
8 NO2
1
8
OUT1
8
4
1
1×OTU2
8
1×ODU2
4×ODU1
TOA 8
32xODU1
1 TOA
8
8
8
NOTE
This application scenario is supported only when the 55NO2 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
960
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 3 of the NO2: conversion between eight channels of ODU2/ ODU2e signals and eight channels of OTU2/OTU2e signals Figure 14-24 Position of the NO2 board in the WDM system (application scenario 3) 8xODU2/ODU2e
8xODU2/ODU2e
4
4
IN1
OUT1
8 NO2
4
4
8
NO2
OUT8
IN8
IN8
OUT8
1
1
1 TQX
4
4
1
1
8
1×ODU2/ODU2e
TQX
1×OTU2/OTU2e
1
1×ODU2/ODU2e
1
M U X / D M U X
1×OTU2/ODU2e
M U X / D M U X
1×ODU2/ODU2e
TQX
IN1 1×OTU2/OTU2e
1
1×OTU2/OTU2e
1
1×ODU2/ODU2e
1
OUT1
TQX 8
4
4
NOTE
This application scenario is supported only when the 55NO2 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
961
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 4 of the NO2: implements the electrical regeneration of OTU2/ OTU2e optical signals Figure 14-25 Position of the NO2 board in the WDM system (application scenario 4)
M OUT2 U X
1×OTU2/OTU2e 1×OTU2/OTU2e
IN1
1×OTU2/OTU2e 1×OTU2/OTU2e
D M U X
OUT1 M U X
IN2
D M U X
NO2
M OUT8 U X
1×OTU2/OTU2e 1×OTU2/OTU2e
IN7
1×OTU2/OTU2e 1×OTU2/OTU2e
D M U X
OUT7 M U X
D
IN8 M U X
NOTE
This application scenario is supported only when the 55NO2(REG) board is added on the NMS. In this application scenario, the Board Mode parameter must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. The IN and OUT ports for the same regenerated signal must be configured as follows; otherwise, the ESC communication is not available. l
"IN1–>OUT1" and "IN2–>OUT2"
l
"IN3–>OUT3" and "IN4–>OUT4"
l
"IN5–>OUT5" and "IN6–>OUT6"
l
"IN7–>OUT7" and "IN8–>OUT8"
The input and output wavelengths can be different.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
962
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 5 of the NO2: hybrid transmission scenario Figure 14-26 Position of the NO2 board in the WDM system (application scenario 5) 8xOTU2/ 8xOTU2e
ODU0
ODU0
TOM ODU0
ODU0
TOM
IN1 OUT1
OUT1 IN1
ODU1 ODU1
NS2 ODU1 NO2
M U X / D M U X
M U X / D M IN6 U X OUT6
TDX ODU2/ ODU2e
OUT6 IN6
ODU2/ ODU2e
OUT7 IN7
IN7 OUT7
ODU2/ ODU2e
OUT8 IN8
IN8 OUT8
ND2
ODU1
TOM
TOM
ODU1 ODU1 NS2 NO2 ODU2/ TDX ODU2e ODU2/ ODU2e ND2 ODU2/ ODU2e
NOTE
The same IN/OUT port can transmit a mixture of ODU0 and ODU1 signals, the total bandwidth cannot exceed 10 Gbit/s.
14.3.3 Functions and Features The NO2 board carries out cross-connection at the electrical layer, and provides the OTN interfaces and ESC. For detailed functions and features, refer to Table 14-24 and Table 14-25.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
963
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-24 Functions and features of the NO2 board (Line Mode) Functi on and feature
Description
Basic function
NO2 converts signals as follows: l 64xODU0/32xODU1/8xODU2<->8xOTU2 l 8xODU2e<->8xOTU2e Supports hybrid transmission of the services mentioned above.
Crossconnect capabili ties
Supports the cross-connection of 64 channels of ODU0 signals or 32 channels of ODU1 signals or eight channels of ODU2/ODU2e signals between the NO2 board and the cross-connect board.
OTN function
l Supports the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions. l ODU0 layer: supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions.
WDM specific ation
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported
PRBS function
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encodin g
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and perform ance events monitor ing Issue 03 (2013-05-16)
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
964
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functi on and feature
Description
Regener ation board
TN12ND2, TN52ND2, TN53ND2, TN53NQ2, TN54NQ2, and TN55NO2
ALS function
Not supported
Test frame
Not supported
IEEE 1588v2
Not supported
Physical clock
Not supported
Opticallayer ASON
Supported
Electric al-layer ASON
Supported
Protecti on scheme
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports tributary SNCP protection.
Loopba ck
Issue 03 (2013-05-16)
WDM Side Loopback
ODU0 Channel Loopback
ODU1 Channel Loopback
Supported
Supported
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
965
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functi on and feature
Description
Protocol s or standard s complia nce
Protocol s or standard s for transpar ent transmis sion (nonperform ance monitor ing)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FCFS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
966
OptiX OSN 8800/6800/3800 Hardware Description
Functi on and feature
14 Tributary Board and Line Board
Description
Protocol s or standard s for service processi ng (perfor mance monitor ing)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Table 14-25 Functions and features of the NO2 board (Relay Mode) Function and feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regeneratin g rate
OTU2: OTN service at a rate of 10.71 Gbit/s
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
OTN function
l Provides the OTU2/OTU2e interface on the WDM side.
OTU2e: OTN service at a rate of 11.1 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU2. l Supports SM function for OTU2.
Tunable wavelength function
Issue 03 (2013-05-16)
Supports tunable wavelength optical modules that provide for: l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
967
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
ESC function
Supports the ESC function, which enables the transmission of a supervisory signal inside a service signal.
PRBS function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
PTP clock (1588 V2)
Not supported
Physical clock
Not supported
Optical-layer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
Not supported
Loopback
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
968
OptiX OSN 8800/6800/3800 Hardware Description
Function and feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
14.3.4 Working Principle and Signal Flow The NO2 board consists of the WDM-side optical module, OTN processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow (Line Mode) Figure 14-27 shows the functional modules and signal flow of the NO2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
969
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-27 Functional modules and signal flow of the NO2 (Line Mode) 64XODU0/32XODU1/ 8XODU2/8XODU2e Backplane (service corss-connection) WDM side E/O
OUT7 OUT8
OTN processing module
Cross-connect module
OUT1 OUT2
O/E WDM-side Optical module
IN1 IN2 IN7 IN8
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
Backplane SCC (controlled by SCC)
The signal processing module of the NO2 board can access the following optical signals: l
ODU0 electrical signals
l
ODU1 electrical signals
l
ODU2 electrical signals
l
ODU2e electrical signals
The transmit and the receive directions are defined in the signal flow of the NO2 board. The transmit direction is defined as the direction from the backplane of the NO2 to the WDM side of the NO2. The receive direction is defined as the reverse direction. l
Transmit direction The signal processing module can receive 64 channels of ODU0 signals, 32 channels of ODU1 signals, or eight channels of ODU2/ODU2e signals from the cross-connection board through the backplane. The module performs operations such as OTN framing, and encoding of FEC/AFEC. After processing, the module outputs eight channels of OTU2/ OTU2e signals. The OTU2/OTU2e signals are transmitted to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2/OTU2e optical signals at DWDM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
970
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
standard wavelengths that comply with ITU-T G.694.1 through the OUT1-OUT8 optical interfaces. l
Receive direction The WDM-side optical module receives eight channels of the OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN1-IN8 optical interfaces. The module performs O/E conversion. After O/E conversion, the OTU2/OTU2e signals are sent to the signal processing module. The module performs operations such as OTU2 framing and decoding of FEC/AFEC. Then, the module sends out 64 channels of ODU0 signals, 32 channels of ODU1 signals, or eight channels of ODU2/ODU2e signals to the backplane for service cross-connection.
Functional Modules and Signal Flow (Relay Mode) Figure 14-28 shows the functional modules and signal flow of the NO2 board. Figure 14-28 Functional modules and signal flow of the NO2 (Relay Mode) WDM side
WDM side IN1
O/E
E/O
OUT1
OUT2
E/O
O/E
IN2
IN7
O/E
E/O
OUT7
OUT8
E/O
O/E
IN8
OTN processing module
WDM-side Optical module
WDM-side Optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane SCC (controlled by SCC)
The NO2 board regenerates eight channels of optical signals. The wavelengths at the receive and transmit ends of the board are OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN1-IN8 optical interfaces and performs O/E conversion. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
971
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. The signals are sent to the optical transmitting module after they are decoded. After performing E/O conversion, the module transmits OTU2/OTU2e signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT1-OUT8 optical interfaces.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of an OTN processing modulea and cross-connect module. – OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs FEC encoding and decoding. – Cross-connect module Grooms electrical signals between the NO2 and the cross-connect board through the backplane.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.3.5 Front Panel There are indicators and interfaces on the front panel of the NO2 board.
Appearance of the Front Panel Figure 14-29 shows the front panel of the NO2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
972
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-29 Front panel of the NO2 board
NOTE
You are advised to insert the WDM-side optical modules in the IN1/OUT1 to IN8/OUT8 interfaces in descending order of signal frequencies supported by these WDM-side optical modules.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
973
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-26 lists the type and function of each interface. Table 14-26 Types and functions of the interfaces on the NO2 board Interface
Type
Function
IN1-IN8
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT8
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.3.6 Valid Slots One slot houses one NO2 board. Table 14-27 shows the valid slots for the NO2 board. Table 14-27 Valid slots for the NO2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.3.7 Characteristic Code for the NO2 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.3 Characteristic Code of a Line Unit.
14.3.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
974
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Display of Physical Ports Table 14-28 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-28 Mapping between the physical ports on the NO2 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
IN3/OUT3
3
IN4/OUT4
4
IN5/OUT5
5
IN6/OUT6
6
IN7/OUT7
7
IN8/OUT8
8
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, IN1/OUT1OCh:1-ODU2:1-ODU1:1 is a logical port of the board. Figure 14-30 shows the port diagrams of the TN55NO2 board. Table 14-29 lists the port descriptions NOTE
ODUk cross-connections through the backplane are supported only when the 55NO2 board is selected on the NMS. l If any of the ODU2 channels has been configured with a service, the corresponding ODU1 and ODU0 channels cannot be configured with other services. On the opposite, if the ODU1 and ODU0 channels have been configured with services, the corresponding ODU2 channel cannot be configured with other services. l If any of the ODU1 channels has been configured with a service, the corresponding ODU0 channels cannot be configured with other services. On the opposite, if the ODU0 channels have been configured with services, the corresponding ODU1 channel cannot be configured with other services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
975
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-30 Port diagram of the NO2 Backplane
IN(1~8)/OUT(1~8)-OCh:1 8xODU2/ 8xODU2e
ODU2:1
OCh :1
ODU2:1
OCh :1
IN(1~8)/OUT(1~8)-OCh:1-ODU2:1-ODU1:(1~4)
Other tributary/line/PID board
ODU1:1 ODU 2: 1
OCh :1
ODU 2: 1
OCh :1
ODU1:4 32xODU1 ODU1:1
1(N1/OUT1)
ODU1:4
8(IN8/OUT8)
IN(1~8)/OUT(1~8)-OCh:1-ODU2:1-ODU1:(1~4)-ODU0:(1~2) ODU0:1 ODU0:2 ODU0:1 ODU 0:2
64xODU0
ODU0:1 ODU 0:2 ODU0:1
ODU1:1 ODU 2:1
OCh :1
ODU 1:4
ODU 1:1 ODU 2:1
OCh :1
ODU1:4
ODU 0:2
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path
Table 14-29 Description of ports on the NO2 Port Name
Description
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)
Indicates the mapping path for the ODU0 signals that are received through the backplane.
2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2) ...... 7(IN7/OUT7)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2) 8(IN8/OUT8)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
976
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:(1-4)
Indicates the mapping path for the ODU1 signals that are received through the backplane.
2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:(1-4) ...... 7(IN7/OUT7)-OCh:1-ODU2:1-ODU1:(1-4) 8(IN8/OUT8)-OCh:1-ODU2:1-ODU1:(1-4) 1(IN1/OUT1)-OCh:1 2(IN2/OUT2)-OCh:1 ......
Indicates the mapping path for the ODU2 signals that are received through the backplane.
7(IN7/OUT7)-OCh:1 8(IN8/OUT8)-OCh:1 1(IN1/OUT1)
Indicates the WDM-side port.
2(IN2/OUT2) ...... 7(IN7/OUT7) 8(IN8/OUT8)
14.3.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
When the system uses electrical-layer ASON, the boards in standard mode cannot interconnect with those in compatible mode on the WDM side. The NO2 board can work in the standard mode. For information about the standard modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
ODU0 Cross-Connections Figure 14-31 shows the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
977
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-31 Cross-connection diagram of the NO2 (ODU0 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
NO2 8(IN8/OUT8)-OCh:1-ODU2:4-ODU1:4-ODU0:1 8(IN8/OUT8)-OCh:1-ODU2:4-ODU1:4-ODU0:2
Cross-connect module WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:4-ODU0:1 4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:4-ODU0:2
2
Line board c (compatible mode)
Line board d (standard mode)
1(IN1/OUT1)-OCh:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU0:8 4(IN4/OUT4)-OCh:1-ODU2:1-ODU0:1
Line board e (standard mode)
4(IN4/OUT4)-OCh:1-ODU2:1-ODU0:8 1(IN1/OUT1)-OCH:1-ODU4:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:2 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:79 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:80
Line board f (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NO2 The WDM side of other boards are cross-connected to the WDM side of the NO2
Tributary board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Tributary board b TN54THA / TN54TOA Line board c
Issue 03 (2013-05-16)
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
978
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Line board f
TN54NS4
ODU1 Cross-Connections Figure 14-32 shows the created ODU1 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
979
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-32 Cross-connection diagram of the NO2 (ODU1 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2
NO2 8(IN8/OUT8)-OCh:1-ODU2:4-ODU1:3 8(IN8/OUT8)-OCh:1-ODU2:4-ODU1:4
Cross-connect module WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2
2
4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:3 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4 1(IN1/OUT1)-OCH:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU1:39 1(IN1/OUT1)-OCH:1-ODU1:40
Line board c (compatible mode)
Line board d (standard mode)
Line board e (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NO2 The WDM side of other boards are cross-connected to the WDM side of the NO2
Tributary board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Tributary board b TN54THA / TN54TOA Line board c
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN54NS4
ODU2 Cross-Connections Figure 14-33 shows the created ODU2 cross-connections. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
980
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-33 Cross-connection diagram of the NO2 (ODU2 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1 1(IN1/OUT1)-OCh:1
NO2 8(IN8/OUT8)-OCh:1 8(IN8/OUT8)-OCh:1
Cross-connect module WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1 1(IN1/OUT1)-OCh:1 2(IN2/OUT2)-OCh:1 3(IN3/OUT3)-OCh:1 4(IN4/OUT4)-OCh:1
2
1(IN1/OUT1)-OCH:1-ODU2:1 1(IN1/OUT1)-OCH:1-ODU2:2 1(IN1/OUT1)-OCH:1-ODU2:9 1(IN1/OUT1)-OCH:1-ODU2:10
Line board c (compatible mode)
Line board d (standard mode)
Line board e (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NO2 The WDM side of other boards are cross-connected to the WDM side of the NO2
Tributary board a TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX Tributary board b TN53TDX / TN55TOX / TN55TQX Line board c
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN54NS4
14.3.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
981
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
For parameters of the NO2, refer to Table 14-30. Table 14-30 NO2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Sets the path loopback.
Default: NonLoopback Laser Status
Off, On Default: On
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
982
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Enable Auto-Sensing
Disabled, Enabled
Set the Enable Auto-Sensing function of the board to Enabled or Disabled.
Default: Enabled
l When it is set to Enabled, the board supports FEC Type and Line Rate of the received signals in autosensing mode, and thus no manual setting is required. l When it is set to Disabled, FEC Type and Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE This parameter is only valid when the board work in line mode. For ASON services, this parameter must be set to Enabled.
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
AFEC Grade
1, 2, 3 Default: 3
Issue 03 (2013-05-16)
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information. A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
983
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
Planned Band Type
NOTE CBAND is the only band now supported.
Default: /
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE CBAND is the only band now supported.
See D.26 Planned Band Type (WDM Interface) for more information. Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode OTN Overhead Transparent Transmission
Enabled, Disabled
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: Disabled
Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
Used to configure the line rate of OTN. See D.16 Line Rate for more information.
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
984
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Board Mode
Electrical Relay Mode, Optical Relay Mode
Default: Disabled
Specifies the board mode depending on the service application scenario.
Default: Electrical Relay Mode
14.3.11 NO2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN55NO 2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZ-PINXFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Pluggable Optical Module Table 14-31 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format Issue 03 (2013-05-16)
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
NRZ 985
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-32 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
986
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-33 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Line code format
-
NRZ
NRZ
Optical source type
-
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
987
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Operating wavelength range
nm
1290 to 1330
1530 to 1565
Maximum mean launched power
dBm
-1
2
Minimum mean launched power
dBm
-6
-1
Minimum extinction ratio
dB
6
8.2
Maximum -20 dB spectral width
nm
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1290 to 1565
1260 to 1605
Receiver sensitivity
dBm
-11
-14
Minimum receiver overload
dBm
-1
-1
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.66 kg (3.66 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
988
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN55 NO2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
83.6
87
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
14.4 NQ2 NQ2: 4 x 10G Line Service Processing Board
14.4.1 Version Description The available functional versions of the NQ2 board are TN51, TN52 , TN53, and TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN51 NQ2
N
N
N
N
Y
N
TN52 NQ2
Y
Y
N
N
Y
N
TN53 NQ2
Y
Y
Y
Y
Y
N
TN54 NQ2
Y
Y
Y
N
N
N
NOTE
The TN53NQ2 board for the OptiX OSN 8800 platform subrack only supports relay mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
989
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Variants Each NQ2 board version except the TN54NQ2 board has only one variant identified by 01 (for example, TN51NQ201). The TN54NQ2 board variant is the board itself.
Differences Between Versions l
Function:
Board
Cross-Connet Granularity
FEC Encoding
IEEE 1588v2
Physical Clock
Relay Mode
TN51NQ2
ODU1 and ODU2
FEC
N
N
N
TN52NQ2
ODU0, ODU1 and ODU2
FEC/AFEC-2
N
N
N
TN53NQ2
ODU0, ODU1, ODU2 and ODUflex
FEC/AFEC-2
Y
Y
Y
TN54NQ2
ODU0, ODU1 and ODU2
FEC/AFEC-2
Y
Y
Y
l
Specification: – The specifications vary according to the version of board that you use. For details, see 14.4.11 NQ2 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN51NQ2
TN52NQ2/ TN53NQ2
The TN52NQ2 /TN53NQ2 board can be created as TN51NQ2 on the NMS to function as a TN51NQ2 board. In this scenario, the TN52NQ2 / TN53NQ2 only provides the functions of the TN51NQ2 board, and the board software does not need to be upgraded. NOTE When both the receive and transmit boards employ FEC, the substitution applies; when both the receive and transmit boards employ AFEC, the substitution does not apply.
TN52NQ2
TN53NQ2/ TN54NQ2
The TN53NQ2/TN54NQ2 can be created as TN52NQ2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53NQ2/TN54NQ2 functions as the TN52NQ2. NOTE Only OptiX OSN 8800 supports the TN54NQ2.
TN54NQ2
TN53NQ2
The TN53NQ2 board can be created as TN54NQ2 on the NMS to function as a TN54NQ2 board. In this scenario, the TN53NQ2 board only provides the functions of the TN54NQ2 board, and the board software does not need to be upgraded.
TN53NQ2
None
-
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
990
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.4.2 Application As a type of line board, the NQ2 board converts 32 ODU0, 16 ODU1, eight ODUflex, or four ODU2 into four ITU-T G.694.1 OTU2 signals or converts four ODU2e signals into four ITUT G.694.1 OTU2e signals. The board supports hybrid transmission of the ODU0 service, ODU1 service, ODUflex service and the ODU2/ODU2e service.
Application scenario 1 of the TN51NQ2/TN52NQ2/TN53NQ2/TN54NQ2: conversion between 16 channels of ODU1 and four channels of OTU2 signals Figure 14-34 Position of the NQ2 board in the WDM system (application scenario 1) 16xODU1
16xODU1
1
1
1
4×ODU1
IN4
8
4
1
1
4×ODU1
4
1
4
4
NQ2
OUT4
1 TOM
4
1×OTU2
IN4
M U X / D M U X
1×ODU2
1×OTU2
4
1×ODU2
TOM
OUT4 4×ODU1
1
M U X / D M U X
1×OTU2
OUT1
1 1×ODU2
IN1
4 NQ2
1
8
IN1
4
4
1
1×OTU2
4
8
1×ODU2
4×ODU1
TOM
OUT1
1 TOM
4
4
8
NOTE
In this application scenario, the Board Mode parameter of the TN53NQ2/TN54NQ2 board must be set to Line Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
991
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 2 of the TN51NQ2/TN52NQ2/TN53NQ2/TN54NQ2: conversion between four channels of ODU2/ODU2e and four channels of OTU2/ OTU2e signals Figure 14-35 Position of the NQ2 board in the WDM system (application scenario 2) 4xODU2/ODU2e
IN1
OUT1
NQ2
OUT4
IN4
IN4
OUT4
1
1
1
4
1×ODU2/ODU2e
1×OTU2/OTU2e
4
1×ODU2/ODU2e
4
M U X / D M U X
1×OTU2/ODU2e
M U X / D M U X
1×ODU2/ODU2e
IN1
4 NQ2
TQX
4
OUT1
1×OTU2/OTU2e
1
1×OTU2/OTU2e
1
1×ODU2/ODU2e
1
4xODU2/ODU2e
TQX
4
4
4
NOTE
In this application scenario, the Board Mode parameter of the TN53NQ2/TN54NQ2 board must be set to Line Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
992
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 3 of the TN52NQ2/TN53NQ2/TN54NQ2: conversion between 32 channels of ODU0 signals and four channels of OTU2 signals (Only for OptiX OSN 8800) Figure 14-36 Position of the NQ2 board in the WDM system (application scenario 3) 32xODU0
1
1
1
M U X / D M U X
TOM 8
NQ2
8
4
8xODU0
OUT4
4xODU1
IN4
1×OTU2
IN4
8
8
4
1×ODU2
OUT4
1
1
8xODU0
M U X / D M U X
4xODU1
OUT1
1 1×OTU2
IN1
NQ2
1×OTU2
4xODU1
1×ODU2
8
8xODU0
1
TOM 8
IN1
1×ODU2
4
1
OUT1
8
4
1
1×OTU2
4xODU1
8
1×ODU2
8xODU0
TOM 8
32xODU0
1
1
1 TOM
8
8
8
NOTE
In this application scenario, the Board Mode parameter of the TN53NQ2/TN54NQ2 board must be set to Line Mode. For the TN53NQ2 board: l When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign consecutive, the board supports the ODU0–>ODU1–>ODU2 service mapping path. l When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign random, the board supports the ODU0–>ODU2 service mapping path. l When the board works in compatible mode, the board does not support the configuration of the timeslot allocation mode, and it only supports the ODU0–>ODU1–>ODU2 service mapping path.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
993
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 4 of the TN53NQ2 board: conversion between eight channels of ODUflex signals and four channels of OTU2 signals (Only for OptiX OSN 8800) Figure 14-37 Position of the NQ2 board in the WDM system (application scenario 4)
1
1
OUT1
IN1
IN1
OUT1
1
4
4
IN4
4 IN4 OUT4
1
1 TQX
4
4
4
1
1
1
NQ2
2xODUflex
4
1×OTU2
4
1×ODU2
TQX
M U X / D M U X
1×ODU2
1
NQ2
M U X / D M U OUT4 X
1
1×OTU2
1
2xODUflex
1
1×OTU2
4
1×ODU2
4
4
2xODUflex
TQX
8xODUflex
2xODUflex
4xOTU2
1×OTU2
4xOTU2
1×ODU2
8xODUflex
TQX 4
4
4
NOTE
In this application scenario, Only the TN55TQX board supports ODUflex. The total bandwidth of two channels of ODUflex signals corresponding to one channel of OTU2 signals cannot exceed 10 Gbit/s. In this application scenario, the Board Mode parameter of the TN53NQ2 board must be set to Line Mode. TN53NQ2 supports ODUflex only when it works in standard mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
994
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 5 of the TN53NQ2/TN54NQ2: implements the electrical regeneration of OTU2/OTU2e optical signals Figure 14-38 Position of the NQ2 board in the WDM system (application scenario 5)
OUT2
1×OTU2/OTU2e 1×OTU2/OTU2e
M U X
IN1
1×OTU2/OTU2e 1×OTU2/OTU2e
D M U X
OUT1 M U X
IN2
D M U X
NQ2
OUT4
1×OTU2/OTU2e 1×OTU2/OTU2e
M U X
IN3
1×OTU2/OTU2e 1×OTU2/OTU2e
D M U X
OUT3 M U X
IN4
D M U X
NOTE
The TN53NQ2 board for the OptiX OSN 8800 platform subrack only supports relay mode. In this application scenario, the Board Mode parameter of the TN53NQ2/TN54NQ2 board must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. The IN and OUT ports for the same regenerated signal must be configured as follows; otherwise, the ESC communication is not available. l
"IN1–>OUT1" and "IN2–>OUT2"
l
"IN3–>OUT3" and "IN4–>OUT4"
The input and output wavelengths can be different. The line boards at the two add/drop sites must have the same ODU timeslot allocation mode. When a TN53NQ2 board is connected to a board that does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53NQ2 board. For example, when a TN53NQ2 board is connected to a TN52NQ2 board, which does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53NQ2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
995
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 6: hybrid transmission scenario Figure 14-39 Position of the NQ2 board in the WDM system (application scenario 6) 4xOTU2/ 4xOTU2e
TOM
ODU0
ODU0
ODU0
ODU0 TOM OUT1
TOM
ODU1 ODU1
NS2
IN1 OUT1
IN1
ODU1 NQ2 ODUflex
TDX ODUflex ODU2/ ODU2e ND2 ODU2/ ODU2e
M U X / D OUT2 M IN2 U X
M U X / D IN2 M U OUT2 X
OUT3 IN3
IN3 OUT3
OUT4
IN4 OUT4
IN4
ODU1
TOM
ODU1 ODU1
NS2
NQ2 ODUflex ODUflex TDX ODU2/ ODU2e ND2 ODU2/ ODU2e
NOTE
The same IN/OUT port can transmit a mixture of ODU0, ODU1, and ODUflex signals, the total bandwidth cannot exceed 10 Gbit/s. Only TN52NQ2/TN53NQ2/TN54NQ2 supports ODU0. TN53NQ2supports ODUflex only when it works in standard mode.
14.4.3 Functions and Features The NQ2 board carries out cross-connection at the electrical layer, and provides the OTN interfaces and ESC. For detailed functions and features, refer to Table 14-34 and Table 14-35. NOTE
Only the OptiX OSN 8800 supports ODU0/ODUflex. The relay mode is supported only by the TN53NQ2/TN54NQ2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
996
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-34 Functions and features of the NQ2 board (Line Mode) Functi on and featur e
Description
Basic functio n
NQ2 converts signals as follows: l TN51NQ2: – 16xODU1/4xODU2<->4xOTU2 – 4xODU2e<->4xOTU2e l TN52NQ2/TN54NQ2: – 32xODU0/16xODU1/4xODU2<->4xOTU2 – 4xODU2e<->4xOTU2e l TN53NQ2: – 32xODU0/16xODU1/4xODU2/8xODUflex<->4xOTU2 – 4xODU2e<->4xOTU2e Supports hybrid transmission of the services mentioned above.
Crossconnect capabil ities
Supports cross-connections with cross-connect boards. l TN51NQ2: 16xODU1/4xODU2/4xODU2e l TN53NQ2: 32xODU0/16xODU1/4xODU2/4xODU2e/8xODUflex l TN52NQ2/TN54NQ2: 32xODU0/16xODU1/4xODU2/4xODU2e
OTN functio n
l Supports the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU0 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODUflex layer: supports the PM function and PM non-intrusive monitoring functions. NOTE l Only the TN53NQ2 boards support TCM function and TCM non-intrusive monitoring for ODU0 signals. l Only the TN53NQ2 boards support PM function and PM non-intrusive monitoring for ODUflex signals.
WDM specific ation
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC functio n
Supported
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
997
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functi on and featur e
Description
PRBS test functio n
Supports the PRBS function on the WDM side. NOTE If the TN53NQ2 board interconnects with another line board, PRBS must be enabled for the TN53NQ2 board and the connected line board. In addition, the PRBS function can take effect on the boards only when the following condition is met: The TN53NQ2 board works in standard mode and ODU0, ODU1, or ODUflex cross-connections are configured for the TN53NQ2 board, or the TN53NQ2 board works in compatible mode but no cross-connection is configured for it.
LPT functio n
Not supported
FEC encodi ng
TN51NQ2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. TN52NQ2/TN53NQ2/TN54NQ2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and perfor mance events monito ring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Regene ration board
l TN51NQ2:
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2, TN11LSXR l TN52NQ2/TN53NQ2/TN54NQ2: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS functio n
Not supported
Test frame
Not supported
IEEE 1588v2
The TN53NQ2/TN54NQ2 board supports BC and OC mode, do not support TC and TC+OC mode.
Physica l clock
Supported only when the TN53NQ2 board receives ODU0/ODU1/ODUflex signals cross-connected from the backplane Supported only when the TN54NQ2 board receives ODU0/ODU1 signals cross-connected from the backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
998
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Functi on and featur e
Description
Optical -layer ASON
Supported
Electric al-layer ASON
Supported by the TN52NQ2/TN53NQ2/TN54NQ2
Protecti on scheme
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports ODUk SPRing protection. l Supports tributary SNCP protection. NOTE The ODU0 SPRing protection is not supported by the TN54NQ2. NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection.
Loopba ck
Board
WDM Side
ODU0 Channel Loopback
ODU1 Channel Loopback
ODUflex Channel Loopback
TN51N Q2
Supported
Not supported
Supported
Not supported
TN52N Q2
Supported
Supported
Supported
Not supported
TN53N Q2
Supported only when ODU2/ ODU2e signals are received from the backplane.
Supported
Supported only when ODU1 signals are received from the backplane.
Supported
TN54N Q2
Supported
Supported
Supported
Not supported
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
999
OptiX OSN 8800/6800/3800 Hardware Description
Functi on and featur e
Description
Protoco ls or standar ds compli ance
Protocols or standards for transparent transmission (nonperformance monitoring)
14 Tributary Board and Line Board
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1000
OptiX OSN 8800/6800/3800 Hardware Description
Functi on and featur e
14 Tributary Board and Line Board
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Table 14-35 Functions and features of the NQ2 board (Relay Mode) Function and feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regenerating rate
OTU2: OTN service at a rate of 10.71 Gbit/s
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
OTN function
l Supports the OTU2/OTU2e interface on the WDM side.
OTU2e: OTN service at a rate of 11.1 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1001
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
PRBS function
Not supported
FEC encoding
TN53NQ2/TN54NQ2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
PTP clock (1588 V2)
Not supported
Physical clock
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Not supported
Protection scheme
Not supported
Loopback
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
Issue 03 (2013-05-16)
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1002
OptiX OSN 8800/6800/3800 Hardware Description
Function and feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
14.4.4 Working Principle and Signal Flow The NQ2 board consists of the WDM-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow (Line Mode) Figure 14-40 shows the functional modules and signal flow of the NQ2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1003
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-40 Functional modules and signal flow of the NQ2 (Line Mode) Backplane (service cross-connection)
n X ODUk
WDM side Crossconnect module
1588v2 module
OTN processing module
E/O
OUT1 OUT2 OUT3 OUT4
O/E
IN1 IN2 IN3 IN4
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
DC power supply from a backplane
Required voltage
Backplane SCC (controlled by SCC)
NOTE
Only the TN53NQ2 /TN54NQ2 board supports the IEEE 1588v2 module. In Figure 14-40, n x ODUk indicates the service cross-connections from the NQ2 board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-36 shows the service cross-connections from the NQ2 board to the backplane. Table 14-36 Service cross-connections from the NQ2 board to the backplane
Issue 03 (2013-05-16)
Board
Service Cross-connection
TN51N Q2
A maximum of 16xODU1/4xODU2/4xODU2e
TN52N Q2/ TN54N Q2
A maximum of 32xODU0/16xODU1/4xODU2/4xODU2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1004
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Service Cross-connection
TN53N Q2
A maximum of 32xODU0/16xODU1/4xODU2/8xODUflex/4xODU2e
The signal processing module of the NQ2 board can access the following optical signals: The transmit and the receive directions are defined in the signal flow of the NQ2 board. The transmit direction is defined as the direction from the backplane of the NQ2 to the WDM side of the NQ2. The receive direction is defined as the reverse direction. l
Transmit direction The cross-connect module can receive ODUk signals from the cross-connection board through the backplane. The OTN processing module performs operations such as OTN framing, and encoding of FEC. After processing, the signal processing module outputs 4 channels of OTU2/OTU2e signals. The OTU2/OTU2e signals are transmitted to the WDM-side optical module. After performing E/O conversion, the module sends out OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the OUT1-OUT4 optical interfaces.
l
Receive direction The WDM-side optical module receives four channels of the OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN1-IN4 optical interfaces. The module performs O/E conversion. After O/E conversion, the OTU2/OTU2e signals are sent to the signal processing module. The OTN processing module module performs operations such as OTU2 framing and decoding of FEC. Then, the cross-connect module sends out ODUk signals to the backplane for service cross-connection.
The board processes clock signals in two directions. l
Receives clock signals from a service board and sends the clock signals to the clock processing board through the communication module.
l
Receives clock signals from the clock processing module and sends the clock signals to the downstream NE through a service board.
Functional Modules and Signal Flow (Relay Mode) Figure 14-41 shows the functional modules and signal flow of the NQ2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1005
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-41 Functional modules and signal flow of the NQ2 (Relay Mode) WDM side IN1 IN3 OUT2 OUT4
WDM side O/E
E/O OTN processing module
E/O
O/E
WDM-side optical module
OUT1 OUT3 IN2 IN4
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane ( controlled by SCC)
NOTE
The relay mode is only supported by the TN53NQ2/TN54NQ2.
The NQ2 board regenerates four channels of optical signals. The wavelengths at the receive and transmit ends of the board are OTU2/OTU2e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical receiving module receives the optical signals to be regenerated through the IN1-IN4 optical interfaces and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. The signals are sent to the optical transmitting module after they are decoded. After performing E/O conversion, the module transmits OTU2/OTU2e signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT1-OUT4 optical interfaces.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1006
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– WDM-side receiver: Performs O/E conversion of OTU2/OTU2e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2/OTU2e optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser. l
Signal processing module The module consists of an OTN processing modulea and cross-connect module . – OTN processing module Frames OTU2/OTU2e signals, processes overheads in OTU2/OTU2e signals, and performs FEC encoding and decoding. – Cross-connect module Grooms electrical signals between the NQ2 and the cross-connect board through the backplane.
l
1588v2 module The 1588v2 module sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.4.5 Front Panel There are indicators and interfaces on the front panel of the NQ2 board.
Appearance of the Front Panel Figure 14-42 shows the front panel of the NQ2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1007
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-42 Front panel of the NQ2 board
NOTE
You are advised to insert the WDM-side optical modules in the IN1/OUT1 to IN4/OUT4 interfaces in ascending order of signal frequencies supported by these WDM-side optical modules.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1008
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-37 lists the type and function of each interface. Table 14-37 Types and functions of the interfaces on the NQ2 board Interface
Type
Function
IN1-IN4
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT1-OUT4
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.4.6 Valid Slots One slot houses one NQ2 board. NOTE
For the OptiX OSN 6800: l
If the TN12XCS board is used, the NQ2 board supports a service capacity of 40 Gbit/s when it is installed in slot 1, 4, 11, or 14; only optical ports IN1/OUT1 and IN2/OUT2 of the NQ2 board are available and therefore the board supports a service capacity of 20 Gbit/s when it is installed in any of the other slots.
l
If the TN11XCS board is used, only optical ports IN1/OUT1 and IN2/OUT2 of the NQ2 board are available and therefore the board supports a service capacity of 20 Gbit/s regardless of which slot the board is installed.
For the OptiX OSN 8800: The NQ2 board supports a maximum service capacity of 40 Gbit/s in any slot.
Table 14-38 shows the valid slots for the TN51NQ2 board. Table 14-38 Valid slots for the TN51NQ2 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Table 14-39 shows the valid slots for the TN52NQ2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1009
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-39 Valid slots for the TN52NQ2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Table 14-40 shows the valid slots for the TN53NQ2 board. Table 14-40 Valid slots for the TN53NQ2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU8, U11-IU16
Table 14-41 shows the valid slots for the TN54NQ2 board. Table 14-41 Valid slots for the TN54NQ2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.4.7 Characteristic Code for the NQ2 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1010
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
For the detailed description of the characteristic code for the board, refer to B.3 Characteristic Code of a Line Unit.
14.4.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-42 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-42 Mapping between the physical ports on the NQ2 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN1/OUT1
1
IN2/OUT2
2
IN3/OUT3
3
IN4/OUT4
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. The NQ2 board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-43 Port diagram and port description
Issue 03 (2013-05-16)
Board
Mode
Port Diagram
Port Descriptio n
Board Name Displayed on the NMS
TN54N Q2
Compati ble mode
Figure 14-44
Table 14-45
54NQ2
TN53N Q2
Compati ble mode
Figure 14-44
Table 14-45
53NQ2(COMP)
Standard mode
Figure 14-43
Table 14-44
53NQ2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1011
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Mode
Port Diagram
Port Descriptio n
Board Name Displayed on the NMS
TN52N Q2
Compati ble mode
Figure 14-44
Table 14-45
52NQ2
TN51N Q2
Compati ble mode
Figure 14-45
Table 14-45
51NQ2
NOTE
For the TN53NQ2/TN54NQ2: ODUk cross-connections through the backplane are supported only when Board Mode is set to Line Mode. For the TN52NQ2: The OptiX OSN 6800 supports grooming of signals only at the ODU1 and ODU2 levels from the backplane. The cross-connection granularities supported by the board in a subrack is consistent with the cross-connection granularities supported by the cross-connect board in the subrack. For details on the cross-connect board, see 21 Cross-Connect Board and System and Communication Board. NOTE
When the NQ2 board works in compatible mode, or when the board works in standard mode and Assign consecutive, observe the following points: l If any of the ODU2 channels has been configured with a service, the corresponding ODU1 and ODU0 channels cannot be configured with other services. On the opposite, if the ODU1 and ODU0 channels have been configured with services, the corresponding ODU2 channel cannot be configured with other services. l If any of the ODU1 channels has been configured with a service, the corresponding ODU0 channels cannot be configured with other services. On the opposite, if the ODU0 channels have been configured with services, the corresponding ODU1 channel cannot be configured with other services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1012
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-43 Port diagram of the TN53NQ2 (standard mode) Backplane
IN(1-4)/OUT(1-4)-OCh:1-ODU2:1-ODUflex:(1-2) ODUflex:1 ODU2:1
OCh:1
ODU2:1
OCh:1
ODUflex:2 8xODUflex
ODUflex:1 ODUflex:2
IN(1-4)/OUT(1-4)-OCh:1 4xODU2/ 4xODU2e
ODU2:1
OCh :1
ODU2:1
OCh :1
IN(1-4)/OUT(1-4)-OCh:1-ODU2:1-ODU1:(1-4)
Other tributary/line/PID board
ODU1:1 ODU 2: 1
OCh :1
ODU 2: 1
OCh :1
ODU1:4 16xODU1 ODU1:1 ODU1:4
1(N1/OUT1)
IN(1-2)/OUT(1-2)-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)
4(IN4/OUT4)
ODU0:1 ODU1:1
ODU0:2
ODU 2:1
ODU0:1
ODU 1:4
ODU 0:2
32xODU0
OCh :1
ODU0:1
ODU 1:1
ODU 0:2
ODU 2:1
ODU0:1
OCh :1
ODU1:4
ODU 0:2
IN(1-4)/OUT(1-4)-OCh:1-ODU2:1-ODU0:(1-8) ODU0:1 ODU2:1
OCh :1
ODU2:1
OCh:1
ODU0: 8 32xODU0
ODU0:1 ODU0: 8
Issue 03 (2013-05-16)
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODUflex mapping path
ODU0 mapping path (ODU0– >ODU1– >ODU2)
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1013
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board ODU0 mapping path (ODU0– >ODU2)
NOTE
When ODU Timeslot Configuration Mode is Assign random, the service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping paths are ODU0–>ODU2, ODU1–>ODU2, and ODUflex->ODU2. When ODU Timeslot Configuration Mode is Assign consecutive, the service rate can be ODU0, ODU1, or ODU2 and the mapping paths are ODU0–>ODU1–>ODU2 and ODU1->ODU2.
Figure 14-44 Port diagram of the TN53NQ2/TN52NQ2/TN54NQ2 (compatible mode) Other tributary/ line/PID board
Other tributary/ line/PID board
Other tributary/ line/PID board
Backplane 32 x ODU0 161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
51 ODU1 (ODU1LP1/ODU1LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
51 ODU1 (ODU1LP1/ODU1LP1)-4
173 (ODU0LP13/ODU0LP13)-1 173 (ODU0LP13/ODU0LP13)-2
54 ODU1 (ODU1LP4/ODU1LP4)-1
176 (ODU0LP16/ODU0LP16)-1 176 (ODU0LP16/ODU0LP16)-2
Issue 03 (2013-05-16)
4 x ODU2/ODU2e
16x ODU1
ODU2
71 (ODU2LP1/ODU2LP1) -1
1 (IN1/OUT1)-1
ODU2
74 (ODU2LP4/ODU2LP4) -1
4 (IN4/OUT4)-1
54 ODU1 (ODU1LP4/ODU1LP4)-4
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1014
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-45 Port diagram of the TN51NQ2 Other tributary/ line/PID board
Other tributary/ line/PID board
Backplane 4 x ODU2/ODU2e
16 x ODU1 51 (ODU1LP1/ODU1LP1)-1
ODU2
71 (ODU2LP1/ODU2LP1)-1
ODU2
74 (ODU2LP4/ODU2LP4)-1
1 (IN1/OUT1)-1
51 (ODU1LP1/ODU1LP1)-4
54 (ODU1LP4/ODU1LP4)-1
4 (IN4/OUT4)-1
54 (ODU1LP4/ODU1LP4)-4
Cross-connect module
ODU2 mapping path
Multiplexing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU1 signals are required, users only need to configure a cross-connection from another board to the ODU1LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU1 mapping path
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1015
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-44 Description of ports on the TN53NQ2 (standard mode) Port Name
Description
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:(1-4)ODU0:(1-2)
Indicates the mapping path for the ODU0 signals that are received through the backplane. (ODU0->ODU1>ODU2)
2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:(1-4)ODU0:(1-2) 3(IN3/OUT3)-OCh:1-ODU2:1-ODU1:(1-4)ODU0:(1-2) 4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:(1-4)ODU0:(1-2) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU0:(1-8) 2(IN2/OUT2)-OCh:1-ODU2:1-ODU0:(1-8) 3(IN3/OUT3)-OCh:1-ODU2:1-ODU0:(1-8)
Indicates the mapping path for the ODU0 signals that are received through the backplane. (ODU0->ODU2)
4(IN4/OUT4)-OCh:1-ODU2:1-ODU0:(1-8) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:(1-4) 2(IN2/OUT2)-OCh:1-ODU2:1-ODU1:(1-4) 3(IN3/OUT3)-OCh:1-ODU2:1-ODU1:(1-4)
Indicates the mapping path for the ODU1 signals that are received through the backplane.
4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:(1-4) 1(IN1/OUT1)-OCh:1 2(IN2/OUT2)-OCh:1 3(IN3/OUT3)-OCh:1
Indicates the mapping path for the ODU2 signals that are received through the backplane.
4(IN4/OUT4)-OCh:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:(1-2) 2(IN2/OUT2)-OCh:1-ODU2:1-ODUflex:(1-2) 3(IN3/OUT3)-OCh:1-ODU2:1-ODUflex:(1-2)
Indicates the mapping path for the ODUflex signals that are received through the backplane.
4(IN4/OUT4)-OCh:1-ODU2:1-ODUflex:(1-2) 1(IN1/OUT1)
Indicates the WDM-side port.
2(IN2/OUT2) 3(IN3/OUT3) 4(IN4/OUT4)
Table 14-45 Description of NM port of the NQ2 board (compatible mode)
Issue 03 (2013-05-16)
Port Name
Description
Automatic Cross-Connection
ODU0LP1ODU0LP16
Internal logical port. The optical paths are numbered 1, 2.
Automatic cross-connections between the ports and the ODU1LP port
ODU1LP1ODU1LP4
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
Automatic cross-connections between the ports and the ODU2LP port
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1016
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
Automatic Cross-Connection
ODU2LP1ODU2LP4
Internal logical ports. The optical paths are numbered 1.
Automatic cross-connections between the ports and the IN/OUT port
IN1/OUT1IN4/OUT4
Corresponding to the WDM-side optical interfaces.
-
14.4.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
When the system uses electrical-layer ASON, the boards in standard mode cannot interconnect with those in compatible mode on the WDM side. The NQ2 board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCH:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
ODU0 Cross-Connections Figure 14-46, Figure 14-47 and Figure 14-48 show the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1017
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-46 Cross-connection diagram of the TN52NQ2/TN54NQ2 (ODU0 level) Client side
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
1
201(ClientLP1/ClientLP1)-3
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 3(TX1/RX1)-1 4(TX2/RX2)-1
Tributary board b
5(TX3/RX3)-1
(standard mode) 9(TX7/RX7)-1 10(TX8/RX8)-1
Cross-connect module
WDM side
NQ2 board
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2 2
Compatible mode
176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
Line board c (compatible mode)
176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2-ODU0:1
Line board d (standard mode)
4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1018
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1019
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-47 Cross-connection diagram of the TN53NQ2 (ODU0 level: ODU0->ODU1>ODU2) Client side 201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
Tributary board a
(compatible mode)
1
201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 3(TX1/RX1)-1 4(TX2/RX2)-1
Tributary board b
5(TX3/RX3)-1
(standard mode)
9(TX7/RX7)-1 10(TX8/RX8)-1
Cross-connect module WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
Compatible mode
176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2 1(IN1/OUT1)-OCH:1-ODU2:2-ODU1:2-ODU0:1
NQ2 board
Standard mode
4(IN4/OUT4)-OCH:1-ODU2:4-ODU1:4-ODU0:1 4(IN4/OUT4)-OCH:1-ODU2:4-ODU1:4-ODU0:2
Cross-connect module WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Line board c (compatible mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2-ODU0:1
2 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Line board d (standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8 4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:1
Line board e (standard mode)
4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:8
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1020
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign randomRANDOM. The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutiveFIX. Tributary board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Tributary board b TN54THA / TN54TOA Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1021
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-48 Cross-connection diagram of the TN53NQ2 (ODU0 level: ODU0->ODU2) Client side
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
1
201(ClientLP1/ClientLP1)-3
Tributary board a
(compatible mode) 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 3(TX1/RX1)-1 4(TX2/RX2)-1
Tributary board b
5(TX3/RX3)-1
(standard mode) 9(TX7/RX7)-1 10(TX8/RX8)-1
Cross-connect module
1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8
standard mode
NQ2 board 2
4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:2 4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:8
Cross-connect module WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU0:8 4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:1
Line board c (standard mode)
4(IN4/OUT4)-OCH:1-ODU2:1-ODU0:8
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2-ODU0:1
4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
Line board d (standard mode)
Line board e (compatible mode)
176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1022
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign randomRANDOM. The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutiveFIX. Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Line board c
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
ODU1 Cross-Connections Figure 14-49 and Figure 14-50show the created ODU1 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1023
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-49 Cross-connection diagram of the TN51NQ2/TN52NQ2/TN54NQ2 (ODU1 level) Client side
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board a (compatible mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 Cross-connect module
Tributary board b (standard mode)
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
NQ2
Compatible mode 54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4
Cross-connect module
WDM side
2
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Line board c (compatible mode)
54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Line board d (standard mode)
4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:2 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:3 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Tributary board a
TN51NQ2: TN11TDG / TN11TDX / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS TN52NQ2:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1024
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
TN11TDG / TN11TDX /TN54TEM28 / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS / TN54THA / TN54TOA TN54NQ2: TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Tributary board b
TN51NQ2: N/A TN52NQ2 / TN54NQ2: TN54THA / TN54TOA
Line board c
TN51NQ2: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX TN52NQ2: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX TN54NQ2: TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
Issue 03 (2013-05-16)
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1025
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-50 Cross-connection diagram of the TN53NQ2 (ODU1 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 Cross-connect module
Tributary board b (standard mode)
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Compatible mode 54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4
NQ2 board
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Standard mode 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:2 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:3 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 2 54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:1 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:2 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:3 4(IN4/OUT4)-OCH:1-ODU2:1-ODU1:4
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Tributary board a
TN11TDG / TN11TDX /TN54TEM28 / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS / TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1026
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b
TN54THA / TN54TOA
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODU2 Cross-Connections Figure 14-51 and Figure 14-52 show the created ODU2 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1027
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-51 Cross-connection diagram of the TN51NQ2/TN52NQ2/TN54NQ2 (ODU2 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1
NQ2 board Cross-connect module
Compatible mode
74(ODU2LP4/ODU2LP4)-1
WDM side
2
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1 1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1 3(IN3/OUT3)-OCH:1
Line board c (compatible mode)
Line board d (standard mode)
4(IN4/OUT4)-OCH:1 Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Tributary board a TN51NQ2: TN12TDX / TN52TDX / TN53TDX / TN55TQX / TN11TQX / TN52TQX / TN11TSXL TN52NQ2: TN12TDX / TN52TDX / TN53TDX / TN54TEM28 / TN11TQX / TN52TQX / TN53TQX / TN55TQX / TN11TSXL / TN54TTX TN54NQ2: TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1028
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b TN51NQ2: TN53TDX / TN55TQX TN52NQ2: TN53TDX / TN55TOX / TN55TQX TN54NQ2: TN53TDX / TN55TOX / TN55TQX Line board c
TN51NQ2: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX TN52NQ2: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX TN54NQ2: TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN51NQ2: TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2 TN52NQ2: TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2 TN54NQ2: TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1029
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-52 Cross-connection diagram of the TN53NQ2 (ODU2 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board b (standard mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
compatible mode
73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
NQ2 board
IN1/OUT1-OCH:1 IN2/OUT2-OCH:1 IN3/OUT3-OCH:1
standard mode
IN4/OUT4-OCH:1 Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 2
72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1
Line board c (compatible mode)
74(ODU2LP4/ODU2LP4)-1 IN1/OUT1-OCH:1 IN2/OUT2-OCH:1 IN3/OUT3-OCH:1
Line board d (standard mode)
IN4/OUT4-OCH:1 Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2
Tributary board a
TN12TDX / TN52TDX / TN53TDX / TN54TEM28 / TN11TQX / TN52TQX / TN53TQX / TN55TQX / TN11TSXL / TN54TTX
Tributary board b
TN53TDX / TN55TOX / TN55TQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1030
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODUflex Cross-Connections Figure 14-53 shows the created ODUflex cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1031
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-53 Cross-connection diagram of the TN53NQ2 (ODUflex level)
Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
1
202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1 3(TX1/RX1)-1
Tributary board b
4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
(standard mode)
Cross-connect module
WDM side IN1/OUT1-OCH:1-ODU2:1-ODUflex:1 IN1/OUT1-OCH:1-ODU2:1-ODUflex:2 IN2/OUT2-OCH:1-ODU2:1-ODUflex:1 IN2/OUT2-OCH:1-ODU2:1-ODUflex:2
NQ2 board
IN3/OUT3-OCH:1-ODU2:1-ODUflex:1 IN3/OUT3-OCH:1-ODU2:1-ODUflex:2 IN4/OUT4-OCH:1-ODU2:1-ODUflex:1 IN4/OUT4-OCH:1-ODU2:1-ODUflex:2
Cross-connect module
WDM side 2
Line board c
IN1/OUT1-OCH:1-ODU2:1-ODUflex:1 IN1/OUT1-OCH:1-ODU2:1-ODUflex:2 IN2/OUT2-OCH:1-ODU2:1-ODUflex:1 IN2/OUT2-OCH:1-ODU2:1-ODUflex:2 IN3/OUT3-OCH:1-ODU2:1-ODUflex:1 IN3/OUT3-OCH:1-ODU2:1-ODUflex:2 IN4/OUT4-OCH:1-ODU2:1-ODUflex:1 IN4/OUT4-OCH:1-ODU2:1-ODUflex:2
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NQ2 The WDM side of line boards are cross-connected to the WDM side of the NQ2 NOTE
The IN/OUT optical port supports ODUflex when ODU Timeslot Configuration Mode is Assign randomRANDOM. Tributary board a TN53TDX / TN54TEM28 / TN55TQX / TN54THA / TN54TOA Tributary board b TN53TDX / TN54TOA / TN55TQX Line board c
Issue 03 (2013-05-16)
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1032
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.4.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the NQ2, refer to Table 14-46. Table 14-46 NQ2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Sets the path loopback.
Default: NonLoopback Service Mode
l TN51NQ2: ODU1, ODU2 Default: ODU1 l TN52NQ2/ TN54NQ2: Automatic, ODU0, ODU1, ODU2
Specifies the service mode for a board. NOTE The parameter is supported by the TN53NQ2 only in the compatible mode.
See D.32 Service Mode (WDM Interface) for more information.
Default: Automatic l TN53NQ2: Automatic, ODU0, ODU1, ODU2 Default: Automatic Laser Status
Off, On Default: On
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1033
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Enable Auto-Sensing
Disabled, Enabled
Set the Enable Auto-Sensing function of the board to Enabled or Disabled.
Default: Enabled
l When it is set to Enabled, the board supports FEC Type and Line Rate of the received signals in autosensing mode, and thus no manual setting is required. l When it is set to Disabled, FEC Type and Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE This parameter is only valid when the Board Mode is set to Electrical Relay Mode or Optical Relay Mode. This parameter is only supported by the TN53NQ2/TN54NQ2. For ASON services, this parameter must be set to Enabled.
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. NOTE Only TN52NQ2/TN53NQ2/TN54NQ2 supports AFEC.
See D.9 FEC Mode (WDM Interface) for more information. 1, 2, 3
AFEC Grade
Default: 3
A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay. NOTE Only the TN52NQ2/TN53NQ2/TN54NQ2 support this parameter.
Issue 03 (2013-05-16)
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1034
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
Planned Band Type
NOTE CBAND is the only band now supported.
Default: /
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE CBAND is the only band now supported.
See D.26 Planned Band Type (WDM Interface) for more information. Enable Line Rate
Enabled, Disabled Default: Enabled
Determines whether to automatically switch between the standard mode and speedup mode for the line rate upon a rerouting event in ASON scenarios. NOTE This parameter is supported by the TN52NQ2/TN54NQ2, and supported by the TN53NQ2 only in standard mode.
Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Used to configure the line rate of OTN. See D.16 Line Rate for more information.
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is supported only by TN52NQ2/TN53NQ2/TN54NQ2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1035
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
PRBS Test Status
Enabled, Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled
ODUflex Tolerance (ppm)
0 to 100
Default: Disabled
Default: 100
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Specifies the tolerance of deviation between the actual client-side service rate and the specified rate when the client-side service type is ODUflex. NOTE When the tributary board that connects to the NQ2 board receives 3G-SDI services from client equipment, set this parameter to 10. If the tributary board receives other services, set it to 100. The parameter is supported only by the TN53NQ2 in the standard mode.
ODU Timeslot Configuration Mode
Assign random, Assign consecutive
Sets ODU Timeslot Configuration Mode of the board.
Default: Assign random
Assign random: The service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping path is ODU0–>ODU2, ODU1–>ODU2, and ODUflex>ODU2. Assign consecutive: The service rate can be ODU0, ODU1, or ODU2 and the mapping path is ODU0–>ODU1– >ODU2, or ODU1->ODU2. NOTE The parameter is supported only by the TN53NQ2 in the standard mode. For the TN53NQ2 board in an OptiX OSN 6800 NE, this parameter must be set to Assign consecutive.
Board Mode
Line Mode, Electrical Relay Mode, Optical Relay Mode Default: Line Mode
Specifies the board mode depending on the service application scenario. See D.2 Board Mode (WDM Interface) for more information. NOTE This parameter is only supported by the TN53NQ2/TN54NQ2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1036
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.4.11 NQ2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN51NQ2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
TN52NQ2/ TN53NQ2/ TN54NQ2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Pluggable Optical Module Table 14-47 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
Issue 03 (2013-05-16)
dBm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2
1037
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-48 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
Issue 03 (2013-05-16)
dBm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2
1038
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-49 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Line code format
-
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1039
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN51NQ2: 1.6 kg (3.5 lb.) – TN52NQ2: 2.0 kg (4.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1040
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– TN53NQ2: 1.6 kg (3.5 lb.) – TN54NQ2: 1.6 kg (3.5 lb.)
Power Consumption Boar d
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN51 NQ2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP
88
95
88
97
46.5
50
53
58.3
800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km TN52 NQ2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP 800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
TN53 NQ2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP 800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
TN54 NQ2
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZPIN-XFP 800 ps/nm-C Band-Tunable WavelengthNRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
14.5 NS2 NS2: 10G Line Service Processing Board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1041
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.5.1 Version Description The available functional versions of the NS2 board are TN11, TN12, TN52, and TN53.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 NS2
N
N
N
N
Y
Y
TN12 NS2
N
N
N
N
Y
Y
TN52 NS2
Y
Y
T02/T03: N
N
Y
Y
TN53 NS2
Y
N
Y
Y
01M01/01M0 2/T04/T05/ T06: Y Y
Y
Variants The difference between the NS2 board variants lies in the WDM-side optical module. Table 14-50 Available variants of the TN11NS2 board Variant
WDM-Side Fixed Optical Module
01M02
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZ-PIN (01M02 for even wavelengths and 01M03 for odd wavelengths)
01M03 01M04
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
T02
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
T03
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
T04
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1042
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-51 Available variants of the TN12NS2 board Variant
WDM-Side Optical Module
FEC Encoding
01M02
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZ-PIN (01M02 for even wavelengths and 01M03 for odd wavelengths)
FEC/AFEC
01M03 T02
1200 ps/nm-C Band-Tunable WavelengthNRZ-APD
T03
1200 ps/nm-C Band-Tunable WavelengthNRZ-PIN
T04
4800 ps/nm-C Band-Tunable WavelengthODB-APD
T05
800 ps/nm-C Band-Tunable Wavelength-(D) RZ-PIN
A
800 ps/nm-C Band-Tunable Wavelength-(D) RZ-PIN
B
The WDM-side optical modules are pluggable. For details, see 14.5.11 NS2 Specifications.
FEC/AFEC-2
Table 14-52 Available variants of the TN52NS2 board Variant
WDM-Side Fixed Optical Module
ODUflex
Direct Mapping of ODU0 to ODU2
FEC Encoding
01M01
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed WavelengthNRZ-PIN (01M01 for even wavelengths and 01M02 for odd wavelengths)
Y
Y
AFEC
T02
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
N
N
AFEC-2
T03
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
N
N
AFEC-2
T04
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Y
Y
AFEC-2
T05
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
Y
Y
AFEC
T06
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
Y
Y
AFEC
01M02
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1043
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-53 Available variants of the TN53NS2 board Variant
Description
01
The WDM-side optical modules are pluggable. For details, see 14.5.11 NS2 Specifications.
Differences Between Versions Function: Boar d
CrossConnet Granularit y
FEC Encoding
IEEE 1588v2
Physical Clock
WDM-Side Pluggable Optical Module FixedWavelengt h
TunableWavelengt h
Gray Light
TN11 NS2
ODU1
FEC/AFEC
N
N
N
N
N
TN12 NS20 1M02
ODU1, ODU2 and ODU2e
FEC/AFEC
N
N
N
N
N
TN12 NS2A
ODU1, ODU2 and ODU2e
FEC/ AFEC-2
N
N
N
N
N
TN12 NS2B
ODU1, ODU2 and ODU2e
FEC/ AFEC-2
N
N
Y
N
N
TN12 NS20 1M03 TN12 NS2T 02 TN12 NS2T 03 TN12 NS2T 04 TN12 NS2T 05
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1044
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Boar d
CrossConnet Granularit y
FEC Encoding
IEEE 1588v2
Physical Clock
WDM-Side Pluggable Optical Module FixedWavelengt h
TunableWavelengt h
Gray Light
TN52 NS2T 02
ODU0, ODU1, ODU2 and ODU2e
FEC/ AFEC-2
N
N
N
N
N
TN52 NS2T 04
ODU0, ODU1, ODUflex, ODU2 and ODU2e
FEC/ AFEC-2
N
N
N
N
N
TN52 NS2T 05
ODU0, ODU1, ODUflex, ODU2 and ODU2e
FEC/AFEC
N
N
N
N
N
ODU0, ODU1, ODUflex, ODU2 and ODU2e
FEC/ AFEC-2
Y
Y
Y
Y
Y
TN52 NS2T 03
TN52 NS2T 06 TN52 NS20 1M01 TN52 NS20 1M02 TN53 NS2
NOTE l OptiX OSN 6800: The TN11NS2 supports cross-connection of paired slots while the TN12NS2/TN52NS2/TN53NS2 does not. l OptiX OSN 3800: The TN11NS2 supports the cross-connection of ODU1 signals between any slots of the four-slot mesh group. The TN12NS2/TN52NS2/TN53NS2 supports the cross-connection of ODU1 signals between any two boards in the non-paired slots of the four-slot mesh group.
For details, see 14.5.3 Functions and Features. Specification: l
Issue 03 (2013-05-16)
The specifications vary according to the version of the board that you use. For details, see 14.5.11 NS2 Specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1045
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Substitution Relationship Table 14-54 Substitution rules of the NS2 board Original Board
Substit ute Board
Substitution Rules
TN11NS2
None
-
TN12NS2
TN52NS 2
The TN52NS2 can be created as TN12NS2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN52NS2 functions as the TN12NS2.
TN53NS 2
The TN53NS2 can be created as TN12NS2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53NS2 functions as the TN12NS2. NOTE When both the receive and transmit boards employ FEC, the substitution applies; when both the receive and transmit boards employ AFEC, the substitution does not apply.
TN52NS2
TN53NS 2
The TN53NS2 can be created as TN52NS2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53NS2 functions as the TN52NS2.
TN53NS2
None
-
14.5.2 Application As a type of line board, the NS2 board converts 8 ODU0, 4 ODU1, 2 ODUflex, or one ODU2 into one ITU-T G.694.1 OTU2 signal or converts one ODU2e signal into one ITU-T G.694.1 OTU2e signal. The board supports hybrid transmission of the ODU0 service, ODUflex service and ODU1 service.
Application scenario 1 of the TN11NS2/TN12NS2/TN52NS2/TN53NS2: conversion between four channels of ODU1 and one channel of OTU2 signals Figure 14-54 Position of the NS2 board in the WDM system (application scenario 1) 4xODU1
4
IN OUT
NS2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
4xODU1
4
IN
M U X / D M U X
1×ODU2
4
OUT
M U X / D M U X
1×OTU2
4xODU1
TOM
1×OTU2
1
1×ODU2
1
1
4xODU1
1
1
1 TOM
4
4
4
NS2
1046
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 2 of the TN12NS2/TN52NS2/TN53NS2: conversion between one channel of ODU2/ODU2e and one channel of OTU2/OTU2e signals Figure 14-55 Position of the NS2 board in the WDM system (application scenario 2) 2xODU2/ODU2e
2xODU2/ODU2e
IN
OUT
NS2
TDX
NS2
IN OUT
NS2
TDX
1×ODU2/ODU2e
IN
M U X / D M U X
1×OTU2/OTU2e
1×OTU2/OTU2e
1×ODU2/ODU2e
OUT
M U X / D M U X
1×ODU2/ODU2e
IN
1×OTU2/OTU2e
1×OTU2/OTU2e
1×ODU2/ODU2e
OUT
NS2
Application scenario 3 of the TN52NS2/TN53NS2: conversion between eight channels of ODU0 and one channel of OTU2 signals (Only for OptiX OSN 8800) Figure 14-56 Position of the NS2 board in the WDM system (application scenario 3) 8xODU0
8xODU0
NS2
4xODU1
8
M U X IN / OUT D M U X
1×ODU2
8
M U OUT X / IN D M U X
1×OTU2
8
4xODU1
8xODU0
TOM
1×OTU2
1
1×ODU2
1
1
8xODU0
1
1
1 TOM
8
8
8
NS2
For the TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/TN52NS201M02/ TN53NS2 board:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1047
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign consecutive, the board supports the ODU0–>ODU1–>ODU2 service mapping path.
l
When the board works in standard mode and ODU Timeslot Configuration Mode is set to Assign random, the board supports the ODU0–>ODU2 service mapping path.
l
When the board works in compatible mode, the board does not support the configuration of the timeslot allocation mode, and it only supports the ODU0–>ODU1–>ODU2 service mapping path.
Application scenario 4 of the TN52NS2/TN53NS2: conversion between two channels of ODUflex and one channel of OTU2 signals (Only for OptiX OSN 8800) Figure 14-57 Position of the NS2 board in the WDM system (application scenario 4) 1xOTU2
2xODUflex
2xODUflex
1xOTU2
NS2
1×ODU2
IN
2xODUflex
OUT
M U X / IN D OUT M U X
1×OTU2
1×OTU2
1×ODU2
2xODUflex
TDX
NS2 M U X / D M U X
TDX
NOTE
The total bandwidth of two channels of ODUflex signals corresponding to one channel of OTU2 signals cannot exceed 10 Gbit/s. TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/TN52NS201M02/TN53NS2 supports ODUflex only when it works in standard mode. The line boards at the two add/drop sites must have the same ODU timeslot allocation mode. When a TN53NS2 board is connected to a board that does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53NS2 board. For example, when a TN53NS2 board is connected to a TN52NS2T02 board, which does not support ODU timeslot allocation, set ODU Timeslot Configuration Mode to Assign consecutive for the TN53NS2 board.
Application scenario 5: hybrid transmission scenario Figure 14-58 Position of the NS2 board in the WDM system (application scenario 5) 1xOTU2
TOM
ODU0
ODU0
TEM ODUflex NS2 28 ND2
Issue 03 (2013-05-16)
ODU1
OUT IN
M U X / D M U X
M U X / D M U X
IN OUT
NS2
TOM
ODUflex TEM 28 ODU1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
ND2
1048
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The IN/OUT port can transmit a mixture of ODU0, ODU1, and ODUflex signals, the total bandwidth cannot exceed 10 Gbit/s. TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/TN52NS201M02/TN53NS2 supports ODUflex only when it works in standard mode.
14.5.3 Functions and Features The NS2 board is used to achieve cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-55. NOTE
Only the OptiX OSN 8800 supports ODU0/ODUflex. Only the OptiX OSN 8800 and OptiX OSN 6800 support ODU2/ODU2e.
Table 14-55 Functions and features of the NS2 board Funct ion and featur e
Description
Basic functi on
NS2 converts signals as follows: l TN11NS2: – 4xODU1<->1xOTU2 l TN12NS2: – 4xODU1/1xODU2<->1xOTU2 – 1xODU2e<->1xOTU2e l TN52NS2T02/TN52NS2T03: – 8xODU0/4xODU1/1xODU2<->1xOTU2 – 1xODU2e<->1xOTU2e l TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02: – 8xODU0/4xODU1/1xODU2/2xODUflex<->1xOTU2 – 1xODU2e<->1xOTU2e l TN53NS2: – 8xODU0/4xODU1/1xODU2/2xODUflex<->1xOTU2 – 1xODU2e<->1xOTU2e Supports hybrid transmission of the ODU0 signals, ODU1 signals, and ODUflex signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1049
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Funct ion and featur e
Description
Crossconne ct capabi lities
OptiX OSN 8800: l TN52NS2T02/TN52NS2T03: Supports the cross-connection of eight channels of ODU0 signals, four channels of ODU1 signals or one channel of ODU2/ ODU2e signals between the NS2 board and the cross-connect board. l TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02/TN53NS2: Supports the cross-connection of eight channels of ODU0 signals, four channels of ODU1 signals or two channels of ODUflex signals or one channel of ODU2/ODU2e signals between the NS2 board and the cross-connect board. OptiX OSN 6800: l TN11NS2: Supports the cross-connection of four channels of ODU1 signals between the NS2 board and the cross-connect board or the board in the paired slot. l TN12NS2/TN52NS2/TN53NS2: Supports the cross-connection of four channels of ODU1 signals or one channel of ODU2/ODU2e signals between the NS2 board and the cross-connect board. OptiX OSN 3800: l TN11NS2: Supports the grooming of four channels of ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. l TN12NS2/TN52NS2/TN53NS2: Supports grooming of four channels of ODU1 signals to any two boards in the non-paired slots of the four-slot mesh group, that is, supports an ODU1 cross-connection between slots IU2 and IU4, slots IU2 and IU5, slots IU3 and IU4, and slots IU3 and IU5.
OTN functi on
l Supports the OTU2/OTU2e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITUT G.709. l OTU2 layer: supports the SM function. l ODU2 layer: supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions. l ODU0 layer:supports the PM and TCM function, and PM and TCM nonintrusive monitoring functions. l ODUflex layer: supports the PM and PM non-intrusive monitoring functions. NOTE l Only the TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02/TN53NS2 supports TCM and TCM non-intrusive monitoring for ODU0. l Only the TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02/TN53NS2 supports PM and PM non-intrusive monitoring for ODUflex.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1050
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Funct ion and featur e
Description
WDM specifi cation
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunab le wavel ength functi on
Supports tunable wavelength optical modules that provide for:
ESC functi on
Supported
PRBS test functi on
Supports the PRBS function on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE If the TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/TN52NS201M02/ TN53NS2 board interconnects with another line board, PRBS must be enabled for the board and the connected line board. In addition, the PRBS function can take effect on the boards only when the following condition is met: The TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/TN52NS201M02/ TN53NS2 board works in standard mode and ODU0, ODU1, or ODUflex cross-connections are configured for the board, or the board works in compatible mode but no cross-connection is configured for it.
LPT functi on
Not supported
FEC encodi ng
TN11NS2/TN12NS201M02/TN12NS201M03/TN12NS2T02/TN12NS2T03/ TN12NS2T04/TN12NS2T05/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN12NS2A/TN12NS2B/TN52NS2T02/TN52NS2T03/TN52NS2T04/TN53NS2: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1051
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Funct ion and featur e
Description
Alarm s and perfor mance events monit oring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Regen eratio n board
l TN11NS2/TN12NS2/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02:
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2, TN11LSXR l TN52NS2/TN52NS2T02/TN52NS2T03/TN52NS2T04/TN53NS2: TN12ND2, TN52ND2, TN53ND2, TN55NO2, TN53NQ2, TN54NQ2
ALS functi on
Not supported
Test frame
Not supported
IEEE 1588v 2
The TN53NS2 board supports BC and OC mode, do not support TC and TC+OC mode.
Physic al clock
Supported only when the TN53NS2 board receives ODU0/ODU1/ODUflex signals cross-connected from the backplane
Optica l-layer ASON
Supported
Electri callayer ASON
Supported by the TN52NS2.
Protec tion schem e
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports ODUk SPRing protection. l Supports tributary SNCP protection. NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1052
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Funct ion and featur e
Description
Loopb ack
Board
WDM Side
ODU0 Channel Loopback
ODU1 Channel Loopback
ODUflex Channel Loopback
TN11N S2
Supported
Not supported
Supported
Not supported
TN12N S2
Supported
Not supported
Supported
Not supported
TN52N S2T02
Supported
Supported
Supported
Not supported
Supported only when the signals is ODU2/ ODU2e from the backplane.
Supported
Supported only when ODU1 signals are received from the backplane.
Supported
TN52N S2T03 TN52N S2T04 TN52N S2T05 TN52N S2T06 TN52N S201M 01 TN52N S201M 02 TN53N S2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1053
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Funct ion and featur e
Description
Protoc ols or standa rds compl iance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1054
OptiX OSN 8800/6800/3800 Hardware Description
Funct ion and featur e
14 Tributary Board and Line Board
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.5.4 Working Principle and Signal Flow The NS2 board consists of the WDM-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-59 shows the functional modules and signal flow of the NS2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1055
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-59 Functional modules and signal flow of the NS2 board Backplane (service corss-connection)
n X ODUk
WDM side E/O 1588v2 module
Cross-connect module
OUT
OTN processing
O/E
module
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
NOTE
Only the TN53NS2 board supports the IEEE 1588v2 module. In Figure 14-59, n x ODUk indicates the service cross-connections from the NS2 board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-56 shows the service cross-connections from the NS2 board to the backplane. Table 14-56 Service cross-connections from the NS2 board to the backplane
Issue 03 (2013-05-16)
Board
Service Cross-connection
TN11N S2
A maximum of 4xODU1
TN12N S2
A maximum of 4xODU1/1xODU2/1xODU2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1056
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Service Cross-connection
TN52N S2T02/ TN52N S2T03
A maximum of 8xODU0/4xODU1/1xODU2/1xODU2e
TN52N S2T04/ TN52N S2T05/ TN52N S2T06/ TN52N S201M0 1/ TN52N S201M0 2/ TN53N S2
A maximum of 8xODU0/4xODU1/1xODU2/2xODUflex/1xODU2e
The transmit and the receive directions are defined in the signal flow of the NS2 board. The transmit direction is defined as the direction from the backplane to the WDM side of the NS2, and the receive direction is defined as the reverse direction. l
Transmit direction The cross-connect module receives ODUk signals sent from the backplane. The OTN processing module performs operations such as OTN framing, and encoding of FEC/AFEC. Then, the module outputs one channel of OTU2 signals. The OTU2 signals are sent to the WDM-side optical module. After performing E/O conversion, the signal processing module sends out the OTU2 optical signals at DWDM standard wavelengths that comply with ITUT G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU2 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 from the WDM side through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU2 signals are sent to the signal processing module. The OTN processing module performs operations such as OTU2 framing, decoding of FEC/AFEC. Then, the cross-connect module sends out ODUk signals to the backplane for service crossconnection.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 or OTU2e optical signals. – WDM-side transmitter: Performs the E/O conversion from the internal electrical signals to OTU2 or OTU2e optical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1057
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser. l
Signal processing module The module consists of an OTN processing module and a cross-connect module. – OTN processing module Frames OTU2 or OTU2e signals, processes overheads in OTU2 or OTU2e signals, and performs the FEC/AFEC encoding and decoding. – Cross-connect module Grooms electrical signals between the NS2 and the other board through the backplane.
l
1588v2 module The 1588v2 module can send the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.5.5 Front Panel There are indicators and interfaces on the front panel of the NS2 board.
Appearance of the Front Panel Figure 14-60 and Figure 14-61 show the front panel of the NS2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1058
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-60 Front panel of the TN11NS2/TN12NS201M02/TN12NS201M03/TN12NS2T02/ TN12NS2T03/TN12NS2T04/TN12NS2T05/TN12NS2A/TN52NS2 board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1059
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-61 Front panel of the TN12NS2B/TN53NS2
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-57 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1060
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-57 Types and functions of the interfaces on the NS2 board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.5.6 Valid Slots One slot houses one NS2 board. Table 14-58 shows the valid slots for the TN11NS2/TN12NS2 board. Table 14-58 Valid slots for the TN11NS2/TN12NS2 board Product
Valid slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 14-59 shows the valid slots for the TN52NS2 board. Table 14-59 Valid slots for the TN52NS2 board Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subracka
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
a: Only the TN52NS201M01/TN52NS201M02/TN52NS2T04/TN52NS2T05/TN52NS2T06 supports the OptiX OSN 8800 T16 subrack.
Table 14-60 shows the valid slots for the TN53NS2 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1061
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-60 Valid slots for the TN53NS2 board Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
14.5.7 Characteristic Code for the NS2 The board characteristic code provides information about signal frequency, optical module type, wavelength, and so on. For the detailed description of the characteristic code for the board, refer to B.3 Characteristic Code of a Line Unit.
14.5.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-61 lists the mapping between the logical ports on the board and the port numbers displayed on the NMS. Table 14-61 Mapping between the physical ports on the NS2 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. The NS2 board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1062
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-62 Port diagram and port description Board
Mode
Port Diagram
Port Descriptio n
Board Name Displayed on the NMS
TN53N S2
Standard mode
Figure 14-62
Table 14-63
53NS2
Compati ble mode
Figure 14-63
Table 14-64
53NS2(COMP)
Standard mode
Figure 14-62
Table 14-63
52NS2(STND)
Compati ble mode
Figure 14-63
Table 14-64
52NS2
TN12N S2
Compati ble mode
Figure 14-64
Table 14-64
12NS2
TN11N S2
Compati ble mode
Figure 14-65
Table 14-64
NS2
TN52N S2
a: TN52NS2T02/TN52NS2T03 board can work only in compatible mode.
NOTE
When used in OptiX OSN 6800, the TN52NS2 board can only cross-connect ODU1 and ODU2 signals from the backplane. When used in OptiX OSN 3800, the TN12NS2/TN52NS2/TN53NS2 board can only cross-connect ODU1 signals from the backplane. The cross-connect granularity supported by the board is determined by that supported by the cross-connect board in the same subrack. For information about cross-connect boards, see 21 Cross-Connect Board and System and Communication Board. NOTE
When the NS2 board works in compatible mode, or when the board works in standard mode and ODU Timeslot Configuration Mode is Assign consecutive, observe the following points: l If any of the ODU2 channels has been configured with a service, the corresponding ODU1 and ODU0 channels cannot be configured with other services. On the opposite, if the ODU1 and ODU0 channels have been configured with services, the corresponding ODU2 channel cannot be configured with other services. l If any of the ODU1 channels has been configured with a service, the corresponding ODU0 channels cannot be configured with other services. On the opposite, if the ODU0 channels have been configured with services, the corresponding ODU1 channel cannot be configured with other services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1063
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-62 Port diagram of the TN52NS2/TN53NS2 (standard mode) IN/OUT-OCh:1-ODU2:1-ODUflex:(1~2) ODUflex:1 2XODUflex
ODU2:1
ODUflex:2
IN/OUT-OCh:1
OCh:1
OCh :1
Other tributary/line/PID board
1 xODU2/ 1xODU 2e
IN/OUT-OCh:1-ODU2:1-ODU1:(1~4) ODU1:1 4 xODU1
ODU2:1
OCh : 1 IN/OUT
ODU1:4
IN/OUT-OCh:1-ODU2:1-ODU1:(1~4)-ODU0:(1~2)
ODU0:1
ODU0:2 8 xODU0
ODU1:1 ODU2:1
ODU 0:1 ODU 0:2
OCh :1
ODU 1:4
IN/OUT-OCh:1-ODU2:1-ODU0:(1~8) ODU0:1 8 xODU0
ODU2:1
OCh :1
ODU0: 8
Backplane
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODUflex mapping path
ODU0 mapping path (ODU0– >ODU1– >ODU2)
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path (ODU0– >ODU2)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1064
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
When ODU Timeslot Configuration Mode is Assign random, the service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping paths are ODU0–>ODU2, ODU1–>ODU2, and ODUflex->ODU2. When ODU Timeslot Configuration Mode is Assign consecutive, the service rate can be ODU0, ODU1, or ODU2 and the mapping paths are ODU0–>ODU1–>ODU2 and ODU1->ODU2.
Figure 14-63 Port diagram of the TN52NS2/TN53NS2 board (compatible mode) Other tributary/ line/PID board
Other tributary/ line/PID board
8 x ODU0
Other tributary/ line/PID board
1 x ODU2/ODU2e
4 x ODU1
161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
Backplane
51 ODU1 (ODU1LP1/ODU1LP1)-1 71 (ODU2LP1/ODU2LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
Issue 03 (2013-05-16)
51 ODU1 (ODU1LP1/ODU1LP1)-4
1 (IN1/OUT1)-1
ODU2
Crossconnect module
ODU1 mapping path
Multiplexin g module
ODU2 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1065
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-64 Port diagram of the TN12NS2 board Other tributary/ line/PID board
Other tributary/ line/PID board
1 x ODU2/ODU2e
4 x ODU1
Backplane
51 (ODU1LP1/ODU1LP1)-1 71 (ODU2LP1/ODU2LP1)-1
51 (ODU1LP1/ODU1LP1)-4
1 (IN1/OUT1)-1
ODU2
Crossconnect module
ODU2 mapping path
Multiplexin g module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU1 mapping path
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1066
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-65 Port diagram of the TN11NS2 board Other tributary/ line/PID board
Backplane
4 x ODU1
1(IN/OUT)-1 1 (IN1/OUT1)-1 1(IN/OUT)-4
Crossconnect module
ODU1 mapping path
Multiplexin g module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Service processing module
Table 14-63 Description of NM port of the TN52NS2/TN53NS2 board (standard mode)
Issue 03 (2013-05-16)
Port Name
Definition
IN/OUT-OCh:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU1->ODU2)
IN/OUT-OCh:1-ODU2:1-ODU0:(1-8)
Mapping path for ODU0 signals received from the backplane (ODU0->ODU2)
IN/OUT-OCh:1-ODU2:1-ODU1:(1-4)
Mapping path for ODU1 signals received from the backplane
IN/OUT-OCh:1
Mapping path for ODU2/ODU2e signals received from the backplane
IN/OUT-OCh:1-ODU2:1-ODUflex:(1-2)
Mapping path for ODUflex signals received from the backplane
IN/OUT
WDM-side optical ports
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1067
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-64 Description of NM port of the TN11NS2/TN12NS2/TN52NS2/TN53NS2 board (compatible mode) Port Name
Description
Automatic Cross-Connection
ODU0LP1ODU0LP4
Internal logical ports of the board. Each of the ports provides optical channels 1 and 2.
Automatic cross-connections are established between these ports and the ODU1LP port.
ODU1LP1
Internal logical ports. Each of the port provides optical channels 1, 2, 3, and 4.
Automatic cross-connections are established between these ports and the ODU2LP port
ODU2LP1
Internal logical ports of the board. Each of the ports provides optical channel 1.
Automatic cross-connections are established between these ports and the IN/OUT port
IN/OUTa
Internal logical ports. Each of the port provides optical channels 1, 2, 3, and 4.
-
IN/OUT
WDM-side optical ports.
-
a: The port is available only on the TN11NS2 board.
14.5.9 Configuring Cross-Connections This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCH:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
ODU0 Cross-Connections Figure 14-66 and Figure 14-67 show the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1068
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-66 TN52NS2/TN53NS2 board cross-connections (ODU0 level: ODU0->ODU1>ODU2) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
compatible mode 164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
NS2 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:2
standard mode IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 2
IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:2 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:2
Line board c (compatible mode)
Line board d (standard mode)
IN/OUT-OCH:1-ODU2:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU0:2 IN/OUT-OCH:1-ODU2:1-ODU0:7 IN/OUT-OCH:1-ODU2:1-ODU0:8
Line board e (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
NOTE
The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign random. The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutive. Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1069
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1070
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-67 TN52NS2/TN53NS2 board cross-connections (ODU0 level: ODU0->ODU2) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side IN/OUT-OCH:1-ODU2:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU0:2
NS2 IN/OUT-OCH:1-ODU2:1-ODU0:7 IN/OUT-OCH:1-ODU2:1-ODU0:8
Standard mode
Cross-connect module
WDM side
IN/OUT-OCH:1-ODU2:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU0:2
2
IN/OUT-OCH:1-ODU2:1-ODU0:7 IN/OUT-OCH:1-ODU2:1-ODU0:8
Line board c (standard mode)
IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:2 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:2
Line board d (standard mode)
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Line board e (compatible mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards NOTE
The IN/OUT optical port supports ODU0->ODU2 mapping when ODU Timeslot Configuration Mode is Assign random. The IN/OUT optical port supports ODU0->ODU1->ODU2 mapping when ODU Timeslot Configuration Mode is Assign consecutive. Tributary board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1071
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b TN54THA / TN54TOA Line board c
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
ODU1 Cross-Connections Figure 14-68, Figure 14-69 and Figure 14-70 show the created ODU1 cross-connections. Figure 14-68 TN12NS2 board cross-connections (ODU1 level) Client side Tributary board a
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
(compatible mode)
1
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2
NS2
51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 2
51(ODU1LP1/ODU1LP1)-3
Line board b (compatible mode)
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1-ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2 IN/OUT-OCH:1-ODU2:1-ODU1:3
Line board c (standard mode)
IN/OUT-OCH:1-ODU2:1-ODU1:4
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
Tributary board a
TN11TDG / TN11TDX / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1072
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Line board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1073
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-69 TN52NS2/TN53NS2 board cross-connections (ODU1 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2
NS2
51(ODU1LP1/ODU1LP1)-3
compatible mode
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1-ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2 IN/OUT-OCH:1-ODU2:1-ODU1:3
standard mode
IN/OUT-OCH:1-ODU2:1-ODU1:4
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 2
51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1-ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2 IN/OUT-OCH:1-ODU2:1-ODU1:3 IN/OUT-OCH:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
Tributary board a
TN11TDG / TN11TDX /TN54TEM28 / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1074
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Figure 14-70 TN11NS2 board cross-connections (ODU1 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board a (compatible mode)
1
WDM side 1(IN/OUT)-1 1(IN/OUT)-2
NS2
1(IN/OUT)-3 1(IN/OUT)-4
WDM side 51(ODU1LP1/ODU1LP1)-1 2
51(ODU1LP1/ODU1LP1)-2
Line board b
51(ODU1LP1/ODU1LP1)-3
(compatible mode)
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1-ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2
Line board c
IN/OUT-OCH:1-ODU2:1-ODU1:3
(standard mode)
IN/OUT-OCH:1-ODU2:1-ODU1:4
The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
Tributary board a
TN11TDG / TN11TDX / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS
Line board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Line board c
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1075
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU2 Cross-Connections Figure 14-71 and Figure 14-72 show the created ODU2 cross-connections. Figure 14-71 TN12NS2 board cross-connections (ODU2 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
Cross-connect module
WDM side
NS2 71(ODU2LP1/ODU2LP1)-1
Cross-connect module
WDM side Line board b
2
71(ODU2LP1/ODU2LP1)-1 (compatible mode) IN/OUT-OCH:1
Line board c (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
Tributary board a
TN12TDX / TN52TDX / TN53TDX / TN55TQX / TN11TQX / TN52TQX / TN11TSXL
Line board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX
Line board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1076
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-72 TN52NS2/TN53NS2 board cross-connections (ODU2 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
Tributary board b (standard mode)
3(TX1/RX1)-1
1
4(TX1/RX1)-1
Cross-connect module
WDM side
NS2
71(ODU2LP1/ODU2LP1)-1 compatible mode
IN/OUT-OCH:1-ODU2:1
standard mode
Cross-connect module
WDM side
71(ODU2LP1/ODU2LP1)-1 2 IN/OUT-OCH:1-ODU2:1
Line board c (compatible mode) Line board d (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards
Tributary board a
TN12TDX / TN52TDX / TN53TDX / TN54TEM28 / TN11TQX / TN52TQX / TN53TQX / TN55TQX / TN11TSXL / TN54TTX
Tributary board b
TN53TDX / TN55TOX / TN55TQX
Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODUflex Cross-Connections Figure 14-73 shows the created ODUflex cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1077
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-73 TN52NS2/TN53NS2 board cross-connections (ODUflex level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
Tributary board b (standard mode)
1
3(TX1/RX1)-1 4(TX1/RX1)-1
Cross-connect module
WDM side
IN/OUT-OCH:1-ODU2:1-ODUflex:1
NS2
IN/OUT-OCH:1-ODU2:1-ODUflex:2
Cross-connect module
WDM side
2
Lin board c
IN/OUT-OCH:1-ODU2:1-ODUflex:1 IN/OUT-OCH:1-ODU2:1-ODUflex:2
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS2 board The WDM side of the NS2 board are cross-connected to the WDM side of line boards NOTE
The IN/OUT optical port supports ODUflex when ODU Timeslot Configuration Mode is . Tributary board a
TN53TDX / TN54TEM28 / TN55TQX / TN54THA / TN54TOA
Tributary board b
TN53TDX / TN54TOA / TN55TQX
Line board c
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
14.5.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of NS2, refer to Table 14-65. Table 14-65 NS2 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1078
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, OutloopS
Sets the path loopback.
Default: NonLoopback Service Mode
l TN11NS2: N/A
Specifies the service mode for a board.
l TN12NS2: ODU1, ODU2
NOTE The parameter is supported by the TN52NS2/TN53NS2 only in the compatible mode.
Default: ODU1 l TN52NS2: Automatic, ODU0, ODU1, ODU2
See D.32 Service Mode (WDM Interface) for more information.
Default: Automatic l TN53NS2: Automatic, ODU1, ODU2 Default: Automatic Off, On
Laser Status
Default: On
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1079
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
AFEC Grade
1, 2, 3
A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay.
Default: 3
NOTE Only the TN52NS2/TN53NS2 support this parameter.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
Planned Band Type
NOTE CBAND is the only band now supported.
Default: /
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE CBAND is the only band now supported.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE The parameter is only supported by the TN12NS2 /TN52NS2/TN53NS2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1080
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
NOTE The parameter is only supported by the TN11NS2 board.
Enable Line Rate
Enabled, Disabled Default: Enabled
Determines whether to automatically switch between the standard mode and speedup mode for the line rate upon a rerouting event in ASON scenarios. NOTE The parameter is supported only by the TN52NS2/TN53NS2 in the standard mode.
Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode
PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
Used to configure the line rate of OTN. NOTE The parameter is only supported by the TN12NS2/TN52NS2/TN53NS2.
See D.16 Line Rate for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE This parameter is only supported by the TN12NS2/TN52NS2 /TN53NS2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1081
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ODUflex Tolerance (ppm)
0 to 100
Specifies the tolerance of deviation between the actual client-side service rate and the specified rate when the client-side service type is ODUflex.
Default: 100
NOTE When the tributary board that connects to the NS2 board receives 3G-SDI services from client equipment, set this parameter to 10. If the tributary board receives other services, set it to 100. NOTE The parameter is supported only by the TN52NS2/TN53NS2 in the standard mode.
ODU Timeslot Configuration Mode
Assign random, Assign consecutive Default: Assign random
The ODU Timeslot Configuration Mode parameter sets and queries the timeslot configuration mode of a board. Assign random: The service rate can be ODU0, ODU1, ODU2, or ODUflex and the mapping path is ODU0–>ODU2, ODU1–>ODU2, and ODUflex>ODU2. Assign consecutive: The service rate can be ODU0, ODU1, or ODU2 and the mapping path is ODU0–>ODU1– >ODU2, or ODU1->ODU2. NOTE The parameter is supported only by the TN52NS2/TN53NS2 in the standard mode. For the TN52NS2/TN53NS2 board in an OptiX OSN 6800 NE, this parameter must be set to Assign consecutive.
14.5.11 NS2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1082
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN11NS 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
N/A
800 ps/nm-C Band-Fixed WavelengthNRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD 4800 ps/nm-C Band-Tunable Wavelength-ODB-APD 800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN TN12NS 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD 4800 ps/nm-C Band-Tunable Wavelength-ODB-APD 800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN TN52NS 2
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
N/A
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN TN53NS 2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1083
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
(D)RZ means DRZ or RZ. These two types of optical modules have the same optical performance and can be interconnected. The availability of the two type of optical module is subject to PCNs. For PCN information, consult with the product manager at the local representative office. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Fixed Optical Module Table 14-66 WDM-side fixed optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
-
Value 800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZPIN
800 ps/nm-C BandFixed WavelengthNRZ-PIN
NRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
Minimum mean launched power
dBm
-3
-3
Minimum extinction ratio
dB
10
10
Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Center frequency deviation
GHz
±10
±5
Maximum -20 dB spectral width
nm
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
800
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
1084
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-67 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
-
Line code format
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
NRZ
NRZ
ODB
DRZ
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
2
2
2
2
Minimum mean launched power
dBm
-3
-3
-3
-3
-3
Minimum extinction ratio
dB
10
10
N/Aa
10
10
Center frequency
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
±5
±5
±5
±5
Maximum -20 dB spectral width
nm
0.3
0.3
0.3
0.3
0.3
Minimum side mode suppression ratio
dB
35
35
35
35
35
Dispersion tolerance
ps/ nm
1200
1200
4800
800
800
APD
PIN
PIN
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
APD
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1085
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 1200 ps/ nm-C BandTunable Wavelen gthNRZPIN
1200 ps/ nm-C BandTunable Wavele ngthNRZAPD
4800 ps/ nm-C BandTunable Wavelen gthODBAPD
800 ps/ nm-C BandTunable Waveleng th-DRZPIN
800 ps/ nm-C BandTunable Waveleng th-NRZPIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
-26
-26
-16
-16
Minimum receiver overload
dBm
0
-9
-9
0
0
Maximum reflectance
dB
-27
-27
-27
-27
-27
a: The ODB code pattern has three levels, and thus extinction ratio is not needed.
WDM-Side Pluggable Optical Module Table 14-68 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1086
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-69 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1087
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 14-70 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Line code format
-
NRZ
NRZ
Optical source type
-
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
Maximum mean launched power
dBm
-1
2
Minimum mean launched power
dBm
-6
-1
Minimum extinction ratio
dB
6
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1088
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
Maximum -20 dB spectral width
nm
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1290 to 1565
1260 to 1605
Receiver sensitivity
dBm
-11
-14
Minimum receiver overload
dBm
-1
-1
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11NS2/TN12NS2: 1.2 kg (2.64 lb) TN52NS2: 1.3 kg (2.86 lb.) TN53NS2: 1 kg (2.2 lb.)
Power Consumption Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11NS 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
38.0
41.8
39.0
42.9
800 ps/nm-C Band-Fixed WavelengthNRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN 1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1089
OptiX OSN 8800/6800/3800 Hardware Description
Board
TN12NS 2
14 Tributary Board and Line Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
41.0
45.1
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
44.0
48.4
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
38.8
43.40
1200 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
39.40
44.10
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
39.70
44.46
4800 ps/nm-C Band-Tunable Wavelength-ODB-APD
42.50
47.60
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
30.32
34
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
25.35
28.39
800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN
TN52NS2T02: TN52NS2T02: 46.5 51.1 TN52NS2T06: 28 TN52NS2T06: 31
800 ps/nm-C Band-Tunable Wavelength-(D)RZ-PIN
TN52NS2T03: TN52NS2T03: 49.1 51.7 TN52NS2T04: 26 TN52NS2T04: 28
1200 ps/nm-C Band-Tunable Wavelength-NRZ-APD
TN52NS 2
TN52NS2T05: 28 TN52NS2T05: 31
TN53NS 2
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZPIN
28
31
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed WavelengthNRZ-PIN-XFP
20
24
21
25
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 800 ps/nm-C Band-Tunable Wavelength-NRZ-PIN-XFP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1090
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.6 NS3 NS3: 40G line service processing board
14.6.1 Version Description The available functional versions of the NS3 board are TN11, TN52, TN54, TN55.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 NS3
N
N
N
N
Y
N
TN52 NS3
Y
Y
Y
N
Y
N
TN54 NS3
Y
Y
Y
Y
Y
N
TN55 NS3
Y
Y
Y
Y
Y
N
NOTE
The TN54NS3/TN55NS3 board for the OptiX OSN 6800/OptiX OSN 8800 platform subrack only supports relay mode .
Variants The difference between the NS3 board variants lies in the WDM-side optical module. Table 14-71 Available variants of the TN11NS3 board Variant
WDM-Side Fixed Optical Module
T01
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T03
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1091
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-72 Available variants of the TN52NS3 board Variant
WDM-Side Fixed Optical Module
T01
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T03
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
T04
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
Table 14-73 Available variants of the TN54NS3 board Variant
WDM-Side Fixed Optical Module
T01
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
T03
800 ps/nm-C Band-Tunable Wavelength-ODB-PIN
05
40G Transponder
Table 14-74 Available variants of the TN55NS3 board Variant
WDM-Side Fixed Optical Module
T01
60000 ps/nm-C Band-Tunable Wavelength-ePDM-BPSK-PIN
Differences Between Versions l
Function:
Board
CrossConnet Granulari ty
FEC Encoding
IEEE 1588v2
Physical clock
Relay Mode
Coherent System
WDMside Gray Optical Module
TN11NS3
ODU2 and ODU2e
FEC/AFEC
N
N
N
N
N
TN52NS3
ODU0, ODU1, ODU2 and ODU2e
FEC/AFEC
N
N
N
N
N
TN54NS3
ODU0, ODU1, ODU2, ODU2e and ODU3
FEC/ AFEC-2
Y
Y
Y
N
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1092
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
CrossConnet Granulari ty
FEC Encoding
IEEE 1588v2
Physical clock
Relay Mode
Coherent System
WDMside Gray Optical Module
TN55NS3
ODU0, ODU1, ODU2, ODU2e and ODU3
HFEC
N
N
Y
Y
N
For details, see 14.6.3 Functions and Features. l
Appearance: – The TN11NS3 board and the TN52NS3 board use the same front panel. The TN54NS3 board and the TN55NS3 board use a different front panel from the preceding boards. For details, see 14.6.5 Front Panel and 14.6.10 NS3 Specifications.
l
Specification: – The specifications vary according to the version of the board that you use. For details, see 14.6.10 NS3 Specifications.
Substitution Relationship Table 14-75 Substitution rules of the NS3 board Original Board
Substitute Board
Substitution Rules
TN11NS3
TN52NS3
The TN52NS3 can be created as TN11NS3 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN52NS3 functions as the TN11NS3.
TN52NS3
None
-
TN54NS3
None
-
TN55NS3
None
-
14.6.2 Application As a type of line board, the NS3 board converts 32 ODU0, 16 ODU1, four ODU2, or one ODU3 into one ITU-T G.694.1 OTU3 signal or converts four ODU2e into one ITU-T G.694.1 OTU3e signal. The TN52NS3/TN54NS3/TN55NS3 board supports hybrid transmission of the ODU0 service, ODU1 service, and the ODU2/ODU2e service. The TN55NS3 board uses coherent receive technology. Therefore, the board is intended for coherent systems.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1093
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 1 of the TN11NS3/TN52NS3/TN54NS3/TN55NS3 board: conversion between four channels of ODU2/ODU2e signals and one channel of OTU3/OTU3e signals Figure 14-74 Position of the NS3 board in the WDM system (application scenario 1) 4xODU2/ODU2e
4×ODU2/ODU2e
4
IN
M U IN X / OUT D M U X
1×ODU3/ODU3e
4
4
OUT
M U X / D M U X
1×OTU3/OTU3e
TQX
1×OTU3/OTU3e
1
1×ODU3/ODU3e
1
4×ODU2/ODU2e
1
4xODU2/ODU2e
1
1
1 TQX 4
4
4
NS3
NS3
NOTE
In this application scenario, the Board Mode parameter of the TN54NS3/TN55NS3 board must be set to Line Mode.
Application scenario 2 of the TN52NS3/TN54NS3/TN55NS3 board: conversion between 16 channels of ODU1 signals and one channel of OTU3 signals Figure 14-75 Position of the NS3 board in the WDM system (application scenario 2)
1
16xODU1
16xODU1
1
1
1
1
4
4
4
4
1
4
4
TOM 8
NS3
4xODU2
16xODU1
1×OTU3
1
1×ODU3
1
4xODU2
16xODU1
4
M U IN X / OUT D M U X
1×OTU3
TOM M OUT U X IN / D M U X
1×ODU3
TOM 8
1 8 4
1
1
4
4
1 TOM
NS3
8
NOTE
l In this application scenario, the Board Mode parameter of the TN54NS3/TN55NS3 board must be set to Line Mode. l For the TN52NS3 board, the service mapping path is ODU1->ODU2->ODU3. l For the TN54NS3/TN55NS3 board, the service mapping path is ODU1->ODU3.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1094
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 3 of the TN52NS3/TN54NS3/TN55NS3 board: conversion between 32 channels of ODU0 signals and one channel of OTU3 signals Figure 14-76 Position of the NS3 board in the WDM system (application scenario 3)
1
32xODU0
32xODU0
1
1
1
1
8
8
8
8
TOM 8
TOM
4 1
1
8
8
TOM 8
8
32xODU0
16xODU1
4xODU2
1×ODU3
8
M U X / D M U X
1×OTU3
8
1×OTU3
1
1×ODU3
1
4xODU2
1
16xODU1
32xODU0
4
M U X / D M U X
1
1 TOM
NS3
NS3
8
NOTE
l The TN52NS3/TN54NS3/TN55NS3 board supports this application scenario only when used in the OptiX OSN 8800. l In this application scenario, the Board Mode parameter of the TN54NS3/TN55NS3 board must be set to Line Mode. l For the TN52NS3 board, the service mapping path is ODU0->ODU1->ODU2->ODU3. l For the TN54NS3/TN55NS3 board, the service mapping path is ODU0->ODU1->ODU3.
Application scenario 4 of the TN54NS3/TN55NS3 board: conversion between one channel of ODU3 signals and one channel of OTU3 signals Figure 14-77 Position of the NS3 board in the WDM system (application scenario 4) 1xODU3
M U X IN / D OUT M U X
NS3
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1×ODU3
M U OUT X / IN D M U X
1×OTU3
1×OTU3
1×ODU3
T S X L
1xODU3
T S X L
NS3
1095
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
In this application scenario, the Board Mode parameter of the TN54NS3/TN55NS3 board must be set to Line Mode . With the TSXL board, the Line Rate parameter of the TN54NS3/TN55NS3 board must be set to Standard Mode.
Application scenario 5 of the TN54NS3/TN55NS3 board: implement the electrical regeneration of one channel of OTU3/OTU3e signal Figure 14-78 Position of the NS3 board in the WDM system (application scenario 5) 1×OTU3/OTU3e
IN
1×OTU3/OTU3e
DMUX
OUT
MUX
NS3 1×OTU3/OTU3e
OUT
1×OTU3/OTU3e
MUX
IN
DMUX
NS3
NOTE
The TN54NS3/TN55NS3 board for the OptiX OSN 6800/OptiX OSN 8800 platform subrack only supports relay mode. In this application scenario, the Board Mode parameter of the TN54NS3/TN55NS3 board must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. The input and output wavelengths can be different.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1096
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 6: hybrid transmission scenario Figure 14-79 Position of the NS3 board in the WDM system (application scenario 6) 1xOTU3/ 1xOTU3e
TOM TOM
ND2
TDX
ODU0
ODU0
ODU0
ODU0
ODU1 ODU2/ NS3 ODU2e ODU2/ ODU2e
OUT IN
M U X / D M U X
M U X / D M U X
ODU1 IN OUT
ODU2/ ODU2e
NS3 ODU2/ ODU2e ODU2/ ODU2e
TOM TOM
ND2
ODU2/ TDX ODU2e
NOTE
The IN/OUT port can transmit a mixture of ODU0, ODU1, ODU2, and ODU2e signals, the total bandwidth cannot exceed 40 Gbit/s.
14.6.3 Functions and Features The NS3 board achieves cross-connection at the electrical layer, and to provide OTN interfaces and ESC. The NS3 board can work in either line mode or relay mode. Table 14-76 describes the functions and features of the board working in line board, and Table 14-77 describes the functions and features of the board working in relay board. NOTE
l Only the OptiX OSN 8800 supports ODU0/ODU3. l The relay mode is only supported by the TN54NS3/TN55NS3. l When using the NRZ module, the TN54NS3 board maps 32 ODU0, 16 ODU1, four ODU2, or one ODU3 signals into one OTU3 service. When using ODB or DQPSK optical module, the TN54NS3 maps 32 ODU0, or 16 ODU1, four ODU2, or one ODU3 signals into one OTU3 signals, and also maps four ODU2e into one OTU3e signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1097
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-76 Functions and features of the NS3 board (Line Mode) Function and feature
Description
Basic function
NS3 converts signals as follows: l TN11NS3: – 4xODU2<->1xOTU3 – 4xODU2e<->1xOTU3e l TN52NS3: – 32xODU0/16xODU1/4xODU2<->1xOTU3 – 4xODU2e<->1xOTU3e l TN54NS3/TN55NS3: – 32xODU0/16xODU1/4xODU2/1xODU3<->1xOTU3 – 4xODU2e<->1xOTU3e The TN52NS3/TN54NS3/TN55NS3 board supports hybrid transmission of ODU0/ODU1/ODU2/ODU2e signals. When the mixed signals contain an ODU2e signal, they must be mapped into an OTU3e signal.
Cross-connect capabilities
Supports cross-connections with cross-connect boards. TN11NS3: 4xODU2/4xODU2e TN52NS3: 32xODU0/16xODU1/4xODU2/4xODU2e TN54NS3/TN55NS3: 32xODU0/16xODU1/4xODU2/4xODU2e/ 1xODU3
OTN function
l Supports the OTU3/OTU3e interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU3 layer: supports the SM function. l ODU3 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU0 layer: supports the PM function, and PM non-intrusive monitoring functions.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supported
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1098
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encoding
TN11NS3/TN52NS3: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant advanced forward error correction (AFEC) on the WDM side. TN54NS3: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. TN55NS3: l Supports HFEC. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports CD and PMD performance monitoring. NOTE Only the TN54NS3 supports Poisson mode. Only the TN55NS3 board supports CD and PMD performance monitoring.
Regeneration board
l The WDM-side signals of the TN11NS3/TN52NS3 board can be regenerated by a TN12LSXLR board. l The WDM-side signals of the TN54NS3 board can be regenerated using another TN54NS3 board. l The WDM-side signals of the TN55NS3 board can be regenerated using another TN55NS3 board.
Issue 03 (2013-05-16)
ALS function
Not supported
Test frame
Not supported
IEEE 1588v2
The TN54NS3 board supports BC and OC mode, do not support TC and TC+OC mode.
Physical clock
The TN54NS3 board supports this feature only when ODU0, ODU1 or ODU2/ODU2e signals are cross-connected from the backplane.
Optical-layer ASON
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1099
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
Electrical-layer ASON
Supported by the TN52NS3, TN54NS3, and TN55NS3.
Protection scheme
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports ODUk SPRing protection. l Supports tributary SNCP protection.
Loopback
Issue 03 (2013-05-16)
Boa rd
WD M side
ODU0 Channel Loopback
ODU1 Channel Loopback
ODU2 Channel Loopback
TN1 1NS 3
Supp orted
Not supported
Not supported
Supported
TN5 2NS 3
Supp orted
Supported
Supported
Supported
TN5 4NS 3
Supp orted
Supported
Supported
Supported
TN5 5NS 3
Supp orted
Supported
Supported
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1100
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
Protocols or standards compliance
Prot ocol s or stan dard s for tran spar ent tran smis sion (non perf orm ance mon itori ng)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae IEEE 802.3ba ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface SMPTE 297-2006 Serial Digital Fiber Transmission System for SMPTE 259M, SMPTE 344M, SMPTE 292 and SMPTE 424M Signals NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1101
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description Prot ocol s or stan dard s for serv ice proc essi ng (per for man ce mon itori ng)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Table 14-77 Functions and features of the NS3 board (Relay Mode) Function and feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regeneratin g rate
OTU3: OTN service at a rate of 43.02 Gbit/s
OTN function
l Supports the OTU3/OTU3e interface on the WDM side.
OTU3e: OTN service at a rate of 44.58 Gbit/s
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU3 layer: supports the SM function. l ODU3 layer: supports the PM, TCM, PM and TCM non-intrusive monitoring functions.
Issue 03 (2013-05-16)
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supports the ESC function, which enables the transmission of a supervisory signal inside a service signal.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1102
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
PRBS test function
Not supported
FEC encoding
TN54NS3: l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. TN55NS3: l Supports HFEC. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. NOTE Only the TN54NS3 supports Poisson mode.
Issue 03 (2013-05-16)
ALS function
Not supported
Test frame
Not supported
IEEE 1588v2
Not supported
Physical clock
Not supported
Optical-layer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
Not supported
Loopback
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1103
OptiX OSN 8800/6800/3800 Hardware Description
Function and feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
14.6.4 Working Principle and Signal Flow The NS3 board consists of the WDM-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow (Line Mode) Figure 14-80 shows the functional modules and signal flow of the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1104
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-80 Functional modules and signal flow of the NS3 board (Line Mode) Backplane (service corss-connection)
n X ODUk
WDM side Cross-connect
1588v2
module
module
OTN processing module
E/O
OUT
O/E
IN
WDM-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane SCC (controlled by SCC)
NOTE
Only the TN54NS3 board supports the IEEE 1588v2 module. In Figure 14-80, n x ODUk indicates the service cross-connections from the NS3 board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-78 shows the service cross-connections from the NS3 board to the backplane. Table 14-78 Service cross-connections from the NS3 board to the backplane
Issue 03 (2013-05-16)
Board
Service Cross-connection
TN11N S3
A maximum of 4xODU2/4xODU2e
TN52N S3
A maximum of 32xODU0/16xODU1/4xODU2/4xODU2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1105
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Service Cross-connection
TN54N S3/ TN55N S3
A maximum of 32xODU0/16xODU1/4xODU2/4xODU2e/1xODU3
The transmit and the receive directions are defined in the signal flow of the NS3 board. The transmit direction is defined as the direction from the backplane of the NS3 to the WDM side of the NS3, and the receive direction is defined as the reverse direction. l
Transmit direction The cross-connect module receives ODUk electrical signals sent from the cross-connection board through the backplane. The OTN processing module performs operations such as OTN framing and encoding of FEC/AFEC/HFEC. Then, the signal processing module outputs one channel of OTU3/OTU3e signals. The OTU3/OTU3e signals are sent to the WDM-side optical module. After performing E/ O conversion, the module sends out the OTU3/OTU3e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU3/OTU3e optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion. After O/E conversion, the OTU3/OTU3e signals are sent to the signal processing module. The OTN processing module performs operations such as OTU3/OTU3e framing and decoding of FEC/AFEC/HFEC. Then, the cross-connect module sends out ODUk electrical signals to the backplane for service cross-connection.
The board processes clock signals in two directions. l
Receives clock signals from a service board and sends the clock signals to the clock processing board through the communication module.
l
Receives clock signals from the clock processing module and sends the clock signals to the downstream NE through a service board.
Functional Modules and Signal Flow (Relay Mode) Figure 14-81 show the functional modules and signal flow of the NS3 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1106
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-81 Functional modules and signal flow of the NS3 board (Relay Mode) WDM side
WDM side O/E
OTN processing module
IN
WDM-side optical module
E/O
OUT
WDM-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane ( controlled by SCC)
NOTE
The relay mode is supported only by the TN54NS3/TN55NS3.
The NS3 board implements the regeneration of one channel of optical signals. The wavelengths at the receive and transmit ends of the board are the ITU-T G.694.1-compliant DWDM wavelengths that carry OTU3/OTU3e optical signals. The optical receiving module receives the optical signals to be regenerated through the IN optical interface, and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After encoding, the signals are sent to the optical transmitting module. After performing E/O conversion, the module sends out the OTU3/OTU3e signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT optical interface.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU3/OTU3e optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU3/OTU3e optical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1107
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser. l
Signal processing module The module consists of an OTN processing module and a cross-connect module. – OTN processing module Frames OTU3/OTU3e signals, processes overheads in OTU3/OTU3e signals, and performs FEC encoding and decoding. – Cross-connect module Grooms electrical signals between the NS3 and the cross-connect board through the backplane.
l
1588v2 module The 1588v2 module sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.6.5 Front Panel There are indicators and interfaces on the front panel of the NS3 board.
Appearance of the Front Panel Figure 14-82, Figure 14-83, and Figure 14-84 show the front panel of the NS3 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1108
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-82 Front panel of the TN11NS3/TN52NS3 board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1109
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-83 Front panel of the TN54NS3 board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1110
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-84 Front panel of the TN55NS3 board
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1111
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-79 lists the type and function of each interface. Table 14-79 Types and functions of the interfaces on the NS3 board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.6.6 Valid Slots Two slots house one TN11NS3 board, TN52NS3 board or TN55NS3 board, and one slot houses one TN54NS3 board. Table 14-80 shows the valid slots for the TN11NS3 board. Table 14-80 Valid slots for the TN11NS3 board Product
Valid Slots
OptiX OSN 6800 subrack
IU2-IU8, IU12-IU16
NOTE
The online signal bus on the TN11NS3 board connects to the backplane along the right slot in the subrack. The slot number of the TN11NS3 board displayed on the NM is the number of the right one of the two slots. For example, if you install the board in slots IU1 and IU2, the slot number of the TN11NS3 board displayed on the NM is IU2.
Table 14-81 shows the valid slots for the TN52NS3 board. Table 14-81 Valid slots for the TN52NS3 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28-IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1112
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU2-IU8, IU13-IU19, IU21-IU27, IU30-IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 6800 subrack
IU2-IU8, IU12-IU16
NOTE
The online signal bus on the TN52NS3 board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the TN52NS3 board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the TN52NS3 board, the slot number of the TN52NS3 board displayed on the NM is IU2.
Table 14-82 shows the valid slots for the TN54NS3 board. Table 14-82 Valid slots for the TN54NS3 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
When the TN54NS3 boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
OptiX OSN 8800 T64: The TN54NS3 boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU11 and IU12, IU13 and IU14, IU15 and IU16, IU17 and IU18, IU19 and IU20, IU21 and IU22, IU23 and IU24, IU25 and IU26, IU27 and IU28, IU29 and IU30, IU31 and IU32, IU33 and IU34, IU35 and IU36, IU37 and IU38, IU39 and IU40, IU41 and IU42, IU45 and IU46, IU47 and IU48, IU49 and IU50, IU51 and IU52, IU53 and IU54, IU55 and IU56, IU57 and IU58, IU59 and IU60, IU61 and IU62, IU63 and IU64, IU65 and IU66, or IU67 and IU68.
l
OptiX OSN 8800 T32: The TN54NS3 boards for transmitting and receiving the same wavelength must be installed in slots IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU12 and IU13, IU14 and IU15, IU16 and IU17, IU18 and IU19, IU20 and IU21, IU22
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1113
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
and IU23, IU24 and IU25, IU26 and IU27, IU29 and IU30, IU31 and IU32, IU33 and IU34, or IU35 and IU36. l
OptiX OSN 8800 T16: The TN54NS3 boards for transmitting and receiving the same wavelength must be installed in IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU11 and IU12, IU13 and IU14, IU15 and IU16, IU17 and IU18.
l
OptiX OSN 8800 platform subrack: The TN54NS3 boards for transmitting and receiving the same wavelength must be installed in IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU9 and IU10, IU11 and IU12, IU13 and IU14, or IU15 and IU16.
l
OptiX OSN 6800: The TN54NS3 boards for transmitting and receiving the same wavelength must be installed in IU1 and IU2, IU3 and IU4, IU5 and IU6, IU7 and IU8, IU11 and IU12, IU13 and IU14, or IU15 and IU16.
Table 14-83 shows the valid slots for the TN55NS3 board. Table 14-83 Valid slots for the TN55NS3 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28-IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU13-IU19, IU21-IU27, IU30-IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack subrack
IU2-IU16
OptiX OSN 6800 subrack
IU2-IU8, IU12-IU16
When the TN55NS3 boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
OptiX OSN 8800 T64 subrack: The TN55NS3 boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU12 and IU14, IU16 and IU18, IU20 and IU22, IU24 and IU26, IU28 and IU30, IU32 and IU34, IU36 and IU38, IU40 and IU42, IU46 and IU48, IU50 and IU52, IU54 and IU56, IU58 and IU60, IU62 and IU64, IU66 and IU68.
l
OptiX OSN 8800 T32 subrack: The TN55NS3 boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU13 and IU15, IU17 and IU19, IU21 and IU23, IU25 and IU27, IU30 and IU32, IU34 and IU36.
l
OptiX OSN 8800 T16 subrack: The TN55NS3 boards for transmitting and receiving the same wavelength must be installed in IU2 and IU4, IU6 and IU8, IU12 and IU14, IU16 and IU18.
l
OptiX OSN 8800 platform subrack: The TN55NS3 boards for transmitting and receiving the same wavelength must be installed in IU2 and IU4, IU6 and IU8, IU12 and IU14.
l
OptiX OSN 6800 subrack: The TN55NS3 boards for transmitting and receiving the same wavelength must be installed in IU2 and IU4, IU6 and IU8, IU14 and IU16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1114
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The online signal bus on the TN55NS3 board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the TN55NS3 board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the TN55NS3 board, the slot number of the TN55NS3 board displayed on the NM is IU2.
14.6.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-84 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-84 Mapping between the physical ports on the NS3 board and the port numbers displayed on the NMS Interface on the Panel
Interface on the NMS
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. The NS3 board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-85 Port diagram and port description
Issue 03 (2013-05-16)
Board
Mode
Port Diagram
Port Descripti on
Board Name Displayed on the NMS
TN55N S3
Standard mode
Figure 14-85
Table 14-86
55NS3
TN54N S3
Standard mode
Figure 14-85
Table 14-86
54NS3(STND)
Compatible mode
Figure 14-86
Table 14-87
54NS3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1115
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Mode
Port Diagram
Port Descripti on
Board Name Displayed on the NMS
TN52N S3
Compatible mode
Figure 14-87
Table 14-87
52NS3
TN11N S3
Compatible mode
Figure 14-88
Table 14-87
NS3
NOTE
For TN54NS3/TN55NS3: l
ODUk cross-connections through the backplane are supported only when Board Mode is set to Line Mode.
l
When used with a TN53TSXL/TN54TSXL board, Line Rate must be set to Standard Mode for the board.
For TN52NS3: The OptiX OSN 6800 supports grooming of signals at the ODU1 and ODU2 levels only from the backplane. The cross-connection granularities supported by the board in a subrack is consistent with the cross-connection granularities supported by the cross-connect board in the subrack. For details on the cross-connect board, see 21 Cross-Connect Board and System and Communication Board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1116
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-85 Port diagram of the TN55NS3/TN54NS3 board (standard mode) Backplane
IN1/OUT1-OCh:1-ODU3:1 ODU3:1
1XODU3
OCh:1
IN1/OUT1-OCh:1-ODU3:1-ODU2:(1~4) ODU2:1 ODU 3 : 1
4 xODU2/ 4xODU2e
OCh :1
ODU2:4
Other tributary/line/PID board
IN1/OUT1
IN1/OUT1-OCh:1-ODU3:1-ODU1:(1~16) ODU1:1
ODU 3 :1
OCh :1
16xODU1 ODU1:16
IN1/OUT1-OCh:1-ODU3:1-ODU1:(1~16)-ODU0:(1~2) ODU0:1 ODU0:2
ODU 1:1 ODU 3 :1
32xODU0 ODU0:1
OCh :1
ODU1:16
ODU 0:2
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODU3 mapping path
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1117
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-86 Port diagram of the TN54NS3 board (compatible mode) Other Other tributary/line/ tributary/line/ PID board PID board
Other tributary/line/ PID board
Other tributary/line/ PID board
Backplane 4xODU2/ ODU2e
ODU3
16 x ODU1
32 x ODU0 161(ODU0LP1/ ODU0LP1)-1 161(ODU0LP1/ ODU0LP1)-2
71(ODU2LP1/O ODU1 DU2LP1)-1001
164(ODU0LP4/ ODU0LP4)-1 164(ODU0LP4/ ODU0LP4)-2
71(ODU2LP1/O ODU1 DU2LP1)-1004
173(ODU0LP13/ ODU0LP13)-1 173(ODU0LP13/ ODU0LP13)-2
71(ODU2LP1/O ODU1 DU2LP1)-1013
176(ODU0LP16/ ODU0LP16)-1 176(ODU0LP16/ ODU0LP16)-2
ODU3
81(ODU3LP1/ ODU3LP1)-1
1(IN1/OUT1)-1
71(ODU2LP1/O ODU1 DU2LP1)-1016
71(ODU2LP1/ODU2LP1)-1
71(ODU2LP1/ODU2LP1)-4
Cross-connect module
ODU2 mapping path
Multiplexing module
ODU3 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU3LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU1 mapping path
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1118
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The ODU1 and ODU2 ports in each of the following combinations cannot be used to configure cross-connections at the same time because they share the same ODU2 timeslot: l
71(ODU2LP1/ODU2LP1)-1001 to 71(ODU2LP1/ODU2LP1)-1004 ODU1 ports and 71(ODU2LP1/ODU2LP1)-1 ODU2 port
l
71(ODU2LP1/ODU2LP1)-1005 to 71(ODU2LP1/ODU2LP1)-1008 ODU1 ports and 71(ODU2LP1/ODU2LP1)-2 ODU2 port
l
71(ODU2LP1/ODU2LP1)-1009 to 71(ODU2LP1/ODU2LP1)-1012 ODU1 ports and 71(ODU2LP1/ODU2LP1)-3 ODU2 port
l
71(ODU2LP1/ODU2LP1)-1013 to 71(ODU2LP1/ODU2LP1)-1016 ODU ports and 71(ODU2LP1/ODU2LP1)-4 ODU2 port
Figure 14-87 Port diagram of the TN52NS3 board (compatible mode) Other tributary/line/ PID board
Other tributary/line/ PID board
Other tributary/line/ PID board Backplane
32 x ODU0
16 x ODU1
161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
4 x ODU2/ODU2e
51 ODU1 (ODU1LP1/ODU1LP1)-1 ODU2
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2 173 (ODU0LP13/ODU0LP13)-1 173 (ODU0LP13/ODU0LP13)-2
51 ODU1 (ODU1LP1/ODU1LP1)-4 1 (IN1/OUT1)-1 54 ODU1 (ODU1LP4/ODU1LP4)-1 ODU2
176 (ODU0LP16/ODU0LP16)-1 176 (ODU0LP16/ODU0LP16)-2
Issue 03 (2013-05-16)
71 (ODU2LP1/ ODU2LP1)-1
71 (ODU2LP1/ ODU2LP1)-4
54 ODU1(ODU1LP4/ODU1LP4)-4
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU1 signals are required, users only need to configure a cross-connection from another board to the ODU1LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1119
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-88 Port diagram of the TN11NS3 board (compatible mode) Other tributary/line/PID board
Backplane 4 x ODU2/ODU2e 71(ODU2LP1/ODU2LP1)-1 71(ODU2LP1/ODU2LP1)-2 71(ODU2LP1/ODU2LP1)-3
1(IN1/OUT1)-1
71(ODU2LP1/ODU2LP1)-4
Cross-connect module
ODU2 mapping path
Multiplexing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Service processing module
Table 14-86 Description of NM port on the NS3 board (standard mode) Port Name
Description
IN1/OUT1-OCh:1-ODU3:1-ODU1:(1 to 16)ODU0:(1 to 2)
Mapping path for ODU0 signals received from the backplane
IN1/OUT1-OCh:1-ODU3:1-ODU1:(1 to 16)
Mapping path for ODU1 signals received from the backplane
IN1/OUT1-OCh:1-ODU3:1-ODU2:(1 to 4)
Mapping path for ODU2 signals received from the backplane
IN1/OUT1-OCh:1-ODU3:1
Mapping path for ODU3 signals received from the backplane
IN1/OUT1
WDM-side optical ports
Table 14-87 Description of NM port of the NS3 board (compatible mode)
Issue 03 (2013-05-16)
Port Name
Description
Automatic Cross-Connection
ODU0LP1ODU0LP16
Internal logical port. The optical paths are numbered 1-2.
Automatic cross-connections between the ports and the ODU1LP port
ODU1LP1ODU1LP4
Internal logical port. The optical paths are numbered 1-4.
Automatic cross-connections between the ports and the ODU2LP port
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1120
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
Automatic Cross-Connection
ODU2LP1
Internal logical port. The optical paths are numbered 1001-1016.
Automatic cross-connections between the ports and the ODU2LP port
NOTE This port is used for crossconnections at the ODU1 level.
Internal logical port. The optical paths are numbered 1-4.
TN11NS3/TN52NS3: Automatic cross-connections between the ports and the IN/OUT port TN54NS3: Automatic crossconnections between the ports and the ODU3LP port
ODU3LP1
Internal logical port. The optical path is numbered 1.
Automatic cross-connections between the ports and the IN/OUT port
IN/OUT
Corresponding to the WDM-side optical interfaces.
-
14.6.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
When the system uses electrical-layer ASON, the boards in standard mode cannot interconnect with those in compatible mode on the WDM side. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCH:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1121
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU0 Cross-Connections Figure 14-89 Cross-connection diagram of the TN52NS3/TN54NS3(compatible mode) board (ODU0 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
NS3 (compatible mode)
2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 Line board c 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2
(compatible mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Line board d
Cross-connect module
2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:2
(standard mode)
The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b TN54THA / TN54TOA Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1122
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-90 Cross-connection diagram of the TN55NS3/TN54NS3(standard mode) board (ODU0 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side
IN/OUT-OCH:1-ODU3:1-ODU1:1-ODU0:1 IN/OUT-OCH:1-ODU3:1-ODU1:1-ODU0:2
NS3 (standard mode) 2
IN/OUT-OCH:1-ODU3:1-ODU1:16-ODU0:1 IN/OUT-OCH:1-ODU3:1-ODU1:16-ODU0:2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module
Line board c (compatible mode)
Line board d (standard mode)
The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b TN54THA / TN54TOA Line board c
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1123
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU1 Cross-Connections Figure 14-91 Cross-connection diagram of the TN52NS3(compatible mode) board (ODU1 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
NS3 (compatible mode) 2
54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a TN11TDG / TN11TDX /TN54TEM28 / TN52TOG / TN11TOM / TN52TOM / TN11TQM / TN12TQM / TN11TQS / TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1124
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b TN54THA / TN54TOA Line board c
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1125
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-92 Cross-connection diagram of the TN54NS3(compatible mode) board (ODU1 level) Client side
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board a
(compatible mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side
NS3 (compatible mode)
2
71(ODU2LP1/ODU2LP1)-1001 71(ODU2LP1/ODU2LP1)-1002 71(ODU2LP1/ODU2LP1)-1003 71(ODU2LP1/ODU2LP1)-1004
71(ODU2LP1/ODU2LP1)-1013 71(ODU2LP1/ODU2LP1)-1014 71(ODU2LP1/ODU2LP1)-1015 71(ODU2LP1/ODU2LP1)-1016
Cross-connect module
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Line board c
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1126
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-93 Cross-connection diagram of the TN55NS3/TN54NS3(standard mode) board (ODU1 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board a
(compatible mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side IN/OUT-OCH:1-ODU3:1-ODU1:1 IN/OUT-OCH:1-ODU3:1-ODU1:2 IN/OUT-OCH:1-ODU3:1-ODU1:3
NS3 (standard mode)
IN/OUT-OCH:1-ODU3:1-ODU1:14 IN/OUT-OCH:1-ODU3:1-ODU1:15 IN/OUT-OCH:1-ODU3:1-ODU1:16
Cross-connect module WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 52(ODU1LP1/ODU1LP1)-1 52(ODU1LP1/ODU1LP1)-2 52(ODU1LP1/ODU1LP1)-3 52(ODU1LP1/ODU1LP1)-4
2
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:1 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:3 2(IN2/OUT2)-OCH:1-ODU2:1-ODU1:4
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1127
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1128
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU2 Cross-Connections Figure 14-94 Cross-connection diagram of the TN11NS3/TN52NS3/TN54NS3(compatible mode) board (ODU2 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side 71(ODU2LP1/ODU2LP1)-1 71(ODU2LP1/ODU2LP1)-2 71(ODU2LP1/ODU2LP1)-3 71(ODU2LP1/ODU2LP1)-4
NS3 (compatible mode) Cross-connect module
WDM side 2
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
Line board c (compatible mode)
1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1 3(IN3/OUT3)-OCH:1 4(IN4/OUT4)-OCH:1
Line board d (standard mode)
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN11NS3: TN12TDX / TN52TDX / TN53TDX / TN55TQX / TN11TQX / TN52TQX / TN11TSXL TN52NS3: TN12TDX / TN52TDX / TN53TDX / TN54TEM28 / TN11TQX / TN52TQX / TN53TQX / TN55TQX / TN11TSXL / TN54TTX TN54NS3: TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Tributary board b
Issue 03 (2013-05-16)
TN55TQX/TN53TDX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1129
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Line board c TN11NS3: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX TN52NS3: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX TN54NS3: TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Line board d TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1130
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-95 Cross-connection diagram of the TN55NS3/TN54NS3(standard mode) board (ODU2 level) Client side
Tributary board a
(compatible mode)
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Tributary board b (standard mode)
Cross-connect module WDM side IN/OUT-OCH:1-ODU3:1-ODU2:1 IN/OUT-OCH:1-ODU3:1-ODU2:2 IN/OUT-OCH:1-ODU3:1-ODU2:3 IN/OUT-OCH:1-ODU3:1-ODU2:4
NS3 (standard mode)
Cross-connect module
WDM side
2
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1 1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1 3(IN3/OUT3)-OCH:1 4(IN4/OUT4)-OCH:1
Line board c (compatible mode)
Line board d (standard mode)
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS3 The WDM side of line boards are cross-connected to the WDM side of the NS3
Tributary board a
TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Tributary board b
TN55TQX / TN53TDX
Line board c TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Line board d TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1131
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU3 Cross-Connections Figure 14-96 Cross-connection diagram of the TN54NS3(compatible mode) board (ODU3 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 1
Tributary board b (standard mode)
RX1/TX1
WDM side NS3
81(ODU3LP1/ODU3LP1)-1
(compatible mode)
WDM side 81(ODU3LP1/ODU3LP1)-1
Line board c (compatible mode)
IN/OUT-OCH:1-ODU3:1
Line board d (standard mode)
2
The client side of other boards are cross-connected to the WDM side of the NS3 The WDM side of other boards are cross-connected to the WDM side of the NS3
Tributary board a TN53TSXL Tributary board b TN54TSXL Line board c
TN54NS3
Line board d
TN54NS3 / TN55NS3 / TN54NS4
NOTE
When cross-connections are configured between the TN54NS3 and TN54TSXL boards, Line Rate of the TN54NS3 board must be set to Standard Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1132
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-97 Cross-connection diagram of the TN55NS3/TN54NS3(standard mode) board (ODU3 level) Client side
Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1 1
Tributary board b (standard mode)
RX1/TX1
WDM side NS3
IN/OUT-OCH:1-ODU3:1
(standard mode)
WDM side 81(ODU3LP1/ODU3LP1)-1
Line board c (compatible mode)
IN/OUT-OCH:1-ODU3:1
Line board d (standard mode)
2
The client side of other boards are cross-connected to the WDM side of the NS3 The WDM side of other boards are cross-connected to the WDM side of the NS3
Tributary board a TN53TSXL Tributary board b TN54TSXL Line board c
TN54NS3
Line board d
TN54NS3 / TN55NS3 / TN54NS4
14.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the NS3, refer to Table 14-88. Table 14-88 NS3 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1133
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Channel Loopback
Non-Loopback, Inloop, Outloop
Query or set the path Loopback.
Default: Non-Loopback Laser Status
Off, On Default: On
Service Mode
l TN11NS3: not supported l TN52NS3: Automatic, ODU0, ODU1, ODU2 Default: Automatic
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information.
l TN54NS3: Automatic, ODU0, ODU1, ODU2, ODU3, Mix Default: Automatic
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1134
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Enable Auto-Sensing
Disabled, Enabled
Set the Enable Auto-Sensing function of the board to Enabled or Disabled.
Default: Enabled
l When it is set to Enabled, the board supports Line Rate of the received signals in auto-sensing mode, and thus no manual setting is required. l When it is set to Disabled, Line Rate of the board must be set manually and the values of the previous two parameters must be the same as that of the received signals. Otherwise, the services are unavailable. NOTE This parameter is only valid when the Board Mode is set to Electrical Relay Mode or Optical Relay Mode. This parameter is supported only by the TN54NS3/TN55NS3. In the case of ASON services, this parameter must be set to Enabled.
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
TN11NS3, TN52NS3, TN54NS3: l FEC, AFEC l Default: AFEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
TN55NS3: l HFEC l Default: HFEC AFEC Grade
1, 2, 3 Default: 3
A larger value of this parameter means a stronger error correction capability and a longer signal transmission delay. NOTE Only the TN54NS3 supports this parameter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1135
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Receive Wavelength
l C: 1/1529.16/196.050 to 80/1560.61/192.100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE For ASON services, this parameter must be set to the default value. CBAND is the only band now supported.
Receive Band Type
C, CWDM
Sets Receive Band Type of a board.
Default: C
NOTE CBAND is the only band now supported.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Issue 03 (2013-05-16)
NOTE CBAND is the only band now supported.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1136
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Planned Band Type
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength.
Default: C
NOTE CBAND is the only band now supported.
See D.26 Planned Band Type (WDM Interface) for more information. Enable Line Rate
Enabled, Disabled Default: Enabled
Determines whether to automatically switch between the standard mode and speedup mode for the line rate upon a rerouting event in ASON scenarios. NOTE The parameter is supported only by the TN54NS3 in the standard mode.
Standard Mode, Speedup Mode
Line Rate
Default: l ODU2LP channel: Standard Mode l ODU3LP channel: Speedup Mode
Used to configure the line rate of OTN. l For ODU2LP channel, – This parameter needs to be set to Speedup Mode when ODU2e signals are cross-connected. – This parameter needs to be set to Standard Mode when ODU2 signals are cross-connected. l For ODU3LP channel, – This parameter needs to be set to Speedup Mode when ODU2e signals are cross-connected. – This parameter could be set to Standard Mode or Speedup Mode when ODU2/ODU3 signals are cross-connected.
OTN Overhead Transparent Transmission
l TN52NS3/ TN54NS3: – Enabled, Disabled – Default: Disabled l TN55NS3: – Disabled, GC1C +GCC2 Enabled, Only GCC1 Enabled, Only GCC2 Enabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE Only TN52NS3/TN54NS3/TN55NS3 support this parameter.
– Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1137
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
PRBS Test Status
Enabled, Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
Dispersion Compensation Value (ps/nm)
-
NULL Mapping Status
Enabled, Disabled
Queries the dispersion compensation value of the board. NOTE Only TN55NS3 supports this parameter.
Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only TN52NS3/54NS3/TN55NS3 support this parameter.
PMD Threshold(ps)
-
Queries the PMD threshold of the board.
Board Mode
Line Mode, Electrical Relay Mode, Optical Relay Mode
Specifies the board mode depending on the service application scenario.
Default: Electrical Relay Mode
NOTE Only the TN54NS3/TN55NS3 support this parameter.
See D.2 Board Mode (WDM Interface) for more information.
14.6.10 NS3 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN11NS 3
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
N/A
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1138
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN52NS 3
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
N/A
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN 800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN TN54NS 3
800 ps/nm-C Band-Tunable Wavelength-ODB-PIN
N/A
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN 40G Transponder TN55NS 3
60000 ps/nm-C Band-Tunable Wavelength-ePDM-BPSK-PIN
N/A
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point. When using the NRZ module, the TN54NS3 board maps 32 ODU0, 16 ODU1, four ODU2, or one ODU3 signals into one OTU3 service. When using ODB or DQPSK optical module, the TN54NS3 maps 32 ODU0, or 16 ODU1, four ODU2, or one ODU3 signals into one OTU3 signals, and also maps four ODU2e into one OTU3e signals.
WDM-Side Fixed Optical Module Table 14-89 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type Line code format
-
Value 500 ps/nm-C BandTunable WavelengthODB-PIN
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
ODB
DQPSK
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating frequency range
THz
192.10 to 196.05
192.10 to 196.05
Maximum mean launched power
dBm
0
0
Minimum mean launched power
dBm
-5
-5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1139
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 500 ps/nm-C BandTunable WavelengthODB-PIN
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
Minimum extinction ratio
dB
8.2
N/A
Center frequency deviation
GHz
±2.5
±2.5
Maximum -20 dB spectral width
nm
0.6
N/A
Maximum -3 dB spectral width
nm
N/A
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
-500 to 500
-500 to 500
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1529 to 1561
1529 to 1561
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload (FEC on)
dBm
0
0
Maximum reflectance
dB
-27
-27
Table 14-90 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type Line code format
-
Value 800 ps/nm-C BandTunable WavelengthODB-PIN
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
ODB
DQPSK
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating frequency range
THz
192.10 to 196.05
192.10 to 196.05
Maximum mean launched power
dBm
0
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1140
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthODB-PIN
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
Minimum mean launched power
dBm
-5
-5
Minimum extinction ratio
dB
8.2
N/A
Center frequency deviation
GHz
±2.5
±2.5
Maximum -20 dB spectral width
nm
0.6
N/A
Maximum -3 dB spectral width
nm
N/A
0.3
Minimum side mode suppression ratio
dB
35
35
Dispersion tolerance
ps/nm
-800 to 800
-800 to 800
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1529 to 1561
1529 to 1561
Receiver sensitivity, EOL (FEC on)
dBm
-16
-16
Minimum receiver overload (FEC on)
dBm
0
0
Maximum reflectance
dB
-27
-27
Table 14-91 WDM-side fixed optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
-
ePDM-BPSK
Transmitter parameter specifications at point S Center frequency
Issue 03 (2013-05-16)
THz
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
192.1 to 196.05
1141
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.35
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
60000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Table 14-92 WDM-side fixed optical module specifications (gray light) Parameter
Unit
Optical Module Type Line code format
Value 40G Transponder
-
NRZ
Operating wavelength range
nm
1530 to 1565
Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
40
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1142
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 40G Transponder
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1290 to 1570
Receiver sensitivity
dBm
-6
Minimum receiver overload
dBm
3
Maximum reflectance
dB
-27
Mechanical Specifications TN11NS3: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 lb.)
TN52NS3: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.4 kg (5.2 lb.)
TN54NS3: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.8 kg (3.96 lb.)
TN55NS3: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.6 kg (5.7 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11NS3
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
92
101.2
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
67
75
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1143
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
WDM-Side Optical Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52NS3
500 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
118
130
500 ps/nm-C Band-Tunable Wavelength-ODB-PIN
110
118
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
118
130
800 ps/nm-C Band-Tunable Wavelength-DQPSK-PIN
73
80
800 ps/nm-C Band-Tunable Wavelength-ODB-PIN
60
65
40G Transponder
62
69
60000ps/nm-C BandTunable Wavelength-ePDMBPSK-PIN
135
150
TN54NS3
TN55NS3
14.7 NS4 NS4: 100G line service processing board
14.7.1 Version Description The available functional versions of the NS4 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN54 NS4
Y
Y
Y
N
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1144
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
In the enhanced OptiX OSN 8800 T64 subrack, enhanced OptiX OSN 8800 T32 subrack, and OptiX OSN 8800 T16 subrack, the NS4 board can work either in line mode or relay mode. When the NS4 board works in line mode, the enhanced OptiX OSN 8800 T64 subrack must use the TNK2USXH+TNK2UXCT boards and the enhanced OptiX OSN 8800 T32 subrack must use the TN52UXCH/TN52UXCM board and the OptiX OSN 8800 T16 subrack must use the TN16UXCM board. In the general OptiX OSN 8800 T64 subrack and general OptiX OSN 8800 T32 subrack, the NS4 board can work only in relay mode.
Variants Table 14-93 Available variants of the TN54NS4 board Varia nt
WDM-Side Fixed Optical Module
FEC Encoding
T01
40000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
HFEC
T11
55000 ps/nm-C Band-Tunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
SDFEC
14.7.2 Application As a type of line board, the NS4 board converts 80 ODU0, 40 ODU1, ten ODU2, ten ODU2e, two ODU3, one ODU4, or 80 ODUflex into one ITU-T G.694.1 OTU4 signal. The board supports hybrid transmission of the ODU0 service, ODU1 service, ODU2/ODU2e service, ODU3 service and the ODUflex service. The NS4 board uses coherent receive technology. Therefore, the board is intended for coherent systems.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1145
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 1 of the NS4 board: conversion between 80 channels of ODU0 signals and one channel of OTU4 signals Figure 14-98 Position of the NS4 board in the WDM system (application scenario 1) 80xODU0
80xODU0
NS4
NS4 1
1
1
1
TOA
TOA 8
8
8
8
10
1
1
1 TOA
TOA 8
8
8
8
80xODU0
M U X IN / D OUT M U X
1×ODU4
M U OUT X / IN D M U X
1×OTU4
1
1×OTU4
1
1×ODU4
80xODU0
10
1
1
1
8
8
8
8
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1146
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 2 of the NS4 board: conversion between 80 channels of ODUflex signals and one channel of OTU4 signals Figure 14-99 Position of the NS4 board in the WDM system (application scenario 2) 80xODUflex
80xODUflex
NS4
NS4 1
1
1
1
TEM28
TEM28
8
8
8
8
10
1
1
1 TEM28
TEM28
8
8
8
8
80xODUflex
M U X IN / D OUT M U X
1×ODU4
IN
M U X / D M U X
1×OTU4
1
1×OTU4
1
OUT
1×ODU4
80xODUflex
10
1
1
1
8
8
8
8
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1147
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 3 of the NS4 board: conversion between 40 channels of ODU1 signals and one channel of OTU4 signals Figure 14-100 Position of the NS4 board in the WDM system (application scenario 3) 40xODU1
40xODU1
NS4
NS4 1
1
1
1
TOA
TOA 8
8
8
8
5
1
1
1 TOA
TOA 8
8
8
8
40xODU1
M U IN X / D OUT M U X
1×ODU4
M U OUT X / IN D M U X
1×OTU4
1
1×OTU4
1
1×ODU4
40xODU1
5
1
1
1
8
8
8
8
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1148
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 4 of the NS4 board: conversion between ten channels of ODU2/ODU2e signals and one channel of OTU4 signals Figure 14-101 Position of the NS4 board in the WDM system (application scenario 4) 10xODU2/ODU2e
10xODU2/ODU2e
NS4
NS4 1
1
1
1
1
TQX 4
4
4
10xODU2/ODU2e
M U X IN / D OUT M U X
1×ODU4
4
M U OUT X / IN D M U X
1×OTU4
4
4
1×OTU4
TQX
1×ODU4
1
10xODU2/ODU2e
1
1
1 TQX
4
4
4
1
1
1 TQX
4
4
TDX
4
TDX
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Application scenario 5 of the NS4 board: conversion between two channels of ODU3 signals and one channel of OTU4 signals Figure 14-102 Position of the NS4 board in the WDM system (application scenario 5) 2xODU3
2xODU3
NS4
NS4 TSXL
2xODU3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TSXL
1×ODU4
M U X IN / D OUT M U X
1×OTU4
1×OTU4
Issue 03 (2013-05-16)
1×ODU4
2xODU3
TSXL
M U OUT X / IN D M U X
TSXL
1149
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Application scenario 6 of the NS4 board: conversion between one channel of ODU4 signals and one channel of OTU4 signals Figure 14-103 Position of the NS4 board in the WDM system (application scenario 6) 1xODU4
1xODU4
NS4
NS4 1×ODU4
M U X IN / OUT D M U X
1×OTU4
1×OTU4
1×ODU4
TSC
M U OUT X / IN D M U X
TSC
NOTE
This application scenario is supported only when the 54NS4 board is added on the NMS.
Application scenario 7 of the NS4 board: implement the electrical regeneration of one channel of OTU4 signal Figure 14-104 Position of the NS4 board in the WDM system (application scenario 7)
NS4 1×OTU4
IN
1×OTU4
DMUX
OUT
MUX
NS4 1×OTU4
OUT
1×OTU4
MUX
IN
DMUX
NOTE
This application scenario is supported only when the 54NS4(REG) board is added on the NMS. In this application scenario, the Board Mode parameter must be set to Electrical Relay Mode or Optical Relay Mode. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available. The input and output wavelengths can be different.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1150
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Application scenario 8: hybrid transmission scenario Figure 14-105 Position of the NS4 board in the WDM system (application scenario 8)
1xOTU4
TOM
ODU0
ODU0
ODU1
ODU1
TEM ODUflex 28 ODU2/ ND2
ODU2e
NS4
OUT IN
ODU2/ ODU2e
TDX
TSXL
M U X / D M U X
M U X / D M U X
ODUflex TEM 28
IN OUT
TOM
NS4
ODU2/
ODU2/ ODU2e ODU2/
ND2
ODU2e
ODU2e
ODU2/ TDX ODU2e
ODU3
ODU3
TSXL
NOTE
The IN/OUT port can transmit a mixture of ODU0, ODU1, ODU2/ODU2e, ODUflex, and ODU3 signals, the total bandwidth cannot exceed 100 Gbit/s.
14.7.3 Functions and Features The NS4 board achieves cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-94 and Table 14-95. Table 14-94 Functions and features of the NS4 board (Line Mode) Function and feature
Description
Basic function
NS4 converts signals as follows: 80xODU0/80xODUflex/40xODU1/10xODU2/10xODU2e/ 2xODU3/1xODU4<->1xOTU4 Supports mixed transmission of ODU0, ODU1, ODUflex, ODU2, ODU2e, and ODU3 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1151
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
Cross-connect capabilities
Supports the cross-connection of 80 channels of ODU0/ODUflex signals or 40 channels of ODU1 signals or ten channels of ODU2/ODU2e signals or two channels of ODU3 signals or one channel of ODU4 signals between the NS4 and the cross-connect board.
OTN function
l Supports the OTU4 interface on the WDM side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l OTU4 layer: supports the SM function. l ODU4 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU3 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU1 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODU0 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l ODUflex layer: supports the PM function, and PM non-intrusive monitoring function.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supports the ESC function, which enables the transmission of a supervisory signal inside a service signal.
PRBS function
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encoding
Supports HFEC and SDFEC on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Regeneration board
TN54NS4, TN11LTX
ALS function
Not supported
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1152
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
Test frame
Not supported
Optical-layer ASON
Supported
Electrical-layer ASON
Supported
Protection scheme
l Supports ODUk SNCP. l Supports intra-board 1+1 protection. l Supports tributary SNCP protection. l Supports ODUk SPRing protection. NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection.
Loopback
Issue 03 (2013-05-16)
WDM side Loopback
ODU0 Channel Loopbac k
ODU1 Channel Loopbac k
ODU2 Channel Loopba ck
ODU3 Channel Loopbac k
ODUfle x Channel Loopba ck
Supported
Supporte d
Support ed
Support ed
Support ed
Support ed
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1153
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae IEEE 802.3ba ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FCLS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FCBB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface SMPTE 297-2006 Serial Digital Fiber Transmission System for SMPTE 259M, SMPTE 344M, SMPTE 292 and SMPTE 424M Signals NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1154
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and feature
Description ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM) Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Table 14-95 Functions and features of the NS4 board (Relay Mode) Function and feature
Description
Basic function
The board is used in an electrical REG station in the system to implement electrical regeneration of optical signals.
Regeneratin g rate
OTU4: OTN service at a rate of 111.81 Gbit/s
OTN function
l Provides the OTU4 interface on WDM-side. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM and TCM functions for ODU4. l Supports PM and TCM non-intrusive monitoring for ODU4. l Supports SM function for OTU4.
WDM specification
Issue 03 (2013-05-16)
Supports ITU-T G.694.1-compliant DWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1155
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
14 Tributary Board and Line Board
Function and feature
Description
Tunable wavelength function
Supports tunable wavelength optical modules that provide for:
ESC function
Supports the ESC function, which enables the transmission of a supervisory signal inside a service signal.
PRBS function
Not supported
FEC encoding
Supports HFEC and SDFEC.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
ALS function
Not supported
Test frame
Not supported
Optical-layer ASON
Supported
Electricallayer ASON
Not supported
Protection scheme
Not supported
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
NOTE Boards that use different FEC modes cannot interconnect with each other.
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1156
OptiX OSN 8800/6800/3800 Hardware Description
Function and feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.694.1
14.7.4 Working Principle and Signal Flow The NS4 board consists of the WDM-side optical module, OTN processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow (Line Mode) Figure 14-106 shows the functional modules and signal flow of the NS4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1157
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-106 Functional modules and signal flow of the NS4 board (Line Mode) 80xODU0/80xODUflex/40xODU1/ 10xODU2/10xODU2e/2xODU3/1xODU4 Backplane (service corss-connection) WDM side
Cross-connect module
OTNOTN processing processing module module
E/O
OUT
O/E
IN
WDM-side Optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
Backplane SCC (controlled by SCC)
The transmit and the receive directions are defined in the signal flow of the NS4 board. The transmit direction is defined as the direction from the backplane of the NS4 to the WDM side of the NS4, and the receive direction is defined as the reverse direction. l
Transmit direction The OTN processing module receives 80 channels of ODU0/ODUflex or 40 channels of ODU1 or ten channels of ODU2/ODU2e or two channels of ODU3 or one channel of ODU4 electrical signals sent from the cross-connection board through the backplane. The module performs operations such as OTN framing and encoding of FEC. Then, the module outputs one channel of OTU4 signals. The OTU4 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the OTU4 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the OUT optical interface.
l
Receive direction The WDM-side optical module receives one channel of OTU4 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 through the IN optical interface. Then, the module performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1158
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
After O/E conversion, the OTU4 signals are sent to the OTN processing module. The module performs operations such as OTU4 framing and decoding of FEC. Then, the module sends out 80 channels of ODU0/ODUflex or 40 channels of ODU1 or ten channels of ODU2/ODU2e or two channels of ODU3 or one channel of ODU4 electrical signals to the backplane for service cross-connection.
Functional Modules and Signal Flow (Relay Mode) Figure 14-107 shows the functional modules and signal flow of the NS4 board. Figure 14-107 Functional modules and signal flow of the NS4 board (Relay Mode) WDM side
WDM side O/E
IN
E/O OTN processing module
WDM-side Optical module
OUT
WDM-side Optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane SCC (controlled by SCC)
The NS4 board implements the regeneration of one channel of optical signals. The wavelengths at the receive and transmit ends of the board are the ITU-T G.694.1-compliant DWDM wavelengths that carry OTU4 optical signals. The optical receiving module receives the optical signals to be regenerated through the IN optical interface, and performs O/E conversion. The signal processing module performs decoding, overhead processing and encoding of signals. During the process, the reshaping, regenerating and retiming based on electrical signals are performed, and the signals are encapsulated into OTN frames. After encoding, the signals are sent to the optical transmitting module. After performing E/O conversion, the module sends out the OTU4 signals at DWDM standard wavelengths that comply with ITU-T G.694.1. The optical signals are output through the OUT optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1159
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU4 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU4 optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of an OTN processing modulea and cross-connect module. – OTN processing module Frames OTU4/OTU4e signals, processes overheads in OTU4/OTU4e signals, and performs FEC encoding and decoding. – Cross-connect module Grooms electrical signals between the NS4 and the cross-connect board through the backplane.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.7.5 Front Panel There are indicators and interfaces on the front panel of the NS4 board.
Appearance of the Front Panel Figure 14-108 shows the front panel of the NS4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1160
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-108 Front panel of the NS4 board
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1161
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-96 lists the type and function of each interface. Table 14-96 Types and functions of the interfaces on the NS4 board Interface
Type
Function
IN
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
OUT
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.7.6 Valid Slots Two slots house one NS4 board. Table 14-97 shows the valid slots for the NS4 board. Table 14-97 Valid slots for the NS4 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28-IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU13-IU19, IU21-IU27, IU30-IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
NOTE
The online signal bus on the NS4 board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the NS4 board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the NS4 board, the slot number of the NS4 board displayed on the NM is IU2.
When the NS4 boards serve as regeneration boards, follow the principles below to install them in the case of ESC communication; otherwise, install them in any valid slots. l
Issue 03 (2013-05-16)
OptiX OSN 8800 T64 subrack: The NS4 boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU12 and IU14, IU16 and IU18, IU20 and IU22, IU24 and IU26, IU28 and IU30, IU32 and IU34, IU36 and IU38, Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1162
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
IU40 and IU42, IU46 and IU48, IU50 and IU52, IU54 and IU56, IU58 and IU60, IU62 and IU64, or IU66 and IU68. l
OptiX OSN 8800 T32 subrack: The NS4 boards for transmitting and receiving the same wavelength must be installed in slots IU2 and IU4, IU6 and IU8, IU13 and IU15, IU17 and IU19, IU21 and IU23, IU25 and IU27, IU30 and IU32, or IU34 and IU36.
l
OptiX OSN 8800 T16 subrack: The NS4 boards for transmitting and receiving the same wavelength must be installed in IU2 and IU4, IU6 and IU8, IU12 and IU14, or IU16 and IU18.
14.7.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-98 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-98 Mapping between the physical ports on the NS4 board and the port numbers displayed on the NMS Interface on the Panel
Interface on the NMS
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, IN1/OUT1OCh:1-ODU4:1 is a logical port of the board. Figure 14-109 shows the logical Ports of the NS4 board. Table 14-99 describes the meaning of each port. NOTE
ODUk cross-connections through the backplane are supported only when the 54NS4 board is selected on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1163
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-109 Port diagram of the NS4 board Backplane
IN/OUT-OCh:1 1xODU4
OCh:1
ODU4
IN/OUT-OCh:1-ODU4:1-ODU3:(1-2) ODU3:1 2xODU3
ODU4:1
OCh:1
ODU3:2
Other tributary/line/PID board
IN/OUT-OCh:1-ODU4:1-ODU2:(1-10) ODU2:1 ODU4:1
10xODU2/ 10xODU2e
OCh:1
ODU2:10
IN/OUT-OCh:1-ODU4:1-ODU1:(1-40)
1(IN/OUT)
ODU1:1 ODU4:1 40xODU1
OCh:1
ODU1:40
IN/OUT-OCh:1-ODU4:1-ODU0:(1-80) ODU0:1 ODU4:1 80xODU0
OCh:1
ODU0:80
IN/OUT-OCh:1-ODU4:1-ODUflex:(1-80) ODUflex:1 ODU4:1
80xODUflex
OCh:1
ODUflex:80
Cross-connect module
ODU1 mapping path
Service processing module
ODU0 mapping path
ODU4 mapping path
ODUflex mapping path
ODU3 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU2 mapping path
Table 14-99 Descriptions of the ports on the NS4 board
Issue 03 (2013-05-16)
Port Name
Description
IN1/OUT1
WDM-side optical ports Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1164
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
IN1/OUT1-OCh:1
Mapping path for ODU4 signals received from the backplane
IN1/OUT1-OCh:1-ODU4:1-ODU3:(1 to 2)
Mapping path for ODU3 signals received from the backplane
IN1/OUT1-OCh:1-ODU4:1-ODU2:(1 to 10)
Mapping path for ODU2 signals received from the backplane
IN1/OUT1-OCh:1-ODU4:1-ODU1:(1 to 40)
Mapping path for ODU1 signals received from the backplane
IN1/OUT1-OCh:1-ODU4:1-ODU0:(1 to 80)
Mapping path for ODU0 signals received from the backplane
IN1/OUT1-OCh:1-ODU4:1-ODUflex:(1 to 80)
Mapping path for ODUflex signals received from the backplane
14.7.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
When the system uses electrical-layer ASON, the boards in standard mode cannot interconnect with those in compatible mode on the WDM side. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCH:1-ODU4:1-ODU0:(1-80)" is the signal mapping path of the board in standard mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1165
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU0 Cross-Connections Figure 14-110 Cross-connection diagram of the NS4 board (ODU0 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
202(ClientLP1/ClientLP1)-1 203(ClientLP1/ClientLP1)-1 204(ClientLP1/ClientLP1)-1
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:2
NS4 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:79 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:80
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:2
Line board c (standard mode)
1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:79 1(IN1/OUT1)-OCh:1-ODU4:1-ODU0:80 1(IN1/OUT1)-OCh:1-ODU2:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU0:8
Line board d (standard mode)
4(IN4/OUT4)-OCh:1-ODU2:1-ODU0:1
2
4(IN4/OUT4)-OCh:1-ODU2:1-ODU0:8
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2-ODU0:1
Line board e (standard mode)
4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:4-ODU0:1 4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:4-ODU0:2 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Line board f (compatible mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NS4 The WDM side of other boards are cross-connected to the WDM side of the NS4
Tributary board a
Issue 03 (2013-05-16)
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1166
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Tributary board b
TN54THA / TN54TOA
Line board c
TN54NS4
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Line board f
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1167
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU1 Cross-Connections Figure 14-111 Cross-connection diagram of the NS4 board (ODU1 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
202(ClientLP1/ClientLP1)-1 203(ClientLP1/ClientLP1)-1 204(ClientLP1/ClientLP1)-1
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module
WDM side 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:2
NS4 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:39 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:40
Cross-connect module
WDM side
1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:2
1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:39 1(IN1/OUT1)-OCh:1-ODU4:1-ODU1:40 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:3 4(IN4/OUT4)-OCh:1-ODU2:1-ODU1:4
2
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 54(ODU1LP4/ODU1LP4)-3
Line board c (standard mode)
Line board d (standard mode)
Line board e (compatible mode)
54(ODU1LP4/ODU1LP4)-4
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NS4 The WDM side of other boards are cross-connected to the WDM side of the NS4
Tributary board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Tributary board b
TN54THA / TN54TOA
Line board c
TN54NS4
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1168
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU2 Cross-Connections Figure 14-112 Cross-connection diagram of the NS4 board (ODU2 level) Client side Tributary board a (compatible mode)
201(ClientLP1/ClientLP1)-1
Tributary board b (compatible mode)
3(RX1/TX1)-1
202(ClientLP1/ClientLP1)-1 203(ClientLP1/ClientLP1)-1 204(ClientLP1/ClientLP1)-1
1
4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module
WDM side 1(IN1/OUT1)-OCh:1-ODU4:1-ODU2:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU2:2
NS4 1(IN1/OUT1)-OCh:1-ODU4:1-ODU2:9 1(IN1/OUT1)-OCh:1-ODU4:1-ODU2:10
Cross-connect module
WDM side
1(IN1/OUT1)-OCH:1-ODU4:1-ODU2:1 1(IN1/OUT1)-OCH:1-ODU4:1-ODU2:2 Line board c (standard mode)
2
1(IN1/OUT1)-OCH:1-ODU4:1-ODU2:9 1(IN1/OUT1)-OCH:1-ODU4:1-ODU2:10 1(IN1/OUT1)-OCH:1 2(IN2/OUT2)-OCH:1 3(IN4/OUT4)-OCH:1 4(IN4/OUT4)-OCH:1 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1
Line board d (standard mode)
Line board e (compatible mode)
74(ODU2LP4/ODU2LP4)-1
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NS4 The WDM side of other boards are cross-connected to the WDM side of the NS4
Tributary board a TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX Tributary board b TN53TDX / TN55TOX / TN55TQX Line board c
TN54NS4
Line board d
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line board e
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1169
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU3 Cross-Connections Figure 14-113 Cross-connection diagram of the NS4 board (ODU3 level) Client side
Tributary board a (compatible mode) Tributary board b
201(ClientLP1/ClientLP1)-1
1
3(RX1/TX1)-1
(standard mode)
Cross-connect module WDM side 1(IN1/OUT1)-OCh:1-ODU4:1-ODU3:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODU3:2
NS4
Cross-connect module WDM side
2
1(IN1/OUT1)-OCh:1-ODU4:1-ODU3:1 Line board c 1(IN1/OUT1)-OCh:1-ODU4:1-ODU3:2 (standard mode)
Line board d 81(ODU3LP1/ODU3LP1)-1
(compatible mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NS4 The WDM side of other boards are cross-connected to the WDM side of the NS4
Tributary board a
TN53TSXL
Tributary board b
TN54TSXL
Line board c
TN54NS4
Line board d
TN54NS3
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1170
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODU4 Cross-Connections Figure 14-114 Cross-connection diagram of the NS4 board (ODU4 level) Client side
1 3(RX1/TX1)-1
Tributary board
Cross-connect module WDM side
1(IN1/OUT1)-OCh:1
NS4 Cross-connect module
WDM side
2
1(IN1/OUT1)-OCh:1
Line board
Cross-connect module
The client side of tributary boards are cross-connected to the WDM side of the NS4 The WDM side of line boards are cross-connected to the WDM side of the NS4
Tributary board
TN54TSC
Line board
TN54NS4
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1171
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
ODUflex Cross-Connections Figure 14-115 Cross-connection diagram of the NS4 board (ODUflex level) Client side
201(ClientLP1/ClientLP1)-1
Tributary board a
202(ClientLP2/ClientLP2)-1
(compatible mode)
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Tributary board b (standard mode)
1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
Cross-connect module WDM side 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:2
NS4 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:79 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:80
Cross-connect module
2
1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:1 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:2
Line board a 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:79 1(IN1/OUT1)-OCh:1-ODU4:1-ODUflex:80
Cross-connect module The client side of tributary boards are cross-connected to the WDM side of the NS4 The WDM side of line boards are cross-connected to the WDM side of the NS4
Tributary board a
TN53TDX / TN54TEM28 / TN55TQX / TN54THA / TN54TOA
Tributary board b
TN53TDX / TN54TOA / TN55TQX
Line board a
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
14.7.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the NS4, refer to Table 14-100. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1172
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-100 NS4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Query or set the path Loopback.
Default: NonLoopback Laser Status
Off, On Default: On
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
Issue 03 (2013-05-16)
HFEC, SDFEC
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. Queries the FEC mode of the current optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1173
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Receive Wavelength
1/1529.16/196.050 to 80/1560.61/192.100
Set Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
Default: /
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically. l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE For ASON services, this parameter must be set to the default value.
Receive Band Type
C
Sets Receive Band Type of a board.
Default: C Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
Planned Band Type
C
Default: /
Default: C
Issue 03 (2013-05-16)
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1174
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
OTN Overhead Transparent Transmission
l Disabled, GCC1 +GCC2 Enabled, Only GCC1 Enabled, Only GCC2 Enabled
Determines whether to process GCC1 and GCC2 in OTN overheads.
l Default: Disabled
When the parameter is set to Enabled for a byte, the system will not process the byte in OTN overheads. For example, when the parameter is set to Only GCC1 Enabled, the system will not process the GCC1 byte in OTN overheads. If the processing is required, set this parameter to Disabled.
Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode
ODUflex Tolerance (ppm)
0 to 100 Default: 100
l This parameter needs to be set to Standard Mode when ODU2 signals are cross-connected. l This parameter needs to be set to Speedup Mode when ODU2e signals are cross-connected. Specifies the tolerance of deviation between the actual client-side service rate and the specified rate when the client-side service type is ODUflex. NOTE When the tributary board that connects to the NS4 board receives 3GSDI services from client equipment, set this parameter to 10. If the tributary board receives other services, set it to 100.
PMD Threshold(ps)
-
Queries the PMD threshold of the board.
PRBS Test Status
Enabled, Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled
Board Mode
Electrical Relay Mode, Optical Relay Mode
Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Specifies the board mode depending on the service application scenario.
Default: Electrical Relay Mode
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1175
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.7.10 NS4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN54NS 4
40000 ps/nm-C Band-Tunable Wavelength-ePDM-QPSK(HFEC, RZ)PIN
N/A
55000 ps/nm-C Band-Tunable Wavelength-ePDM-QPSK(SDFEC, RZ)-PIN
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Fixed Optical Module Table 14-101 WDM-side fixed optical module specifications (tunable wavelengths, HFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
-
ePDM-QPSK(HFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Minimum extinction ratio
dB
N/A
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.35
Minimum side mode suppression ratio
dB
35
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1176
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Dispersion tolerance (backto-back)
Value 40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
ps/nm
40000
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Table 14-102 WDM-side fixed optical module specifications (tunable wavelengths, SDFEC, RZ) Parameter
Unit
Optical Module Type
Line code format
Value 55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
-
ePDM-QPSK(SDFEC, RZ)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.1 to 196.05
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Minimum extinction ratio
dB
N/A
Center frequency deviation
GHz
±2.5
Maximum -3 dB spectral width
nm
0.4
Minimum side mode suppression ratio
dB
35
Dispersion tolerance (backto-back)
ps/nm
55000
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1177
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1529 to 1561
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 lb.)
Power Consumption Board
WDM-Side Module
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54NS4 (line application)
40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
168
182
55000 ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
180
200
40000 ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
155
167
55000 ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
167
185
TN54NS4 (regeneration application)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1178
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.8 TBE TBE: 10 Gigabit Ethernet tributary board
14.8.1 Version Description The available functional version of the TBE board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TB E
N
N
N
N
Y
Y
Variants The TN11TBE board has only one variant: TN11TBE01.
14.8.2 Application As a type of tributary board, the TBE board converges eight channels of GE services and a maximum of 16 channels of cross-connect GE services into one channel of 10GE services and deconverges one channel of 10GE services into multiple GE services, converges multiple flatrate GE services into one full-rate GE service, and implements transparent transmission of GEGE services.
Application Scenario 1: Converging/Deconverging 8xGE Services and a Maximum of 16 Cross-Connect GE Services to/from One 10GE Service For the position of the TBE board in the WDM system, see Figure 14-116.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1179
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-116 Position of the TBE board in the WDM system TBE
TBE 1
1 Local Client Side: GE
Local Client Side: GE
8
8 10GE
10GE
4
L4G
GE 4
4 L4G
M U X / D M U X
M U X / D M U X
L4G 4 4
GE
L4G 4
L2
L2
Application Scenario 2: Transparent Transmission of GE-GE Services For the position of the TBE board in the WDM system, see Figure 14-117. Figure 14-117 Position of the TBE board in the WDM system
TBE
TBE 1
4
L4G
GE 4
4 L4G
8
M U X / D M U X
M U X / D M U X
1
L4G 4 4
GE
L4G 4
L2
8 L2
14.8.3 Functions and Features The TBE board is mainly used to achieve cross-connection at the electrical layer and ALS. For detailed functions and features, refer to Table 14-103.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1180
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-103 Functions and features of the TBE board Function and Feature
Description
Basic function
l Converges eight channels of GE services and a maximum of 16 channels of cross-connect GE services into one channel of 10GE services and deconverges one channel of 10GE services into multiple GE services. l Converges multiple flat-rate GE services into one full-rate GE service. l Implements transparent transmission of GE-GE services. The reverse process is similar. FE: Ethernet service at a rate of 125 Mbit/s
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s NOTE The TBE board supports both FE/GE electrical signal and FE/GE optical signal.
OptiX OSN 6800:
Cross-connect capabilities
l Supports backplane cross-connections of 16 GE services from/to the active/standby cross-connect board when the TBE board is installed in slot IU1/IU4/IU11/IU14. l Supports backplane cross-connections of 8 GE services from/to the active/standby cross-connect board when the TBE board is installed in any of slots IU2/IU3, IU5-IU8, IU12/IU13, and IU15/IU16. Each of the VCTRUNK1-VCTRUNK8 and VCTRUNK9-VCTRUNK16 ports on the board supports a maximum of 4 GE services. OptiX OSN 3800: l Supports backplane cross-connections of 16 GE services from/to another service board when the TBE board and the other service board are installed in non-paired slots. l Supports backplane cross-connections of 8 GE services from/to another service board when the TBE board and the other service board are installed in paired slots. Each of the VCTRUNK1-VCTRUNK8 and VCTRUNK9-VCTRUNK16 ports on the board supports a maximum of 4 GE services.
Issue 03 (2013-05-16)
Alarms and performance events monitoring
l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
QinQ
supported
QoS (Quality of Service)
Supports CAR (Committed Access Rate) and CoS (Class of Service).
l Supports the monitoring of the alarms and performance events of the FE, GE, 10GE WAN and 10GE LAN.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1181
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
ETH OAM
Supports IEEE802.1ag and IEEE802.3ah-compliant ETH OAM protocol.
LAG (Link Aggregation Group)
l Supports the aggregation group protocol to aggregate services from IP port to Trunk port. l Supports manual and static link aggregation. l Supports payload equalization and non-payload equalization
VLAN broadcast
Supports VLAN-based service group broadcast.
CVLAN group port
Supports a group of CVLAN to be used as one VLAN.
Layer 2 switching
Supports the MAC address learning and aging. Supports one VB.
Flow control
Supports IEEE802.3X-compliant Ethernet flow control protocol and flow control termination.
EPL (Ethernet Private Line)
Provides point-to-point EPL dedicated line.
EVPL (Ethernet Virtual Private Line)
Provides point-to-multipoint EVPL dedicated line and supports VLANbased switching.
Port working mode
10GE optical interface: 10GE LAN, 10GE WAN GE optical interface: 1000MFULL, auto-negotiation GE electric interface: auto-negotiation FE optical interface: 100MFULL FE electric interface: 10MHALF, 10MFULL, 100MHALF, 100MFULL, auto-negotiation
Protection schemes
Supports VLAN SNCP. Supports DBPS protection. Supports LAG protection. Supports DLAG protection. Supports ERPS protection.
Test frame
Not supported
PRBS test function
Not supported
LPT function
Supported NOTE The LPT function cannot be configured for EVPL services but only for bidirectional EPL services. When the LPT function is enabled, Source CVLAN and Sink C-VLAN of an EPL service must be left empty.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1182
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Electrical-layer ASON
Not supported
Loopback
10GE optical interface
MAC
PHY
GE optical interface
MAC
PHY
GE electric interface
MAC
PHY
FE optical interface
MAC
PHY
FE electric interface
MAC
PHY
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Supported
IEEE 802.1q VLAN All L2 protocols including xSTP, LACP, EthOAM, DHCP, PPP, etc. MPLS protocols All L3 protocols including ARP, IGMP, OSPF, IGRP etc.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1183
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
IEEE 802.3x pause frame IEEE 802.3ad LACP IEEE 802.1p priority IEEE 802.1q VLAN IEEE 802.1ag OAM IEEE 802.3ah OAM IEEE IGMP STP, RSTP, MSTP R-APS
14.8.4 Working Principle and Signal Flow The TBE board consists of the client-side GE optical module, client-side 10GE optical module, L2 switching module, cross-connect module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-118 shows the functional modules and signal flow of the TBE board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1184
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-118 Functional modules and signal flow of the TBE board Backplane(service cross-connection)
GE
16
Client side RX1 RX2
O/E 8
RX8 TX1 TX2
16
E/O
TX8
Client-side GE optical module
RX
O/E
TX
E/O
8
L2 switching module
Cross-connect module 16
Client-side 10GE optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
NOTE
The client-side GE optical module can be replaced with the electrical module to access the corresponding electrical signals. Suggest change RX1/TX1, RX2/TX2 optical interfaces to electrical interfaces only. The processing of electrical signals is similar to that of optical signals. The processing of optical signals is considered as an example.
Convergence of Multiple GE Services into 10GE Services l
Positive process: – The client-side GE optical module receives eight channels of GE optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. – After O/E conversion, the eight channels of GE electrical signals are sent to the L2 switching module. The eight channels of GE electrical signals are converged with a maximum of sixteen channels of GE electrical signals groomed from the cross-connect module into one channel of 10GE electrical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1185
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– The 10GE electrical signals are sent to the client-side 10GE optical module. After performing the E/O conversion, the module sends out 10GE optical signals through the TX optical interface. l
Negative process: – The client-side 10GE optical module receives 10GE optical signals from client equipment through the RX interface, and performs O/E conversion. – After O/E conversion, 10GE electrical signals are sent to the L2 switching module. This module deconverges the one channel of 10GE electrical signals into multiple channels of GE electrical signals. – A maximum of eight channels of GE electrical signals are sent to the client-side GE optical module. After performing the E/O conversion, the module sends out GE optical signals through the TX1-TX8 optical interfaces. – A maximum of 16 channels of GE electrical signals are sent to other boards by the crossconnect module through the backplane.
Convergence or Transparent Transmission of GE-to-GE Services l
Positive process: – The client-side GE optical module receives eight channels of GE optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. – After O/E conversion, the eight channels of GE electrical signals are sent to the L2 switching module. Based on the service requirement, the L2 switching module either transparently transmits the received GE signals or converges the received multiple channels of flat-rate GE signals into one channel of GE signals. – The GE signals are sent to other boards by the cross-connect module through the backplane.
l
Negative process: – The cross-connect module receives the GE electrical signals groomed from other boards through the backplane. – GE electrical signals are sent to the L2 switching module. The L2 switching module either transparently transmits the received GE signals or deconverges the received GE signals into multiple channels of flat-rate GE signals. – The client-side GE optical module performs the E/O conversion of GE electrical signals, and then outputs the optical signals through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of GE/10GE optical signals. – Client-side transmitter: Performs the E/O conversion from the internal electrical signals to GE/10GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
L2 switching module – Forwards service signals. – Implements the convergence/deconvergence of the service signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1186
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Cross-connect module – Implements cross-connecting 16 GE signals to the other boards through the backplane. – The grooming service signals are GE signals. – OptiX OSN 6800: Supports cross-connecting 16 channels of GE signals to the central working/protection cross-connect board. – OptiX OSN 3800: Supports the grooming of 16 channels of GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.8.5 Front Panel There are indicators and interfaces on the front panel of the TBE board.
Appearance of the Front Panel Figure 14-119 shows the front panel of the TBE board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1187
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-119 Front panel of the TBE board
TBE STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8 TX RX
TBE
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-104 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1188
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-104 Types and functions of the interfaces on the TBE board Interface
Type
Function
TX1-TX8
LC
Transmits the optical service signal to the client-side equipment when the optical module is used. Transmits the electrical service signal to the client-side equipment when the electrical module is used.
TX
LC
Transmits the 10 GE service signal to the client-side equipment.
RX1-RX8
LC
Receives the optical service signal from the client-side equipment when the optical module is used. Receives the electrical service signal from the clientside equipment when the electrical module is used.
RX
LC
Receives the 10 GE service signal from the client-side equipment.
NOTE
It is recommended to change RX1/TX1 and RX2/TX2 optical interfaces to electrical interfaces only.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.8.6 Valid Slots One slot houses one TBE board. Table 14-105 shows the valid slots for the TBE board. Table 14-105 Valid slots for the TBE board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
14.8.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-106 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1189
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-106 Mapping between the physical ports on the TBE board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX/RX
3
TX1/RX1
4
TX2/RX2
5
TX3/RX3
6
TX4/RX4
7
TX5/RX5
8
TX6/RX6
9
TX7/RX7
10
TX8/RX8
11
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-120 describes the application model of the TBE board. Table 14-107 describes the meaning of each port. Figure 14-120 Port diagram of the TBE board Backplane
PORT3 PORT4
VCTRUNK1
8 x GE 8 x GE
101(AP1/AP1)-1
108(AP8/AP8)-1 VCTRUNK8 VCTRUNK9 109(AP9/AP9)-1
PORT11
VCTRUNK16 116(AP16/AP16)-1
Client side
L2 switching model
Cross-connect model
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1190
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
l When the TBE board is installed in any of slots IU2/IU3, IU5-IU8, IU12/IU13, and IU15/IU16 in an OptiX OSN 6800 subrack, it supports backplane cross-connections of up to 8 GE services from/to the active/standby cross-connect board. Each of the VCTRUNK1-VCTRUNK8 and VCTRUNK9-VCTRUNK16 ports on the board supports a maximum of 4 GE services. l When the TBE and another service board are installed in paired slots in an OptiX OSN 3800 subrack, it supports backplane cross-connections of 8 GE services from/to the other three boards. Each of the VCTRUNK1-VCTRUNK8 and VCTRUNK9-VCTRUNK16 ports on the board supports a maximum of 4 GE services.
Table 14-107 Description of NM port of the TBE board Port Name
Description
PORT3
The port corresponds to the client side optical interface RX/ TX.
PORT4-PORT11
These ports correspond to the client-side optical interfaces RX1/TX1-RX8/TX8.
VCTRUNK1VCTRUNK16
Internal virtual ports.
AP1-AP16
Internal convergence ports.
14.8.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TBE board is used to transmit services, the following items must be created on the U2000: l
During creation of the Ethernet services on the U2000, create the cross-connection between the PORT and VCTRUNK ports. The deconvergence of the 10GE services that are accessed from the client-side PORT3 port is implemented through the L2 switching module.
l
Between the VCTRUNK ports and the AP ports of the cross-connect module are one-toone port connections, which do not need to be set on the U2000.
l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the AP port of the TBE board and the AP port of other boards, as shown in Figure 14-121. (The GE services accessed from the client side of the TBE board by are cross-connected to the client side of other boards for protection and the inter-board service deconvergence.)
l
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the AP port of the TBE board and the LP port of other boards, as shown in Figure 14-121. (The GE services accessed from the client side of the TBE board by are cross-connected to the WDM side of other boards for protection and inter-board service convergence.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1191
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-121 Cross-connection diagram of the TBE board Client side
Client side
WDM side
Other board 101(AP1/AP1)-1
201(LP/LP)-1
102(AP2/AP2)-1
201(LP/LP)-2
103(AP3/AP3)-1
201(LP/LP)-3
104(AP4/AP4)-1
201(LP/LP)-4
101(AP1/AP1)-1 102(AP2/AP2)-1 103(AP3/AP3)-1 116(AP16/AP16)-1
1
TBE
2
The client side of the TBE board are cross-connected to the client side of other boards
1
The client side of the TBE board are cross-connected to the WDM side of other boards
2
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
14.8.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TBE, refer to Table 14-108. Table 14-108 TBE parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name.
Laser Status
Off, On
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Off
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1192
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
LPT Enabled
Disabled, Enabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled
14.8.10 TBE Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TB E
N/A
100 BASE-FX-10 km 100 BASE-FX-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 14-109 Client-side pluggable optical module specifications (FE services) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 100 BASE-FX-10 km
100 BASE-FX-80 km
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1193
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type Target transmission distance
-
Value 100 BASE-FX-10 km
100 BASE-FX-80 km
10 km (6.2 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
-3
5
Minimum mean launched power
dBm
-11.5
-2
Minimum extinction ratio
dB
9
9
Center frequency
nm
1310
1550
Eye pattern mask
-
IEEE802.3zcompliant
IEEE802.3zcompliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Receiver sensitivity (EOL)
dBm
-19
-22
Minimum receiver overload
dBm
-3
-3
Table 14-110 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
1270 to 1355
1500 to 1580
Transmitter parameter specifications at point S Operating wavelength range
Issue 03 (2013-05-16)
nm
770 to 860
1270 to 1355
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1194
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 14-111 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Line code format
Issue 03 (2013-05-16)
-
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1195
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Target transmission distance
-
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1196
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-112 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
APD
PIN
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1197
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TBE
40.7
44.8
14.9 TDG TDG: 2 x GE tributary service processing board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1198
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.9.1 Version Description Only one functional version of the TDG board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TD G
N
N
N
N
Y
Y
Variants The TN11TDG board has only one variant: TN11TDG01.
14.9.2 Application As a type of tributary board, the TDG board implements conversion between two channels of GE optical signals and two channels of GE electrical signals or one channel of ODU1 electrical signals through cross-connection. For the position of the TDG board in the WDM system, see Figure 14-122. Figure 14-122 Position of the TDG board in the WDM system 1xODU1
1xODU1
TDG
N S 2
M U X / D M U X
M U X / D M U X
N S 2
GE/ODU1
1xODU1
1xODU1
GE
TDG
GE
GE/ODU1
OptiX OSN 6800: From/To paired slot or cross-connect board OptiX OSN 3800: From/To slot of the mesh group
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1199
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.9.3 Functions and Features The TDG board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-113. Table 14-113 Functions and features of the TDG board Function and Feature
Description
Basic function
Converts between two channels of GE optical signals and two channels of GE electrical signals or one channel of ODU1 electrical signals through the crossconnect board or with the board in the paired slot.
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s
Crossconnect capabilities
l OptiX OSN 6800: Supports the cross-connection of an ODU1 signal and two GE signals between the TDG and the cross-connect board or the board in the paired slot through the backplane. l OptiX OSN 3800: Supports the grooming of one ODU1 signal and two GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
PRBS test function
Not supported
LPT function
Supported
Test frame
Supported
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports MS SNCP protection.
Loopback
WDM side Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1200
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3z
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.9.4 Working Principle and Signal Flow The TDG board consists of the client-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-123 shows the functional modules and signal flow of the TDG board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1201
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-123 Functional modules and signal flow of the TDG board Backplane (service corss-connection)
2 X GE/ 1 X ODU1
Client side RX1
O/E
RX2
TX1 TX2
E/O
GE Encapsulation and mapping module
Client-side optical module
OTN processing module
Crossconnect module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
The client side of the TDG board accesses GE optical signals. In the signal flow of the TDG board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TDG to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of GE optical signals from client equipment through the RX1-RX2 interfaces, and performs O/E conversion. After O/E conversion, the two channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, and OTN framing. Then, the module sends out two channels of GE signals or one channel of ODU1 signals to the backplane.
l
Receive direction The signal processing module receives the electrical signals sent from the backplane. Then, – If the signals are GE signals, they are sent to the client-side optical module. – If the signals are ODU1 signals, the module performs operations such as ODU1 framing, demapping and decapsulation processing. Then, the module sends out two channels of GE signals to the client-side optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1202
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The client-side optical module performs the E/O conversion of GE electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of GE optical signals. – Client-side transmitter: Performs the E/O conversion from two channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, GE encapsulation and mapping module, and OTN processing module. – Cross-connect module – Implements the grooming of electrical signals between the TDG and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are GE and ODU1 signals. – Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are GE and ODU1 signals. – GE encapsulation and mapping module Encapsulates multiple channels of GE signals and maps the signals into the ODU1 payload area. The module also performs the reverse process and monitors GE performance. – OTN processing module Frames ODU1 signals and processes overheads in ODU1 signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.9.5 Front Panel There are indicators and interfaces on the front panel of the TDG board.
Appearance of the Front Panel Figure 14-124 shows the front panel of the TDG board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1203
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-124 Front panel of the TDG board
TDG STAT ACT PROG SRV
TX1 RX1 TX2 RX2
TDG
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-114 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1204
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-114 Types and functions of the interfaces on the TDG board Interface
Type
Function
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.9.6 Valid Slots One slot houses one TDG board. Table 14-115 shows the valid slots for the TDG board. Table 14-115 Valid slots for the TDG board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8 and IU11-IU16.
OptiX OSN 3800 chassis
IU2-IU5
14.9.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-116 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-116 Mapping between the physical ports on the TDG board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1205
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-125 describes the application model of the TDG board. Table 14-117 describes the meaning of each port. Figure 14-125 Port diagram of the TDG board Other line/ OTU board
Other line/ PID board Backplane
Client Side 2 x GE
201 (LP/LP)-1
3 (RX1/TX1)-1
201 (LP/LP)-2
4 (RX2/TX2)-1
ODU1
201 (LP/LP)-1
Crossconnect module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Multiplexin g module
Table 14-117 Description of NM port of the TDG board Port Name
Description
RX1/TX1-RX2/TX2
These ports correspond to the client-side optical interfaces.
LP
Internal logical port. The optical paths are numbered 1and 2.
14.9.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TDG board is used to transmit services, the following items must be created on the U2000: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1206
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
During creation of the electrical cross-connect services on the U2000, create the GE crossconnection between the RX/TX and LP ports to implement the cross-connect grooming of GE services. The following three cross-connections can be created. – Create the cross-connection between the internal RX/TX and LP ports of the TDG board (Create the internal straight-through and cross-connection of the board), as shown and
in Figure 14-126.
– Create the cross-connection between the RX/TX port of the TDG board and the LP port of other boards (The GE services accessed from the client side of the TDG board are cross-connected to the WDM side of other boards for protection and the inter-board service convergence), as shown
3
in Figure 14-126.
– Create the cross-connection between the RX/TX port of other boards and the LP port of the TDG board (The GE services accessed from the client side of other boards are cross-connected to the client side of the TDG board for protection and the inter-board service convergence), as shown
4
in Figure 14-126.
NOTE
One RX/TX port can be connected to only one optical path of the LP port.
Figure 14-126 Cross-connection diagram of the TDG board Client side
Other board 3(RX1/TX1)-1
201(LP/LP)-1
4(RX2/TX2)-1
201(LP/LP)-2
Client side
WDM side
4 3(RX1/TX1)-1
201(LP/LP)-1 3
4(RX2/TX2)-1
2 1
201(LP/LP)-2
TDG The straight-through of the TDGboard
1
The internal cross-connection of the TDG board
2
The client side of the TDG board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the WDM side of the TDG board
3 4
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the ODU1 cross-connection between the LP port and ODU1LP port of other boards (or IN/OUT port Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1207
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
of the TN11NS2 board) to implement the cross-connect grooming of ODU1 services, as shown in Figure 14-127. Figure 14-127 Cross-connection diagram of the TDG board WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3
Other board a (compatible mode)
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1-ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2 IN/OUT-OCH:1-ODU2:1-ODU1:3
Other board b (standard mode)
IN/OUT-OCH:1-ODU2:1-ODU1:4
201(LP/LP)-1
TDG
201(LP/LP)-2
Client side The client side of the TDG board are cross-connected to the WDM side of other boards
Other board a TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX Other board b TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.9.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of TDG, refer to Table 14-118. Table 14-118 TDG parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1208
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Off, On Default: Off
Automatic Laser Shutdown
Enabled, Disabled
LPT Enabled
Enabled, Disabled
Default: Enabled
Default: Disabled Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: AutoNegotiation
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link pass-through (LPT) function. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1209
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.9.10 TDG Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TD G
N/A
2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Specifications of Optical Module at the Client Side Table 14-119 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1210
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Table 14-120 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1211
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TDG
30
33
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1212
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.10 TDX TDX: 2 x 10G tributary service processing board
14.10.1 Version Description The available functional versions of the TDX board are TN11, TN12, TN52, and TN53.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TD X
N
N
N
N
Y
Y
TN1 2TD X
N
N
N
N
Y
N
TN5 2TD X
Y
Y
Y
N
Y
N
TN5 3TD X
Y
Y
Y
N
Y
N
Variants Each of the TN11TDX, TN12TDX, TN52TDX, and TN53TDX boards has only one variant identified by the suffix 01 in the board name, for example, TN11TDX01.
Differences Between Versions Function:
Issue 03 (2013-05-16)
Boar d
CrossConnet Granularity
IEEE 1588v2
TN11 TDX
ODU1
N
Physical Clock
Client-side Services OTU2/ OTU2e
FC800/ FC1200
N
N
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1213
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Boar d
CrossConnet Granularity
IEEE 1588v2
Physical Clock
Client-side Services OTU2/ OTU2e
FC800/ FC1200
TN12 TDX
ODU2/ ODU2e
N
N
N
N
TN52 TDX
ODU2/ ODU2e
N
N
Y
N
TN53 TDX
ODU2/ ODU2e/ ODUflex
Y
Y
Y
Y
Specification: l
The specifications vary according to versions. For details, see 14.10.10 TDX Specifications.
Substitution Relationship Table 14-121 Substitution rules of the TDX board Original Board
Substitute Board
Substitution Rules
TN11TDX
None
-
TN12TDX
TN53TDX
The TN53TDX can be created as TN12TDX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53TDX functions as the TN12TDX.
TN52TDX
TN53TDX
The TN53TDX can be created as TN52TDX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN53TDX functions as the TN52TDX.
TN53TDX
None
-
14.10.2 Application As a type of tributary board, the TDX board implements conversion between two channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/FC1200 optical signals and eight channels of ODU1 virtual concatenation electrical signals or two ODU2/ODU2e/ ODUflex electrical signals using cross-connections. For the position of the TDX board in the WDM system, see Figure 14-128 and Figure 14-129. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1214
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-128 Position of the TN11TDX board in the WDM system 8xODU1
RX1
8xODU1
TDX
TDX
TX1
N D 2
TX2
M U X / D M U X
8×ODU1
8×ODU1
10GE LAN 10GE WAN STM-64 RX2 OC-192
M U X / D M U X
N D 2
TX1 RX110GE LAN 10GE WAN STM-64 TX2 OC-192
RX2
Figure 14-129 Position of the TN12TDX/TN52TDX/TN53TDX board in the WDM system 2xODU2/ODU2e/ ODUflex
TDX
TDX
N D 2
M U X / D M U X
M U X / D M U X
N D 2
2xODU2/ODU2e/ ODUflex
2xODU2/ODU2e/ ODUflex
10GE LAN RX1 10GE WAN STM-64 TX1 OC-192 OTU2 RX2 OTU2e FC800 TX2 FC1200
2xODU2/ODU2e/ ODUflex
TX1 10GE LAN RX1 10GE WAN TX2 RX2
STM-64 OC-192 OTU2 OTU2e FC800 FC1200
Table 14-122 Client-side service mapping path supported by the board Board
Client-Side Service
Backplane-Side Service
TN11TD X
10GE LAN/10GE WAN/STM-64/ OC-192
ODU1
TN12TD X
10GE LAN/10GE WAN/STM-64/ OC-192
ODU2/ODU2e
TN52TD X
10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e
ODU2/ODU2e
TN53TD Xa
10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e/FC800/ FC1200
ODU2/ODU2e
FC800
ODUflex
a: For FC800 services, the TN53TDX board supports two mapping paths: FC800->ODU2 and FC800->ODUflex. The mapping paths for the TN53TDX boards at the service adding and dropping sites must be the same.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1215
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.10.3 Functions and Features The TDX board is mainly used to achieve cross-connections at the electrical layer. For detailed functions and features, see Table 14-123. Table 14-123 Functions and features of the TDX board Function and Feature
Description
Basic function
TDX converts signals as follows: l TN11TDX: 2x10GE LAN/10GE WAN/STM-64/OC-192<>8xODU1 virtual concatenation electrical signals l TN12TDX: 2x10GE LAN/10GE WAN/STM-64/OC-192<>2xODU2/ODU2e l TN52TDX: 2x10GE LAN/10GE WAN/STM-64/OC-192/OTU2/ OTU2e<->2xODU2/ODU2e l TN53TDX: 2x10GE LAN/10GE WAN/STM-64/OC-192/OTU2/ OTU2e/FC800/FC1200<->2xODU2/ODU2e, 2xFC800<>2xODUflex
Client-side service type
STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s FC800: SAN service at a rate of 8.5 Gbit/s FC1200: SAN service at a rate of 10.51 Gbit/s NOTE Only the TN52TDX/TN53TDX supports OTU2 and OTU2e services. Only the TN53TDX board supports FC800 and FC1200 services. The processing of the 10GE WAN service and the STM-64 service is the same. Therefore, For TN11TDX/TN12TDX/TN52TDX board, when the 10GE WAN service is transmitted, you can configure it as the STM-64 service on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1216
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Cross-connect capabilities
OptiX OSN 8800: l TN52TDX: Supports the cross-connection of two channels of ODU2/ ODU2e signals between the TDX board and the cross-connect board using the backplane. l TN53TDX: Supports the cross-connection of two channels of ODU2/ ODU2e/ODUflex signals between the TDX board and the crossconnect board using the backplane. OptiX OSN 6800: l TN11TDX: Supports the cross-connection of eight channels of ODU1 signals between the TDX board and the cross-connect board or the board in the paired slot using the backplane. l TN12TDX/TN52TDX/TN53TDX: Supports the cross-connection of two channels of ODU2/ODU2e signals between the TDX board and the cross-connect board using the backplane. OptiX OSN 3800: l TN11TDX: Supports the grooming of eight channels of ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G.709 and G.Sup43. l Supports PM functions for ODU2.
Issue 03 (2013-05-16)
ESC function
Supported by the TN52TDX/TN53TDX when the client-side service type is OTU2 or OTU2e.
PRBS test function
Supports the PRBS function on the client side.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the service type is OTU2/OTU2e.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1217
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN). NOTE TN11TDX only supports Poisson mode. TN12TDX/TN52TDX/TN53TDX only supports Bursty mode.
ALS function
Supports the ALS function on the client side.
Test frame
Supports the test frame function when the client-side service type is 10GE LAN and the Port mapping is MAC Transparent Mapping (10.7 G).
Latency measurement
The TN53TDX board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000. NOTE This function is not supported when the client-side service type is OTU2/OTU2e.
IEEE 1588v2
The TN53TDX board supports the TC, TC+OC, BC, and OC modes when the client-side service type is 10GE LAN and the Port mapping is MAC Transparent Mapping (10.7 G).
Physical clock
TN53TDX: l When the board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing. l When the board receives 10GE LAN services and the port mapping is MAC Transparent Mapping (10.7 G). on its client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission. TN52TDX: When the board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing.
Electrical-layer ASON
Issue 03 (2013-05-16)
Supported by the TN52TDX/TN53TDX.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1218
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protection scheme
l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports tributary SNCP protection (TN12TDX/TN52TDX/ TN53TDX). NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services, and 10GE WAN services the board supports tributary SNCP protection.
Ethernet service mapping mode
l TN11TDX: doesn't support this parameter l TN12TDX/TN52TDX/TN53TDX: Bit Transparent Mapping (11.1G), MAC transparent mapping (10.7G) l TN53TDX: Bit Transparent Mapping(11.1G), MAC transparent mapping (10.7G), MAC Transparent Mapping(10.7G) support 1588
Loopback
WDM side Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1219
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.10.4 Working Principle and Signal Flow The TDX board consists of the client-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-130 shows the functional modules and signal flow of the TDX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1220
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-130 Functional modules and signal flow of the TDX board Backplane(service cross-connection)
n X ODUk
Client side RX1 RX2
TX1 TX2
SDH/SONET encapsulation and mapping module
O/E
10GE-LAN encapsulation and mapping module
E/O
Client-side optical module
OTN processing
Cross-connect module
module
1588v2 module
FC encapsulation and mapping module Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
Backplane (controlled by SCC)
DC power supply from a backplane
SCC
NOTE
Only the TN53TDX board supports FC encapsulation and mapping module. Only the TN53TDX board supports the IEEE 1588v2 module. In Figure 14-130, n x ODUk indicates the service cross-connections from the TDX board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-124 shows the service cross-connections from the TDX board to the backplane. Table 14-124 Service cross-connections from the TDX board to the backplane
Issue 03 (2013-05-16)
Board
Service Cross-connection
TN11T DX
A maximum of 8xODU1
TN12T DX/ TN52T DX
A maximum of 2xODU2/ODU2e
TN53T DX
A maximum of 2xODU2/ODU2e/ODUflex
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1221
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
In the signal flow of the TDX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TDX to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives two channels of the optical signals from client equipment through the RX1-RX2 ports, and performs O/E conversion. After O/E conversion, different types of signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, and OTN framing. Then, the module sends out ODUk signals to the backplane for grooming.
l
Receive direction The signal processing module receives ODUk signals sent from the backplane. The module performs operations such as ODUk framing, demapping and decapsulation processing. Then, the module sends out two channels of 10GE LAN/10GE WAN/STM-64/OC-192/ OTU2/OTU2e/FC800/FC1200 signals to the client-side optical module. The client-side optical module performs the E/O conversion of 10GE LAN/10GE WAN/ STM-64/OC-192/OTU2/OTU2e/FC800/FC1200 electrical signals, and then outputs two channels of client-side optical signals through the TX1-TX2 ports.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of two channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/FC1200 optical signals. – Client-side transmitter: Performs the E/O conversion from two channels of the internal electrical signals to 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/ FC1200 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, FC encapsulation and mapping module, OTN processing module and cross-connect module. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET signals and maps the signals into the ODUk payload area. The module also performs the reverse process and monitors SDH/ SONET performance. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the ODUk payload area. The module also performs the reverse process and monitors 10GE LAN performance. – FC encapsulation and mapping module Encapsulates multiple channels of FC signals and maps the signals into the ODU1/ ODU2/ODU2e/ODUflex payload area. The module also performs the reverse process and has the FC performance monitoring function.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1222
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board NOTE
FC800 services can be mapped into ODU2/ODUflex payload area and FC1200 services can be mapped into ODU2e payload area.
– OTN processing module Frames signals and processes overheads in ODUk signals. – Cross-connect module Grooms electrical signals between the TDX and the cross-connect board through the backplane. l
1588v2 module According to the IEEE 1588v2 protocol, the module transmits the clock information of the clock board to the next NE or extracts the clock information from the service board and then transmits the clock information to the clock board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.10.5 Front Panel There are indicators and interfaces on the front panel of the TDX board.
Appearance of the Front Panel Figure 14-131 and Figure 14-132 show the front panel of the TDX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1223
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-131 Front panel of the TN11TDX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1224
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-132 Front panel of the TN12TDX/TN52TDX/TN53TDX board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-125 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1225
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-125 Types and functions of the interfaces on the TDX board Interface
Type
Function
TX1-TX2
LC
Transmit service signals to client equipment.
RX1-RX2
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.10.6 Valid Slots One slot houses one TDX board. Table 14-126 shows the valid slots for the TN11TDX board. Table 14-126 Valid slots for the TN11TDX board Product
Valid slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 14-127 shows the valid slots for the TN12TDX board. Table 14-127 Valid slots for the TN12TDX board Product
Valid slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Table 14-128 shows the valid slots for the TN52TDX and TN53TDX board. Table 14-128 Valid slots for the TN52TDX/TN53TDX board
Issue 03 (2013-05-16)
Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1226
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.10.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-129 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-129 Mapping between the physical ports on the TDX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP/ 151(imp1/imp1)-1 is a logical port of the board. The TDX board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-130 Port diagram and port description
Issue 03 (2013-05-16)
Board
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
TN11T DX
Compat ible mode
Figure 14-133
Table 14-131
TDX
TN12T DX
Compat ible mode
Figure 14-134
Table 14-131
12TDX
TN52T DX
Compat ible mode
Figure 14-134
Table 14-131
52TDX
TN53T DX
Compat ible mode
Figure 14-135
Table 14-131
53TDX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1227
OptiX OSN 8800/6800/3800 Hardware Description
Board
14 Tributary Board and Line Board
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Standar d mode
Figure 14-136
Table 14-131
53TDX(STND)
Figure 14-133 Port diagram of the TN11TDX(compatible mode) Other line/PID board
Backplane 8 x ODU1
3(RX1/TX1)-1
4(RX2/TX2)-1
151(imp1/imp1)-1 151(imp1/imp1)-2 151(imp1/imp1)-3 151(imp1/imp1)-4 152(imp2/imp2)-1 152(imp2/imp2)-2 152(imp2/imp2)-3 152(imp2/imp2)-4
Figure 14-134 Port diagram of the TN12TDX/TN52TDX(compatible mode) Other line/PID board
Backplane 2 x ODU2/ODU2e
3(RX1/TX1)-1
4(RX2/TX2)-1
Issue 03 (2013-05-16)
201(ClientLP1/ClientLP1)-1
202(ClientLP2/ClientLP2)-1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1228
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-135 Port diagram of the TN53TDX (compatible mode) Other line/ PID board
Backplane 2 x ODU2/ODU2e/ODUflex
3(RX1/TX1)-1
4(RX2/TX2)-1
201(ClientLP1/ClientLP1)-1
202(ClientLP2/ClientLP2)-1
Figure 14-136 Port diagram of the TN53TDX (standard mode) Other line/PID board Backplane 2x ODU2/ODU2e/ODUflex
3(RX1/TX1)-1
4(RX2/TX2)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-131 Description of NMS port of the TDX board
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX2/TX2
These ports correspond to the client-side optical interfaces.
imp1-imp2
Inverse multiplexing ports. The optical channels are numbered 1, 2, 3 and 4.
ClientLP1-ClientLP2
Internal logical ports. The optical paths are numbered 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1229
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.10.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TDX board is used to transmit services, the following items must be created on the U2000: l
TN11TDX: Configuration of cross-connection – Set the service type. Ensure that the service type is the same as the actual service type. – During creation of the electrical cross-connect services on the U2000, configure the bandwidth binding of the imp port. NOTE
The bandwidth of each imp port that accesses 10GE must be bound with 4 ODU1s. For bandwidth binding, each 10GE signal must be bound in order. For example, when the TN11TDX board works with the TN12NS2 board, imp1.1 must be bound to ODU1LP1.1, imp1.2 must be bound to ODU1LP1.2, and so on.
– During creation of the electrical cross-connect services on the U2000, create the ODU1 level cross-connections between the imp port and the IN/OUT port of the TN11NS2 board (or the ODU1LP port of other board), realizing the cross-connect grooming of ODU1 services, as shown in Figure 14-137. l
TN12TDX/TN52TDX: Configuration of cross-connection – Set the service type. Ensure that the service type is the same as the actual service type. – During creation of the electrical cross-connect services on the U2000, create the ODU2 level cross-connections between the ClientLP port and the ODU2LP port of other board, as shown in Figure 14-138.
l
TN53TDX: Configuration of cross-connection – Create ODU2 cross-connections between this board and other boards to support service pass-through. – Set the Port Working Mode to ODU2 non-convergence mode (OTU2/Any>ODU2->OTU2) – Set the service type. Ensure that the service type is the same as the actual service type. – During creation of the electrical cross-connect services on the U2000, create the ODU2 level cross-connections between the ClientLP or RX/TX port and the ODU2LP port of other board, as shown in Figure 14-138 and Figure 14-139. – Create ODUflex cross-connections between this board and other boards to support service pass-through. – Set the Port Working Mode to ODUflex non-convergence mode (Any>ODUflex) – Set the service type. Ensure that the service type is the same as the actual service type. – During creation of the electrical cross-connect services on the U2000, create the ODUflex level cross-connections between the ClientLP or RX/TX port and the ODUflex port of other board, as shown in Figure 14-140 and Figure 14-141. NOTE
The TN53TDX board supports mapping of FC800 into ODUflex on the client side. When configuring cross-connections for the board, ODUflex Timeslot is 7.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1230
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-137 Cross-connection diagram of the TN11TDX (compatible mode ODU1 level) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3
Other board a (standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3
Cross-connect module
51(ODU1LP1/ODU1LP1)-4
Other board b (compatible mode)
Client side 151(imp1/imp1)-1 151(imp1/imp1)-2 151(imp1/imp1)-3 151(imp1/imp1)-4 152(imp2/imp2)-1 152(imp2/imp2)-2 152(imp2/imp2)-3 152(imp2/imp2)-4
TDX Cross-connect module
The client side of the TDX board are crossconnected to the WDM side of other boards
Other board a
TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Other board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1231
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-138 Cross-connection diagram of the TN12TDX/TN52TDX/TN53TDX (compatible mode ODU2 level) WDM side 1(IN1/OUT1)-OCH:1 2(IN1/OUT1)-OCH:1 71(ODU2LP1/ODU2LP1)-1
Cross-connect module
72(ODU2LP2/ODU2LP2)-1
Other board a (standard mode) Other board b (compatible mode)
Client side 201(ClientLP1/ClientLP1)-1
TDX 202(ClientLP2/ClientLP2)-1
Cross-connect module
The client side of the TDX board are crossconnected to the WDM side of other boards
Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN12TDX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX TN52TDX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX TN53TDX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1232
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-139 Cross-connection diagram of the TN53TDX (standard mode ODU2 level) WDM side
1(IN1/OUT1)-OCH:1 2(IN1/OUT1)-OCH:1
Other board 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Cross-connect module
Other board a (standard mode) Other board b (compatible mode)
Client side
3(RX1/TX1)-1
TDX 4(RX2/TX2)-1
Cross-connect module
The client side of the TDX board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1233
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-140 Cross-connection diagram of the TN53TDX (compatible mode ODUflex level) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1
Other board
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2
Cross-connect mode Client side 201(ClientLP1/ClientLP1)-1
TDX 202(ClientLP2/ClientLP2)-1
Cross-connect mode The client side of the TDX board are crossconnected to the WDM side of other boards
Other board
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
Figure 14-141 Cross-connection diagram of the TN53TDX (standard mode ODUflex level) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1
Other board
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2
Cross-connect module Client side
3(RX1/TX1)-1
TDX 4(RX2/TX2)-1
Cross-connect module The client side of the TDX board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
14.10.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1234
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
For parameters of the TDX, refer to Table 14-132. Table 14-132 TDX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
l TN11TDX: 10GE LAN, OC-192, STM-64 Default: 10GE LAN
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
l TN12TDX: None, 10GE LAN, OC-192, STM-64 Default: None l TN52TDX: None, 10GE LAN, OC-192, OTU-2, OTU-2E, STM-64 Default: None l TN53TDX: None, 10GE LAN, 10GE WAN, OC-192, OTU-2, OTU-2E, STM-64, CBR_10G, FC800, FC1200 Default: None
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1235
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Client Service Bearer Rate (Mbit/s)
9953.28 to 10312.50
sets the rate of the accessed service at the optical interface on the client side of a board.
Default: /
NOTE This parameter can be set only when Service Type is set to CBR_10G.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. Port Mapping
l TN11TDX: doesn't support this parameter l TN12TDX/TN52TDX: Bit Transparent Mapping(11.1G), MAC transparent mapping (10.7G) l TN53TDX: Bit Transparent Mapping (11.1G), MAC transparent mapping (10.7G)
The Port Mapping parameter sets and queries the mapping mode of a port service. NOTE The TN53TDX board supports the TC, TC+OC, BC, and OC modes when the client-side service type is 10GE LAN and the Port mapping is MAC Transparent Mapping (10.7 G).
See D.28 Port Mapping (WDM Interface) for more information.
Default: Bit Transparent Mapping(11.1G) NOTE For the TN12TDX: only the ClientLP1 port supports MAC transparent mapping (10.7G).
Off, On
Laser Status
Default: Off
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1236
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDMside receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only the TN52TDX/TN53TDX supports this parameter.
Hold-off Time of Automatic Laser Shutdown
Issue 03 (2013-05-16)
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s
NOTE Only the TN52TDX/TN53TDX supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1237
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s
NOTE Only the TN52TDX/TN53TDX supports this parameter.
Enabled, Disabled
Determines whether to enable the link pass-through (LPT) function.
LPT Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
Specifies the service mode for a board. NOTE Only TN52TDX/TN53TDX supports this parameter.
See D.32 Service Mode (WDM Interface) for more information. PAUSE Frame Flow Control
Enabled, Disabled Default: Enabled
Determines whether to enable the switch of the flow control. NOTE Only TN11TDX supports this parameter.
Max. Packet Length
1518 to 9600 Default: 9600
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. NOTE For the TN52TDX and TN53TDXboard, when Port Mapping is set to Bit Transparent Mapping (11.1G), Maximum Packet Length is unavailable on the U2000.
See D.20 Max. Packet Length (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1238
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services. Only TN52TDX/TN53TDX supports this parameter.
FEC Working State
Disabled, Enabled Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.10 FEC Working State (WDM Interface) for more information. FEC
FEC Mode
Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.9 FEC Mode (WDM Interface) for more information. SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Disabled, Enabled Default: Disabled
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1239
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Default: Disabled
NOTE This parameter is supported only by the TN53TDX.
Insert Code Type
l When Service Type is STM-64 or OC-192: – PN11, MS_AIS – Default: PN11 l When Service Type is 10GE LAN and port mapping mode is MAC transparent mapping (10.7G): – Quick insert, Delayed insert – Default: Quick insert
Applies to fault detection and location when the service type is STM-64 or OC-192. When the tributary or line board at the upstream site is faulty or when the line board at the downstream site is faulty, users can specify the output code type for the tributary board at the downstream site using this parameter. When the service type is 10GELAN, the value Quick insert applies to a scenario in which no protection is configured on the WDM equipment while protection is configured for the router that connects to the WDM equipment. In this scenario, quick protection switching can be achieved on the router. The value Delayed insert applies to a scenario in which protection is configured for the WDM equipment and the router connected to the WDM equipment. In this scenario, the WDM equipment preferentially performs protection switching in case of a fault. If the fault is rectified, the router does not perform protection switching. If the fault persists, then the router performs protection switching. NOTE This parameter is supported only by the TN53TDX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1240
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Port Working Mode
ODU2 non-convergence mode (OTU2/Any>ODU2->OTU2), ODUflex non-convergence mode (Any->ODUflex), NONE Mode(Not for port)
This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail.
Default: ODU2 nonconvergence mode (OTU2/ Any->ODU2->OTU2)
NOTE This parameter is supported only by the TN53TDX.
14.10.10 TDX Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TDX/ TN12TDX/ TN52TDX/ TN53TDX
N/A
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point. NOTE
The 10 Gbit/s multirate 10 km module, 10 Gbit/s multirate 40 km module, and 10 Gbit/s multirate 80 km module can be used to access OC-192, STM-64, 10GE WAN, FC1200, and OTU2/OTU2e signals. The 10 Gbit/s single-rate 0.3 km module can be used to access 10GE LAN and FC1200 signals. The 10 Gbit/s multirate 10 km module can be used to access FC800 signals.
Client-Side Pluggable Optical Module Table 14-133 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type Line code format Issue 03 (2013-05-16)
-
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1241
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
PIN
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1242
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11TDX: 1.3 kg (2.8 lb.) – TN12TDX: 1.4 kg (3.1 lb.) – TN52TDX: 1.4 kg (3.1 lb.) – TN53TDX: 1.5 kg (3.3 lb)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TDX
78.0
80.0
TN12TDX
37.4
40.7
TN52TDX
57.3
63.0
TN53TDX
25.0
27.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1243
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.11 TEM28 TEM28: 24xGE+4x10GE Ethernet tributary unit
14.11.1 Version Description The available functional version of the TEM28 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 4TE M28
Y
Y
Y
N
N
N
Variants The TN54TEM28 board has only one variant: TN54TEM28. The TN54TEM28 board variant is the board itself.
14.11.2 Application The TEM28 board is a tributary board. It implements conversion between 24 channels of GE optical signals, GE electrical signals, or FE electrical signals, with four channels of 10GE LAN/10GE WAN optical signals and ODU0, ODU1, ODU2, or ODUflex electrical signals with bandwidth not greater than 20 Gbit/s. For the position of the TEM28 board in the WDM system, seeFigure 14-142. Figure 14-142 Position of the TN54TEM28 board in the WDM system 2xOTU2 RX1
TX5
GE/FE RX28 TX28
L2
TEM28
N D 2
M U X / D M U X
M U X / D M U X
N D 2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
16×ODU0/8×ODUflex/ 8×ODU1/2×ODU2
RX4 TX4 RX5
Issue 03 (2013-05-16)
TEM28
16×ODU0/8×ODUflex /8×ODU1/2×ODU2
10 GE LAN/ 10GE WAN
TX1
2xOTU2 RX1 TX1 RX4
10 GE LAN/ 10GE WAN
TX4
L2
RX5 TX5
GE/FE RX28 TX28
1244
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The RX1/TX1 - RX4/TX4 optical ports are 10GE optical ports and are capable of processing 10GE LAN/10GE WAN services. The other ports on the board are GE optical ports or GE/FE electrical ports, that are capable of processing GE and FE services.
14.11.3 Functions and Features The TEM28 board supports electrical cross-connections, L2 layer switching and the QinQ function. Table 14-134 and Table 14-135 list the functions and features of the TEM28 board. Table 14-134 OTN Functions and features of the TEM28 board Function and Feature
Description
Basic function
l Coverts 24 channels of GE optical signals, GE electrical signals, or FE electrical signals, and four channels of 10GE LAN/10GE WAN optical signals to ODU0, ODU1, ODU2, or ODUflex electrical signals with bandwidth not greater than 20 Gbit/s. l The reverse process is similar.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s NOTE The TEM28 board transmits FE or GE electrical signals, GE optical signals, or 10GE optical signals on the client side. When the TEM28 board transmits GE or FE electrical signals, to facilitate fiber routing, you are advised to install electrical modules at the RX27/TX27 and RX28/ TX28 ports.
Cross-connect capabilities
Supports the cross-connection of a maximum of 16 channels of ODU0 signals, or 8 channels of ODUflex signals, or 8 channels of ODU1 signals, or 2 channels of ODU2 signals between the TEM28 board and a crossconnect board by using the backplane.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G. 709 and ITU-T G.7041. l Supports PM function for ODU0. l Supports PM function for ODU1. l Supports PM function for ODU2. l Supports PM function for ODUflex.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1245
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
LPT function
Supported NOTE The LPT function cannot be configured for EVPL services but only for bidirectional EPL services. When the LPT function is enabled, Source C-VLAN andSink CVLAN of an EPL service must be left empty. FE/GE electrical ports of the TEM28 board do not support the LPT function.
FEC encoding
Not supported.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Provides remote monitoring (RMON) of the Ethernet service.
ALS function
Supports the ALS function on the client side.
PRBS
Not supported
Physical clock
Supported NOTE FE/GE electrical ports of the TEM28 board do not support the physical clock function. The board does not support the physical clock when it is provisioned with 10G WAN services.
Test frame
Supported
Electrical-layer ASONbug
Supported
Protection scheme
l Supports client 1+1 protection.
Loopback
10GE optical interface
l Supports ODUk SNCP. MAC
PHY
GE optical interface
MAC
PHY
GE electrical port
Issue 03 (2013-05-16)
MAC
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1246
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description PHY
FE electrical port
MAC
PHY
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Inloop
Supported
Outloop
Not supported
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3
Protocols or standards for service processing (performance monitoring)
ITU-T G.703
IEEE 802.3z
ITU-T G.652 ITU-T G.808.1 ITU-T G.873.1 G.709 ITU-T ITU-T G.655(1996) ITU-T G.671 ITU-T G.7041 IEEE 802.3 IEEE 802.3z ITU-T G.709 ITU-T G.692
Table 14-135 Data features of the TEM28 board Function and Feature
Description
Interface characteristi cs
Port working mode
10GE optical port: 10G FULL LAN, 10G FULL WAN (SONET) GE optical port: 1000M FUL, auto-negotiation GE electrical port: auto-negotiation FE electrical port: auto-negotiation
Multicast
Issue 03 (2013-05-16)
MTU
Supports a maximum of 9600 bytes frames.
VLAN multicast
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1247
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description IGMP snooping V2
Layer 2 switching
Supported
l Supports IEEE802.1Q, IEEE802.1ad, and IEEE 802.1D. l Supports one VB. l Supports MAC address learning and aging. l Supports STP/RSTP. l Supports 128k MAC addresses.
Ethernet service
EPL EVPL(VLAN) EVPL(QinQ) EPLAN(IEEE 802.1D) EVPLAN(IEEE 802.1Q) EVPLAN(IEEE 802.1ad) NOTE "EVPL (VLAN)" is displayed as "EPL" on the NMS.
Protection schemes
ERPS
Supported
LAG
l Supports the IEEE802.3ad-compliant LAG protocol running at IP ports. l Supports manual and static LAGs. l Supports load-sharing and non-load-sharing LAGs.
DLAG
Supported
MC-LAG
Supported
Maintenance features
ETH-OAM
Supports ETH OAM protocols defined by IEEE802.3ah.
RMON
Supported
QoS
l Supports committed access rate (CAR) and class of service (CoS). l Supports IEEE802.1p. l Supports DSCP.
Issue 03 (2013-05-16)
Flow control
Supports IEEE802.3X-compliant Ethernet flow control protocol and flow control termination.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.1q VLAN All Layer 2 protocols such as xSTP, LACP, EthOAM, DHCP, and PPP etc. MPLS protocols All L3 protocols including ARP, IGMP, OSPF, IGRP etc.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1248
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performanc e monitoring)
ITU-T Recommendation G.8032/Y.1344 IEEE 802.3x pause frame IEEE 802.3ad LACP IEEE 802.1p priority IEEE 802.1q VLAN IEEE 802.1ag OAM IEEE 802.3ah OAM RFC 4541 IGMP Snooping IEEE 802.1ad IEEE 802.1d IEEE 802.1s IEEE 802.1w IEEE 802.3z IEEE 802.3u IEEE 802.3ab IEEE 802.3ae ITU-T G.8261/Y.1361 ITU-T G.8262
14.11.4 Working Principle and Signal Flow The TEM28 board consists of the client-side optical module, L2 switching module, OTN processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-143 shows the functional modules and signal flow of the TEM28 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1249
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-143 Functional modules and signal flow of the TEM28 board
Client side RX1 RX2
Backplane(service cross-connection)
16×ODU0/8×ODU1/ 2×ODU2/8×ODUflex
O/E
RX28 TX1 TX2
E/O
TX28
Client-side optical module
OTN processing module
L2 switching module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
Backplane DC power supply
SCC (controlled by SCC)
NOTE
When used to receive GE or FE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to L2 switching for processing.
The transmit and the receive directions are defined in the signal flow of the TEM28 board. The transmit direction is the direction from the client side of the TEM28 to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The RX1 to RX28 optical interfaces on the client side receive optical signals from client equipment and perform O/E conversion. After O/E conversion, the electrical signals are sent to the L2 switching module. The module performs operations, such as convergence. After convergence, the module outputs a maximum of 16 channels of electrical signals to the OTN processing module. The OTN processing module performs operations such as encapsulation and mapping processing, and OTN framing. After processing, and then outputs a maximum of 16 channels of ODU0 signals or eight channels of ODU1 signals or eight channels of ODUflex signals or two channels of ODU2 signals to the backplane.
l
Receive direction The OTN processing module receives a maximum of 16 channels of ODU0 signals or eight channels of ODU1 signals or eight channels of ODUflex signals or two channels of ODU2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1250
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
signals sent from the cross-connection board through the backplane. The module performs operations such as ODU2/ODU2e/ODU1/ODU0/ODUflex framing, demapping and decapsulation processing. Then, the module sends the electrical signal to the L2 switching module. The L2 switching module deconverges the electrical signals and sends 28 channels of the signals with corresponding rates to the client-side optical module. The client-side optical module performs E/O conversion of the 28 channels of electrical signals, and then outputs 28 channels of client-side optical signals through the TX1-TX28 optical interfaces. NOTE
The RX1/TX1 to RX4/TX4 optical ports are 10GE optical ports that can process 10GE LAN/10GE WAN services. The other optical ports on the board are GE optical ports, GE electrical ports and FE electrical ports, that can process GE and FE services. NOTE
10GE WAN and 10GE LAN signals are processed differently. Each 10GE WAN signal contains an SDH header, which is stripped off before the signal enters the Layer 2 module.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of 28 channels of FE/GE/10GE LAN/ 10GE WAN optical signals. – Client-side transmitter: Performs E/O conversion from 28 channels of the internal electrical signals to FE/GE/10GE LAN/10GE WAN optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
L2 switching module – Learns, forwards or deletes MAC addresses. – Maps and demaps Ethernet packets.
l
OTN processing module Frames ODUk signals, processes overheads in ODUk signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.11.5 Front Panel There are indicators and interfaces on the front panel of the TEM28 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1251
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Appearance of the Front Panel Figure 14-144 shows the front panel of the TEM28 board. Figure 14-144 Front panel of the TEM28 board TEM28 STAT ACT PROG SRV
5~28: GE 1~4: 10GE TX RX TX RX TX RX RX TX TX RX
5
21
6
22
7
23
8
24
9
25
10
26
11
27
12
28 3 4
13 20 1 2
TEM28
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-136 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1252
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-136 Types and functions of the interfaces on the TEM28 board Interface
Type
Function
RX1-RX28a
LC
Receive service signals from client equipment.
TX1-TX28a
LC
Transmit service signals to client equipment.
a: The RX1/TX1 to RX4/TX4 optical ports are 10GE optical interfaces. The other optical interfaces on the board are GE optical interfaces, GE electrical interfaces and FE electrical interfaces.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.11.6 Valid Slots Two slots house one TEM28 board. Table 14-137 shows the valid slots for the TEM28 board. Table 14-137 Valid slots for the TN54TEM28 board Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
The online signal bus on the TEM28 board connects to the backplane along the left slot in the subrack. The slot number of the TEM28 board displayed on the NM is the number of the left one of the two slots. For example, if you install the board in slots IU1 and IU2, the slot number of the TEM28 board displayed on the NM is IU1.
14.11.7 Physical and Logical Ports This section describes how the physical interfaces of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-138 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1253
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-138 Mapping between the physical ports on the TEM28 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1 to TX28/RX28
3 to 30
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-145 shows the application model of the TEM28 board. Table 14-139 describes the meaning of each port. Figure 14-145 Port diagram of the TEM28 board Other line/ PID board
Other line/ PID board
Backplane 8xODU0
3(RX1/TX1)-1
101(AP1/AP1)-1
6(RX4/TX4)-1
PORT6 TRUNK8 108(AP8/AP8)-1
7(RX5/TX5)-1
PORT7
30(RX28/TX28)-1
Issue 03 (2013-05-16)
PORT3 TRUNK1
TRUNK9 109(AP9/AP9)-1
TRUNK16 116(AP16/AP16)-1 PORT30
8xODU0/8xODU1/ 2xODU2/8xODUflex
201(ClientLP1/ ClientLP1)-1
208(ClientLP8/ ClientLP8)-1 209(ClientLP9/ ClientLP9)-1
216(ClientLP16/ ClientLP16)-1
Cross-connect module
L2 swiching module
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1254
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-139 Descriptions of the ports on the TEM28 board Port Name
Description
RX1/TX1-RX28/TX28
Client-side ports. The RX1/TX1 to RX4/TX4 ports are used as 10GE optical ports to process 10GE LAN/10GE WAN services. The remaining ports are used as GE optical ports, GE electrical ports, or FE electrical ports to process GE or FE services.
PORT3-PORT30
Respectively corresponds to the client-side optical interfaces: RX1/TX1 - RX28/TX28.
VCTRUNK1-VCTRUNK16
Internal virtual ports. The total bandwidth for these ports is 20 Gbit/s. The maximum bandwidth for the VCTRUNK1-VCTRUNK8 ports is 10 Gbit/s, with each port allocated a maximum of 1.25 Gbit/s bandwidth. The maximum bandwidth for the VCTRUNK9-VCTRUNK16 ports is 20 Gbit/s, with each port allocated a maximum of 10 Gbit/s bandwidth.
AP1-AP16
Internal convergence ports.
ClientLP1-ClientLP16
Internal logical ports. Each of the ports provides only one optical channel (identified as optical channel 1). The ClientLP1-ClientLP8 ports can map the signals cross-connected from the L2 switching module into a maximum of eight ODU0 signals, and the ClientLP9-ClientLP16 can map the signals into a maximum of eight ODU0 signals, eight ODU1 signals, two ODU2 signals, or eight ODUflex signals.
14.11.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TEM28 board is used to transmit services, the following items must be created on the U2000: l
When creating Ethernet services on the U2000, create cross-connections between the PORT and VCTRUNK ports, implementing cross-connections and convergence of signals received from the client-side ports using the Layer 2 switching module. NOTE
l One VCTRUNK port can be connected to multiple PORT ports. l VCTRUNK1 to VCTRUNK8 : The maximum bandwidth for the TRUNK1-TRUNK8 ports is 10 Gbit/ s, with each port allocated a maximum of 1.25 Gbit/s bandwidth. l VCTRUNK9 to VCTRUNK16: The maximum bandwidth for the TRUNK9-TRUNK16 ports is 20 Gbit/s, with each port allocated a maximum of 10 Gbit/s bandwidth. l VCTRUNK1 to VCTRUNK16: The total bandwidth for these ports is 20 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1255
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
There are mappings between the RX/TX and PORT ports, between the VCTRUNK and AP ports, and between the AP and ClientLP ports. You do not need to set the mappings on the U2000.
l
Create cross-connections from the local board to the line or PID board. – During creation of the electrical cross-connect services on the U2000, create the ODU0 level cross-connections between the ClientLP port and the ODU0 port of other board, as shown in Figure 14-146.
Figure 14-146 ODU0 Cross-Connections WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board a (standard 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Other board b (compatible mode)
Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
TEM28
208(ClientLP8/ClientLP8)-1 209(ClientLP9/ClientLP9)-1 210(ClientLP10/ClientLP10)-1 211(ClientLP11/ClientLP11)-1
216(ClientLP16/ClientLP16)-1
Cross-connect module
The client side of the TEM28 board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
– During creation of the electrical cross-connect services on the U2000, create the ODU1 level cross-connections between the ClientLP port and the ODU1 port of other board, as shown in Figure 14-147.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1256
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-147 ODU1 Cross-Connections WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3
Other board a (standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3
Cross-connect module
51(ODU1LP1/ODU1LP1)-4
Other board b (compatible mode)
Client side 209(ClientLP9/ClientLP9)-1 210(ClientLP10/ClientLP10)-1 TEM28
211(ClientLP11/ClientLP11)-1
216(ClientLP16/ClientLP16)-1
Cross-connect module
The client side of the TEM28 board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
– During creation of the electrical cross-connect services on the U2000, create the ODU2 level cross-connections between the ClientLP port and the ODU2 port of other board, as shown in Figure 14-148.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1257
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-148 ODU2 Cross-Connections WDM side 1(IN1/OUT1)-OCH:1 2(IN1/OUT1)-OCH:1 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Other board a (standard mode) Other board b (compatible mode)
Cross-connect module
Client side 209(ClientLP9/ClientLP9)-1 210(ClientLP10/ClientLP10)-1
WDM side
211(ClientLP11/ClientLP11)-1
216(ClientLP16/ClientLP16)-1
TEM28
Cross-connect module
The client side of the TEM28 board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
– During creation of the electrical cross-connect services on the U2000, create the ODUflex level cross-connections between the ClientLP port and the ODUflex port of other board, as shown in Figure 14-149. NOTE
When creating ODUflex cross-connections, specify the number of ODUflex timeslots based on the service rate. The number of ODUflex timeslots ranges from 1 to 8 and the rate of each timeslot is 1.25 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1258
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-149 ODUflex Cross-Connections WDM side
Other board
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2
Cross-connect module
Client side 209(ClientLP9/ClientLP9)-1 210(ClientLP10/ClientLP10)-1 TEM28
211(ClientLP11/ClientLP11)-1
Cross-connect module 216(ClientLP16/ClientLP16)-1
The client side of the TEM28 board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
NOTE
Ports 201(ClienLP1/ClienLP1)-1 to 208(ClienLP8/ClienLP8)-1 support a maximum of eight ODU0 crossconnections with the maximum bandwidth of 10 Gbit/s. Ports 209(ClienLP9/ClienLP9)-1 to 216 (ClienLP16/ClienLP16)-1 support a maximum of eight ODU0, eight ODU1, two ODU2, or eight ODUflex cross-connections with the maximum bandwidth of 20 Gbit/s. The TEM28 board supports simultaneous transmission of ODU0, ODU1, ODU2, and ODUflex signals with the maximum bandwidth of 20 Gbit/s.
14.11.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS.
Parameters for WDM Interfaces Table 14-140 Parameters for WDM Interfaces
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1259
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: Off
Automatic Laser Shutdown
Disabled, Enabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS , BW_WDM_Defect, FW_ODUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1260
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s LPT Enabled
Enabled, Disabled Default: Disabled
The LPT Enabled parameter determines whether to enable the link pass-through (LPT).
Parameters for Ethernet Interfaces Table 14-141 TAG Attributes (Internal Port/External Port) Field
Value
Description
Port
-
Internal ports are VCTRUNK1 to VCTRUNK16. External ports are PORT3 to PORT30.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1261
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
TAG
Tag Aware, Access, Hybrid
Indicates the type of packets that can be processed by a port.
Default: Tag Aware
Tag Aware: The port transparently transmits the packets with VLAN IDs (Tag) and discards packets without VLAN IDs (Untag). If TAG is set to Tag Aware, VLAN priority and Default VLAN ID are invalid. Access: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and discards the packets that already have VLAN IDs (Tag). Hybrid: The port labels the default VLAN IDs to packets without VLAN IDs (Untag) and transparently transmits the packets that already have VLAN IDs (Tag). This parameter is valid only for UNI ports. NOTE This parameter is invalid for CAware and S-Aware ports.
Default VLAN ID
1 to 4095 Default: 1
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
VLAN Priority
0 to 7 Default: 0
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. NOTE This parameter is valid only when the value of TAG is Access or Hybrid.
Entry Detection
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Entry Detection parameter determines whether a port detects packets by tag identifier. 1262
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-142 Network Attributes (Internal Port/External Port) Field
Value
Description
Port
-
Internal ports are VCTRUNK1 to VCTRUNK16. External ports are PORT3 to PORT30.
Port Attributes
UNI, NNI, C-Aware, SAware
A UNI port supports Tag Aware, Access, and Hybrid.
Default: UNI
An S-Aware port determines that the packets do not carry C-VLAN tags and processes only the packets that have SVLAN tags. A C-Aware port determines that the packets do not carry S-VLAN tags and processes only the packets that have CVLAN tags. NNI is a reserved port type and is not supported at present.
Table 14-143 Basic Attributes (External Port) Field
Value
Description
Port
-
External ports are PORT3 to PORT30.
Enabled/Disabled
Enabled, Disabled
When the parameter value is set to Enabled for a port, the port is enabled and services are provisioned. When the parameter value is set to Disabled for a port, the services on the port are not processed. Therefore, you must enable a port when you configure services on the port.
Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1263
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Working Mode
PORT3 to PORT6:
Indicates the working modes of an Ethernet port. Autonegotiation can automatically determine the optimal working modes of the connected ports. This mode is easy to maintain and is recommended.
l 10G FULL_Duplex LAN, 10G FULL_Duplex LAN, 10G FULL_Duplex LAN (SONET) l Default: 10G FULL_Duplex LAN PORT7 to PORT30: l 1000M FULL_Duplex l Default: AutoNegotiation Maximum Frame Length
1518 to 9600 Default: 1522
NOTE In the configuration process, ensure that working modes of the connected ports are consistent; otherwise, services are unavailable.
Specifies the maximum frame length supported by an Ethernet port. Unit: Byte. Click D.21 Maximum Frame Length to view the details.
Port Physical Parameters
-
Indicates the physical parameters of a port.
MAC LoopBack
Inloop, Outloop, NonLoopback
The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path.
Default: Non-Loopback
PHY LoopBack
Inloop, Outloop, NonLoopback Default: Non-Loopback
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path.
1264
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-144 Flow Control (External Port) Field
Value
Description
Port
-
External ports are PORT3 to PORT30.
Non-Autonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Specifies the flow control mode adopted when an Ethernet port does not work in auto-negotiation mode.
Default: Disable
Click D.23 NonAutonegotiation Flow Control Mode to view the details. Autonegotiation Flow Control Mode
Disabled, Enable Dissymmetric Flow Control, Enable Symmetric Flow Control, Enable Symmetric/ Dissymmetric Flow Control Default: Disable
Specifies the flow control mode adopted when an Ethernet port works in autonegotiation mode. Click D.1 Autonegotiation Flow Control Mode to view the details.
Table 14-145 Advanced Attributes (External Port) Field
Value
Description
Port
-
External ports are PORT3 to PORT30.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Default: Disabled
Click D.6 Enabling Broadcast Packet Suppression to view the details. Broadcast Packet Suppression Threshold
10% to 100%, with a step of 10% Default: 30%
If broadcast packet suppression is enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. Click D.3 Broadcast Packet Suppression Threshold to view the details.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1265
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Loop Detection
Disabled, Enabled
Sets whether to enable loop detection, which is used to check whether a loop exists at the port.
Default: Disabled
Loop Port Shutdown
Enabled, Disabled Default: Enabled
Threshold of Port Receiving Rates (Mbps)
PORT3 to PORT6: l 0–10000 l Default: 10000
Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port. Indicates the rate threshold for an external port to receive traffic.
PORT7 to PORT30: l 0–1000 l Default: 1000 Port Rates Time Slice (m)
0 to 30 Default: 0
Flow Monitor
Enabled, Disabled Default: Disabled
Flow Monitor Interval (min)
1 to 30 Default: 15
Indicates the traffic rate time window of an external port. Indicates whether to monitor zero traffic. Click D.11 Flow Monitor (Ethernet Interface Attributes) to view the details. Indicates the interval for monitoring zero traffic.
Table 14-146 Encapsulation/Mapping (Internal Port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Internal ports are VCTRUNK1 to VCTRUNK16.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1266
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Encapsulation/Mapping
GFP-F, GFP-T
Indicates the mapping protocol for encapsulation of VCTRUNK port data.
Default: GFP-F
NOTE GFP-F: indicates that the upperlayer PDUs of Ethernet MAC frames and the GFP PDUs are mapped in one-to-one manner. GFP-T: indicates that 8B/10B payloads are mapped to GFP in transparent mapping mode to achieve low-delay transmission. When services are encapsulated into ODU0, GFP-T and GFP-F are supported. When services are encapsulated into ODU1, ODU2, and ODUflex, only GFP-F is supported. The mapping protocols for GE services on the transmit end and receive end must be the same.
Scrambling Mode[X43+1]
Scramble
Default: Scrambling Mode [X43+1] ExtensionHeader Option
No Default: No
Check Field Length
FCS32, No Default: FCS32
FCS Calculated Bit Sequence
Big endian Default: Big endian
Indicates whether to scramble the payload area of the encapsulation protocol. Displays the extension header option. Indicates the length of the CRC field of the mapping protocol. Indicates the sequence of storing the bits in the CRC field in the FCS frame of the mapping protocol.
Table 14-147 Advanced attributes (Internal Port) Field
Value
Description
Port
-
Internal ports are VCTRUNK1 to VCTRUNK16.
Loop Detection
Disabled, Enabled
Sets whether to enable loop detection, which is used to check whether a loop exists at the port.
Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1267
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Loop Port Shutdown
Enabled, Disabled
Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port.
Default: Enabled
Flow Monitor
Enabled, Disabled Default: Disabled
Flow Monitor Interval (min)
1 to 30
Indicates whether to monitor zero traffic. Click D.11 Flow Monitor (Ethernet Interface Attributes) to view the details. Indicates the interval for monitoring zero traffic.
Default: 15
14.11.10 TEM28 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54TE M28
N/A
1000 BASE-SX-0.5 km (I-850-LC) 1000 BASE-LX-10 km (I-1310-LC) 10G BASE-SR-0.3 km (SFP+) 10G BASE-LR-10 km (SFP+)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 14-148 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Issue 03 (2013-05-16)
Value 1000 BASE-SX-0.5 km (I-850-LC)
1000 BASE-LX-10 km (I-1310-LC)
Line code format
-
NRZ
NRZ
Optical source type
-
MLM
SLM
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1268
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type Target transmission distance
-
Value 1000 BASE-SX-0.5 km (I-850-LC)
1000 BASE-LX-10 km (I-1310-LC)
0.5 km (0.3 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
830 to 860
1270 to 1355
Maximum mean launched power
dBm
-2.5
-3
Minimum mean launched power
dBm
-9.5
-9.5
Minimum extinction ratio
dB
9
9
Eye pattern mask
-
IEEE802.3z –compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
770 to 860
1260 to 1620
Receiver sensitivity
dBm
-17
-20
Minimum receiver overload
dBm
0
-3
NOTE
The electrical interface specifications comply with IEEE Std 802.3 when receiving 1000 BASE-T services.
Table 14-149 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Issue 03 (2013-05-16)
Value 10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
Optical source type
-
MLM
SLM
Line code format
-
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1269
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
10G BASE-SR-0.3 km (SFP+)
10G BASE-LR-10 km (SFP+)
Transmitter parameter specifications at point S Operating wavelength range
nm
840 to 860
1260 to 1355
Maximum mean launched power
dBm
-1
0.5
Minimum mean launched power
dBm
-7.3
-8.2
Minimum extinction ratio
dB
3
3.5
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z–compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
Minimum receiver overload
dBm
-1
0.5
Maximum reflectance
dB
-12
-12
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN54TEM28
110
120
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1270
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.12 THA THA: 16 Any-rate Ports Service Processing Board
14.12.1 Version Description The available functional version of the THA board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN54 THA
Y
Y
Y
N
N
N
Variants The TN54THA board has only one variant: TN54THA01.
14.12.2 Application Overview As a type of tributary board, The maximum access capacity of the THA at the client side is 40 Gbit/s. Table 14-150 provides the application scenarios for the THA board. Table 14-150 Application scenarios for the THA board
Issue 03 (2013-05-16)
Scenario
Maximum Input Capacity (Client Side)
Mapping Path
Maximum Output Capacity (Backplane Side)
Port Working Mode
Scenario 1
16 x FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/FC100/ FICON/DVB-ASI/ESCON
Anya>ODU0
16 x ODU0
ODU0 nonconvergence mode (Any>ODU0)
Scenario 2
16 x STM–16/OC-48/FC200/ FICON Express/OTU1
Anya>ODU1
16 x ODU1
ODU1 nonconvergence mode (Any>ODU1)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1271
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Scenario
Maximum Input Capacity (Client Side)
Mapping Path
Maximum Output Capacity (Backplane Side)
Port Working Mode
Scenario 3
16 x FE/FDDI/GE/STM-1/ OC-3/DVB-ASI/SDI/ ESCON/STM-4/OC-12/GE/ FC100/FICON/STM-16/ FC200/FICON Express
n x Anya>ODU1
(2 to 16) x ODU1
ODU1 convergence mode (n X Any>ODU1)
OTU1>ODU1>ODU0
32x ODU0
ODU1_ODU 0 mode (OTU1>ODU1>ODU0)
NOTE Each of the RX1/TX1–RX8/TX8 and RX9/TX9–RX16/TX16 port groups supports mutual conversion between a maximum of 8 channels of optical signals at any rate in the range of 125 Mbit/ s to 2.2 Gbit/s and one to eight channels of ODU1 electrical signals. Each port in each group either converges multiple clientside services into one channel of ODU1 electrical signals or maps one client-side service into one channel of ODU1 electrical signals
Scenario 4
16 x OTU1
a: "Any" in the table indicates the client-side service supported in the corresponding application scenario.
14.12.3 Functions and Features The THA board is mainly used to achieve cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-151.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1272
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-151 Functions and features of the THA board Function and Feature
Description
Basic function
THA converts signals as follows: l 16 x (125 Mbit/s to 1.25 Gbit/s) <-> 16 x ODU0. l 16 x (1.49 Gbit/s to 2.67 Gbit/s) <-> 16 x ODU1. l 16 x (125Mbit/s to 2.5 Gbit/s)<->2 to 16 x ODU1. l 16 x OTU1<->32 x ODU0.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE The THA board supports access of DVB-ASI electrical signals. When the board is used to accept these electrical signals, a digital video O/E converter must be used for O/E or E/O conversion and the optical module of the converter must agree with the board optical module specifications. The digital video O/E converter is a third-party device. Customers can purchase a digital video O/E converter by themselves.
Crossconnect capabilities
Cross-connects a maximum of 32 channels of ODU0 signals or 16 channels of ODU1 signals through the backplane bus and cross-connect board.
OTN function
l The mapping process complies with ITU-T G.7041 and ITU-T G.709. The board supports the frame format and overhead processing by referring to the ITU-T G.709. l Supports the PM function for ODU0. l Supports PM non-intrusive monitoring for ODU0. l Supports TCM and PM functions for ODU1. l Supports PM and TCM non-intrusive monitoring for ODU1. l Supports the SM, TCM and PM functions for OTU1.
ESC function
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1273
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
PRBS test function
Supports the PRBS function on the client side.
LPT function
This function is supported only when the THA board receives FE or GE services on its client side.
FEC encoding
Supports forward error correction (FEC) on the client side that complies with ITU-T G.709, only when the service type is OTU1.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC-3, STM-4/OC-12, STM-16/OC-48, or OTU1
l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
Supported NOTE The board supports the Test frame function only when the Service Type is GE(GFPT).
Latency measuremen t
The board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000. NOTE This function is not supported when the client-side service type is OTU1.
IEEE 1588v2
Supports the TC, TC+OC, BC, and OC modes when the client-side service type is GE (GFP-T). NOTE The TX8/RX8 and TX16/RX16 optical ports cannot process IEEE 1588v2 clock signals.
Physical clock
When receiving GE(GFP-T) services on the client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission. When receiving GE(TTT-GMP) services on the client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing.
Electricallayer ASON
Issue 03 (2013-05-16)
Supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1274
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protection scheme
l Supports client 1+1 protection. l Supports ODUk SNCP. l Supports tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection. ODU0 tributary SNCP protection is supported only in ODU1_ODU0 mode (OTU1>ODU1->ODU0).
Ethernet service mapping mode
Supports encapsulation of GE services in GE(TTT-GMP) or GE(GFP-T).
Ethernet port working mode
Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
Channel Loopback
1000M Full-Duplex
Client side
Issue 03 (2013-05-16)
Inloop Outloop
Supported NOTE The Channel Loopback is supported only when port working mode is ODU1_ODU0 mode (OTU1->ODU1->ODU0).
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1275
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FCPI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1276
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performanc e monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.12.4 Physical Ports Displayed on NMS This section describes how the physical ports of the board are displayed on the NMS.
Display of Physical Ports Table 14-152 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-152 Mapping between the physical ports on the THA board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1277
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Physical Port
Port Number on the NMS
TX9/RX9
11
TX10/RX10
12
TX11/RX11
13
TX12/RX12
14
TX13/RX13
15
TX14/RX14
16
TX15/RX15
17
TX16/RX16
18
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
14.12.5 THA scenario 1: ODU0 non-convergence mode (Any>ODU0) 14.12.5.1 Application The THA board performs conversion between 16 channels of optical signals at a rate in the range of 125 Mbit/s to 1.25 Gbit/s and 16 channels of ODU0 electrical signals, see Figure 14-150. Figure 14-150 Position of the THA in a WDM system (Scenario 1) 16xODU0 2xOTU2
8×ODU0
N D 2 16
16
M U X / D M U X
1
1
N D 2 16
16
TX1 RX1
8×ODU0
16×Any
16×ODU0
RX16
1
M U X / D M U X
16×Any
1
RX1 FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBASI/ESCON TX16
THA
THA
16×ODU0
TX1
2xOTU2 16xODU0
FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBASI/ESCON TX16 RX16
14.12.5.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1278
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The THA board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-153 Port diagram and port description Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-151
Table 14-154
THA
Standard mode
Figure 14-152
Table 14-155
THA (STND)
Figure 14-151 Port diagram of the THA board (ODU0 non-convergence mode (Any->ODU0)) (compatible mode) Other line/PID board
Backplane 16xODU0 3(RX1/TX1)-1 4(RX2/TX2)-1
18(RX16/TX16)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
216(ClientLP16/ClientLP16)-1 216(ClientLP16/ClientLP16)-2
NOTE
When creating electrical cross-connections between the ClientLP port of the THA board and other boards's ODU0LP ports, the source optical channel must be set to 1.
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1279
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-154 Description of NM port of the THA board (ODU0 non-convergence mode (Any>ODU0)) Port Name
Description
RX1/TX1 to RX16/TX16
These ports correspond to the client-side optical interfaces.
ClientLP1 to ClientLP16
Internal logical port. The optical paths are numbered 1 to 2.
Figure 14-152 Port diagram of the THA board (ODU0 non-convergence mode (Any->ODU0)) (standard mode) Other line/PID board Backplane 16xODU0 3(RX1/TX1)-1 4(RX2/TX2)-1
18(RX16/TX16)-1
Cross-connect module
Automatic cross-connection, which does not need to be configured on the NMS.
Service processing module
Cross-connection that must be configured on the NMS.
Table 14-155 Description of NM port of the THA board (ODU0 non-convergence mode (Any>ODU0)) Port Name
Description
RX1/TX1–RX16/TX16
These ports correspond to the client-side optical interfaces.
14.12.5.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU0 non-convergence mode (Any>ODU0).
l
Set the service type. Ensure that the service type is the same as the actual service type.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1280
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board NOTE
If all the 16 client–side ports are used to receive and transmit GE(TTT-GMP) services, users can configure the 16*GE for 16*ODU0 service package for the board on the NMS. This simultaneously sets the Port Working Mode to ODU0 non-convergence mode (Any->ODU0) and the Service Type to GE(TTTGMP) for the 16 ports.
l
When the THA board works in compatible mode: – On the U2000, create electrical cross-connections between the internal RX/TX and ClientLP ports. For details, see
1
in Figure 14-153.
– On the U2000, create electrical cross-connections between the local ClientLP port and other boards's ODU0LP ports. For details, see l
2
in Figure 14-153.
When the THA board works in standard mode: – On the U2000, create electrical cross-connections between the local RX/TX port and other boards's ODU0LP ports. For details, see
Issue 03 (2013-05-16)
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
in Figure 14-154.
1281
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-153 Cross-connection diagram of the THA board (ODU0 non-convergence mode (Any->ODU0)) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board a (standard mode)
Other board 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
2
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
THA 16(TX14/RX14)-1
17(TX15/RX15)-1
216(ClientLP16/ClientLP16)-1
18(TX16/RX16)-1
216(ClientLP16/ClientLP16)-2
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1282
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-154 Cross-connection diagram of the TOA board (ODU0 non-convergence mode (Any->ODU0)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
Other board a (standard 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:1 mode) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:2 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
5(TX3/RX3)-1
THA
17(TX15/RX15)-1 18(TX16/RX16)-1 Cross-connect module The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
NOTE
When the THA board connects to a TOM board that uses optical channel 2 on the ClientLP port, a client-side optical port on the THA board must be cross-connected to optical channel 2 on the ClientLP port of the THA board. In other cases, configure cross-connections from optical channel 1 on the ClientLP port of the TOM board to the client-side ports on the THA board. When creating electrical cross-connections between the ClientLP port of the THA board and other boards's ODU0LP ports, the source optical channel must be set to 1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1283
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.12.6 THA scenario 2: ODU1 non-convergence mode (Any>ODU1) 14.12.6.1 Application The THA board performs conversion between 16 channels of optical signals at a rate in the range of 1.49 Gbit/s to 2.67 Gbit/s and 16 channels of ODU1 electrical signals, see Figure 14-155. Figure 14-155 Position of the THA in a WDM system (Scenario 2) 16xODU1 4xOTU2 TX1
THA
8×ODU0
16
16
M U X / D M U X
1
1
N Q 2 16
TX1 RX1
16
16×Any
N Q 2
M U X / D M U X
16×ODU1 8×ODU0
16×Any
RX16
1
16×ODU1
TX16
THA 1
RX1 STM-16/ OC-48/FC200/FICON Express/OTU1
4xOTU2 16xODU1
TX16
STM-16/ OC-48/FC200/FICON Express/OTU1
RX16
14.12.6.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The THA board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-156 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-156
Table 14-157
THA
Standard mode
Figure 14-157
Table 14-158
THA (STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1284
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-156 Port diagram of the THA board (ODU1 non-convergence mode (Any->ODU1)) (compatible mode) Other line/PID board
Backplane 16xODU1 3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)-1
202(ClientLP2/ClientLP2)-1
5(RX3/TX3)-1
16(RX14/TX14)-1 17(RX15/TX15)-1 18(RX16/TX16)-1
203(ClientLP3/ClientLP3)-1
214(ClientLP14/ClientLP14)-1 215(ClientLP15/ClientLP15)-1 216(ClientLP16/ClientLP16)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS.
Table 14-157 Description of NM port of the THA board (ODU1 non-convergence mode (Any>ODU1))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX16/TX16
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP16
Internal logical port. The optical paths are numbered 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1285
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-157 Port diagram of the THA board (ODU1 non-convergence mode (Any->ODU1)) (standard mode)
Other line/PID board Backplane 16xODU1 3(RX1/TX1)-1 4(RX2/TX2)-1
18(RX16/TX16)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS.
Table 14-158 Description of NM port of the TOA board (ODU1 non-convergence mode (Any>ODU1)) Port Name
Description
RX1/TX1–RX16/TX16
These ports correspond to the client-side optical interfaces.
14.12.6.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1 non-convergence mode (Any>ODU1).
l
Set the service type. Ensure that the service type is the same as the actual service type.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1286
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board NOTE
If all the 16 client-side ports are used to receive and transmit STM-16 services, users can configure the 16 * STM-16/OC-48–>ODU1 service package for the board. This simultaneously sets the Port Working Mode to ODU1 non-convergence mode (Any->ODU1) and Service Type to STM-16 for the 16 ports.
l
When the THA board works in compatible mode: – On the U2000, create electrical cross-connections between the local ClientLP port and other boards's ODU1LP ports. For details, see
l
1
in Figure 14-158.
When the THA board works in standard mode: – On the U2000, create electrical cross-connections between the local RX/TX port and other boards's ODU1LP ports. For details, see
1
in Figure 14-159.
Figure 14-158 Cross-connection diagram of the THA board (ODU1 non-convergence mode (Any->ODU1)) (compatible mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (standard mode)
Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
202(ClientLP2/ClientLP2)-1
5(TX3/RX3)-1
203(ClientLP3/ClientLP3)-1
1
THA 16(TX14/RX14)-1
214(ClientLP14/ClientLP14)-1
17(TX15/RX15)-1
215(ClientLP15/ClientLP15)-1
18(TX16/RX16)-1
216(ClientLP16/ClientLP16)-1
Cross-connect module
Cross-connect module
The straight-through of the board, which does not need to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1287
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-159 Cross-connection diagram of the THA board (ODU1 non-convergence mode (Any->ODU1)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (standard mode)
Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
5(TX3/RX3)-1
THA
17(TX15/RX15)-1 18(TX16/RX16)-1 Cross-connect module
The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.12.7 THA scenario 3: ODU1 convergence mode (n X Any->ODU1) Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1288
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.12.7.1 Application Each of the RX1/TX1–RX8/TX8 and RX9/TX9–RX16/TX16 port groups supports mutual conversion between a maximum of 8 channels of optical signals at any rate in the range of 125 Mbit/s to 2.2 Gbit/s and one to eight channels of ODU1 electrical signals, as shown in Figure 14-160. Figure 14-160 Position of the THA in a WDM system (Scenario 3) (2~16)xODU1 4xOTU2
N Q 2
8×Any
M U X / D M U X
8×Any
N Q 2
M U X / D M U X
(1~8)×ODU1 (1~8)×ODU1
RX1 FE/FDDI/GE /FC100/ FC200/DVBASI/ESCON/STM1/STM-4/STM-16/OC3/OC-12/FICON/FICON TX16 Express RX16
THA
THA
(1~8)×ODU1 (1~8)×ODU1 8×Any 8×Any
TX1
4xOTU2 (2~16)xODU1 TX1 RX1
FE/FDDI/GE /FC100/ FC200/DVBASI/ESCON/STM1/STM-4/STM-16/OCTX16 3/OC-12/FICON/FICON Express RX16
NOTE
The client signals received by the RX1/TX1–RX8/TX8 ports cannot be encapsulated together with the client signals received by the RX9/TX9–RX16/TX16 ports.
14.12.7.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The THA board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-159 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-161
Table 14-160
54THA
Standard mode
Figure 14-162
Table 14-161
54THA (STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1289
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-161 Port diagram of the THA board (ODU1 convergence mode (n * Any->ODU1)) (compatible mode) Other line/PID board
Backplane (2-16)xODU1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
17(RX15/TX15)-1 18(RX16/TX16)-1
216(ClientLP16/ClientLP16)-1 216(ClientLP16/ClientLP16)-1 216(ClientLP16/ClientLP16)-8
Cross-connect module
Service processing module
Multiplexing module
Cross-connection that must be configured on the NMS
Table 14-160 Description of NM port of the THA board (ODU1 convergence mode (n * Any>ODU1))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX16/TX16
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP16
Internal logical port. The optical paths are numbered 1 to 16.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1290
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-162 Port diagram of the THA board (ODU1 convergence mode (n * Any->ODU1)) (standard mode) Other line/PID board Backplane (2~16)xODU1 201(ConvGroup1/ConvGroup1)-1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1
201(ConvGroup1/ConvGroup1)-2
201(ConvGroup1/ConvGroup1)-1
201(ConvGroup1/ConvGroup1)-3
202(ConvGroup2/ConvGroup2)-1 201(ConvGroup1/ConvGroup1)-7
203(ConvGroup3/ConvGroup3)-1
201(ConvGroup1/ConvGroup1)-8
216(ConvGroup16/ ConvGroup16)-1
17(RX15/TX15)-1 18(RX16/TX16)-1
216(ConvGroup16/ ConvGroup16)-1
216(ConvGroup16/ ConvGroup16)-8
Cross-connect module
Service processing module
Multiplexing module
Cross-connection that must be configured on the NMS
Table 14-161 Description of NM port of the THA board (ODU1 convergence mode (n * Any>ODU1)) Port Name
Description
RX1/TX1–RX16/TX16
These ports correspond to the client-side optical interfaces.
ConvGroup1–ConvGroup8
Internal logical port. The paths are numbered 1 to 8.
14.12.7.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1 convergence mode (n * Any>ODU1).
l
Set the service type. Ensure that the service type is the same as the actual service type.
l
When the THA board works in compatible mode: – On the U2000, create cross-connections between the local RX/TX port and ClientLP port. For details, see
1
in Figure 14-163.
– Create cross-connections between the local ClientLP port and other boards' ODU1LP ports. For details, see Issue 03 (2013-05-16)
2
in Figure 14-163.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1291
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
When the THA board works in standard mode: – On the U2000, create cross-connections between the local RX/TX port and ConvGroup port. For details, see
1
in Figure 14-164.
– Create cross-connections between the local ConvGroup port and other boards' ODU1LP ports. For details, see
2
in Figure 14-164.
NOTE
When the rate of services received on the client side is greater than 1.25 Gbit/s, these services must be configured on the first optical channel of each ClientLP. The first eight client-side ports on the THA board can be configured with cross-connections only to the first eight LP ports; the last eight client-side ports on the THA board can be configured with cross-connections only to the last eight LP ports.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1292
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-163 Cross-connection diagram of the THA board (ODU1 convergence mode (n * Any->ODU1)) (compatible mode) WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Other board a 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 (standard mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
201(ClientLP1/ClientLP1)-2
5(TX3/RX3)-1 6(TX4/RX4)-1
1
201(ClientLP1/ClientLP1)-1
2 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1
202(ClientLP2/ClientLP2)-1
202(ClientLP2/ClientLP2)-8
17(TX15/RX15)-1 18(TX16/RX16)-1
216(ClientLP16/ClientLP16)-1
THA 216(ClientLP16/ClientLP16)-1
216(ClientLP16/ClientLP16)-7 216(ClientLP16/ClientLP16)-8
Cross-connect module
Multiplexing module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The internal cross-connection of the board, which needs to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1293
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-164 Cross-connection diagram of the THA board (ODU1 convergence mode (n * Any->ODU1)) (standard mode) WDM side 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (standard mode)
Other board b (compatible mode)
Cross-connect module
Client side 201(ConvGroup1/Conv Group1)-1
3(TX1/RX1)-1 4(TX2/RX2)-1
201(ConvGroup1/Conv Group1)-1
1
5(TX3/RX3)-1
201(ConvGroup1/Conv Group1)-8
6(TX4/RX4)-1
202(ConvGroup2/Conv Group2)-1 202(ConvGroup2/Conv Group2)-8 216(ConvGroup16/Conv Group16)-1
2 202(ConvGroup2/Conv Group2)-1
THA 216(ConvGroup16/Conv Group16)-1
18(TX16/RX16)-1
216(ConvGroup16/Conv Group16)-8 Cross-connect module Multiplexing module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The internal cross-connection of the board, which needs to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.12.8 THA scenario 4: ODU1_ODU0 mode (OTU1->ODU1>ODU0) 14.12.8.1 Application The THA board performs conversion between 16 OTU1 optical signals and 32 ODU0 electrical signals, see Figure 14-165. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1294
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-165 Position of the THA in a WDM system (Scenario 4) 32xODU0 4xOTU2 THA
RX1
1
1
8×ODU0
32
1
1
RX1
N Q 2 32
16×OTU1
32
M U X / D M U X
16×ODU1
N Q 2
M U X / D M U X
32×ODU0 8×ODU0
32×ODU0
TX16
16×ODU1
16×OTU1
RX16
TX1
THA
TX1
OTU1
4xOTU2 32xODU0
32
OTU1 TX16 RX16
14.12.8.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The THA board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-162 Port diagram and port description Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-166
Table 14-163
54THA
Standard mode
Figure 14-167
Table 14-164
54THA(STND)
Figure 14-166 Port diagram of the THA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (compatible mode) Other line/PID board
Backplane 32xODU0
201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
3(RX1/TX1)-1 4(RX2/TX2)-1
17(RX15/TX15)-1 18(RX16/TX16)-1
Issue 03 (2013-05-16)
215(ClientLP15/ClientLP15)-1 216(ClientLP16/ClientLP16)-1
175(ODU0LP15/ODU0LP15)-1 175(ODU0LP15/ODU0LP15)-2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1295
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Cross-connect module
Automatic cross-connection, which does not need to be configured on the NMS.
Multiplexing module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-163 Description of NM port of the THA board (ODU1_ODU0 mode (OTU1->ODU1>ODU0)) Port Name
Description
RX1/TX1 to RX16/TX16
These ports correspond to the client-side optical interfaces.
ClientLP1 to ClientLP16
Internal logical port. The optical paths are numbered 1.
ODU0LP1 to ODU0LP16
Internal logical port. The optical paths are numbered 1 to 2.
Figure 14-167 Port diagram of the THA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (standard mode) Other line/PID board Backplane 32xODU0
3(RX1/TX1)-1 3(RX1/TX1)-2 4(RX2/TX2)-1 4(RX2/TX2)-2
3(RX1/TX1)-1 4(RX2/TX2)-1
17(RX15/TX15)-1 18(RX16/TX16)-1
17(RX15/TX15)-1 17(RX15/TX15)-2 18(RX16/TX16)-1 18(RX16/TX16)-2
Cross-connect module
Issue 03 (2013-05-16)
Cross-connection that must be configured on the NMS.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1296
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Multiplexing module
Table 14-164 Description of NM port of the THA board (ODU1_ODU0 mode (OTU1->ODU1>ODU0)) Port Name
Description
RX1/TX1 to RX16/TX16
These ports correspond to the client-side optical interfaces. The paths are numbered 1 to 2.
14.12.8.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1_ODU0 mode (OTU1->ODU1>ODU0).
l
Set the service type. Ensure that the service type is the same as the actual service type.
l
When the THA board works in compatible mode: – On the U2000, create electrical cross-connections between the local ODU0LP port and other boards' ODU0LP ports. For details, see
l
1
in Figure 14-168.
When the THA board works in standard mode: – On the U2000, create electrical cross-connections between the local RX/TX-1, RX/ TX-2 port and other boards' ODU0LP ports. For details, see
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
in Figure 14-169.
1297
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-168 Cross-connection diagram of the THA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board a 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 (standard mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
17(TX15/RX15)-1
215(ClientLP15/ClientLP15)-1
18(TX16/RX16)-1
216(ClientLP16/ClientLP16)-1
THA
Cross-connect module
1
175(ODU0LP15/ODU0LP15)-1 175(ODU0LP15/ODU0LP15)-2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Multiplexing module
Cross-connect module
The straight-through of the board, which does not need to be configured on the NMS The virtual path of the board, which does not need to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1298
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-169 Cross-connection diagram of the THA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
Other board a
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:1 (standard mode) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 Cross-connect module
Client side 3(TX1/RX1)-1 3(TX1/RX1)-2 4(TX2/RX2)-1 4(TX2/RX2)-2
3(TX1/RX1)-1 4(TX2/RX2)-1
17(TX15/RX15)-1
17(TX15/RX15)-1 17(TX15/RX15)-2 18(TX16/RX16)-1 18(TX16/RX16)-2
18(TX16/RX16)-1
THA
1
Multiplexing module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The client side of the THA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.12.9 Working Principle and Signal Flow The THA board consists of the client-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-170 shows the block diagram of the functions of the THA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1299
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-170 Functional modules and signal flow of the THA board Backplane (service cross-connection)
RX1 RX2
O/E
Service encapsulation and mapping module
RX8 TX1 TX2
16X ODU0/8X ODU1
16X ODU0/8X ODU1
Client side
E/O
OTN processing module
Crossconnect module
TX8
Signal processing module RX9 RX10
O/E
1588v2 module
Service encapsulation and mapping module
RX16 TX9 TX10
E/O
TX16
Client-side optical module
OTN processing module
Crossconnect module
Signal processing module
Control Memory
Communication
CPU
Control and communication module Power supply module Fuse
DC power supply from a backplane
Required voltage
SCC
Backplane (controlled by SCC)
NOTE
For more information regarding the type of signals received on the client side, see section 14.12.3 Functions and Features.
In the signal flow of the THA board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the THA to the backplane of the THA, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives 16 channels of optical signals from client equipment through the RX1-RX16 interfaces, and performs O/E conversion. After O/E conversion, the 16 channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, and OTN framing. Then, the module sends out a maximum of 32 channels of ODU0 signals or 16 channels of ODU1 signals to the backplane.
l
Receive direction The signal processing module receives the electrical signals sent from the backplane. The module performs operations such as ODU0 or ODU1 framing, demapping and
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1300
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
decapsulation processing. Then, the module sends out 16 channels of Any signals to the client-side optical module. The client-side optical module performs the E/O conversion of Any electrical signals, and then outputs 16 channels of client-side optical signals through the TX1-TX16 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of the standard optical signals. – Client-side transmitter: Performs the E/O conversion from the internal electrical signals to standard optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, OTN processing module. – Cross-connect module Implements the grooming of electrical signals between the THA and the cross-connect board through the backplane. The grooming service signals are ODU1 or ODU0 signals. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the ODU0/ ODU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Processes overheads in OTN signals, and performs FEC encoding and decoding.
l
1588v2 module – The 1588v2 module can send the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.12.10 Front Panel There are indicators and interfaces on the front panel of the THA board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1301
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Appearance of the Front Panel Figure 14-171 shows the front panel of the THA board. Figure 14-171 Front panel of the THA board SM SFP WORK WITH G.657B FIBER ONLY 单模光模块仅配合使用 G.657A2 光纤
THA STAT ACT PROG SRV RX 1
2 TX
TX 15
16 RX
SM SFP WORK WITH G.657B FIBER ONLY 单模光模块仅配合使用 G.657B 光纤
RX 1
TX 15
2 TX
16 RX
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657B fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-165 lists the type and function of each optical interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1302
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-165 Types and functions of the interfaces on the THA board Interface
Type
Function
RX1-RX16
LC
Receives optical signals.
TX1-TX16
LC
Transmits optical signals.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.12.11 Valid Slots One slot houses one THA board. Table 14-166 shows the valid slots for the THA board. NOTE
Two THA boards cannot be housed in adjacent slots. To easy maintenance of fibers, do not house the THA board in the most left or right slot.
Table 14-166 Valid slots for the THA board Product
Valid slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU11-IU17, IU20-IU33, IU36IU42, IU45-IU51, IU54-IU67
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU18, IU21-IU27, IU29IU35
OptiX OSN 8800 T16 subrack
IU2-IU8, IU11-IU17
14.12.12 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the THA, refer to. Table 14-167 THA parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1303
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Optical Interface Name
-
Set and query the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop Default: NonLoopback
Issue 03 (2013-05-16)
Query or set the path Loopback. NOTE This parameter can be set only when Port Working Mode is set to ODU1_ODU0 mode (OTU1->ODU1->ODU0)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1304
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Service Type
None, Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE(TTTGMP), GE(GFP-T), OC-3, OC-12, OC-48, OTU-1, STM-1, STM-4, STM-16
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None
NOTE GE services can be encapsulated in two formats. When Service Type is GE(TTTGMP), the encapsulation format is TTTGMP; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(TTT-GMP) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
The THA board's ports may work in any of four working modes and the type of the client-side services received by the ports varies with the working modes. NOTE l ODU0 non-convergence mode (Any>ODU0): Supports DVB-ASI, ESCON, FC-100, FDDI, FE, FICON, GE(GFPT), GE(TTT-GMP), OC-3, OC-12, STM-1, and STM-4 services. l ODU1 convergence mode (n*Any>ODU1): Supports Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, STM-1, STM-4, STM-16, OC-3, OC-12, OC-48, and GE(GFP-T) services. l ODU1 non-convergence mode (Any>ODU1): Supports FC-200, FICONExpress, OC-48, OTU-1, and STM-16 services. l ODU1_ODU0 mode (OTU1->ODU1>ODU0): Supports OTU1 services.
Client Service Bearer Rate (Mbit/s)
l Channel 1 at each of ports 201 (ClientLP1/ ClientLP1) to 216 (ClientLP16/ ClientLP16): 125 to 2200 l Channels 2 to 8 at each of ports 201 (ClientLP1/ ClientLP1) to 216 (ClientLP16/ ClientLP16): 125 to 1250
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE This parameter can be set only when Service Type is set to Any.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information.
Default: /
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1305
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: Off
Automatic Laser Shutdown
Enabled, Disabled
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Default: Enabled
Default: FW_Defect
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1306
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s Enabled, Disabled
LPT Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
FEC Working State
Enabled, Disabled Default: Enabled
Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: 1000M FullDuplex
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to enable the link pass-through (LPT) function. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1307
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
Port Working Mode
ODU0 nonconvergence mode (Any->ODU0), ODU1 non-convergence mode (Any->ODU1), ODU1 convergence mode (n*Any->ODU1), ODU1_ODU0 mode (OTU1->ODU1>ODU0), NONE Mode (Not for port)
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail.
Default: ODU0 nonconvergence mode (Any->ODU0)
14.12.13 THA Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54TH A
N/A
S-16.1-15 km 1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D 1000 BASE-LX-10 km (I-1310-LC)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1308
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
S-16.1 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, and FE signals.
Table 14-168 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value S-16.1 -15 km
Line code format
-
NRZ
Target transmission distance
-
15 km (9.3 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1360
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-5
Minimum extinction ratio
dB
8.2
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.959.1–compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1270 to 1580
Receiver sensitivity
dBm
-18
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1309
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 14-169 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1310
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type Maximum reflectance
dB
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
-12
-12
-12
-12
NOTE
1000 BASE-LX-10 km module can be used to access GE, FC100, STM-4, ESCON, STM-1, FE and DVB-ASI signals. The specifications listed below apply to GE signals. The actual values might be slightly different from these specifications when the accessed signals are FC100, STM-4, ESCON, STM-1, FE, or DVB-ASI signals.
Table 14-170 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 1000 BASE-LX-10 km (I-1310-LC)
Line code format
-
NRZ
Optical source type
-
SLM
Target transmission distance
-
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1270 to 1355
Maximum mean launched power
dBm
-3
Minimum mean launched power
dBm
-9.5
Minimum extinction ratio
dB
9
Eye pattern mask
-
IEEE802.3z –compliant
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1260 to 1620
Receiver sensitivity
dBm
-20
Minimum receiver overload
dBm
-3
Mechanical Specifications l
Issue 03 (2013-05-16)
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1311
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Weight: 1.5 kg (3.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54THA
35
40
14.13 TOA TOA: 8 Any-rate Ports Service Processing Board
14.13.1 Version Description The available functional version of the TOA board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 4TO A
Y
Y
Y
N
N
N
Variants The TN54TOA board has only one variant: TN54TOA01.
14.13.2 Application Overview As a type of tributary board, The maximum access capacity of the TOA at the client side is 20 Gbit/s. Table 14-171 provides the application scenarios for the TOA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1312
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-171 Application scenarios for the TOA board Applicat ion Scenario
Maximum Input Capacity (Client Side)
Mapping Path
Maximum Output Capacity (Backplane Side)
Port Working Mode
Scenario 1
8 x FE/FDDI/GE/ STM-1/STM-4/ OC-3/OC-12/ FC100/FICON/ DVB-ASI/ ESCON/SDI
Anya<->ODU0
8 x ODU0
ODU0 nonconvergence mode (Any>ODU0)
Scenario 2
8 x HD-SDI/ STM–16/OC-48/ FC200/FICON Express/OTU1
Anya<->ODU1
8 x ODU1
ODU1 nonconvergence mode (Any>ODU1)
Scenario 3
8 x FE/FDDI/ STM-1/OC-3/ DVB-ASI/SDI/ ESCON/STM-4/ OC-12/GE/ FC100/FICON/ STM-16/FC200/ FICON Express/ HD-SDI/HDSDIRBR
Anya<->ODU1
(1 to 8) x ODU1
ODU1 convergence mode (n*Any>ODU1)
Scenario 4
8 x OTU1
OTU1<>ODU1<>ODU0
16 x ODU0
ODU1_ODU0 mode (OTU1>ODU1>ODU0)
Scenario 5
5 x 3G-SDI/3GSDIRBR
3G-SDI/3GSDIRBR<>ODUflex
5 x ODUflex
4 x FC400/ FICON4G
FC400/ FICON4G<>ODUflex
4 x ODUflex
ODUflex nonconvergence mode (Any>ODUflex)
a:"Any" in the table indicates the client-side service supported in the corresponding application scenario.
14.13.3 Functions and Features The TOA board is mainly used to achieve cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-172. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1313
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-172 Functions and features of the TOA board Function and Feature
Description
Basic function
TOA converts signals as follows: l 8 x (125 Mbit/s to 1.25 Gbit/s signals) <-> 8 x ODU0. l 8 x (1.49 Gbit/s to 2.67 Gbit/s signals) <-> 8 x ODU1. l 8 x (125 Mbit/s to 2.5 Gbit/s signals) <-> 1 to 8 x ODU1. l 8 x OTU1 <-> 16 x ODU0. l 5 x 3G-SDI/3G-SDIRBR <-> 5 x ODUflex. l 4 x FC400/FICON4G <-> 4 x ODUflex.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1314
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FC400: SAN service at a rate of 4.25 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s FICON4G: SAN service at a rate of 4.25 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s HD-SDIRBR: Bit-serial digital interface for high-definition television systems at a rate of 1.49/1.001 Gbit/s SDI: Serial digital interface at a rate of 270 Mbit/s 3G-SDI: Video service at a rate of 2.97 Gbit/s 3G-SDIRBR: Video service at a rate of 2.97/1.001 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE The TOA board supports both GE electrical signal and GE optical signal. The TOA board supports access of SDI, HD-SDI, HD-SDIRBR, 3G-SDI, 3G-SDIRBR, and DVB-ASI electrical signals. When the board is used to accept these electrical signals, a digital video O/E converter must be used for O/E or E/O conversion and the optical module of the converter must agree with the board optical module specifications. The digital video O/E converter is a third-party device. Customers can purchase a digital video O/E converter by themselves. NOTE The FICON4G service and the FC400 service are processed identically. For the FICON4G service, you can configure it as the FC400 service on the U2000.
Crossconnect capabilities
Issue 03 (2013-05-16)
Cross-connects a maximum of 16 channels of ODU0 signals or 8 channels of ODU1 signals through the backplane bus and cross-connect board. Cross-connects a maximum of five channels of ODUflex signals by using buses on the backplane and the cross-connect board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1315
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
OTN function
l The mapping process complies with ITU-T G.7041 and ITU-T G.709. The board supports the frame format and overhead processing by referring to the ITU-T G.709. l Supports the PM function for ODU0. l Supports PM non-intrusive monitoring for ODU0. l Supports TCM and PM functions for ODU1. l Supports TCM and PM non-intrusive monitoring for ODU1. l Supports PM function for ODUflex. l Supports PM non-intrusive monitoring for ODUflex. l Supports the SM, TCM and PM functions for OTU1.
ESC function
Supported
PRBS test function
Supports the PRBS function on the client side.
LPT function
This function is supported only when the TOA board receives FE or GE services on its client side.
FEC encoding
Supports forward error correction (FEC) on the client side that complies with ITU-T G.709, only when the service type is OTU1.
Alarms and performanc e events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC–3, STM-4/OC-12, STM-16/OC-48, or OTU1.
l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
Test frame
Supported NOTE The board supports the Test frame function only when the Service Type is GE(GFPT).
Latency measureme nt
The board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000. NOTE This function is not supported when the client-side service type is OTU1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1316
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
IEEE 1588v2
Supports the TC, TC+OC, BC, and OC modes when the client-side service type is GE (GFP-T). Supports the BC and OC modes when the client-side service type is OTU1. NOTE When receiving GE (GFP-T) services, the TX8/RX8 optical port cannot process IEEE 1588v2 clock signals. When receiving OTU1 services, the board only supports frequency synchronization using the receiving and transmitting timestamps in Sync messages of the IEEE 1588v2 protocol. It does not support frequency synchronization using the physical clock.
Physical clock
When receiving GE(GFP-T) services on the client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission. When receiving GE(TTT-GMP) services on the client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing. In ODU1_ODU0 mode (OTU1->ODU1->ODU0), when the client-side service type is OTU1, synchronous Ethernet processing is supported but synchronous Ethernet transparent transmission is not supported.
Electricallayer ASON
Supported
Protection scheme
l Supports client 1+1 protection. l Supports ODUk SNCP. l Supports tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection. When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection. ODU0 tributary SNCP protection is supported only in ODU1_ODU0 mode (OTU1>ODU1->ODU0).
Issue 03 (2013-05-16)
Ethernet service mapping mode
Supports encapsulation of GE services in GE(TTT-GMP) or GE(GFP-T).
Ethernet port working mode
GE(TTT-GMP):
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
Channel Loopback
Auto-Negotiation 1000M Full-Duplex
Inloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1317
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description
Client side
Outloop
NOTE The Channel Loopback is supported only when port working mode is ODU1_ODU0 mode (OTU1>ODU1->ODU0).
Inloop
Supported
Outloop Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FCPI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1318
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description
Protocols or standards for service processing (performanc e monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.13.4 Physical Ports Displayed on NMS This section describes the physical ports displayed on the NMS. Table 14-173 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-173 Mapping between the physical ports on the TOA board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1319
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
14.13.5 TOA scenario 1: ODU0 non-convergence mode (Any>ODU0) 14.13.5.1 Application The TOA board performs conversion between eight channels of optical signals at a rate in the range of 125 Mbit/s to 1.25 Gbit/s and eight channels of ODU0 electrical signals, see Figure 14-172. Figure 14-172 Position of the TOA in a WDM system (Scenario 1) 8xODU0 1xOTU2 TX1
TOA 1
8×ODU0
8
8
M U X / D M U X
1
1
N S 2 8
8
TX1 RX1
8×Any
N S 2
M U X / D M U X
8×ODU0 8×ODU0
8×Any
8×ODU0
RX8
TOA 1
RX1 FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBASI/ESCON/SDI TX8
1xOTU2 8xODU0
FE/FDDI/GE/STM-1/ STM-4/OC-3/OC-12/ FC100/FICON/DVBTX8 ASI/ESCON/SDI RX8
14.13.5.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The TOA board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-174 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-173
Table 14-175
54TOA
Standard mode
Figure 14-174
Table 14-176
54TOA (STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1320
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-173 Port diagram of the TOA board (ODU0 non-convergence mode (Any->ODU0)) (compatible mode) Other line/PID board
Backplane 8xODU0 3(RX1/TX1)-1 4(RX2/TX2)-1
10(RX8/TX8)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
Service processing module
Cross-connection that must be configured on the NMS. Table 14-175 Description of NM port of the TOA board (ODU0 non-convergence mode (Any>ODU0))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP8
Internal logical port. The paths are numbered 1 to 2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1321
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-174 Port diagram of the TOA board (ODU0 non-convergence mode (Any->ODU0)) (standard mode) Other line/PID board Backplane 8xODU0 3(RX1/TX1)-1 4(RX2/TX2)-1
10(RX8/TX8)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-176 Description of NM port of the TOA board (ODU0 non-convergence mode (Any>ODU0)) Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
14.13.5.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU0 non-convergence mode (Any>ODU0).
l
Set the service type. Ensure that the service type is the same as the actual service type. NOTE
If all the eight client–side ports are used to receive and transmit GE(TTT-GMP) services, users can configure the 8 * GE->8 * ODU0 service package for the board on the NMS. This simultaneously sets the Port Working Mode to ODU0 non-convergence mode (Any->ODU0) and the Service Type to GE (TTT-GMP) for the eight ports.
l
When the TOA board works in compatible mode: – On the U2000, create electrical cross-connections between the internal RX/TX and ClientLP ports. For details, see
1
in Figure 14-175.
– On the U2000, create electrical cross-connections between the local ClientLP port and other boards's ODU0LP ports. For details, see Issue 03 (2013-05-16)
2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
in Figure 14-175. 1322
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
When the TOA board works in standard mode: – On the U2000, create electrical cross-connections between the RX/TX port and other boards's ODU0LP ports. For details, see
1
in Figure 14-176.
Figure 14-175 Cross-connection diagram of the TOA board (ODU0 non-convergence mode (Any->ODU0)) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board a (standard mode)
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
5(TX3/RX3)-1
202(ClientLP2/ClientLP2)-1
6(TX4/RX4)-1
202(ClientLP2/ClientLP2)-2
2
7(TX5/RX5)-1
TOA
8(TX6/RX6)-1
9(TX7/RX7)-1
208(ClientLP8/ClientLP8)-1
10(TX8/RX8)-1
208(ClientLP8/ClientLP8)-2
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1323
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-176 Cross-connection diagram of the TOA board (ODU0 non-convergence mode (Any->ODU0)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
Other board a (standard 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:1 mode) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:2 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
5(TX3/RX3)-1 6(TX4/RX4)-1
TOA
7(TX5/RX5)-1 8(TX6/RX6)-1
9(TX7/RX7)-1 10(TX8/RX8)-1 Cross-connect module The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
NOTE
When the TOA board connects to a TOM board that uses channel 2 on the ClientLP port, a client-side optical port on the TOA board must be cross-connected to channel 2 on the ClientLP port of the TOA board. In other cases, configure cross-connections from channel 1 on the ClientLP port of the TOM board to the client-side ports on the TOA board. When creating electrical cross-connections between the ClientLP port of the TOA board and other boards's ODU0LP ports, the source optical channel must be set to 1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1324
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.13.6 TOA scenario 2: ODU1 non-convergence mode (Any>ODU1) 14.13.6.1 Application The TOA board performs conversion between eight channels of optical signals at a rate in the range of 1.49 Gbit/s to 2.67 Gbit/s and eight channels of ODU1 electrical signals, see Figure 14-177. Figure 14-177 Position of the TOA in a WDM system (Scenario 2) 8xODU1 2xOTU2 TX1
TOA
8×ODU0
8
8
M U X / D M U X
1
1
N D 2 8
8
TX1 RX1
8×Any
N D 2
M U X / D M U X
8×ODU1 8×ODU0
8×Any RX8
1
8×ODU1
TX8
TOA 1
RX1 HD-SDI/STM–16/ OC-48/FC200/FICON Express/OTU1
2xOTU2 8xODU1
TX8
HD-SDI/STM–16/ OC-48/FC200/FICON Express/OTU1
RX8
14.13.6.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. The TOA board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-177 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-178
Table 14-178
TOA
Standard mode
Figure 14-179
Table 14-179
TOA(STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1325
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-178 Port diagram of the TOA board (ODU1 non-convergence mode (Any->ODU1)) (compatible mode)
Other line/PID board
Backplane 8xODU1 3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)-1
202(ClientLP2/ClientLP2)-1
5(RX3/TX3)-1
203(ClientLP3/ClientLP3)-1
8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
206(ClientLP6/ClientLP6)-1 207(ClientLP7/ClientLP7)-1 208(ClientLP8/ClientLP8)-1
Cross-connect module
Automatic cross-connection, which does not need to be configured on the NMS.
Service processing module
Cross-connection that must be configured on the NMS.
Table 14-178 Description of NM port of the TOA board (ODU1 non-convergence mode (Any>ODU1))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP8
Internal logical port. The paths are numbered 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1326
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-179 Port diagram of the TOA board (ODU1 non-convergence mode (Any->ODU1)) (standard mode) Other line/PID board Backplane 8xODU1 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1
8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
Cross-connection that must be configured on the NMS.
Cross-connect module Service processing module
Table 14-179 Description of NM port of the TOA board (ODU1 non-convergence mode (Any>ODU1)) Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
14.13.6.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1 non-convergence mode (Any>ODU1).
l
Set the service type. Ensure that the service type is the same as the actual service type. NOTE
If all the eight client-side ports are used to receive and transmit STM-16 services, users can configure the 8 * STM-16/OC-48->8 * ODU1 service package for the board. This simultaneously sets the Port Working Mode to ODU1 non-convergence mode (Any->ODU1) and Service Type to STM-16 for the eight ports.
l
On the U2000, create electrical cross-connections between the local ClientLP port and other boards's ODU1LP ports. For details, see
l Issue 03 (2013-05-16)
1
in Figure 14-180.
When the TOA board works in compatible mode: Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1327
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– On the U2000, create electrical cross-connections between the local ClientLP port and other boards's ODU1LP ports. For details, see l
1
in Figure 14-180.
When the TOA board works in standard mode: – On the U2000, create electrical cross-connections between the local RX/TX port and other boards's ODU1LP ports. For details, see
1
in Figure 14-181.
Figure 14-180 Cross-connection diagram of the TOA board (ODU1 non-convergence mode (Any->ODU1)) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (standard mode)
Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
202(ClientLP2/ClientLP2)-1
5(TX3/RX3)-1
203(ClientLP3/ClientLP3)-1
6(TX4/RX4)-1
204(ClientLP4/ClientLP4)-1
7(TX5/RX5)-1
205(ClientLP5/ClientLP5)-1
8(TX6/RX6)-1
206(ClientLP6/ClientLP6)-1
9(TX7/RX7)-1
207(ClientLP7/ClientLP7)-1
10(TX8/RX8)-1
208(ClientLP8/ClientLP8)-1
Cross-connect module
1
TOA
Cross-connect module
The straight-through of the board, which does not need to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1328
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-181 Cross-connection diagram of the TOA board (ODU1 non-convergence mode (Any->ODU1)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (standard mode) Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
5(TX3/RX3)-1 6(TX4/RX4)-1
TOA
7(TX5/RX5)-1 8(TX6/RX6)-1
9(TX7/RX7)-1 10(TX8/RX8)-1 Cross-connect module
The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.13.7 TOA scenario 3: ODU1 convergence mode (n * Any->ODU1)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1329
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.13.7.1 Application The TOA board performs conversion between eight channels of optical signals at a rate in the range of 125 Mbit/s to 2.5 Gbit/s and one to eight channels of ODU1 electrical signals, as shown in Figure 14-182. Figure 14-182 Position of the TOA in a WDM system (Scenario 3) (1~8)xODU1 2xOTU2
TX1
TOA
TOA
RX1 8×ODU0
M U X / D M U X
N D 2
TX1 FE/FDDI/STM-1/OC3/STM-16/ DVB-ASI/SDI/ESCON/ STM-4/OC12/GE/FC100/ FICON/FC200/ TX8 FICON Express/ RX8 HD-SDI/HD-SDIRBR
RX1
8×Any
RX8
N D 2
M U X / D M U X
(1~8)×ODU1 8×ODU0
8×Any
TX8
(1~8)×ODU1
FE/FDDI/STM-1/OC3/STM-16/ DVB-ASI/SDI/ESCON/ STM-4/OC12/GE/FC100/ FICON/FC200/ FICON Express/ HD-SDI/HD-SDIRBR
2xOTU2 (1~8)xODU1
14.13.7.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The TOA board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-180 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-183
Table 14-181
54TOA
Standard mode
Figure 14-184
Table 14-182
54TOA (STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1330
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-183 Port diagram of the TOA board (ODU1 convergence mode (n*Any->ODU1)) (compatible mode) Other line/PID board
Backplane (1-8)xODU1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
208(ClientLP8/ClientLP8)-1
208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-8
Cross-connect module
Service processing module
Multiplexing module
Cross-connection that must be configured on the NMS.
Table 14-181 Description of NM port of the TOA board
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP8
Internal logical port. The paths are numbered 1 to 8.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1331
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-184 Port diagram of the TOA board (ODU1 convergence mode (n*Any->ODU1)) (standard mode) Other line/PID board Backplane (1~8)xODU1 201(ConvGroup1/ConvGroup1)-1
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(ConvGroup1/ConvGroup1)-2
201(ConvGroup1/ConvGroup1)-1
201(ConvGroup1/ConvGroup1)-3
202(ConvGroup2/ConvGroup2)-1 201(ConvGroup1/ConvGroup1)-7
203(ConvGroup3/ConvGroup3)-1
201(ConvGroup1/ConvGroup1)-8
7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1
208(ConvGroup1/ConvGroup1)-1
208(ConvGroup8/ConvGroup8)-1
10(RX8/TX8)-1 208(ConvGroup8/ConvGroup8)-8
Cross-connect module
Service processing module
Multiplexing module
Cross-connection that must be configured on the NMS.
Table 14-182 Description of NM port of the TOA board Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
ConvGroup1–ConvGroup8
Internal logical port. The paths are numbered 1 to 8.
14.13.7.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1 convergence mode (n*Any>ODU1).
l
Set the service type. Ensure that the service type is the same as the actual service type.
l
When the TOA board works in compatible mode: – On the U2000, create cross-connections between the local RX/TX port and ClientLP port. For details, see
1
in Figure 14-185.
– Create cross-connections between the local ClientLP port and other boards' ODU1LP ports. For details, see l Issue 03 (2013-05-16)
2
in Figure 14-185.
When the TOA board works in standard mode: Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1332
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– On the U2000, create cross-connections between the local RX/TX port and ConvGroup port. For details, see
1
in Figure 14-185.
– Create cross-connections between the local ConvGroup port and other boards' ODU1LP ports. For details, see
2
in Figure 14-185.
NOTE
When the rate of services received on the client side is greater than 1.25 Gbit/s, these services must be configured on the first optical channel of each ClientLP.
Figure 14-185 Cross-connection diagram of the TOA board (ODU1 convergence mode (n*Any->ODU1)) (compatible mode) WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board a (standard mode)
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board b (compatible mode)
Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
201(ClientLP1/ClientLP1)-2
5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1
1
201(ClientLP1/ClientLP1)-1
2 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1
202(ClientLP2/ClientLP2)-1
202(ClientLP8/ClientLP8)-8
TOA
8(TX6/RX6)-1
9(TX7/RX7)-1 10(TX8/RX8)-1
208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
208(ClientLP8/ClientLP8)-1
208(ClientLP8/ClientLP8)-7 208(ClientLP8/ClientLP8)-8
Cross-connect module
Multiplexing module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1333
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-186 Cross-connection diagram of the TOA board (ODU1 convergence mode (n*Any->ODU1)) (standard mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board a (standard mode)
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board b (compatible mode)
Cross-connect module
Client side 201(ConvGroup1/Conv Group1)-1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
9(TX7/RX7)-1
1
201(ConvGroup1/Conv Group1)-8 202(ConvGroup2/Conv Group2)-1
202(ConvGroup2/Conv Group2)-8 208(ConvGroup8/Conv Group8)-1
201(ConvGroup1/Conv Group1)-1 2
202(ConvGroup2/Conv Group2)-1
TOA 208(ConvGroup8/Conv Group8)-1
10(TX8/RX8)-1 208(ConvGroup8/Conv Group8)-8 Multiplexing module Cross-connect module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.13.8 TOA scenario 4: ODU1_ODU0 mode (OTU1->ODU1>ODU0)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1334
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.13.8.1 Application The TOA board performs conversion between eight OTU1 optical signals and 16 ODU0 electrical signals, see Figure 14-187. Figure 14-187 Position of the TOA in a WDM system (Scenario 4) 16xODU0 2xOTU2 TOA
RX1
TOA 1
TX1
1
8×ODU0
16
1 N D 2 16
RX1
1
TX1
16
8×OTU1
16
M U X / D M U X
8×ODU1
N D 2
M U X / D M U X
16×ODU0 8×ODU0
16×ODU0
TX8
8×ODU1
RX8
8×OTU1
OTU1
2xOTU2 16xODU0
OTU1 RX8 TX8
14.13.8.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The TOA board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Table 14-183 Port diagram and port description
Issue 03 (2013-05-16)
Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-188
Table 14-184
54TOA
Standard mode
Figure 14-189
Table 14-185
54TOA (STND)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1335
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-188 Port diagram of the TOA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (compatible mode) Other line/PID board
Backplane 16xODU0
201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
3(RX1/TX1)-1 4(RX2/TX2)-1
9(RX7/TX7)-1 10(RX8/TX8)-1
207(ClientLP7/ClientLP7)-1 208(ClientLP8/ClientLP8)-1
167(ODU0LP7/ODU0LP7)-1 167(ODU0LP7/ODU0LP7)-2 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2
Cross-connect module
Automatic cross-connection, which does not need to be configured on the NMS.
Multiplexing module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-184 Description of NM port of the TOA board (ODU1_ODU0 mode (OTU1->ODU1>ODU0))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP8
Internal logical port. The paths are numbered 1.
ODU0LP1–ODU0LP8
Internal logical port. The paths are numbered 1 to 2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1336
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-189 Port diagram of the TOA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (standard mode)
Other line/PID board Backplane 16xODU0
3(RX1/TX1)-1 4(RX2/TX2)-1
9(RX7/TX7)-1 10(RX8/TX8)-1
Cross-connect module
3(RX1/TX1)-1 3(RX1/TX1)-2 4(RX2/TX2)-1 4(RX2/TX2)-2 9(RX7/TX7)-1 9(RX7/TX7)-2 10(RX8/TX8)-1 10(RX8/TX8)-2
Multiplexing module
Cross-connection that must be configured on the NMS. Table 14-185 Description of NM port of the TOA board (ODU1_ODU0 mode (OTU1->ODU1>ODU0))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces. The paths are numbered 1 to 2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1337
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.13.8.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODU1_ODU0 mode (OTU1->ODU1>ODU0).
l
Set the service type. Ensure that the service type is the same as the actual service type.
l
When the TOA board works in compatible mode: – U2000, create electrical cross-connections between the local ODU0LP port and other boards' ODU0LP ports. For details, see
l
1
in Figure 14-190.
When the TOA board works in standard mode: – U2000, create electrical cross-connections between the local RX/TX-1, RX/TX-2 port and other boards' ODU0LP ports. For details, see
1
in Figure 14-191.
Figure 14-190 Cross-connection diagram of the TOA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board a 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 (standard mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 Cross-connect module
Client side 3(TX1/RX1)-1
201(ClientLP1/ClientLP1)-1
4(TX2/RX2)-1
202(ClientLP2/ClientLP2)-1
9(TX9/RX9)-1
207(ClientLP7/ClientLP7)-1
10(TX10/RX10)-1
208(ClientLP8/ClientLP8)-1
TOA
Cross-connect module
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2
1
167(ODU0LP7/ODU0LP7)-1 167(ODU0LP7/ODU0LP7)-2 168(ODU0LP8/ODU0LP8)-1 168(ODU0LP8/ODU0LP8)-2 Multiplexing module
Cross-connect module
The straight-through of the board, which does not need to be configured on the NMS The virtual path of the board, which does not need to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1338
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
Figure 14-191 Cross-connection diagram of the TOA board (ODU1_ODU0 mode (OTU1->ODU1->ODU0)) (standard mode) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
Other board a (standard 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:1 mode) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:2
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
3(TX1/RX1)-1 3(TX1/RX1)-2 4(TX2/RX2)-1 4(TX2/RX2)-2
1
TOA 9(TX7/RX7)-1 10(TX8/RX8)-1
9(TX7/RX7)-1 9(TX7/RX7)-2 10(TX8/RX8)-1 10(TX8/RX8)-2
Multiplexing module
Cross-connect module
The virtual path of the board, which does not need to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / a TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2 Other board TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / b TN54NPO2 / TN55NPO2 / TN54ENQ2
14.13.9 TOA scenario 5: ODUflex non-convergence mode (Any>ODUflex) 14.13.9.1 Application Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1339
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The TOA board performs conversion between five 3G-SDI/3G-SDIRBR optical signals and five ODUflex electrical signals, see Figure 14-192. Figure 14-192 Position of the TOA in a WDM system (3G-SDI/3G-SDIRBR<->ODUflex) 5xODUflex 4xOTU2 TOA
TX1
RX8
1 N Q 2
5
5
M U X / D M U X
M U X / D M U X
1
1
N Q 2 5
5
TX1
5x3G-SDI/3G-SDIRBR
TX8
1
5xODUflex
5
TOA
5xODUflex
3G-SDI 3G-SDIRBR
5x3G-SDI/3G-SDIRBR
RX1
4xOTU2 5xODUflex
RX1 3G-SDI 3G-SDIRBR
5
TX8 RX8
NOTE
Each 3G-SDI/3G-SDIRBR service uses three timeslots of an ODUflex, requiring the total bandwidth of 3.75 Gbit/s.
The TOA board performs conversion between four FC400/FICON4G optical signals and four ODUflex electrical signals, see Figure 14-193. Figure 14-193 Position of the TOA in a WDM system (FC400<->ODUflex) 4xODUflex 4xOTU2
TX1
1 N Q 2
4
4
M U X / D M U X
1
1
N Q 2 4
4
4xFC400/FICON4G
RX8
1
M U X / D M U X
4xODUflex
TX8
TOA
4xODUflex
4xFC400/ 4 FICON4G
TOA 4xFC400/FICON4G
RX1
4xOTU2 4xODUflex
TX1 RX1 4
4xFC400/ FICON4G
TX8 RX8
NOTE
Only the TN53NQ2 board supports ODUflex. Each FC400/FICON4G service uses four timeslots of an ODUflex, requiring the total bandwidth of 5 Gbit/s.
14.13.9.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, 201 (ClientLP1/ClientLP1)-1 is a logical port of the board. The TOA board can work in the standard or compatible mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1340
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-186 Port diagram and port description Mode
Port Diagram
Port Description
Board Name Displayed on the NMS
Compatible mode
Figure 14-194
Table 14-187
54TOA
Standard mode
Figure 14-195
Table 14-188
54TOA (STND)
Figure 14-194 Port diagram of the TOA board (ODUflex non-convergence mode (Any>ODUflex)) (compatible mode) Other line board
Backplane 5xODUflex 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1
8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
206(ClientLP6/ClientLP6)-1 207(ClientLP7/ClientLP7)-1 208(ClientLP8/ClientLP8)-1
Cross-connect module
Automatic cross-connection, which does not need to be configured on the NMS.
Service processing module
Cross-connection that must be configured on the NMS.
Table 14-187 Description of NM port of the TOA board (ODUflex non-convergence mode (Any->ODUflex))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1341
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
ClientLP1–ClientLP8
Internal logical port. The paths are numbered 1.
Figure 14-195 Port diagram of the TOA board (ODUflex non-convergence mode (Any>ODUflex)) (standard mode)
Other line board Backplane 5xODUflex 3(RX1/TX1)-1 4(RX2/TX2)-1
10(RX8/TX8)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-188 Description of NM port of the TOA board (ODUflex non-convergence mode (Any->ODUflex))
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1–RX8/TX8
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1342
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.13.9.3 Configuration of Cross-connection l
On the U2000, set the Port Working Mode to ODUflex non-convergence mode (Any>ODUflex).
l
Set the service type. Ensure that the service type is the same as the actual service type.
l
When the TOA board works in compatible mode: – On the U2000, create electrical cross-connections between the local ClientLP port and other boards' ODUflex ports. For details, see
l
2
in Figure 14-196.
When the TOA board works in standard mode: – On the U2000, create electrical cross-connections between the local RX/TX port and other boards' ODUflex ports. For details, see
1
in Figure 14-197.
NOTE
When configuring a cross-connection, ODUflex Timeslot is 3 if the client service type is 3G-SDI/3GSDIRBR, and ODUflex Timeslot is 4 if the client service type is FC400/FICON4G.
Figure 14-196 ODUflex non-convergence mode (Any->ODUflex) (compatible mode) WDM side
1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2 2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:1
Other board
2(IN2/OUT2)-OCH:1-ODU2:1-ODUflex:2
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1
1
201(ClientLP1/ClientLP1)-1
2
202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
6(TX4/RX4)-1
204(ClientLP4/ClientLP4)-1
7(TX5/RX5)-1
205(ClientLP5/ClientLP5)-1
8(TX6/RX6)-1
206(ClientLP6/ClientLP6)-1
9(TX7/RX7)-1
207(ClientLP7/ClientLP7)-1
10(TX8/RX8)-1
208(ClientLP8/ClientLP8)-1
TOA
The straight-through of the board, which does not need to be configured on the NMS The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board
Issue 03 (2013-05-16)
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1343
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-197 ODUflex non-convergence mode (Any->ODUflex) (standard mode) WDM side 1(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:2
Other board
2(IN2/OUT2)-OCh:1-ODU2:1-ODUflex:1 2(IN2/OUT2)-OCh:1-ODU2:1-ODUflex:2 Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1
1
5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1
TOA
8(TX6/RX6)-1
9(TX7/RX7)-1 10(TX8/RX8)-1 Cross-connect module
The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
14.13.10 Working Principle and Signal Flow The TOA board consists of the client-side optical module, signal processing module, control and communication module, 1588v2 module, and power supply module.
Functional Modules and Signal Flow Figure 14-198 shows the block diagram of the functions of the TOA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1344
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-198 Functional modules and signal flow of the TOA board Backplane (service crossconnection)
16xODU0/8xODU1/5xODUflex
Client side RX1 RX2
O/E
Service encapsulation and mapping module
RX8 TX1 TX2 TX8
E/O Client-side optical module
OTN processing module
Crossconnect module
1588 v2 module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane SCC
NOTE
When used to receive GE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to the service encapsulation and mapping module for processing.
In the signal flow of the TOA board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TOA to the backplane of the TOA, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives 8 channels of optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, the 8 channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, and OTN framing. Then, the module sends out a maximum of 16 channels of ODU0 signals, or 8 channels of ODU1 or 5 channels of ODUflex signals to the backplane.
l
Receive direction The signal processing module receives the electrical signals sent from the backplane. The module performs operations such as ODU0, or ODU1, or ODUflex framing, demapping
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1345
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
and decapsulation processing. Then, the module sends out 8 channels of Any signals to the client-side optical module. The client-side optical module performs the E/O conversion of Any electrical signals, and then outputs 8 channels of client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of the standard optical signals. – Client-side transmitter: Performs the E/O conversion from the internal electrical signals to standard optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, OTN processing module. – Cross-connect module Implements the grooming of electrical signals between the TOA and the cross-connect board through the backplane. The grooming service signals are ODU1, or ODU0, or ODUflex signals. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the ODU0/ ODU1/ODUflex payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Processes overheads in OTN signals, and performs FEC encoding and decoding.
l
1588v2 module The 1588v2 module can send the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.13.11 Front Panel There are indicators and interfaces on the front panel of the TOA board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1346
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Appearance of the Front Panel Figure 14-199 shows the front panel of the TOA board. Figure 14-199 Front panel of the TOA board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1347
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Interfaces Table 14-189 lists the type and function of each interface. Table 14-189 Types and functions of the interfaces on the TOA board Interface
Type
Function
TX1-TX8
LC
Transmits the service signal.
RX1-RX8
LC
Receives the service signal.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.13.12 Valid Slots One slot houses one TOA board. Table 14-190 shows the valid slots for the TOA board. Table 14-190 Valid slots for the TOA board Product
Valid slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.13.13 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TOA, refer toTable 14-191. Table 14-191 TOA parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1348
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop Default: NonLoopback
Issue 03 (2013-05-16)
Query or set the path Loopback. NOTE This parameter can be set only when Port Working Mode is set to ODU1_ODU0 mode (OTU1->ODU1->ODU0)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1349
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Service Type
None, Any, DVB-ASI, SDI, ESCON, FC-100, FC-200, FC-400, FDDI, FE, FICON, FICON Express, GE (TTT-GMP), GE(GFPT), HD-SDI, HDSDIRBR, OC-3, OC-12, OC-48, OTU-1, STM-1, STM-4, STM-16, 3G-SDI, 3GSDIRBR
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None
NOTE The TOA board's ports may work in any of five working modes and the type of the client-side services received by the ports varies with the working modes.
NOTE GE services can be encapsulated in two formats. When Service Type is GE(TTTGMP), the encapsulation format is TTTGMP; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(TTT-GMP) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
l ODU0 non-convergence mode (Any>ODU0): Supports DVB-ASI, ESCON, FC-100, FDDI, FE, FICON, GE(GFPT), GE(TTT-GMP), OC-3, OC-12, SDI, STM-1, and STM-4 services. l ODU1 convergence mode (n*Any>ODU1): Supports Any, DVB-ASI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, STM-1, STM-4, STM-16, OC-3, OC-12 , SDI, HDSDI, HD-SDIRBR, and GE(GFP-T) services. l ODU1 non-convergence mode (Any>ODU1): Supports FC-200, FICONExpress, HDSDI, HD-SDIRBR, OC-48, OTU-1, and STM-16 services. l ODU1_ODU0 mode (OTU1->ODU1>ODU0): Supports OTU1 services. l ODUflex non-convergence mode (Any>ODUflex): Supports FC400, 3G-SDI, 3G-SDIRBR services. NOTE The FICON4G service and the FC400 service are processed identically. For the FICON4G service, you can configure it as the FC400 service on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1350
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Client Service Bearer Rate (Mbit/s)
l Channel 1 at each of ports 201 (ClientLP1/ ClientLP1) to 208 (ClientLP8/ ClientLP8): 125 to 2200
sets the rate of the accessed service at the optical interface on the client side of a board.
l Channels 2 to 8 at each of ports 201 (ClientLP1/ ClientLP1) to 208 (ClientLP8/ ClientLP8): 125 to 1250
NOTE This parameter can be set only when Service Type is set to Any.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information.
Default: / Off, On
Laser Status
Default: Off
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1351
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1352
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
LPT Enabled
Enabled, Disabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
FEC Working State
Enabled, Disabled Default: Enabled
Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: 1000M FullDuplex
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1353
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Port Working Mode
ODU0 nonconvergence mode (Any->ODU0), ODU1 non-convergence mode (Any->ODU1), ODU1 convergence mode (n*Any->ODU1), ODU1_ODU0 mode (OTU1->ODU1>ODU0), ODUflex non-convergence mode (Any->ODUflex), NONE Mode(Not for port)
This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail.
Default: ODU0 nonconvergence mode (Any->ODU0)
14.13.14 TOA Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1354
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54TO A
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km 270 Mbit/s to 3 Gbit/s multirate (Video eSFP)-10 km 4.25 Gbit/s Multirate-0.3 km 4.25 Gbit/s Multirate-10 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16-2 km module, S-16.1-15 km module, L-16.1-40 km module and L-16.2-80 km module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1355
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-192 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant
APD
APD
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1356
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 14-193 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1357
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Maximum reflectance
dB
-12
-12
-12
-12
NOTE
2.125 Gbit/s Multi-rate module can be used to access FC200, GE, FC100, FDDI, FICON, FICON Express, and FE signals. 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FDDI, FICON, FE and DVB-ASI signals. NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 14-194 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1358
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type Target transmission distance
-
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
1.25 Gbit/s Multi-rate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FDDI, FICON, FE, DVB-ASI signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1359
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, FDDI, FICON, FICON Express, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals. The specifications listed below apply to STM-16, OC-48 signals.
Table 14-195 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1360
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Maximum reflectance
dB
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
-27
-27
NOTE
2.67 Gbit/s Multi-rate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, FDDI, FICON, FICON Express, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 14-196 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1361
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type Eye pattern mask
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
NOTE
SDI module can be used to access SDI, HD-SDI, HD-SDIRBR, 3G-SDI, and 3G-SDIRBR signals.
Table 14-197 Client-side pluggable optical module specifications (SDI services) Parameter
Unit
Optical Module Type
Value 270 Mbit/s to 3 Gbit/s Multirate (Video eSFP)-10 km
Line code format
-
NRZ
Target transmission distance
-
10 km (6.2 mi.)
Service rate
Gbit/s
≤3
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-7
Minimum extinction ratio
dB
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1362
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
270 Mbit/s to 3 Gbit/s Multirate (Video eSFP)-10 km
Maximum -20 dB spectral width
nm
3.0
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1260 to 1620
Receiver sensitivity
dBm
-16
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
NOTE
4.25 Gbit/s Multirate-0.3 km, 4.25 Gbit/s Multirate-10 km module can be used to access FC400, and FICON4G signals.
Table 14-198 Client-side pluggable optical module specifications (FC services) Parameter
Unit
Optical Module Type
Value 4.25 Gbit/s Multirate-0.3 km
4.25 Gbit/s Multirate-10 km
Line code format
-
NRZ
NRZ
Optical source type
-
MLM
SLM
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
Transmitter parameter specifications at point S Transmitter parameter specifications at point S
nm
830 to 860
1270 to 1355
Maximum mean launched power
dBm
-1.1
-1
Minimum mean launched power
dBm
-9
-8.4
Eye pattern mask
-
Compliant with Fiber Channel-physical interface (FC-PI-2) parameter template
Receiver parameter specifications at point R Receiver type Issue 03 (2013-05-16)
-
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN 1363
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 4.25 Gbit/s Multirate-0.3 km
4.25 Gbit/s Multirate-10 km
Operating wavelength range
nm
770 to 860
1260 to 1600
Receiver sensitivity
dBm
-15
-18
Minimum receiver overload
dBm
0
0
Maximum reflectance
dB
-12
-12
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.7 kg (1.5 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54TOA
23
25
14.14 TOG TOG: 8 x GE tributary service processing board
14.14.1 Version Description The available functional version of the TOG board is TN52.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1364
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 2TO G
Y
Y
Y
N
Y
Y
Variants The TN52TOG board has only one variant: TN52TOG01.
14.14.2 Application As a type of tributary board, the TOG board implements conversion between 8 channels of GE optical signals or GE electrical signals and 4 channels of ODU1 electrical signals or 8 channels of ODU0 electrical signals through cross-connection. For the position of the TOG board in the WDM system, see Figure 14-200 and Figure 14-201. Figure 14-200 Position of the TOG board in the WDM system (OptiX OSN 8800) 8xODU0 RX1
TOG 1
8
TX8
8
M U X / D M U X
TX1
M U X / D M U X
1
1
RX1
N S 2
8xODU0
N S 2
8xODU0
RX8
TOG 1
TX1 GE
8xODU0
8
8
GE RX1 TX1
Figure 14-201 Position of the TOG board in the WDM system (OptiX OSN 6800/3800) 4xODU1
4xODU1
TOG
TOG
RX1 1
TX1
8
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
1
N S 2 8
8
TX1 RX1
8xODU0
Issue 03 (2013-05-16)
8
M U X / D M U X
4xODU1
TX8
N S 2
4xODU1
RX8
8xODU0
GE
1
M U X / D M U X
GE TX8 RX8
1365
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.14.3 Functions and Features The TOG board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-199. NOTE
Only the OptiX OSN 8800 supports ODU0.
Table 14-199 Functions and features of the TOG board Function and Feature
Description
Basic function
TOG converts signals as follows: l 8 x GE<->8 x ODU0 l 8 x GE<->4 x ODU1
Client-side service type
GE: Ethernet service at a rate of 1.25 Gbit/s NOTE The TOG board supports both GE electrical signal and GE optical signal. The TOG board supports GE services that can be mapped using the TTT-GMP or GFP-T procedure.
Cross-connect capabilities
OptiX OSN 8800: Supports the cross-connection of eight channels of ODU0 signals between the TOG board and the cross-connect board through the backplane. OptiX OSN 6800: Supports the cross-connection of four channels of ODU1 signals between the TOG board and the cross-connect board through the backplane. OptiX OSN 3800: Supports the grooming of four ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Supports the OTN frame format and overhead processing defined in the ITU-T G.709. The mapping process is compliant with ITU-T G. 709. l Supports PM functions for ODU1/ODU0.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services. NOTE The TOG board supports remote monitoring (RMON) only at the receive end .
ALS function
Issue 03 (2013-05-16)
Supports the ALS function on the client side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1366
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
PRBS test function
Not supported.
LPT function
Supported
Test frame
Not supported.
IEEE 1588v2
Supports the TC, TC+OC, BC, and OC modes only when the client-side service type is GE (GFP-T). NOTE The TOG board supports only two channels IEEE 1588v2 signals.
Physical clock
When receiving GE(GFP-T) services on the client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission. When receiving GE(TTT-GMP) services on the client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing.
Electrical-layer ASON
Supported
Protection scheme
l Supports ODUk SNCP.
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-T) or GE(TTT-GMP).
Ethernet port working mode
1000M Full-Duplex
Loopback
WDM side
l Supports client 1+1 protection.
Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
IEEE 802.3z
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1367
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.14.4 Working Principle and Signal Flow The TOG board consists of the client-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-202 shows the functional modules and signal flow of the TOG board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1368
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-202 Functional modules and signal flow of the TOG board n X ODUk
Backplane (service cross-connection)
Client side RX1 RX2
O/E 8
RX8 TX1 TX2
E/O
TX8
Client-side optical module
8
GE Service OTN encapsulation processing and mapping module module
Crossconnect module
1588v2
module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
( Backplane controlled by SCC ) SCC
NOTE
When used to receive GE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to the service encapsulation and mapping module for processing. In Figure 14-202, n x ODUk indicates the service cross-connections from the TOG board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-200 shows the service cross-connections from the TOG board to the backplane. Table 14-200 Service cross-connections from the TOG board to the backplane Board
Service Cross-connection
TN52T OG
A maximum of 8xODU0/4xODU1
Signal Flow In the signal flow of the TOG board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TOG to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives 8 channels of the optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1369
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
After O/E conversion, the electrical signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, and OTN framing. Then, the module sends out ODUk signals to the backplane for grooming. l
Receive direction The signal processing module receives ODUk electrical signals sent from the crossconnection board through the backplane. The module performs operations such as ODUk framing, demapping and decapsulation processing. Then, the module sends out 8 channels of GE signals to the client-side optical module. The client-side optical module performs the E/O conversion of GE electrical signals, and then outputs 8 channels of client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of 8 channels of GE optical signals. – Client-side transmitter: Performs the E/O conversion from 8 channels of the internal electrical signals to GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of a GE service encapsulation and mapping module, an OTN processing module and a cross-connect module,. – GE service encapsulation and mapping module It encapsulates multiple GE signals and maps the GE signals to the ODUk payload area and performs the reverse of the preceding process. It supports the function of GE performance monitoring. – OTN processing module Frames ODUk signals and processes overheads in ODUk signals. – Cross-connect module Implements the grooming of electrical signals between the TOG and the cross-connect board through the backplane.
l
1588v2 module The 1588v2 module sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board. NOTE
Two channels IEEE 1588v2 signals are supported by the TOG.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1370
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.14.5 Front Panel There are indicators and interfaces on the front panel of the TOG board.
Appearance of the Front Panel Figure 14-203 shows the TOG front panel. Figure 14-203 Front panel of the TOG board
TOG STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8
TOG
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1371
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-201 lists the type and function of each interface. Table 14-201 Types and functions of the interfaces on the TOG board Interface
Type
Function
TX1-TX8
LC
Transmit service signals to client equipment.
RX1-RX8
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.14.6 Valid Slots One slot houses one TOG board. Table 14-202 shows the valid slots for the TOG board. Table 14-202 Valid slots for TOG board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
14.14.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1372
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Display of Physical Ports Table 14-203 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-203 Mapping between the physical ports on the TOG board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-204 and Figure 14-205 shows the application model of the TOG board.Table 14-204 describes the meaning of each port. Figure 14-204 Port diagram of the TOG board (OptiX OSN 8800) Other line/ PID board Backplane 8xODU0
201(ClientLP1/ClientLP1)-1
3(RX1/TX1)-1
202(ClientLP2/ClientLP2)-1
4(RX2/TX2)-1
208(ClientLP8/ClientLP8)-1
10(RX8/TX8)-1 Client Side
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1373
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-205 Port diagram of the TOG board (OptiX OSN 6800) Other line/ PID board
Backplane 4xODU1
201(ClientLP1 /ClientLP1)-1 202(ClientLP2/Cl ientLP2)-1
3(RX1/TX1)-1 4(RX2/TX2)-1
161(ODU0LP1/ ODU0LP1)-1
207(ClientLP7/C lientLP7)-1
9(RX7/TX7)-1
164(ODU0LP4/ ODU0LP4)-1
208(ClientLP8/C lientLP8)-1
10(RX8/TX8)-1 Client Side
Crossconnect module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Service processi ng module
Multiplexing module
Table 14-204 Description of NM port of the TOG board Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1-ClientLP8
Internal logical ports. The optical paths are numbered 1.
ODU0LP1-ODU0LP4
Internal logical ports. The optical paths are numbered 1.
14.14.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TOG board is used to transmit services, the following items must be created on the U2000:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1374
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
During creation of the electrical cross-connect services on the U2000, create the ODU0 level cross-connections between the ClientLP port and the ODU0LP port of the other boards, as shown in Figure 14-206.
l
During creation of the electrical cross-connect services on the U2000, create the ODU1 level cross-connections between the ClientLP port and the ODU1LP port of the other boards, as shown in Figure 14-207.
Figure 14-206 Cross-connection diagram of the TOG (ODU0 level) WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board a (compatible mode)
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:1-ODU0:2 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:1 IN/OUT-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board b (standard mode)
Client side 201(ClientLP1/ClientLP1)-1
TOG 208(ClientLP8/ClientLP8)-1
The client side of the TOG board are cross-connected to the WDM side of other boards
Other board a
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board b
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1375
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-207 Cross-connection diagram of the TOG (ODU1 level) WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3
Other board a (compatible mode)
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCH:1--ODU2:1-ODU1:1 IN/OUT-OCH:1-ODU2:1-ODU1:2 IN/OUT-OCH:1-ODU2:1-ODU1:3
Other board b (standard mode)
IN/OUT-OCH:1-ODU2:1-ODU1:4
Client side 161(ODU0LP1/ODU0LP1)-1
TOG 164(ODU0LP4/ODU0LP4)-1
The client side of the TOG board are cross-connected to the WDM side of other boards
Other board a TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX Other board b TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.14.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TOG, refer to Table 14-205. Table 14-205 TOG parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1376
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
GE(GFP-T), GE(TTTGMP) Default: GE(GFP-T)
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE(TTT-GMP), the encapsulation format is TTT-GMP; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(TTT-GMP) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Off, On
Laser Status
Default: Off
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1377
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s LPT Enabled
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
Determines whether to enable the link passthrough (LPT) function.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1378
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Max. Packet Length
1518 to 9600
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information.
Ethernet Working Mode
1000M Full-Duplex
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
Default: 9600
Default: 1000M FullDuplex
Default: None
The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. NOTE Only TN52TOG supports this parameter.
14.14.10 TOG Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN52TO G
N/A
2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1379
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Client-Side Pluggable Optical Module Table 14-206 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1380
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 14-207 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1381
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.85 kg (1.87 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52TOG
41.8
46.0
14.15 TOM TOM: 8 x multi-rate ports service processing board
14.15.1 Version Description The available functional versions of the TOM board are TN11 and TN52.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TO M
N
N
N
N
Y
Y
TN5 2TO M
Y
Y
Y
Y
Y
Y
Variants The TN11TOM/TN52TOM board has only one variant: TN11TOM01/TN52TOM01.
Differences Between Versions Function: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1382
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Cross-Connet Granularity
Application Scenario
TN11TOM
ODU1
TN52TOM
ODU0/ODU1
The TN52TOM and TN11TOM support different application scenario. For details, see 14.15.2 Application Overview.
Specification: l
The specifications vary according to the version of board that you use. For details, see 14.15.26 TOM Specifications.
Substitution Relationship The TOM boards of different versions cannot replace each other.
14.15.2 Application Overview 14.15.2.1 Concept: Tributary Mode and Tributary-Line Mode A TOM board can be used as a tributary board or a tributary-line board. In different application scenarios, eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDM-side interfaces. Figure 14-208 shows the signal flow of the tributary TOM board and Figure 14-209 shows the signal flow of the tributary-line TOM board. Figure 14-208 Signal flow of the tributary TOM board Client-side crossconnection
AnyLP crossconnection Output (ODU0/ODU1 electrical signals)
Input (Client services) Encapsulation and mapping
Figure 14-209 Signal flow of the tributary-line TOM board Client-side crossconnection
AnyLP crossconnection
WDM-side crossconnection Output (OTU1 optical signals)
Input (Client services) Encapsulation and mapping
NOTE
AnyLP cross-connections are supported only in application scenarios 8, 9, and 12 of TN52TOM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1383
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.2.2 Concept: Cascading Mode and Non-cascading Mode TOM boards can work either in cascading or non-cascading mode. In cascading mode, the total client service rate for each TOM board must be less than or equal to 2.5 Gbit/s. In non-cascading mode, the total client service rate for each TOM board must be less than or equal to 10 Gbit/s. When working in cascading mode, each TOM board can map a maximum of eight client services into one ODU0/ODU1 signal. When working in non-cascading mode, it can map a maximum of four client services into one ODU0/ODU1 signal. l
The cascading mode is recommended if more than four client services have to be mapped into one ODU1 or ODU0 signal.
l
The non-cascading mode is recommended if four or less client services have to be mapped into one ODU1 or ODU0 signal.
14.15.2.3 Application Scenario Overview of TN52TOM The TN52TOM board can be used in different application scenarios. The total service access rate of the eight pairs of client-side optical ports cannot exceed 10 Gbit/s. NOTE
The OptiX OSN 8800 platform subrack supports TN52TOM scenario 2, TN52TOM scenario 4, TN52TOM scenario 6, and TN52TOM scenario 10.
Table 14-208 TN52TOM board in cascading mode App licat ion Sce nari o
Tribu tary or Tribu taryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 1
Tribut ary board
l 8 x FE/FDDI/DVBASI/SDI/ESCON l 2 x GE/FC100/ FICON
Anyc>ODU0
2x ODU0
ODU0 mode (Any>ODU0[>ODU1])
Supported only by the OptiX OSN 8800.
NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
Anyc>ODU0>ODU1
1x ODU1
ODU0 tributary mode (Any>ODU0[>ODU1])
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Supported only by the OptiX OSN 6800 and 3800.
1384
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribu tary or Tribu taryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 2
Tribut aryline board
l 7 x FE/FDDI/DVBASI/SDI/ESCON
Anyc>ODU0>ODU1>OTU1
1x OTU1
ODU0 tributaryline mode (Any>ODU0>ODU1>OTU1)
ODU0 tributaryline mode (Any>ODU0>ODU1>OTU1)
The board uses only one transmitter and one receiver on the WDM side.
l 2 x GE/FC100/ FICON NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
l 6 x FE/FDDI/DVBASI/SDI/ESCON l 2 x GE/FC100/ FICON NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Only the RX7/TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports. The board uses two transmitters and one receiver on the WDM side. Only the RX7/TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports.
1385
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribu tary or Tribu taryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 3
Tribut ary board
l 8 x FE/FDDI/STM-1/ OC-3/DVB-ASI/ SDI/ESCON
Anyc>ODU1
1x ODU1
ODU1 mode (OTU1/ Any>ODU1)
ODU1 tributary mode (Any>ODU1)
-
Anyc>ODU1>OTU1
1x OTU1
ODU1 tributaryline mode (OTU1/ Any>ODU1>OTU1)
ODU1 tributaryline mode (Any>ODU1>OTU1)
The board uses only one transmitter and one receiver on the WDM side.
l 4 x STM-4/OC-12 l 2 x GE/FC100/ FICON l 1 x STM-16/OC-48/ FC200/FICON Express/HD-SDI NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
TN5 2TO M scen ario 4
Tribut aryline board
l 7 x FE/FDDI/STM-1/ OC-3/DVB-ASI/ SDI/ESCON l 4 x STM-4/OC-12 l 2 x GE/FC100/ FICON l 1 x STM-16/OC-48/ FC200/FICON Express/HD-SDI NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Only the RX7/TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports.
1386
OptiX OSN 8800/6800/3800 Hardware Description
App licat ion Sce nari o
Tribu tary or Tribu taryLine Board
14 Tributary Board and Line Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
l 6 x FE/FDDI/STM-1/ OC-3/DVB-ASI/ SDI/ESCON
Remarks
The board uses two transmitters and one receiver on the WDM side.
l 4 x STM-4/OC-12 l 2 x GE/FC100/ FICON l 1 x STM-16/OC-48/ FC200/FICON Express/HD-SDI/ OTU1
Only the RX7/TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports.
NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
a: This parameter must be set on the NMS and the parameter values apply to V100R006C00 and later versions. b: This parameter must be set on the NMS and the parameter values apply to versions earlier than V100R006C00. c: "Any" in the table indicates the client-side service supported in the corresponding application scenario.
Table 14-209 TN52TOM board in non-cascading mode App licat ion Sce nari o
Tribut ary or Tribut aryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 5
Tributa ry board
l 8 x FE/FDDI/DVBASI/SDI/ESCON/ GE/FC100/FICON
Anyc>ODU0
8x ODU0
ODU0 mode (Any>ODU0[>ODU1])
Supported only by the OptiX OSN 8800.
Anyc>ODU0>ODU1
4x ODU1
ODU0 tributary mode (Any>ODU0[>ODU1])
NOTE The board can receive the services in the preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Supported only by the OptiX OSN 6800 and 3800.
1387
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribut ary or Tribut aryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 6
Tributa ry-line board
l 6 x FE/FDDI/DVBASI/SDI/ESCON/ GE/FC100/FICON
Anyc>ODU0>ODU1>OTU1
2x OTU1
ODU0 tributaryline mode (Any>ODU0>ODU1>OTU1)
ODU0 tributaryline mode (Any>ODU0>ODU1>OTU1)
The board uses only one transmitter and one receiver on the WDM side.
NOTE The board can receive the services in the preceding row at the same time but the total rate of the services must be less than or equal to 5 Gbit/s.
l 4 x FE/FDDI/DVBASI/SDI/ESCON/ GE/FC100/FICON NOTE The board can receive the services in the preceding row at the same time but the total rate of the services must be less than or equal to 5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
All RX/TX optical ports can be used as WDM-side optical ports. The board uses two transmitters and one receiver on the WDM side. All RX/TX optical ports can be used as WDM-side optical ports.
1388
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribut ary or Tribut aryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 7
Tributa ry board
l 8 x FC100/FICON/ GE/STM-4/OC-12/ DVB-ASI/ESCON/ FDDI/FE/SDI/ STM-1/OC-3
OTU1/Anyc>ODU1
4x ODU1
ODU1 mode (OTU1/ Any>ODU1)
ODU1 tributary mode (OTU1/ Any>ODU1)
-
l 4 x FC200/FICON Express/HD-SDI/ OTU1/STM-16/ OC-48 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
TN5 2TO M scen ario 8
Tributa ry board
l 4 x OTU1
OTU1>ODU1>Any>ODU0>ODU1
4x ODU1
ODU1_AN Y_ODU0_ ODU1 reencapsulati on mode (OTU1>ODU1>Any>ODU0>ODU1)
ODU1 tributary mode (OTU1>ODU1>Any>ODU0>ODU1)
Supported only by the OptiX OSN 6800 and 3800.
TN5 2TO M scen ario 9
Tributa ry-line board
l 2 x OTU1
OTU1>ODU1>Any>ODU0>ODU1>OTU1
2x OTU1
ODU1_AN Y_ODU0_ ODU1 reencapsulati on tributaryline mode (OTU1>ODU1>Any>ODU0>ODU1>OTU1)
ODU1 tributaryline mode (OTU1>ODU1>Any>ODU0>ODU1>OTU1)
The board uses two transmitters and one receiver on the WDM side.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
All RX/TX optical ports can be used as WDM-side optical ports.
1389
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribut ary or Tribut aryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 10
Tributa ry-line board
l 4 x OTU1
OTU1>ODU1>OTU1
4x OTU1
Anyc>ODU1>OTU1
2x OTU1
ODU1 tributaryline mode (OTU1/ Any>ODU1>OTU1)
The board performs electrical regeneratio n for OTU1 signals.
l 6 x FC100/FICON/ GE/STM-4/OC-12/ DVB-ASI/ESCON/ FDDI/FE/SDI/ STM-1/OC-3
ODU1 tributaryline mode (OTU1/ Any>ODU1>OTU1)
l 4 x FC200/FICON Express/HD-SDI/ STM-16/OC-48 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
All RX/TX optical ports can be used as WDM-side optical ports.
l 4 x FC200/FICON Express/HD-SDI/ STM-16/OC-48/ FC100/FICON/GE/ STM-4/OC-12/ DVB-ASI/ESCON/ FDDI/FE/SDI/ STM-1/OC-3
The board uses two transmitters and one receiver on the WDM side. All RX/TX optical ports can be used as WDM-side optical ports.
NOTE The board can receive the services in the preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
TN5 2TO M scen ario 11
Tributa ry board
The board uses only one transmitter and one receiver on the WDM side.
l 4 x OTU1
Issue 03 (2013-05-16)
OTU1>ODU1>ODU0
8x ODU0
ODU1_OD U0 mode (OTU1>ODU1>ODU0)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
ODU1 tributary mode (OTU1>ODU1>ODU0)
Supported only by the OptiX OSN 8800.
1390
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
App licat ion Sce nari o
Tribut ary or Tribut aryLine Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outp ut Capa city
Port Working Mode a
Port Working Mode b
Remarks
TN5 2TO M scen ario 12
Tributa ry board
l 4 x OTU1
OTU1>ODU1>Any>ODU0
8x ODU0
ODU1_AN Y_ODU0 reencapsulati on mode (OTU1>ODU1>Any>ODU0)
ODU1 tributary mode (OTU1>ODU1>Any>ODU0)
Supported only by the OptiX OSN 8800.
a: This parameter must be set on the NMS and the parameter values apply to V100R006C00 and later versions. b: This parameter must be set on the NMS and the parameter values apply to versions earlier than V100R006C00. c: "Any" in the table indicates the client-side service supported in the corresponding application scenario.
14.15.2.4 Application Scenario Overview of TN11TOM The TN11TOM can be used in different application scenarios. The total service access rate of the eight pairs of client-side optical ports cannot exceed 10 Gbit/s. Table 14-210 TN11TOM board in cascading mode Appl icatio n Scen ario
Tributa ry or Tributa ry-Line Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxim um Outpu t Capaci ty
Port Working Mode (Must Be Set on the NMS)
Remarks
TN11 TOM Scena rio 1
Tributar y board
l 8 x FE/FDDI/STM-1/ OC-3/DVB-ASI/SDI/ ESCON
OTU1/Anya>ODU1
1x ODU1
N/A
-
l 4 x STM-4/OC-12 l 2 x GE/FC100/FICON l 1 x STM-16/OC-48/ FC200/FICON Express/ HD-SDI/OTU1 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1391
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Appl icatio n Scen ario
Tributa ry or Tributa ry-Line Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxim um Outpu t Capaci ty
Port Working Mode (Must Be Set on the NMS)
Remarks
TN11 TOM scena rio 2
Tributar y-line board
l 7 x FE/FDDI/STM-1/ OC-3/DVB-ASI/SDI/ ESCON
OTU1/Anya>ODU1>OTU1
1x OTU1
N/A
The board uses only one transmitter and one receiver on the WDM side.
l 4 x STM-4/OC-12 l 2 x GE/FC100/FICON l 1 x STM-16/OC-48/ FC200/FICON Express/ HD-SDI/OTU1 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
l 6 x FE/FDDI/STM-1/ OC-3/DVB-ASI/SDI/ ESCON l 4 x STM-4/OC-12 l 2 x GE/FC100/FICON l 1 x STM-16/OC-48/ FC200/FICON Express/ HD-SDI/OTU1 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 2.5 Gbit/s.
Only the RX7/ TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports. The board uses two transmitters and one receiver on the WDM side. Only the RX7/ TX7 and RX8/ TX8 optical ports can be used as WDM-side optical ports.
a: "Any" in the table indicates the client-side service supported in the corresponding application scenario.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1392
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-211 TN11TOM board in non-cascading mode Appl icatio n Scen ario
Tributa ry or Tributa ry-Line Board
Maximum Input Capacity (Client Side)
Mapping Path
Maxi mum Outpu t Capaci ty
Port Working Mode (Must Be Set on the NMS)
Remarks
TN11 TOM scena rio 3
Tributar y board
l 8 x FC100/FICON/GE/ STM-4/OC-12/DVBASI/ESCON/FDDI/FE/ SDI/STM-1/OC-3
OTU1/Anya>ODU1
4x ODU1
N/A
-
Anya->ODU1>OTU1
4x OTU1
N/A
All RX/TX optical ports can be used as WDM-side optical ports.
OTU1>ODU1>OTU1
4x OTU1
N/A
The board performs electrical regeneration for OTU1 signals.
l 4 x FC200/FICON Express/HD-SDI/OTU1/ STM-16/OC-48 NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
TN11 TOM scena rio 4
l 4 x FC200/FICON Express/HD-SDI/ STM-16/OC-48/FC100/ FICON/GE/STM-4/ OC-12/DVB-ASI/ ESCON/FDDI/FE/SDI/ STM-1/OC-3
Tributar y-line board
NOTE The board can receive the services in each preceding row at the same time but the total rate of the services must be less than or equal to 10 Gbit/s.
TN11 TOM scena rio 5
l 4 x OTU1
Tributar y-line board
a: "Any" in the table indicates the client-side service supported in the corresponding application scenario.
14.15.3 Function and Feature The TOM board achieves cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-212.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1393
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
ODU0 is only supported by the TN52TOM in the OptiX OSN 8800.
Table 14-212 Functions and features of the TOM board Function and Feature
Description
Basic function
l Performs conversion between client services at rates within the range of 100 Mbit/s to 2.67 Gbit/s and ODU0 or ODU1 signals when functioning as a tributary board. l Performs conversion between client services at rates within the range of 100 Mbit/s to 2.67 Gbit/s and OTU1 signals when functioning as a tributary-line board. l Supports convergence of multiple services into one ODU0 or ODU1 signal. The TOM board supports multiple application scenarios. For details, see 14.15.2 Application Overview.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE When the TOM board transmits GE electrical signals, to facilitate fiber routing, you are advised to install electrical modules at the RX1/TX1 and RX2/TX2 ports. The TOM board supports access of SDI, HD-SDI, and DVB-ASI electrical signals. When the board is used to accept these electrical signals, a digital video O/E converter must be used for O/E or E/O conversion and the optical module of the converter must agree with the board optical module specifications. The digital video O/E converter is a third-party device. Customers can purchase a digital video O/E converter by themselves.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1394
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Cross-connect capabilities
OptiX OSN 8800: l TN52TOM – Supports the cross-connection of four ODU1 signals or eight ODU0 signals through the cross-connect bus on the backplane and the cross-connect board. OptiX OSN 6800: l TN11TOM – Supports the cross-connection of four ODU1 signals between the TOM and the cross-connect board. Supports the crossconnection of four ODU1 signals to the paired slots through the backplane. – Supports the cross-connection of a maximum of eight channels of GE signals between the TOM and the cross-connect board. Supports the cross-connection of a maximum of eight channels of GE signals to the paired slots through the backplane. – Supports the transmission of maximum of eight signals at the rate between 100 Mbit/s and 2.5 Gbit/s to the paired slots through the backplane. l TN52TOM – Supports the cross-connection of four ODU1 signals between the TOM and the cross-connect board. – Supports the cross-connection of six channels of GE signals to the paired slots through the backplane. – Supports the transmission of six signals at the rate between 100 Mbit/s and 2.5 Gbit/s to the paired slots through the backplane. OptiX OSN 3800: l TN11TOM – Supports the cross-connection of four channels of ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. – Supports the cross-connection of a maximum of eight channels of GE signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. – Supports the cross-connection of a maximum of eight signals at the rate between 100 Mbit/s and 2.5 Gbit/s from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group. l TN52TOM – Supports the cross-connection of four channels of ODU1 signals between one board of the mesh group (consisting of four boards) and any two boards in the non-paired slots of the fourslot mesh group, that is, supports the ODU1 cross-connection
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1395
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description between slots IU2 and IU4, slots IU2 and IU5, slots IU3 and IU4, and slots IU3 and IU5. – Supports the cross-connection of six channels of GE signals between one board of the mesh group (consisting of four boards) and the paired slot of the four-slot mesh group, that is, supports the GE cross-connection between slots IU2 and IU3 and slots IU4 and IU5. – Supports the cross-connection of six signals at the rate between 100 Mbit/s and 2.5 Gbit/s, except ODU1 signals, between one board of the mesh group (consisting of four boards) and the paired slot of the four-slot mesh group, that is, supports the cross-connection of six signals at the rate between 100 Mbit/s and 2.5 Gbit/s, except ODU1 signals, between slots IU2 and IU3 and slots IU4 and IU5. l The mapping process is compliant with ITU-T G.7041 and ITU-T G.709. Supports the frame format and overhead processing by referring to the ITU-T G.709.
OTN function
l Supports the SM and TCM functions at the OTU1 and ODU1 layers on the WDM side. l Supports the PM and TCM non-intrusive monitoring functions at the ODU1 layer. l Supports the PM functions at the ODU1 layers. l TN52TOM supports the PM function at the ODU0 layer. WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications. Supports ITU-T G.694.2-compliant CWDM specifications.
ESC function
Supported.
FEC encoding
Supports forward error correction (FEC) on the client side that complies with ITU-T G.709, only when the service type is OTU1.
Alarm and performance event monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services. NOTE Only the TN11TOM supports Poisson mode.
ALS function
Issue 03 (2013-05-16)
Supports the ALS function on the client side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1396
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
PRBS test function
Supports the PRBS function on the client side and WDM side. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC-3, STM-4/OC-12, or STM-16/OC-48.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
Test frame
The board supports the test frame function only when the client-side service type is FE or GE.
Optical-layer ASON
Not supported
Electrical-layer ASON
Supported by the TN52TOM.
Protection scheme
OptiX OSN 3800/OptiX OSN 6800: l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports ODUk SNCP. l Supports tributary SNCP protection. l Supports MS SNCP protection. OptiX OSN 8800: l Supports SW SNCP. l Supports client 1+1 protection. l Supports intra-board 1+1 protection. l Supports OWSP protection. l Supports ODUk SNCP. l Supports tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection. For the TN52TOM board, ODU0 tributary SNCP protection is supported only in ODU1_ODU0 mode (OTU1->ODU1->ODU0).
Issue 03 (2013-05-16)
Ethernet service mapping mode
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Ethernet port working mode
l Auto-Negotiation
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side
l 1000M Full-Duplex
Inloop
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Supported
1397
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Outloop
Supported NOTE When being used as tributary & line board, the TOM board only supports the loopback between ClientLP1-ClientLP4.
Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1398
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmissio n (nonperformanc e monitoring )
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FCBB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1399
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performan ce monitoring )
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1 ITU-T G.694.2
14.15.4 Physical Ports Displayed on NMS This section describes how the physical ports of the board are displayed on the NMS. Table 14-213 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. . Table 14-213 Mapping between the physical ports on the TOM board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1400
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
14.15.5 TN52TOM Scenario 1: Any->ODU0[->ODU1] (Cascading) 14.15.5.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 1.25 Gbit/ s and two ODU0 signals or one ODU1 signal. Figure 14-210 shows the position of a TOM board in a WDM system when it is used on an OptiX OSN 8800. Figure 14-211 shows the position of the TOM board in a WDM system when it is used on an OptiX OSN 6800/3800. Figure 14-210 Position of the TN52TOM in a WDM system (Scenario 1: Any->ODU0) (OptiX OSN 8800) 2xODU0 1xOTU2
1xOTU2 2xODU0 TOM
TOM
RX1
1
TX1
TX8
2
1 N S 2 2
TX1
1
RX1
8×Any
2
M U X / D M U X
2×ODU0
N S 2
2×ODU0
8×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX8
M U X / D M U X
1
TX8
2
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI
RX8
Figure 14-211 Position of the TN52TOM in a WDM system (Scenario 1: Any->ODU0->ODU1) (OptiX OSN 6800/3800) 1xODU1 1xOTU2 RX1
TOM
TX1 N S 2
ODU1
8×Any
M U X / D M U X
2×ODU0
M U X / D M U X
1×ODU1
1×ODU1
2×ODU0
8×Any
N S 2
TX8 Any
RX1
TOM
TX1 FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX8
1xOTU2 1xODU1
FE, GE, FC100, FICON, DVB-ASI, SDI, RX8 ESCON, FDDI TX8
ODU1
Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group OptiX OSN 8800: N/A OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1401
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s.
14.15.5.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-212 Port diagram of the TN52TOM (scenario 1: in cascading mode) OptiX OSN 6800/OptiX OSN 3800: Any->ODU0->ODU1 52TOM
52NS2
3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
51(ODU1LP1/ODU1LP1)-1 201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
51(ODU1LP1/ODU1LP1)-2 1(IN/OUT)
161(ODU0LP1/ODU0LP1)-1 7(RX5/TX5) 8(RX6/TX6)
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
51(ODU1LP1/ODU1LP1)-3 202(ClientLP2/ClientLP2)-1
9(RX7/TX7)
161(ODU0LP1/ODU0LP1)-2
202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
51(ODU1LP1/ODU1LP1)-4
10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
OptiX OSN 8800: Any->ODU0 52TOM
52NS2 161(ODU0LP1/ODU0LP1)-1
3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5) 8(RX6/TX6)
51(ODU1LP1/ODU1LP1)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2
161(ODU0LP1/ODU0LP1)-2 201(ClientLP1/ClientLP1)-1
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
162(ODU0LP2/ODU0LP2)-1 51(ODU1LP1/ODU1LP1)-2 162(ODU0LP2/ODU0LP2)-2 1(IN/OUT) 163(ODU0LP3/ODU0LP3)-1
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
51(ODU1LP1/ODU1LP1)-3 163(ODU0LP3/ODU0LP3)-2 202(ClientLP2/ClientLP2)-1
9(RX7/TX7)
164(ODU0LP4/ODU0LP4)-1
202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
51(ODU1LP1/ODU1LP1)-4 164(ODU0LP4/ODU0LP4)-2
10(RX8/TX8) : Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
When the number of a route of the ClientLP1 port is the same as that of a route of the ClientLP2 port, the two routes cannot be configured with cross-connections at the same time. That is, when the cross-connection from RX/TX to 201(ClientLP1/ClientLP1)-1 is configured, the cross-connection from RX/TX to 202 (ClientLP2/ClientLP2)-1 is not supported at the same time.
Table 14-214 Description of NM port of the TOM board (Cascading mode)
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1402
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
ClientLP1/ClientLP2
Internal logical port. The optical paths are numbered 1 to 8.
ODU0LP1
Internal logical port. The optical paths are numbered 1 to 2.
14.15.5.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU0 mode (Any->ODU0[->ODU1]). Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board. Then, create the following crossconnections: l
Create the ODU0 cross-connection between the ClientLP port of the TOM board and ODU0LP port of the other boards to achieve grooming of ODU0 services in OptiX OSN 8800, as shown
l
in Figure 14-213.
Create the ODU1 cross-connection between the ODU0LP port of the TOM board and ODU1LP port of the other boards to achieve grooming of ODU1 services in OptiX OSN 6800/3800, as shown
in Figure 14-213.
NOTE
When creating the internal cross-connection of ODU0 signal, only the first route can be selected. For Example: 201(ClientLP1/ClientLP1)-1. Two channels with the same type of services at the ClientLP1 and ClientLP2 ports respectively must not be used at the same time. For example, if the 201(ClientLP1/ClientLP1)-1 service type is configured, the 202(ClientLP2/ClientLP2)-1 service type must not be configured.
Figure 14-213 Cross-connection diagram of the TN52TOM board (scenario 1) OptiX OSN 8800
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1403
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Cross-connect module
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 202(ClientLP2/ClientLP2)-5 202(ClientLP2/ClientLP2)-6 202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
Cross-connect module
Other board (Compatible mode)
Compatible mode
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
WDM side
2
TOM
Cross-connect module
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / mode) TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
OptiX OSN 6800/OptiX OSN 3800
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1404
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
Cross-connect module
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 202(ClientLP2/ClientLP2)-5 202(ClientLP2/ClientLP2)-6 202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
Cross-connect module
WDM side
Compatible mode
WDM side
161(ODU0LP1 /ODU0LP1)-1 2 3 161(ODU0LP1 /ODU0LP1)-2
Cross-connect module
TOM Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / (Standard mode) TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.6 TN52TOM Scenario 2: Any->ODU0->ODU1->OTU1 (Cascading) 14.15.6.1 Application Implements conversion between six signals at a rate in the range of 100 Mbit/s to 1.25 Gbit/s and one OTU1 signal, and the dual fed and selective receiving function on the WDM side, or implements conversion between seven Any signals and one OTU1 signal. For the position of the TOM in a WDM system, see Figure 14-214. Figure 14-214 Position of the TN52TOM in a WDM system (Scenario 2: Any->ODU0->ODU1>OTU1) The single transmitting and single receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1405
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 1xOTU1
1xOTU1 RX1
TX1
TOM
TOM
RX1
TX1
TX8
7×Any
MUX/ DMUX
2×ODU0
RX8
MUX/ RX8 DMUX
1×OTU1
TX8
1×ODU1
1×OTU1
1×ODU1
2×ODU0
7×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX7
FE, GE, FC100, FICON, DVB-ASI, SDI, TX7ESCON, FDDI RX7
TX7 Any
Any
The dual-fed selectively receiving on the WDM side: 1xOTU1
1xOTU1 RX1
TOM
TX7
TX1
RX7
RX8
6×Any
MUX/ DMUX
2×ODU0
MUX/ DMUX
TX1
TX7
1×OTU1
MUX/ DMUX
TX8 RX8
TX6
MUX/ DMUX
1×ODU1
1×OTU1
1×ODU1
2×ODU0
6×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX6
RX1
TOM
RX7
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX6
TX8
Any
TX6 Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group NOTE
On the client side, six or seven pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s. In cascading mode, only RX7/TX7 or RX8/TX8 can be used as the WDM-side optical interfaces.
14.15.6.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-215 Port diagram of the TN52TOM (scenario 2: ODU0 tributary-line mode (Any>ODU0->ODU1->OTU1) in cascading mode) The dual-fed selectively receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1406
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 52TOM
3(RX1/TX1)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-1
4(RX2/TX2)
5(RX3/TX3)
161(ODU0LP1/ODU0LP1)-1
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
9(RX7/TX7) 161(ODU0LP1/ODU0LP1)-1
6(RX4/TX4)
10(RX8/TX8)
202(ClientLP2/ClientLP2)-1
7(RX5/TX5) 8(RX6/TX6)
51(ODU1LP1/ODU1LP1)-1
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 161(ODU0LP1/ODU0LP1)-2
202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
The single transmitting and single receiving on the WDM side: 52TOM 3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
6(RX4/TX4) 7(RX5/TX5)
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
8(RX6/TX6) 9(RX7/TX7)
51(ODU1LP1/ODU1LP1)-1
10(RX8/TX8)
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 161(ODU0LP1/ODU0LP1)-2
202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
When the number of a route of the ClientLP1 port is the same as that of a route of the ClientLP2 port, the two routes cannot be configured with cross-connections at the same time. That is, when the cross-connection from RX/TX to 201(ClientLP1/ClientLP1)-1 is configured, the cross-connection from RX/TX to 202 (ClientLP2/ClientLP2)-1 is not supported at the same time. In cascading mode, only RX7/TX7 or RX8/TX8 can be used as the WDM-side optical interfaces.
Table 14-215 Description of NM port of the TOM board (Cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
ClientLP1/ClientLP2
Internal logical port. The optical paths are numbered 1 to 8.
ODU1LP1
Internal logical port. The optical paths are numbered 1.
ODU0LP1
Internal logical port. The optical paths are numbered 1 to 2.
a: In different application scenarios, RX7/TX7 or RX8/TX8 of the TOM can be used as clientside interfaces or WDM-side interfaces.
14.15.6.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Cascading. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1407
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU0 Tributary-Line mode (Any->ODU0->ODU1->OTU1). Then, create the following cross-connections: l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board, as shown in Figure 14-216.
l
Create OTU1 cross-connection between the internal ODU1LP1 and 9(RX7/TX7) or 10 (RX8/TX8) of the TOM board, as shown
in Figure 14-216.
NOTE
If only seven FE services are received from client equipment, specify the service package as Tributary line 7*FE->ODU0. This service package automatically completes the following settings: l
Board Working mode is set to Cascading.
l
Port Working Mode is set to ODU0 tributary-line (Any->ODU0->ODU1->OTU1) for the ClientLP1 port.
l
Service Type is to FE for channels 1-4 on the ClientLP1 port and channels 5-7 on the ClientLP2 port.
l
Port Type is set to Line Side Color Optical Port for the RX8/TX8 port.
l
Bidirectional Any-level cross-connections are created between the RX1/TX1-RX7/TX7 ports and channels 1-4 on the ClientLP1 port and channels 5-7 on the ClientLP2 port.
l
Bidirectional OTU1-level cross-connections are created between the RX8/TX8 port and channel 1 on the ODU1LP1 port.
Figure 14-216 Cross-connection diagram of the TN52TOM board (scenario 2) The dual-fed selectively receiving on the WDM side: Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 202(ClientLP2/ClientLP2)-5 202(ClientLP2/ClientLP2)-6 202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
Cross-connect module
161(ODU0LP1 /ODU0LP1)-1
51(ODU1LP1/ ODU1LP1)-1
9(TX7/RX7)-1
WDM side
10(TX8/RX8)-1 3
3
2
161(ODU0LP1 /ODU0LP1)-2
TOM
Cross-connect module
Cross-connect module Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
The single transmitting and single receiving on the WDM side: Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 202(ClientLP2/ClientLP2)-5 202(ClientLP2/ClientLP2)-6 202(ClientLP2/ClientLP2)-7 202(ClientLP2/ClientLP2)-8
Cross-connect module
161(ODU0LP1 /ODU0LP1)-1
51(ODU1LP1/ ODU1LP1)-1
WDM side 10(TX8/RX8)-1 2
3
3 161(ODU0LP1 /ODU0LP1)-2
Cross-connect module Cross-connect module
TOM Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1408
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.7 TN52TOM Scenario 3: Any->ODU1 (Cascading) 14.15.7.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and one ODU1 signal. For the position of the TOM in a WDM system, see Figure 14-217. Figure 14-217 Position of the TN52TOM in a WDM system (Scenario 3: Any->ODU1) 1xODU1 1xOTU2 RX1
TOM
TX1
TOM
TX1
M U X / D M U X
RX1 N S 2
ODU1
8×Any
Any
N S 2
M U X / D M U X
1×ODU1
1×ODU1
8×Any
FE, STM-1, STM-4, STM-16, OC-3, OC12, OC-48, FC100, GE, FC200, FICON, FICON Express, HD-SDI, DVB-ASI, RX8 SDI, ESCON, FDDI TX8
1xOTU2 1xODU1
TX8 RX8
ODU1
FE, STM-1, STM-4, STM-16, OC-3, OC12, OC-48, FC100, GE, FC200, FICON, FICON Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI
Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group OptiX OSN 8800: N/A OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s.
14.15.7.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1409
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-218 Port diagram of the TN52TOM (scenario 3: ODU1 mode (OTU1/Any>ODU1) in cascading mode) 52TOM
52NS2
3(RX1/TX1)
51(ODU1LP1/ODU1LP1)-1
201(ClientLP1/ClientLP1)-1 4(RX2/TX2) 201(ClientLP1/ClientLP1)-2 5(RX3/TX3)
51(ODU1LP1/ODU1LP1)-2
6(RX4/TX4)
1(IN/OUT) 201(ClientLP1/ClientLP1)-1
7(RX5/TX5)
51(ODU1LP1/ODU1LP1)-3
8(RX6/TX6) 9(RX7/TX7)
201(ClientLP1/ClientLP1)-7 51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-8 10(RX8/TX8) : Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Table 14-216 Description of NM port of the TOM board (Cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1
Internal logical port. The optical paths are numbered 1 to 8.
14.15.7.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1 mode (OTU1/Any->ODU1). Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board. Then, create the following crossconnections: l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-219. board, as shown
l
Create the ODU1 cross-connection between the ClientLP port of the TOM board and ODU1LP port of the other boards to implement the cross-connect grooming of ODU1 services, as shown
Issue 03 (2013-05-16)
in Figure 14-219.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1410
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-219 Cross-connection diagram of the TN52TOM board (scenario 3) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Cross-connect module
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
WDM side
Compatible mode
WDM side 2
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / (Standard mode) TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.8 TN52TOM Scenario 4: Any->ODU1->OTU1 (Cascading) 14.15.8.1 Application Implements conversion between six signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and one OTU1 signal, and the dual fed and selective receiving function on the WDM side, or implements conversion between seven Any signals at any rate in the range of 100 Mbit/s to 2.5 Gbit/s and one OTU1. For the position of the TOM in a WDM system, see Figure 14-220. Figure 14-220 Position of the TN52TOM in a WDM system (Scenario 4: Any->ODU1->OTU1) The single transmitting and single receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1411
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 1xOTU1
1xOTU1 RX1 TX1 FE, GE, STM-1, STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON Express, HD-SDI, RX7 DVB-ASI, SDI, ESCON, FDDI TX7
TX1
TOM
TOM
RX1
TX8
7×Any
MUX/ DMUX
1×OTU1
RX8 MUX/ DMUX
1×ODU1
1×OTU1
1×ODU1
7×Any
TX8 RX8
TX7 RX7
Any
FE, GE, STM-1, STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI
Any
The dual-fed selectively receiving on the WDM side: 1xOTU1
1xOTU1 RX1
TOM
RX1
TOM TX7
RX7
TX8 MUX/ RX8 DMUX
MUX/ DMUX
TX7
RX8
6×Any
MUX/ DMUX
1×OTU1
MUX/ RX7 DMUX
1×ODU1
1×OTU1
1×ODU1
6×Any
FE, GE, STM-1, TX1 STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON Express, HD-SDI, RX6 DVB-ASI, SDI, ESCON, FDDI TX6
TX8
Any
TX1 FE, GE, STM-1, STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON RX6 Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI TX6
Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group NOTE
On the client side, six or seven pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s. In cascading mode, only RX7/TX7 or RX8/TX8 can be used as the WDM-side optical interfaces. In this scenario, mapping of ODU0 services is not supported. This is different than the TN52TOM scenario 2.
14.15.8.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-221 Port diagram of the TN52TOM (scenario 4: ODU1 tributary-line mode (Any>ODU1->OTU1) in cascading mode) The dual-fed selectively receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1412
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 52TOM
3(RX1/TX1) 201(ClientLP1/ClientLP1)-1 4(RX2/TX2)
201(ClientLP1/ClientLP1)-2
5(RX3/TX3)
9(RX7/TX7) 201(ClientLP1/ClientLP1)-1
6(RX4/TX4) 7(RX5/TX5)
51(ODU1LP1/ODU1LP1) 10(RX8/TX8)
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
8(RX6/TX6)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
The single transmitting and single receiving on the WDM side: 52TOM 3(RX1/TX1) 4(RX2/TX2)
201(ClientLP1/ClientLP1)-1
5(RX3/TX3)
201(ClientLP1/ClientLP1)-2
6(RX4/TX4)
201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)
10(RX8/TX8)
7(RX5/TX5) 201(ClientLP1/ClientLP1)-7 8(RX6/TX6)
201(ClientLP1/ClientLP1)-8
9(RX7/TX7)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
In cascading mode, only RX7/TX7 or RX8/TX8 can be used as the WDM-side optical interfaces.
Table 14-217 Description of NM port of the TOM board (Cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
ClientLP1
Internal logical port. The optical paths are numbered 1 to 8.
ODU1LP1
Internal logical port. The optical paths are numbered 1.
a: RX7/TX7 or RX8/TX8 of the TOM can be used as client-side interfaces or WDM-side interfaces.
14.15.8.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1 tributary-line mode (OTU1/Any->ODU1->OTU1). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1413
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board, as shown in Figure 14-222.
l
Create the cross-connection between the internal ODU1LP1 and RX7/TX7 or RX8/TX8 of the TOM board, as shown
in Figure 14-222.
NOTE
If only seven STM-1 services are received from client equipment, specify the service package as Tributary line 7*STM-1/OC3->ODU1. This service package automatically completes the following settings: l
Board Working mode is set to Cascading.
l
Port Working Mode is set to ODU1 tributary-line (OTU1/Any->ODU1->OTU1) for the ClientLP1 port.
l
Service Type is set to STM-1 for channels 1-7 on the ClientLP1 port.
l
Port Type is set to Line Side Color Optical Port for the RX8/TX8 port.
l
Bidirectional Any-level cross-connections are created between the RX1/TX1-RX7/TX7 ports and channels 1-7 on the ClientLP1 port.
l
Bidirectional OTU1-level cross-connections are created between the RX8/TX8 port and channel 1 on the ODU1LP1 port.
Figure 14-222 Cross-connection diagram of the TN52TOM board (scenario 4) The dual-fed selectively receiving on the WDM side: Client side
WDM side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
51(ODU1LP1/ODU1LP1)-1
9(TX7/RX7)-1
3
10(TX8/RX8)-1 2 TOM
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
The single transmitting and single receiving on the WDM side: Client side
WDM side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
51(ODU1LP1/ODU1LP1)-1 3
Cross-connect module
2
10(TX8/RX8)-1
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
14.15.9 TN52TOM Scenario 5: Any->ODU0[->ODU1] (NonCascading) 14.15.9.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 1.25 Gbit/ s and eight ODU0 signals or four ODU1 signals. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1414
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-223 shows the position of a TOM board in a WDM system when it is used on an OptiX OSN 8800. Figure 14-224 shows the position of the TOM board in a WDM system when it is used on an OptiX OSN 6800/3800. Figure 14-223 Position of the TN52TOM in a WDM system (Scenario 5: Any->ODU0) (OptiX OSN 8800) 8xODU0 1xOTU2 RX1
1xOTU2 8xODU0
TX1
1
1
RX1
1
N S 2 8
8×Any
8
M U X / D M U X
8×ODU0
N S 2 8
TX8
M U X / D M U X
1
8×ODU0
8×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX8
TX1
TOM
TOM
FE, GE, FC100, FICON, DVB-ASI, SDI, TX8 ESCON, FDDI
8
RX8
NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 10 Gbit/s.
Figure 14-224 Position of the TN52TOM in a WDM system (Scenario 5: Any->ODU0->ODU1) (OptiX OSN 6800/3800) 4xODU1 1xOTU2 RX1
TOM
TX1
1
1
RX1
1
N S 2 4
8×Any
4
M U X / D M U X
8×ODU0
4
M U X / D M U X
4×ODU1
4×ODU1
8×ODU0
N S 2
TX8 Any
TX1
TOM 1
8×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX8
1xOTU2 4xODU1
4
ODU1
FE, GE, FC100, FICON, DVB-ASI, SDI, TX8 ESCON, FDDI RX8
ODU1
Any
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 10 Gbit/s.
14.15.9.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1415
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-225 Port diagram of the TN52TOM (scenario 5: ODU0 mode (Any->ODU0[>ODU1]) in non-cascading mode) OptiX OSN 8800: Any->ODU0 52TOM 3(RX1/TX1)
52NS2 161(ODU0LP1/ODU0LP1)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-4
4(RX2/TX2)
51(ODU1LP1/ODU1LP1)-1 161(ODU0LP1/ODU0LP1)-2
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-1 162(ODU0LP2/ODU0LP2)-1
202(ClientLP2/ClientLP2)-4
5(RX3/TX3)
6(RX4/TX4)
203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
203(ClientLP3/ClientLP3)-1
204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
204(ClientLP4/ClientLP4)-1
205(ClientLP5/ClientLP5)-1
7(RX5/TX5)
51(ODU1LP1/ODU1LP1)-2 162(ODU0LP2/ODU0LP2)-2
205(ClientLP5/ClientLP5)-1
1(IN/OUT ) 163(ODU0LP3/ODU0LP3)-1 51(ODU1LP1/ODU1LP1)-3
205(ClientLP5/ClientLP5)-4 8(RX6/TX6)
163(ODU0LP3/ODU0LP3)-2
206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-4
9(RX7/TX7)
10(RX8/TX8)
164(ODU0LP4/ODU0LP4)-1
207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2
207(ClientLP7/ClientLP7)-1
208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
208(ClientLP8/ClientLP8)-1
51(ODU1LP1/ODU1LP1)-4 164(ODU0LP4/ODU0LP4)-2
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
OptiX OSN 6800/OptiX OSN 3800: Any->ODU0->ODU1 52TOM 3(RX1/TX1)
52NS2
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-2
203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
203(ClientLP3/ClientLP3)-1
162(ODU0LP2/ODU0LP2)-1
204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
204(ClientLP4/ClientLP4)-1
162(ODU0LP2/ODU0LP2)-2
205(ClientLP5/ClientLP5)-1
163(ODU0LP3/ODU0LP3)-1
206(ClientLP6/ClientLP6)-1
163(ODU0LP3/ODU0LP3)-2
207(ClientLP7/ClientLP7)-1
164(ODU0LP4/ODU0LP4)-1
208(ClientLP8/ClientLP8)-1
164(ODU0LP4/ODU0LP4)-2
201(ClientLP1/ClientLP1)-4 4(RX2/TX2)
5(RX3/TX3)
6(RX4/TX4)
7(RX5/TX5)
51(ODU1LP1/ODU1LP1)-1
162(ODU0LP2/ODU0LP2)-1
51(ODU1LP1/ODU1LP1)-2
202(ClientLP2/ClientLP2)-4
1(IN/OUT)
205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-4
8(RX6/TX6)
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
163(ODU0LP3/ODU0LP3)-1
51(ODU1LP1/ODU1LP1)-3
164(ODU0LP4/ODU0LP4)-1
51(ODU1LP1/ODU1LP1)-4
206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-4
9(RX7/TX7)
10(RX8/TX8)
207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
When the number of a route of the ClientLP1, ClientLP3, ClientLP5, or ClientLP7 port is the same as that of a route of the ClientLP2, ClientLP4, ClientLP6, or ClientLP8 port, the two routes cannot be configured with cross-connections at the same time. That is, when the cross-connection from RX/TX to 201(ClientLP1/ ClientLP1)-1 is configured, the cross-connection from RX/TX to 202(ClientLP2/ClientLP2)-1 is not supported at the same time; when the cross-connection from RX/TX to 203(ClientLP3/ClientLP3)-1 is configured, the cross-connection from RX/TX to 204(ClientLP4/ClientLP4)-1 is not supported at the same time. For other port groups, that is, ClientLP5&ClientLP6 and ClientLP7&ClientLP8, the same rule applies.
Table 14-218 Description of NM port of the TOM board (Non-cascading mode)
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1416
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
l ClientLP1
Internal logical port. The optical paths are numbered 1 to 4.
l ClientLP2 l ClientLP5 l ClientLP6 l ClientLP3
Internal logical port. The optical paths are numbered 1 to 2.
l ClientLP4 l ClientLP7 l ClientLP8 ODU0LP1-ODU0LP4
Internal logical port. The optical paths are numbered 1 to 2.
14.15.9.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU0 mode (Any->ODU0[->ODU1]). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-226. board. Then, create the following cross-connections, as shown
l
Create the ODU0 cross-connection between the ClientLP port of the TOM board and ODU0LP port of the other boards to achieve grooming of ODU0 services in OptiX OSN 8800, as shown
l
in Figure 14-226.
Create the ODU1 cross-connection between the ODU0LP port of the TOM board and ODU1LP port of the other boards to achieve grooming of ODU1 services in OptiX OSN 6800/3800, as shown
Issue 03 (2013-05-16)
in Figure 14-226.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1417
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The total rate of services that are input at each group of ClientLP ports, such as 201(ClientLP1/ClientLP1)-1 to 201(ClientLP1/ClientLP)-4, cannot be higher than 1.25 Gbit/s. Only one GE service can be input at each group of ClientLP ports. The client-side eight pairs of optical ports can access services at a maximum rate of 10 Gbit/s. If a channel of the ClientLP1 port and a channel of the ClientLP2 port are identified by the same number, these two channels cannot be used at the same time. For example, if the 201(ClientLP1/ClientLP1)-1 channel is configured with a service type, you cannot configure a service type for the 202(ClientLP2/ ClientLP2)-1 channel. Service configurations at the ClentLP3 and ClientLP4, ClientLP5 and ClientLP6, and ClientLP7 and ClientLP8 ports must also comply with this restriction. If only eight GE (GFP-T) services are received from client equipment, specify the service package as Tributary 8*GE->8*ODU0. This service package automatically completes the following settings: l
Board Working mode is set to Non-cascading.
l
Port Working Mode is set to ODU0 Mode (Any->ODU0[->ODU1]) for the ClientLP1 port.
l
Service Type is set to GE(GFP-T) for channel 1 on the ClientLP1-ClientLP8 ports.
l
Bidirectional GE-level cross-connections are created between the RX1/TX1 port and channel 1 on the ClientLP1 port, the RX3/TX3 port and channel 1 on the ClientLP3 port, the RX5/TX5 port and channel 1 on the ClientLP5 port, and the RX7/TX7 port and channel 1on the ClientLP7 port.
l
Bidirectional GE-level cross-connections are created between the RX2/TX2 port and channel 2 on the ClientLP2 port, the RX4/TX4 port and channel 2 on the ClientLP4 port, the RX6/TX6 port and channel 2 on the ClientLP6 port, and the RX8/TX8 port and channel 2 on the ClientLP8 port.
Figure 14-226 Cross-connection diagram of the TN52TOM board (scenario 5) OptiX OSN 8800 WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Compatible mode
Cross-connect module
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Client side
WDM side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 205(ClientLP5/ClientLP5)-3 205(ClientLP5/ClientLP5)-4 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 206(ClientLP6/ClientLP6)-3 206(ClientLP6/ClientLP6)-4 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
2
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1418
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / (Standard mode) TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
OptiX OSN 6800/OptiX OSN 3800 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
TOM
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 205(ClientLP5/ClientLP5)-3 205(ClientLP5/ClientLP5)-4 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 206(ClientLP6/ClientLP6)-3 206(ClientLP6/ClientLP6)-4 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
WDM side
WDM side
3
161(ODU0LP1 /ODU0LP1)-1
2
162(ODU0LP2 /ODU0LP2)-1
163(ODU0LP3 /ODU0LP3)-1
164(ODU0LP4 /ODU0LP4)-1
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board
Issue 03 (2013-05-16)
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN12LQMS (NS1 Mode) / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1419
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
Cross-connect module
Client side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
TOM
1
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 205(ClientLP5/ClientLP5)-3 205(ClientLP5/ClientLP5)-4 206(ClientLP6/ClientLP6)-1 206(ClientLP6/ClientLP6)-2 206(ClientLP6/ClientLP6)-3 206(ClientLP6/ClientLP6)-4 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2 208(ClientLP8/ClientLP8)-1 208(ClientLP8/ClientLP8)-2
Cross-connect module
WDM side
Compatible mode
WDM side
3
161(ODU0LP1 /ODU0LP1)-1
2
162(ODU0LP2 /ODU0LP2)-1
163(ODU0LP3 /ODU0LP3)-1
164(ODU0LP4 /ODU0LP4)-1
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / (Standard mode) TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.10 TN52TOM Scenario 6: Any->ODU0->ODU1->OTU1(NonCascading) 14.15.10.1 Application Implements conversion between six signals at a rate in the range of 100 Mbit/s to 1.25 Gbit/s and two OTU1 signals, or implements conversion between four signals and two OTU1 signals and the dual fed and selective receiving function on the WDM side. For the position of the TOM in a WDM system, see Figure 14-227 or Figure 14-228. The single transmitting and single receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1420
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-227 Position of the TN52TOM in a WDM system (Scenario 6: A) 2xOTU1
RX1
TOM
TX1
TX7
RX7
RX7
TX7
6×Any
RX8
RX8
4×ODU0
MUX/ DMUX
RX1
2×OTU1
TX8
MUX/ DMUX
TX1
TOM
2×ODU1
2×OTU1
RX6
2×ODU1
4×ODU0
6×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI
2xOTU1
TX8
TX6
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI
RX6
TX6
Any
Any
The conversion between six Any signals and two OTU1 signals. OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group
The dual-fed selectively receiving on the WDM side: Figure 14-228 Position of the TN52TOM in a WDM system (Scenario 6: B) 2xOTU1
RX1
TOM
TX1
TX5
RX5
RX5
TX5
TX7
4×Any
RX7
RX7
4×ODU0
TX6
MUX/ DMUX
TX1
RX6
TX7 MUX/ TX8 DMUX RX8
TX4
MUX/ DMUX
2×OTU1
MUX/ TX6 DMUX RX6
RX1
TOM
2×ODU1
2×OTU1
2×ODU1
4×ODU0
4×Any
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX4
2xOTU1
FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, FDDI RX4
RX8 TX4
TX8
Any
Any
Implements conversion between four Any signals and two OTU1 signals and the dual fed and selective receiving function on the WDM side. OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group NOTE
On the client side, four pairs of optical interfaces can access services at a maximum rate of 5 Gbit/s.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1421
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.10.2 Logical Ports Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-229 Port diagram of the TN52TOM (scenario 6: ODU0 tributary-line mode (Any>ODU0->ODU1->OTU1) in non-cascading mode) The dual-fed selectively receiving on the WDM side: 52TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
7(RX5/TX5)
161(ODU0LP1/ODU0LP1)-1
201(ClientLP1/ClientLP1)-4 4(RX2/TX2)
5(RX3/TX3)
6(RX4/TX4)
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-2
203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
203(ClientLP3/ClientLP3)-1
162(ODU0LP2/ODU0LP2)-1
204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
204(ClientLP4/ClientLP4)-1
162(ODU0LP2/ODU0LP2)-2
51(ODU1LP1/ODU1LP1)-1 8(RX6/TX6)
202(ClientLP2/ClientLP2)-4 9(RX7/TX7) 162(ODU0LP2/ODU0LP2)-1
52(ODU1LP2/ODU1LP2)-1 10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
The single transmitting and single receiving on the WDM side: 52TOM 3(RX1/TX1) 4(RX2/TX2)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
161(ODU0LP1/ODU0LP1)-1
202(ClientLP2/ClientLP2)-1
161(ODU0LP1/ODU0LP1)-2
201(ClientLP1/ClientLP1)-4
5(RX3/TX3)
202(ClientLP2/ClientLP2)-1
6(RX4/TX4)
202(ClientLP2/ClientLP2)-4
7(RX5/TX5)
203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
203(ClientLP3/ClientLP3)-1
162(ODU0LP2/ODU0LP2)-1
8(RX6/TX6)
204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
204(ClientLP4/ClientLP4)-1
162(ODU0LP2/ODU0LP2)-2
161(ODU0LP1/ODU0LP1)-1
51(ODU1LP1/ODU1LP1)-1
9(RX7/TX7)
162(ODU0LP2/ODU0LP2)-1
52(ODU1LP2/ODU1LP2)-1
10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
When the number of a route of the ClientLP1, ClientLP3 port is the same as that of a route of the ClientLP2, ClientLP4 port, the two routes cannot be configured with cross-connections at the same time. That is, when the cross-connection from RX/TX to 201(ClientLP1/ClientLP1)-1 is configured, the cross-connection from RX/TX to 202(ClientLP2/ClientLP2)-1 is not supported at the same time; when the cross-connection from RX/TX to 203(ClientLP3/ClientLP3)-1 is configured, the cross-connection from RX/TX to 204(ClientLP4/ ClientLP4)-1 is not supported at the same time. For other port groups, that is, ClientLP5&ClientLP6 and ClientLP7&ClientLP8, the same rule applies. The client-side optical interfaces and WDM-side optical interfaces can be chosen as required.
Table 14-219 Description of NM port of the TOM board (Non-cascading mode)
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1422
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
l ClientLP1
Internal logical port. The optical paths are numbered 1 to 4.
l ClientLP2 l ClientLP3
Internal logical port. The optical paths are numbered 1 to 2.
l ClientLP4 ODU0LP1-ODU0LP2
Internal logical port. The optical paths are numbered 1 to 2.
a: Eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDMside interfaces.
14.15.10.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU0 Tributary-Line Mode (Any->ODU0->ODU1->OTU1). Then, create the following cross-connections: l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-230. board, as shown
l
Create the cross-connection between the internal ODU1LP1 and RX/TX of the TOM board, in Figure 14-230.
as shown NOTE
In this scenario, all the eight pairs of the optical interfaces on the TOM board can function as either the client-side or the WDM-side interfaces. If six Any services are input, two OTU1 services are output. If four Any services are input, two OTU1 services are output for dual transmitting and selective receiving.
Figure 14-230 Cross-connection diagram of the TN52TOM board (scenario 6) The dual-fed selectively receiving on the WDM side: Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
Cross-connect module
3
161(ODU0LP1/ ODU0LP1)-1
3
51(ODU1LP1/ ODU1LP1)-1 2
161(ODU0LP1/ ODU0LP1)-2
WDM side
52(ODU1LP2/ ODU1LP2)-1
162(ODU0LP1/ ODU0LP1)-1
TOM
162(ODU0LP1/ ODU0LP1)-2
Cross-connect module
7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
Cross-connect module Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
The single transmitting and single receiving on the WDM side: Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 202(ClientLP2/ClientLP2)-3 202(ClientLP2/ClientLP2)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
Cross-connect module
3
161(ODU0LP1/ ODU0LP1)-1
3
162(ODU0LP1/ ODU0LP1)-2
Cross-connect module
9(TX7/RX7)-1 2
161(ODU0LP1/ ODU0LP1)-2 162(ODU0LP1/ ODU0LP1)-1
WDM side
51(ODU1LP1/ ODU1LP1)-1
10(TX8/RX8)-1
52(ODU1LP2/ ODU1LP2)-1
TOM
Cross-connect module Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1423
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.11 TN52TOM Scenario 7: OTU1/Any->ODU1 (NonCascading) 14.15.11.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and four ODU1 signals, or implements conversion between four OTU1 signals and four ODU1 signals. For the position of the TOM in a WDM system, see Figure 14-231 or Figure 14-232. The conversion between eight signals and four ODU1 signals. Figure 14-231 Position of the TN52TOM in a WDM system (Scenario 7: A) 4xODU1 RX1
4xODU1
TOM
TX1
TOM
TX1
RX1
1
1 MUX/ DMUX
MUX/ DMUX
4
NS2
8×Any
NS2
4×ODU1
RX8
4×ODU1
8×Any
FE, GE, STM-1, STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI
1xOTU2
1xOTU2
TX8
4 RX8
TX8 Any
ODU1
ODU1
FE, GE, STM-1, STM-4, STM-16, OC-3, OC-12, OC48, FC100, FC200, FICON, FICON Express, HD-SDI, DVB-ASI, SDI, ESCON, FDDI
Any
The conversion between four OTU1 signals and four ODU1 signals. OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group OptiX OSN 8800: N/A OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1424
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-232 Position of the TN52TOM in a WDM system (Scenario 7: B) 4xODU1 RX1
RX1
TOM 1
1 MUX/ DMUX
MUX/ DMUX
4
TX8
NS2
4
4×OTU1
NS2
TX1
4×ODU1
4×OTU1
4×ODU1
RX8
4xODU1
TOM
TX1 OTU1 4
1xOTU2
1xOTU2
4
OTU1
RX8 TX8
ODU1
ODU1
OptiX OSN 8800: N/A OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group NOTE
In this scenario, mapping of Any services is not supported. This is different than TN52TOM scenario 8.
14.15.11.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-233 Port diagram of the TN52TOM (scenario 7: ODU1 mode (OTU1/Any>ODU1) in non-cascading mode) OptiX OSN 8800/OptiX OSN 6800: A 52NS2
A 52TOM 3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
203(ClientLP3/ClientLP3)-1
51(ODU1LP1/ODU1LP1)-2
205(ClientLP5/ClientLP5)-1
51(ODU1LP1/ODU1LP1)-3
207(ClientLP7/ClientLP7)-1
51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
1(IN/OUT)
205(ClientLP5/ClientLP5)-1
8(RX6/TX6) 9(RX7/TX7)
205(ClientLP5/ClientLP5)-4
10(RX8/TX8)
207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2
: Client-side services : WDM-side services : Working service direction : Virtual channel
OptiX OSN 3800:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1425
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 52TOM
3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5)
52NS2
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
203(ClientLP3/ClientLP3)-1
51(ODU1LP1/ODU1LP1)-3
205(ClientLP5/ClientLP5)-1
51(ODU1LP1/ODU1LP1)-2
207(ClientLP7/ClientLP7)-1
51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2
1(IN/OUT)
205(ClientLP5/ClientLP5)-1
8(RX6/TX6) 9(RX7/TX7)
205(ClientLP5/ClientLP5)-4
10(RX8/TX8)
207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
Particularly, in the OptiX OSN 3800, inter-board ODU1 cross-connections between the 52TOM and 52NS2 boards, if required, should be configured in such a manner that the ClientLP3-1 port on the 52TOM board is cross-connected to the ODU1LP1-3 port on the 52NS2 board, the ClientLP5-1 port on the 52TOM board is cross-connected to the ODU1LP1-2 port on the 52NS2 board.
Table 14-220 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1 to 4.
l ClientLP5 l ClientLP3
Internal logical port. The optical paths are numbered 1 to 2.
l ClientLP7
14.15.11.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1 mode (OTU1/Any->ODU1). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-234. board, as shown
l
create the ODU1 cross-connection between the ClientLP port on the TOM board and the ODU1LP port on the TN52NS2 boards to implement grooming of ODU1 services, defined as
Issue 03 (2013-05-16)
in Figure 14-234.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1426
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
When the internal cross-connection of ODU1 signal is configured, only the first route can be selected. For example: 201(ClientLP1/ClientLP1)-1. Only ClientLP1/ClientLP3/ClientLP5/ClientLP7 can be used. Each ClientLP logical port can access a maximum of 2.5 Gbit/s signals. If only four STM-16 services are received from client equipment, specify the service package as Tributary 4*STM-16/OC48->4*ODU1. This service package automatically completes the following settings: l
Board Working mode is set to Non-Cascading.
l
Port Working Mode is set to ODU1 Mode (OTU1/Any->ODU1) for the ClientLP1, ClientLP3, ClientLP5 and ClientLP7 ports.
l
Service Type is set to STM-16 for channel 1 on the ClientLP1-ClientLP8 ports.
l
Bidirectional Any-level cross-connections are created between the RX1/TX1 port and channel 1 on the ClientLP1 port, the RX2/TX2 port and channel 1 on the ClientLP3 port, the RX3TX3 port and channel 1 on the ClientLP5 port, and the RX4/TX4 port and channel 1 on the ClientLP7 port.
Figure 14-234 Cross-connection diagram of the TN52TOM board (scenario 7) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
Cross-connect module
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
Client side
1
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 205(ClientLP5/ClientLP5)-1 205(ClientLP5/ClientLP5)-2 205(ClientLP5/ClientLP5)-3 205(ClientLP5/ClientLP5)-4 207(ClientLP7/ClientLP7)-1 207(ClientLP7/ClientLP7)-2
Cross-connect module
WDM side
Compatible mode
WDM side
2
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / mode) TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.12 TN52TOM Scenario 8: OTU1->ODU1->Any->ODU0>ODU1 (Non-Cascading) 14.15.12.1 Application Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1427
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Implements conversion between four OTU1 signals and four ODU1 signals through Any reencapsulation. For the position of the TOM in a WDM system, see Figure 14-235. Figure 14-235 Position of the TN52TOM in a WDM system (Scenario 8: OTU1->ODU1->Any>ODU0->ODU1) 4xODU1 1xOTU2
8×Any
4
4
OTU1
RX8 TX8
ODU1
ODU1
4×OTU1
4
32×Any
Any
N S 2
4×ODU1
4
TX1
1
64×Any
4 TX8
1
8×ODU0
N S 2
M U X / D M U X
4×ODU1
M U X / D M U X
1
4×ODU1
64×Any 8×Any
8×ODU0 8×Any
32×Any
RX8
4×OTU1
4
1
4×ODU1
OTU1
RX1
TOM
TOM
TX1
8×Any
RX1
1xOTU2 4xODU1
Any
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group OptiX OSN 6800: N/A OptiX OSN 3800: From/To non-paired slots of the mesh group NOTE
When the Any service is mapped into the ODU0 service, the TOM board supports de-encapsulation and then re-encapsulation of only 10 Any services.
14.15.12.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-236 Port diagram of the TN52TOM (scenario 8: ODU1_ANY_ODU0_ODU1 reencapsulation mode (OTU1->ODU1->Any->ODU0->ODU1) in non-cascading mode) 52TOM
52NS2
237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1 3(RX1/TX1)
201(ClientLP1/ ClientLP1)-1
237(AnyLP5/AnyLP5)-1
161(ODU0LP1/ODU0LP1)-1
238(AnyLP6/AnyLP6)-1
161(ODU0LP1/ODU0LP1)-2
239(AnyLP7/AnyLP7)-1
162(ODU0LP2/ODU0LP2)-1
240(AnyLP8/AnyLP8)-1
162(ODU0LP2/ODU0LP2)-2
241(AnyLP9/AnyLP9)-1
163(ODU0LP3/ODU0LP3)-1
242(AnyLP10/AnyLP10)-1
163(ODU0LP3/ODU0LP3)-2
243(AnyLP11/AnyLP11)-1
164(ODU0LP4/ODU0LP4)-1
244(AnyLP12/AnyLP12)-1
164(ODU0LP4/ODU0LP4)-2
237(AnyLP5/AnyLP5)-8 238(AnyLP6/AnyLP6)-1
233(AnyLP1/AnyLP1)-8
161(ODU0LP1/ODU0LP1)-1
51(ODU1LP1/ODU1LP1)-1
162(ODU0LP2/ODU0LP2)-1
51(ODU1LP1/ODU1LP1)-2
238(AnyLP6/AnyLP6)-8 4(RX2/TX2) 239(AnyLP7/AnyLP7)-1
5(RX3/TX3)
234(AnyLP2/AnyLP2)-1 203(ClientLP3/ ClientLP3)-1
239(AnyLP7/AnyLP7)-8 240(AnyLP8/AnyLP8)-1
234(AnyLP2/AnyLP2)-8 6(RX4/TX4)
240(AnyLP8/AnyLP8)-8 1(IN/OUT)
241(AnyLP9/AnyLP9)-1 7(RX5/TX5) 235(AnyLP3/AnyLP3)-1 205(ClientLP5/ ClientLP5)-1
241(AnyLP9/AnyLP9)-8 242(AnyLP10/AnyLP10)-1
235(AnyLP3/AnyLP3)-8
8(RX6/TX6)
163(ODU0LP3/ODU0LP3)-1
51(ODU1LP1/ODU1LP1)-3
164(ODU0LP4/ODU0LP4)-1
51(ODU1LP1/ODU1LP1)-4
242(AnyLP10/AnyLP10)-8 243(AnyLP11/AnyLP11)-1
9(RX7/TX7)
236(AnyLP4/AnyLP4)-1 10(RX8/TX8)
207(ClientLP7/ ClientLP7)-1
243(AnyLP11/AnyLP11)-8 244(AnyLP12/AnyLP12)-1
236(AnyLP4/AnyLP4)-8 244(AnyLP12/AnyLP12)-8
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1428
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
Any four of the client-side optical interfaces can be used for service transmission.
Table 14-221 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1
l ClientLP3 l ClientLP5 l ClientLP7 AnyLP1-AnyLP12
Internal logical port. The optical paths are numbered 1 to 8.
ODU0LP1-ODU0LP4
Internal logical port. The optical paths are numbered 1 to 2.
14.15.12.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1_ANY_ODU0_ODU1 re-encapsulation mode (OTU1->ODU1>Any->ODU0->ODU1). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-237. board, as shown
l
Create the internal cross-connections of the Any service on the TN52TOM board, as shown 3
l
in Figure 14-237.
create the ODU1 cross-connection between the ODU0LP port of the TOM board and ODU1LP port of the other boards to implement the cross-connect grooming of ODU1 services, as shown
4
in Figure 14-237.
NOTE
You can also set the service package to Tributary 4*OTU1->ODU1 (re-encapsulated into ODU0) on the U2000. This service package automatically completes the following settings: l
Board Working mode is set to Non-Cascading.
l
Port Working Mode is set to ODU1_ANY_ODU0_ODU1 re-encapsulation tributary-line mode (OTU1->ODU1->Any->ODU0->ODU1->OTU1) for the ClientLP1, ClientLP3, ClientLP5 and ClientLP7 ports.
l
Service Type is set to OTU1 for the ClientLP1, ClientLP3, ClientLP5, and ClientLP7 ports.
l
Bidirectional OTU1-level cross-connections are created between the RX1/TX1 port and channel 1 on the ClientLP1 port, the RX2/TX2 port and channel 1 on the ClientLP3 port, the RX3TX3 port and channel 1 on the ClientLP5 port, and the RX4/TX4 port and channel 1 on the ClientLP7 port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1429
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-237 Cross-connection diagram of the TN52TOM board (scenario 8)
Other board
Cross-connect module
Client side
3(TX1/RX1)-1 1
4(TX2/RX2)-1 5(TX3/RX3)-1
201(ClientLP1 /ClientLP1)-1 203(ClientLP3 /ClientLP3)-1
203(ClientLP7 /ClientLP7)-1
7(TX5/RX5)-1
10(TX8/RX8)-1
TOM
Cross-connect module
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Compatible mode
2
3
2 233(AnyLP1/AnyLP1)-8
238(AnyLP6/AnyLP6)-8 241(AnyLP9/AnyLP9)-1
234(AnyLP2/AnyLP2)-8
241(AnyLP9/AnyLP9)-8 242(AnyLP10/AnyLP10)-1
236(AnyLP4/AnyLP4)-1
242(AnyLP10/AnyLP10)-8
236(AnyLP4/AnyLP4)-7 236(AnyLP4/AnyLP4)-8
244(AnyLP12/AnyLP12)-8 244(AnyLP12/AnyLP12)-8
Cross-connect module
161(ODU0LP1 /ODU0LP1)-1
WDM side
WDM side 4
237(AnyLP5/AnyLP5)-8 238(AnyLP6/AnyLP6)-1
234(AnyLP2/AnyLP2)-1
8(TX6/RX6)-1 9(TX7/RX7)-1
Standard mode
237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1
205(ClientLP5 /ClientLP5)-1
6(TX4/RX4)-1
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4
Cross-connect module
162(ODU0LP2 /ODU0LP2)-1
163(ODU0LP3 /ODU0LP3)-1
164(ODU0LP4 /ODU0LP4)-1
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / mode) TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.13 TN52TOM Scenario 9: OTU1->ODU1->Any->ODU0>ODU1->OTU1 (Non-Cascading) 14.15.13.1 Application Implements conversion between two OTU1 signals and two OTU1 signals through Any reencapsulation, and the dual fed and selective receiving function on the WDM side. For the position of the TOM in a WDM system, see Figure 14-238.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1430
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-238 Position of the TN52TOM in a WDM system (Scenario 9) 2xOTU1
TOM
RX1 TX1
2×OTU1
16×Any
RX5 TX5 MUX/ RX6 DMUX TX6
TX1
2×ODU1
TX5 RX5 MUX/ TX6 DMUX RX6
RX1
TOM
32×Any 4×ODU0
RX3 TX3 MUX/ DMUX RX4 TX4
2×OTU1
TX2
TX3 RX3 MUX/ TX4 DMUX RX4
2×ODU1
2×OTU1
2×ODU1
4×ODU0 32×Any
16×Any
2×OTU1
RX2
2×ODU1
OTU1
2xOTU1
OTU1 RX2 TX2
NOTE
When the Any service is mapped into the ODU0 service, the TOM board supports de-encapsulation and then re-encapsulation of only 10 Any services.
14.15.13.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-239 Port diagram of the TN52TOM (scenario 9: ODU1_ANY_ODU0_ODU1 reencapsulation tributary-line mode (OTU1->ODU1->Any->ODU0->ODU1->OTU1) in noncascading mode) 52TOM 237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1 3(RX1/TX1)
201(ClientLP1/ ClientLP1)-1
237(AnyLP5/AnyLP5)-1
161(ODU0LP1/ODU0LP1)-1
238(AnyLP6/AnyLP6)-1
161(ODU0LP1/ODU0LP1)-2
239(AnyLP7/AnyLP7)-1
162(ODU0LP2/ODU0LP2)-1
7(RX5/TX5)
237(AnyLP5/AnyLP5)-8
161(ODU0LP1/ODU0LP1)-1
238(AnyLP6/AnyLP6)-1 233(AnyLP1/AnyLP1)-8
51(ODU1LP1/ODU1LP1)-1 8(RX6/TX6)
238(AnyLP6/AnyLP6)-8
4(RX2/TX2)
239(AnyLP7/AnyLP7)-1 5(RX3/TX3) 234(AnyLP2/AnyLP2)-1 6(RX4/TX4)
203(ClientLP3/ ClientLP3)-1
9(RX7/TX7)
239(AnyLP7/AnyLP7)-8
162(ODU0LP2/ODU0LP2)-1
240(AnyLP8/AnyLP8)-1 240(AnyLP8/AnyLP8)-1
234(AnyLP2/AnyLP2)-8
52(ODU1LP2/ODU1LP2)-1
162(ODU0LP2/ODU0LP2)-2
10(RX8/TX8)
240(AnyLP8/AnyLP8)-8
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
The client-side optical interfaces and WDM-side optical interfaces can be chosen according to the system plan. Any two of the client-side optical interfaces can be used for service transmission.
Table 14-222 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1.
l ClientLP3 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1431
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
AnyLP1-AnyLP8
Internal logical port. The optical paths are numbered 1 to 8.
ODU0LP1-ODU0LP2
Internal logical port. The optical paths are numbered 1 to 2.
ODU1LP1-ODU1LP2
Internal logical port. The optical paths are numbered 1.
a: Eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDMside interfaces.
14.15.13.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1_ANY_ODU0_ODU1 re-encapsulation tributary-line mode (OTU1>ODU1->Any->ODU0->ODU1->OTU1). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board, as shown
in Figure 14-240. 3
l
Create the internal cross-connections of the Any service on the TOM board, as shown in Figure 14-240.
l
Create the cross-connection between the internal ODU1LP1 and RX/TX of the TOM board, as shown
4
in Figure 14-240.
NOTE
In this scenario, all the eight pairs of optical interfaces on the TOM board can function as either the clientside or the WDM-side interfaces.
Figure 14-240 Cross-connection diagram of the TN52TOM board (scenario 9) Client side
WDM side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
1
201(ClientLP1 /ClientLP1)-1 203(ClientLP3 /ClientLP3)-1
237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1 2
3 233(AnyLP1/AnyLP1)-8
205(ClientLP5 /ClientLP5)-1 207(ClientLP7 /ClientLP7)-1
161(ODU0LP1 /ODU0LP1)-1
237(AnyLP5/AnyLP5)-8 238(AnyLP6/AnyLP6)-1 238(AnyLP6/AnyLP6)-8
234(AnyLP2/AnyLP2)-1
237(AnyLP5/AnyLP5)-1
234(AnyLP2/AnyLP2)-8
237(AnyLP5/AnyLP5)-8 238(AnyLP6/AnyLP6)-1
2
51(ODU1LP1 /ODU1LP1)-1
8(TX6/RX6)-1
2 162(ODU0LP2 /ODU0LP2)-1
7(TX5/RX5)-1
4 52(ODU1LP2 /ODU1LP2)-1
9(TX7/RX7)-1 10(TX8/RX8)-1
238(AnyLP6/AnyLP6)-8
TOM
Cross-connect module
Cross-connect module
Cross-connect module
Cross-connect module
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
14.15.14 TN52TOM scenario 10: OTU1/Any->ODU1->OTU1 (noncascading) Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1432
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.14.1 Application Implements the electrical regeneration of four OTU1 optical signals, or implements conversion between six signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and two OTU1 signals, or implements conversion between four signals and two OTU1 signals and the dual fed and selective receiving function on the WDM side. For the position of the TOM in a WDM system, see Figure 14-241. Figure 14-241 Position of the TN52TOM in a WDM system (Scenario 10) A: OTU1->ODU1->OTU1 mode. Implements the electrical regeneration of four OTU1 optical signals.
4xOTU1
4xOTU1 TOM
4×OTU1 4×ODU1 4×OTU1
D RX1 M U X RX4
TX1 M U X TX4
TOM
4×OTU1 4×ODU1 4×OTU1
M TX1 U X TX4
RX1 D M U RX4 X
B: Any->ODU1->OTU1 mode. Implements conversion between six signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and two OTU1 signals, or implements conversion between four signals and two OTU1 signals and the dual fed and selective receiving function on the WDM side. The single transmitting and single receiving on the WDM side:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1433
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 2xOTU1
2xOTU1
TOM
TOM RX7
TX7 MUX/ DMUX
TX7 RX8 TX8
Any
6×Any
MUX/ TX8 DMUX RX8
2×OTU1
2×OTU1
2×ODU1
6×Any
RX7
2×ODU1
FE, GE, FC100, RX1 FICON, STM-4, OC-12, DVB- TX1 ASI, ESCON, FDDI, SDI, STM-1, OC-3 , FC200, RX6 FICON Express, HDSDI, STM-16, TX6 OC-48
TX1 FE, GE, FC100, FICON, STM-4, RX1 OC-12, DVBASI, ESCON, FDDI, SDI, STM-1, OC-3 , FC200, TX6 FICON Express, HDRX6 SDI, STM-16, OC-48
Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group
The dual-fed selectively receiving on the WDM side: 2xOTU1
RX1
TOM
TX1
RX5 TX5
RX6
RX7
RX7 MUX/ DMUX
TX1
RX6 TX6
TX7 MUX/ TX8 DMUX RX8
TX4
MUX/ DMUX
TX7
2×OTU1
4×Any
MUX/ DMUX
RX1
TOM
2×ODU1
2×OTU1
RX4
TX5 RX5 TX6
2×ODU1
FE, GE, FC100, FICON, STM-4, OC-12, DVBASI, ESCON, FDDI, SDI, STM-1, OC-3 , FC200, FICON Express, HDSDI, STM-16, OC-48
4×Any
2xOTU1
RX8
TX4
TX8
Any
RX4
FE, GE, FC100, FICON, STM-4, OC-12, DVBASI, ESCON, FDDI, SDI, STM-1, OC-3 , FC200, FICON Express, HDSDI, STM-16, OC-48
Any
OptiX OSN 8800: N/A OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To paired slot of the mesh group NOTE
The client-side optical interfaces and WDM-side optical interfaces can be chosen according to the system plan.
14.15.14.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-242 Port diagram of the TN52TOM (scenario 10: ODU1 tributary-line mode (OTU1/ Any->ODU1->OTU1) in non-cascading mode) OTU1->ODU1->OTU1 mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1434
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board TOM
3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
7(RX5/TX5)
4(RX2/TX2)
203(ClientLP3/ClientLP3)-1
52(ODU1LP2/ODU1LP2)-1
8(RX6/TX6)
5(RX3/TX3)
205(ClientLP5/ClientLP5)-1
53(ODU1LP3/ODU1LP3)-1
9(RX7/TX7)
6(RX4/TX4)
207(ClientLP7/ClientLP7)-1
54(ODU1LP4/ODU1LP4)-1
10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Any->ODU1->OTU1 mode. The single transmitting and single receiving on the WDM side. TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
9(RX7/TX7)
203(ClientLP3/ClientLP3)-1
52(ODU1LP2/ODU1LP2)-1
10(RX8/TX8)
4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5) 8(RX6/TX6)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Any->ODU1->OTU1 mode. The dual-fed selectively receiving on the WDM side. TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
8(RX6/TX6)
4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4)
7(RX5/TX5)
9(RX7/TX7) 203(ClientLP3/ClientLP3)-1
52(ODU1LP2/ODU1LP2)-1 10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
The client-side optical interfaces and WDM-side optical interfaces can be chosen according to the system plan.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1435
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-223 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1
l ClientLP3 l ClientLP5 l ClientLP7 ODU1LP1-ODU1LP4
Internal logical port. The optical paths are numbered 1.
a: Eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDMside interfaces.
14.15.14.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1 tributary-line mode (OTU1/Any->ODU1->OTU1). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-243. board, as shown
l
Create the cross-connection between the internal ODU1LP1 and RX/TX of the TOM board, as shown
3
in Figure 14-243.
NOTE
If only four OTU1 services are received from client equipment, you can also specify the service package as 4*OTU1 REG to automatically complete the following settings: l
Board Working mode is set to Non-Cascading.
l
Port Working Mode is set to ODU1 tributary-line (OTU1/Any->ODU1->OTU1) for the ClientLP1, ClientLP3, ClientLP5, and ClientLP7 ports.
l
Service Type is set to OTU1 for the ClientLP1, ClientLP3, ClientLP5, and ClientLP7 ports.
l
Port Type is set to Line Side Color Optical Port for the RX5/TX5-RX8/TX8 ports.
l
Bidirectional OTU1-level cross-connections are created between the RX1/TX1 port and channel 1 on the ClientLP1 port, the RX2/TX2 port and channel 1 on the ClientLP3 port, the RX3TX3 port and channel 1 on the ClientLP5 port, and the RX4/TX4 port and channel 1 on the ClientLP7 port.
l
Bidirectional OTU1-level cross-connections are created between the RX5/TX5 port and channel 1 on the ODU1LP1 port, the RX6/TX6 port and channel 1 on the ODU1LP2 port, the RX7/TX7 port and channel 1 on the ODU1LP3 port, and the RX8/TX8 port and channel 1 on the ODU1LP4 port.
Figure 14-243 Cross-connection diagram of the TN52TOM board (scenario 10) OTU1->ODU1->OTU1 mode. Client side
WDM side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 TOM
1
201(ClientLP1/ClientLP1)-1 203(ClientLP3/ClientLP3)-1 205(ClientLP5/ClientLP5)-1 207(ClientLP7/ClientLP7)-1
Cross-connect module
2
51(ODU1LP1/ODU1LP1)-1 52(ODU1LP2/ODU1LP2)-1 53(ODU1LP3/ODU1LP3)-1 54(ODU1LP4/ODU1LP4)-1
Cross-connect module
3
7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1436
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Any->ODU1->OTU1 mode. The single transmitting and single receiving on the WDM side. Client side
WDM side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
201(ClientLP1/ClientLP1)-1 1
2
203(ClientLP3/ClientLP3)-1
9(TX7/RX7)-1
51(ODU1LP1/ODU1LP1)-1
3
52(ODU1LP2/ODU1LP2)-1
10(TX8/RX8)-1 TOM
Cross-connect module
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
Any->ODU1->OTU1 mode. The dual-fed selectively receiving on the WDM side. Client side
WDM side 201(ClientLP1/ClientLP1)-1
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
1
2
203(ClientLP3/ClientLP3)-1
52(ODU1LP2/ODU1LP2)-1
Cross-connect module
Cross-connect module
7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
51(ODU1LP1/ODU1LP1)-1 3
Cross-connect module
TOM
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS
14.15.15 TN52TOM scenario 11: OTU1->ODU1->ODU0 (noncascading) 14.15.15.1 Application Implements conversion between four OTU1 signals and eight ODU0 signals. For the position of the TOM in a WDM system, see Figure 14-244. Figure 14-244 Position of the TN52TOM in a WDM system (Scenario 11) 8xODU0 1xOTU2 RX1
1
TX1
1 8×Any
N S 2 8
8
4×OTU1
M U X / D M U X
4×ODU1
8
M U X / D M U X
8×ODU0
4×ODU1
N S 2 8
TX8
1
8×ODU0 8×Any
RX8
1
4×OTU1
4
RX1
TOM
TOM
TX1 OTU1
1xOTU2 8xODU0
4
OTU1
RX8 TX8
NOTE
In this scenario, mapping of Any services is not supported. This is different than TN52TOM scenario 12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1437
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.15.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board.
Figure 14-245 Port diagram of the TN52TOM (scenario 11: ODU1_ODU0 mode (OTU1>ODU1->ODU0) in non-cascading mode) 52TOM
3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
52NS2 161(ODU0LP1/ODU0LP1)-1
161(ODU0LP1/ODU0LP1)-2
161(ODU0LP1/ODU0LP1)-2
162(ODU0LP2/ODU0LP2)-1
162(ODU0LP2/ODU0LP2)-1
162(ODU0LP2/ODU0LP2)-2
162(ODU0LP2/ODU0LP2)-2
163(ODU0LP3/ODU0LP3)-1
163(ODU0LP3/ODU0LP3)-1
161(ODU0LP1/ODU0LP1)-1
4(RX2/TX2)
5(RX3/TX3) 203(ClientLP3/ClientLP3)-1
161(ODU0LP1/ODU0LP1)-1
51(ODU1LP1/ODU1LP1)-1
51(ODU1LP1/ODU1LP1)-2
162(ODU0LP2/ODU0LP2)-1
6(RX4/TX4)
1(IN/OUT) 7(RX5/TX5) 205(ClientLP5/ClientLP5)-1
163(ODU0LP3/ODU0LP3)-1
8(RX6/TX6)
51(ODU1LP1/ODU1LP1)-3 163(ODU0LP3/ODU0LP3)-2
163(ODU0LP3/ODU0LP3)-2
164(ODU0LP4/ODU0LP4)-1
164(ODU0LP4/ODU0LP4)-1
164(ODU0LP4/ODU0LP4)-2
164(ODU0LP4/ODU0LP4)-2
9(RX7/TX7)
10(RX8/TX8)
207(ClientLP7/ClientLP7)-1
51(ODU1LP1/ODU1LP1)-4
164(ODU0LP4/ODU0LP4)-1
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
The client-side optical interfaces can be chosen according to the system plan. Any four of the client-side optical interfaces can be used for service transmission.
Table 14-224 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1
l ClientLP3 l ClientLP5 l ClientLP7 ODU0LP1-ODU0LP4
Internal logical port. The optical paths are numbered 1 to 2.
14.15.15.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1_ODU0 mode (OTU1->ODU1->ODU0). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1438
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM board, as shown in Figure 14-246.
l
Create the ODU0 cross-connection between the ClientLP port of the TOM board and ODU0LP port of the other boards to implement the cross-connect grooming of ODU0 services, as shown
in Figure 14-246.
Figure 14-246 Cross-connection diagram of the TN52TOM board (scenario 11) 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:1-ODU0:2
WDM side Standard mode
1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODU1:4-ODU0:2
Other board
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Cross-connect module
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
TOM
201(ClientLP1/ClientLP1)-1 203(ClientLP3/ClientLP3)-1 1
205(ClientLP5/ClientLP5)-1 207(ClientLP7/ClientLP7)-1
Cross-connect module
Compatible mode
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
3
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2 162(ODU0LP2/ODU0LP2)-1 162(ODU0LP2/ODU0LP2)-2 163(ODU0LP3/ODU0LP3)-1 163(ODU0LP3/ODU0LP3)-2 164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
2
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / mode) TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.16 TN52TOM Scenario 12: OTU1->ODU1->Any->ODU0 (Non-Cascading) 14.15.16.1 Application Implements conversion between four OTU1 signals and eight ODU0 signals through Any reencapsulation. For the position of the TOM in a WDM system, see Figure 14-247. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1439
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-247 Position of the TN52TOM in a WDM system (Scenario 12) 8xODU0 1xOTU2 RX1
TOM
TX1
1
4×OTU1
8
32×Any
N S 2
4×ODU1
TX8
8
1
64×Any
8
M U X / D M U X
8×ODU0
64×Any
N S 2
M U X / D M U X
8×Any
1
8×ODU0 8×Any
32×Any
4×OTU1
RX8
1
4×ODU1
4
RX1
TOM
TX1
OTU1
1xOTU2 8xODU0
8
4 OTU1 RX8 TX8
NOTE
In this scenario, mapping of Any services is not supported. This is different than TN52TOM scenario 11. When the Any service is mapped into the ODU0 service, the TOM board supports de-encapsulation and then re-encapsulation of only 10 Any services. Any service is FE, GE, FC100, FICON, DVB-ASI, SDI, ESCON, or FDDI.
14.15.16.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-248 Port diagram of the TN52TOM (scenario 12: ODU1_ANY_ODU0 reencapsulation mode (OTU1->ODU1->Any->ODU0) in non-cascading mode) 52TOM
52NS2 237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1 3(RX1/TX1)
201(ClientLP1/ ClientLP1)-1
237(AnyLP5/AnyLP5)-1
161(ODU0LP1/ODU0LP1)-1
238(AnyLP6/AnyLP6)-1
161(ODU0LP1/ODU0LP1)-2
239(AnyLP7/AnyLP7)-1
162(ODU0LP2/ODU0LP2)-1
240(AnyLP8/AnyLP8)-1
162(ODU0LP2/ODU0LP2)-2
241(AnyLP9/AnyLP9)-1
163(ODU0LP3/ODU0LP3)-1
242(AnyLP10/AnyLP10)-1
163(ODU0LP3/ODU0LP3)-2
243(AnyLP11/AnyLP11)-1
164(ODU0LP4/ODU0LP4)-1
244(AnyLP12/AnyLP12)-1
164(ODU0LP4/ODU0LP4)-2
237(AnyLP5/AnyLP5)-8
51(ODU1LP1/ODU1LP1)-1
238(AnyLP6/AnyLP6)-1 233(AnyLP1/AnyLP1)-8 238(AnyLP6/AnyLP6)-8
4(RX2/TX2) 239(AnyLP7/AnyLP7)-1
5(RX3/TX3)
234(AnyLP2/AnyLP2)-1 203(ClientLP3/ ClientLP3)-1
239(AnyLP7/AnyLP7)-8
234(AnyLP2/AnyLP2)-8
6(RX4/TX4)
51(ODU1LP1/ODU1LP1)-2
240(AnyLP8/AnyLP8)-1
240(AnyLP8/AnyLP8)-8 1(IN/OUT)
241(AnyLP9/AnyLP9)-1 7(RX5/TX5) 235(AnyLP3/AnyLP3)-1 205(ClientLP5/ ClientLP5)-1 8(RX6/TX6)
241(AnyLP9/AnyLP9)-8
51(ODU1LP1/ODU1LP1)-3
242(AnyLP10/AnyLP10)-1 235(AnyLP3/AnyLP3)-8 242(AnyLP10/AnyLP10)-8 243(AnyLP11/AnyLP11)-1
9(RX7/TX7)
236(AnyLP4/AnyLP4)-1 10(RX8/TX8)
207(ClientLP7/ ClientLP7)-1
243(AnyLP11/AnyLP11)-8
51(ODU1LP1/ODU1LP1)-4
244(AnyLP12/AnyLP12)-1 236(AnyLP4/AnyLP4)-8 244(AnyLP12/AnyLP12)-8
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
The client-side optical interfaces can be chosen according to the system plan. Any four of the client-side optical interfaces can be used for service transmission.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1440
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-225 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1
l ClientLP3 l ClientLP5 l ClientLP7 AnyLP1-AnyLP12
Internal logical port. The optical paths are numbered 1 to 8.
14.15.16.3 Configuration of Cross-connection On the U2000, set the Board working Mode to non-cascading mode. During creation of the electrical cross-connect services on the U2000. Set the mode of the ClientLP port to ODU1_ANY_ODU0 re-encapsulation mode (OTU1->ODU1->Any>ODU0). l
Create the cross-connection between the internal RX/TX and ClientLP ports of the TOM in Figure 14-249. board, as shown
l
Create the internal cross-connections of the Any service on the TOM board, as shown in Figure 14-249.
l
Create the ODU0 cross-connection between the AnyLP port of the TOM board and ODU0LP port of the other boards to implement the cross-connect grooming of ODU0 services, as shown
Issue 03 (2013-05-16)
4
3
in Figure 14-249.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1441
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-249 Cross-connection diagram of the TN52TOM board (scenario 12) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
WDM side Standard mode
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Client side
201(ClientLP1/ClientLP1)-1
3(TX1/RX1)-1
203(ClientLP3/ClientLP3)-1
3
5(TX3/RX3)-1
205(ClientLP5/ClientLP5)-1
6(TX4/RX4)-1
207(ClientLP7/ClientLP7)-1
233(AnyLP1/AnyLP1)-8 234(AnyLP2/AnyLP2)-1 234(AnyLP2/AnyLP2)-8
7(TX5/RX5)-1
235(AnyLP1/AnyLP1)-8 236(AnyLP2/AnyLP2)-1
241(AnyLP9/AnyLP9)-8 242(AnyLP10/AnyLP10)-1
236(AnyLP2/AnyLP2)-8
4
238(AnyLP6/AnyLP6)-8 241(AnyLP9/AnyLP9)-1
9(TX7/RX7)-1
242(AnyLP10/AnyLP10)-8 244(AnyLP12/AnyLP12)-1
10(TX8/RX8)-1
TOM
237(AnyLP5/AnyLP5)-8 238(AnyLP6/AnyLP6)-1
235(AnyLP1/AnyLP1)-1
8(TX6/RX6)-1
WDM side
237(AnyLP5/AnyLP5)-1
233(AnyLP1/AnyLP1)-1 2
1 4(TX2/RX2)-1
Compatible mode
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2
Cross-connect module
244(AnyLP12/AnyLP12)-8
Cross-connect module
Cross-connect module
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The straight-through of the board, which does not need to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / mode) TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NQ2 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.15.17 TN11TOM Scenario 1: Any->ODU1 (Cascading) 14.15.17.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and one ODU1 signal. For the position of the TOM in a WDM system, see Figure 14-250.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1442
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-250 Position of the TN11TOM in a WDM system (Scenario 1) 1xODU1 1xOTU2 RX1
TOM
TX8 Any
M U X / D M U X
N S 2
ODU1
ODU1
8×Any
N S 2
M U X / D M U X
1×ODU1
1×ODU1
RX8
RX1
TOM
TX1
8×Any
FE, GE, FDDI, STM-1, OC-3, DVB-ASI, SDI, STM-16, OC48, ESCON, STM-4, OC-12, FC100, FICON, FC200, FICON Express, HDSDI, OTU1
1xOTU2 1xODU1
Any
TX1 FE, GE, FDDI, STM-1, OC-3, DVB-ASI, SDI, STM-16, OC48, ESCON, RX8 STM-4, OC-12, FC100, FICON, TX8 FC200, FICON Express, HDSDI, OTU1
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To the mesh group slots OptiX OSN 6800: N/A OptiX OSN 3800: From/To the mesh group slots NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s.
14.15.17.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-251 Port diagram of the TN11TOM (scenario 1: ODU1 tributary mode (Any->ODU1) in cascading mode) 11TOM
52NS2
3(RX1/TX1) 51(ODU1LP1/ODU1LP1)-1
201(ClientLP1/ClientLP1)-1 4(RX2/TX2) 201(ClientLP1/ClientLP1)-2 5(RX3/TX3)
51(ODU1LP1/ODU1LP1)-2
6(RX4/TX4)
1(IN/OUT)
201(ClientLP1/ClientLP1)-1 7(RX5/TX5) 51(ODU1LP1/ODU1LP1)-3 8(RX6/TX6) 9(RX7/TX7)
201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
51(ODU1LP1/ODU1LP1)-4
10(RX8/TX8) : Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1443
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-226 Description of NM port of the TOM board (Cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
ClientLP1
Internal logical port. The optical paths are numbered 1 to 8.
14.15.17.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Cascading mode. During creation of the electrical cross-connect services on the U2000, create the Any crossconnection between the RX/TX and ClientLP ports. The cross-connect grooming of ODU1 and service is implemented through the cross-connect module in cascading mode, as shown in Figure 14-252 Figure 14-252 Cross-connection diagram of the TN11TOM board (scenario 1) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Cross-connect module
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
WDM side
Compatible mode
WDM side 2
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board (Standard TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / mode) TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
14.15.18 TN11TOM Scenario 2: Any->ODU1->OTU1 (Cascading) 14.15.18.1 Application Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1444
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Implements conversion between six signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and one OTU1 signal, and the dual fed and selective receiving function on the WDM side, or implements conversion between seven signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and one OTU1 signal. For the position of the TOM in a WDM system, see Figure 14-253. Figure 14-253 Position of the TN11TOM in a WDM system The single transmitting and single receiving on the WDM side: 1xOTU1 RX1
1xOTU1
TOM
MUX/ DMUX
TX8
7×Any
MUX/ DMUX
1×OTU1
RX8
TX8 RX8
1×ODU1
1×OTU1
1×ODU1
7×Any
FE, GE, FDDI, STM- TX1 1, OC-3, STM-4, OC12, STM-16, OC48,ESCON, FC100, FICON, FC200, FICON RX7 Express, HD-SDI, DVB-ASI, SDI, OTU1 TX7
RX1
TOM
TX1 FE, GE, FDDI, STM1, OC-3, STM-4, OC12, STM-16, OC48,ESCON, FC100, FICON, FC200, FICON RX7 Express, HD-SDI, DVB-ASI, SDI, OTU1 TX7
Any
Any
The dual-fed selectively receiving on the WDM side: 1xOTU1 RX1
TOM
RX1
TOM TX7
TX1
MUX/ DMUX
MUX/ RX8 DMUX
MUX/ DMUX
6×Any
RX8
TX8
TX1
TX7
1×OTU1
MUX/ RX7 DMUX
RX7
1×ODU1
1×OTU1
1×ODU1
6×Any
FE, GE, FDDI, STM1, OC-3, STM-4, OC12, STM-16, OC48,ESCON, FC100, FICON, FC200, FICON RX6 Express, HD-SDI, DVB-ASI, SDI, OTU1 TX6
1xOTU1
TX8
FE, GE, FDDI, STM1, OC-3, STM-4, OC12, STM-16, OC48,ESCON, FC100, FICON, FC200, FICON RX6 Express, HD-SDI, DVB-ASI, SDI, OTU1 TX6
Any
Any
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To the mesh group slots NOTE
On the client side, eight pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s. In cascade mode, only RX7/TX7 or RX8/TX8 can be used as the WDM-side optical interfaces.
14.15.18.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-254 Port diagram of the TN11TOM (scenario 2: ODU1 tributary-line mode (Any>ODU1->OTU1) in cascading mode) Converts between six Any signals and one OTU1 signal and the dual fed and selective receiving function on the WDM side. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1445
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board 11TOM
3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)
201(ClientLP1/ClientLP1)-2
5(RX3/TX3)
201(ClientLP1/ClientLP1)-3
9(RX7/TX7) 51(ODU1LP1/ODU1LP1)
6(RX4/TX4)
201(ClientLP1/ClientLP1)-4
7(RX5/TX5)
201(ClientLP1/ClientLP1)-5
10(RX8/TX8)
8(RX6/TX6) 201(ClientLP1/ClientLP1)-6 : Client-side services : Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS
Converts between seven Any signals and one OTU1 signal. 11TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)
201(ClientLP1/ClientLP1)-2
5(RX3/TX3)
201(ClientLP1/ClientLP1)-3
6(RX4/TX4)
201(ClientLP1/ClientLP1)-4
7(RX5/TX5)
201(ClientLP1/ClientLP1)-5
8(RX6/TX6)
201(ClientLP1/ClientLP1)-6
9(RX7/TX7)
201(ClientLP1/ClientLP1)-7
51(ODU1LP1/ODU1LP1)
10(RX8/TX8)
: Client-side services : Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS
NOTE
In cascading mode, the TOM implements the electrical regeneration of one channel of OTU1 signal. Only RX7/TX7 and RX8/TX8 can be used as WDM-side optical interfaces.
Table 14-227 Description of NM port of the TOM board (Cascading mode)
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
ClientLP1
Internal logical port. The optical paths are numbered 1 to 8.
ODU1LP1
Internal logical port. The optical paths are numbered 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1446
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Port Name
Description
a: RX7/TX7 or RX8/TX8 of the TOM can be used as client-side interfaces or WDM-side interfaces.
14.15.18.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading mode. Creating electrical cross-connections for the TOM board on the U2000 is a process of establishing cross-connections inside the board. For details, see Figure 14-255. Figure 14-255 Cross-connection diagram of the TN11TOM board (scenario 2) The dual-fed selectively receiving on the WDM side: Client side
WDM side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
51(ODU1LP1/ODU1LP1)-1
9(TX7/RX7)-1
3
10(TX8/RX8)-1 2 TOM
Cross-connect module
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS
The single transmitting and single receiving on the WDM side: Client side
WDM side 3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 201(ClientLP1/ClientLP1)-5 201(ClientLP1/ClientLP1)-6 201(ClientLP1/ClientLP1)-7 201(ClientLP1/ClientLP1)-8
Cross-connect module
51(ODU1LP1/ODU1LP1)-1 3
Cross-connect module
2
10(TX8/RX8)-1
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS
14.15.19 TN11TOM Scenario 3: Any->ODU1 (Non-Cascading) 14.15.19.1 Application Implements conversion between eight signals at a rate in the range of 100 Mbit/s to 2.5 Gbit/s and four ODU1 signals. For the position of the TOM in a WDM system, see Figure 14-256.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1447
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-256 Position of the TN11TOM in a WDM system (Scenario 3) 4xODU1 RX1
4xODU1
TOM
1 MUX/ DMUX
8×Any
MUX/ DMUX
4×ODU1
4×ODU1
NS2 4
Any
TX1
TOM
1 8×Any
FC100, FICON, FE, TX1 GE, STM-1, OC-3, STM-4, OC-12, STM-16, OC-48 , FC200, FICON Express, DVB-ASI, RX8 ESCON, FDDI, SDI, HD-SDI, OTU1 TX8
1xOTU2
1xOTU2
ODU1
Any
NS2 4
ODU1
RX1 FC100, FICON, FE, GE, STM-1, OC-3, STM-4, OC-12, STM-16, OC-48 , FC200, FICON TX8 Express, DVB-ASI, ESCON, FDDI, SDI, RX8 HD-SDI, OTU1
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To the mesh group slots OptiX OSN 6800: N/A OptiX OSN 3800: From/To the mesh group slots
14.15.19.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-257 Port diagram of the TN11TOM (scenario 3: ODU1 tributary mode (Any->ODU1) in non-cascading mode) 11TOM 3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4) 7(RX5/TX5)
52NS2
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)-1
202(ClientLP2/ClientLP2)-1
51(ODU1LP1/ODU1LP1)-3
203(ClientLP3/ClientLP3)-1
51(ODU1LP1/ODU1LP1)-2
204(ClientLP4/ClientLP4)-1
51(ODU1LP1/ODU1LP1)-4
201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
1(IN/OUT)
203(ClientLP3/ClientLP3)-1
8(RX6/TX6) 9(RX7/TX7)
203(ClientLP3/ClientLP3)-4
10(RX8/TX8)
204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
In this case, the 201 (ClientLP1/ ClientLP1) and 203 (ClientLP3/ ClientLP3) ports can access a maximum of four services, and the 202 (ClientLP2/ ClientLP2) and 204 (ClientLP4/ ClientLP4) ports can access a maximum of two services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1448
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-228 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1 to 4.
l ClientLP3 l ClientLP2
Internal logical port. The optical paths are numbered 1 to 2.
l ClientLP4
14.15.19.3 Configuration of Cross-connection On the U2000, set the Board working Mode to Non-cascading mode. During creation of the electrical cross-connect services on the U2000, create the Any crossconnection between the RX/TX and ClientLP ports. The cross-connect grooming of ODU1 service is implemented through the cross-connect module in non-cascading mode, as shown and
in Figure 14-258.
Figure 14-258 Cross-connection diagram of the TN11TOM board (scenario 3) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 Standard mode 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Cross-connect module
Client side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1 7(TX5/RX5)-1 8(TX6/RX6)-1 9(TX7/RX7)-1 10(TX8/RX8)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 203(ClientLP3/ClientLP3)-3 203(ClientLP3/ClientLP3)-4 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
Cross-connect module
WDM side
Compatible mode
WDM side
2
TOM
Cross-connect module
The internal cross-connection of the board, which needs to be configured on the NMS The client side of the TOM board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS
Other board (Compatible mode)
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Other board (Standard TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / mode) TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1449
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.15.20 TN11TOM Scenario 4: Any->ODU1->OTU1(NonCascading) 14.15.20.1 Application Implements conversion between four optical signals at a rate from 100 Mbit/s to 2.5 Gbit/s and four ITU-T Recommendation-compliant WDM signals. For the position of the TOM in a WDM system, see Figure 14-259. Figure 14-259 Position of the TN11TOM in a WDM system (Scenario 4)
RX1
4xOTU1
TX5
RX5
RX5
TX5
MUX/ DMUX
RX8
4×Any
RX8
MUX/ DMUX
4×ODU1
TX8
RX1
TOM
4×OTU1
4×OTU1
4×ODU1
4×Any
FC100, FICON, FE, TX1 GE, STM-1, OC-3 , STM-4, OC-12, DVB-ASI, ESCON, FDDI, FC200, FICON Express, RX4 SDI, HD-SDI, STM16, OC-48 TX4
TOM
4xOTU1
TX8
TX1 FC100, FICON, FE, GE, STM-1, OC-3 , STM-4, OC-12, DVB-ASI, ESCON, FDDI, FC200, RX4 FICON Express, SDI, HD-SDI, STM16, OC-48 TX4
Any
Any
OptiX OSN 6800: From/To paired slot OptiX OSN 3800: From/To the mesh group slots NOTE
The client-side optical interfaces and WDM-side optical interfaces can be chosen as described in the system plan.
14.15.20.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1450
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-260 Port diagram of the TN11TOM (scenario 4: ODU1 tributary-line mode (Any>ODU1->OTU1) in non-cascading mode) 11TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)
7(RX5/TX5)
201(ClientLP1/ClientLP1)-4 4(RX2/TX2)
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
5(RX3/TX3)
203(ClientLP3/ClientLP3)-1
6(RX4/TX4)
203(ClientLP3/ClientLP3)-4 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
202(ClientLP2/ClientLP2)-1
52(ODU1LP2/ODU1LP2)
8(RX6/TX6)
203(ClientLP3/ClientLP3)-1
53(ODU1LP3/ODU1LP3)
9(RX7/TX7)
204(ClientLP4/ClientLP4)-1
54(ODU1LP4/ODU1LP4)
10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
Table 14-229 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
l ClientLP1
Internal logical port. The optical paths are numbered 1 to 4.
l ClientLP3 l ClientLP2
Internal logical port. The optical paths are numbered 1 to 2.
l ClientLP4 ODU1LP1-ODU1LP4
Internal logical port. The optical paths are numbered 1.
a: Eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDMside interfaces.
14.15.20.3 Configuration of Cross-connection On the U2000, set the Board working Mode to non-cascading mode. Creating electrical cross-connections for the TOM board on the U2000 is a process of establishing cross-connections inside the board. For details, see Figure 14-261.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1451
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-261 Cross-connection diagram of the TN11TOM board (scenario 4) Client side
WDM side
3(TX1/RX1)-1
1
4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 203(ClientLP3/ClientLP3)-3 203(ClientLP3/ClientLP3)-4 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
Cross-connect module
7(TX5/RX5)-1
51(ODU1LP1/ODU1LP1) 52(ODU1LP2/ODU1LP2)
3
2
8(TX6/RX6)-1
53(ODU1LP3/ODU1LP3)
9(TX7/RX7)-1
54(ODU1LP4/ODU1LP4)
10(TX8/RX8)-1
Cross-connect module
Cross-connect module
TOM
The internal cross-connection of the board, which needs to be configured on the NMS
14.15.21 TN11TOM Scenario 5: OTU1->ODU1->OTU1 (electrical regeneration board) 14.15.21.1 Application Implements the electrical regeneration of four OTU1 optical signals. For the position of the TOM in a WDM system, see Figure 14-262. Figure 14-262 Position of the TN11TOM in a WDM system (Scenario 5)
4xOTU1
RX1
4×OTU1
4×ODU1
RX4
TX1
TOM
4×OTU1
DMUX
4xOTU1
4xOTU1
RX1
4×OTU1
Issue 03 (2013-05-16)
4×ODU1
TX4
4×OTU1
MUX
TX4 4xOTU1
TOM
TX1
MUX
DMUX RX4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1452
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
In non-cascading mode, the TOM implements the electrical regeneration of four channels of OTU1 signal. Any four of RX1/TX1-RX8/TX8 can be configured as WDM-side optical interfaces.
14.15.21.2 Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. Figure 14-263 Port diagram of the TN11TOM (scenario 5: ODU1 tributary-line mode (electrical regeneration board)) 11TOM 3(RX1/TX1)
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-1
51(ODU1LP1/ODU1LP1)
7(RX5/TX5)
201(ClientLP1/ClientLP1)-4 4(RX2/TX2)
202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2
5(RX3/TX3)
203(ClientLP3/ClientLP3)-1
6(RX4/TX4)
203(ClientLP3/ClientLP3)-4 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
202(ClientLP2/ClientLP2)-1
52(ODU1LP2/ODU1LP2)
8(RX6/TX6)
203(ClientLP3/ClientLP3)-1
53(ODU1LP3/ODU1LP3)
9(RX7/TX7)
204(ClientLP4/ClientLP4)-1
54(ODU1LP4/ODU1LP4)
10(RX8/TX8)
: Client-side services : WDM-side services : Service cross-connection, which needs to be configured on the NMS : Virtual channel, which does not need to be configured on the NMS
NOTE
In non-cascading mode, the TOM implements the electrical regeneration of four channels of OTU1 signal. Any four of RX1/TX1-RX8/TX8 can be configured as WDM-side optical interfaces.
Table 14-230 Description of NM port of the TOM board (Non-cascading mode) Port Name
Description
RX1/TX1-RX8/TX8a
These ports correspond to the client-side optical interfaces.
ClientLP1–ClientLP4
Internal logical port. The optical paths are numbered 1
ODU1LP1-ODU1LP4
Internal logical port. The optical paths are numbered 1.
a: Eight pairs of optical interfaces of the TOM can be used as client-side interfaces or WDMside interfaces.
14.15.21.3 Configuration of Cross-connection On the U2000, set the Board working Mode to non-cascading mode. Creating electrical cross-connections for the TOM board on the U2000 is a process of establishing cross-connections inside the board. For details, see Figure 14-264. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1453
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-264 Cross-connection diagram of the TN11TOM board (scenario 5) Client side
WDM side
3(TX1/RX1)-1 4(TX2/RX2)-1 5(TX3/RX3)-1 6(TX4/RX4)-1
1
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4 202(ClientLP2/ClientLP2)-1 202(ClientLP2/ClientLP2)-2 203(ClientLP3/ClientLP3)-1 203(ClientLP3/ClientLP3)-2 203(ClientLP3/ClientLP3)-3 203(ClientLP3/ClientLP3)-4 204(ClientLP4/ClientLP4)-1 204(ClientLP4/ClientLP4)-2
Cross-connect module
7(TX5/RX5)-1
51(ODU1LP1/ODU1LP1) 52(ODU1LP2/ODU1LP2)
3
2
8(TX6/RX6)-1
53(ODU1LP3/ODU1LP3)
9(TX7/RX7)-1
54(ODU1LP4/ODU1LP4)
10(TX8/RX8)-1
Cross-connect module
Cross-connect module
TOM
The internal cross-connection of the board, which needs to be configured on the NMS
14.15.22 Working Principle and Signal Flow The TOM board consists of the client-side optical module, WDM-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow (When Used as a Tributary Board) Figure 14-265 shows the functional modules and signal flow of the TOM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1454
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-265 Functional modules and signal flow of the TOM board (when used as a tributary board) 100 Mbit/s - 2.5 Gbit/s Any services/ n x ODUk
Backplane (service cross-connection) Client side RX 1 RX 2
O/E 8
RX 8 TX 1 TX 2
E/O
TX 8
Client-side optical module
8
Service encapsulation and mapping module
OTN processing module
Crossconnect module
Signal processing module
Control Memory
Communication
CPU
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC )
NOTE
When used to receive GE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to the service encapsulation and mapping module for processing.
In Figure 14-265, n x ODUk indicates the service cross-connections from the TOM board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity. Table 14-231 shows the service cross-connections from the TOM board to the backplane. Table 14-231 Functional modules and signal flow of the TOM Boar d
Board Working Mode
Port Working Mode
Application Scenario
Service Cross-connection
TN5 2TO M
cascading
ODU0 mode (Any->ODU0[>ODU1])
TN52TOM scenario 1
A maximum of 2 x ODU0/1 x ODU1/6 x (100Mbit/s to 1.25Gbit/ s) Any services
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1455
OptiX OSN 8800/6800/3800 Hardware Description
Boar d
Board Working Mode
Port Working Mode
Application Scenario
Service Cross-connection
ODU1 mode (OTU1/Any>ODU1)
TN52TOM scenario 3
A maximum of 1 x ODU1/6 x (100Mbit/s to 2.5Gbit/s) Any services
ODU0 mode (Any->ODU0[>ODU1])
TN52TOM scenario 5
A maximum of 8 x ODU0/4 x ODU1/6 x (100Mbit/s to 1.25Gbit/ s) Any services
ODU1 mode (OTU1/Any>ODU1)
TN52TOM scenario 7
A maximum of 4 x ODU1/6 x (100Mbit/s to 2.5Gbit/s) Any services
ODU1_ANY_ODU0_ODU1 re-encapsulation mode (OTU1->ODU1->Any>ODU0->ODU1)
TN52TOM scenario 8
A maximum of 4 x ODU1/6 x (100Mbit/s to 2.5Gbit/s) Any services
ODU1_ODU0 mode (OTU1>ODU1->ODU0)
TN52TOM scenario 11
A maximum of 8 x ODU0
ODU1_ANY_ODU0 reencapsulation mode (OTU1>ODU1->Any->ODU0)
TN52TOM scenario 12
A maximum of 8 x ODU0
cascading
N/A
TN11TOM Scenario 1
A maximum of 1 x ODU1/8 x (100Mbit/s to 2.5Gbit/s) Any services
noncascading
N/A
TN11TOM scenario 3
A maximum of 4 x ODU1/8 x (100Mbit/s to 2.5Gbit/s) Any services
noncascading
TN1 1TO M
14 Tributary Board and Line Board
NOTE
The TN52TOM board supports cross-connections of Any services only when it is used in the OptiX OSN 8800 or OptiX OSN 6800. The TN52TOM board supports ODU0 cross-connections only when it is used in the OptiX OSN 8800.
The transmit and the receive directions are defined in the signal flow of the TOM board. The transmit direction is defined as the direction from the client side of the TOM to the backplane of the TOM, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels of optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, the eight channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation and mapping processing, and OTN framing. Then, the module sends out ODUk signals or Any signals to the backplane.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1456
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Receive direction The signal processing module receives the electrical signals sent from the backplane. – For Any signals, the module sends the signals to the client-side optical module. – For ODUk signals, the module performs operations such as ODUk framing, demapping and decapsulation processing. Then, the module sends out client-side electrical signals to the client-side optical module. The client-side optical module performs E/O conversion of client-side electrical signals, and then outputs eight channels of client-side optical signals through the TX1-TX8 optical interfaces.
Functional Modules and Signal Flow (When Used as a Tributary-Line Board) Figure 14-266 shows the functional modules and signal flow of the TOM board. Figure 14-266 Functional modules and signal flow of the TOM board (when used as a tributaryline board) Client side RX1 RX2
WDM side Service encapsulation and mapping module
O/E
RX6 TX1 TX2 TX6
E/O Client-side optical module
Service regeneration module
E/O OTN Crossprocessing connect module module
O/E WDM-side optical module
Signal processing module
TX7 TX8 RX7 RX8
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane SCC (controlled by SCC)
NOTE
In cascading mode, only the RX7/TX7 and RX8/TX8 ports on the board can be used as WDM-side ports. Figure 14-266 shows an example in which the RX7/TX7 and RX8/TX8 ports are used as the WDM-side ports to implement dual-fed and selective receiving. When a service is to be transmitted and received singly, one of the RX/TX7 and RX8/TX8 ports can be used as a WDM-side and the other port can be used as a client-side port. In non-cascading mode, any four of the RX/TX ports can be used as WDM-side ports.
The transmit and the receive directions are defined in the signal flow of the TOM board. The transmit direction is defined as the direction from the client side of the TOM to the WDM side of the TOM, and the receive direction is defined as the reverse direction. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1457
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Transmit direction The client-side optical module receives optical signals from client equipment through the RX interfaces, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module outputs OTU1 signals. The OTU1 signals are sent to the WDM-side optical module. After performing E/O conversion, the module sends out the OTU1 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 or at CWDM standard wavelengths that comply with ITU-T G.694.2. The optical signals are split into two channels of identical optical signals, and then are output through the TX optical interfaces.
l
Receive direction The WDM-side optical module receives the OTU1 optical signals at DWDM standard wavelengths that comply with ITU-T G.694.1 or at CWDM standard wavelengths that comply with ITU-T G.694.2 through the RX optical interfaces. Then, the module performs O/E conversion. After O/E conversion, the OTU1 signals are sent to the signal processing module. The module performs operations such as received signal selection, OTU1 framing, decoding of FEC, demapping, and decapsulation processing. Then, the module outputs the client signals. The client-side optical module performs E/O conversion of the client-side electrical signals, and then outputs the client-side optical signals through the TX optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of the standard optical signals. – Client-side transmitter: Performs E/O conversion from the internal electrical signals to standard optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of standard optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to standard optical signals. – Reports the performance of the WDM-side optical interface. – Reports the working state of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, OTN processing module, service processing module, and service regeneration module. – Cross-connect module Implements the cross-connection and pass-through between the client-side signals and the WDM-side signals of the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1458
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the OTU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames OTU1 signals, processes overheads in OTU1 signals, and performs FEC encoding and decoding. – Service processing module Regenerates Any signals and monitors SDH and Any signals in two directions. – Service regeneration module Implements the FEC decoding/encoding and overhead processing of OTU1 signals. Monitors the performance of WDM-side services. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.15.23 Front Panel There are indicators and interfaces on the front panel of the TOM board.
Appearance of the Front Panel Figure 14-267 shows the front panel of the TOM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1459
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-267 Front panel of the TOM board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-232 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1460
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-232 Types and functions of the interfaces on the TOM board Interface
Type
Function
TX1-TX8
LC
Transmits the service signal.
RX1-RX8
LC
Receives the service signal.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.15.24 Valid Slots One slot houses one TOM board. Table 14-233 shows the valid slots for the TN11TOM board. Table 14-234 shows the valid slots for the TN52TOM board. Table 14-233 Valid slots for the TN11TOM board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
Table 14-234 Valid slots for the TN52TOM board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
14.15.25 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of TOM, refer to Table 14-235. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1461
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-235 TOM parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop Default: NonLoopback
Service Type
None, Any, DVB-ASI, SDI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, GE(GFPT), HD-SDI, OC-3, 0C-12, OC-48, OTU-1, STM-1, STM-4, STM-16 Default: None
Client Service Bearer Rate (Mbit/s)
100 to 2200 Default: /
Query or set the path Loopback. NOTE Only the TN52TOM supports this parameter.
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE Only the TN11TOM supports this parameter.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1462
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Default: l WDM side: On l Client side: Off ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF Default: FW_Defect
Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only the TN52TOM supports this parameter.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s Default: 0s
Issue 03 (2013-05-16)
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN52TOM supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1463
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s Automatic Laser Shutdown
Enabled, Disabled
LPT Enabled
Enabled, Disabled
Default: Enabled
Default: Disabled Service Mode
Client Mode, OTN Mode Default: Client Mode
FEC Working State
Enabled, Disabled Default: Enabled
NOTE Only the TN52TOM supports this parameter.
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link pass-through (LPT) function. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: /
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1464
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Planned Band Type
C, CWDM
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Default: C
Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: 1000M FullDuplex
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1465
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Board Mode
Cascading Mode, Noncascading Mode
Specifies the board mode depending on the service application scenario.
Default: Noncascading Mode
NOTE Only the TN11TOM supports this parameter.
Default: Disabled
See D.2 Board Mode (WDM Interface) for more information. Board Working mode
Cascading, NonCascading Default: NonCascading
The Board Working Mode parameter is used to set the board mode of a board depending on the service application scenario. NOTE Only the TN52TOM supports this parameter.
Port Working Mode
In Non-Cascading mode, nine working modes are supported.a In Cascading mode, five working modes are supported.b
Issue 03 (2013-05-16)
This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail. For the configuration methods of different application scenarios of the TOM board, see the Configuration Guide.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1466
OptiX OSN 8800/6800/3800 Hardware Description
Field
14 Tributary Board and Line Board
Value
Description
a: Working modes supported in Non-Cascading mode are as follows: l ODU0 mode (Any->ODU0[->ODU1]) l ODU0 Tributary-Line Mode (Any->ODU0->ODU1->OTU1) l ODU1 mode (OTU1/Any->ODU1) l ODU1_ODU0 mode (OTU1->ODU1->ODU0) l ODU1_ANY_ODU0 re-encapsulation mode (OTU1->ODU1->Any->ODU0) l ODU1_ANY_ODU0_ODU1 re-encapsulation mode (OTU1->ODU1->Any->ODU0>ODU1) l ODU1_ANY_ODU0_ODU1 re-encapsulation tributary-line mode (OTU1->ODU1>Any->ODU0->ODU1->OTU1) l ODU1 tributary-line mode (OTU1/Any->ODU1->OTU1) l NONE Mode (Not for Port) b: Working modes supported in Cascading mode are as follows: l ODU0 mode (Any->ODU0[->ODU1]) l ODU0 Tributary-Line Mode (Any->ODU0->ODU1->OTU1) l ODU1 mode (OTU1/Any->ODU1) l ODU1 tributary-line mode (OTU1/Any->ODU1->OTU1) l NONE Mode (Not for Port)
14.15.26 TOM Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1467
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 11T OM
N/A
I-16-2 km
N/A
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
S-16.1-15 km
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
L-16.1-40 km L-16.2-80 km
I-16-2 km
2.125 Gbit/s Multirate-0.5 km
S-16.1-15 km
1000 BASE-LX-10 km
L-16.1-40 km
1000 BASE-LX-40 km
L-16.2-80 km
1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km 1.5 Gbit/s Multirate (Video eSFP)-20 km TN 52T OM
N/A
I-16-2 km
N/A
S-16.1-15 km L-16.1-40 km L-16.2-80 km 1000 BASE-BX10-U 1000 BASE-BX10-D 1000 BASE-BX-U 1000 BASE-BX-D
2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km
2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km 1.5 Gbit/s Multirate (Video eSFP)-20 km
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1468
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
I-16-2 km module, S-16.1-15 km module, L-16.1-40 km module and L-16.2-80 km module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Table 14-236 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1469
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
1000 BASE-BX10-U module, 1000 BASE-BX10-D module, 1000 BASE-BX-U module, and 1000 BASE-BXD module can be used to access GE signals.
Table 14-237 Client-side pluggable GE optical module specifications (single-fiber bidirectional transmissions) Parameter
Unit
Optical Module Type Line code format
Issue 03 (2013-05-16)
-
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
NRZ
NRZ
NRZ
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1470
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 1000 BASEBX10-U
1000 BASEBX10-D
1000 BASEBX-U
1000 BASEBX-D
Optical source type
-
SLM
SLM
SLM
SLM
Target transmission distance
km
10
10
40
40
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1360
1480 to 1500
1260 to 1360
1480 to 1500
Maximum mean launched power
dBm
-3
-3
3
3
Minimum mean launched power
dBm
-9
-9
-2
-2
Minimum extinction ratio
dB
6
6
6
6
Eye pattern mask
-
IEEE802.3ah-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
1480 to 1500
1260 to 1360
1480 to 1500
1260 to 1360
Receiver sensitivity
dBm
-19.5
-19.5
-23
-23
Minimum receiver overload
dBm
-3
-3
-3
-3
Maximum reflectance
dB
-12
-12
-12
-12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1471
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
2.125 Gbit/s Multi-rate module can be used to access FC200, GE, FC100, and FE signals. 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE and DVB-ASI signals. When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 14-238 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1472
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type Minimum receiver overload
dBm
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
0
-3
-3
-3
NOTE
1.25 Gbit/s Multi-rate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, DVB-ASI signals. 2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals.
Table 14-239 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1473
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Eye pattern mask
-
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
NOTE
2.67 Gbit/s Multi-rate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, FE signals.
Table 14-240 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1474
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 14-241 Client-side pluggable optical module specifications (SDI services) Parameter
Unit
Optical Module Type
Value 1.5 Gbit/s Multirate (Video eSFP)-20 km
Line code format
-
NRZ
Target transmission distance
-
20 km (12.4 mi.)
Service rate
Gbit/s
≤1.5
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating frequency range
nm
1290 to 1330
Maximum mean launched power
dBm
0
Minimum mean launched power
dBm
-7
Minimum extinction ratio
dB
5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1475
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 1.5 Gbit/s Multirate (Video eSFP)-20 km
Maximum -20 dB spectral width
nm
3
Receiver parameter specifications at point R Operating wavelength range
nm
1260 to 1620
Receiver sensitivity
dBm
-22
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
WDM-Side Pluggable Optical Module Table 14-242 CWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
Target transmission distance
-
80 km (49.7 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Operating wavelength range
nm
1471 to 1611
Central wavelength deviation
nm
±6.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.959.1 - compliant
Receiver parameter specifications at point R Receiver type Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
APD 1476
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Operating wavelength range
nm
1270 to 1620
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 14-243 DWDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Center frequency
THz
192.10 to 196.00
Center frequency deviation
nm
±12.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (5% margin are required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1477
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 14-244 WDM-side pluggable optical specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1478
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
30
30
30
Minimum side mode suppression ratio
dB
N/A
Eye pattern mask
-
G.957-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11TOM: 1.4 kg (3.1 lb.) TN52TOM: 1.5 kg (3.3 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TOM
55
60
TN52TOM
81
89.1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1479
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.16 TOX TOX: 8 x 10 Gbit/s tributary service processing board
14.16.1 Version Description The available functional version of the TOX board is TN55.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
General 8800 T64 Subrack
Enhanc ed 8800 T64 Subrack
General 8800 T32 Subrack
Enhanc ed 8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN 55T OX
N
Y
N
Y
Y
N
N
N
NOTE
When the TN55TOX board is used in an enhanced OptiX OSN 8800 T64 subrack, the TNK2USXH and TNK2UXCT cross-connect boards must be used. When it is used in an enhanced OptiX OSN 8800 T32 subrack, the TN52UXCH or TN52UXCM cross-connect board must be configured. When it is used in an OptiX OSN 8800 T16 subrack, the TN16UXCM cross-connect board must be configured.
Variants The TN55TOX board has only one variant: TN55TOX01.
14.16.2 Application As a type of tributary board, the TOX board converts between eight 10GE LAN/10GE WAN/ STM-64/OC-192/OTU2/OTU2e optical signals and eight ODU2/ODU2e electrical signals through cross-connection. For the position of the TOX board in the WDM system, see Figure 14-268.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1480
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-268 Position of the TOX board in the WDM system 8xODU2/ODU2e
8xODU2/ODU2e
RX1 TOX 1
1 N O 2
8
8
M U 1 X N / O D 2 M U 8 X
1
1
8
8
8xODU2/ODU2e
8xODU2/ODU2e
10GE LAN TX1 10GE WAN STM-64 OC-192 OTU2 RX8 OTU2e TX8
TOX M 1 U X / D M 8 U X
TX1 RX110GE LAN 10GE WAN STM-64 OC-192 TX8 OTU2 OTU2e RX8
14.16.3 Functions and Features The TOX board enables cross-connections at the electrical layer. For detailed functions and features, refer to Table 14-245. Table 14-245 Functions and features of the TOX board Function and Feature
Description
Basic function
TOX converts signals as follows: l 8 x 10GE LAN/10GE WAN/STM-64/OC-192/OTU2<->8 x ODU2. l 8 x 10GE LAN/OTU2e<->8 x ODU2e.
Client-side service type
STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s
Crossconnect capabilities
Supports the cross-connection of eight ODU2/ODU2e signals between the TOX and the cross-connect board through the backplane.
OTN function
l Supports mapping each channel of 10G signals into the ODU2/ODU2e signals at the ODU2/ODU2e interface of the backplane. l Supports overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G.709 and G.Sup43. l Supports PM function for ODU2. l Supports SM and TCM function when the TOX receives OTN services.
ESC function
Issue 03 (2013-05-16)
Supported by the TOX when the client-side service type is OTU2 or OTU2e.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1481
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the service type is OTU2/OTU2e.
Alarm and performance event monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN).
ALS function
Supports the ALS function on the client side.
PRBS function
Supports the PRBS function on the client side.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
Test frame
Supports the test frame of 10GE LAN services.
Latency measuremen t
The board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64, OC-192, OTU2 or OTU2e.
NOTE This function is not supported when the client-side service type is OTU2/OTU2e.
IEEE 1588v2
The TOX board supports the TC, TC+OC, BC, and OC modes when the clientside service type is 10GE LAN and the Port Mapping is MAC Transparent Mapping (10.7 G). NOTE Only the RX1/TX1 and RX2/TX2 optical port can process IEEE 1588v2 clock signals.
Physical clock
l When the TOX board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing. l When the TOX board receives 10GE LAN services and the port mapping is MAC Transparent Mapping (10.7 G) on its client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission.
Electricallayer ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1482
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Ethernet service mapping mode
Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G)
Port MTU
Supports transmission of packets containing 1518–9600 bytes. NOTE when Port Mapping is set to Bit Transparent Mapping(11.1G), Maximum Packet Length is unavailable on the U2000.
Protection scheme
l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services, and 10GE WAN services the board supports tributary SNCP protection.
Loopback
WDM side Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (non-performance monitoring)
IEEE 802.3ae
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1483
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.16.4 Working Principle and Signal Flow The TOX board consists of the client-side optical module, signal processing module, control and communication module, 1588v2 module, and power supply module.
Functional Modules and Signal Flow Figure 14-269 shows the functional modules and signal flow of the TOX. Figure 14-269 Functional modules and signal flow of the TOX Backplane(service cross-connection) 8xODU2/ODU2e
Client side SDH/SONET
RX1
encapsulation and
O/E
mapping module
RX8
10GE LAN
TX1
OTN processing module
Crossconnect module
1588v2 module
encapsulation and
E/O
mapping module
TX8
Client-side optical module
Signal processing module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
The client side of the TOX board can access the following optical signals: l
10GE LAN optical signals
l
10GE WAN optical signals
l
STM-64 optical signals
l
OC-192 optical signals
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1484
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
OTU2 optical signals
l
OTU2e optical signals
The transmit and the receive directions are defined in the signal flow of the TOX board. The transmit direction is defined as the direction from the client side of the TOX to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives eight channels of the optical signals from client equipment through the RX1-RX8 interfaces, and performs O/E conversion. After O/E conversion, different types of signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, and OTN framing. After processing, the module sends out eight channels of ODU2/ODU2e signals to the backplane for grooming.
l
Receive direction The signal processing module receives ODU2/ODU2e electrical signals sent from the cross-connection board through the backplane. The module performs operations such as ODU2/ODU2e framing, demapping and decapsulation processing. Then, the module sends out eight channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e signals to the client-side optical module. The client-side optical module performs E/O conversion of 10GE LAN/10GE WAN/ STM-64/OC-192/OTU2/OTU2e electrical signals, and then outputs eight channels of client-side optical signals through the TX1-TX8 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of eight channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals. – Client-side transmitter: Performs E/O conversion from eight channels of the internal electrical signals to 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, and OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET/10GE WAN signals and maps the signals into the ODU2 payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the ODU2/ODU2e payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – OTN processing module Frames ODU2/ODU2e signals and processes overheads in ODU2/ODU2e signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1485
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
1588v2 module According to the IEEE 1588v2 protocol, the module transmits the clock information of the clock board to the next NE or extracts the clock information from the service board and then transmits the clock information to the clock board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.16.5 Front Panel There are indicators and interfaces on the front panel of the TOX board.
Appearance of the Front Panel Figure 14-270 shows the front panel of the TOX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1486
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-270 Front panel of the TOX board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-246 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1487
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-246 Types and functions of the interfaces on the TOX board Interface
Type
Function
TX1-TX8
LC
Transmit service signals to client equipment.
RX1-RX8
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.16.6 Valid Slots One slot houses one TOX board. Table 14-247 shows the valid slots for the TOX board. Table 14-247 Valid slots for the TOX board Product
Valid Slots
Enhanced OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.16.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-248 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-248 Mapping between the physical ports on the TOX board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1488
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Physical Port
Port Number on the NMS
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Figure 14-271 shows the port diagrams of the TOX board. Table 14-249 describes the meaning of each port. Figure 14-271 Port diagram of the TOX Other line/PID board Backplane 8 x ODU2/ODU2e
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-249 Description of NMS port of the TOX board
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX8/TX8
These ports correspond to the client-side optical interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1489
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.16.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TOX board is used to transmit services, the following items must be created on the U2000: l
Set the service type. Ensure that the service type is the same as the actual service type.
l
Create the cross-connections of ODU2 level between the RX/TX port and the ODU2LP of the other boards, as shown in Figure 14-272.
Figure 14-272 Cross-connection diagram of the TOX board WDM side 1(IN1/OUT1)-OCh:1 2(IN1/OUT1)-OCh:1 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Line/PID board a (standard mode) Line/PID board b (compatible mode)
Cross connect mode Client side 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1
Cross connect mode
TOX
9(RX7/TX7)-1 10(RX8/TX8)-1
The client side of the TOX board are crossconnected to the WDM side of other boards
Line/PID board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line/PID board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
14.16.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TOX, refer to Table 14-250.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1490
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-250 TOX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, 10GE LAN, 10GE WAN, OC-192, OTU-2, OTU-2E, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None Port Mapping
Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G) Default: Bit Transparent Mapping (11.1G)
The Port Mapping parameter sets and queries the mapping mode of a port service. NOTE The TOX board supports the TC, TC+OC, BC, and OC modes when the client-side service type is 10GE LAN and the Port Mapping is MAC Transparent Mapping (10.7 G).
See D.28 Port Mapping (WDM Interface) for more information. Off, On
Laser Status
Default: Off
Service Mode
Client Mode, OTN Mode Default: Client Mode
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1491
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1492
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Max. Packet Length
1518 to 9600
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services.
Default: 9600
NOTE when Port Mapping is set to Bit Transparent Mapping(11.1G), Maximum Packet Length is unavailable on the U2000.
See D.20 Max. Packet Length (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
FEC Working State
Disabled, Enabled Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.10 FEC Working State (WDM Interface) for more information. FEC
FEC Mode
Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.9 FEC Mode (WDM Interface) for more information. SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
LPT Enabled
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. Determines whether to enable the link pass-through (LPT) function.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1493
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
PRBS Test Status
Disabled, Enabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Default: Disabled
NULL Mapping Status
Enabled, Disabled
Insert Code Type
l When Service Type is STM-64 or OC-192:
Default: Disabled
– PN11, MS_AIS – Default: PN11 l When Service Type is 10GE LAN and port mapping mode is MAC transparent mapping (10.7G): – Quick insert, Delayed insert – Default: Quick insert
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Applies to fault detection and location when the service type is STM-64 or OC-192. When the tributary or line board at the upstream site is faulty or when the line board at the downstream site is faulty, users can specify the output code type for the tributary board at the downstream site using this parameter. When the service type is 10GE-LAN, the value Quick insert applies to a scenario in which no protection is configured on the WDM equipment while protection is configured for the router that connects to the WDM equipment. In this scenario, quick protection switching can be achieved on the router. The value Delayed insert applies to a scenario in which protection is configured for the WDM equipment and the router connected to the WDM equipment. In this scenario, the WDM equipment preferentially performs protection switching in case of a fault. If the fault is rectified, the router does not perform protection switching. If the fault persists, then the router performs protection switching.
14.16.10 TOX Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1494
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN55TO X
N/A
10 Gbit/s Multirate-10 km (SFP+) 10G BASE-ZR-80 km (SFP+) 10G BASE-ER/EW-40 km (SFP+) 10G BASE-SR-0.3 km (SFP+) 10G BASE-LR-10 km (SFP+)
NOTE
A margin of the lower threshold of input optical power compared with the receiver sensitivity of the board and a margin of the upper threshold of output optical power compared with the overload point of the board are reserved on the U2000 as a precaution. NOTE
10 Gbit/s Multirate-10 km (SFP+) module can be used to access OC-192, STM-64, 10GE WAN, 10GE LAN, OTU2, and OTU2e signals.
Client-Side Pluggable Optical Module Table 14-251 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km (SFP+)
Line code format
-
NRZ
Optical source type
-
SLM
Target transmission distance
-
10 km (6.2 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1260 to 1355
Maximum mean launched power
dBm
-1
Minimum mean launched power
dBm
-6
Minimum extinction ratio
dB
3.5
Output optical power in case of laser shutdown
dBm
≤-30
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1260 to 1355
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1495
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
10 Gbit/s Multirate-10 km (SFP+)
Receiver sensitivity
dBm
-14.4
Minimum receiver overload
dBm
0.5
reflectance
dB
-12
NOTE
10 Gbit/s BASE-SR-0.3 km (SFP+) module, 10 Gbit/s BASE-LR-10 km (SFP+) module, 10 Gbit/s BASE-ER/ EW-40 km (SFP+), and 10 Gbit/s BASE-ZR-80 km (SFP+) can be used to access 10GE LAN, 10GE WAN signals.
Table 14-252 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
10G BASEZR-80 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
10.3125
10.3125
Optical source type
-
MLM
SLM
SLM
SLM
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
40 km (24.8 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
0.5
4
4
Minimum mean launched power
dBm
-7.3
-8.2
-4.7
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1496
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
10G BASEZR-80 km (SFP+)
Minimum extinction ratio
dB
3
3.5
3
9
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z –compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
1530 to 1565
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
-14.1 (OMA)
-24
Minimum receiver overload
dBm
-1
0.5
-1
-7
Maximum reflectance
dB
-12
-12
-26
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.42 kg (3.13 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN55TOX
75.3
80.6
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1497
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.17 TQM TQM: 4 x multi-rate tributary service processing board
14.17.1 Version Description The available functional versions of the TQM board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TQ M
N
N
N
N
Y
Y
TN1 2TQ M
N
N
N
N
Y
Y
Variants The TN11TQM/TN12TQM board has only one variant: TN11TQM01/TN12TQM01.
Differences Between Versions l
Function: – Only the TN12TQM supports the OTU1/HD-SDI/SDI/FDDI services, PRBS function, Test frame and Tributary SNCP protection. For details, see 14.17.3 Functions and Features.
l
Specification: – The specifications vary according to versions. For details, see 14.17.10 TQM Specifications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1498
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11TQM
TN12TQM
The TN12TQM can be created as TN11TQM on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12TQM functions as the TN11TQM.
TN12TQM
None
-
14.17.2 Application As a type of tributary board, the TQM board converts between four optical signals at the rate between 100 Mbit/s and 2.5 Gbit/s and four client-side electrical signals or one ODU1 electrical signal through cross-connection. For the position of the TQM board in the WDM system, see Figure 14-273. Figure 14-273 Position of the TQM board in the WDM system 1xODU1
1xODU1
TQM
TQM
1
4
N S 2
M U X / D M U X
1 N S 2
100Mbit/s – 2.5Gbit/s
100Mbit/s – 2.5Gbit/s
1×ODU1
1×ODU1
100Mbit/s – 2.5Gbit/s
M U X / D M U X
4 100Mbit/s – 2.5Gbit/s
OptiX OSN 6800: from paired slot or cross-connect board OptiX OSN 3800: from mesh group slot
NOTE
The client-side four pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s. For the client services at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI), the client-side interfaces can access up to only one channel.
14.17.3 Functions and Features The TQM board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-253. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1499
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-253 Functions and features of the TQM board Function and Feature
Description
Basic function
TQM converts signals as follows: 4 x (100 Mbit/s to 2.5 Gbit/s)<-> 1 x ODU1.
Client-side service type
FE: Ethernet service at a rate of 125 Mbit/s GE: Ethernet service at a rate of 1.25 Gbit/s OTU1: OTN service at a rate of 2.67 Gbit/s STM-1/OC-3: SDH/SONET service at a rate of 155.52 Mbit/s STM-4/OC-12: SDH/SONET service at a rate of 622.08 Mbit/s STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s FC100: SAN service at a rate of 1.06 Gbit/s FC200: SAN service at a rate of 2.12 Gbit/s FICON: SAN service at a rate of 1.06 Gbit/s FICON Express: SAN service at a rate of 2.12 Gbit/s HD-SDI: Bit-serial digital interface for high-definition television systems at a rate of 1.49 Gbit/s DVB-ASI: Video service at a rate of 270 Mbit/s SDI: Serial digital interface at a rate of 270 Mbit/s ESCON: SAN service at a rate of 200 Mbit/s FDDI: SAN service at a rate of 125 Mbit/s NOTE Only the TN12TQM supports SDI, HD-SDI, OTU1 and FDDI services. The TQM supports both GE electrical signal and GE optical signal.
Crossconnect capabilities
OptiX OSN 6800: l Supports the cross-connection of four signals at the rate between 100 Mbit/ s and 2.5 Gbit/s between the boards in paired slots. l Supports the cross-connection of one ODU1 signal or two GE signals between the TQM and the cross-connect board or the board in the paired slot. OptiX OSN 3800: l Supports the grooming of four signals at the rate between 100 Mbit/s and 2.5 Gbit/s or one ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports TCM function for ODU1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1500
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services. NOTE Only the TN12TQM supports Bursty mode.
ALS function
Supports the ALS function on the client side.
PRBS test function
TN11TQM: not supported. TN12TQM: supports the PRBS function on the client side. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-1/OC-3, STM-4/OC-12, or STM-16/OC-48.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU1. NOTE Boards that use different FEC modes cannot interconnect with each other.
LPT function
The board supports the LPT function only when the client-side service type is FE or GE.
Test frame
TN11TQM: not supported TN12TQM: The board supports test frame function only when the client-side service type is FE or GE.
Electricallayer ASON
Not supported
Protection scheme
l Supports SW SNCP. l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports MS SNCP protection. l Supports the Tributary SNCP protection (TN12TQM). NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection.
Ethernet service mapping mode
Issue 03 (2013-05-16)
Supports encapsulation of GE services in GE(GFP-F) (displayed as GE on the NMS) and GE(GFP-T) modes.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1501
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Ethernet port working mode
FE: 100M Full-Duplex GE: l Auto-Negotiation l 1000M Full-Duplex
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side Client side
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1502
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) NOTE Only the TN12TQM supports the following standards and protocols.
SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1503
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.17.4 Working Principle and Signal Flow The TQM board consists of the client-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-274 shows the functional modules and signal flow of the TQM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1504
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-274 Functional modules and signal flow of the TQM Backplane (service cross-connection) 4 X 100 Mbit/s -2.5 Gbit/s / 1X ODU1
Client side RX1 RX2 RX3 RX4
O/E
TX1 TX2 TX3 TX4
E/O
Service OTN encapsulation and Processing Cross-connect module mapping module module
Client-side optical module
Signal processing module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
NOTE
When used to receive GE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to the service encapsulation and mapping module for processing.
The client side of the TQM board accesses Any optical signals (Any optical signals at a rate ranging from 100 Mbit/s to 2.5 Gbit/s) and GE electrical signals. NOTE
The client-side GE optical module can be replaced with the electrical module to access the corresponding electrical signals. It is recommended to change RX1/TX1, RX2/TX2 optical interfaces to electrical interfaces only. The processing of electrical signals is similar to that of optical signals. The processing of optical signals is considered as an example.
In the signal flow of the TQM board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TQM to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the four channels of electrical signals are sent to the signal processing module. The module performs operations such as service cross-connection, encapsulation
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1505
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
and mapping processing, and OTN framing. Then, the module sends out four channels of Any signals or one channel of ODU1 signals to the backplane. l
Receive direction The signal processing module receives the electrical signals sent from the backplane. Then, – If the signals are Any signals, they are sent to the client-side optical module. – If the signals are ODU1 signals, the module performs operations such as ODU1 framing, demapping and decapsulation processing. Then, the module sends out four channels of Any signals to the client-side optical module. The client-side optical module performs the E/O conversion of Any electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of Any optical signals. – Client-side transmitter: Performs the E/O conversion from four channels of the internal electrical signals to Any optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, service encapsulation and mapping module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the grooming of electrical signals between the TQM and the board in the paired slot or the cross-connect board through the backplane. The grooming service signals are Any and ODU1 signals. – OptiX OSN 3800: Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are Any and ODU1 signals. – Service encapsulation and mapping module Encapsulates multiple channels of Any signals and maps the signals into the ODU1 payload area. The module also performs the reverse process and has the Any performance monitoring function. – OTN processing module Frames ODU1 signals and processes overheads in ODU1 signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1506
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Converts the DC power supplied by the backplane into the power required by each module on the board.
14.17.5 Front Panel There are indicators and interfaces on the front panel of the TQM board.
Appearance of the Front Panel Figure 14-275 shows the front panel of the TQM board. Figure 14-275 Front panel of the TQM board
TQM STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4
TQM
Indicators Four indicators are present on the front panel: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1507
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-254 lists the type and function of each interface. Table 14-254 Types and functions of the interfaces on the TQM board Interface
Type
Function
TX1-TX4
LC
Transmits the optical service signal to the client-side equipment when the optical module is used. Transmits the electrical service signal to the client-side equipment when the electrical module is used.
RX1-RX4
LC
Receives the optical service signal from the client-side equipment when the optical module is used. Receives the electrical service signal from the clientside equipment when the electrical module is used.
NOTE
The client-side four pairs of optical interfaces can access services at a maximum rate of 2.5 Gbit/s. For the client services at a rate of greater than 1.25 Gbit/s (OC-48, STM-16, FC200, FICON Express, OTU1, and HD-SDI), the client-side interfaces can access up to only one channel. It is recommended to change RX1/TX1 and RX2/TX2 optical interfaces to electrical interfaces only.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.17.6 Valid Slots One slot houses one TQM board. Table 14-255 shows the valid slots for the TQM board. Table 14-255 Valid slots for the TQM board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8 and IU11-IU16.
OptiX OSN 3800 chassis
IU2-IU5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1508
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.17.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-256 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-256 Mapping between the physical ports on the TQM board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-276 shows the application model of the TQM board. Table 14-257 describes the meaning of each port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1509
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-276 Port diagram of the TQM board Other OTU board
Other line board
Backplane ODU1
4 x GE/Any/OTU1
201 (ClientLP1/ClientLP1)-1 201 (ClientLP1/ClientLP1)-2 201 (ClientLP1/ClientLP1)-3 201 (ClientLP1/ClientLP1)-4
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201 (ClientLP1/ClientLP1)-1
Client Side Crossconnect module
Cross-connection that must be configured on the NMS to receive GE/Any/OTU1/ODU1 signals from other boards
Service processing module
NOTE
TN11TQM: The optical paths of internal logical port are 201 (LP/LP)-1 to 201 (LP/LP)-4. TN12TQM: The optical paths of internal logical port are 201 (ClientLP/ClientLP)-1 to 201 (ClientLP/ ClientLP)-4.
Table 14-257 Description of NM port of the TQM board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
ClientLP
Internal logical port. The optical paths are numbered 1, 2, 3 and 4.
Configuration Principle l
The transmit and receive timeslots should be specified for each board. In one direction, a timeslot cannot be shared by multiple services.
l
In one direction of one service, the timeslot of the receive end must be the same as that of the transmit end.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1510
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
For each TQM board, the number of timeslots occupied by all services should not exceed 16.
l
For FC200, FICON Express, OC-48, STM-16, OTU1, and HD-SDI services, timeslots can be configured only in channel 1 of the TQM board.
l
Different service requires different number of timeslots. The number of timeslots required by each type of service is listed below. Service Type
Number of Timeslots
GE
7
FE
1
OTU1
16
STM-1
1
STM-4
4
STM-16
16
OC-3
1
OC-12
4
OC-48
16
FC100
6
FC200
12
FICON
6
FICON Express
12
HD-SDI
11
DVB-ASI
2
SDI
3
ESCON
2
FDDI
1
14.17.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TQM board is used to transmit services, the following items must be created on the U2000: l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the RX/TX and ClientLP ports according to the actual service level (GE/Any/OTU1) and service type. The cross-connect grooming of GE/Any/OTU1 services is implemented through the cross-connect module. The following three cross-connections can be created. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1511
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Create the cross-connection between the internal RX/TX and ClientLP ports of the TQM board (create the internal straight-through and cross-connection of the board), as shown by
and
in Figure 14-277.
– Create the cross-connection between the RX/TX port of the TQM board and the ClientLP port of other boards, as shown by 3 in Figure 14-277. (The GE/Any/OTU1 services accessed from the client side of the TQM board are cross-connected to the WDM side of other boards for protection and inter-board service convergence.) – Create the cross-connection between the RX/TX port of other boards and the ClientLP port of the TQM board, as shown by 4 in Figure 14-277. (The GE/Any/OTU1 services accessed from the client side of other boards are cross-connected to the client side of the TQM board for protection and inter-board service convergence.) NOTE
One RX/TX port can be connected to only one optical path of the ClientLP port. Only the first optical path of ClientLP port supports OTU1 services.
Figure 14-277 Cross-connection diagram of the TQM board Client side
Client side
Other board 3(RX1/TX1)-1
201(ClientLP1/ClientLP1)-1
4(RX2/TX2)-1
201(ClientLP1/ClientLP1)-2
5(RX3/TX3)-1
201(ClientLP1/ClientLP1)-3
6(RX4/TX4)-1
201(ClientLP1/ClientLP1)-4
3(RX1/TX1)-1 4(RX2/TX2)-1
3
5(RX3/TX3)-1 6(RX4/TX4)-1
4 2 1
WDM side
201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3 201(ClientLP1/ClientLP1)-4
TQM The straight-through of the board
1
The internal cross-connection of the board
2
The client side of the TQM board are cross-connected to the WDM side of other boards The client side of other boards are cross-connected to the client side of the TQM board
3 4
Other board TN11L4G / TN11LDGD / TN11LDGS / TN11LOG / TN12LOG / TN11LQG / TN13LQM / TN11LQMD / TN12LQMD / TN11LQMS / TN12LQMS / TN11TBE / TN11TDG / TN11TOM / TN11TQM / TN12TQM
l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the ODU1 cross-connection between the ClientLP port of the board and ODU1LP port of other boards Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1512
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
(or IN/OUT port of the TN11NS2 board) to implement the cross-connect grooming of ODU1 services, as shown in Figure 14-278. Figure 14-278 Cross-connection diagram of the TQM board WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3
Other board a (compatible mode)
51(ODU1LP1/ODU1LP1)-4 IN/OUT-OCh:1--ODU2:1-ODU1:1 IN/OUT-OCh:1-ODU2:1-ODU1:2 IN/OUT-OCh:1-ODU2:1-ODU1:3
Other board b (standard mode)
IN/OUT-OCh:1-ODU2:1-ODU1:4
Client side 201(ClientLP1/ClientLP1)-1 201(ClientLP1/ClientLP1)-2 201(ClientLP1/ClientLP1)-3
TQM
201(ClientLP1/ClientLP1)-4
The client side of the TQM board are cross-connected to the WDM side of other boards
Other board a
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX
Other board b
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
l
According to the service type configured on the ClientLP port, configure the transmit and receive timeslots.
14.17.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TQM, refer to Table 14-258. Table 14-258 TQM parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1513
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, Any, DVBASI,SDI, ESCON, FC-100, FC-200, FDDI, FE, FICON, FICON Express, GE, GE(GFP-T), HD-SDI, OC-3, OC-12, OC-48, STM-1, STM-4, STM-16, OTU-1 Default: None
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only the TN12TQM supports Any, SDI, FDDI, HD-SDI, and OTU-1 services. NOTE GE services can be encapsulated in two formats. When Service Type is GE, the encapsulation format is GFP-F; when Service Type is GE(GFP-T), the encapsulation format is GFP-T. The value GE(GFP-T) is recommended. The GE services at the transmit and receive ends must be encapsulated in the same format.
Client Service Bearer Rate (Mbit/s)
100 to 2200 Default: 0
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE Only TN12TQM supports this parameter.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information. Off, On
Laser Status
Default: Off
Automatic Laser Shutdown
Enabled, Disabled
LPT Enabled
Enabled, Disabled
Default: Enabled
Default: Disabled
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable the link pass-through (LPT) function.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1514
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Service Mode
Client Mode, OTN Mode
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information.
Default: Client Mode Max. Packet Length
1518 to 9600 Default: 9600
Ethernet Working Mode
Auto-Negotiation, 1000M Full-Duplex Default: 1000M FullDuplex
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. See D.20 Max. Packet Length (WDM Interface) for more information. The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet. See D.7 Ethernet Working Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services. Only available for TN12TQM.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. NOTE Only available for the TN12TQM.
14.17.10 TQM Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1515
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TQ M
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
TN12TQ M
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
The I-16/SR-1 OC-48 module, S-16.1/IR-1 OC-48 module, L-16.1/LR-1 OC-48 module and L-16.2/LR-2 OC-48 module can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, and DVB-ASI signals. Only the S-16.1-15 km optical module supports FE services, and it can only connect to a 100BASE-LX10 optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1516
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-259 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1266 to 1360
1260 to 1360
1280 to 1335
1500 to 1580
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant
APD
APD
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1517
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
The 2.125 Gbit/s multirate module can be used to access FC200, GE, FC100, and FE signals. NOTE
The 1000 BASE-LX-10 km module, 1000 BASE-LX-40 km module and 1000 BASE-ZX-80 km module can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE and DVB-ASI signals. NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 14-260 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
1270 to 1355
1500 to 1580
Transmitter parameter specifications at point S Operating wavelength range
Issue 03 (2013-05-16)
nm
770 to 860
1270 to 1355
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1518
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
NOTE
The 1.25 Gbit/s multirate module (eSFP CWDM) can be used to access GE, FC100, STM-4, OC-12, ESCON, STM-1, OC-3, FE, or DVB-ASI signals. NOTE
The 2.67 Gbit/s multirate module (eSFP CWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1519
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-261 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1520
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
The 2.67 Gbit/s multirate module (eSFP DWDM) can be used to access OTU1, STM-16, OC-48, FC200, FC100, GE, STM-4, OC-12, ESCON, STM-1, OC-3, DVB-ASI, or FE signals.
Table 14-262 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1521
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
Weight l
TN11TQM: 1.2 kg (2.64 lb.)
l
TN12TQM: 1.1 kg (2.43 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TQM
50.3
57.6
TN12TQM
25
27.5
14.18 TQS TQS: 4 x STM-16/OC-48/OTU1 tributary service processing board
14.18.1 Version Description Only one functional version of the TQS board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 TQS
N
N
N
N
Y
Y
Variants The TN11TQS board has only one variant: TN11TQS01.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1522
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.18.2 Application As a type of tributary board, the TQS board implements conversion between four STM-16/ OC-48/OTU1 optical signals and four ODU1 electrical signals. For the position of the TQS board in the WDM system, see Figure 14-279. Figure 14-279 Position of the TQS board in the WDM system 4xODU1
4xODU1 TQS
TQS 1
1
4
4
4
N S 2
M U X / D M U X
M U X / D M U X
1 N S 2
4
1
1
4
4×ODU1
4×ODU1
STM-16/ OC-48/OTU1
1
STM-16/ OC-48/OTU1
4
14.18.3 Functions and Features The TQS board is mainly used to achieve cross-connection at the electrical layer, and to provide OTN interfaces and ESC. For detailed functions and features, refer to Table 14-263. Table 14-263 Functions and features of the TQS board Function and Feature
Description
Basic function
TQS converts signals as follows:
Client-side service type
STM-16/OC-48: SDH/SONET service at a rate of 2.5 Gbit/s
Crossconnect capabilities
OptiX OSN 6800: Supports the cross-connection of four ODU1 signals between the TQS and the cross-connect board or the board in the paired slot.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G.709.
4 x (STM-16/OC-48/OTU1)<->4 x ODU1
OTU1: OTN service at a rate of 2.67 Gbit/s
OptiX OSN 3800: Supports the grooming of four ODU1 signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group.
l Supports PM functions for ODU1. ESC function
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1523
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the client side service type is OTU1.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Poisson mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services.
ALS function
Supports the ALS function on the client side.
PRBS test function
Not supported
LPT function
Not supported
Test frame
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection.
Loopback
WDM side Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (non-performance monitoring)
Inloop
Supported
Outloop
Supported
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1524
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
14 Tributary Board and Line Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.18.4 Working Principle and Signal Flow The TQS board consists of the client-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-280 shows the functional modules and signal flow of the TQS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1525
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-280 Functional modules and signal flow of the TQS Backplane(service cross-connection) ODU1
Client side RX1 RX2 RX3 RX4 TX1 TX2 TX3 TX4
O/E
E/O
SDH/SONET encapsulation and mapping module Client-side OTN procssing module
Client-side Optical module
OTN Processing module
Cross-connect module
Signal processing module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC)
SCC
The client side of the TQS board can access the following optical signals: l
STM-16 optical signals
l
OC-48 optical signals
l
OTU1 optical signals
In the signal flow of the TQS board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the TQS to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. The module performs operations such as OTU1 framing and FEC decoding with OTU1 signals, and performs operations such as encapsulation and mapping processing, and OTN framing with STM-16/OC-48 signals. Then, the module sends out four channels of ODU1 signals to the backplane for grooming.
l
Receive direction The signal processing module receives ODU1 electrical signals sent from the backplane. The module performs operations such as ODU1 framing, framing of OTU1 signals,
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1526
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
encoding of FEC, demapping, and decapsulation processing. Then, the module sends out four channels of STM-16/OC-48/OTU1 signals to the client-side optical module. The client-side optical module performs the E/O conversion of STM-16/OC-48/OTU1 electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of STM-16/OC-48/ OTU1 optical signals. – Client-side transmitter: Performs the E/O conversion from four channels of the internal electrical signals to STM-16/OC-48/OTU1 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, SDH/SONET encapsulation and mapping module, client-side OTN processing module, and OTN processing module. – Cross-connect module – OptiX OSN 6800: Implements the grooming of electrical signals between the TQS and the board in the paired slot or the cross-connect board through the backplane. Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are ODU1 signals. – OptiX OSN 3800: Grooms the electrical signals from one board of the mesh group (consisting of four boards) to the other three boards belonging to the mesh group through the backplane. The grooming service signals are ODU1 signals. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET signals and maps the signals into the ODU1 payload area. The module also performs the reverse process and has the SDH/ SONET performance monitoring function. – Client-side OTN processing module Implements the OTN performance monitoring function. – OTN processing module Frames ODU1/OTU1 signals, processes overheads in ODU1/OTU1 signals, and performs FEC encoding and decoding of the OTU1 signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1527
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Converts the DC power supplied by the backplane into the power required by each module on the board.
14.18.5 Front Panel There are indicators and interfaces on the front panel of the TQS board.
Appearance of the Front Panel Figure 14-281 shows the front panel of the TQS board. Figure 14-281 Front panel of the TQS board
TQS STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4
TQS
Indicators Four indicators are present on the front panel: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1528
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-264 lists the type and function of each interface. Table 14-264 Types and functions of the interfaces on the TQS board Interface
Type
Function
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.18.6 Valid Slots One slot houses one TQS board. Table 14-265 shows the valid slots for the TQS board. Table 14-265 Valid slots for the TQS board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8 and IU11-IU16.
OptiX OSN 3800 chassis
IU2-IU5
14.18.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-266 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1529
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-266 Mapping between the physical ports on the TQS board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-282 shows the application model of the TQS board. Table 14-267 describes the meaning of each port. Figure 14-282 Port diagram of the TQS board
Other line/ PID board Backplane 4 x ODU1
201 (LP1/LP1)-1 202 (LP2/LP2)-1 203 (LP3/LP3)-1 204 (LP4/LP4)-1
3 (RX1/TX1)-1 4 (RX2/TX2)-1 5 (RX3/TX3)-1 6 (RX4/TX4)-1
Client Side Crossconnect module
Issue 03 (2013-05-16)
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1530
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board Service processing module
Table 14-267 Description of NM port of the TQS board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
LP1-LP4
Internal logical ports. All optical paths are numbered 1.
14.18.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TQS board is used to transmit services, the following items must be created on the U2000: l
The corresponding channels of the four LP ports are respectively connected to the RX1/ TX1-RX4/TX4. There is no need for configuration on the U2000.
l
During creation of the electrical cross-connect services on the U2000, create the ODU1 cross-connection between the LP port of the TQS board and the optical channels of the ODU1LP port of other boards (or the IN/OUT port on the NS2 board) to implement the cross-connect grooming of ODU1 services, as shown Figure 14-283.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1531
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-283 Cross-connection diagram of the TQS board WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
Other board a (compatible mode)
IN/OUT-OCh:1-ODU2:1-ODU1:1 Other board b IN/OUT-OCh:1-ODU2:1-ODU1:2 (standard IN/OUT-OCh:1-ODU2:1-ODU1:3 mode) IN/OUT-OCh:1-ODU2:1-ODU1:4
Client side 201(LP1/LP1)-1 201(LP1/LP1)-2
TQS
201(LP1/LP1)-3 201(LP1/LP1)-4
The client side of the TQS board are cross-connected to the WDM side of other boards
Other board a TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN11NS2 / TN12NS2 / TN52NS2 / TN52NS3 / TN12LQMS(NS1 Mode) / TN12ELQX / TN12PTQX Other board b TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
14.18.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of TQS, refer to Table 14-268. Table 14-268 TQS parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1532
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, OC-48, OTU-1, STM-16 Default: OTU-1
Laser Status
Off, On Default: Off
Automatic Laser Shutdown
Enabled, Disabled
FEC Working State
Enabled, Disabled
Default: Enabled
Default: Enabled
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Issue 03 (2013-05-16)
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1533
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.18.10 TQS Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TQ S
N/A
I-16-2 km S-16.1-15 km L-16.1-40 km L-16.2-80 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module NOTE
This module is used to access STM-16 and OTU1 signals.
Table 14-269 Client-side pluggable optical module specifications (SDH services) Parameter
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
MLM
SLM
SLM
SLM
Target transmission distance
-
2 km (1.2 mi.) 15 km (9.3 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
1280 to 1335
1500 to 1580
Transmitter parameter specifications at point S Operating wavelength range
Issue 03 (2013-05-16)
nm
1266 to 1360
1260 to 1360
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1534
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value I-16-2 km
S-16.1-15 km
L-16.1-40 km
L-16.2-80 km
Maximum mean launched power
dBm
-3
0
3
3
Minimum mean launched power
dBm
-10
-5
-2
-2
Minimum extinction ratio
dB
8.2
8.2
8.2
8.2
Maximum -20 dB spectral width
nm
N/A
1
1
1
Minimum side mode suppression ratio
dB
N/A
30
30
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
APD
Operating wavelength range
nm
1270 to 1580
1270 to 1580
1280 to 1335
1500 to 1580
Receiver sensitivity
dBm
-18
-18
-27
-28
Minimum receiver overload
dBm
-3
0
-9
-9
Maximum reflectance
dB
-27
-27
-27
-27
NOTE
2.67 Gbit/s Multi-rate module (eSFP CWDM) can be used to access STM-16, OC-48, OTU1 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1535
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-270 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Value
Optical Module Type
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
Target transmission distance
-
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
Maximum mean launched power
dBm
5
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Central wavelength deviation
nm
±6.5
Maximum -20 dB spectral width
nm
1.0
Minimum side mode suppression ratio
dB
30
Eye pattern mask
-
G.957-compliant G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
1270 to 1620
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Table 14-271 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Issue 03 (2013-05-16)
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Line code format
-
NRZ
Target transmission distance
-
120 km (74.6 mi.)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1536
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.00
Center frequency deviation
GHz
±12.5
Maximum mean launched power
dBm
4
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.5
Maximum -20 dB spectral width
nm
1
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
2400
Eye pattern mask
-
G.957-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services) G.959.1-compliant (a 5% margin is required for the eye pattern of STM-16 services and equivalent OTU1 services)
Receiver parameter specifications at point R Receiver type
-
APD
Operating wavelength range
nm
N/A
Receiver sensitivity
dBm
-28
Minimum receiver overload
dBm
-9
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.6 lb)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1537
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TQS
43
47.3
14.19 TQX TQX: 4 x 10 Gbit/s tributary service processing board
14.19.1 Version Description The available functional versions of the TQX board are TN11, TN52, TN53, and TN55.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TQ X
N
N
N
N
Y
N
TN5 2TQ X
Y
Y
Y
N
Y
N
TN5 3TQ X
Y
Y
Y
N
N
N
TN5 5TQ X
Y
Y
Y
N
Y
N
Variants Each of the TN11TQX, TN52TQX, TN53TQX, and TN55TQX boards has only one variant identified by the suffix 01 in the board name, for example, TN11TQX01.
Differences Between Versions Function: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1538
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
CrossConnet Granularit y
IEEE 1588v2
Physical Clock
Client-side Services OTU2/ OTU2e
FC800/ FC1200
TN11TQX
ODU2/ ODU2e
N
N
N
N
TN52TQX
ODU2/ ODU2e
N
N
Y
N
TN53TQX
ODU2/ ODU2e
N
N
Y
Y
TN55TQX
ODU2/ ODU2e/ ODUflex
Y
Y
Y
Y
For details, see 14.19.3 Functions and Features. Specification: l
The specifications vary with the version of the board that you use. For details, see 14.19.10 TQX Specifications.
Substitution Relationship Table 14-272 Substitution rules of the TQX board
Issue 03 (2013-05-16)
Original Board
Substitute Board
Substitution Rules
TN11TQX
TN55TQX
The TN55TQX can be created as TN11TQX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN55TQX functions as the TN11TQX.
TN52TQX
TN55TQX
The TN55TQX can be created as TN52TQX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN55TQX functions as the TN52TQX.
TN53TQX
TN55TQX
The TN55TQX can be created as TN53TQX on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN55TQX functions as the TN53TQX.
TN55TQX
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1539
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.19.2 Application As a type of tributary board, the TQX board converts between four FC800/FC1200/10GE LAN/ 10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals and four ODU2/ODU2e/ ODUflex electrical signals through cross-connection. For the position of the TQX board in the WDM system, see Figure 14-284. Figure 14-284 Position of the TQX board in the WDM system 4xODU2/ODU2e/ ODUflex
4xODU2/ODU2e/ ODUflex
TQX TX1 1
1 N Q 2
4
4
M 1 U X / D M 4 U X
M U 1 X N / Q D 2 M U 4 X
1
1
4
4
4xODU2/ODU2e/ ODUflex
4xODU2/ODU2e/ ODUflex
RX1 TQX 10GE LAN 10GE WANTX1 STM-64 OC-192 OTU2 OTU2e RX4 FC800 FC1200 TX4
10GE LAN RX110GE WAN STM-64 OC-192 OTU2 TX4 OTU2e FC800 RX4 FC1200
Table 14-273 Client-side service mapping path supported by the board Board
Client-Side Service
Backplane-Side Service
TN11TQ X
10GE LAN/10GE WAN/STM-64/ OC-192
ODU2/ODU2e
TN52TQ X
10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e
ODU2/ODU2e
TN53TQ X
10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e/FC800/ FC1200
ODU2/ODU2e
TN55TQ Xa
10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e/FC800/ FC1200
ODU2/ODU2e
FC800
ODUflex
a: For FC800 services, the TN55TQX board supports two mapping paths: FC800->ODU2 and FC800->ODUflex. The mapping paths for the TN53TDX boards at the service adding and dropping sites must be the same.
14.19.3 Functions and Features The TQX board enables cross-connections at the electrical layer. For detailed functions and features, refer to Table 14-274. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1540
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-274 Functions and features of the TQX board Function and Feature
Description
Basic function
TQX converts signals as follows: l 4xFC800/FC1200/10GE LAN/10GE WAN/STM-64/OC-192/OTU2/ OTU2e<->4xODU2/ODU2e. l 4xFC800<->4xODUflex
Client-side service type
STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s FC800: SAN service at a rate of 8.5 Gbit/s FC1200: SAN service at a rate of 10.51 Gbit/s NOTE Only the TN53TQX/TN55TQX supports FC800 and FC1200 services. Only the TN52TQX/TN53TQX/TN55TQX supports OTU2 and OTU2e services. The processing of the 10GE WAN service and the STM-64 service is the same. Therefore, For the TN11TQX/ TN52TQX, when the 10GE WAN service is transmitted, you can configure it as the STM-64 service on the U2000.
Crossconnect capabilities
Supports the cross-connection of four ODU2/ODU2e/ODUflex signals between the TQX and the cross-connect board through the backplane.
OTN function
l Supports overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G.709 and G.Sup43.
NOTE The cross-connection of ODUflex signals is supported only by the TN55TQX board.
l Supports PM function for ODU2. l Supports SM and TCM function when the TN52TQX , TN53TQXand TN55TQX receives OTN services. ESC function
Supported by the TN52TQX/TN53TQX/TN55TQX when the client-side service type is OTU2 or OTU2e.
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side, only when the service type is OTU2/OTU2e. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarm and performance event monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1541
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
ALS function
Supports the ALS function on the client side.
PRBS test function
Supports the PRBS function on the client side.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
Test frame
Supports the test frame function when the client-side service type is 10GE LAN and the Port mapping is MAC Transparent Mapping (10.7 G).
Latency measuremen t
The TN53TQX/TN55TQX (standard mode) board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
NOTE This function is not supported when the client-side service type is OTU2/OTU2e.
IEEE 1588v2
The TN55TQX board supports the TC, TC+OC, BC, and OC modes when the client-side service type is 10GE LAN and the Port Mapping is MAC Transparent Mapping (10.7 G).
Physical clock
l When the TN55TQX board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing. l When the TN55TQX board receives 10GE LAN services and the port mapping is MAC Transparent Mapping (10.7 G) on its client side, the board can support synchronous Ethernet processing instead of synchronous Ethernet transparent transmission.
Electricallayer ASON
Supported by the TN52TQX/TN53TQX/TN55TQX
Protection scheme
l Supports ODUk SNCP. l Supports client 1+1 protection. l Supports tributary SNCP protection. NOTE When the cross-connect granularity is ODUflex, the board does not support tributary SNCP protection. NOTE When the board receives OTN services, SDH/SONET services, and 10GE WAN services the board supports tributary SNCP protection.
Ethernet service mapping mode
Issue 03 (2013-05-16)
l TN11TQX/TN12TQX/TN53TQX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G) l TN55TQX: Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1542
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Port MTU
Supports transmission of packets containing 1518–9600 bytes.
Loopback
WDM side Client side
Protocols or standards compliance
Inloop
Supported
Outloop
Supported
Protocols or standards for transparent transmission (non-performance monitoring)
IEEE 802.3ae
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.19.4 Working Principle and Signal Flow The TQX board consists of the client-side optical module, signal processing module, 1588v2 module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-285 shows the functional modules and signal flow of the TQX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1543
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-285 Functional modules and signal flow of the TQX Backplane(service cross-connection)
n X ODUk
Client side
RX1 RX2 RX3 RX4
TX1 TX2 TX3 TX4
SDH/SONET encapsulation and mapping module
O/E
10GE-LAN encapsulation and mapping module
OTN processing module
Crossconnect module
1588v2 module
FC encapsulation and mapping module
E/O Client-side optical module
Signal processing module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
NOTE
Only the TN53TQX/TN55TQX board supports FC encapsulation and mapping module. Only the TN55TQX board supports the IEEE 1588v2 module. In Figure 14-285, n x ODUk indicates the service cross-connections from the TQX board to the backplane. "n" represents the maximum number of cross-connections and "k" represents the service granularity.
Table 14-275 shows the service cross-connections from the TQX board to the backplane. Table 14-275 Service cross-connections from the TQX board to the backplane Board
Service Cross-connection
TN11TQX/ TN52TQX/ TN53TQX
A maximum of 4xODU2/ODU2e
TN55TQX
A maximum of 4xODU2/ODU2e/ODUflex
The transmit and the receive directions are defined in the signal flow of the TQX board. The transmit direction is defined as the direction from the client side of the TQX to the backplane, and the receive direction is defined as the reverse direction. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1544
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Transmit direction The client-side optical module receives four channels of the optical signals from client equipment through the RX1-RX4 interfaces, and performs O/E conversion. After O/E conversion, different types of signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, and OTN framing. After processing, the module sends out four channels of ODU2/ODU2e signals to the backplane for grooming.
l
Receive direction The signal processing module receives ODU2/ODU2e electrical signals sent from the cross-connection board through the backplane. The module performs operations such as ODU2/ODU2e framing, demapping and decapsulation processing. Then, the module sends out four channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/ FC1200 signals to the client-side optical module. The client-side optical module performs E/O conversion of 10GE LAN/10GE WAN/ STM-64/OC-192/OTU2/OTU2e/FC800/FC1200 electrical signals, and then outputs four channels of client-side optical signals through the TX1-TX4 optical interfaces.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of four channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/FC1200 optical signals. – Client-side transmitter: Performs E/O conversion from four channels of the internal electrical signals to 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e/FC800/ FC1200 optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, FC encapsulation and mapping module, OTN processing module, and cross-connect module. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET signals and maps the signals into the ODU2 payload area. The module also performs the reverse process and has the SDH/ SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the ODU2/ODU2e payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – FC encapsulation and mapping module Encapsulates multiple channels of FC signals and maps the signals into the ODU2/ ODU2e/ODUflex payload area. The module also performs the reverse process and has the FC performance monitoring function. NOTE
FC800 services can be mapped into ODU2/ODUflex payload area and FC1200 services can be mapped into ODU2e payload area.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1545
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– OTN processing module Frames ODU2/ODU2e/ODUflex signals and processes overheads in ODU2/ODU2e/ ODUflex signals. – Cross-connect module Grooms electrical signals between the TQX and the cross-connect board through the backplane. l
1588v2 module According to the IEEE 1588v2 protocol, the module transmits the clock information of the clock board to the next NE or extracts the clock information from the service board and then transmits the clock information to the clock board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.19.5 Front Panel There are indicators and interfaces on the front panel of the TQX board.
Appearance of the Front Panel Figure 14-286 shows the front panel of the TQX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1546
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-286 Front panel of the TQX board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-276 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1547
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-276 Types and functions of the interfaces on the TQX board Interface
Type
Function
TX1-TX4
LC
Transmit service signals to client equipment.
RX1-RX4
LC
Receive service signals from client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.19.6 Valid Slots One slot houses one TQX board. For the OptiX OSN 6800: l
If the TN12XCS board is used, the TQX board supports a service capacity of 40 Gbit/s when it is installed in slot 1, 4, 11, or 14; only optical ports RX1/TX1 and RX2/TX2 of the TQX board are available and therefore the board supports a service capacity of 20 Gbit/s when it is installed in any of the other slots.
l
If the TN11XCS board is used, only optical ports RX1/TX1 and RX2/TX2 of the TQX board are available and therefore the board supports a service capacity of 20 Gbit/s regardless of which slot the board is installed.
For the OptiX OSN 8800: The TQX board supports a maximum service capacity of 40 Gbit/s in any slot. Table 14-277 shows the valid slots for the TN11TQX board. Table 14-277 Valid slots for the TN11TQX board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Table 14-278 shows the valid slots for the TN52TQX/TN55TQX board. Table 14-278 Valid slots for the TN52TQX/TN55TQX board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1548
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-279 shows the valid slots for the TN53TQX board. Table 14-279 Valid slots for the TN53TQX board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.19.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-280 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-280 Mapping between the physical ports on the TQX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ClientLP is a logical port of the board. The TQX board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1549
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-281 Port diagram and port description Board
Mode
Port Diagram
Port Descriptio n
Board Name Displayed on the NMS
TN11T QX
Compat ible mode
Figure 14-287
Table 14-282
TQX
TN52T QX
Compat ible mode
Figure 14-287
Table 14-282
52TQX
TN53T QX
Compat ible mode
Figure 14-287
Table 14-282
53TQX
TN55T QX
Compat ible mode
Figure 14-287
Table 14-282
55TQX
Standar d mode
Figure 14-288
Table 14-282
55TQX(STND)
Figure 14-287 Port diagram of the TN11TQX/TN52TQX/TN53TQX/TN55TQX (compatible mode) Other line/PID board
Backplane 4x ODU2/ODU2e/ODUflex
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
NOTE
Only the TN55TQX board supports ODUflex. Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1550
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-288 Port diagram of the TN55TQX (standard mode) Other line/PID board Backplane 4x ODU2/ODU2e/ODUflex
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-282 Description of NMS port of the TQX board Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
ClientLP1-ClientLP4
Internal logical port. The optical paths are numbered 1.
14.19.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TQX board is used to transmit services, the following items must be created on the U2000: l
TN11TQX/TN52TQX/TN53TQX: Configuration of cross-connection Create ODU2 cross-connections between this board and other boards to support service pass-through. – Set the service type. Ensure that the service type is the same as the actual service type. – Create the cross-connections of ODU2 level between the ClientLP port and the ODU2LP of the other boards, as shown in Figure 14-289.
l
TN55TQX: Configuration of cross-connection – Create ODU2 cross-connections between this board and other boards to support service pass-through. – Set the Port Working Mode to ODU2 non-convergence mode (OTU2/Any>ODU2->OTU2) – Set the service type. Ensure that the service type is the same as the actual service type.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1551
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
– Create the cross-connections of ODU2 level between the ClientLP or RX/TX port and the ODU2LP of the other boards, as shown in Figure 14-289 and Figure 14-290. – Create ODUflex cross-connections between this board and other boards to support service pass-through. – Set the Port Working Mode to ODUflex non-convergence mode (Any>ODUflex). – Set the service type. Ensure that the service type is the same as the actual service type. – Create the cross-connections of ODUflex level between the ClientLP port and the ODUflex port of the other boards, as shown in Figure 14-291 and Figure 14-292. NOTE
The TN55TQX board supports mapping of FC800 into ODUflex on the client side. When configuring cross-connections for the board, ODUflex Timeslot is 7.
Figure 14-289 Cross-connection diagram of the TQX board (compatible mode ODU2 level) WDM side 1(IN1/OUT1)-OCH:1 2(IN1/OUT1)-OCH:1 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Cross connect mode
Other board a (standard mode) Other board b (compatible mode)
Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
TQX
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross connect mode
The client side of the TQX board are crossconnected to the WDM side of other boards
Other board a
Issue 03 (2013-05-16)
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1552
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Other board b
TN11TQX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX TN52TQX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX TN53TQX: TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 TN55TQX: TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Figure 14-290 Cross-connection diagram of the TQX board (standard mode ODU2 level) WDM side 1(IN1/OUT1)-OCh:1 2(IN1/OUT1)-OCh:1
Other board
71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Cross-connect module
Other board a (standard mode) Other board b (compatible mode)
Client side 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1
TQX
6(RX4/TX4)-1 Cross-connect module
The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS NOTE
Only the TN55TQX board supports standard mode. Other board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Other board b
TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN12NS2 / TN52NS2 / TN11NS3 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 / TN12ELQX / TN12PTQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1553
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-291 Cross-connection diagram of the TQX board (compatible mode ODUflex level) WDM side 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2 2(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:1 2(IN1/OUT1)-OCH:1-ODU2:1-ODUflex:2
Other board Cross connect mode Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
TQX
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross connect mode
The client side of the TQX board are crossconnected to the WDM side of other boards
Other board
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
Figure 14-292 Cross-connection diagram of the TQX board (standard mode ODUflex level) WDM side
1(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:1 1(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:2 2(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:1 2(IN1/OUT1)-OCh:1-ODU2:1-ODUflex:2
Other board Cross-connect module Client side 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1
TQX Cross-connect module
The client side of the TOA board are cross-connected to the WDM side of other boards, which needs to be configured on the NMS NOTE
Only the TN55TQX board supports standard mode. Other board
Issue 03 (2013-05-16)
TN52ND2T04 / TN53ND2 / TN53NQ2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1554
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.19.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TQX, refer to Table 14-283. Table 14-283 TQX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
l TN11TQX: None, 10GE LAN, OC-192, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None l TN52TQX: None, 10GE LAN, OC-192, OTU-2, OTU-2E, STM-64 Default: None l TN53TQX/ TN55TQX: None, 10GE LAN, 10GE WAN, OC-192, OTU-2, OTU-2E, STM-64, CBR_10G, FC800, FC1200 Default: None
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1555
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Port Mapping
TN11TQX/TN12TQX/ TN53TQX:
The Port Mapping parameter sets and queries the mapping mode of a port service.
l Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G) l Default: Bit Transparent Mapping(11.1G) TN55TQX:
NOTE The TN55TQX board supports the TC, TC +OC, BC, and OC modes when the clientside service type is 10GE LAN and the Port Mapping is MAC Transparent Mapping (10.7 G).
See D.28 Port Mapping (WDM Interface) for more information.
l Bit Transparent Mapping(11.1G), MAC Transparent Mapping(10.7G) l Default: Bit Transparent Mapping(11.1G) NOTE For the TN11TQX: only the ClientLP1 and ClientLP3 ports support MAC transparent mapping (10.7G).
Off, On
Laser Status
Default: Off
Service Mode
Client Mode, OTN Mode Default: Client Mode
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Specifies the service mode for a board. NOTE Only the TN52TQX/TN53TQX/TN55TQX supports this parameter.
See D.32 Service Mode (WDM Interface) for more information. Client Service Bearer Rate (Mbit/s)
9953.28 to 10312.50 Default: /
sets the rate of the accessed service at the optical interface on the client side of a board. NOTE NOTE This parameter can be set only when Service Type is set to CBR_10G.
See D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1556
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Automatic Laser Shutdown
Enabled, Disabled
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Default: Enabled
Default: FW_Defect
Specifies auxiliary conditions for triggering ALS. l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF. NOTE Only the TN52TQX/TN53TQXTN55TQX supports this parameter.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s Default: 0s
Issue 03 (2013-05-16)
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN52TQX/TN53TQXTN55TQX supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1557
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s Max. Packet Length
1518 to 9600 Default: 9600
NOTE Only the TN52TQX/TN53TQXTN55TQX supports this parameter.
The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. NOTE For the TN52TQX/TN53TQX/TN55TQX, when Port Mapping is set to Bit Transparent Mapping(11.1G), Maximum Packet Length is unavailable on the U2000.
See D.20 Max. Packet Length (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services. Only the TN52TQX/TN53TQX/TN55TQX supports this parameter.
FEC Working State
Disabled, Enabled Default: Enabled
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.10 FEC Working State (WDM Interface) for more information. FEC Mode
FEC Default: FEC
The FEC Mode parameter sets the FEC mode of the current optical interface. NOTE This parameter can be set only when Service Type is set to OTU2 or OTU-2E.
See D.9 FEC Mode (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1558
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information.
Default: None
Enabled, Disabled
LPT Enabled
Default: Disabled PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the link pass-through (LPT) function. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE This parameter is supported only by the TN53TQX/TN55TQX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1559
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Insert Code Type
l When Service Type is STM-64 or OC-192:
Applies to fault detection and location when the service type is STM-64 or OC-192. When the tributary or line board at the upstream site is faulty or when the line board at the downstream site is faulty, users can specify the output code type for the tributary board at the downstream site using this parameter.
– PN11, MS_AIS – Default: PN11 l When Service Type is 10GE LAN and port mapping mode is MAC transparent mapping (10.7G): – Quick insert, Delayed insert – Default: Quick insert
When the service type is 10GE-LAN, the value Quick insert applies to a scenario in which no protection is configured on the WDM equipment while protection is configured for the router that connects to the WDM equipment. In this scenario, quick protection switching can be achieved on the router. The value Delayed insert applies to a scenario in which protection is configured for the WDM equipment and the router connected to the WDM equipment. In this scenario, the WDM equipment preferentially performs protection switching in case of a fault. If the fault is rectified, the router does not perform protection switching. If the fault persists, then the router performs protection switching. NOTE This parameter is supported only by the TN55TQX.
Port Working Mode
ODU2 nonconvergence mode (OTU2/Any->ODU2>OTU2), ODUflex non-convergence mode (Any->ODUflex), NONE Mode(Not for port)
This parameter is used to set the working mode of the interface on the board according to the actual application scenario and service mapping trail. NOTE This parameter is supported only by the TN55TQX
Default: ODU2 nonconvergence mode (OTU2/Any->ODU2>OTU2)
14.19.10 TQX Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1560
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TQX/ TN52TQX/ TN53TQX/ TN55TQX
N/A
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point. NOTE
The 10 Gbit/s multirate 10 km module, 10 Gbit/s multirate 40 km module, and 10 Gbit/s multirate 80 km module can be used to access OC-192, STM-64, 10GE WAN, FC1200, and OTU2/OTU2e signals. The 10 Gbit/s single-rate 0.3 km module can be used to access 10GE LAN and FC1200 signals. The 10 Gbit/s multirate 10 km module can be used to access FC800 signals.
Client-Side Pluggable Optical Module Table 14-284 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1561
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
PIN
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1562
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type Maximum reflectance
dB
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
-27
-27
-27
-12
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: TN11TQX: 1.5 kg (3.3 lb.) TN52TQX: 1.6 kg (3.5 lb.) TN53TQX: 1.6 kg (3.5 lb.) TN55TQX: 1.6 kg (3.5 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TQX
65.0
71.2
TN52TQX
91.5
100
TN53TQX
45
50
TN55TQX
45
50
14.20 TSC TSC: 100G tributary service processing board
14.20.1 Version Description The available functional version of the TSC board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1563
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
General 8800 T64 Subrac k
Enhan ced 8800 T64 Subrac k
Gener al 8800 T32 Subrac k
Enha nced 8800 T32 Subra ck
8800 T16 Subra ck
8800 Platfo rm Subra ck
6800 Subra ck
3800 Chass is
TN54TS C
N
Y
N
Y
Y
N
N
N
NOTE
l For an enhanced OptiX OSN 8800 T64 subrack, the TSC board must work with TNK2USXH+TNK2UXCT boards l For an enhanced OptiX OSN 8800 T32 subrack, the TSC board must work with the TN52UXCH or TN52UXCM board. l For an OptiX OSN 8800 T16 subrack, the TSC board must work with the TN16UXCM board.
Variants The TN54TSC board has only one variant: TN54TSC. The TN54TSC board variant is the board itself.
14.20.2 Application As a type of tributary board, the TSC board converts between one channel of 100GE optical signals and one channel of ODU4 electrical signals through cross-connection. For the position of the TSC board in the WDM system, see Figure 14-293. Figure 14-293 Position of the TSC board in the WDM system 1xODU4 1xOTU4
1xOTU4 1xODU4
8×ODU0
100GE TX
1×ODU4
RX
TSC
N S 4
M U X / D M U X
M U X / D M U X
N S 4
1×ODU4
TSC
TX RX 100GE
14.20.3 Functions and Features The TSC board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-285. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1564
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-285 Functions and features of the TSC board Function and Feature
Description
Basic function
TSC converts signals as follows: 1 x 100GE<->1 x ODU4
Client-side service type
100GE: Ethernet service at a rate of 103.125 Gbit/s
Cross-connect capabilities
Supports the cross-connection of one channel of ODU4 signals between the TSC and the cross-connect board.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l ODU4 layer: supports the PM function, and PM non-intrusive monitoring functions.
ESC function
Not supported
PRBS function
Not supported
LPT function
Not supported
FEC encoding
Not supported
Alarm and performance event monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Provides remote monitoring (RMON) of the Ethernet service.
ALS function
Supports the ALS function on the client side.
Test frame
Supported
Latency measurement
The board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000.
Electrical-layer ASON
Supported
Protection scheme
l Supports client 1+1 protection.
Loopback
Client side
l Supports ODUk SNCP.
Channel Loopback
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1565
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ba
Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.20.4 Working Principle and Signal Flow The TSC consists of the client-side optical module, signal processing module, control and communication module, and power supply module. Figure 14-294 shows the functional modules and signal flow of the TSC.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1566
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-294 Functional modules and signal flow of the TSC Backplane(service cross-connection) 1 x ODU4 Client side RX TX
O/E
E/O
100GE Service encapsulation and mapping module
Client-side optical module
OTN Processing module
Cross-connect module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The transmit and the receive directions are defined in the signal flow of the TSC board. The transmit direction is defined as the direction from the client side of the TSC to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one channel of 100GE service signals through the RX interface, and performs the O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. The module performs operations such as encapsulation and mapping processing, OTN framing, and encoding of FEC. Then, the module sends out one channel of ODU4 electrical signals to the backplane for grooming.
l
Receive direction The signal processing module receives one channel of ODU4 electrical signals from the cross-connection board through the backplane. The module performs operations such as ODU4 framing, demapping and decapsulation processing. Then, the module sends out one channel of 100GE signals to the client-side optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1567
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
The client-side optical module performs the E/O conversion of one channel of 100GE signals, and then outputs one channel of client-side optical signal through the TX optical interface.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of one channel of 100GE optical signals. – Client-side transmitter: Performs the E/O conversion of one channel of 100GE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of a 100GE service encapsulation and mapping module and an OTN processing module. – Service encapsulation and mapping module Encapsulates one channel of 100GE signals, maps the signals into the payload of an ODU4 frame, and performs the reverse process. The service encapsulation and mapping module supports monitoring of 100GE signal performance. – OTN processing module Frames ODU4 signals and processes overheads in ODU4 signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.20.5 Front Panel There are indicators and interfaces on the front panel of the TSC board.
Appearance of the Front Panel Figure 14-295 shows the front panel of the TSC board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1568
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-295 Front panel of the TSC board
TSC STAT ACT PROG SRV
G.657A2 FIBER ONLY 只能使用G.657A2 光纤
G.657A2 FIBER ONLY 只能使用 G.657A2 光 纤
TX RX
TSC
NOTE
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1569
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-286 lists the type and function of each interface. Table 14-286 Types and functions of the interfaces on the TSC board Interface
Type
Function
RX
LC/PC
Receive service signals from client equipment.
TX
LC/PC
Transmit service signals to client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.20.6 Valid Slots One slot houses one TSC board. Table 14-287 shows the valid slots for the TSC board. Table 14-287 Valid slots for TSC board Product
Valid Slots
Enhanced OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.20.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1570
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Display of Physical Ports Table 14-288 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-288 Mapping between the physical ports on the TSC board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX/RX
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Figure 14-296 shows the port diagrams of the TSC board. Table 14-289 describes the meaning of each port. Figure 14-296 Port diagram of the TSC
Other line board
Backplane 1 x ODU4
3(RX/TX)-1
Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1571
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-289 Description of NMS port of the TSC board Port Name
Description
RX/TX
These ports correspond to the client-side optical interfaces.
14.20.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TSC board is used to transmit services, the following items must be created on the U2000: l
Set the service type. Ensure that the service type is the same as the actual service type.
l
Create the cross-connections of ODU4 level between the RX/TX port and the ODU4 logical port of the other boards, as shown in Figure 14-297.
Figure 14-297 Cross-connection diagram of the TSC board
WDM side
1(IN1/OUT1)-OCh:1
Line board
Cross connect mode Client side
3(RX1/TX1)-1
TSC
Cross connect mode The client side of the TSC board are crossconnected to the WDM side of other boards Line board
NS4
14.20.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of TSC, refer to Table 14-290. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1572
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-290 TSC parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Off, On Default: Off
Service Type
100GE Default: 100GE
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Disabled, Enabled Default: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Service Type parameter sets the type of the service accessed at the optical interface on the client side. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1573
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS , BW_WDM_Defect, FW_OPUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the clientside transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the clientside transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the holdoff time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s NULL Mapping Status
Issue 03 (2013-05-16)
Enabled, Disabled
This parameter is reserved for future use.
Default: Disabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1574
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.20.10 TSC Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54TS C
N/A
100GBASE-LR4-10 km (CFP) 100GBASE-10×10G-10 km (CFP)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 14-291 Client-side pluggable optical module specifications (100GE services) Parameter
Unit
Optical Module Type Line code format
Value 100G BASE-LR4-10 km (CFP)
-
NRZ
Transmitter parameter specifications at point S Signaling Speed per Lane
Gbit/s
25.78125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1294.53 1299.02 1303.54 1308.09
Maximum Lane Center Wavelength
nm
1296.59 1301.09 1305.63 1310.19
Total Average Launch Power (Min) Issue 03 (2013-05-16)
dBm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1.7
1575
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 100G BASE-LR4-10 km (CFP)
Total Average Launch Power (Max)
dBm
10.5
Transmit OMA per Lane (Min)
dBm
-1.3
Transmit OMA per Lane (Max)
dBm
4.5
Average Launch Power per Lane (Min)
dBm
-4.3
Average Launch Power per Lane (Max)
dBm
4.5
Optical Extinction Ratio (Min)
dB
4
Side Mode Suppression Ratio (Min)
dB
30
Receiver parameter specifications at point R Receiver type
-
PIN
Signaling Speed per Lane
Gbit/s
25.78125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1294.53 1299.02 1303.54 1308.09
Maximum Lane Center Wavelength
nm
1296.59 1301.09 1305.63 1310.19
Issue 03 (2013-05-16)
Average Receiver Power per Lane (Min)
dBm
-10.6
Average Receiver Power per Lane (Max)
dBm
4.5
Minimum receiver overload (OMA) per Lane
dBm
4.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1576
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 100G BASE-LR4-10 km (CFP)
Receiver Sensitivity (OMA) per Lane
dBm
-8.6
Maximum reflectance
dB
-26
NOTE The OMA values are designed to ensure normal equipment operation. They are not provided for equipment commissioning. In practical, equipment commissioning is performed based on the average receiver power per lane and total average launched power. It is recommended that the total average launched power be used as the reference for equipment commissioning.
Table 14-292 Client-side pluggable optical module specifications (100GE services) Parameter
Unit
Optical Module Type Line code format
Value 100G BASE-10×10G-10 km (CFP)
-
NRZ
Transmitter parameter specifications at point S Signaling Speed per Lane
Gbit/s
10.3125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1521 1529 1537 1545 1553 1561 1569 1577 1585 1593
Maximum Lane Center Wavelength
nm
1525 1533 1541 1549
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1577
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 100G BASE-10×10G-10 km (CFP) 1557 1565 1573 1581 1589 1597
Total Average Launch Power (Min)
dBm
4.2
Total Average Launch Power (Max)
dBm
13.5
Average Launch Power per Lane (Min)
dBm
-5.8
Average Launch Power per Lane (Max)
dBm
3.5
Transmit OMA per Lane (Min)
dBm
-2.8
Transmit OMA per Lane (Typ)
dBm
-0.8
Transmit OMA per Lane (Max)
dBm
3.5
Optical Extinction Ratio (Min)
dB
2.5
Side Mode Suppression Ratio (Min)
dB
30
Receiver parameter specifications at point R Receiver type
-
PIN
Signaling Speed per Lane
Gbit/s
10.3125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1521 1529 1537 1545
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1578
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 100G BASE-10×10G-10 km (CFP) 1553 1561 1569 1577 1585 1593
Maximum Lane Center Wavelength
nm
1525 1533 1541 1549 1557 1565 1573 1581 1589 1597
Receiver Power per Lane (Min)
dBm
-10.8
Receiver Power per Lane (Max)
dBm
3.5
Minimum receiver overload (OMA) per Lane
dBm
3.5
Receiver Sensitivity (OMA) per Lane
dBm
-8.8
Maximum reflectance
dB
-26
NOTE The OMA values are designed to ensure normal equipment operation. They are not provided for equipment commissioning. In practical, equipment commissioning is performed based on the average receiver power per lane and total average launched power. It is recommended that the total average launched power be used as the reference for equipment commissioning.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1579
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.5 kg (3.3 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54TSC
65.0
80.0
14.21 TSXL TSXL: 40 Gbit/s tributary service processing board
14.21.1 Version Description The available functional versions of the TSXL board are TN11, TN53, and TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TS XL
N
N
N
N
Y
N
TN5 3TS XL
Y
Y
Y
N
N
N
TN5 4TS XL
Y
Y
Y
N
N
N
Variants The TN11TSXL, TN53TSXL, and TN54TSXL board has only one variant: TN11TSXL01, TN53TSXL01, and TN54TSXL01. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1580
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Differences Between Versions l
Function: Board
Cross-Connet Granularity
Client-side service type
TN11TSXL
ODU2
STM-256/OC-768
TN53TSXL
ODU3
STM-256/OC-768/OTU3
TN54TSXL
ODU3
40GE
For details, see 14.21.2 Application and 14.21.3 Functions and Features. l
Appearance: The TN11TSXL, TN53TSXL, and TN54TSXL use different front panels with different dimensions. For details, see 14.21.5 Front Panel and 14.21.10 TSXL Specifications.
l
Specification: The specifications vary with the version of the board that you use. For details, see 14.21.10 TSXL Specifications.
Substitution Relationship The TSXL boards of different versions cannot replace each other.
14.21.2 Application As a type of tributary board, the TN11TSXL board converts between one channel of STM-256/ OC-768 optical signals and four channels of ODU2 electrical signals through cross-connection. The TN53TSXL board converts between one channel of STM-256/OC-768/OTU3 optical signals and one channel of ODU3 electrical signals through cross-connection. The TN54TSXL board converts between one channel of 40GE optical signals and one channel of ODU3 electrical signals through cross-connection. For the position of the TSXL board in the WDM system, see Figure 14-298, Figure 14-299 and Figure 14-300. Figure 14-298 Position of the TN11TSXL board in the WDM system 4xODU2
4xODU2
TSXL 1
RX
4
M U 1 X N / Q D 2 M U 4 X
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
1
TX 4xODU2
N Q 2 4
Issue 03 (2013-05-16)
1
4xODU2
STM-256 OC-768 TX
TSXL M 1 U X / D M 4 U X
4
STM-256
RX OC-768
4
1581
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-299 Position of the TN53TSXL board in the WDM system 1xODU3
1xODU3
TSXL
TSXL
RX
TX N S 3
1xODU3
N S 3
1xODU3
STM-256 OC-768 TX OTU3
M U X / D M U X
M U X / D M U X
STM-256 OC-768 RX OTU3
NOTE
In this application scenario, the Line Rate parameter of the TN54NS3/TN55NS3 board must be set to Standard Mode.
Figure 14-300 Position of the TN54TSXL board in the WDM system 1xODU3
1xODU3
TSXL
TSXL
RX
M U X / D M U X
TX N S 3
1xODU3
TX
1xODU3
40GE
N S 3
M U X / D M U X
RX
40GE
NOTE
In this application scenario, the Line Rate parameter of the TN54NS3/TN55NS3 board must be set to Standard Mode.
14.21.3 Functions and Features The TSXL board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-293.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1582
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-293 Functions and features of the TSXL board Function and Feature
Description
Basic function
TSXL converts signals as follows: l TN11TSXL: – 1 x (STM-256/OC-768)<-> 4 x ODU2 – Implements the transparent transmission of 40 Gbit/s services in a 10 Gbit/s WDM network. l TN53TSXL: – 1 x (STM-256/OC-768/OTU3) <-> 1 x ODU3 l TN54TSXL: – 1 x 40GE<->1 x ODU3
Client-side service type
l TN11TSXL: – STM-256/OC-768: SDH/SONET service at a rate of 39.81 Gbit/s l TN53TSXL: – STM-256/OC-768: SDH/SONET service at a rate of 39.81 Gbit/s – OTU3: OTN service at a rate of 43.02 Gbit/s l TN54TSXL: – 40GE: Ethernet service at a rate of 41.25 Gbit/s
Cross-connect capabilities
Supports the cross-connection of four channels of ODU2 signals between the TN11TSXL and the cross-connect board. Supports the cross-connection of one channel of ODU3 signals between the TN53TSXL/TN54TSXL and the cross-connect board.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G.709. l Supports PM functions for ODU2. l Supports PM, TCM functions for ODU3.
Issue 03 (2013-05-16)
FEC encoding
Supports ITU-T G.709-compliant forward error correction (FEC) on the client side only when the service on the client side is OTU3.
PRBS test function
TN11TSXL/TN54TSXL: Not supported
LPT function
Not supported
TN53TSXL: Supports the PRBS function on the client side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1583
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Alarm and performance event monitoring
l Monitors BIP8 bytes (Poisson mode or Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors OTN alarms and performance events. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Supports the remote monitoring (RMON) of Ethernet services. NOTE Only TN54TSXL provides remote monitoring (RMON) of the Ethernet service. Only the TN11TSXL/TN53TSXL supports Poisson Mode. Only the TN11TSXL/TN53TSXL board supports laser temperature monitoring. Only the TN11TSXL/TN53TSXL board supports B1 bytes monitoring.
ALS function
Supports the ALS function on the client side.
Test frame
Supported by the TN54TSXL
Electrical-layer ASON
Supported by the TN53TSXL/TN54TSXL.
Protection scheme
l Supports client 1+1 protection. l Supports ODUk SNCP. l Supports tributary SNCP protection. NOTE TN54TSXL only supports client-side 1+1 protection and ODUk SNCP protection. NOTE When the board receives OTN services, SDH/SONET services the board supports tributary SNCP protection.
Loopback
WDM side Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
Inloop
Supported
Outloop
Supported
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1584
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.21.4 Working Principle and Signal Flow The TSXL consists of the client-side optical module, signal processing module, control and communication module, and power supply module.
Functional Modules and Signal Flow Figure 14-301 shows the functional modules and signal flow of the TN11TSXL. Figure 14-302 shows the functional modules and signal flow of the TN53TSXL. Figure 14-303 shows the functional modules and signal flow of the TN54TSXL.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1585
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-301 Functional modules and signal flow of the TN11TSXL Backplane(service cross-connection)
4XODU2 Client side O/E
RX TX
E/O
SDH/SONET encapsulation and mapping module
Client-side optical module
OTN processing module
Cross-connect module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
1586
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-302 Functional modules and signal flow of the TN53TSXL Backplane(service cross-connection) ODU3 Client side O/E
RX TX
E/O
Client-side optical module
SDH/SONET encapsulation and mapping module Client-side OTN processing module
OTN Processing module
Cross-connect module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
1587
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-303 Functional modules and signal flow of the TN54TSXL Backplane(service cross-connection) ODU3 Client side O/E
RX TX
E/O
40GE encapsulation and mapping module
Client-side optical module
OTN processing module
Cross-connect module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
The transmit and the receive directions are defined in the signal flow of the TSXL board. The transmit direction is defined as the direction from the client side of the TSXL to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives one 40 Gbit/s service signal through the RX interface, and performs the O/E conversion. After O/E conversion, the electrical signals are sent to the signal processing module. The module performs operations such as OTN framing. Then, the module sends out four channels of ODU2 electrical signals or one channel of ODU3 electrical signals to the backplane for grooming.
l
Receive direction The signal processing module receives four channels of ODU2 electrical signals or one channel of ODU3 electrical signals sent from the cross-connection board through the backplane. The module performs operations such as ODUk virtual concatenation. Then, the module sends out one channel of 40 Gbit/s service signal to the client-side optical module. The client-side optical module performs the E/O conversion of one 40 Gbit/s service signal, and then outputs one channel of client-side optical signal through the TX optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1588
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of one channel of STM-256/OC-768/ OTU3/40GE optical signal. – Client-side transmitter: Performs the E/O conversion of one channel of STM-256/ OC-768/OTU3/40GE optical signal. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, Client-side OTN processing module, , 40GE encapsulation and mapping module and OTN processing module. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET signals and maps the signals into the ODUk payload area. The module also performs the reverse process and has the SDH/ SONET performance monitoring function. – Client-side OTN processing module Implements the OTN performance monitoring function. – 40GE encapsulation and mapping module Encapsulates one channel of 40GE signals and maps the signals into the ODU3 payload area. The module also performs the reverse process and monitors 40GE performance. – OTN processing module Frames ODU2, ODU3 signals. – Cross-connect module Grooms electrical signals between the TSXL and the cross-connect board through the backplane.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
14.21.5 Front Panel There are indicators and interfaces on the front panel of the TSXL board.
Appearance of the Front Panel Figure 14-304 shows the front panel of the TN11TSXL board. Figure 14-305 shows the front panel of the TN53TSXL board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1589
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-306 shows the front panel of the TN54TSXL board. Figure 14-304 Front panel of the TN11TSXL board
TSXL STAT ACT PROG SRV
TX RX
TSXL
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1590
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-305 Front panel of the TN53TSXL board
TSXL STAT ACT PROG SRV
TX RX
TSXL
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1591
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-306 Front panel of the TN54TSXL board G.657A2 FIBER ONLY 只能使用G.657A2 光纤 TSXL STAT ACT PROG SRV G.657A2 FIBER ONLY 只能使用 G.657A2 光 纤
TX RX TSXL
To prevent the cabinet door from squeezing fibers, the board can only use G.657A2 fibers.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-294 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1592
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-294 Types and functions of the interfaces on the TSXL board Interface
Type
Function
RX
LC
Receive service signals from client equipment.
TX
LC
Transmit service signals to client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.21.6 Valid Slots Two slots house one TN11TSXL board. One slot houses one TN53TSXL/TN54TSXL. Table 14-295 shows the valid slots for the TN11TSXL board. Table 14-295 Valid slots for the TN11TSXL board Product
Valid Slots
OptiX OSN 6800 subrack
IU2-IU8, IU12-IU16
NOTE
The rear connector of the TN11TSXL board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the TN11TSXL board displayed on the NM is the number of the right one of the two slots. For example, if slots IU1 and IU2 house the TN11TSXL board, the slot number of the TN11TSXL board displayed on the NM is IU2.
Table 14-296 shows the valid slots for the TN53TSXL/TN54TSXL board. Table 14-296 Valid slots for the TN53TSXL/TN54TSXL board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1593
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.21.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 14-297 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 14-297 Mapping between the physical ports on the TSXL board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
RX/TX
3
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. Figure 14-307 shows the application model of the TN11TSXL board. Figure 14-308 shows the application model of the TN53TSXL board. Figure 14-309 shows the application model of the TN54TSXL board. Table 14-298 describes the meaning of each port. Figure 14-307 Port diagram of the TN11TSXL board
Other line/ PID board Backplane 4 x ODU2
151 (imp/imp)-1 151 (imp/imp)-2 151 (imp/imp)-3 151 (imp/imp)-4
3 (RX1/TX1)-1
Client Side
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1594
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-308 Port diagram of the TN53TSXL board Other line board
Backplane ODU3
201 (ClientLP1/ClientLP1)-1
3 (RX1/TX1)-1
Client Side Cross-connect module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Service processing module
Figure 14-309 Port diagram of the TN54TSXL board Other line board Backplane ODU3
3(RX1/TX1)-1
Client Side Cross-connect module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Service processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1595
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-298 Description of NM port of the TSXL board Port Name
Description
RX1/TX1
Corresponding to the client-side optical interfaces.
imp (inverse multiplexing port)
The optical channels are numbered 1, 2, 3 and 4.
ClientLP1
Internal logical port. The optical paths are numbered 1.
14.21.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TSXL board is used to transmit services, the following items must be created on the U2000: l
TN11TSXL: During creation of the electrical cross-connect services on the U2000, create the crossconnections of ODU2 level between the imp port and the ODU2LP port of the other boards to achieve grooming of ODU2 services, as shown in Figure 14-310.
Figure 14-310 Cross-connection diagram of the TN11TSXL board WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1
IN1/OUT1-OCH:1 IN2/OUT2-OCH:2
Other board a (compatible mode) Other board b (standard mode)
Client side 151(imp/imp)-1 151(imp/imp)-2 151(imp/imp)-3
TSXL
151(imp/imp)-4
The client side of the TSXL board are cross-connected to the WDM side of other boards
Other board a TN11ND2 / TN12ND2 / TN52ND2 / TN53ND2 / TN53NQ2 / TN51NQ2 / TN52NQ2 / TN53NS2 / TN12NS2 /TN52NS2 / TN11NS3 / TN52NS3 / TN12ELQX / TN12PTQX Other board b TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN52ND2T04 / TN53ND2 / TN53NQ2
l
TN53TSXL: During creation of the electrical cross-connect services on the U2000, create the crossconnections of ODU3 level between the ClientLP port and the ODU3LP port of the other boards to achieve grooming of ODU3 services, as shown in Figure 14-311.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1596
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-311 Cross-connection diagram of the TN53TSXL board WDM side 81(ODU3LP1/ODU2LP1)-1
Other board
Other board b (compatible mode) Other board c (standard mode)
IN/OUT-OCH:1-ODU3:1
Client side 201(ClientLP1/ClientLP1)-1
TSXL
The client side of the TSXL board is cross-connected to the WDM side of other boards
Other board b
TN54NS3
Other board c
TN55NS3
l
TN54TSXL: During creation of the electrical cross-connect services on the U2000, create the crossconnections of ODU3 level between the RX1/TX1 port and the ODU3LP port of the other boards to achieve grooming of ODU3 services, as shown inFigure 14-312.
Figure 14-312 Cross-connection diagram of the TN54TSXL board Other board b 81(ODU3LP1/ODU2LP1)-1 (compatible mode) IN/OUT-OCH:1-ODU3:1
WDM side
Other board c (standard mode)
Client side
RX1/TX1
TSXL
The client side of the TSXL board is cross-connected to the WDM side of other boards
Other board b
TN54NS3
Other board c
TN55NS3
14.21.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of TSXL, refer to Table 14-299.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1597
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-299 TSXL parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Set and query the optical interface name.
Channel Use Status
Used, Unused
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Service Type
None, OC-768, STM-256, OTU-3 Default: STM-256
The Service Type parameter sets the type of the service accessed at the optical interface on the client side. NOTE Only the TN53TSXL supports OTU-3 services. Only the TN11TSXL/TN53TSXL supports this parameter.
Off, On
Laser Status
Default: Off
Automatic Laser Shutdown
Enabled, Disabled
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Default: Enabled
Default: 0s
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost. Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers. NOTE Only the TN53TSXL/TN54TSXL supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1598
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_OPUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s Default: 0s
FEC Working State
Disabled, Enabled Default: Enabled
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers. NOTE Only the TN53TSXL/TN54TSXL supports this parameter.
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. NOTE This parameter can be set only when Service Type is set to OTU3.
See D.10 FEC Working State (WDM Interface) for more information. NOTE Only the TN11TSXL/TN53TSXL supports this parameter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1599
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
FEC Mode
FEC
The FEC Mode parameter sets the FEC mode of the current optical interface.
Default: FEC
NOTE This parameter can be set only when Service Type is set to OTU3.
See D.9 FEC Mode (WDM Interface) for more information. NOTE Only the TN11TSXL/TN53TSXL supports this parameter.
SD Trigger Condition None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. NOTE Only the TN11TSXL/TN53TSXL supports this parameter.
PRBS Test Status
Disabled, Enabled Default: Disabled
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. NOTE Only the TN11TSXL/TN53TSXL supports this parameter.
NULL Mapping Status
Enabled, Disabled Default: Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. NOTE Only the TN53TSXL supports this parameter.
14.21.10 TSXL Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1600
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN11TS XL/ TN53TS XL
40G Transponder
N/A
TN54TS XL
N/A
40GBASE-LR4-10km (CFP)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Fixed Optical Module Table 14-300 Client-side fixed optical module specifications Parameter
Unit
Optical Module Type Line code format
Value 40G Transponder
-
NRZ
Operating wavelength range
nm
1530 to 1565
Maximum mean launched power
dBm
3
Minimum mean launched power
dBm
0
Minimum extinction ratio
dB
8.2
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
40
Receiver type
-
PIN
Operating wavelength range
nm
1290 to 1570
Receiver sensitivity
dBm
-6
Minimum receiver overload
dBm
3
Maximum reflectance
dB
-27
Transmitter parameter specifications at point S
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1601
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Client-Side Pluggable Optical Module Table 14-301 Client-side pluggable optical module specifications Parameter
Unit
Optical Module Type Line code format
Value 40G BASE-LR4-10km (CFP)
-
NRZ
Transmitter parameter specifications at point S Signaling speed per Lane
Gbit/s
10.3125
Signaling speed accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1264.5 1284.5 1304.5 1324.5
Maximum Lane Center Wavelength
nm
1277.5 1297.5 1317.5 1337.5
Total Average Launch Power (Max)
dBm
8.3
Total Average Launch Power (Min)
dBm
-1
Transmit OMA per Lane (Min)
dBm
-4
Transmit OMA per Lane (Max)
dBm
3.5
Average Launch Power per Lane (Min)
dBm
-7
Average Launch Power per Lane (Max)
dBm
2.3
Optical Extinction Ratio (Min)
dB
3.5
Side Mode Suppression Ratio (Min)
dB
30
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1602
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Optical Module Type
Value 40G BASE-LR4-10km (CFP)
Receiver type
-
PIN
Signaling Speed per Lane
Gbit/s
10.3125
Signaling Speed Accuracy
ppm
-100 to 100
Minimum Lane Center Wavelength
nm
1264.5 1284.5 1304.5 1324.5
Maximum Lane Center Wavelength
nm
1277.5 1297.5 1317.5 1337.5
Average Receiver Power per Lane (Min)
dBm
-13.7
Average Receiver Power per Lane (Max)
dBm
2.3
Minimum receiver overload (OMA) per Lane
dBm
3.5
Receiver Sensitivity (OMA) per Lane
dBm
-11.5
Maximum reflectance
dB
-26
NOTE The OMA values are designed to ensure normal equipment operation. They are not provided for equipment commissioning. In practical, equipment commissioning is performed based on the average receiver power per lane and total average launched power. It is recommended that the total average launched power be used as the reference for equipment commissioning.
Mechanical Specifications TN11TSXL: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 lb.)
TN53TSXL:
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1603
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
TN54TSXL: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TSXL
90.2
96
TN53TSXL
75
83
TN54TSXL
58
64
14.22 TTX TTX: 10 x 10G tributary service processing board
14.22.1 Version Description The available functional version of the TTX board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Board
General 8800 T64 Subrac k
Enhan ced 8800 T64 Subrac k
Gener al 8800 T32 Subrac k
Enha nced 8800 T32 Subra ck
8800 T16 Subra ck
8800 Platfo rm Subra ck
6800 Subra ck
3800 Chass is
TN54TT X
N
Y
N
Y
Y
N
N
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1604
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
NOTE
l For an enhanced OptiX OSN 8800 T64 subrack, the TTX board must work with TNK2USXH +TNK2UXCT boards l For an enhanced OptiX OSN 8800 T32 subrack, the TTX board must work with the TN52UXCH or TN52UXCM board. l For an OptiX OSN 8800 T16 subrack, the TTX board must work with the TN16UXCM board.
Variants The TN54TTX board has only one variant: TN54TTX. The TN54TTX board variant is the board itself.
14.22.2 Application As a type of tributary board, the TTX board converts between ten channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals and ten channels of ODU2/ODU2e electrical signals through cross-connection. For the position of the TTX board in the WDM system, see Figure 14-313. Figure 14-313 Position of the TTX board in the WDM system 10xODU2/ODU2e
10xODU2/ODU2e
RX1
RX10 TX10
TTX
N S 4
M U X / D M U X
M U X / D M U X
N S 4
10xDU2/ODU2e
TX1
10xDU2/ODU2e
10GE LAN 10GE WAN STM-64 OC-192 OTU2 OTU2e
TTX
TX1 RX1
TX10 RX10
10GE LAN 10GE WAN STM-64 OC-192 OTU2 OTU2e
14.22.3 Functions and Features The TTX board is mainly used to achieve cross-connection at the electrical layer. For detailed functions and features, refer to Table 14-302. Table 14-302 Functions and features of the TTX board Function and Feature
Description
Basic function
TTX converts signals as follows: 10x10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e<>10xODU2/ODU2e
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1605
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s
Cross-connect capabilities
Supports the cross-connection of ten channels of ODU2/ODU2e signals between the TTX board and the cross-connect board through the backplane.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. The mapping process is compliant with ITU-T G. 709. l ODU2 layer: supports the PM and TCM function, and PM and TCM non-intrusive monitoring functions. l OTU2 layer: supports the SM function. Supported when the client-side service type is OTU2 or OTU2e.
ESC function
NOTE A maximum of eight ports support the ESC function.
PRBS function
Supports the PRBS function on the client side. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC
Not supported.
Alarm and performance event monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services (10GE LAN).
ALS function
Supports the ALS function on the client side.
Test frame
Not supported
Latency measurement
The board supports latency measurement. The bidirectional latency at the ODUk layer between two tributary boards supporting the latency measurement function can be measured, and the latency data is displayed on the U2000. NOTE This function is not supported when the client-side service type is OTU2/OTU2e.
IEEE 1588v2
Issue 03 (2013-05-16)
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1606
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description
Physical clock
When the board receives 10GE LAN services and the port mapping is Bit Transparent Mapping (11.1 G) on its client side, the board can support synchronous Ethernet transparent transmission instead of synchronous Ethernet processing.
Electrical-layer ASON
Supported
Protection scheme
l Supports client 1+1 protection. l Supports ODUk SNCP. l Supports tributary ODUk SNCP protection NOTE When the board receives OTN services, SDH/SONET services, and 10GE WAN services the board supports tributary SNCP protection.
Ethernet service mapping mode
Bit Transparent Mapping (11.1G)
Loopback
Client side
Protocols or standards compliance
Issue 03 (2013-05-16)
Inloop
Supported
Outloop
Supported
Channel Loopback
Not supported
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1607
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
14.22.4 Working Principle and Signal Flow The TTX consists of the client-side optical module, signal processing module, control and communication module, and power supply module. Figure 14-314 shows the functional modules and signal flow of the TTX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1608
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-314 Functional modules and signal flow of the TTX Backplane(service cross-connection) 10 x ODU2/ODU2e
SDH/SONET encapsulation and mapping module
Client side RX1
O/E
RX10 TX1 TX10
E/O Client-side optical module
10GE LAN encapsulation and mapping module
OTN Processing module
Cross-connect module
Client-side OTN processing module
Signal processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The transmit and the receive directions are defined in the signal flow of the TTX board. The transmit direction is defined as the direction from the client side of the TTX to the backplane, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives ten channels of the optical signals through the RX1RX10 interface, and performs the O/E conversion. After O/E conversion, different types of signals are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation and mapping processing, and OTN framing. Then, the module sends out ten channels of ODU2/ODU2e signals to the backplane for grooming.
l
Receive direction The signal processing module receives ten channels of ODU2/ODU2e electrical signals from the cross-connection board through the backplane. The module performs operations
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1609
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
such as ODU2/ODU2e framing, demapping and decapsulation processing. Then, the module sends out ten channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/ OTU2e signals to the client-side optical module. The client-side optical module performs the E/O conversion of ten channels of 10GE LAN/ 10GE WAN/STM-64/OC-192/OTU2/OTU2e electrical signals, and then outputs ten channels of client-side optical signals through the TX1-TX10 ports.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: Performs O/E conversion of ten channels of 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals. – Client-side transmitter: Performs the E/O conversion of ten channels of 10GE LAN/ 10GE WAN/STM-64/OC-192/OTU2/OTU2e optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Signal processing module The module consists of the SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, OTN processing module, and cross-connect module. – SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET/10GE LAN signals and maps the signals into the ODU2/ODU2e payload area. The module also performs the reverse process and has the SDH/SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the ODU2/ODU2e payload area. The module also performs the reverse process and has the 10GE LAN performance monitoring function. – Client-side OTN processing module Implements the OTN performance monitoring function. – OTN processing module Frames ODU2/ODU2e signals and processes overheads in ODU2/ODU2e signals. – Cross-connect module Grooms electrical signals between the TTX and the cross-connect board through the backplane.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1610
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
14.22.5 Front Panel There are indicators and interfaces on the front panel of the TTX board.
Appearance of the Front Panel Figure 14-315 shows the front panel of the TTX board. Figure 14-315 Front panel of the TTX board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1611
OptiX OSN 8800/6800/3800 Hardware Description
l
14 Tributary Board and Line Board
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 14-303 lists the type and function of each interface. Table 14-303 Types and functions of the interfaces on the TTX board Interface
Type
Function
TX1-TX10
LC
Receive service signals from client equipment.
RX1-RX10
LC
Transmit service signals to client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
14.22.6 Valid Slots One slot houses one TTX board. Table 14-304 shows the valid slots for the TTX board. Table 14-304 Valid slots for TTX board Product
Valid Slots
Enhanced OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
14.22.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS.
Display of Physical Ports Table 14-305 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1612
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Table 14-305 Mapping between the physical ports on the TTX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
TX5/RX5
7
TX6/RX6
8
TX7/RX7
9
TX8/RX8
10
TX9/RX9
11
TX10/RX10
12
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Figure 14-316 shows the port diagrams of the TTX board. Table 14-306 describes the meaning of each port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1613
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-316 Port diagram of the TTX
Other line/PID board
Backplane 10 x ODU2/ODU2e
3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1 11(RX9/TX9)-1 12(RX10/TX10)-1 Cross-connect module
Cross-connection that must be configured on the NMS.
Service processing module
Table 14-306 Description of NMS port of the TTX board Port Name
Description
RX1/TX1-RX10/TX10
These ports correspond to the client-side optical interfaces.
14.22.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. If the TTX board is used to transmit services, the following items must be created on the U2000: l
Set the service type. Ensure that the service type is the same as the actual service type.
l
Create the cross-connections of ODU2 level between the RX/TX port and the ODU2LP of the other boards, as shown in Figure 14-317.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1614
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Figure 14-317 Cross-connection diagram of the TTX board WDM side 1(IN1/OUT1)-OCh:1 2(IN1/OUT1)-OCh:1 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
Line/PID board a (standard mode) Line/PID board b (compatible mode)
Cross connect mode Client side 3(RX1/TX1)-1 4(RX2/TX2)-1 5(RX3/TX3)-1 6(RX4/TX4)-1 7(RX5/TX5)-1 8(RX6/TX6)-1 9(RX7/TX7)-1 10(RX8/TX8)-1 11(RX9/TX9)-1 12(RX10/TX10)-1
Cross connect mode
TTX
The client side of the TTX board are crossconnected to the WDM side of other boards
Line/PID board a
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Line/PID board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
14.22.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TTX, refer to Table 14-307. Table 14-307 TTX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1615
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Service Type
None, 10GE LAN, 10GE WAN, OC-192, OTU-2, OTU-2E, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: None Port Mapping
Bit Transparent Mapping(11.1G) Default: Bit Transparent Mapping (11.1G)
Laser Status
Off, On Default: Off
Service Mode
Client Mode, OTN Mode Default: Client Mode
Automatic Laser Shutdown
Issue 03 (2013-05-16)
Enabled, Disabled Default: Enabled
The Port Mapping parameter sets and queries the mapping mode of a port service. See D.28 Port Mapping (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1616
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
ALS Auxiliary Condition
FW_Defect, BW_Client_R_LOS, BW_WDM_Defect, FW_ODUk_CSF
Specifies auxiliary conditions for triggering ALS.
Default: FW_Defect
l If a fault occurs on the client-side receiver of the upstream board or the WDM-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_Defect. l If a fault occurs on the client-side receiver of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to BW_Client_R_LOS. l If a fault occurs on the WDM-side receiver of the local board, the laser on the client-side transmitter of the upstream board must be shut down. For this situation, set this parameter to BW_WDM_Defect. l If an OPUk_CSF alarm is detected on the WDM-side port of the local board, the laser on the client-side transmitter of the local board must be shut down. For this situation, set this parameter to FW_OPUk_CSF.
Hold-off Time of Automatic Laser Shutdown
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically disabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service interruption to the point when ALS automatically shuts down the related lasers.
Default: 0s Hold-off Time of Automatic Laser Turn-On
0s, 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms, 900ms, 1s, 1100ms, 1200ms, 1300ms, 1400ms, 1500ms, 1600ms, 1700ms, 1800ms, 1900ms, 2s
Specifies the hold-off time for automatically enabling lasers. With ALS enabled, the hold-off time is a time period from the point when the system detects service recovery to the point when ALS automatically enables the related lasers.
Default: 0s
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1617
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services.
SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
Enabled, Disabled
LPT Enabled
Default: Disabled PRBS Test Status
Disabled, Enabled Default: Disabled
NULL Mapping Status
Enabled, Disabled
Insert Code Type
PN11, MS_AIS
Default: Disabled
Default: PN11
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. Determines whether to enable the link pass-through (LPT) function. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning. Applies to fault detection and location when the service type is STM-64 or OC-192. When the tributary or line board at the upstream site is faulty or when the line board at the downstream site is faulty, users can specify the output code type for the tributary board at the downstream site using this parameter.
14.22.10 TTX Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1618
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54TT X
N/A
10G BASE-LR(SFP+) 10G BASE-ER(SFP+) 10G BASE-ZR-80 km (SFP+) 10G BASE-ER/EW-40 km (SFP+) 10G BASE-SR-0.3 km (SFP+) 10G BASE-LR-10 km (SFP+)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point. NOTE
10 Gbit/s Multi-rate optical module can be used to access OC-192, STM-64, 10GE WAN, 10GE LAN, OTU2, and OTU2e signals.
Client-Side Pluggable Optical Module Table 14-308 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10G BASE-LR(SFP+)
10G BASE-ER(SFP+)
Line code format
-
NRZ
NRZ
Optical source type
-
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1260 to 1355
1530 to 1565
Maximum mean launched power
dBm
-1
3
Minimum mean launched power
dBm
-6
-2
Minimum extinction ratio
dB
3.5
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1619
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Parameter
Unit
Value
Optical Module Type
10G BASE-LR(SFP+)
10G BASE-ER(SFP+) ≤-30
Output optical power in case of laser shutdown
dBm
≤-30
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
Operating wavelength range
nm
1260 to 1355
1260 to 1605
Receiver sensitivity
dBm
-14.4
-14 (11.1G) -15.8 (10.3125G)
Minimum receiver overload
dBm
0.5
-1
reflectance
dB
-12
-27
NOTE
10 Gbit/s BASE-SR-0.3 km (SFP+) module, 10 Gbit/s BASE-LR-10 km (SFP+) module, 10 Gbit/s BASE-ER/ EW-40 km (SFP+), and 10Gbit/s BASE-ZR-80 km (SFP+) can be used to access 10GE LAN, 10GE WAN signals.
Table 14-309 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
10G BASEZR-80 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
10.3125
10.3125
Optical source type
-
MLM
SLM
SLM
SLM
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
40 km (24.8 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1620
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
14 Tributary Board and Line Board
Unit
Optical Module Type
Value 10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
10G BASEZR-80 km (SFP+)
Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
0.5
4
4
Minimum mean launched power
dBm
-7.3
-8.2
-4.7
0
Minimum extinction ratio
dB
3
3.5
3
9
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z –compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
1530 to 1565
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
-14.1 (OMA)
-24
Minimum receiver overload
dBm
-1
0.5
-1
-7
Maximum reflectance
dB
-12
-12
-26
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1621
OptiX OSN 8800/6800/3800 Hardware Description
14 Tributary Board and Line Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54TTX
63.0
68.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1622
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15
Packet Service Unit
About This Chapter 15.1 Overview Packet service boards process received data packets based on MPLS switching and provide flexible LSP transmission pipes. They provide carrier-class protection for services using MPLSTP APS, support MPLS-TP OAM and ETH-OAM, and manage bandwidth using the QoS function. 15.2 EG16 EG16: 16-port gigabit ethernet switch board 15.3 EX2 EX2: 2 x 10GE ethernet packet switch board 15.4 PND2 PND2: 2 x 10G bit/s packet line board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1623
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.1 Overview Packet service boards process received data packets based on MPLS switching and provide flexible LSP transmission pipes. They provide carrier-class protection for services using MPLSTP APS, support MPLS-TP OAM and ETH-OAM, and manage bandwidth using the QoS function.
Positions of Packet Service Boards in a WDM System The EG16 board receives and processes GE/FE services, and the EX2 board receives and processes 10GE LAN services at Layer 2. The processed services are transmitted as packets to centralized cross-connect boards for grooming. Then the PND2 board processes and converts these packets into OTU2 optical signals, therefore achieving transmission of packet services over a WDM network. Figure 15-1 shows the positions of packet service boards in a WDM system. Figure 15-1 Positions of packet service boards in a WDM system Client-side services
Packets
OTU2
EG16 OA
OM
FIU
SC1
EG16 OD
PND2
WDM-side ODF
EX2
OA
Client-side equipment
PND2
EX2
Main Functions Table 15-1 lists the main functions of packet service boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1624
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-1 Main functions of packet service boards Board
EG16
Client-Side Service/ WDM-Side Signal
Backplane-Side Signal
Type
Max. Numbe r of Service s
Type
Maximum Bandwidt h
l Client-side service: GE/ FE
16
Packets
20 Gbit/s
2
Packets
20 Gbit/s
2
Packets
20 Gbit/s
l WDM-side signal: N/A EX2
l Client-side service: 10GE LAN l WDM-side signal: N/A
PND2
l Client-side service: N/A
Layer 2 Function
l Supports E-Line and E-LAN services based on MPLS, QinQ, and physical ports. l Supports ETH-OAM and MPLS-TP OAM. l Supports MPLS-TP Tunnel APS, MPLS-TP PW APS, LAG, MCLAG, and MSTP. l Supports QoS.
l WDM-side signal: OTU2
15.2 EG16 EG16: 16-port gigabit ethernet switch board
15.2.1 Version Description The available functional version of the EG16 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1625
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Bo ard
8800 T64 Subrack
General 8800 T32 Subrack
Enhanc ed 8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN 54 EG 16
N
N
Y
Y
N
N
N
NOTE
When the EG16 board is used in an OptiX OSN 8800 T32 subrack, the TN52UXCH or TN52UXCM crossconnect boards and the TN52SCC system control board must be used. When the EG16 board is used in an OptiX OSN 8800 T16 subrack, the TN16UXCM board must be used.
Variants The TN54EG16 board has only one variant: TN54EG16. The TN54EG16 board variant is the board itself.
15.2.2 Application As a packet service board, the EG16 board receives and transmits a maximum of 16 GE/FE services, processes packet services, and transmits packets to the cross-connect board for centralized cross-connections. When the EG16 board is used, the PND2 board must be used on the WDM side to implement the transmission of packet services on a WDM network. For the position of the EG16 board in the WDM system, see Figure 15-2. Figure 15-2 Position of the EG16 board in the WDM system Packets
2xOTU2
2xOTU2
Packets
RX1
TX1
TX1
RX1 16xGE/FE
TX16 RX16
IN1
EG16
OUT1
PND2 RX1
IN2
TX1
OUT2
2x 10 GE LAN RX2
EX2
OUT1 M U X / D M U X
M U X / D M U X
EG16
IN1
16xGE/FE RX16 TX16
PND2 OUT2
TX1
IN2
RX1
TX2
EX2
TX2
2x 10 GE LAN
RX2
NOTE
When used to receive optical services, the board can receive a maximum of 16 GE or FE services. When used to receive electrical services, the board can receive a maximum of 2 GE or FE services. The EG16 board cannot be used in a subrack that works in master/slave mode. It can only be used in a separate subrack.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1626
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.2.3 Functions and Features The EG16 board supports functions and features such as Layer 2 switching, QinQ, and Multiprotocol Label Switching (MPLS). Table 15-2 describes the service functions of the EG16 board, Table 15-3 provides the service specifications of the EG16 board, Table 15-4 describes the features supported by the EG16 board. Table 15-2 Service function of the EG16 board Function
Description
Basic function
Receives and transmits a maximum of 16 GE/FE services, processes the GE/FE packet services.
Working mode
l GE optical port: 1000M Full-Duplex, Auto-Negotiation l GE electrical port: 10M Full-Duplex, 100M Full-Duplex, 1000M Full-Duplex, Auto–Negotiation l FE optical port: 100M Full-Duplex, Auto-Negotiation
Flow control at ports
Supported Comply with IEEE802.3x.
Ethernet data frame format
IEEE 802.3, Ethernet II, IEEE 802.1q, IEEE 802.1p
Service type
E-Line (VPWS), E-LAN (VPLS)
Service bearing medium
Port, QinQ link, PW
E-Line
Port<->PW
PW-based service models
CVLAN<->PW SVLAN<->PW CVLAN + CVLAN Pri<->PW SVLAN + SVLAN Pri<->PW
QinQ linkbased service models
Port<->QinQ
Port-based service models
Port<->Port
CVLAN<->QinQ
CVLAN<->Port SVLAN<->Port
UNI-UNI service models
Port<->Port CVLAN<->CVLAN, VLAN translation supported SVLAN<->SVLAN, VLAN translation supported
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1627
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Function E-LAN
Description Bridge type
IEEE 802.1d, IEEE 802.1q
Bridge learning mode
SVL
VSI tag type
C-Aware, S-Aware, T-Aware
Table 15-3 Service specifications of the EG16 board Service Parameter
Specifications
Supported service
16 x GE/FE GE: Ethernet service at a rate of 1.25 Gbit/s FE: Ethernet service at a rate of 125 Mbit/s
Backplane bandwidth
20Gbit/s
MTU
Supports transmission of packets containing 1518–9600 bytes. Supports Jumbo frames containing a maximum of 9600 bytes.
Issue 03 (2013-05-16)
VLAN
4094
QinQ
4094
E-Line
8192
E-LAN
1024
MAC address
256 x 1024 (The total number of the blacklists and static MAC addresses cannot exceed 2048.)
Number of MAC addresses supported by each VSI
64 x 1024
Split horizon
One split horizon for each E-LAN
PW
SSPW
16384 (max.)
MSPW
8192 (max.)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1628
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Service Parameter
Specifications
Static tunne l
Unid irecti onal tunne l
16 x 1024 (equipment level), 8 x 1024 (board level)
Bidir ectio nal tunne l
8 x 1024 (equipment level), 4 x 1024 (board level)
Table 15-4 Features supported by the EG16 board Feature
Description
Protectio n scheme
MPLS-TP Tunnel APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T Y. 1720.
MPLS-TP PW APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T G. 8131, ITU-T Y.1731.
LAG
Supported. Comply with IEEE 802.1ax.
MC-LAG
Supported. Comply with IEEE 802.1ax.
MSTP
Supported. Comply with IEEE 802.1s.
Diffserv
Supported, compliant with RFC 2474 and RFC 2475.
Traffic classification
Complex traffic classification. The ACL rules are customized based on packet information.
Traffic policing
Committed access rate (CAR), two rate three color marker (trTCM) compliant with RFC 4115.
Congestion management
Class of service (CoS), supporting SP/WRR scheduling algorithms.
Congestion avoidance
WRED, tail dropping.
Traffic shaping
Port-based traffic shaping, queue-based traffic shaping.
QoS
IGMP Snoopin g
Issue 03 (2013-05-16)
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1629
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Feature
Description
Mainten ance
Ethernet OAM
Supported, compliant with IEEE 802.1ag and ITU-T Y.1731/G. 8013
Ethernet port OAM
Supported, compliant with IEEE 802.3ah
MPLS-TP OAM
Supported, compliant with ITU-T Y.1731/G.8013
RMON
Supported
Port mirroring
Supported
Loopback
GE/FE optical interface
PHY Inloop MAC Inloop
GE/FE electric interface
PHY Outloop MAC Inloop
Synchro nization
Inband DCN
Physical clock
Supports synchronous Ethernet.
IEEE 1588v2
Not supported
NOTE Electrical ports do not support synchronous Ethernet.
Supported
NOTE
In addition to the preceding features, the board supports performance monitoring and service processing compliant with related standards and protocols defined by IEEE, ITU-T, IETF, and MEF.
15.2.4 Working Principle and Signal Flow The EG16 board consists of the client-side optical module, packet processing module, transmission management module, switch buffer module, control and communication module, and power supply module. Figure 15-3 shows the functional modules and signal flow of the EG16 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1630
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Figure 15-3 Functional modules and signal flow of the EG16 board
RX1
Backplane(service cross-connection)
Packets
Client side
O/E
RX16 TX1
E/O
TX16
Client-side optical module
Packet processing module
Transmission management module
switch buffer module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
NOTE
When used to receive GE or FE electrical signals, the board must use a client-side electrical module to perform power level conversion, and then sends the signals to the packet processing module for processing.
Signal Flow In the signal flow of the EG16 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the EG16 to the backplane, and the receive direction is defined as the reverse direction. l
Issue 03 (2013-05-16)
Transmit direction 1.
The client-side optical module receives 16 channels of optical signals from client equipment through the RX1-RX16 ports, and performs O/E conversion.
2.
After receiving the electrical signals, the packet processing module decodes the signals, performs serial/parallel conversion, searches for routes and matches addresses for data services, implements L2 functions such as protection, OAM, and QoS for the data services, and sends the data services to the transmission management module.
3.
The transmission management module buffers and schedules the data servies, slices the data servies into packets for the switching network, and sends the packets to the switch buffer module.
4.
After buffering the packets, the switch buffer module sends the packets to the crossconnect board through the backplane. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1631
OptiX OSN 8800/6800/3800 Hardware Description
l
15 Packet Service Unit
Receive direction 1.
The switch buffer module processes the packets from the cross-connect board and then sends the packets to the transmission management module.
2.
The transmission management module rearranges the packets to recover data servies, buffers the data servies, and finally sends the data servies to the packet processing module.
3.
The packet processing module implements L2 functions such as protection, OAM, and QoS for the data services, performs parallel/serial conversion, and generates GE/ FE electrical signals.
4.
The client-side optical module performs the E/O conversion of GE/FE electrical signals, and then outputs two channels of client-side optical signals through the TX1TX16 ports.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: performs O/E conversion of GE/FE optical signals. – Client-side transmitter: performs E/O conversion of GE/FE optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Packet processing module Searches routes, performs address matching, switches labels for data services, and implements L2 functions such as protection, OAM, and QoS for the data services.
l
Transmission management module Segments data services into packets and provides large traffic buffer functions.
l
Switching buffer module Buffers packets, manages and schedules data queues. This module and the cross-connect board in the same subrack form a switching network to switch packets.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
15.2.5 Front Panel There are four indicators, optical interfaces.
Appearance of the Front Panel Figure 15-4 shows the front panel of the EG16. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1632
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Figure 15-4 Front panel of the EG16 EG16 STAT ACT PROG SRV
TX9
TX1
RX9
RX1
TX10
TX2
RX10 TX11
RX2 TX3
RX11 TX12
RX3 TX4
RX12 TX13
RX4 TX5
RX13 TX14
RX5 TX6
RX14 TX15
RX6 TX7
RX15 TX16
RX7 TX8
RX16
RX8
EG16
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 15-5 lists the type and function of each optical interface. Table 15-5 Types and functions of the EG16 interfaces
Issue 03 (2013-05-16)
Interface
Type
Function
RX1-RX16
LC
Receive service signals from client equipment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1633
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Interface
Type
Function
TX1-TX16
LC
Transmit service signals to client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
15.2.6 Valid Slots Two slots house one EG16 board. Table 15-6 shows the valid slots for the EG16 board. Table 15-6 Valid slots for the EG16 board Product
Valid slots
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
The online signal bus on the EG16 board connects to the backplane along the left slot in the subrack. The slot number of the EG16 board displayed on the NM is the number of the left one of the two slots. For example, if you install the board in slots IU1 and IU2, the slot number of the EG16 board displayed on the NM is IU1.
15.2.7 Physical and Logical Ports This section describes how the physical interfaces of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 15-7 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 15-7 Mapping between the physical ports on the EG16 board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
RX1/TX1–RX16/TX16
1–16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1634
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. Figure 15-5 shows the application model of the EG16 board. Table 15-8 describes the meaning of each port. Figure 15-5 Port diagram of the EG16 board
Other packet board
Backplane Packets
1(RX1/TX1) 2(RX2/TX2)
16(RX16/TX16)
PORT1 PORT2
PORT16
L2 swiching module
Table 15-8 Descriptions of the ports on the EG16 board
Issue 03 (2013-05-16)
Port Name
Description
RX1/TX1-RX16/TX16
Client-side ports.
PORT1-PORT16
Respectively corresponds to the client-side optical interfaces: RX1/TX1 - RX16/TX16.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1635
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.2.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried using the NMS.
Parameters for Ethernet Interfaces Table 15-9 Basic Attributes of EG16 Board Field
Value
Description
Port
-
External ports are PORT1 to PORT16.
Name
-
Enters the self-defined port name.
Enable Port
Enabled, Disabled
When the port is enabled, it indicates that the user uses the port and the port has services. When the port is disabled, it indicates that the port does not process services.
Default: Enabled
When no service is configured, it is recommended to disable the involved ports. Layer 2, Layer 3
Port Mode
Default: Layer 2
Specifies the working mode of the Ethernet port. l This parameter is set to Layer 2 when the Ethernet port carries port-based or QinQlink-based Ethernet services. l This parameter is set to Layer 3 when the port carries tunnel services.
Encapsulation Type
802.1Q, QinQ, Null Default: 802.1Q
Selects the means of processing the accessed packets. l This parameter is set to Null when the port needs to transparently transmit packets. l This parameter is set to 802.1Q when the port needs to identify 802.1Q standard packets. l This parameter is set to QinQ when the port needs to identify QinQ standard packets. NOTE The Encapsulation Type is always 802.1Q when you set Port Mode to Layer 3.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1636
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Working Mode
l GE optical port: 1000M FullDuplex, Auto– Negotiation
Set the Working Mode parameter to set the working mode of the Ethernet port on the board.
l GE electrical port: 10M Full-Duplex, 100M FullDuplex, 1000M Full-Duplex, Auto–Negotiation l FE optical port: 100M FullDuplex, Auto– Negotiation
Auto-negotiation can automatically determine the optimal working modes of the connected ports. This mode is easy to maintain and is recommended. NOTE Ensure that the working modes of the interconnected ports are the same, Otherwise, the services are not available.
Default: Auto– Negotiation Max Frame Length (bytes)
1518 to 9600
Logical Port Attribute
Optical Port, Electrical Port
Default: 1522
Default: Optical Port
This parameter specifies the maximum length of a frame traversing a port. When the length of a frame exceeds the specified maximum frame length, the frame will be discarded or the service will be interrupted. Displays the attributes of a logical port, which is set based on the attributes of the corresponding physical port.
Physical Port Attribute
No interface, Singlemode optical port, Multi-mode optical port, Electrical port
Displays the physical port attribute.
ARP Aging Time (min.)
1 to 1440
Indicates the ARP aging time of the port.
Default: 720
After the ARP aging time expires, the equipment automatically updates dynamic ARP entries to prevent incorrect address resolution. NOTE This parameter is valid only when Port Mode is set to Layer 3.
Issue 03 (2013-05-16)
Running Status
-
This parameter is unavailable for the EG16 board.
Optical Module Status
In-Position, Not-inPosition
Displays the optical module status.
Laser Interface Status
On, Off
Specifies the on/off status of the laser.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1637
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Laser Transmission Distance
-
Displays the laser transmission distance.
Traffic Policing Status
Enabled, Disabled
Enables or disables traffic monitoring on the port.
Default: Disabled
When you need to monitor the traffic on a port, enable the traffic monitoring function to monitor the traffic on a port in the period specified by Traffic Policing Period. Traffic Policing Period (min.)
1 to 30
Specifies the traffic monitoring period.
Default: 15
Table 15-10 Flow Control of EG16 Board Field
Value
Description
Port
-
External ports are PORT1 to PORT16.
NonAutonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Specifies the flow control mode adopted when an Ethernet port does not work in autonegotiation mode.
Default: Disabled
l Enable Symmetric Flow Control: The port can both transmit and receive the PAUSE frame. l Send Only: The port can only send the PAUSE frame. l Receive Only: The port can only receive the PAUSE frame. When the buffer usage of the receiver exceeds the threshold, the pause frame enables the transmitter to temporarily stop sending services. NOTE In general, flow control is implemented using the QoS function and port-based flow control is seldom used. It is recommended that the default value Disabled be used.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1638
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Auto-Negotiation Flow Control Mode
Disabled, Enable Dissymmetric Flow Control, Enable Symmetric Flow Control, Enable Symmetric/ Dissymmetric Flow Control
Specifies the flow control mode adopted when an Ethernet port works in autonegotiation mode.
Default: Disabled
l Enable Dissymmetric Flow Control: The port sends the PAUSE frame only, and cannot receive the PAUSE frame. l Enable Symmetric Flow Control: The port sends and receives the PAUSE frame. l Enable Symmetric/Dissymmetric Flow Control: Enables either symmetric or dissymmetric flow control, which is determined in the autonegotiation process. When the buffer usage of the receiver exceeds the threshold, the pause frame enables the transmitter to temporarily stop sending services. NOTE In general, flow control is implemented using the QoS function and port-based flow control is seldom used. It is recommended that the default value Disabled be used.
Table 15-11 Layer 2 Attributes of EG16 Board Field
Value
Description
Port
-
External ports are PORT1 to PORT16.
Tag
Tag Aware, Access, Hybrid
Indicates the data packet processing mode. For details, see Table 15-12. This parameter is unavailable when you set Encapsulation Type in Basic Attributes to QinQ or Null.
Default VLAN ID
Issue 03 (2013-05-16)
1 to 4094
Indicates the VLAN ID of packets.
Default: 1
NOTE Packets with their VLAN IDs being set to 0 are usually considered untagged packets. The VLAN ID of 4095 is reserved.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1639
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
VLAN Priority
0 to 7
Specifies the class of service (CoS) when TAG is set to Access or Hybrid.
Default: 0
0 indicates the lowest priority and 7 the highest. When the network is busy, data packets of higher VLAN priority are processed first and those of lower VLAN priority may be discarded.
Table 15-12 Processing modes of data packets Tag
Processing Mode
Remarks
Data Packets with VLAN IDs
Data Packets Without VLAN IDs
Tag Aware
Transparently transmitting the data packets
Dropping the data packets
Parameters Default VLAN ID and VLAN Priority are not used.
Access
Dropping the data packets
Adding the VLAN IDs that are set
-
Hybrid
Transparently transmitting the data packets
Adding the VLAN IDs that are set
-
Table 15-13 Layer 3 Attributes of EG16 Board Field
Value
Description
Port
-
External ports are PORT1 to PORT16.
Enable Tunnel
Enabled, Disabled
After this parameter is set to Enabled for a port, the port can identify and process MPLS labels. NOTE The parameter value Disabled is invalid. Therefore, this parameter can be set only to Enabled.
Specify IP Address
Issue 03 (2013-05-16)
Manually, Unspecified
When a port carries tunnel services, or when Port Mode is set to Layer 3, set this parameter to Manually. For other scenarios, set this parameter to Unspecified.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1640
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
IP Address
-
Specifies the port IP address. This parameter is valid only when Specify IP Address is set to Manually. NOTE When setting the IP address for a port, ensure that the IP address is in a different network segment from the IP address of other service ports and the NE IP address, preventing service interruption from occurring or the NE from being unreachable by the NMS. For example, the IP address and subnet mask of an NE are 129.9.0.22 and 255.255.0.0, respectively. This means that the NE IP address is in the 129.9 network segment. The IP address and subnet mask of a service-present port on the NE are 10.0.1.1 and 255.255.255.0, respectively. This means the port IP address is in the 10.0.1 network segment. In this situation, you cannot assign IP addresses in the 129.9 and 10.0.1 network segments to other ports on the NE. In other words, you cannot set the IP addresses to 129.9.x.x or 10.0.1.x for other ports on the NE.
-
IP Mask
Specifies the port subnet mask. This parameter is valid only when Specify IP Address is set to Manually.
Table 15-14 Advanced Attributes of EG16 Board Field
Value
Description
Port
-
External ports are PORT1 to PORT16.
Port Physical Parameters
-
Displays physical parameters of the port.
MAC Loopback
Non-Loopback, Inloop, Outloop
The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port.
Default: NonLoopback PHY Loopback
Non-Loopback, Inloop, Outloop
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port.
Default: NonLoopback
Issue 03 (2013-05-16)
MAC Address
-
Displays the MAC address of the port.
Transmission Rate (kbit/s)
-
Displays the rate for transmitting data packets.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1641
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Receiving Rate (kbit/ s)
-
Displays the rate for receiving data packets.
Loopback Check
Enabled, Disabled
Enables or disables the loopback check function. When enabled, the function checks whether the loopback check packet transmitted from a port is received by the port itself, therefore determining whether there is a loop on the network. This parameter is usually used for fault location.
Default: Disabled
After this parameter is set to Enabled, the board automatically checks for loops on the link and reports an alarm if there is any. Enabled, Disabled
Specifies whether to block a port.
Default: Disabled
When Loopback Check and Loopback Port Block are both set to Enabled, the board automatically checks for loops on the link. If a loop is found at a port, the port is automatically blocked to clear the loop.
Egress PIR Bandwidth (kbit/s)
64 to 1000000
Specifies the egress PIR bandwidth.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Loopback Port Block
Default: Disabled
After suppression of broadcast packets is enabled, the traffic of broadcast packets will be limited according to the specified threshold. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded. Broadcast Packet Suppression Threshold (%)
0% to 100%, with a step of 10% Default: 30%
If Broadcast Packet Suppression is set to Enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded.
Network Cable Mode
Issue 03 (2013-05-16)
-
This parameter is unavailable for the EG16 board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1642
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Optical Module Type
Unknown, TwoFiber Bidirectional
Displays whether an optical module is inserted and the module type of an inserted optical module. l Unknown: No optical module is inserted to the port. l Two-Fiber Bidirectional: A two-fiber bidirectional optical module is inserted to the port.
Synchronous Clock Enabled
Enabled, Disabled Default: Disabled
Determines whether to enable clock synchronization. Set this parameter to Enabled if clock synchronization is required. When this parameter is set to Enabled, service clocks are synchronized with NE clocks. When this parameter is set to Disabled, service clocks will not be synchronized with NE clocks.
15.2.9 EG16 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54EG 16
N/A
2.125 Gbit/s Multirate-0.5 km 1000 BASE-LX-10 km 1000 BASE-LX-40 km 1000 BASE-ZX-80 km 1.25 Gbit/s Multirate (eSFP CWDM)-40 km 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
NOTE
A margin of the lower threshold of input optical power compared with the receiver sensitivity of the board and a margin of the upper threshold of output optical power compared with the overload point of the board are reserved on the U2000 as a precaution.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1643
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Client-Side Pluggable Optical Module Table 15-15 Client-side pluggable optical module specifications (GE services) Parameter
Unit
Optical Module Type
Value 2.125 Gbit/s Multirate-0. 5 km
1000 BASELX-10 km
1000 BASELX-40 km
1000 BASEZX-80 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Target transmission distance
-
0.5 km (0.3 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Maximum mean launched power
dBm
-2.5
-3
0
5
Minimum mean launched power
dBm
-9.5
-9
-5
-2
Minimum extinction ratio
dB
9
9
9
9
Eye pattern mask
-
IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
PIN
Operating wavelength range
nm
770 to 860
1270 to 1355
1270 to 1355
1500 to 1580
Receiver sensitivity
dBm
-17
-20
-20
-23
Minimum receiver overload
dBm
0
-3
-3
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1644
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
NOTE
When accessing 1000 BASE-T services, the specifications of the electrical interface comply with the IEEE Std 802.3.
Table 15-16 Client-side pluggable optical module specifications (CWDM colored wavelengths) Parameter
Unit
Optical Module Type
Value 1.25 Gbit/s Multirate (eSFP CWDM)-40 km
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
Line code format
-
NRZ
NRZ
Target transmission distance
-
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
1471 to 1611
1471 to 1611
Maximum mean launched power
dBm
5
5
Minimum mean launched power
dBm
0
0
Minimum extinction ratio
dB
9
8.2
Central wavelength deviation
nm
±6.5
±6.5
Maximum -20 dB spectral width
nm
1.0
1.0
Minimum side mode suppression ratio
dB
30
30
Eye pattern mask
-
IEEE802.3z-compliant
G.957-compliant G.959.1-compliant IEEE802.3z-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
APD
Operating wavelength range
nm
1270 to 1620
1270 to 1620
Receiver sensitivity
dBm
-19
-28
Minimum receiver overload
dBm
-3
-9
Maximum reflectance
dB
-27
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1645
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2 kg (4.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54EG16
93
101
15.3 EX2 EX2: 2 x 10GE ethernet packet switch board
15.3.1 Version Description The available functional version of the EX2 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Bo ard
8800 T64 Subrack
General 8800 T32 Subrack
Enhanc ed 8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN 54 EX 2
N
N
Y
Y
N
N
N
NOTE
When the EX2 board is used in an OptiX OSN 8800 T32 subrack, the TN52UXCH or TN52UXCM crossconnect boards and the TN52SCC system control board must be used. When the EX2 board is used in an OptiX OSN 8800 T16 subrack, the TN16UXCM board must be used.
Variants The TN54EX2 board has only one variant: TN54EX2. The TN54EX2 board variant is the board itself. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1646
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.3.2 Application As a packet service board, the EX2 board receives and transmits a maximum of two 10GE LAN services, processes packet services, and transmits packets to the cross-connect board for centralized cross-connections. When the EX2 board is used, the PND2 board must be used on the WDM side to implement the transmission of packet services on a WDM network. For the position of the EX2 board in a WDM system, see Figure 15-6. Figure 15-6 Position of the EX2 board in a WDM system Packets
2xOTU2
2xOTU2
Packets
RX1
TX1
TX1
RX1 16xGE/FE
TX16 RX16
IN1
EG16
OUT1
PND2 IN2
RX1 TX1 2x 10 GE LAN RX2
OUT2
EX2
OUT1 M U X / D M U X
M U X / D M U X
EG16
IN1
16xGE/FE RX16 TX16
PND2 TX1
OUT2
RX1
IN2
EX2
TX2
TX2
2x 10 GE LAN
RX2
NOTE
The EX2 board cannot be used in a subrack that works in master/slave mode. It can only be used in a separate subrack.
15.3.3 Functions and Features The EX2 board supports functions and features such as Layer 2 switching, QinQ, and Multiprotocol Label Switching (MPLS). Table 15-17 describes the service functions of the EX2 board, Table 15-18 provides the service specifications of the EX2 board, Table 15-19 describes the features supported by the EX2 board. Table 15-17 Service function of the EX2 board
Issue 03 (2013-05-16)
Function
Description
Basic function
Receives and transmits two 10GE LAN services, processes the 10GE LAN packet services.
Working mode
Supports the full-duplex mode for ports.
Port flow control
Supports non-auto-negotiation for service rates. Comply with IEEE802.3x.
Ethernet data frame format
IEEE 802.3, Ethernet II, IEEE 802.1q, IEEE 802.1p
Service type
E-Line (VPWS), E-LAN (VPLS)
Service bearing medium
Port, QinQ link, PW
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1647
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Function E-Line
Description PW-based service models
Port<->PW CVLAN<->PW SVLAN<->PW CVLAN + CVLAN Pri<->PW SVLAN + SVLAN Pri<->PW
QinQ linkbased service models
Port<->QinQ
Port-based service models
Port<->Port
CVLAN<->QinQ
CVLAN<->Port SVLAN<->Port
UNI-UNI service models
Port<->Port CVLAN<->CVLAN, VLAN translation supported SVLAN<->SVLAN, VLAN translation supported
E-LAN
Bridge type
IEEE 802.1d, IEEE 802.1q
Bridge learning mode
SVL
VSI tag type
C-Aware, S-Aware, T-Aware
Table 15-18 Service specifications of the EX2 board Service Parameter
Specifications
Supported service
2 x 10GE LAN 10GE LAN: Ethernet service at a rate of 10.31 Gbit/s
Backplane bandwidth
20Gbit/s
MTU
Supports transmission of packets containing 1518–9600 bytes. Supports Jumbo frames containing a maximum of 9600 bytes.
Issue 03 (2013-05-16)
VLAN
4094
QinQ
4096
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1648
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Service Parameter
Specifications
E-Line
8192
E-LAN
1024
MAC address
256 x 1024 (The total number of the blacklists and static MAC addresses cannot exceed 2048.)
Number of MAC addresses supported by each VSI
64 x 1024
Split horizon
One split horizon for each E-LAN
PW
SSPW
16384 (max.)
MSPW
8192 (max.)
Unid irecti onal tunne l
16 x 1024 (equipment level), 8 x 1024 (board level)
Bidir ectio nal tunne l
8 x 1024 (equipment level), 4 x 1024 (board level)
Static tunne l
Table 15-19 Features supported by the EX2 board
Issue 03 (2013-05-16)
Feature
Description
Protectio n scheme
MPLS-TP Tunnel APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T Y. 1720.
MPLS-TP PW APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T G. 8131, ITU-T Y.1731.
LAG
Supported. Comply with IEEE 802.1ax.
MC-LAG
Supported. Comply with IEEE 802.1ax.
MSTP
Supported. Comply with IEEE 802.1s.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1649
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Feature
Description
QoS
Diffserv
Supported, compliant with RFC 2474 and RFC 2475.
Traffic classification
Complex traffic classification. The ACL rules are customized based on packet information.
Traffic policing
Committed access rate (CAR), two rate three color marker (trTCM) compliant with RFC 4115.
Congestion management
Class of service (CoS), supporting SP/WRR scheduling algorithms.
Congestion avoidance
WRED, tail dropping.
Traffic shaping
Port-based traffic shaping, queue-based traffic shaping.
IGMP Snoopin g
Not supported
Mainten ance
Ethernet OAM
Supported, compliant with IEEE 802.1ag and ITU-T Y.1731/G. 8013
Ethernet port OAM
Supported, compliant with IEEE 802.3ah
MPLS-TP OAM
Supported, compliant with ITU-T Y.1731/G.8013
RMON
Supported
Port mirroring
Supported
Loopback
client-side optical ports
MAC Outloop MAC Inloop PHY Outloop PHY Inloop
Synchro nization
Inband DCN
Physical clock
Supports synchronous Ethernet.
IEEE 1588v2
Not supported
Supported
NOTE
In addition to the preceding features, the board supports performance monitoring and service processing compliant with related standards and protocols defined by IEEE, ITU-T, IETF, and MEF.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1650
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.3.4 Working Principle and Signal Flow The EX2 board consists of the client-side optical module, packet processing module, transmission management module, switching buffer module, control and communication module, and power supply module. Figure 15-7 shows the functional modules and signal flow of the EX2 board. Figure 15-7 Functional modules and signal flow of the EX2 board
RX1
O/E
RX2 TX1 TX2
Backplane(service cross-connection)
Packets
Client side
Packet processing module
E/O
Transmission management module
switch buffer module
Client-side optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow In the signal flow of the EX2 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the EX2 to the backplane, and the receive direction is defined as the reverse direction. l
Issue 03 (2013-05-16)
Transmit direction 1.
The client-side optical module receives two channels of optical signals from client equipment through the RX1-RX2 ports, and performs O/E conversion.
2.
After receiving the electrical signals, the packet processing module decodes the signals, performs serial/parallel conversion, searches for routes and matches addresses for data services, implements L2 functions such as protection, OAM, and QoS for the data services, and sends the data services to the transmission management module. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1651
OptiX OSN 8800/6800/3800 Hardware Description
l
15 Packet Service Unit
3.
The transmission management module buffers and schedules the data services, segments the data services into packets for the switching network, and sends the packets to the switch buffer module.
4.
After buffering the packets, the switch buffer module sends the packets to the crossconnect board through the backplane.
Receive direction 1.
The switch buffer module processes the packets from the cross-connect board and then sends the packets to the transmission management module.
2.
The transmission management module rearranges the packets to recover data services, buffers the data services, and finally sends the data services to the packet processing module.
3.
The packet processing module implements L2 functions such as protection, OAM, and QoS for the data services, performs parallel/serial conversion, and generates 10GE LAN electrical signals.
4.
The client-side optical module performs the E/O conversion of 10GE LAN electrical signals, and then outputs two channels of client-side optical signals through the TX1TX2 ports.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: performs O/E conversion of 10GE LAN optical signals. – Client-side transmitter: performs E/O conversion of 10GE LAN optical signals. – Reports the performance of the client-side optical interface. – Reports the working state of the client-side laser.
l
Packet processing module Searches routes, performs address matching, switches labels for data services, and implements L2 functions such as protection, OAM, and QoS for the data services.
l
Transmission management module Segments data services into packets and provides large traffic buffer functions.
l
Switching buffer module Buffers packets, manages and schedules data queues. This module and the cross-connect board in the same subrack form a switching network to switch packets.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1652
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
15.3.5 Front Panel There are indicators and interfaces on the front panel of the EX2 board.
Appearance of the Front Panel Figure 15-8 shows the front panel of the EX2 board. Figure 15-8 Front panel of the EX2 board EX2 STAT ACT PROG SRV L/A1 L/A2
TX1 RX1 TX2 RX2
EX2
Indicators Six indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1653
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
l
Data port connection/data transceive indicator (L/A1) - dual-colored (green, yellow)
l
Data port connection/data transceive indicator (L/A2) – dual-colored (green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 15-20 lists the type and function of each interface. Table 15-20 Types and functions of the interfaces on the EX2 board Interface
Type
Function
RX1-RX2
LC
Receive service signals from client equipment.
TX1-TX2
LC
Transmit service signals to client equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
15.3.6 Valid Slots One slot houses one EX2 board. Table 15-21 shows the valid slots for the EX2 board. Table 15-21 Valid slots for EX2 board Product
Valid Slots
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
15.3.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 15-22 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1654
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-22 Mapping between the physical ports on the EX2 board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
1
TX2/RX2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. Figure 15-9 shows the application model of the EX2 board. Table 15-23 describes the meaning of each port. Figure 15-9 Port diagram of the EX2 board
Other packet board
Backplane Packets
1(RX1/TX1)
2(RX2/TX2)
PORT1
PORT2
L2 swiching module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1655
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-23 Descriptions of the ports on the EX2 board Port Name
Description
RX1/TX1 to RX2/TX2
Client-side ports.
PORT1 to PORT2
Respectively corresponds to the client-side optical interfaces: RX1/TX1 - RX2/TX2.
15.3.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS.
Parameters for Ethernet Interfaces Table 15-24 Basic Attributes of EX2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Name
-
Enters the self-defined port name.
Enable Port
Enabled, Disabled
When the port is enabled, it indicates that the user uses the port and the port has services. When the port is disabled, it indicates that the port does not process services.
Default: Enabled
When no service is configured, it is recommended to disable the involved ports. Layer 2, Layer 3
Port Mode
Default: Layer 2
Specifies the working mode of the Ethernet port. l Layer 2: The port can access the user-side equipment, carry Ethernet services that are based on the ports and use the port exclusively or QinQ Link. l Layer 3: The port can carry tunnels.
Encapsulation Type
802.1Q, QinQ, Null Default: 802.1Q
Selects the means of processing the accessed packets. l Null: The port transparently transmits the accessed packets. l 802.1Q: The port identifies the 802.1Q standard packets. l QinQ: The port identifies the QinQ standard packets. NOTE The Encapsulation Type is always 802.1Q when you set Port Mode to Layer 3.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1656
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Working Mode
10G Full-Duplex LAN
Set the Working Mode parameter to set the working mode of the Ethernet port on the board.
Default: 10G FullDuplex LAN
NOTE l When setting this parameter, ensure that the working modes of the interconnected ports are the same. Otherwise, the services are not available.
Max Frame Length (bytes)
1518 to 9600
Logical Port Attribute
Optical Port, Electrical Port
Default: 1522
Default: Optical Port
Issue 03 (2013-05-16)
This parameter specifies the maximum length of a frame traversing a port. When the length of a frame exceeds the specified maximum frame length, the frame will be discarded or the service will be interrupted. Specifies the logical port attribute. NOTE The EX2 board does not support electrical ports. Therefore, this parameter can be set only to Optical Port.
Physical Port Attribute
No interface, Singlemode optical port, Multi-mode optical port, Electrical port
Displays the physical port attribute.
ARP Aging Time (min.)
1 to 1440
Indicates the ARP aging time of the port.
Default: 720
NOTE This parameter is valid only when Port Mode is set to Layer 3.
Running Status
-
This parameter is unavailable for the EX2 board.
Optical Module Status
In-Position, Not-inPosition
Displays the optical module status.
Laser Interface Status
On, Off
Specifies the on/off status of the laser.
Laser Transmission Distance
-
Displays the laser transmission distance.
Traffic Policing Status
Enabled, Disabled Default: Disabled
Enables or disables traffic monitoring on the port.
Traffic Policing Period (min.)
1 to 30
Specifies the traffic monitoring period.
Default: 15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1657
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-25 Flow Control of EX2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
NonAutonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Specifies the flow control mode adopted when an Ethernet port does not work in autonegotiation mode.
Default: Disabled
l Enable Symmetric Flow Control: The port can both transmit and receive PAUSE frames. l Send Only: The port can only send PAUSE frames. l Receive Only: The port can only receive PAUSE frames. When the buffer usage of the receiver exceeds the threshold, the pause frame enables the transmitter to temporarily stop sending services. NOTE In general, flow control is implemented using the QoS function and port-based flow control is seldom used. It is recommended that the default value Disabled be used.
Auto-Negotiation Flow Control Mode
-
This parameter is unavailable for the EX2 board.
Table 15-26 Layer2 Attributes of EX2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Tag
Tag Aware, Access, Hybrid
Indicates the data packet processing mode. For details, see Table 15-27. This parameter is unavailable when you set Encapsulation Type in Basic Attributes to QinQ or Null.
Default VLAN ID
1 to 4094 Default: 1
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. NOTE Packets with their VLAN IDs being set to 0 are usually considered untagged packets. The VLAN ID of 4095 is reserved.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1658
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
VLAN Priority
0 to 7
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. When the network is busy, data packets of higher VLAN priority are processed first and those of lower VLAN priority may be discarded. 0 indicates the lowest priority and 7 the highest.
Default: 0
Table 15-27 Processing modes of data packets Tag
Processing Mode
Remarks
Data Packets with VLAN IDs
Data Packets Without VLAN IDs
Tag Aware
Transparently transmitting the data packets
Dropping the data packets
Parameters Default VLAN ID and VLAN Priority are not used.
Access
Dropping the data packets
Adding the VLAN IDs that are set
-
Hybrid
Transparently transmitting the data packets
Adding the VLAN IDs that are set
-
Table 15-28 Layer 3 Attributes of EX2 Board Field
Vaule
Description
Port
-
Internal ports are PORT1 to PORT2.
Enable Tunnel
Enabled, Disabled
After this parameter is set to Enabled for a port, the port can identify and process MPLS labels. NOTE The parameter value Disabled is invalid. Therefore, this parameter can be set only to Enabled.
Specify IP Address
Issue 03 (2013-05-16)
Manually, Unspecified
When a port carries tunnel services, or when Port Mode is set to Layer 3, set this parameter to Manually. For other scenarios, set this parameter to Unspecified.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1659
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Vaule
Description
IP Address
-
Specifies the port IP address. This parameter is valid only when Specify IP Address is set to Manually. NOTE When setting the IP address for a port, ensure that the IP address is in a different network segment from the IP address of other service ports and the NE IP address, preventing service interruption from occurring or the NE from being unreachable by the NMS. For example, the IP address and subnet mask of an NE are 129.9.0.22 and 255.255.0.0, respectively. This means that the NE IP address is in the 129.9 network segment. The IP address and subnet mask of a service-present port on the NE are 10.0.1.1 and 255.255.255.0, respectively. This means the port IP address is in the 10.0.1 network segment. In this situation, you cannot assign IP addresses in the 129.9 and 10.0.1 network segments to other ports on the NE. In other words, you cannot set the IP addresses to 129.9.x.x or 10.0.1.x for other ports on the NE.
-
IP Mask
Specifies the port subnet mask. This parameter is valid only when Specify IP Address is set to Manually.
Table 15-29 Advanced Attributes of EX2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Port Physical Parameters
-
Displays physical parameters of the port.
MAC Loopback
Non-Loopback, Inloop, Outloop
The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port.
Default: NonLoopback PHY Loopback
Non-Loopback, Inloop, Outloop
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port.
Default: NonLoopback
Issue 03 (2013-05-16)
MAC Address
-
Displays the MAC address of the port.
Transmission Rate (kbit/s)
-
Displays the rate for transmitting data packets.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1660
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Receiving Rate (kbit/ s)
-
Displays the rate for receiving data packets.
Loopback Check
Enabled, Disabled
Enables or disables the loopback check function. When enabled, the function checks whether the loopback check packet transmitted from a port is received by the port itself, therefore determining whether there is a loop on the network. This parameter is usually used for fault location.
Default: Disabled
After this parameter is set to Enabled, the board automatically checks for loops on the link and reports an alarm if there is any. Enabled, Disabled
Specifies whether to block a port.
Default: Disabled
When Loopback Check and Loopback Port Block are both set to Enabled, the board automatically checks for loops on the link. If a loop is found at a port, the port is automatically blocked to clear the loop.
Egress PIR Bandwidth (kbit/s)
64 to 10000000
Displays the egress PIR bandwidth.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Loopback Port Block
Default: Disabled
After suppression of broadcast packets is enabled, the traffic of broadcast packets will be limited according to the specified threshold. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded. Broadcast Packet Suppression Threshold (%)
0% to 100%, with a step of 10% Default: 30%
If Broadcast Packet Suppression is set to Enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded.
Network Cable Mode
Issue 03 (2013-05-16)
-
This parameter is unavailable for the EX2 board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1661
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Optical Module Type
known, Two-Fiber Bidirectional
Displays whether an optical module is inserted and the module type of an inserted optical module. l Unknown: No optical module is inserted to the port. l Two-Fiber Bidirectional: A two-fiber bidirectional optical module is inserted to the port.
Synchronous Clock Enabled
Enabled, Disabled Default: Disabled
Determines whether to enable clock synchronization. Set this parameter to Enabled if clock synchronization is required. When this parameter is set to Enabled, service clocks are synchronized with NE clocks. When this parameter is set to Disabled, service clocks will not be synchronized with NE clocks.
15.3.9 EX2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN54EX 2
N/A
10G BASE-SR-0.3 km (SFP+) 10G BASE-LR-10 km (SFP+) 10G BASE-ER/EW-40 km (SFP+)
NOTE
A margin of the lower threshold of input optical power compared with the receiver sensitivity of the board and a margin of the upper threshold of output optical power compared with the overload point of the board are reserved on the U2000 as a precaution.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1662
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Client-Side Pluggable Optical Module Table 15-30 Client-side pluggable optical module specifications (10GE services) Parameter
Unit
Optical Module Type
Value 10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
Optical interface service rate
Gbit/s
10.3125
10.3125
10.3125
Optical source type
-
MLM
SLM
SLM
Line code format
-
NRZ
NRZ
NRZ
Target transmission distance
-
0.3 km (0.2 mi.)
10 km (6.2 mi.)
40 km (24.9 mi.)
Transmitter parameter specifications at point S Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
Maximum mean launched power
dBm
-1
0.5
4
Minimum mean launched power
dBm
-7.3
-8.2
-4.7
Minimum extinction ratio
dB
3
3.5
3
Output optical power in case of laser shutdown
dBm
≤-30
≤-30
≤-30
Eye pattern mask
-
IEEE802.3z–compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
PIN
Operating wavelength range
nm
840 to 860
1260 to 1355
1530 to 1565
Receiver sensitivity
dBm
-11.1 (OMA)
-12.6 (OMA)
-14.1 (OMA)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1663
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Parameter
Unit
Value
Optical Module Type
10G BASESR-0.3 km (SFP+)
10G BASELR-10 km (SFP+)
10G BASEER/EW-40 km (SFP+)
Minimum receiver overload
dBm
-1
0.5
-1
Maximum reflectance
dB
-12
-12
-26
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.7 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN54EX2
84
91
15.4 PND2 PND2: 2 x 10G bit/s packet line board
15.4.1 Version Description The available functional version of the PND2 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1664
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Bo ard
8800 T64 Subrack
General 8800 T32 Subrack
Enhanc ed 8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN 54P ND 2
N
N
Y
Y
N
N
N
NOTE
When the PND2 board is used in an OptiX OSN 8800 T32 subrack, the TN52UXCH or TN52UXCM crossconnect board and TN52SCC system control board must be used. When the PND2 board is used in an OptiX OSN 8800 T16 subrack, the TN16UXCM board must be used.
Variants The TN54PND2 board has only one variant: TN54PND2. The TN54PND2 board variant is the board itself.
15.4.2 Application The PND2 board is a packet service board. It converts packets with total bandwidth of 20 Gbit/ s from the cross-connect board into two 10GE LAN electrical signals. Then the board converts the two 10GE LAN electrical signals into two standard OTU2 optical signals compliant with WDM system requirements. For the position of the PND2 board in a WDM system, see Figure 15-10. Figure 15-10 Position of the PND2 board in a WDM system Packets
16xGE/FE
2xOTU2
2xOTU2
Packets
TX1
RX1
RX1
TX1
TX16 RX16
IN1
EG16
OUT1
PND2 IN2
RX1 TX1 2x 10 GE LAN RX2
OUT2
EX2
OUT1 M U X / D M U X
M U X / D M U X
EG16
IN1
16xGE/FE RX16 TX16
PND2 OUT2
TX1
IN2
RX1
TX2
EX2
TX2
2x 10 GE LAN
RX2
NOTE
The PND2 board cannot be used in a subrack that works in master/slave mode. It can only be used in a separate subrack.
15.4.3 Functions and Features The PND2 board supports functions and features such as Layer 2 switching, QinQ, and Multiprotocol Label Switching (MPLS), OTN interfaces. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1665
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-31 describes the OTN functions and features of the PND2 board, Table 15-32 and Table 15-33 describe the ethernet service functions and specifications. Table 15-31 OTN functions and features of the PND2 board Functio n
Description
Basic function
Converts packets with total bandwidth of 20 Gbit/s from the cross-connect board into two 10GE LAN electrical signals. Then the board converts the two 10GE LAN electrical signals into two standard OTU2 optical signals compliant with WDM system requirements.
OTN function
l Supports ODU2 mapping into OTU2. l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports SM and PM functions for OTU2 and ODU2. l Supports TCM function for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU2.
WDM specificat ion
Supports ITU-T G.694.1-compliant DWDM specifications.
Tunable waveleng th function
Supports tunable wavelength optical modules that provide for:
ESC
Supported
PRBS function
Supports the PRBS function on the WDM side.
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
l 40 wavelengths tunable in the C band with 100 GHz channel spacing l 80 wavelengths tunable in the C band with 50 GHz channel spacing
l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side.
Issue 03 (2013-05-16)
Alarm and performa nce event monitori ng
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Loopbac k
Supported on the WDM side
Physical clock
Supported
IEEE 1588v2
Not supported
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1666
OptiX OSN 8800/6800/3800 Hardware Description
Functio n
15 Packet Service Unit
Description
Opticallayer ASON
Supported
Electrical -layer ASON
Not supported
Table 15-32 Ethernet service functions of the PND2 board Function Protection scheme
QoS
Description MPLS-TP Tunnel APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T Y. 1720.
MPLS-TP PW APS
Supports the 1+1 and 1:1 protection modes defined in ITU-T G. 8131, ITU-T Y.1731.
LAG
Supported. Comply with IEEE 802.1ax.
MC-LAG
Supported. Comply with IEEE 802.1ax.
MSTP
Supported. Comply with IEEE 802.1s.
Diffserv
Supported, compliant with RFC 2474 and RFC 2475.
Traffic classificati on
Complex traffic classification. The ACL rules are customized based on packet information.
Traffic policing
Committed access rate (CAR), two rate three color marker (trTCM) compliant with RFC 4115.
Congestio n manageme nt
Class of service (CoS), supporting SP/WRR scheduling algorithms.
Congestio n avoidance
WRED, tail dropping.
Traffic shaping
Port-based traffic shaping, queue-based traffic shaping.
IGMP Snooping
Issue 03 (2013-05-16)
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1667
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Function Maintenan ce
Description Ethernet OAM
Supported, compliant with IEEE 802.1ag and ITU-T Y.1731/G. 8013
Ethernet port OAM
Supported, compliant with IEEE 802.3ah
MPLS-TP OAM
Supported, compliant with ITU-T Y.1731/G.8013
RMON
Supported
Port mirroring
Supported
Synchronous Ethernet
Supported
IEEE 1588v2
Not supported
Inband DCN
Not supported
Ethernet data frame format
IEEE 802.3, Ethernet II, IEEE 802.1q, IEEE 802.1p
Service type
E-Line (VPWS), E-LAN (VPLS)
Service bearing medium
Port, QinQ link, PW
E-Line
Port<->PW
PW-based service models
CVLAN<->PW SVLAN<->PW CVLAN + CVLAN Pri<->PW SVLAN + SVLAN Pri<->PW
QinQ linkbased service models
Port<->QinQ
Port-based service models
Port<->Port
CVLAN<->QinQ
CVLAN<->Port SVLAN<->Port
UNI-UNI service models
Port<->Port CVLAN<->CVLAN, VLAN translation supported SVLAN<->SVLAN, VLAN translation supported
E-LAN
Issue 03 (2013-05-16)
Bridge type
IEEE 802.1d, IEEE 802.1q
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1668
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Function
Description Bridge learning mode
SVL
VSI tag type
C-Aware, S-Aware, T-Aware
Table 15-33 provides the service specifications of the PND2 board. Table 15-33 Service specifications of the PND2 board Service Parameter
Specifications
MTU
Supports transmission of packets containing 1518-9600 bytes. Supports Jumbo frames containing a maximum of 9600 bytes.
VLAN
4094
QinQ
4096
E-Line
8192
E-LAN
1024
MAC address
256 x 1024 (The total number of the blacklists and static MAC addresses cannot exceed 2048.)
Number of MAC addresses supported by each VSI
64 x 1024
Split horizon
One split horizon for each E-LAN
PW
SSPW
16384 (max.)
MSPW
8192 (max.)
Unid irect ional tunn el
16 x 1024 (equipment level), 8 x 1024 (board level)
Static tunne l
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1669
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Service Parameter
Specifications
Bidi recti onal tunn el
8 x 1024 (equipment level), 4 x 1024 (board level)
NOTE
In addition to the preceding features, the board supports performance monitoring and service processing compliant with related standards and protocols defined by IEEE, ITU-T, IETF, and MEF.
15.4.4 Working Principle and Signal Flow The PND2 board consists of the WDM-side optical module, packet processing module, transmission management module, switch buffer module, OTN module, control and communication module, and power supply module. Figure 15-11 show the functional modules and signal flow of the PND2 board. Figure 15-11 Functional modules and signal flow of the PND2 board Packets Backplane(service cross-connection)
WDM-side
O/E switch buffer module
Transmission management module
Packet processing module
IN1 IN2
OTN module
E/O
OUT1 OUT2
WDM-side optical module
Control Memory
Communication
CPU
Control and communication module
Power supply module
Required voltage
Fuse
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
1670
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Signal Flow In the signal flow of the PND2 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the backplane to the WDM side of the PND2, and the receive direction is defined as the reverse direction. l
l
Transmit direction 1.
The switch buffer module processes the data services from the cross-connect board and then sends the data services to the transmission management module.
2.
The transmission management module rearranges the packets to recover data services, buffers the data services, and finally sends the data services to the packet processing module.
3.
The packet processing module implements L2 functions such as protection, OAM, and QoS for the data services, performs parallel/serial conversion, and generates 10GE LAN electrical signals.
4.
After processing the two 10GE LAN electrical signals, the OTN processing module outputs two OTU2 electrical signals.
5.
After performing the E/O conversion, the client-side optical module outputs two OTU2 optical signals through the OUT1 and OUT2 ports.
Receive direction 1.
The WDM-side optical module receives the two OTU2 optical signals from the IN1 and IN2 ports, performs O/E conversion, and outputs two OTU2 electrical signals.
2.
After processing the two OTU2 electrical signals, the OTN processing module outputs two 10GE LAN electrical signals.
3.
After receiving the two 10GE LAN electrical signals, the packet processing module performs decoding, serial/parallel conversion, and address matching for the data services, implements L2 functions such as protection, OAM, and QoS for the data services, and then sends the matched data services to the transmission management module.
4.
The transmission management module buffers and schedules the data services, slices the data services into packets for the switching network, and sends the packets to the switch buffer module.
5.
After buffering the packets, the switch buffer module sends the packets to the crossconnect board through the backplane.
Module Function l
WDM-side optical module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: Performs O/E conversion of OTU2 optical signals. – WDM-side transmitter: Performs E/O conversion from the internal electrical signals to OTU2 optical signals.
l
OTN processing module The OTN processing module frames OTU2 signals, processes overheads in OTU2 signals, and performs the FEC/AFEC-2 encoding and decoding.
l Issue 03 (2013-05-16)
Packet processing module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1671
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Searches routes, performs address matching, switches labels for data services, and implements L2 functions such as protection, OAM, and QoS for the data services. l
Transmission management module Segments data services into packets and provides large traffic buffer functions.
l
Switching buffer module Buffers packets, manages and schedules data queues. This module and the cross-connect board in the same subrack form a switching network to switch packets.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
15.4.5 Front Panel There are four indicators, optical interfaces.
Appearance of the Front Panel Figure 15-12 shows the front panel of the PND2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1672
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Figure 15-12 Front panel of the PND2 PND2 STAT ACT PROG SRV
OUT1 IN1 OUT2 IN2
PND2
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 15-34 lists the type and function of each optical interface. Table 15-34 Types and functions of the PND2 interfaces
Issue 03 (2013-05-16)
Interface
Type
Function
IN1T-IN2
LC
Receive single-wavelength signals from the associated optical demultiplexer board or optical add/drop multiplexer board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1673
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Interface
Type
Function
OUT1-OUT2
LC
Transmit single-wavelength signals to the associated optical multiplexer board or optical add/drop multiplexer board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
15.4.6 Valid Slots Two slots house one PND2 board. Table 15-35 shows the valid slots for the PND2 board. Table 15-35 Valid slots for the PND2 board Product
Valid slots
Enhanced OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
The online signal bus on the PND2 board connects to the backplane along the left slot in the subrack. The slot number of the PND2 board displayed on the NM is the number of the left one of the two slots. For example, if you install the board in slots IU1 and IU2, the slot number of the PND2 board displayed on the NM is IU1.
15.4.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 15-36 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 15-36 Mapping between the physical ports on the PND2 board and the port numbers displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN1/OUT1
1 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1674
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Physical Port
Port Number on the NMS
IN2/OUT2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as source or sinks of cross-connections. Figure 15-13 shows the application model of the PND2 board. Table 15-37 describes the meaning of each port. Figure 15-13 Port diagram of the PND2 board
Other packet board
Backplane Packets
Ethernet PORT1 services
OTU2
1(IN1/OUT1)
Ethernet PORT2 services
OTU2
2(IN2/OUT2)
NOTE
Port PORT1 is always bound to port IN1 or OUT1, and port PORT2 is always bound to port IN2 or OUT2. L2 swiching module Service processing module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1675
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-37 Descriptions of the ports on the PND2 board Port Name
Description
IN1/OUT1 to IN2/OUT2
WDM-side optical ports.
PORT1 to PORT2
Internal logical ports of the L2 swiching module.
15.4.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS.
Parameters for WDM Interfaces Table 15-38 Parameters for WDM Interfaces Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Laser Status
Enabled, Disabled Default: l WDM side: Enabled
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Disabled FEC Working State
Enabled, Disabled Default: Enabled
Issue 03 (2013-05-16)
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1676
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
FEC Mode
FEC, AFEC
The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Default: FEC
Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Used to query the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Used to query the band type.
Tunable Wavelength Range
-
Used to query the tunable wavelength range at the WDM-side optical interface of a board.
Planned Wavelength No./ Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.0 50 to 80/1560.61/192. 100
The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208. 170 to 18/1611.00/188. 780 Default: / Planned Band Type
C, CWDM Default: C
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Parameters for Ethernet Interfaces Table 15-39 Basic Attributes of PND2 Board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Name
-
Enters the self-defined port name.
Enable Port
-
This parameter is unavailable for the PND2 board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1677
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Port Mode
Layer 2, Layer 3
Specifies the working mode of the Ethernet port.
Default: Layer 2
l Layer 2: The port can access the user-side equipment, carry Ethernet services that are based on the ports and use the port exclusively or QinQ Link. l Layer 3: The port can carry tunnels. Encapsulation Type
802.1Q, QinQ, Null Default: 802.1Q
Selects the means of processing the accessed packets. l Null: The port transparently transmits the accessed packets. l 802.1Q: The port identifies the 802.1Q standard packets. l QinQ: The port identifies the QinQ standard packets. NOTE The Encapsulation Type is always 802.1Q when you set Port Mode to Layer 3.
Issue 03 (2013-05-16)
Working Mode
-
This parameter is unavailable for the PND2 board.
Max Frame Length (bytes)
1518 to 9600
This parameter specifies the maximum length of a frame traversing a port. When the length of a frame exceeds the specified maximum frame length, the frame will be discarded or the service will be interrupted.
Logical Port Attribute
-
This parameter is unavailable for the PND2 board.
Physical Port Attribute
-
This parameter is unavailable for the PND2 board.
ARP Aging Time (min)
1 to 1440
Indicates the ARP aging time of the port.
Default: 720
NOTE This parameter is valid only when Port Mode is set to Layer 3.
Running Status
-
This parameter is unavailable for the PND2 board.
Optical Module Status
-
This parameter is unavailable for the PND2 board.
Laser Interface Status
-
This parameter is unavailable for the PND2 board.
Laser Transmission Distance
-
This parameter is unavailable for the PND2 board.
Default: 1522
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1678
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Traffic Policing Status
-
This parameter is unavailable for the PND2 board.
Traffic Policing Period (min)
-
This parameter is unavailable for the PND2 board.
Table 15-40 Flow Control of PND2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
NonAutonegotiation Flow Control Mode
-
This parameter is unavailable for the PND2 board.
Auto-Negotiation Flow Control Mode
-
This parameter is unavailable for the PND2 board.
Table 15-41 Layer2 Attributes of PND2 Board Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Tag
Tag Aware, Access, Hybrid
Indicates the data packet processing mode. For details, see Table 15-42. This parameter is unavailable when you set Encapsulation Type in Basic Attributes to QinQ or Null.
Default VLAN ID
1 to 4094 Default: 1
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. NOTE Packets with their VLAN IDs being set to 0 are usually considered untagged packets. The VLAN ID of 4095 is reserved.
VLAN Priority
0 to 7 Default: 0
Issue 03 (2013-05-16)
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. When the network is busy, data packets of higher VLAN priority are processed first and those of lower VLAN priority may be discarded. 0 indicates the lowest priority and 7 the highest.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1679
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Table 15-42 Processing modes of data packets Tag
Processing Mode
Remarks
Data Packets with VLAN IDs
Data Packets Without VLAN IDs
Tag Aware
Transparently transmitting the data packets
Dropping the data packets
Parameters Default VLAN ID and VLAN Priority are not used.
Access
Dropping the data packets
Adding the VLAN IDs that are set
-
Hybrid
Transparently transmitting the data packets
Adding the VLAN IDs that are set
-
Table 15-43 Layer 3 Attributes of PND2 Board
Issue 03 (2013-05-16)
Field
Vaule
Description
Port
-
Internal ports are PORT1 to PORT2.
Enable Tunnel
Enabled, Disabled
After this parameter is set to Enabled for a port, the port can identify and process MPLS labels.
Specify IP Address
Manually, Unspecified
When a port carries tunnel services, or when Port Mode is set to Layer 3, set this parameter to Manually. For other scenarios, set this parameter to Unspecified.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1680
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Vaule
Description
IP Address
-
Specifies the port IP address. This parameter is valid only when Specify IP Address is set to Manually. NOTE When setting the IP address for a port, ensure that the IP address is in a different network segment from the IP address of other service ports and the NE IP address, preventing service interruption from occurring or the NE from being unreachable by the NMS. For example, the IP address and subnet mask of an NE are 129.9.0.22 and 255.255.0.0, respectively. This means that the NE IP address is in the 129.9 network segment. The IP address and subnet mask of a service-present port on the NE are 10.0.1.1 and 255.255.255.0, respectively. This means the port IP address is in the 10.0.1 network segment. In this situation, you cannot assign IP addresses in the 129.9 and 10.0.1 network segments to other ports on the NE. In other words, you cannot set the IP addresses to 129.9.x.x or 10.0.1.x for other ports on the NE.
-
IP Mask
Specifies the port subnet mask. This parameter is valid only when Specify IP Address is set to Manually.
Table 15-44 Advanced Attributes of PND2 Board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Internal ports are PORT1 to PORT2.
Port Physical Parameters
-
This parameter is unavailable for the PND2 board.
MAC Loopback
-
This parameter is unavailable for the PND2 board.
PHY Loopback
-
This parameter is unavailable for the PND2 board.
MAC Address
-
Displays the MAC address of the port.
Transmission Rate (kbit/s)
-
Displays the rate for transmitting data packets.
Receiving Rate (kbit/ s)
-
Displays the rate for receiving data packets.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1681
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Loopback Check
Enabled, Disabled
Enables or disables the loopback check function. When enabled, the function checks whether the loopback check packet transmitted from a port is received by the port itself, therefore determining whether there is a loop on the network. This parameter is usually used for fault location.
Default: Disabled
After this parameter is set to Enabled, the board automatically checks for loops on the link and reports an alarm if there is any. Enabled, Disabled
Specifies whether to block a port.
Default: Disabled
When Loopback Check and Loopback Port Block are both set to Enabled, the board automatically checks for loops on the link. If a loop is found at a port, the port is automatically blocked to clear the loop.
Egress PIR Bandwidth (kbit/s)
64 to 10000000
Displays the egress PIR bandwidth.
Broadcast Packet Suppression
Enabled, Disabled
Indicates whether to enable broadcast packet suppression.
Loopback Port Block
Default: Disabled
After suppression of broadcast packets is enabled, the traffic of broadcast packets will be limited according to the specified threshold. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded. Broadcast Packet Suppression Threshold (%)
0% to 100%, with a step of 10% Default: 30%
If Broadcast Packet Suppression is set to Enabled, broadcast packets are suppressed when the bandwidth occupied by broadcast packets exceeds specified times (suppression threshold) the total bandwidth. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded.
Issue 03 (2013-05-16)
Network Cable Mode
-
This parameter is unavailable for the PND2 board.
Optical Module Type
-
This parameter is unavailable for the PND2 board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1682
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Field
Value
Description
Synchronous Clock Enabled
Enabled, Disabled
Determines whether to enable lock synchronization. Set the parameter to Enabled if clock synchronization is required.
Default: Disabled
When this parameter is set to Enabled, service clocks are synchronized with NE clocks. When the parameter is set to Disabled, service clocks will not be synchronized with NE clocks.
15.4.9 PND2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN54PN D2
N/A
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZ-PIN-XFP 800 ps/nm-C Band-Tunable Wavelength-NRZPIN-XFP 10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km
NOTE
A margin of the lower threshold of input optical power compared with the receiver sensitivity of the board and a margin of the upper threshold of output optical power compared with the overload point of the board are reserved on the U2000 as a precaution.
Client-Side Pluggable Optical Module Table 15-45 WDM-side pluggable optical module specifications (fixed wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power Issue 03 (2013-05-16)
dBm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2
1683
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Parameter
Unit
Optical Module Type
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Eye pattern mask
-
G.959.1-compliant
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 15-46 WDM-side pluggable optical module specifications (tunable wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
Issue 03 (2013-05-16)
dBm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2
1684
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
Minimum mean launched power
dBm
-1
Minimum extinction ratio
dB
10
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1250 to 1600
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Table 15-47 WDM-side pluggable optical module specifications (gray light) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Line code format
-
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
Target transmission distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1685
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
Maximum mean launched power
dBm
-1
2
4
Minimum mean launched power
dBm
-6
-1
0
Minimum extinction ratio
dB
6
8.2
9
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
Eye pattern mask
-
G.959.1-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
Operating wavelength range
nm
1290 to 1565
1260 to 1605
1270 to 1600
Receiver sensitivity
dBm
-11
-14
-24
Minimum receiver overload
dBm
-1
-1
-7
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.4 kg (5.28 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1686
OptiX OSN 8800/6800/3800 Hardware Description
15 Packet Service Unit
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54PND2
100
108
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1687
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16
PID Board
About This Chapter 16.1 Overview PID boards integrate the functions of traditional optical transponder boards and multiplexer/ demultiplexer boards. OTN processing and output of multiplexed optical signals are implemented on one PID board, featuring large capacity, high integration, high reliability, and flexible access of various services. 16.2 BMD4 BMD4: PID Interleaver Board (C-band), 200/100 GHz 16.3 BMD8 BMD8: PID Interleaver Board (C_Band), 200/50 GHz 16.4 ELQX ELQX: 4 x Electrical OTU2 with 4 x 10G Tributary Board 16.5 PTQX PTQX: 12 x OTU2 PID board with 4 x 10G tributary 16.6 ENQ2 ENQ2: 4 x 10G Line Service Processing Board 16.7 NPO2 NPO2: 12 x OTU2 PID Board 16.8 NPO2E NPO2E: 10G PID line service processing board, 20–channel extended
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1688
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.1 Overview PID boards integrate the functions of traditional optical transponder boards and multiplexer/ demultiplexer boards. OTN processing and output of multiplexed optical signals are implemented on one PID board, featuring large capacity, high integration, high reliability, and flexible access of various services.
Positions of PID Boards in a WDM System Figure 16-1 shows the positions of PID boards in a WDM system. Figure 16-1 Positions of PID boards in a WDM system Max.: 20 x multiplexed OTU2/OTU2e optical signals ODUk Client-side services
OTUk optical signals in other directions
Tributary board ODUk
ODUk
ODUk
TN55 ODUk NPO2 OTUk + TN54 PQ2
Tributary board
Line /PID board
TN54 ODUk ENQ2
TN55 NPO2E + TN54 PQ2
WDM-side ODF
Client-side services
ODUk
200G PID group
TN54 PQ2 : subboard
l
NPO2E: receives ODUk electrical signals from the backplane, OTU2/OTU2e electrical signals from the ENQ2 board, and OTU2/OTU2e optical signals from the NPO2 board, and finally outputs 20 channels of multiplexed OTU2/OTU2e optical signals.
l
NPO2: receives ODUk electrical signals from the backplane, OTU2/OTU2e electrical signals from the ENQ2 board, and outputs 12 channels of multiplexed OTU2/OTU2e optical signals. Or outputs eight channels of OTU2/OTU2e optical signals to the NPO2E board which outputs 20 channels of multiplexed OTU2/OTU2e optical signals.
l
ENQ2: receives ODUk electrical signals from the backplane, converts the signals into four channels of OTU2/OTU2e electrical signals, and finally outputs the signals to the NPO2 or NPO2E board for processing.
l
PQ2 subboard: processes ODUk signals on the TN55NPO2 or TN55NPO2E board after being installed on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1689
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Main Functions of PID Boards Table 16-1 lists the main functions of PID boards. Table 16-1 Main functions of PID boards Board
Signal Input
Signal Output
TN55NPO2Ea
64 x ODU0, 32 x ODU1, or 8 x ODU2/ODU2e electrical signals from other line boards or PID boards
20 x multiplexed OTU2/OTU2e optical signals
4 x ODU2/ODU2e electrical signals from the ENQ2 board 8 x OTU2/OTU2e optical signals from the NPO2 board TN54NPO2/ TN55NPO2a
64 x ODU0, 32 x ODU1, or 8 x ODU2/ODU2e electrical signals from other line boards or PID boards
12 x multiplexed OTU2/OTU2e optical signals
4 x ODU2/ODU2e electrical signals from the ENQ2 board TN54ENQ2
32 x ODU0, 16 x ODU1, or 4 x ODU2/ODU2e electrical signals from other line boards or PID boards
4 x OTU2/OTU2e electrical boards to the NPO2E or NPO2 board
a: The access capability listed in the table is for the TN55NPO2E/TN55NPO2 board equipped with the TN54PQ2 subboard. The TN54PQ2 subboard helps the TN55NPO2E/TN55NPO2 board to provide an extra capability of conversion between 32 x ODU0/16 x ODU1/4 x ODU2 and 4 x OTU2, and conversion between 4 x ODU2e and 4 x OTU2e. Without the TN54PQ2 subboard, the TN55NPO2E/TN55NPO2 board can process only 32 x ODU0, 16 x ODU1, or 4 x ODU2/ODU2e electrical signals. NOTE The TN55NPO2E/TN55NPO2 board supports a maximum of 80 km DCM-free transmission while the TN54NPO2 board must be equipped with the DCM.
16.2 BMD4 BMD4: PID Interleaver Board (C-band), 200/100 GHz
16.2.1 Version Description The available functional version of the BMD4 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1690
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1B MD 4
N
N
N
Y
Y
N
16.2.2 Application The BMD4 is an optical multiplexer and demultiplexer unit. It multiplexes and demultiplexes signals. Figure 16-2 shows the position of the BMD4 in a WDM system. Figure 16-2 Position of the BMD4 in a WDM system 4
4
4
ELQX 4
4
ELQX 4
PTQX
OA
4
BMD4
OA
4
ELQX 4
4
ELQX 4
ELQX
4
4
ELQX
4
OA
BMD4
4
PTQX 4
4
OA
PTQX
4
PTQX 4
ELQX
4
4
ELQX
4
16.2.3 Functions and Features The BMD4 provides functions and features such as multiplexing, demultiplexing, and in-service spectrum detection. Table 16-2 provides the details about the functions and features of the BMD4. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1691
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-2 Functions and features of the BMD4 Function or Feature
Description
Basic function
In a 40-channel system, the BMD4 board multiplexes and demultiplexes the optical signals. Demultiplexes one channel of input 40-wavelength multiplexed signals with a spacing of 100 GHz to four channels of signals with a spacing of 200 GHz, that is, two channels of 12-wavelength multiplexed signals and two channels of 8-wavelength multiplexed signals. The reverse process is similar.
In-service detection and monitoring of the spectrum
Provides an in-service monitoring interface. A small number of optical signals can be output to the spectrum analyzer or spectrum analyzer unit through the interface to monitor the spectrum and optical performance of the multichannel signals without interrupting the services.
Optical-layer ASON
Not supported
16.2.4 Working Principle and Signal Flow The BMD4 board consists of the optical module, the control and communication module, and the power supply module. Figure 16-3 shows the functional modules and signal flow of the BMD4.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1692
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-3 Functional modules and signal flow of the BMD4
Optical module T01 T02 T03 T04
IN
Interleaver
R01 R02 R03 R04
Splitter Coupler
OUT MON
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The multiplexed signals with a spacing of 100 GHz are accessed through the IN optical interface and transmitted to the interleaver. Then, the interleaver splits the multiplexed signals into four channels of multiplexed signals with a spacing of 200 GHz, that is, two channels of 12wavelength multiplexed signals and two channels of 8-wavelength multiplexed signals. Finally, the four channels of multiplexed signals are output through the T01-T04 optical interfaces. The four channels of multiplexed signals are received through the R01-R04 optical interfaces and are transmitted to the coupler. Then, the coupler couples the four channels of multiplexed signals into one channel of multiplexed signals with a spacing of 100 GHz. Finally, the signals are output through the OUT optical interface.
Module Function l
Optical module – Demultiplexes one channel of input 40-wavelength multiplexed signals with a spacing of 100 GHz into four channels of multiplexed signals with a spacing of 200 GHz, that is, two channels of 12-wavelength multiplexed signals and two channels of 8-
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1693
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
wavelength multiplexed signals, and uses the coupler to couple the signals with a spacing of 200 GHz into one channel of 40-wavelength multiplexed signals with a spacing of 100 GHz. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection. l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module of the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied by the backplane into the power required by each module on the board.
16.2.5 Front Panel There is one indicator and laser level label on the front panel of the BMD4.
Appearance of the Front Panel Figure 16-4 shows the front panel of the BMD4.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1694
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-4 Front panel of the BMD4
BMD4 STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN T01 R01 T02 R02 T03 R03 T04 R04
BMD4
Indicators One indicator is present on the front panel: l
Board hardware status indicator (STAT) - green
For details about this indicator, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1695
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Interfaces Table 16-3 lists the type and function of each interface. Table 16-3 Types and functions of the interfaces on the BMD4 Interface
Type
Function
IN
LC
Accesses the optical signals at 100 GHz channel spacing (C_EVEN multiplexed signals).
OUT
LC
Outputs the optical signals at 100 GHz channel spacing (C_EVEN multiplexed signals).
MON
LC
Connects to the input port on the MCA4 or the MCA8 board so that the MCA4 or the MCA8 board can detect the optical spectrum in service. The optical power at the MON interface is 10/90 of the optical power at the OUT interface, that is, the optical power at the MON interface is 10 dB lower than the optical power at the OUT interface, calculation formula: Pout(dBm) - Pmon(dBm) = 10 x lg(90/10) = 10 dB.
T01/R01
LC
Transmits/Receives 12 wavelengths (193.80 THz to 196.00 THz) of optical signals with a 200 GHz channel spacing.
T02/R02
LC
Transmits/Receives 12 wavelengths (193.70 THz to 195.90 THz) of optical signals with a 200 GHz channel spacing.
T03/R03
LC
Transmits/Receives eight wavelengths (192.20 THz to 193.60 THz) of optical signals with a 200 GHz channel spacing.
T04/R04
LC
Transmits/Receives eight wavelengths (192.10 THz to 193.50 THz) of optical signals with a 200 GHz channel spacing.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
16.2.6 Valid Slots The BMD4 occupies one slot. Table 16-4 shows the valid slots for the BMD4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1696
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-4 Valid slots for the BMD4 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 8800 platform subrack
IU1-IU18
16.2.7 Characteristic Code of the BMD4 The characteristic code of the BMD4 consists of one character, indicating the band adopted by the board. Table 16-5 provides the details about the characteristic code of the BMD4. Table 16-5 Characteristic code of the BMD4 Code
Indication
Description
The first character
Band
Indicates the multiplexing scheme adopted by the board. The value C represents the C band. The value L represents the L band.
For example, if the characteristic code of the BMD4 is C, it indicates that the optical signals are in the C band.
16.2.8 Optical Interfaces on the BMD4 Each optical interface on the BMD4 accesses certain fixed wavelengths. Table 16-6 lists the optical interfaces on the BMD4 and the relationships between the frequencies and wavelengths.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1697
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-6 Optical interfaces on the BMD4 and relationships between the frequencies and wavelengths Interface
Number of Wavelengths
Frequency (THz)
Wavelength (nm)
T01/R01
12
193.8
1546.917
194.0
1545.322
194.2
1543.730
194.4
1542.142
194.6
1540.557
194.8
1538.976
195.0
1537.397
195.2
1535.822
195.4
1534.250
195.6
1532.681
195.8
1531.116
196.0
1529.553
193.7
1547.715
193.9
1546.119
194.1
1544.526
194.3
1542.936
194.5
1541.349
194.7
1539.766
194.9
1538.186
195.1
1536.609
195.3
1535.036
195.5
1533.465
195.7
1531.898
195.9
1530.334
192.2
1559.794
192.4
1558.173
192.6
1556.555
192.8
1554.940
193.0
1553.329
193.2
1551.721
193.4
1550.116
193.6
1548.515
T02/R02
T03/R03
Issue 03 (2013-05-16)
12
8
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1698
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Interface
Number of Wavelengths
Frequency (THz)
Wavelength (nm)
T04/R04
8
192.1
1560.606
192.3
1558.983
192.5
1557.363
192.7
1555.747
192.9
1554.134
193.1
1552.524
193.3
1550.918
193.5
1549.315
16.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For BMD4 parameters, refer to Table 16-7. Table 16-7 BMD4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. It is recommended to use the default value. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Configure Band
C Default: C
Used to configure type of the working band of a board.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Used to select the desired parity of the working band.
Default: All
16.2.10 BMD4 Specifications The specifications include the optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1699
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Optical Specifications Table 16-8 Optical specifications of the BMD4 Item
Unit
Value
Operating wavelength range
nm
1529 - 1561
T0x/R0x channel spacinga
GHz
200
IN/OUT channel spacing
GHz
100
Insertion loss
dB
≤5
dB
≤6
dB
≥ 25
IN-T01 IN-T02 IN-T03 IN-T04 R01-OUT R02-OUT R03-OUT R04-OUT IN->T01/T03@T02/T04
Isolationb
IN->T02/T04@T01/T03 IN->T01@T03
≥ 13
IN->T03@T01 IN->T02@T04 IN->T04@T02 R01->OUT@R03 R03->OUT@R01 R02->OUT@R04 R04->OUT@R02 Optical return loss
dB
≥ 40
Directivity
dB
≥ 45
PMD
dB
≤ 0.5
Polarization dependent loss
dB
≤ 0.5
Input optical power range
dB
≤ 23
a: T0x represents T01 to T04 ports. R0x represents R01 to R04 ports. b: In the case of T01/T03@T02/T04, this parameter refers to the isolation between any one of T01/T03 ports and any one of T02/T04 ports. It is the same case for other isolation item. T01/T02 ports are intended for blue band signals. T03/T04 ports are intended for red band signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1700
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.7 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11BMD4
0.2
0.3
16.3 BMD8 BMD8: PID Interleaver Board (C_Band), 200/50 GHz
16.3.1 Version Description Only one functional version of the BMD8 board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1B MD 8
N
N
N
Y
Y
N
16.3.2 Application The BMD8 is an optical multiplexer and demultiplexer unit. It multiplexes and demultiplexes signals. Figure 16-5 shows the position of the BMD8 in a WDM system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1701
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-5 Position of the BMD8 in a WDM system 4
4
4
ELQX 4
4
ELQX 4
PTQX
OA
8
BMD8
OA
4
ELQX 4
4
ELQX 4
ELQX
4
4
ELQX
4
OA
BMD8
4
PTQX 4
8
OA
PTQX
4
PTQX 4
ELQX
4
4
ELQX
4
16.3.3 Functions and Features The BMD8 provides functions and features such as multiplexing, demultiplexing, and in-service spectrum detection. Table 16-9 provides the details about the functions and features of the BMD8. Table 16-9 Functions and features of the BMD8 Function or Feature
Description
Basic function
In an 80-channel system, the BMD8 board multiplexes and demultiplexes optical signals. Demultiplexes one channel of input 80-wavelength multiplexed signals with a spacing of 50 GHz into four channels of oddwavelength signals and four channels of even-wavelength multiplexed signals with a spacing of 200 GHz, that is, four channels of 12-wavelength multiplexed signals and four channels of 8wavelength multiplexed signals. The reverse process is similar.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1702
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function or Feature
Description
Detection and monitoring of the online spectrum
Provides an in-service monitoring interface. A small number of optical signals can be output to the spectrum analyzer or spectrum analyzer unit through the interface to monitor the spectrum and optical performance of the multichannel signals without interrupting the services.
Optical-layer ASON
Not supported
16.3.4 Working Principle and Signal Flow The BMD8 board consists of the optical module, the control and communication module, and the power supply module. Figure 16-6 shows the functional modules and signal flow of the BMD8. Figure 16-6 Functional modules and signal flow of the BMD8
Optical module T01 T02 T03 T04 T05 T06 T07 T08
Interleaver
R01 R02 R03 R04 R05 R06 R07 R08
IN
Splitter OUT MON
Interleaver
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
1703
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Signal Flow The multiplexed signals with a spacing of 50 GHz are accessed through the IN optical interface and transmitted to the interleaver. Then, the interleaver splits the multiplexed signals into eight channels of multiplexed signals with a spacing of 200 GHz, that is, four channels of 12wavelength multiplexed signals and four channels of 8-wavelength multiplexed signals. Finally, the eight channels of multiplexed signals are output through the T01 to T08 optical interfaces. The eight channels of multiplexed signals are received through the R01 to R08 optical interfaces and are transmitted to the coupler. Then, the coupler couples the eight channels of multiplexed signals into one channel of multiplexed signals with a spacing of 50 GHz. that is, four channels of 12-wavelength multiplexed signals and four channels of 8-wavelength multiplexed signals. Finally, the signals are output through the OUT optical interface.
Module Function l
Optical module – Demultiplexes one channel of input 80-wavelength multiplexed signals with a spacing of 50 GHz into eight channels of multiplexed signals with a spacing of 200 GHz and uses the interleaver to couple the signals into one channel of 80-wavelength multiplexed signals with a spacing of 50 GHz. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module of the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied by the backplane into the power required by each module on the board.
16.3.5 Front Panel There is one indicator and laser level label on the front panel of the BMD8.
Appearance of the Front Panel Figure 16-7 shows the front panel of the BMD8.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1704
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-7 Front panel of the BMD8
BMD8 STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN
MON
T05
T01
R05
R01
T06
T02
R06
R02
T07
T03
R07
R03
T08
T04
R08
R04
BMD8
Indicators One indicator is present on the front panel: l
Board hardware status indicator (STAT) - green
For details about this indicator, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1705
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Interfaces Table 16-10 lists the type and function of each interface. Table 16-10 Types and functions of the interfaces on the BMD8 Interface
Type
Function
IN
LC
Accesses the optical signals at 50 GHz channel spacing (C_ODD and C_EVEN multiplexed signals).
OUT
LC
Outputs the optical signals at 50 GHz channel spacing (C_ODD and C_EVEN multiplexed signals).
MON
LC
Connects to the input port on the MCA4 or the MCA8 board so that the MCA4 or the MCA8 board can detect the optical spectrum in service. The optical power at the MON interface is 10/90 of the optical power at the OUT interface, that is, the optical power at the MON interface is 10 dB lower than the optical power at the OUT interface, calculation formula: Pout(dBm) - Pmon(dBm) = 10 x lg(90/10) = 10 dB.
T01/R01
LC
Transmits/Receives 12 wavelengths (193.850 THz to 196.050 THz) of optical signals with a 200 GHz channel spacing.
T02/R02
LC
Transmits/Receives 12 wavelengths (193.800 THz to 196.000 THz) of optical signals with a 200 GHz channel spacing.
T03/R03
LC
Transmits/Receives 12 wavelengths (193.750 THz to 195.950 THz) of optical signals with a 200 GHz channel spacing.
T04/R04
LC
Transmits/Receives 12 wavelengths (193.700 THz to 195.900 THz) of optical signals with a 200 GHz channel spacing.
T05/R05
LC
Transmits/Receives eight wavelengths (192.250 THz to 193.650 THz) of optical signals with a 200 GHz channel spacing.
T06/R06
LC
Transmits/Receives eight wavelengths (192.200 THz to 193.600 THz) of optical signals with a 200 GHz channel spacing.
T07/R07
LC
Transmits/Receives eight wavelengths (192.150 THz to 193.550 THz) of optical signals with a 200 GHz channel spacing.
T08/R08
LC
Transmits/Receives eight wavelengths (192.100 THz to 193.500 THz) of optical signals with a 200 GHz channel spacing.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1706
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.3.6 Valid Slots The BMD8 occupies two slots. Table 16-11 shows the valid slots for the BMD8 board. Table 16-11 Valid slots for the BMD8 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU16
OptiX OSN 8800 platform subrack
IU1-IU17
The back connector of the board is mounted to the backplane along the left slot on the subrack. Therefore, the slot number of the BMD8 displayed on the NM is the number of the left one of the two occupied slots. For example, if the BMD8 occupies IU1 and IU2, the slot number of the BMD8 displayed on the NM is IU1.
16.3.7 Characteristic Code of the BMD8 The characteristic code of the BMD8 consists of one character, indicating the band adopted by the board. Table 16-12 provides the details about the characteristic code of the BMD8. Table 16-12 Characteristic code of the BMD8 Code
Indication
Description
The first character
Band
Indicates the multiplexing scheme adopted by the board. The value C represents the C band.
For example, if the characteristic code of the BMD8 is C, it indicates that the optical signals are in the C band.
16.3.8 Optical Interfaces on the BMD8 Each optical interface on the BMD8 accesses certain fixed wavelengths. Table 16-13 lists the optical interfaces on the BMD8 and the relationships between the frequencies and wavelengths.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1707
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-13 Optical interfaces on the BMD8 and the relationships between the frequencies and wavelengths Interface
Number of Wavelengths
Frequency (THz)
Wavelength (nm)
T01/R01
12
193.85
1546.52
194.05
1544.92
194.25
1543.33
194.45
1541.75
194.65
1540.16
194.85
1538.58
195.05
1537.00
195.25
1535.43
195.45
1533.86
195.65
1532.29
195.85
1530.72
196.05
1529.16
193.8
1546.917
194.0
1545.322
194.2
1543.730
194.4
1542.142
194.6
1540.557
194.8
1538.976
195.0
1537.397
195.2
1535.822
195.4
1534.250
195.6
1532.681
195.8
1531.116
196.0
1529.553
T02/R02
Issue 03 (2013-05-16)
12
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1708
OptiX OSN 8800/6800/3800 Hardware Description
Interface
Number of Wavelengths
Frequency (THz)
Wavelength (nm)
T03/R03
12
193.75
1547.32
193.95
1545.72
194.15
1544.13
194.35
1542.54
194.55
1540.95
194.75
1539.37
194.95
1537.79
195.15
1536.22
195.35
1534.64
195.55
1533.07
195.75
1531.51
195.95
1529.94
193.7
1547.715
193.9
1546.119
194.1
1544.526
194.3
1542.936
194.5
1541.349
194.7
1539.766
194.9
1538.186
195.1
1536.609
195.3
1535.036
195.5
1533.465
195.7
1531.898
195.9
1530.334
192.25
1559.39
192.45
1557.77
192.65
1556.15
192.85
1554.54
193.05
1552.93
193.25
1551.32
193.45
1549.72
193.65
1548.11
T04/R04
T05/R05
Issue 03 (2013-05-16)
16 PID Board
12
8
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1709
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Interface
Number of Wavelengths
Frequency (THz)
Wavelength (nm)
T06/R06
8
192.2
1559.794
192.4
1558.173
192.6
1556.555
192.8
1554.940
193.0
1553.329
193.2
1551.721
193.4
1550.116
193.6
1548.515
192.15
1560.20
192.35
1558.58
192.55
1556.96
192.75
1555.34
192.95
1553.73
193.15
1552.12
193.35
1550.52
193.55
1548.91
192.1
1560.606
192.3
1558.983
192.5
1557.363
192.7
1555.747
192.9
1554.134
193.1
1552.524
193.3
1550.918
193.5
1549.315
8
T07/R07
8
T08/R08
16.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For BMD8 parameters, refer to Table 16-14. Table 16-14 BMD8 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1710
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name. It is recommended to use the default value. An optical interface name contains a maximum of 64 characters. Any characters are supported.
C
Configure Band
Used to configure type of the working band of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Used to select the desired parity of the working band.
Default: All
16.3.10 BMD8 Specifications The specifications include the optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 16-15 Optical specifications of the BMD8 Item
Unit
Value
Operating wavelength range
nm
1529 - 1561
T0x/R0x channel spacinga
GHz
200
IN/OUT channel spacing
GHz
50
Insertion loss
dB
≤8
IN-T01 IN-T02 IN-T03 IN-T04 IN-T05 IN-T06 IN-T07 IN-T08
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1711
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Item R01-OUT
Unit
Value
dB
≤9.5
dB
≥25
R02-OUT R03-OUT R04-OUT R05-OUT R06-OUT R07-OUT R08-OUT IN->T01/T05 @T02/T06/ T03/T07/T04/T08
Isolationb
IN->T02/T06 @T01/T05/ T03/T07/T04/T08 IN->T03/T07 @T01/T05/ T02/T06/T04/T08 IN->T04/T08 @T01/T05/ T02/T06/T03/T07 IN->T01@T05
≥13
IN->T05@T01 IN->T02@T06 IN->T06@T02 IN->T03@T07 IN->T07@T03 IN->T04@T08 IN->T08@T04 R01->OUT@R05 R05->OUT@R01 R02->OUT@R06 R06->OUT@R02 R03->OUT@R07 R07->OUT@R03 R04->OUT@R08 R08->OUT@R04
Issue 03 (2013-05-16)
Optical return loss
dB
≥40
Directivity
dB
≥45
PMD
dB
≤0.5
Polarization dependent loss
dB
≤0.5
Input optical power range
dB
≤23
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1712
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Item
Unit
Value
a: T0x represents T01 to T08 ports. R0x represents R01 to R08 ports. b: In the case of T01/T05@T02/T06/T03/T07/T04/T08, this parameter refers to the isolation between any one of T01/T05 ports and any one of T02/T06/T03/T07/T04/T08 ports. It is the same case for other isolation item. T01 to T04 ports are intended for blue band signals; the T05 to T08 ports are intended for red band signals.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.5 kg (3.3 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11BMD8
0.2
0.3
16.4 ELQX ELQX: 4 x Electrical OTU2 with 4 x 10G Tributary Board
16.4.1 Version Description The available functional version of the ELQX board is TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2EL QX
N
N
N
N
Y
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1713
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.4.2 Application The ELQX board converts four 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e signals into four OTU2/OTU2e electrical signals or converts four ODU2/ODU2e signals or 16 ODU1 signals from the backplane into four OTU2/OTU2e signals. The reverse process is similar. Figure 16-8 shows the position of the ELQX in a WDM system. Figure 16-8 Position of the ELQX in a WDM system 4
4
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ 4 OTU2/ OTU2e
ELQX 4
4
ELQX 4
OA PTQX
OA
BMD4
BMD4
OA
PTQX 4
ELQX
4
ELQX
OA
10GE LAN/ 10GE WAN/ STM-64/ 4 OC-192/ OTU2/ OTU2e 4
16.4.3 Functions and Features The ELQX supports functions and features such as OTN interfaces, ESC, and ALS. Table 16-16 provides the details about the functions and features of the ELQX. Table 16-16 Functions and features of the ELQX Function or Feature
Description
Basic function
ELQX converts signals as follows: l 4 x 10GE LAN/10GE WAN/STM-64/OC-192/OTU2/OTU2e<->4 x OTU2/OTU2e l 16 x ODU1/4 x ODU2/ODU2e<->4 x OTU2/OTU2e l Supports hybrid transmission of the ODU1 and ODU2/ODU2e services.
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s
OTN function
l The encapsulation and mapping comply with ITU-T G.7041, ITU-T G. 709, and GDPS. l Supports PM and TCM functions for ODU1. l Supports SM, PM and TCM function for ODU2. l Supports SM and PM functions for OTU2 .
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1714
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function or Feature
Description
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported.
PRBS test function
Supports the PRBS function on the client and WDM sides.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side.
NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Alarms and performance events monitoring
l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
ALS function
Supports the ALS function on the client side.
Optical-layer ASON
Not supported
Electricallayer ASON
Not supported
Protection scheme
l Supports client-side 1+1 protection.
Ethernet service mapping mode
l Bit Transparent Mapping(11.1G)
Ethernet port working mode
l 10GE LAN FULL_Duplex
l Supports the ODUk SNCP.
l MAC Transparent Mapping(10.7G) l Bit Transparent Mapping(10.7G)
l 10GE WAN FULL_Duplex
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1715
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function or Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3ae
Protocols or standards for service processing (performance monitoring)
ITU-T G.805
ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
16.4.4 Working Principle and Signal Flow The ELQX board consists of the client-side optical module, the signal processing module, the control and communication module, and the power supply module. Figure 16-9 shows the functional modules and signal flow of the ELQX in the OptiX OSN 6800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1716
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Signal Flow Figure 16-9 Functional modules and signal flow of the ELQX in the OptiX OSN 6800
Client side RX1 RX2 RX3
4×ODU2/4×ODU2e /16×ODU1
SDH/SONET encapsulation and mapping module
O/E
RX4 TX1 TX2 TX3 TX4
Backplane (service cross-connection)
4×OTU2/4×OTU2e
OTN processing module
10GE-LAN encapsulation and mapping module
E/O Client-side optical module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
The client side of the ELQX board can access the following optical signals: l
10GE LAN optical signals
l
10GE WAN optical signals
l
STM-64 optical signals
l
OC-192 optical signals
l
OTU2 optical signals
l
OTU2e optical signals
In the signal flow of the ELQX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the ELQX to the WDM side of the PTQX, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four optical signals from client equipment through the RX1-RX4 interfaces, and converts the optical signals into electrical signals. The clientside optical module can also receive four ODU2/ODU2e signals or 16 ODU1 signals from the backplane. The electrical signals converted from the client optical signals or the ODU1/ODU2/ODU2e signals from the backplane are transmitted to the signal processing module. The signals of different types are transmitted to different encapsulation and mapping modules. Then, the
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1717
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
encapsulation and mapping modules perform encapsulation, mapping, and OTN framing for the signals. Finally, four OTU2/OTU2e signals are transmitted to the PTQX board through the backplane. l
Receive direction The signal processing module receives four OTU2/OTU2e electrical signals from the PTQX board through the backplane, performs OTU2/OTU2e framing, demapping, and decapsulation for the signals, and finally outputs four ODU2/ODU2e signals, 16 ODU1 signals, or four 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e electrical signals. The four ODU2/ODU2e signals or 16 ODU1 signals are cross-connected to other boards through the backplane, or the four 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e electrical signals are transmitted to the client-side optical module. The optical signals are converted into electrical signals, and then are output through the TX1-TX4 optical interfaces. NOTE
The ELQX board can receive service signals from the client side or from other boards through the backplane. One ODU2LP port can only receive one channel of signals either from the client side or from the backplane.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: converts four channels of 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e optical signals into electrical signals. – Client-side transmitter: converts four channels of internal electrical signals into 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e optical signals. – Reports the performance of the client-side optical interface. – Reports the working status of the client-side laser.
l
Signal processing module The module consists of the cross-connect module, SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, and OTN processing module. NOTE
The signal processing module on the ELQX board has fixed cross-connections to the PTQX board.
– SDH/SONET encapsulation and mapping module Encapsulates multiple channels of SDH/SONET signals and maps the signals into the OTU2 payload area. This module also performs the reverse process and has the SDH/ SONET performance monitoring function. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the OTU2/OTU2e payload area. This module also performs the reverse process and has the 10GE LAN performance monitoring function. – OTN processing module Frames OTU2 signals and processes overheads in OTU2 signals. l
Control and communication module – Controls board operations.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1718
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
– Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module on the board. – Communicates with the SCC board. l
Power supply module Converts the DC power supplied from the backplane into the power required by each module on the board.
16.4.5 Front Panel There are four indicators on the front panel of the ELQX.
Appearance of the Front Panel Figure 16-10 shows the front panel of the ELQX. Figure 16-10 Front panel of the ELQX
ELQX STAT ACT PROG SRV
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4
ELQX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1719
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 16-17 lists the type and function of each optical interface. Table 16-17 Types and functions of the ELQX interfaces Interface
Type
Function
TX1 - TX4
LC
Transmits the optical service signal to the client-side equipment.
RX1 - RX4
LC
Receives the optical service signal from the client-side equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
16.4.6 Valid Slots The ELQX occupies one slot. Table 16-18 shows the valid slots for the ELQX board. Table 16-18 Valid slots for the ELQX board Product
Valid Slots
OptiX OSN 6800 subrack
IU1, IU4, IU5, IU8, IU11, IU14
16.4.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1720
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Display of Physical Ports Table 16-19 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 16-19 Mapping between the physical ports on the ELQX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The number of an interface displayed on the U2000 indicates a pair of physical optical interfaces, of which one is used to transmit signals and the other is used to receive signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. Figure 16-11, Figure 16-12 and Figure 16-13 describes the NM ports of the ELQX board. Table 16-20 lists the indication of each port. Figure 16-11 Diagram of ports on the ELQX (cross-connections of client-side services) Client side 3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4)
201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1
Service Processing Module
Issue 03 (2013-05-16)
Service Processing Module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Service Processing Module
1721
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-12 Diagram of ports on the ELQX (backplane-side ODU1-level cross-connections) Backplane
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2
71(ODU2LP1/ODU2LP1)-1
51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 72(ODU2/LP2/ODU2LP2)-1 73(ODU2/LP3/ODU2LP3)-1
54(ODU1/LP4/ODU1LP4)-4
Crossconnect module
74(ODU2/LP4/ODU2LP4)-1
Service processing module
Service processing module
Figure 16-13 Diagram of ports on the ELQX (backplane-side ODU2-level cross-connections) Backplane
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1 73(ODU2/LP3/ODU2LP3)-1 74(ODU2/LP4/ODU2LP4)-1
Cross-connect module
Service processing module
Table 16-20 Description of NM ports of the ELQX Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces
ClientLP1-ClientLP4
Internal logical ports. The optical paths are numbered 1.
ODU1LP1-ODU1LP4
Internal logical ports. The optical paths are numbered 1, 2, 3, 4.
ODU2LP1-ODU2LP4
Internal logical ports. The optical paths are numbered 1.
16.4.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1722
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
If the ELQX board is used to transmit services, the following items must be created on the U2000: l
During creation of the electrical cross-connect services on the U2000, create the ODU2 cross-connection between the ClientLP port and the ODU2LP port on the ELQX board, as shown by (1) in Figure 16-14.
l
If the ODU1 signals of other boards are cross-connected to the ELQX board, you need to create cross-connections from the ClientLP ports on other boards to the ODU1LP port on the ELQX board on the U2000, as shown Figure 16-15.
l
If the ODU2 signals of other boards are cross-connected to the ELQX board, you need to create cross-connections from the ClientLP ports on other boards to the ODU2LP port on the ELQX board on the U2000, as shown by (2) Figure 16-14.
l
The ODU2LP ports on the ELQX board and the OCHLP ports on the PTQX board are of one-to-one cross-connections. Therefore, the cross-connections do not need to be created on the U2000. For details, see Figure 16-16.
Figure 16-14 Diagram of cross-connections of the ELQX (ODU2 level) Client side
Cross-connection module 201(ClientLP1/ClientLP1)-1
2
202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Other board
Client side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1
Cross-connection module
ELQX board
The internal cross-connection of the board The client side of other boards are cross-connected to the WDM side of the PTQX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1 2
1723
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-15 Diagram of cross-connections of the ELQX (ODU1 level) Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1 Other board
Client side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
54(ODU1LP1/ODU1LP1)-1 54(ODU1LP1/ODU1LP1)-2 54(ODU1LP1/ODU1LP1)-3 54(ODU1LP4/ODU1LP4)-4 Cross-connect module
ELQX board
The client side of other boards are cross-connected to the PTQX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
1724
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-16 Diagram of cross-connections between the PTQX and ELQX Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1 73(ODU2/LP3/ODU2LP3)-1
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
1
74(ODU2/LP4/ODU2LP4)-1
ELQX board
WDM side 141(OCHLP9/OCHLP9)-1 142(OCHLP10/OCHLP10)-1 143(OCHLP11/OCHLP11)-1 144(OCHLP12/OCHLP12)-1 71(ODU2LP1/ODU2LP1)-1
133(OCHLP1/OCHLP1)-1
72(ODU2/LP2/ODU2LP2)-1
134(OCHLP2/OCHLP2)-1
73(ODU2/LP3/ODU2LP3)-1
135(OCHLP3/OCHLP3)-1
74(ODU2/LP4/ODU2LP4)-1
136(OCHLP4/OCHLP4)-1 137(OCHLP5/OCHLP5)-1 138(OCHLP6/OCHLP6)-1 2
139(OCHLP7/OCHLP7)-1 140(OCHLP8/OCHLP8)-1 PTQX baord
Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1 Cross-connect module
ELQX board
Fixed cross-connection between the first ELQX board and the PTQX board in a PID group
1 2
Fixed cross-connection between the second ELQX board and the PTQX board in a PID group
16.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the ELQX, refer toTable 16-21.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1725
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-21 ELQX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Channel Loopback
Non-Loopback, Inloop, Outloop
Queries or sets the path Loopback.
Default: Non-Loopback Service Type
10GE LAN, 10GE WAN, OTU-2, OTU2– 2E, STM-64, OC-192
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: 10GE LAN Port Mapping
Bit Transparent Mapping(11.1G), MAC Transparent Mapping (10.7G), Bit Transparent Mapping (10.7G)
The Port Mapping parameter sets and queries the mapping mode of a port service. See D.28 Port Mapping (WDM Interface) for more information.
Default: Bit Transparent Mapping (11.1G) Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Enabled, Disabled Default: l Client side: Enabled
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1726
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
LPT Enabled
Enabled, Disabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled Service Mode
Automatic, ODU1, ODU2 Default: Automatic
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: AFEC
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Actual Wavelength No./Wavelength (nm)/Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM Default: C
OTN Overhead Transparent Transmission
Enabled, Disabled Default: Disabled
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. NOTE This parameter is valid only when the client side accesses OTN services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1727
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
Line Rate
Standard Mode, Speedup Mode
The Line Rate parameter provides an option to set the OTN line rate. See D.16 Line Rate for more information.
Default: Standard Mode SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
16.4.10 ELQX Specifications The specifications include the optical specifications, dimensions, weight, and power consumption. Board
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
TN12EL QX
N/A
10 Gbit/s Multirate-10 km 10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZ-PIN-XFP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1728
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 16-22 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Operating wavelength range
nm
1290 to 1330
1530 to 1565
1530 to 1565
840 to 860
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1729
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
16 PID Board
Unit
Optical Module Type Eye pattern mask
Value 10 Gbit/s Multirate-10 km
-
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
G.691-compliant
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
APD
PIN
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Table 16-23 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1730
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.7 kg (3.7 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN12ELQX
86.2
99.1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1731
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.5 PTQX PTQX: 12 x OTU2 PID board with 4 x 10G tributary
16.5.1 Version Description The available functional version of the PTQX board is TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2PT QX
N
N
N
N
Y
N
Type One PID can use only certain wavelengths, as listed in Table 16-24. Table 16-25 lists the wavelength numbers and the relations between the wavelengths and frequencies. Table 16-24 Wavelength allocation table of a PID (ELQX+PTQX)
Issue 03 (2013-05-16)
Serial No.
Wavelength No. of the ELQX (on the Left)
Wavelength No. of the PTQX
Wavelength No. of the ELQX (on the Right)
PTQX Type
1
33, 37, 41, 45
1, 5, 9, 13
17, 21, 25, 29
TN12PTQX01
2
34, 38, 42, 46
2, 6, 10, 14
18, 22, 26, 30
TN12PTQX02
3
35, 39, 43, 47
3, 7, 11, 15
19, 23, 27, 31
TN12PTQX03
4
36, 40, 44, 48
4, 8, 12, 16
20, 24, 28, 32
TN12PTQX04
5
-
49, 53, 57, 61
65, 69, 73, 77
TN12PTQX05
6
-
50, 54, 58, 62
66, 70, 74, 78
TN12PTQX06
7
-
51, 55, 59, 63
67, 71, 75, 79
TN12PTQX07
8
-
52, 56, 60, 64
68, 72, 76, 80
TN12PTQX08
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1732
OptiX OSN 8800/6800/3800 Hardware Description
Serial No.
16 PID Board
Wavelength No. of the ELQX (on the Left)
Wavelength No. of the PTQX
Wavelength No. of the ELQX (on the Right)
PTQX Type
NOTE For the wavelength groups indicated by serial numbers 5-8, only one PTQX board and one ELQX board are required and the ELQX board should be housed on the right of the PTQX board.
Table 16-25 Frequencies and wavelengths of a C-band 80-channel (50 GHz-spaced) system
Issue 03 (2013-05-16)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
1
196.05
1529.16
41
194.05
1544.92
2
196.00
1529.55
42
194.00
1545.32
3
195.95
1529.94
43
193.95
1545.72
4
195.90
1530.33
44
193.90
1546.12
5
195.85
1530.72
45
193.85
1546.52
6
195.80
1531.12
46
193.80
1546.92
7
195.75
1531.51
47
193.75
1547.32
8
195.70
1531.90
48
193.70
1547.72
9
195.65
1532.29
49
193.65
1548.11
10
195.60
1532.68
50
193.60
1548.51
11
195.55
1533.07
51
193.55
1548.91
12
195.50
1533.47
52
193.50
1549.32
13
195.45
1533.86
53
193.45
1549.72
14
195.40
1534.25
54
193.40
1550.12
15
195.35
1534.64
55
193.35
1550.52
16
195.30
1535.04
56
193.30
1550.92
17
195.25
1535.43
57
193.25
1551.32
18
195.20
1535.82
58
193.20
1551.72
19
195.15
1536.22
59
193.15
1552.12
20
195.10
1536.61
60
193.10
1552.52
21
195.05
1537.00
61
193.05
1552.93
22
195.00
1537.40
62
193.00
1553.33
23
194.95
1537.79
63
192.95
1553.73
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1733
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
24
194.90
1538.19
64
192.90
1554.13
25
194.85
1538.58
65
192.85
1554.54
26
194.80
1538.98
66
192.80
1554.94
27
194.75
1539.37
67
192.75
1555.34
28
194.70
1539.77
68
192.70
1555.75
29
194.65
1540.16
69
192.65
1556.15
30
194.60
1540.56
70
192.60
1556.55
31
194.55
1540.95
71
192.55
1556.96
32
194.50
1541.35
72
192.50
1557.36
33
194.45
1541.75
73
192.45
1557.77
34
194.40
1542.14
74
192.40
1558.17
35
194.35
1542.54
75
192.35
1558.58
36
194.30
1542.94
76
192.30
1558.98
37
194.25
1543.33
77
192.25
1559.39
38
194.20
1543.73
78
192.20
1559.79
39
194.15
1544.13
79
192.15
1560.20
40
194.10
1544.53
80
192.10
1560.61
16.5.2 Application The PTQX is an PID unit. The PTQX board can map four 10GE LAN/10GE WAN/STM-64/ OC-192/OTU2/OTU2e signals into four OTU2(e) signals, or map four ODU2(e) signals or 16 ODU1 signals from another board into four OTU2(e) signals. The PTQX also receives eight OTU2(e) signals from the ELQX board and integrates the 12 OTU2(e) signals into one channel of optical signals for output. The reverse process is similar. For the position of the PTQX in a WDM system, see Figure 16-17. Figure 16-17 Position of the PTQX in a WDM system 4
Issue 03 (2013-05-16)
4
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ 4 OTU2/ OTU2e
ELQX 4
4
ELQX 4
OA PTQX
OA
BMD4
BMD4
OA
PTQX 4
ELQX
4
ELQX
OA
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
10GE LAN/ 10GE WAN/ STM-64/ 4 OC-192/ OTU2/ OTU2e 4
1734
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.5.3 Functions and Features The PTQX provides functions and features such as OTN interfaces, ESC, and ALS. Table 16-26 provides the details about the functions and features of the PTQX. Table 16-26 Functions and features of the PTQX Function and Feature
Description
Basic function
PTQX converts signals as follows: l 4 x 10GE LAN/10GE WAN/STM-64/OC-192/OTU2<->4 x OTU2 l 4 x 10GE LAN/OTU2e<->4 x OTU2e l 16 x ODU1/4 x ODU2<->4 x OTU2 l 4 x ODU2e<->OTU2e l Supports hybrid transmission of the ODU1 and ODU2/ODU2e services.
Client-side service type
10GE LAN: Ethernet service at a rate of 10.31 Gbit/s 10GE WAN: Ethernet service at a rate of 9.95 Gbit/s STM-64/OC-192: SDH/SONET service at a rate of 9.95 Gbit/s OTU2: OTN service at a rate of 10.71 Gbit/s OTU2e: OTN service at a rate of 11.1 Gbit/s
OTN function
l The encapsulation and mapping comply with ITU-T G.7041, ITU-T G. 709, and GDPS. l Supports PM and TCM functions for ODU1. l Supports PM and TCM function for ODU2. l Supports SM functions for OTU2 .
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported
PRBS test
Supports the PRBS function on the client and WDM sides. NOTE The PRBS function on the client side is supported only when the client-side service type is STM-64/OC-192, OTU2 or OTU2e.
LPT function
The board supports the LPT function only when the client-side service type is 10GE LAN.
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1735
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures. l Monitors B1 bytes to help locate faults. l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. l Supports the remote monitoring (RMON) of Ethernet services.
Issue 03 (2013-05-16)
ALS function
Supports the ALS function on the client side.
Optical-layer ASON
Not supported
Electrical-layer ASON
Not supported
Protection scheme
l Supports client-side 1+1 protection.
Ethernet service mapping mode
l Bit Transparent Mapping(11.1G)
Ethernet port working mode
l 10GE LAN FULL_Duplex
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
l Supports ODUk SNCP.
l MAC Transparent Mapping(10.7G) l Bit Transparent Mapping(10.7G)
l 10GE WAN FULL_Duplex IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1736
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
16.5.4 Working Principle and Signal Flow The PTQX board consists of the client-side optical module, signal processing module, PID module, control and communication module, and power supply module. Figure 16-18 shows the functional modules and signal flow of the PTQX in the OptiX OSN 6800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1737
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-18 Functional modules and signal flow of the PTQX in the OptiX OSN 6800
Client side RX1 RX2 RX3
4xODU2/4xODU2e /16xODU1
SDH/SONET encapsulation and mapping module
O/E
RX4 TX1 TX2 TX3 TX4
E/O Client-side optical module
Backplane (service cross-connection)
8×OTU2/8×OTU2e
10GE-LAN encapsulation and mapping module
4 OTN processing module
4
OUT
PID Module IN
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The client side of the PTQX board can access the following optical signals: l
10GE LAN optical signals
l
10GE WAN optical signals
l
STM-64 optical signals
l
OC-192 optical signals
l
OTU2 optical signals
l
OTU2e optical signals
In the signal flow of the PTQX board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the client side of the PTQX to the WDM side of the PTQX, and the receive direction is defined as the reverse direction. l
Transmit direction The client-side optical module receives four channels of the optical signals from client equipment through the RX1-RX4 interfaces, and converts the optical signals into electrical signals. The PTQX can also receive four ODU2/ODU2e signals or 16 ODU1 signals from the backbone. The electrical signals converted from client optical signals or 16 x ODU1 or 4 x ODU2/ ODU2e signals are transmitted to the signal processing module. Different types of signals
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1738
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
are sent to the corresponding encapsulation and mapping modules. The module performs operations such as encapsulation, mapping, OTN framing, and FEC/AFEC encoding. Then, the module sends out four channels of OTU2(e) signals to the PID module. The four OTU2(e) signals and the eight OTU2(e) signals cross-connected through the backplane from the ELQX board are integrated into one channel of optical signals, which are finally output through the OUT optical interface. l
Receive direction The PID module receives one optical signal from the WDM side through the IN optical interfaces. Then, the module converts the optical signal into an electrical signal, and demultiplexes the signal into 12 OTU2(e) signals. Eight of the 12 OTU2(e) signals are cross-connected through the backplane to the ELQX board, and the remaining four OTU2(e) signals are transmitted to the signal processing module. Then, the signal processing module performs OTU2(e) framing, FEC/AFEC decoding, demapping, and decapsulation for the signals. Finally, the signal processing module outputs four channels of electrical signals. The four channels of electrical signals are cross-connected to other boards through the backplane or transmitted to the client-side optical modules. Then, the four channels of electrical signals are converted into four channels of optical signals that are output through the TX1-TX4 optical interfaces. NOTE
The PTQX board can receive service signals from the client side or from other boards through the backplane. One ODU2LP port can only receive one channel of signals either from the client side or from the backplane.
Module Function l
Client-side optical module The module consists of a client-side receiver and a client-side transmitter. – Client-side receiver: converts four channels of 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e optical signals into electrical signals. – Client-side transmitter: converts four channels of internal electrical signals into 10GE LAN, 10GE WAN, STM-64, OC-192, OTU2 or OTU2e optical signals. – Reports the performance of the client-side optical interface. – Reports the working status of the client-side laser.
l
PID module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: demultiplexes the WDM-side multiplexed optical signals into 12 channels of optical signals, and then converts the optical signals to electrical signals. – WDM-side transmitter: converts the internal electrical signals into OTU2 optical signals, and integrates 12 channels of signals into one channel of multiplexed signals. – Reports the performance of the WDM-side optical interface. – Reports the working status of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module, SDH/SONET encapsulation and mapping module, 10GE LAN encapsulation and mapping module, and OTN processing module. – SDH/SONET encapsulation and mapping module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1739
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Encapsulates SDH/SONET signals and maps the signals into the OTU2 payload area. This module also performs the reverse process and monitors SDH/SONET performance. – 10GE LAN encapsulation and mapping module Encapsulates multiple channels of 10GE LAN signals and maps the signals into the OTU2/OTU2e payload area. This module also performs the reverse process and monitors 10GE LAN performance. – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs FEC/AFEC coding and decoding. l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module of the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied by the backplane into the power required by each module on the board.
16.5.5 Front Panel There are four indicators and laser level label on the front panel of the PTQX.
Appearance of the Front Panel Figure 16-19 shows the front panel of the PTQX.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1740
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-19 Front panel of the PTQX
PTQX STAT ACT PROG SRV
CAUTION
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
TX1 RX1 TX2 RX2 TX3 RX3
OUT IN
TX4 RX4
PTQX
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1741
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 16-27 lists the type and function of each optical interface. Table 16-27 Types and functions of the PTQX interfaces Interface
Type
Function
IN
LC
Receives the line signal.
OUT
LC
Transmits the line signal.
TX1-TX4
LC
Transmits the service signal to the client-side equipment.
RX1-RX4
LC
Receives the service signal from the client-side equipment.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
16.5.6 Valid Slots The PTQX occupies two slots. Table 16-28 shows the valid slots for the PTQX board. Table 16-28 Valid slots for the PTQX board Product
Valid Slots
OptiX OSN 6800 subrack
IU3, IU7, IU13
NOTE
The back connector of the board is mounted to the backplane along the right slot on the subrack. Therefore, the slot number of the PTQX board displayed on the NM is the number of the right one of the two occupied slots. For example, if the PTQX occupies slots IU2 and IU3, the slot number of the PTQX displayed on the NM is IU3.
16.5.7 Characteristic Code of the PTQX The characteristic code for the PTQX consists of six digits, respectively indicating the frequency values of the first channel and the last channel of optical signals on the WDM side. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1742
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
The detailed information about the characteristic code is given in Table 16-29. Table 16-29 Characteristic code for the PTQX Code
Description
Description
The first three digits
The frequency of optical signal
The last three digits of the frequency value of the first channel of signals on the WDM side.
The last three digits
The frequency of optical signal
The last three digits of the frequency value of the last channel of signals on the WDM side.
For example, the characteristic code for the TN12PTQX is 605385. l
"605385" indicates the frequency of the first channel of optical signals on the WDM side is 196.05 THz, and the frequency of the last channel of optical signals on the WDM side is 193.85 THz.
16.5.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 16-30 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 16-30 Mapping between the physical ports on the PTQX board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
TX1/RX1
3
TX2/RX2
4
TX3/RX3
5
TX4/RX4
6
NOTE
The number of an interface displayed on the U2000 indicates a pair of physical optical interfaces, of which one is used to transmit signals and the other is used to receive signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1743
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. Figure 16-20, Figure 16-21, and Figure 16-22 show the NM ports on the PTQX board. Table 16-31 lists the indication of each port. Figure 16-20 Diagram of ports on the PTQX (cross-connections of client-side services) Client side 3(RX1/TX1) 4(RX2/TX2) 5(RX3/TX3) 6(RX4/TX4)
201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
133(OCHLP1/OCHLP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
134(OCHLP2/OCHLP2)-1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
135(OCHLP3/OCHLP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1
136(OCHLP4/OCHLP4)-1 137(OCHLP5/OCHLP5)-1
Service processing module
Service processing module
WDM side
138(OCHLP6/OCHLP6)-1
1(IN/OUT)
139(OCHLP7/OCHLP7)-1 140(OCHLP8/OCHLP8)-1 141(OCHLP9/OCHLP9)-1 142(OCHLP10/OCHLP10)-1 143(OCHLP11/OCHLP11)-1 144(OCHLP12/OCHLP12)-1 Service processing module
Cross-connect module
Figure 16-21 Diagram of ports on the PTQX (backplane-side ODU1-level cross-connections) Backplane
WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2
133(OCHLP1/OCHLP1)-1
51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
134(OCHLP2/OCHLP2)-1 135(OCHLP3/OCHLP3)-1 54(ODU1LP4/ODU1LP4)-4
136(OCHLP4/OCHLP4)-1
1(IN/OUT)
137(OCHLP5/OCHLP5)-1 138(OCHLP6/OCHLP6)-1 139(OCHLP7/OCHLP7)-1 Cross-connect module
140(OCHLP8/OCHLP8)-1 141(OCHLP9/OCHLP9)-1 142(OCHLP10/OCHLP10)-1 143(OCHLP11/OCHLP11)-1 144(OCHLP12/OCHLP12)-1 Cross-connect module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Service processing module
1744
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-22 Diagram of ports on the PTQX (backplane-side ODU2-level cross-connections) Backplane
71(ODU2LP1/ODU2LP1)-1
133(OCHLP1/OCHLP1)-1
72(ODU2/LP2/ODU2LP2)-1
134(OCHLP2/OCHLP2)-1
73(ODU2/LP3/ODU2LP3)-1
135(OCHLP3/OCHLP3)-1
74(ODU2/LP4/ODU2LP4)-1
136(OCHLP4/OCHLP4)-1
WDM side
137(OCHLP5/OCHLP5)-1 Cross-connect module
138(OCHLP6/OCHLP6)-1 139(OCHLP7/OCHLP7)-1
1(IN/OUT)
140(OCHLP8/OCHLP8)-1 141(OCHLP9/OCHLP9)-1 142(OCHLP10/OCHLP10)-1 143(OCHLP11/OCHLP11)-1 144(OCHLP12/OCHLP12)-1 Cross-connect module
Service processing module
Table 16-31 Description of ports on the PTQX Port Name
Description
RX1/TX1-RX4/TX4
These ports correspond to the client-side optical interfaces.
ClientLP1-ClientLP4
Internal logical ports. The optical paths are numbered 1.
ODU1LP1-ODU1LP4
Internal logical ports. The optical paths are numbered 1, 2, 3 and 4.
ODU2LP1-ODU2LP4
Internal logical ports. The optical paths are numbered 1.
OCHLP1-OCHLP12
Internal logical ports. The optical paths are numbered 1.
IN/OUT
This port corresponds to the WDM-side optical interface.
16.5.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. If the PTQX board is used to transmit services, the following items must be created on the U2000: l
Issue 03 (2013-05-16)
During creation of the electrical cross-connect services on the U2000, create the crossconnection between the ClientLP port and the ODU2LP port on the PTQX board, as shown by (1) in Figure 16-23. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1745
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
l
If the ODU1 signals of other boards are cross-connected to the PTQX board, create crossconnections from the ClientLP ports on other boards to the ODU1LP port on the PTQX board on the U2000, as shown in Figure 16-24.
l
If the ODU2 signals of other boards are cross-connected to the PTQX board, create crossconnections from the ClientLP ports on other boards to the ODU2LP port on the PTQX board on the U2000, as shown by (2) in Figure 16-23.
l
The ODU2LP ports on the ELQX and the OCHLP ports on the PTQX board are of one-toone cross-connections. Therefore, the cross-connections do not need to be created on the U2000. For details, see Figure 16-25.
Figure 16-23 Diagram of cross-connections of the PTQX (ODU2 level) Client side 201(ClientLP1/ClientLP1)-1
2
202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Other board except ELQX
Cross-connect module
Client side
WDM side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1 Cross-connect module
PTQX board
The internal cross-connection of the board The client side of other boards are cross-connected to the WDM side of the PTQX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1 2
1746
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-24 Diagram of cross-connections of the PTQX (ODU1 level) Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Other board except ELQX
1
WDM side 51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
54(ODU1LP1/ODU1LP1)-1 54(ODU1LP1/ODU1LP1)-2 54(ODU1LP1/ODU1LP1)-3 54(ODU1LP4/ODU1LP4)-4 Cross-connect module
PTQX board
The client side of other boards are cross-connected to the WDM side of the PTQX board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
1747
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-25 Diagram of cross-connections between the PTQX and ELQX Client side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1
ELQX board
Cross-connect module
WDM side
1
144(OCHLP12/OCHLP12)-1 143(OCHLP11/OCHLP11)-1 142(OCHLP10/OCHLP10)-1 141(OCHLP9/OCHLP9)-1 140(OCHLP8/OCHLP8)-1
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1
139(OCHLP7/OCHLP7)-1
73(ODU2/LP3/ODU2LP3)-1
138(OCHLP6/OCHLP6)-1
74(ODU2/LP4/ODU2LP4)-1
137(OCHLP5/OCHLP5)-1 136(OCHLP4/OCHLP4)-1 135(OCHLP3/OCHLP3)-1 2
134(OCHLP2/OCHLP2)-1 133(OCHLP1/OCHLP1)-1
PTQX board
Cross-connect module
Client side 201(ClientLP1/ClientLP1)-1
71(ODU2LP1/ODU2LP1)-1
202(ClientLP2/ClientLP2)-1
72(ODU2/LP2/ODU2LP2)-1
203(ClientLP3/ClientLP3)-1
73(ODU2/LP3/ODU2LP3)-1
204(ClientLP4/ClientLP4)-1
74(ODU2/LP4/ODU2LP4)-1 Cross-connect module
ELQX board
Fixed cross-connection between the first ELQX board and the PTQX board in a PID group
1
Fixed cross-connection between the second ELQX board and the PTQX board in a PID group
2
16.5.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the PTQX, refer toTable 16-32.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1748
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-32 PTQX parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: Non-Loopback Channel Loopback
Non-Loopback, Inloop, Outloop
Queries or sets the path Loopback.
Default: Non-Loopback Service Type
10GE LAN, OC-192, OTU-2, OTU-2E, STM-64
The Service Type parameter sets the type of the service accessed at the optical interface on the client side.
Default: 10GE LAN Port Mapping
Bit Transparent Mapping(11.1G), MAC Transparent Mapping (10.7G), Bit Transparent Mapping (10.7G)
The Port Mapping parameter sets and queries the mapping mode of a port service. See D.28 Port Mapping (WDM Interface) for more information.
Default: Bit Transparent Mapping (11.1G) Laser Status
Off, On Default: l WDM side: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
l Client side: Off Automatic Laser Shutdown
Enabled, Disabled Default: l Client side: Enabled
Issue 03 (2013-05-16)
The Automatic Laser Shutdown parameter determines whether to automatically shut down the laser after the signals received by a board are lost.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1749
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
LPT Enabled
Enabled, Disabled
Determines whether to enable the link pass-through (LPT) function.
Default: Disabled Service Mode
Automatic, ODU1, ODU2 Default: Automatic
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: AFEC
Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Actual Wavelength No./Wavelength (nm)/Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.100
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board. See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information.
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780 Default: / Planned Band Type
C, CWDM Default: C
Issue 03 (2013-05-16)
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information.
The Planned Band Type parameter sets the band type of the current working wavelength. See D.26 Planned Band Type (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1750
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
OTN Overhead Transparent Transmission
Enabled, Disabled
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled.
Default: Disabled
NOTE This parameter is valid only when the client side accesses OTN services.
Standard Mode, Speedup Mode
Line Rate
Default: Standard Mode SD Trigger Condition
None, B1_SD, OTUk_DEG, ODUk_PM_DEG Default: None
PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
The Line Rate parameter provides an option to set the OTN line rate. See D.16 Line Rate for more information. The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. See D.31 SD Trigger Condition (WDM Interface) for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
16.5.11 PTQX Specifications The specifications include the optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1751
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Bo ard
Client-Side Fixed Optical Module
Client-Side Pluggable Optical Module
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN 12P TQ X
N/A
10 Gbit/s Multirate-10 km
200 ps/nm-PIDNRZ-PIN
N/A
10 Gbit/s Multirate-40 km 10 Gbit/s Multirate-80 km 10 Gbit/s Single Rate-0.3 km 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Client-Side Pluggable Optical Module Table 16-33 Client-side pluggable optical module specifications (10 Gbit/s services) Parameter
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Line code format
-
NRZ
NRZ
NRZ
NRZ
Optical source type
-
SLM
SLM
SLM
MLM
Target transmissio n distance
-
10 km (6.2 mi.)
40 km (24.9 mi.)
80 km (49.7 mi.)
0.3 km (0.2 mi.)
1530 to 1565
840 to 860
Transmitter parameter specifications at point S Operating wavelength range
Issue 03 (2013-05-16)
nm
1290 to 1330
1530 to 1565
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1752
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
16 PID Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Maximum mean launched power
dBm
-1
2
4
-1.3
Minimum mean launched power
dBm
-6
-4.7
0
-7.3
Minimum extinction ratio
dB
6
8.2
9
3
Maximum -20 dB spectral width
nm
N/A
N/A
N/A
N/A
Minimum side mode suppression ratio
dB
30
30
30
30
Eye pattern mask
-
G.691-compliant
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
PIN
APD
PIN
Operating wavelength range
nm
1260 to 1565
1260 to 1605
1270 to 1600
840 to 860
Receiver sensitivity (multirate)
dBm
-11
-14
-24
-7.5
Receiver sensitivity (10GE LAN)
dBm
-14.4
-15.8
-24
-7.5
Minimum receiver overload (10GE LAN)
dBm
0.5
-1
-7
-1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1753
OptiX OSN 8800/6800/3800 Hardware Description
Parameter
16 PID Board
Unit
Optical Module Type
Value 10 Gbit/s Multirate-10 km
10 Gbit/s Multirate-40 km
10 Gbit/s Multirate-80 km
10 Gbit/s SingleRate-0.3 km
Minimum receiver overload (STM-64)
dBm
-1
-1
-7
-1
Maximum reflectance
dB
-27
-27
-27
-12
Table 16-34 Client-side pluggable optical module specifications (DWDM colored wavelengths) Parameter
Unit
Optical Module Type
Line code format
Value 800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
-
NRZ
Transmitter parameter specifications at point S Maximum mean launched power
dBm
2
Minimum mean launched power
dBm
-3
Minimum extinction ratio
dB
9
Operating frequency range
THz
192.10 to 196.05
Center frequency deviation
GHz
±10
Maximum -20 dB spectral width
nm
0.3
Minimum side mode suppression ratio
dB
35
Dispersion tolerance
ps/nm
800
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity, EOL (FEC on)
dBm
-16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1754
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Parameter
Unit
Value
Optical Module Type
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed Wavelength-NRZPIN-XFP
Minimum receiver overload (FEC on)
dBm
0
Maximum reflectance
dB
-27
WDM-Side Fixed Optical Module Table 16-35 PID optical module specifications Parameter
Unit
Optical Module Type Line code format
Value 200 ps/nm-PID-NRZ-PIN
-
NRZ
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.05
Maximum mean launched power (single wavelength)
dBm
+1
Minimum mean launched power (single wavelength)
dBm
-7
Minimum extinction ratio
dB
6.5
Center frequency deviation
GHz
±5
Maximum -20 dB spectral width
nm
0.8
Minimum side mode suppression ratio
dB
30
Dispersion tolerance
ps/nm
200
Receiver parameter specifications at point R
Issue 03 (2013-05-16)
Receiver type
-
PIN
Operating wavelength range
nm
1200 to 1650
Receiver sensitivity (FEC enabled) EOL
dBm
-10.5
Minimum receiver overload
dBm
0
Maximum reflectance
dB
-27
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1755
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 3 kg (7 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN12PTQX
93.6
107.6
16.6 ENQ2 ENQ2: 4 x 10G Line Service Processing Board
16.6.1 Version Description The available functional version of the ENQ2 board is TN54.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 4EN Q2
Y
Y
Y
N
N
N
16.6.2 Application The ENQ2 board converts 32 channels of ODU0 signals or 16 channels of ODU1 signals or four channels of ODU2/ODU2e signals from the backplane into four OTU2/OTU2e signals. The reverse process is similar.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1756
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Application Scenario 1: 200G system Built with the ENQ2 Board Figure 16-26 200G system built with the ENQ2 board
Client-side service
Clientside service
Clientside service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ Tributary 8xODU2e board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
TN54 ENQ2
4xOTU2/ OTU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
OBU 1P1 TN55 NPO2E
TN55 NPO2E
4xOTU2/ OTU2e
TN54 ENQ2
Client-side service
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
OBU 1P1
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
TN55 NPO2
8xOTU2/ OTU2e
8xOTU2/ OTU2e
TN55 NPO2
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Clientside service
Tributary board
Clientside service
Application Scenario 2: 120G system Built with the ENQ2 Board Figure 16-27 120G system built with the ENQ2 board (TN55NPO2)
Clientside service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
OBU 1P1 TN55 NPO2
Clientside service
Tributary board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Issue 03 (2013-05-16)
TN54 ENQ2
4xOTU2/ OTU2e
Tributary board
Clientside service
TN55 NPO2 OBU 1P1
4xOTU2/ OTU2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TN54 ENQ2
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Tributary board
Clientside service
1757
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-28 120G system built with the ENQ2 board (TN54NPO2) 64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e Tributary board
64xODU0/ 32xODU1/ 8xODU2/ Tributary 8xODU2e board
Clientside service
OA
OA
TN54 NPO2
Clientside service
TN54 ENQ2
Tributary board
TN54 NPO2 OA
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Clientside service
OA
4xOTU2/ OTU2e
4xOTU2/ OTU2e
TN54 ENQ2
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e Tributary board
Clientside service
NOTE
In the preceding application scenarios, the TN55NPO2/TN55NPO2E board is configured with the TN54PQ2 board. If the TN55NPO2/TN55NPO2E board is not configured with the TN54PQ2 board, the TN55NPO2/ TN55NPO2E board can process a maximum of 4 x 10 Gbit/s services. The TN55NPO2ES02 and TN55NPO2ES04 boards apply to transmissions over a distance shorter than or equal to 40 km. The TN55NPO2EL02 and TN55NPO2EL04 boards apply to transmissions over a distance longer than 40 km but shorter than or equal to 80 km. The TN55NPO2L06 board must work with the TN55NPO2EL02 board, or the TN55NPO2L08 board must work with the TN55NPO2EL04 board. The TN55NPO2S06 board must work with the TN55NPO2ES02 board, or the TN55NPO2S08 board must work with the TN55NPO2ES04 board. When the TN55NPO2 board is used in a WDM system, whether OA boards are required or not depends on the fiber distance. If the fiber distance is shorter than 40 km, do not configure an OA board at either the transmit end or the receive end, or configure the TN12OBU1P1 board at the receive end; if the fiber distance ranges from 40 km to 80 km, do not configure an OA board at the transmit end but configure the TN12OBU1P1 board at the receive end.
16.6.3 Functions and Features The ENQ2 supports functions and features such as OTN interfaces and ESC. Table 16-36 provides the details about the functions and features of the ENQ2. Table 16-36 Functions and features of the ENQ2 Function or Feature
Description
Basic function
ENQ2 converts signals as follows: 32 x ODU0/16 x ODU1/4 x ODU2/ ODU2e<->4 x OTU2/OTU2e Supports hybrid transmission of the ODU0, ODU1, and ODU2/ODU2e services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1758
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function or Feature
Description
Cross-connect capabilities
Supports the cross-connection of 32 channels of ODU0 or 16 channels of ODU1 or four channels of ODU2/ODU2e signals between the NPO2 board and the cross-connect board.
OTN function
l Supports the OTN frame format and overhead processing by referring to the ITU-T G.709. l Supports PM function for ODU0. l Supports TCM function for ODU1. l Supports TCM function for ODU2. l Supports PM and TCM non-intrusive monitoring for ODU1.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
supported
PRBS test
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
Optical-layer ASON
Not supported
Electricallayer ASON
Supported
Protection scheme
l Supports ODUk SNCP.
Loopback
WDM side
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
Inloop Outloop
Channel Loopback
Issue 03 (2013-05-16)
Inloop Outloop
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Supported NOTE The TN54ENQ2 board supports WDM-side loopbacks only when working in compatible mode.
Supported NOTE The TN54ENQ2 board supports ODU2 channel loopback only when working in standard mode.
1759
OptiX OSN 8800/6800/3800 Hardware Description
Function or Feature
16 PID Board
Description Client side
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FCLS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FCBB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1760
OptiX OSN 8800/6800/3800 Hardware Description
Function or Feature
16 PID Board
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
16.6.4 Working Principle and Signal Flow The ENQ2 board consists of the signal processing module, the control and communication module, and the power supply module. Figure 16-29 shows the functional modules and signal flow of the ENQ2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1761
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Signal Flow Figure 16-29 Functional modules and signal flow of the ENQ2 32XODU0/16XODU1/ 4XODU2/4XODU2e
Backplane (service cross-connection)
4XOTU2/ 4XOTU2e
Cross-connect module
OTN processing module
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
In the signal flow of the ENQ2 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the WDM side of the ENQ2 to the WDM side of the NPO2/NPO2E, and the receive direction is defined as the reverse direction. l
Transmit direction The ODU0/ODU1/ODU2/ODU2e signals from the backplane are transmitted to the signal processing module. Then, the encapsulation and mapping modules perform encapsulation, mapping, and OTN framing for the signals. Finally, four channels of OTU2/OTU2e signals are transmitted to the NPO2/NPO2E board through the backplane.
l
Receive direction The signal processing module receives four channels of OTU2/OTU2e electrical signals from the NPO2/NPO2E board through the backplane, performs OTU2/OTU2e framing, demapping, and decapsulation for the signals, and finally outputs 32 channels of ODU0 signals or 16 channels of ODU1 signals or four channels of ODU2/ODU2e signals. The signals are cross-connected to other boards through the backplane.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1762
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Module Function l
Signal processing module The module consists of the cross-connect module and OTN processing module. NOTE
The signal processing module on the ENQ2 board has fixed cross-connections to the NPO2/ NPO2E board.
– Cross-connect module Implements the grooming of electrical signals between the NPO2/NPO2E and the crossconnect board through the backplane. The grooming service signals are ODU0/ODU1/ ODU2/ODU2e signals – OTN processing module Frames OTU2 signals and processes overheads in OTU2 signals. l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module on the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied from the backplane into the power required by each module on the board.
16.6.5 Front Panel There are four indicators on the front panel of the ENQ2.
Appearance of the Front Panel Figure 16-30 shows the front panel of the ENQ2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1763
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-30 Front panel of the ENQ2
ENQ2 STAT ACT PROG SRV
ENQ2
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
16.6.6 Valid Slots The ENQ2 occupies one slot. Table 16-37 shows the valid slots for the ENQ2 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1764
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-37 Valid slots for the ENQ2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1, IU5, IU11, IU15, IU19, IU23, IU27, IU31, IU35, IU39, IU45, IU49, IU53, IU57, IU61, IU65
OptiX OSN 8800 T32 subrack
IU1, IU5, IU12, IU16, IU20, IU24, IU29, IU33
OptiX OSN 8800 T16 subrack
IU1, IU5, IU11, IU15
16.6.7 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. The TN54ENQ2 board can work in standard or compatible mode. NOTE
For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode.
l
Figure 16-31 shows the port diagrams of the TN54ENQ2 board in compatible mode. Table 16-38 lists the descriptions of the ports on the board.
l
Figure 16-32 shows the port diagrams of the TN54ENQ2 board in standard mode. Table 16-39 Lists the descriptions of the ports on the board. NOTE
A TN54ENQ2 board can work in only one mode at a time.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1765
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-31 port diagrams for the TN54ENQ2 (compatible mode) Other tributary board/ line board/PID board
Other tributary board/ line board/PID board
Other tributary board/ line board/PID board
Backplane 32 x ODU0
4 x ODU2/ODU2e
16 x ODU1
161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
51 ODU1 (ODU1LP1/ODU1LP1)-1 71 (ODU2LP1/ ODU2 ODU2LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
51 ODU1 (ODU1LP1/ODU1LP1)-4
173 (ODU0LP13/ODU0LP13)-1 173 (ODU0LP13/ODU0LP13)-2
54 ODU1 (ODU1LP4/ODU1LP4)-1
176 (ODU0LP16/ODU0LP16)-1 176 (ODU0LP16/ODU0LP16)-2
54 ODU1 (ODU1LP4/ODU1LP4)-4
74 (ODU2LP4/ ODU2 ODU2LP4)-1
NOTE
There are cross-connections between ports 141 (OCHLP9/OCHLP9)-1 to 144 (OCHLP12/OCHLP12)-1 on the NPO2 board and ports 71 (ODU2LP1/ODU2LP1)-1 to 74 (ODU2LP4/ODU2LP4)-1 on the ENQ2 board. You do not need to configure these cross-connections on the U2000.
Issue 03 (2013-05-16)
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1766
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-38 Description of ports on the TN54ENQ2 (compatible mode) Port Name
Description
ODU0LP1-ODU0LP16
Internal logical ports. The optical paths are numbered 1 and 2.
ODU1LP1-ODU1LP4
Internal logical ports. The optical paths are numbered 1, 2, 3 and 4.
ODU2LP1-ODU2LP4
Internal logical ports. The optical paths are numbered 1.
Figure 16-32 port diagrams for the TN54ENQ2 (standard mode) Backplane
1(IN/OUT)-OCH:(9-12) ODU2:1
4xODU2/ 4XODU2e
ODU2:1
Other tributary board/line board/PID board
1(IN/OUT)-OCH:(9-12)-ODU2:1-ODU1:(1-4) ODU1:1 ODU2:1 ODU1:4 16xODU1 ODU1:1 ODU2:1 ODU1:4
NPO2/ NPO2E
1(IN/OUT)-OCH:(9-12)-ODU2:1-ODU1:(1-4)-ODU0:(1-2) ODU0:1 ODU1:1 ODU0:2 ODU0:1 32xODU0
ODU2:1 ODU1:4
ODU0:2 ODU0:1 ODU0:2 ODU0:1
ODU1:1 ODU2:1 ODU1:4
ODU0:2
NOTE
Service cross-connections of the TN54ENQ2(standard mode) board are configured on the TN55NPO2 or TN55NPO2E board (either in standard mode) using the NMS. If an ODUk channel has been used, cross-connections cannot be configured on any other channels that correspond to the ODUk channel, regardless of the rate level. For example, if channel 1(IN/OUT)-OCH:9ODU2:1-ODU1:1 has been used, cross-connections cannot be configured on channel 1(IN/OUT)-OCH:9ODU2:1 or 1(IN/OUT)-OCH:9-ODU2:1-ODU1:1-ODU0:1. Cross-connect module
Issue 03 (2013-05-16)
ODU1 mapping path
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1767
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board Multiplexing module
ODU2 mapping path
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path
Table 16-39 Description of ports on the TN54ENQ2 (standard mode) Port Name
Description
1(IN/OUT)-OCH:(9–12)-ODU2:1-ODU1: (1–4)-ODU0:(1–2)
Indicates the mapping path for the ODU0 signals that are received through the backplane.
1(IN/OUT)-OCH:(9–12)-ODU2:1-ODU1: (1–4)
Indicates the mapping path for the ODU1 signals that are received through the backplane.
1(IN/OUT)-OCH:(9–12)
Indicates the mapping path for the ODU2/ ODU2e signals that are received through the backplane.
1(IN/OUT)
Indicates the WDM-side port.
16.6.8 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
The ENQ2 board can work in standard or compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. When the ENQ2 board works in standard mode, service cross-connections are configured on the TN55NPO2 or TN55NPO2E board using the NMS. The ODUk services processed by the ENQ2 board are mapped onto OCH9-OCH12 optical channels on the TN55NPO2 or TN55NPO2E board in standard mode. For details, see Configuration of Cross-connection (NPO2) and Configuration of Cross-connection (NPO2E).
ODU0 Cross-Connections Figure 16-33 shows the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1768
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-33 Diagram of cross-connections of the ENQ2 (ODU0 level) Client side
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
Other board a
1
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
ENQ2 board
2 176(ODU0LP16/ODU0LP16)-1 176(ODU0LP16/ODU0LP16)-2
Cross-connect module
WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board b (compatible mode)
Other board c (standard mode)
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the ENQ2 The WDM side of other boards are cross-connected to the WDM side of the ENQ2
Other board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Other board b
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODU1 Cross-Connections Figure 16-34 shows the created ODU1 cross-connections. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1769
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-34 Diagram of cross-connections of the ENQ2 (ODU1 level) Client side
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3ClientLP3)-1
Other board a
1
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4
ENQ2 board
2 54(ODU1LP4/ODU1LP4)-1 54(ODU1LP4/ODU1LP4)-2 54(ODU1LP4/ODU1LP4)-3 54(ODU1LP4/ODU1LP4)-4
Cross-connect module
WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the ENQ2 The WDM side of other boards are cross-connected to the WDM side of the ENQ2
Other board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1770
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
ODU2 Cross-Connections Figure 16-35 shows the created ODU2 cross-connections. Figure 16-35 Diagram of cross-connections of the ENQ2 (ODU2 level) Client side
201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
Other board a
1
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1
ENQ2 board
72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1
2
74(ODU2LP4/ODU2LP4)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
1(IN1/OUT1)-OCH:1-ODU2:1 2(IN2/OUT2)-OCH:1-ODU2:1 3(IN3/OUT3)-OCH:1-ODU2:1 4(IN4/OUT4)-OCH:1-ODU2:1
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the ENQ2 The WDM side of other boards are cross-connected to the WDM side of the ENQ2
Other board a
TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Cross-Connections Between the NPO2/NPO2E and ENQ2 Figure 16-36 shows the cross-connections between the TN55NPO2 and TN54ENQ2. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1771
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-37 shows the cross-connections between the TN54NPO2 and TN54ENQ2. Figure 16-38 shows the cross-connections between the TN55NPO2E and TN54ENQ2. Figure 16-36 Diagram of cross-connections between the TN55NPO2 and TN54ENQ2 WDM side 1(IN/OUT)-OCH:9 1(IN/OUT)-OCH:10 1(IN/OUT)-OCH:11
standard mode
1(IN/OUT)-OCH:12
ENQ2 board
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1 73(ODU2/LP3/ODU2LP3)-1
compatible mode
74(ODU2/LP4/ODU2LP4)-1
Cross-connect module
WDM side 144(OCHLP12/OCHLP12)-1 143(OCHLP11/OCHLP11)-1 142(OCHLP10/OCHLP10)-1 141(OCHLP9/OCHLP9)-1 140(OCHLP8/OCHLP8)-1 compatible mode 139(OCHLP7/OCHLP7)-1 138(OCHLP6/OCHLP6)-1
TN55NPO2 board
133(OCHLP1/OCHLP1)-1 1(IN/OUT)-OCH:12 1(IN/OUT)-OCH:11 1(IN/OUT)-OCH:10 1(IN/OUT)-OCH:9 1(IN/OUT)-OCH:8
standard mode
1(IN/OUT)-OCH:1
The cross-connections between the TN55NPO2 and ENQ2, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1772
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-37 Diagram of cross-connections between the TN54NPO2 and TN54ENQ2 WDM side
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1
ENQ2 board (compatible mode)
73(ODU2/LP3/ODU2LP3)-1 74(ODU2/LP4/ODU2LP4)-1
Cross-connect module WDM side 144(OCHLP12/OCHLP12)-1
TN54NPO2 board (compatible mode)
141(OCHLP9/OCHLP9)-1 140(OCHLP8/OCHLP8)-1 139(OCHLP7/OCHLP7)-1 138(OCHLP6/OCHLP6)-1 133(OCHLP1/OCHLP1)-1 Cross-connect module
The cross-connections between the TN54NPO2 and ENQ2, which does not need to be configured on the NMS
Figure 16-38 Diagram of cross-connections between the TN55NPO2E and TN54ENQ2 WDM side
1(IN/OUT)-OCH:9
ENQ2 board
1(IN/OUT)--OCH:10
(standard mode)
1(IN/OUT)-OCH:11 1(IN/OUT)-OCH:12
Cross-connect module WDM side 1(IN/OUT)-OCH:12 1(IN/OUT)-OCH:9
NPO2E board
1(IN/OUT)-OCH:8
(standard mode)
1(IN/OUT)-OCH:1
Cross-connect module
The cross-connections between the NPO2E and ENQ2, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1773
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Table 16-40 ENQ2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Loopback
Non-Loopback, Inloop, Outloop
Queries or sets the path Loopback.
Default: Non-Loopback Service Mode
Automatic, ODU0, ODU1, ODU2 Default: Automatic
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
OTN Overhead Transparent Transmission
Enabled, Disabled
Line Rate
Standard Mode, Speedup Mode
Default: Disabled
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. Used to configure the line rate of OTN.
Default: Standard Mode PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1774
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Default: Disabled
16.6.10 ENQ2 Specifications The specifications include the dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.9 kg (2.0 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54ENQ2
40
44
16.7 NPO2 NPO2: 12 x OTU2 PID Board
16.7.1 Version Description The available functional versions of the NPO2 board are TN54 and TN55.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1775
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 4NP O2
Y
Y
Y
N
N
N
TN5 5NP O2
Y
Y
Y
N
N
N
Differences Between Versions l
Function: The TN54NPO2 board must work with a dispersion compensation module. The TN55NPO2S board supports 40 km applications without working with a dispersion compensation module. The TN55NPO2L board supports 80 km applications without working with a dispersion compensation module.
l
Appearance: For the front panels of the TN54NPO2 and TN55NPO2, see 16.7.5 Front Panel.
l
Specification: For the specification of each version, see 16.7.11 NPO2 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN54NPO2
TN55NPO2
The TN55NPO2 can be created as TN54NPO2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN55NPO2 functions as the TN54NPO2. NOTE When you substitute a TN55NPO2 for a TN54NPO2 , configure a TN54PQ2, otherwise, the latter four wavelengths cannot be processed.
TN55NPO2
None
-
Type Table 16-41 lists the wavelength numbers and the types of NPO2. Table 16-41 Wavelength assignment table of NPO2
Issue 03 (2013-05-16)
Type of NPO2
Wavelength No. of NPO2
TN54NPO201/TN55NPO2S01
1, 5, 9, 13, 17, 21, 25, 29
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1776
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Type of NPO2
Wavelength No. of NPO2
TN54NPO202/TN55NPO2S02/ TN55NPO2L02/TN55NPO2S0A
2, 6, 10, 14, 18, 22, 26, 30
TN54NPO203/TN55NPO2S03
3, 7, 11, 15, 19, 23, 27, 31
TN54NPO204/TN55NPO2S04/ TN55NPO2L04/TN55NPO2S0B
4, 8, 12, 16, 20, 24, 28, 32
TN54NPO205
49, 53, 57, 61, 65, 69, 73, 77
TN54NPO206/TN55NPO2S06/ TN55NPO2L06
50, 54, 58, 62, 66, 70, 74, 78
TN54NPO207
51, 55, 59, 63, 67, 71, 75, 79
TN54NPO208/TN55NPO2S08/ TN55NPO2L08
52, 56, 60, 64, 68, 72, 76, 80
A PID group that consists of the TN54NPO2, TN55NPO2E, TN54ENQ2, and TN55NPO2 boards, as shown in Table 16-42, Table 16-43, Table 16-44. Table 16-45 lists the wavelength numbers and the relations between the wavelengths and frequencies. Table 16-42 Combinations of wavelengths for the PID group (NPO2E+ENQ2+NPO2) (200G system) Wavelengt h Combinati on No.
Wavelength No. for TN55NPO2E
Wavelength No. for TN54ENQ2
Wavelength No. for TN55NPO2
1
TN55NPO2ES02/ TN55NPO2EL02: 2, 6, 10, 14, 18, 22, 26, 30
34, 38, 42, 46
TN55NPO2S06/ TN55NPO2L06: 50, 54, 58, 62, 66, 70, 74, 78
2
TN55NPO2ES04/ TN55NPO2EL04: 4, 8, 12, 16, 20, 24, 28, 32
36, 40, 44, 48
TN55NPO2S08/ TN55NPO2L08: 52, 56, 60, 64, 68, 72, 76, 80
Table 16-43 Wavelength allocation table of a PID (NPO2+ENQ2) (120G system)
Issue 03 (2013-05-16)
Wavelength Combination No.
Wavelength No. of TN54NPO2/ TN55NPO2
Wavelength No. of TN54ENQ2
1
TN54NPO201/TN55NPO2S01: 1, 5, 9, 13, 17, 21, 25, 29
33, 37, 41, 45
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1777
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Wavelength Combination No.
Wavelength No. of TN54NPO2/ TN55NPO2
Wavelength No. of TN54ENQ2
2
TN54NPO202/TN55NPO2S02/ TN55NPO2L02/TN55NPO2S0A: 2, 6, 10, 14, 18, 22, 26, 30
34, 38, 42, 46
3
TN54NPO203/TN55NPO2S03: 3, 7, 11, 15, 19, 23, 27, 31
35, 39, 43, 47
4
TN54NPO204/TN55NPO2S04/ TN55NPO2L04/TN55NPO2S0B: 4, 8, 12, 16, 20, 24, 28, 32
36, 40, 44, 48
Table 16-44 Wavelength allocation table of a PID (NPO2) (80G system) Wavelength Combination No.
Wavelength No. of TN54NPO2/TN55NPO2
1
TN54NPO201/TN55NPO2S01: 1, 5, 9, 13, 17, 21, 25, 29
2
TN54NPO202/TN55NPO2S02/TN55NPO2L02/TN55NPO2S0A: 2, 6, 10, 14, 18, 22, 26, 30
3
TN54NPO203/TN55NPO2S03: 3, 7, 11, 15, 19, 23, 27, 31
4
TN54NPO204/TN55NPO2S04/TN55NPO2L04/TN55NPO2S0B: 4, 8, 12, 16, 20, 24, 28, 32
5
TN54NPO205: 49, 53, 57, 61, 65, 69, 73, 77
6
TN54NPO206/TN55NPO2S06/TN55NPO2L06: 50, 54, 58, 62, 66, 70, 74, 78
7
TN54NPO207: 51, 55, 59, 63, 67, 71, 75, 79
8
TN54NPO208/TN55NPO2S08/TN55NPO2L08: 52, 56, 60, 64, 68, 72, 76, 80
NOTE
The ENQ2 board must be installed in the left slot next to the slot holding the NPO2 board. Unlike the TN54NPO2, the TN55NPO2S supports DCM-free transmission over short distance and the TN55NPO2L supports DCM-free transmission over long distance. The TN55NPO2 can process four wavelengths. After being equipped with the TN54PQ2 service processing board, it can process four more wavelengths. For example, the TN55NPO2S01 can process only the 1st, 5th, 9th, and 13th wavelengths. However, when it is equipped with the TN54PQ2 service processing board, it can also process the 17th, 21st, 25th, and 29th wavelengths. For the position where the TN54PQ2 should be installed on the TN55NPO2, see 16.7.5 Front Panel. Each type of PID boards must work with specific wavelengths. Therefore, select the required PID boards according to the network planning principles.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1778
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-45 Frequencies and wavelengths of a C-band 80-channel (50 GHz-spaced) system
Issue 03 (2013-05-16)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
1
196.05
1529.16
41
194.05
1544.92
2
196.00
1529.55
42
194.00
1545.32
3
195.95
1529.94
43
193.95
1545.72
4
195.90
1530.33
44
193.90
1546.12
5
195.85
1530.72
45
193.85
1546.52
6
195.80
1531.12
46
193.80
1546.92
7
195.75
1531.51
47
193.75
1547.32
8
195.70
1531.90
48
193.70
1547.72
9
195.65
1532.29
49
193.65
1548.11
10
195.60
1532.68
50
193.60
1548.51
11
195.55
1533.07
51
193.55
1548.91
12
195.50
1533.47
52
193.50
1549.32
13
195.45
1533.86
53
193.45
1549.72
14
195.40
1534.25
54
193.40
1550.12
15
195.35
1534.64
55
193.35
1550.52
16
195.30
1535.04
56
193.30
1550.92
17
195.25
1535.43
57
193.25
1551.32
18
195.20
1535.82
58
193.20
1551.72
19
195.15
1536.22
59
193.15
1552.12
20
195.10
1536.61
60
193.10
1552.52
21
195.05
1537.00
61
193.05
1552.93
22
195.00
1537.40
62
193.00
1553.33
23
194.95
1537.79
63
192.95
1553.73
24
194.90
1538.19
64
192.90
1554.13
25
194.85
1538.58
65
192.85
1554.54
26
194.80
1538.98
66
192.80
1554.94
27
194.75
1539.37
67
192.75
1555.34
28
194.70
1539.77
68
192.70
1555.75
29
194.65
1540.16
69
192.65
1556.15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1779
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
30
194.60
1540.56
70
192.60
1556.55
31
194.55
1540.95
71
192.55
1556.96
32
194.50
1541.35
72
192.50
1557.36
33
194.45
1541.75
73
192.45
1557.77
34
194.40
1542.14
74
192.40
1558.17
35
194.35
1542.54
75
192.35
1558.58
36
194.30
1542.94
76
192.30
1558.98
37
194.25
1543.33
77
192.25
1559.39
38
194.20
1543.73
78
192.20
1559.79
39
194.15
1544.13
79
192.15
1560.20
40
194.10
1544.53
80
192.10
1560.61
16.7.2 Application The NPO2 board is a PID unit. The NPO2 board converts 64 channels of ODU0 signals, 32 channels of ODU1 signals, or 8 channels of ODU2/ODU2e signals into 8 channels of standard WDM wavelength OTU2/OTU2e signals. In addition, the NPO2 board supports hybrid transmission of ODU0, ODU1, and ODU2/ODU2e signals. The NPO2 board receives four OTU2/OTU2e signals from the ENQ2 board through the backplane. Then the NPO2 board multiplexes the four OTU2/OTU2e signals with its own eight OTU2/OTU2e signals into one optical signal for output. The reverse process is similar.
Application Scenario 1: 200G system Built with the NPO2 Board Figure 16-39 200G system built with the NPO2 board
Client-side service
Clientside service
Clientside service
Tributary board
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ Tributary 8xODU2e board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
TO
TN54 ENQ2
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Issue 03 (2013-05-16)
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
4xOTU2/ OTU2e
TN55 NPO2
IN
TO2
OUT RO2
RI
TN55 NPO2E
TN55 NPO2E RI
8xOTU2/ OTU2e
OBU 1P1
OBU 1P1
Tributary board
4xOTU2/ OTU2e
TO
8xOTU2/ OTU2e TO2 IN RO2 OUT
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TN54 ENQ2
TN55 NPO2
Client-side service
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Clientside service
Tributary board
Clientside service
1780
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Application Scenario 2: 120G system Built with the NPO2 Board Figure 16-40 120G system built with the TN55NPO2 board
Clientside service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e OUT
IN
OBU 1P1
TN55 NPO2
Clientside service
Tributary board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
TN55 NPO2 IN
TN54 ENQ2
Clientside service
Tributary board
OUT
OBU 1P1
4xOTU2/ OTU2e
4xOTU2/ OTU2e
TN54 ENQ2
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Tributary board
Clientside service
Figure 16-41 120G system built with the TN54NPO2 board
Clientside service
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e Tributary board
64xODU0/ 32xODU1/ 8xODU2/ Tributary 8xODU2e board OUT
OA TN54 NPO2
Clientside service
IN
OA
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
TN54 ENQ2
Tributary board
OA
OA
IN
OUT
Clientside service
TN54 NPO2
4xOTU2/ OTU2e
4xOTU2/ OTU2e
TN54 ENQ2
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e Tributary board
Clientside service
Application Scenario 3: 80G system Built with the NPO2 Board Figure 16-42 80G system built with the TN55NPO2 board
Clientside service
Issue 03 (2013-05-16)
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e Tributary board
OUT
TN55 NPO2
IN
OBU 1P1
OBU 1P1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
IN
OUT
TN55 NPO2
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Clientside service
1781
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-43 80G system built with the TN54NPO2 board
Client-side service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
OUT
TN54 NPO2
IN
IN
OA
OA
OA
OA
OUT
TN54 NPO2
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Client-side service
NOTE
In the preceding application scenarios, the TN55NPO2/TN55NPO2E board is configured with the TN54PQ2 board. If the TN55NPO2/TN55NPO2E board is not configured with the TN54PQ2 board, the TN55NPO2/ TN55NPO2E board can process a maximum of 4 x 10 Gbit/s services. The TN55NPO2ES02 and TN55NPO2ES04 boards apply to transmissions over a distance shorter than or equal to 40 km. The TN55NPO2EL02 and TN55NPO2EL04 boards apply to transmissions over a distance longer than 40 km but shorter than or equal to 80 km. The TN55NPO2L06 board must work with the TN55NPO2EL02 board, or the TN55NPO2L08 board must work with the TN55NPO2EL04 board. The TN55NPO2S06 board must work with the TN55NPO2ES02 board, or the TN55NPO2S08 board must work with the TN55NPO2ES04 board. When the TN55NPO2 board is used in a WDM system, whether OA boards are required or not depends on the fiber distance. If the fiber distance is shorter than 40 km, do not configure an OA board at either the transmit end or the receive end, or configure the TN12OBU1P1 board at the receive end; if the fiber distance ranges from 40 km to 80 km, do not configure an OA board at the transmit end but configure the TN12OBU1P1 board at the receive end.
16.7.3 Functions and Features The NPO2 provides functions and features such as OTN interfaces and ESC. Table 16-46 provides the details about the functions and features of the NPO2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1782
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-46 Functions and features of the NPO2 Functi on and Featur e
Description
Basic functio n
l 64 x ODU0/32 x ODU1/8 x ODU2<->8 x OTU2 l 8 x ODU2e<->8 x OTU2e l Accesses four channels of OTU2/OTU2e signals from the ENQ2 board, and converts the signals into the standard DWDM wavelengths compliant with ITUT G.694.1. The reverse process is similar. l Integrates twelve channels of OTU2/OTU2e signals into one channel of optical signals. l Unlike the TN54NPO2, the TN55NPO2S supports DCM-free transmission over short distance and the TN55NPO2L supports DCM-free transmission over long distance.
Crossconnec t capabil ities
Supports the cross-connection of 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e signals between the NPO2 board and the crossconnect board.
OTN functio n
l Supports the OTN frame format and overhead processing as defined in the ITUT G.709. l Supports PM function for ODU0. l Supports PM and TCM functions for ODU1. l Supports PM and TCM functions for ODU2. l Supports SM function for OTU2. l Supports PM and TCM non-intrusive monitoring for ODU1.
Issue 03 (2013-05-16)
WDM specifi cation
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC functio n
Supported
PRBS test functio n
Supports the PRBS function on the WDM side.
LPT functio n
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1783
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Functi on and Featur e
Description
FEC encodi ng
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Alarms and perfor mance events monito ring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
IEEE 1588v 2
The TN55NPO2 board supports one channel of IEEE 1588v2 signals.
Physic al clock
The TN55NPO2 board supports this feature only when ODU0 or ODU1 signals are cross-connected from the backplane.
Optical -layer ASON
Not supported
Electri callayer ASON
Only the TN55NPO2 board supports this function.
Protect ion schem e
l Supports ODUk SNCP.
Loopb ack
Board
WDM Side
ODU0 Channel Loopback
ODU1 Channel Loopback
ODU2 Channel Loopback
TN54N P02
Supported
Supported
Supported
Supported
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events.
NOTE For the TN54NPO2 and TN55NPO2 boards (in compatible mode), the IEEE 1588v2 signal can be transmitted through any of the eight optical ports on the board. For the TN55NPO2 board (in standard mode), the IEEE 1588v2 signal must be transmitted through optical port 1.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1784
OptiX OSN 8800/6800/3800 Hardware Description
Functi on and Featur e
16 PID Board
Description
TN55N PO2
Issue 03 (2013-05-16)
Supports WDM-side loopbacks only when working in compatible mode.
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Supported
Supports ODU2 channel loopback only when working in standard mode.
1785
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Functi on and Featur e
Description
Protoc ols or standar ds compli ance
Protocol s or standard s for transpar ent transmis sion (nonperform ance monitori ng)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FC-LS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FCFS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FC-BB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FC-SW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for High-Definition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1786
OptiX OSN 8800/6800/3800 Hardware Description
Functi on and Featur e
16 PID Board
Description
Protocol s or standard s for service processi ng (perform ance monitori ng)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
16.7.4 Working Principle and Signal Flow The NPO2 board consists of the signal processing module, PID module, control and communication module, 1588 module, and power supply module. Figure 16-44 and Figure 16-45 show the functional modules and signal flow of the NPO2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1787
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-44 Functional modules and signal flow of the TN54NPO2 64XODU0/32XODU1/ 8XODU2/8XODU2e
Backplane (service cross-connection)
4XOTU2/ 4XOTU2e
8 Cross-connect module
1588
OTN processing module
8
OUT
PID Module IN
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
1788
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-45 Functional modules and signal flow of the TN55NPO2 64XODU0/32XODU1 /8XODU2/8XODU2e
Cross-connect module 1588
Backplane (service cross-connection)
4XOTU2/4XOTU2e
PQ2 service processing sub-board
8 OTN processing module
8
OUT PID Module IN
Signal processing module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow In the signal flow of the NPO2 board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the backplane of the NPO2 to the WDM side of the NPO2, and the receive direction is defined as the reverse direction. l
Transmit direction The signal processing module receives 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e electrical signals sent from the cross-connection board through the backplane. The module performs operations such as OTN framing, and encoding of FEC/AFEC. Then the module outputs eight channels of OTU2/OTU2e signals to the PID module. The eight channels of OTU2/OTU2e signals and the four channels of OTU2/OTU2e signals sent from the ENQ2 board are integrated into one channel of optical signals, which are finally output through the OUT optical interface.
l
Receive direction The PID module receives one optical signal from the WDM side through the IN optical interfaces. Then, the module converts the optical signal into an electrical signal, and demultiplexes the signal into twelve channels of OTU2/OTU2e signals. Four of the twelve channels OTU2/OTU2e signals are sent to the ENQ2 board, and the remaining eight channels of OTU2/OTU2e signals are transmitted to the signal processing module. Then, the signal processing module performs OTU2/OTU2e framing, and FEC/ AFEC decoding for the signals. Finally, the signal processing module outputs 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e electrical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1789
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
The electrical signals are cross-connected to other boards through the backplane.
Module Function l
PID module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: demultiplexes the WDM-side multiplexed optical signals into twelve channels of optical signals, and then converts the optical signals to electrical signals. – WDM-side transmitter: converts the internal electrical signals into OTU2 optical signals, and integrates twelve channels of signals into one channel of multiplexed signals. – Reports the performance of the WDM-side optical interface. – Reports the working status of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module and OTN processing module. – Cross-connect module Implements the grooming of electrical signals between the NPO2 and the cross-connect board through the backplane. The grooming service signals are ODU0/ODU1/ODU2/ ODU2e signals – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs FEC/AFEC coding and decoding. – PQ2 service processing board Processes 4 x 10 Gbit/s signals that are carried by the last four wavelengths provided on the TN55NPO2 board. NOTE
After installing a PQ2 service processing sub-board onto the TN55NPO2 board that works in standard mode, create the logical PQ2 sub-board on the U2000.
l
1588 module The 1588 module sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extract the clock signal from the service signals that come from a service board according to the IEEE 1588v2 protocol and then send the clock signal to the STG board.
l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module of the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1790
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.7.5 Front Panel There are four indicators, optical interfaces, laser level label, and PQ2 sub-board on the front panel of the NPO2.
Appearance of the Front Panel Figure 16-46 shows the front panel of the TN54NPO2. Figure 16-47 shows the front panel of the TN55NPO2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1791
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-46 Front panel of the TN54NPO2
NPO2 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
OUT
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
IN
NPO2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1792
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-47 Front panel of the TN55NPO2
NPO2
NPO2 STAT ACT PROG SRV
STAT ACT PROG SRV
CLASS 1M LASER PRODUCT
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
CLASS 1M LASER PRODUCT
CAUTION
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT
IN
OUT
IN
PQ2 STAT
NPO2
NPO2
PQ2 installed
PQ2 not installed
NOTE
The TN55NPO2 can process four wavelengths. After being equipped with the TN54PQ2 service processing board, it can process four more wavelengths. For example, the TN55NPO2S01 can process only the 1st, 5th, 9th, and 13th wavelengths. However, when it is equipped with the TN54PQ2 service processing board, it can also process the 17th, 21st, 25th, and 29th wavelengths. For details, see 16.7.1 Version Description.
Indicators There are four indicators on the NPO2 panel. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1793
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
There is one indicator on the TN54PQ2 panel. l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 16-47 lists the type and function of each optical interface. Table 16-47 Types and functions of the NPO2 interfaces Interface
Type
Function
IN
LC
Receives the line signal.
OUT
LC
Transmits the line signal.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
16.7.6 Valid Slots The NPO2 occupies two slots. Table 16-48 shows the valid slots for the NPO2 board. Table 16-48 Valid slots for the NPO2 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU3, IU7, IU13, IU17, IU21, IU25, IU29, IU33, IU37, IU41, IU47, IU51, IU55, IU59, IU63, IU67
OptiX OSN 8800 T32 subrack
IU3, IU7, IU14, IU18, IU22, IU26, IU31, IU35
OptiX OSN 8800 T16 subrack
IU3, IU7, IU13, IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1794
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
NOTE
The back connector of the board is mounted to the backplane along the right slot on the subrack. Therefore, the slot number of the NPO2 board displayed on the NM is the number of the right one of the two occupied slots. For example, if the NPO2 occupies slots IU2 and IU3, the slot number of the NPO2 displayed on the NM is IU3.
16.7.7 Characteristic Code of the NPO2 The characteristic code for the NPO2 consists of six digits, respectively indicating the frequency values of the first channel and the last channel of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 16-49. Table 16-49 Characteristic code for the NPO2 Code
Description
Description
The first three digits
The frequency of optical signal
The last three digits of the frequency value of the first channel of signals on the WDM side.
The last three digits
The frequency of optical signal
The last three digits of the frequency value of the last channel of signals on the WDM side.
For example, the characteristic code for the TN54NPO2 is 605385. l
"605385" indicates the frequency of the first channel of optical signals on the WDM side is 196.05 THz, and the frequency of the last channel of optical signals on the WDM side is 193.85 THz.
16.7.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board.
Display of Physical Ports Table 16-50 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 16-50 Serial numbers of the interfaces on the NPO2 displayed on the NMS
Issue 03 (2013-05-16)
Physical Port
Port Number on the NMS
IN/OUT
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1795
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
NOTE
The number of an interface displayed on the U2000 indicates a pair of physical optical interfaces, of which one is used to transmit signals and the other is used to receive signals.
Logical Ports Logical ports are internal points used to adapt, terminate, and multiplex internal signals of the board. They also can be used as sources or sinks of cross-connections. For example, ODUkLP is a logical port of the board. The TN55NPO2 board can work in standard or compatible mode, and the TN54NPO2 board can work only in compatible mode. NOTE
For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode.
l
Figure 16-48 shows the board model of the TN55NPO2/TN54NPO2 board in compatible mode. Table 16-51 lists the descriptions of the ports on the board.
l
Figure 16-49 shows the board model of the T55NPO2 board in standard mode. Table 16-52 Lists the descriptions of the ports on the board.
Figure 16-48 Diagram of ports on the TN55NPO2/TN54NPO2 (compatible mode) Other tributary board/line board/PID board
Other tributary board/line board/PID board
Other tributary board/line board/PID board Backplane
64 x ODU0 161 (ODU0LP1/ODU0LP1)-1 161 (ODU0LP1/ODU0LP1)-2
8 x ODU2/ODU2e
32 x ODU1 51 ODU1 (ODU1LP1/ODU1LP1)-1
71 (ODU2LP1/ ODU2 ODU2LP1)-1
164 (ODU0LP4/ODU0LP4)-1 164 (ODU0LP4/ODU0LP4)-2
51 ODU1 (ODU1LP1/ODU1LP1)-4
189 (ODU0LP29/ODU0LP29)-1 189 (ODU0LP29/ODU0LP29)-2
58 ODU1 (ODU1LP8/ODU1LP8)-1
133(OCHLP1 /OCHLP1)-1
IN/OUT
192 (ODU0LP32/ODU0LP32)-1 192 (ODU0LP32/ODU0LP32)-2
78 (ODU2LP8/ ODU2 ODU2LP8)-1 58 ODU1 (ODU1LP8/ODU1LP8)-4
140(OCHLP8 /OCHLP8)-1 141(OCHLP9 /OCHLP9)-1 144(OCHLP12 /OCHLP12)-1
Issue 03 (2013-05-16)
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1796
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board Service processing module
Automatic cross-connection, which does not need to be configured on the NMS. For example, if ODU0 signals are required, users only need to configure cross-connections from other boards to the ODU0LP port on the board using the NMS. The board's internal structure enables transmission of the multiplexed signal to the ODU2LP port. Users do not need to configure a cross-connection for transmitting the multiplexed signal.
ODU0 mapping path
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
NOTE
There are cross-connections between ports 141 (OCHLP9/OCHLP9)-1 to 144 (OCHLP12/OCHLP12)-1 on the NPO2 board and ports 71 (ODU2LP1/ODU2LP1)-1 to 74 (ODU2LP4/ODU2LP4)-1 on the ENQ2 board. You do not need to configure these cross-connections on the U2000.
Table 16-51 Description of ports on the TN55NPO2/TN54NPO2 (compatible mode)
Issue 03 (2013-05-16)
Port Name
Description
ODU0LP1-ODU0LP32
Internal logical ports. The optical paths are numbered 1 and 2.
ODU1LP1-ODU1LP8
Internal logical ports. The optical paths are numbered 1, 2, 3 and 4.
ODU2LP1-ODU2LP8
Internal logical ports. The optical paths are numbered 1.
OCHLP1-OCHLP12
Internal logical ports. The optical paths are numbered 1.
IN/OUT
This port corresponds to the WDM-side optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1797
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-49 Diagram of ports on the TN55NPO2 (standard mode)
12xODU2/ 12XODU2e
1(IN/OUT)-OCH:(1-12) ODU2:1
OCH:1
ODU2:1
OCH:12
1(IN/OUT)-OCH:(1-12)-ODU2:1-ODU1:(1-4) ODU1:1 ODU2:1
OCH:1
ODU2:1
OCH:12
Other tributary board/line board/PID board
ODU1:4 48xODU1 ODU1:1 IN/OUT
ODU1:4
ODU0:1
1(IN/OUT)-OCH:(1-12)-ODU2:1-ODU1:(1-4)-ODU0:(1-2) ODU1:1
ODU0:2 ODU0:1
ODU2:1
OCH:1
ODU2:1
OCH:12
ODU1:4
ODU0:2
96xODU0
ODU0:1 ODU0:2 ODU0:1
ODU1:1
ODU1:4
ODU0:2
NOTE
The OCH9 to OCH12 optical channels only receive the signals coming from the TN54ENQ2 board. If an ODUk channel has been used, cross-connections cannot be configured on any other channels that correspond to the ODUk channel, regardless of the rate level. For example, if channel 1(IN/OUT)-OCH:1ODU2:1-ODU1:1 has been used, cross-connections cannot be configured on channel 1(IN/OUT)-OCH:1ODU2:1 or 1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:1. The TN55NPO2 board's OCH5 to OCH8 optical channels are available only when the board works with the TN54PQ2 service processing board.
Issue 03 (2013-05-16)
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1798
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
ODU0 mapping path Table 16-52 Description of ports on the TN55NPO2 (standard mode) Port Name
Description
1(IN/OUT)-OCH:(1–12)-ODU2:1-ODU1: (1–4)-ODU0:(1–2)
Indicates the mapping path for the ODU0 signals that are received through the backplane.
1(IN/OUT)-OCH:(1–12)-ODU2:1-ODU1: (1–4)
Indicates the mapping path for the ODU1 signals that are received through the backplane.
1(IN/OUT)-OCH:(1–12)
Indicates the mapping path for the ODU2/ ODU2e signals that are received through the backplane.
1(IN/OUT)
Indicates the WDM-side port.
16.7.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
The TN55NPO2 board can work in standard or compatible mode, the TN54NPO2 board can work only in compatible mode. For details about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode.
ODU0 Cross-Connections Figure 16-50 and Figure 16-51 show the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1799
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-50 Diagram of cross-connections of the TN55NPO2 (ODU0 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
Other board a
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
compatible mode 192(ODU0LP32/ODU0LP32)-1 192(ODU0LP32/ODU0LP32)-2
1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:2
TN55NPO2 board
1(IN/OUT)-OCH:8-ODU2:1-ODU1:4-ODU0:1 1(IN/OUT)-OCH:8-ODU2:1-ODU1:4-ODU0:2
standard mode
1(IN/OUT)-OCH:9-ODU2:1-ODU1:1-ODU0:1
2 1(IN/OUT)-OCH:12-ODU2:1-ODU1:4-ODU0:2
Cross-connect module WDM side 161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode) 164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Other board c (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the TN55NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN55NPO2
Other board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Other board b TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1800
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-51 Diagram of cross-connections of the TN54NPO2 (ODU0 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
Other board b
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
TN54NPO2 board (compatible mode)
2 192(ODU0LP32/ODU0LP32)-1 192(ODU0LP32/ODU0LP32)-2
Cross-connect module WDM side
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode) 164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board c (standard mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module The client side of other boards are cross-connected to the WDM side of the TN54NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN54NPO2
Other board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Other board b TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODU1 Cross-Connections Figure 16-52 and Figure 16-53 show the created ODU1 cross-connections. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1801
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-52 Diagram of cross-connections of the TN55NPO2 (ODU1 level) Client side 201(ClientLP1/ClientLP1)-1
1
202(ClientLP2/ClientLP2)-1
Other board a
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 58(ODU1LP8/ODU1LP8)-1 58(ODU1LP8/ODU1LP8)-2 58(ODU1LP8/ODU1LP8)-3 58(ODU1LP8/ODU1LP8)-4
TN55NPO2 board
compatible mode
1(IN/OUT)-OCH:1-ODU2:1-ODU1:1 1(IN/OUT)-OCH:1-ODU2:1-ODU1:2 1(IN/OUT)-OCH:1-ODU2:1-ODU1:3 1(IN/OUT)-OCH:1-ODU2:1-ODU1:4
2
1(IN/OUT)-OCH:8-ODU2:1-ODU1:1 1(IN/OUT)-OCH:8-ODU2:1-ODU1:2 1(IN/OUT)-OCH:8-ODU2:1-ODU1:3 1(IN/OUT)-OCH:8-ODU2:1-ODU1:4 1(IN/OUT)-OCH:9-ODU2:1-ODU1:1
standard mode
1(IN/OUT)-OCH:12-ODU2:1-ODU1:4
Cross-connect module WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the TN55NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN55NPO2
Other board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Other board b TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1802
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Figure 16-53 Diagram of cross-connections of the TN54NPO2 (ODU1 level) Client side 201(ClientLP1/ClientLP1)-1
1
202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
Other board a
204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side
TN54NPO2 board (compatible mode)
2
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 58(ODU1LP8/ODU1LP8)-1 58(ODU1LP8/ODU1LP8)-2 58(ODU1LP8/ODU1LP8)-3 58(ODU1LP8/ODU1LP8)-4
Cross-connect module WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the TN54NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN54NPO2
Other board a TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA Other board b TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1803
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
ODU2 Cross-Connections Figure 16-54 and Figure 16-55 show the created ODU2 cross-connections. Figure 16-54 Diagram of cross-connections of the TN55NPO2 (ODU2 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
1
Other board a
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
compatible mode 77(ODU2LP7/ODU2LP7)-1 78(ODU2LP8/ODU2LP8)-1
TN55NPO2 board
1(IN/OUT)-OCH:1-ODU2:1 1(IN/OUT)-OCH:2-ODU2:1 1(IN/OUT)-OCH:7-ODU2:1 1(IN/OUT)-OCH:8-ODU2:1
standard mode
1(IN/OUT)-OCH:9-ODU2:1
2 1(IN/OUT)-OCH:12-ODU2:1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
1(IN1/OUT1)-OCH:1-ODU2:1 2(IN2/OUT2)-OCH:1-ODU2:1 3(IN3/OUT3)-OCH:1-ODU2:1 4(IN4/OUT4)-OCH:1-ODU2:1
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the TN55NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN55NPO2
Other board a TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1804
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Other board b TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Figure 16-55 Diagram of cross-connections of the TN54NPO2 (ODU2 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
1
Other board a
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1
TN54NPO2 board
2
(compatible mode)
77(ODU2LP7/ODU2LP7)-1 78(ODU2LP8/ODU2LP8)-1
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
1(IN1/OUT1)-OCH:1-ODU2:1 2(IN2/OUT2)-OCH:1-ODU2:1 3(IN3/OUT3)-OCH:1-ODU2:1 4(IN4/OUT4)-OCH:1-ODU2:1
Other board b (compatible mode) Other board c (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the TN54NPO2 The WDM side of other boards are cross-connected to the WDM side of the TN54NPO2
Other board a TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX Other board b TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2 Other board c TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1805
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Cross-Connections Between the NPO2 and ENQ2 Figure 16-56 and Figure 16-57 show the created cross-connections between the NPO2 and ENQ2. Figure 16-56 Diagram of cross-connections between the TN55NPO2 and ENQ2 WDM side 1(IN/OUT)-OCH:9 1(IN/OUT)-OCH:10 1(IN/OUT)-OCH:11
standard mode
1(IN/OUT)-OCH:12
ENQ2 board
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1 73(ODU2/LP3/ODU2LP3)-1
compatible mode
74(ODU2/LP4/ODU2LP4)-1
Cross-connect module
WDM side 144(OCHLP12/OCHLP12)-1 143(OCHLP11/OCHLP11)-1 142(OCHLP10/OCHLP10)-1 141(OCHLP9/OCHLP9)-1 140(OCHLP8/OCHLP8)-1 compatible mode 139(OCHLP7/OCHLP7)-1 138(OCHLP6/OCHLP6)-1
TN55NPO2 board
133(OCHLP1/OCHLP1)-1 1(IN/OUT)-OCH:12 1(IN/OUT)-OCH:11 1(IN/OUT)-OCH:10 1(IN/OUT)-OCH:9 1(IN/OUT)-OCH:8
standard mode
1(IN/OUT)-OCH:1
The cross-connections between the TN55NPO2 and ENQ2, which does not need to be configured on the NMS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1806
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-57 Diagram of cross-connections between the TN54NPO2 and ENQ2 WDM side
71(ODU2LP1/ODU2LP1)-1 72(ODU2/LP2/ODU2LP2)-1
ENQ2 board (compatible mode)
73(ODU2/LP3/ODU2LP3)-1 74(ODU2/LP4/ODU2LP4)-1
Cross-connect module WDM side 144(OCHLP12/OCHLP12)-1
TN54NPO2 board (compatible mode)
141(OCHLP9/OCHLP9)-1 140(OCHLP8/OCHLP8)-1 139(OCHLP7/OCHLP7)-1 138(OCHLP6/OCHLP6)-1 133(OCHLP1/OCHLP1)-1 Cross-connect module
The cross-connections between the TN54NPO2 and ENQ2, which does not need to be configured on the NMS
Example of Service Cross-Connections Figure 16-58 shows an example of service cross-connections on the NPO2 board. One board can transmit a hybrid of ODU0, ODU1, ODU2 and ODU2e signals. Figure 16-58 Example of service cross-connections on the NPO2 board ODU0
TOM TOM
ODU0 ODU1 ODU1
NS2
IN/OUT
NPO2
ODU1 ODU2/
TDX/ ODU2e ND2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1807
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.7.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the NPO2, refer to Table 16-53. Table 16-53 NPO2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Channel Loopback
Non-Loopback, Inloop, Outloop
Queries or sets path Loopback.
Default: NonLoopback Service Mode
Automatic, ODU0, ODU1, ODU2 Default: Automatic
Laser Status
Off, On Default: On
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
Issue 03 (2013-05-16)
Specifies the service mode for a board. See D.32 Service Mode (WDM Interface) for more information. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1808
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / Planned Band Type
C, CWDM Default: C
NOTE Only C band is supported.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only C band is supported.
See D.26 Planned Band Type (WDM Interface) for more information. OTN Overhead Transparent Transmission
Enabled, Disabled
Line Rate
Standard Mode, Speedup Mode
Default: Disabled
Default: Standard Mode PRBS Test Status
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. The Line Rate parameter provides an option to set the OTN line rate. See D.16 Line Rate for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1809
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
NULL Mapping Status
Enabled, Disabled
Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
Default: Disabled
16.7.11 NPO2 Specifications The specifications include the optical specifications, dimensions, weight, and power consumption. Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN54NP O2
200 ps/nm-PID-NRZ-PIN
N/A
TN55NP O2
800 ps/nm-PID-NRZ-PIN (40 km)
N/A
1500 ps/nm-PID-NRZ-PIN (80 km)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
WDM-Side Fixed Optical Module Table 16-54 PID optical module specifications Parameter
Unit
Optical Module Type Line code format
-
Value 800 ps/nm-PIDNRZ-PIN (40 km)
1500 ps/nm-PIDNRZ-PIN (80 km)
200 ps/nm-PIDNRZ-PIN
NRZ
NRZ
NRZ
192.10 to 196.05
192.10 to 196.05
Transmitter parameter specifications at point S Center frequency
Issue 03 (2013-05-16)
THz
192.10 to 196.05
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1810
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Parameter
Unit
Optical Module Type
Value 800 ps/nm-PIDNRZ-PIN (40 km)
1500 ps/nm-PIDNRZ-PIN (80 km)
200 ps/nm-PIDNRZ-PIN
Maximum mean launched power (single wavelength)
dBm
+2
+2
+2
Minimum mean launched power (single wavelength)
dBm
-4
-6.5
-6.5
Minimum extinction ratio
dB
6
6
6.5
Center frequency deviation
GHz
±5
±5
±5
Maximum -20 dB spectral width
nm
0.8
0.8
0.8
Minimum side mode suppression ratio
dB
30
30
30
Dispersion tolerance
ps/nm
800
1500
200
Receiver parameter specifications at point R Receiver type
-
PIN
PIN
PIN
Operating wavelength range
nm
1200 to 1650
1200 to 1650
1200 to 1650
Receiver sensitivity (FEC enabled) EOL
dBm
TN55NPO2S01 to TN55NPO2S04: -13.5
-12
-12
3
0
TN55NPO2S06, TN55NPO2S08: -15 TN55NPO2S0A, TN55NPO2S0B: -15
Minimum receiver overload
Issue 03 (2013-05-16)
dBm
3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1811
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Parameter
Unit
Optical Module Type Maximum reflectance
dB
Value 800 ps/nm-PIDNRZ-PIN (40 km)
1500 ps/nm-PIDNRZ-PIN (80 km)
200 ps/nm-PIDNRZ-PIN
-27
-27
-27
Mechanical Specifications TN54NPO2: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.9 kg (4.2 lb.)
TN55NPO2: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.7 kg (3.7 lb.)
TN54PQ2: l
Dimensions of front panel (H x W x D): 57 mm (2.24 in.) x 24.5 mm (0.96 in.) x 68 mm (2.69 in.)
l
Weight: 0.1 kg (0.22 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN54NPO2
134
147
TN55NPO2
143
157.3
TN54PQ2
1.1
1.2
16.8 NPO2E NPO2E: 10G PID line service processing board, 20–channel extended
16.8.1 Version Description The available functional version of the NPO2E board is TN55.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1812
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 5NP O2E
Y
Y
Y
N
N
N
Type The TN55NPO2E board has four types: TN55NPO2ES02, TN55NPO2ES04, TN55NPO2EL02, and TN55NPO2EL04, which process different wavelengths. l
The TN55NPO2ES02/TN55NPO2EL02 board processes wavelengths 2, 6, 10, 14, 18, 22, 26, and 30.
l
The TN55NPO2ES04/TN55NPO2EL04 board processes wavelengths 4, 8, 12, 16, 20, 24, 28, and 32.
A PID group that consists of the TN55NPO2E, TN54ENQ2, and TN55NPO2 boards, as shown in Table 16-55, Table 16-56 and Table 16-57. Table 16-58 lists the mappings between wavelength numbers, wavelengths, and frequencies. Table 16-55 Combinations of wavelengths for the PID group (NPO2E+ENQ2+NPO2)(200G system)
Issue 03 (2013-05-16)
Wavelengt h Combinati on No.
Wavelength No. for TN55NPO2E
Wavelength No. for TN54ENQ2
Wavelength No. for TN55NPO2
1
TN55NPO2ES02/ TN55NPO2EL02: 2, 6, 10, 14, 18, 22, 26, 30
34, 38, 42, 46
TN55NPO2S06/ TN55NPO2L06: 50, 54, 58, 62, 66, 70, 74, 78
2
TN55NPO2ES04/ TN55NPO2EL04: 4, 8, 12, 16, 20, 24, 28, 32
36, 40, 44, 48
TN55NPO2S08/ TN55NPO2L08: 52, 56, 60, 64, 68, 72, 76, 80
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1813
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-56 Combinations of wavelengths for the PID group (NPO2E+ENQ2)(120G system) Waveleng th Combinat ion No.
Wavelength No. for TN55NPO2E
Wavelength No. for TN54ENQ2
1
TN55NPO2ES02/TN55NPO2EL02: 2, 6, 10, 14, 18, 22, 26, 30
34, 38, 42, 46
2
TN55NPO2ES04/TN55NPO2EL04: 4, 8, 12, 16, 20, 24, 28, 32
36, 40, 44, 48
Table 16-57 Combinations of wavelengths for the PID group (NPO2E+ENQ2)(80G system) Wavelengt h Combinati on No.
Wavelength No. for TN55NPO2E
1
TN55NPO2ES02/TN55NPO2EL02: 2, 6, 10, 14, 18, 22, 26, 30
2
TN55NPO2ES04/TN55NPO2EL04: 4, 8, 12, 16, 20, 24, 28, 32
NOTE
The TN55NPO2E can process four wavelengths. After being equipped with the TN54PQ2 service processing board, it can process four more wavelengths. For example, the TN55NPO2EL04 can process only the 4st, 8th, 12th, and 16th wavelengths. However, when it is equipped with the TN54PQ2 service processing board, it can also process the 20th, 24st, 28th, and 32th wavelengths. For the position where the TN54PQ2 should be installed on the TN55NPO2E, see 16.8.5 Front Panel. The TN54ENQ2 board must be installed in the left slot next to the slot holding the TN55NPO2E board. The TN55NPO2E board supports DCM-free transmission over long distance. Each type of PID boards must work with specific wavelengths. Therefore, select the required PID boards according to the network planning principles.
Table 16-58 Frequencies and wavelengths of a C-band 80-channel (50 GHz-spaced) system
Issue 03 (2013-05-16)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
1
196.05
1529.16
41
194.05
1544.92
2
196.00
1529.55
42
194.00
1545.32
3
195.95
1529.94
43
193.95
1545.72
4
195.90
1530.33
44
193.90
1546.12
5
195.85
1530.72
45
193.85
1546.52
6
195.80
1531.12
46
193.80
1546.92
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1814
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
16 PID Board
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
7
195.75
1531.51
47
193.75
1547.32
8
195.70
1531.90
48
193.70
1547.72
9
195.65
1532.29
49
193.65
1548.11
10
195.60
1532.68
50
193.60
1548.51
11
195.55
1533.07
51
193.55
1548.91
12
195.50
1533.47
52
193.50
1549.32
13
195.45
1533.86
53
193.45
1549.72
14
195.40
1534.25
54
193.40
1550.12
15
195.35
1534.64
55
193.35
1550.52
16
195.30
1535.04
56
193.30
1550.92
17
195.25
1535.43
57
193.25
1551.32
18
195.20
1535.82
58
193.20
1551.72
19
195.15
1536.22
59
193.15
1552.12
20
195.10
1536.61
60
193.10
1552.52
21
195.05
1537.00
61
193.05
1552.93
22
195.00
1537.40
62
193.00
1553.33
23
194.95
1537.79
63
192.95
1553.73
24
194.90
1538.19
64
192.90
1554.13
25
194.85
1538.58
65
192.85
1554.54
26
194.80
1538.98
66
192.80
1554.94
27
194.75
1539.37
67
192.75
1555.34
28
194.70
1539.77
68
192.70
1555.75
29
194.65
1540.16
69
192.65
1556.15
30
194.60
1540.56
70
192.60
1556.55
31
194.55
1540.95
71
192.55
1556.96
32
194.50
1541.35
72
192.50
1557.36
33
194.45
1541.75
73
192.45
1557.77
34
194.40
1542.14
74
192.40
1558.17
35
194.35
1542.54
75
192.35
1558.58
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1815
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
Wavelengt h No.
Frequency (THz)
Wavelengt h (nm)
36
194.30
1542.94
76
192.30
1558.98
37
194.25
1543.33
77
192.25
1559.39
38
194.20
1543.73
78
192.20
1559.79
39
194.15
1544.13
79
192.15
1560.20
40
194.10
1544.53
80
192.10
1560.61
16.8.2 Application As a PID board, the NPO2E board performs conversion between 64 x ODU0, 32 x ODU1, or 8 x ODU2 signals that are cross-connected through the backplane and 8 x OTU2 optical signals over standard wavelengths for a WDM system, between 8 x ODU2e signals and 8 x OTU2e optical signals over standard wavelengths for a WDM system. In addition, the NPO2E board receives four OTU2/OTU2e signals from the ENQ2 board through the backplane. Then the NPO2E board multiplexes the four OTU2/OTU2e signals with its own eight OTU2/OTU2e signals into one optical signal for output. Inside the NPO2E board, there is a red/blue band filter, which converges 12 x OTU2/OTU2e signals output by the local NPO2E board and 8 x OTU2/ OTU2e signals output by another NPO2 board into one channel of optical signals for output. It also performs the reverse conversion. In addition, the NPO2E board supports hybrid transmission of ODU0, ODU1, and ODU2/ODU2e signals.
Application Scenario 1: 200G system Built with the TN55NPO2E Board Figure 16-59 200G system built with the TN55NPO2E board
Client-side service
Clientside service
Clientside service
Tributary board
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ Tributary 8xODU2e board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
TO
TN54 ENQ2
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Issue 03 (2013-05-16)
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
TN55 NPO2
4xOTU2/ OTU2e
TN55 NPO2E
OBU 1P1
RI
TN55 NPO2E RI
OBU 1P1
Tributary board
4xOTU2/ OTU2e
TO
8xOTU2/ OTU2e IN TO2
8xOTU2/ OTU2e TO2 IN
OUT RO2
RO2 OUT
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
TN54 ENQ2
TN55 NPO2
Client-side service
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Clientside service
Tributary board
Clientside service
1816
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Application Scenario 2: 120G system Built with the TN55NPO2E Board Figure 16-60 120G system built with the TN55NPO2E board
Clientside service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e TO
OBU 1P1
RI
TN55 NPO2E
Clientside service
Tributary board
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Clientside service
TN55 NPO2E RI
TN54 ENQ2
Tributary board
4xOTU2/ OTU2e
OBU 1P1
TO 4xOTU2/ OTU2e
TN54 ENQ2
32xODU0/ 16xODU1/ 4xODU2/ 4xODU2e
Clientside service
Tributary board
Application Scenario 3: 80G system Built with the TN55NPO2E Board Figure 16-61 80G system built with the TN55NPO2E board
Client-side service
Tributary board
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
TO
TN55 NPO2E
RI
OBU 1P1
OBU 1P1
RI
TO
TN55 NPO2E
64xODU0/ 32xODU1/ 8xODU2/ 8xODU2e
Tributary board
Client-side service
NOTE
In the preceding application scenarios, the TN55NPO2E/TN55NPO2 board is configured with the TN54PQ2 board. If the TN55NPO2E/TN55NPO2 board is not configured with the TN54PQ2 board, the TN55NPO2E/ TN55NPO2 board can process a maximum of 4 x10 Gbit/s services. The TN55NPO2ES02 and TN55NPO2ES04 boards apply to transmissions over a distance shorter than or equal to 40 km. The TN55NPO2EL02 and TN55NPO2EL04 boards apply to transmissions over a distance longer than 40 km but shorter than or equal to 80 km. The TN55NPO2L06 board must work with the TN55NPO2EL02 board, or the TN55NPO2L08 board must work with the TN55NPO2EL04 board. The TN55NPO2S06 board must work with the TN55NPO2ES02 board, or the TN55NPO2S08 board must work with the TN55NPO2ES04 board. When the TN55NPO2E board is used in a WDM system, whether OA boards are required or not depends on the fiber distance. If the fiber distance is shorter than 40 km, do not configure an OA board at either the transmit end or the receive end, or configure the TN12OBU1P1 board at the receive end; if the fiber distance ranges from 40 km to 80 km, do not configure an OA board at the transmit end but configure the TN12OBU1P1 board at the receive end.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1817
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.8.3 Functions and Features The NPO2E provides functions and features such as OTN interfaces and ESC. Table 16-59 provides the details about the functions and features of the NPO2E. Table 16-59 Functions and features of the NPO2E Function and Feature
Description
Basic function
l 64 x ODU0/32 x ODU1/8 x ODU2<->8 x OTU2 l 8 x ODU2e<->8 x OTU2e l Accesses four channels of OTU2/OTU2e signals from the ENQ2 board, and converts the signals into the standard DWDM wavelengths compliant with ITU-T G.694.1. The reverse process is similar. l Integrates twelve channels of OTU2/OTU2e signals into one channel of optical signals. l Converges 12 x OTU2/OTU2e signals output by the local NPO2E board and 8 x OTU2/OTU2e signals output by another NPO2 board into one channel of optical signals for output.
Cross-connect capabilities
Supports the cross-connection of 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e signals between the NPO2E board and the cross-connect board.
OTN function
l Supports the OTN frame format and overhead processing as defined in the ITU-T G.709. l Supports the PM function for ODU0. l Supports the PM and TCM function for ODU1. l Supports the PM and TCM function for ODU2. l Supports the TCM non-intrusive monitoring for ODU1.
WDM specification
Supports ITU-T G.694.1-compliant DWDM specifications.
ESC function
Supported
PRBS test function
Supports the PRBS function on the WDM side.
LPT function
Not supported
FEC encoding
l Supports ITU-T G.709-compliant forward error correction (FEC) on the WDM side. l Supports ITU-T G.975.1-compliant AFEC-2 on the WDM side. NOTE Boards that use different FEC modes cannot interconnect with each other.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1818
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function and Feature
Description
Alarms and performance events monitoring
l Monitors BIP8 bytes (Bursty mode) to help locate line failures.
IEEE 1588v2
The NPO2E board supports one channel of IEEE 1588v2 signals.
l Monitors parameters such as the bias current, temperature, and optical power of the laser. l Monitors OTN alarms and performance events. NOTE The IEEE 1588v2 signal must be transmitted through optical port 1.
Physical clock
The NPO2E board supports this feature only when ODU0 or ODU1 signals are cross-connected from the backplane.
Optical-layer ASON
Not supported
Electrical-layer ASON
Supported
Protection scheme
l Supports ODUk SNCP.
Loopback
Channel Loopback
Inloop
Supported
Outloop
Supported
Client side
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
-
1819
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function and Feature
Description
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
IEEE 802.3u IEEE 802.3z IEEE 802.3ae ITU-T G.707 ITU-T G.782 ITU-T G.783 GR-253-CORE Synchronous Optical Network (SONET) Transport Systems: Common Generic NCITS FIBRE CHANNEL PHYSICAL INTERFACES (FC-PI) NCITS FIBRE CHANNEL LINK SERVICES (FCLS) NCITS FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2) NCITS FIBRE CHANNEL BACKBONE-3 (FCBB-3) NCITS FIBRE CHANNEL SWITCH FABRIC-3 (FCSW-3) NCITS FIBRE CHANNEL - PHYSICAL AND SIGNALING INTERFACE (FC-PH) NCITS FIBRE CHANNEL SINGLE-BYTE COMMAND CODE SETS-2 MAPPING PROTOCOL (FC-SB-2) SMPTE 292M Bit-Serial Digital Interface for HighDefinition Television Systems ETSI TR 101 891 Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) SMPTE 259M 10-Bit 4:2:2 Component and 4fsc Composite Digital Signals - Serial Digital Interface NCITS SBCON Single-Byte Command Code Sets CONnection architecture (SBCON) ANSI X3.139 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Media Access Control (MAC) ANSI X3.148 Information Systems - Fiber Distributed Data Interface (FDDI) - Token Ring Physical Layer Protocol (PHY) ANSI X3.166 Information Systems - Fiber Distributed Data Interface (FDDI) Physical Layer Medium Dependent (PDM)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1820
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Function and Feature
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.805 ITU-T G.806 ITU-T G.709 ITU-T G.872 ITU-T G.7710 ITU-T G.798 ITU-T G.874 ITU-T M.3100 ITU-T G.874.1 ITU-T G.875 ITU-T G.808.1 ITU-T G.841 ITU-T G.8201 ITU-T G.873.1 ITU-T G.694.1
16.8.4 Working Principle and Signal Flow The NPO2E board consists of the signal processing module, PID optical module, control and communication module, IEEE 1588v2 module, red/blue band filter, and power supply module. Figure 16-62 shows the functional modules and signal flow of the NPO2E.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1821
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-62 Functional modules and signal flow of the NPO2E Backplane (service cross-connection) 4XOTU2/ 4XOTU2e
64XODU0/32XODU1/8X ODU2/8XODU2e
8 Crossconnection module 1588 PQ2 service processing sub-board
OUT
PID Module
8
IN
OTN Processing module
T01 R01
Red/blue band filter
Signal processing module
TO RI T02 R02
Control Memory
CPU
Communication
Control and communication module Required voltage
Power supply module Fuse
DC power supply from a backplane
Backplane (controlled by SCC)
SCC
Signal Flow In the signal flow of the NPO2E board, the transmit and the receive directions are defined. The transmit direction is defined as the direction from the backplane of the NPO2E to the WDM side of the NPO2E, and the receive direction is defined as the reverse direction. l
Transmit direction The signal processing module receives 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e electrical signals sent from the cross-connection board through the backplane. The module performs operations such as OTN framing, and encoding of FEC/AFEC. Then the module outputs eight channels of OTU2/OTU2e signals to the PID module. The eight channels of OTU2/OTU2e signals and the four channels of OTU2/OTU2e signals sent from the ENQ2 board are integrated into one channel of optical signals, which are finally output through the OUT optical interface. The red/blue band filter converges 12 x OTU2/OTU2e optical signals output through the OUT port on the PID optical module and 8 x OTU2/OTU2e optical signals output through
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1822
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
the OUT port on another NPO2 board into one channel of optical signals and outputs the signals through the TO port to the WDM side. l
Receive direction The red/blue band filter receives one channel of multiplexed signals through the RI port and demultiplexes the signals into two channels of optical signals. It outputs 12 x OTU2/ OTU2e optical signals through the TO1 port to the IN port on the PID optical module and outputs 8 x OTU2/OTU2e optical signals through the TO2 port to the IN port on another NPO2 board. The PID module receives one optical signal from the WDM side through the IN optical interfaces. Then, the module converts the optical signal into an electrical signal, and demultiplexes the signal into twelve channels of OTU2/OTU2e signals. Four of the twelve channels OTU2/OTU2e signals are sent to the ENQ2 board, and the remaining eight channels of OTU2/OTU2e signals are transmitted to the signal processing module. Then, the signal processing module performs OTU2/OTU2e framing, and FEC/ AFEC decoding for the signals. Finally, the signal processing module outputs 64 channels of ODU0 or 32 channels of ODU1 or eight channels of ODU2/ODU2e electrical signals. The electrical signals are cross-connected to other boards through the backplane. NOTE
The NPO2E board can directly output a multiplexed signal through its OUT port to the WDM side and receive a multiplexed signal through its IN port from the WDM side.
Module Function l
Red/blue band filter – In the transmit direction, it multiplexes one channel of multiplexed optical signals (12 wavelengths are multiplexed) that are output by the NPO2E board and one channel of multiplexed optical signals (8 wavelengths are multiplexed) that are output by another NPO2 board. – In the receive direction, it demultiplexes one channel of multiplexed optical signals (20 wavelengths are multiplexed) from the WDM side and outputs one channel of multiplexed optical signals (12 wavelengths are multiplexed) to the NPO2E board and one channel of multiplexed optical signals (8 wavelengths are multiplexed) to another NPO2 board.
l
PID module The module consists of a WDM-side receiver and a WDM-side transmitter. – WDM-side receiver: demultiplexes the WDM-side multiplexed optical signals into twelve channels of optical signals, and then converts the optical signals to electrical signals. – WDM-side transmitter: converts the internal electrical signals into OTU2 optical signals, and integrates twelve channels of signals into one channel of multiplexed signals. – Reports the performance of the WDM-side optical interface. – Reports the working status of the WDM-side laser.
l
Signal processing module The module consists of the cross-connect module and OTN processing module. – Cross-connect module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1823
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Implements the grooming of electrical signals between the NPO2E and the crossconnect board through the backplane. The grooming service signals are ODU0/ODU1/ ODU2/ODU2e signals – OTN processing module Frames OTU2 signals, processes overheads in OTU2 signals, and performs FEC/AFEC coding and decoding. – PQ2 service processing board Processes 4 x 10 Gbit/s signals that are carried by the last four wavelengths provided on the TN55NPO2E board. NOTE
After installing a PQ2 service processing sub-board onto the TN55NPO2E board that works in standard mode, create the logical PQ2 sub-board on the U2000.
l
Control and communication module – Controls board operations. – Controls the operations on each module of the board according to the instructions from the CPU. – Collects information about alarms, performance events, working status, and voltage detection of each functional module of the board. – Communicates with the SCC board.
l
Power supply module Converts the DC power supplied by the backplane into the power required by each module on the board.
16.8.5 Front Panel There are four indicators, optical interfaces, laser level label, and PQ2 sub-board on the front panel of the NPO2E.
Appearance of the Front Panel Figure 16-63 shows the front panel of the TN55NPO2E.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1824
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-63 Front panel of the TN55NPO2E
NPO2E
NPO2E
STAT ACT PROG SRV
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
T02 R02
T02 R02
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
TO
TO
RI
RI
T01 R01
T01 R01
OUT
IN
OUT
IN
PQ2 STAT
NPO2E
PQ2 installed
NPO2E
PQ2 not installed
NOTE
The TN55NPO2E can process four wavelengths. After being equipped with the TN54PQ2 service processing board, it can process four more wavelengths. For example, the TN55NPO2EL04 can process only the 4st, 8th, 12th, and 16th wavelengths. However, when it is equipped with the TN54PQ2 service processing board, it can also process the 20th, 24st, 28th, and 32th wavelengths. For details, see 16.8.1 Version Description.
Indicators There are four indicators on the TN55NPO2E panel. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1825
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
There is one indicator on the TN54PQ2 panel. l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 16-60 lists the type and function of each optical interface. Table 16-60 Types and functions of the TN55NPO2E interfaces Interface
Type
Function
IN
LC
Receives 12 channels optical signals that are output by the red/blue band filter or line-side multiplexed optical signals.
OUT
LC
Transmits multiplexed optical signals to the line side or the red/blue band filter.
R01
LC
Receives one channel of multiplexed optical signals from the OUT port (12 wavelengths are multiplexed).
T01
LC
Transmits one channel of multiplexed optical signals to the IN port (12 wavelengths are multiplexed).
R02
LC
Receives optical signals that are output by the OUT port on the NPO2 board.
T02
LC
Sends one channel of multiplexed optical signals to the IN port on the NPO2 board (eight wavelengths are multiplexed).
RI
LC
Receives multiplexed optical signals from the line side.
TO
LC
Transmits multiplexed optical signals to the line side.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
16.8.6 Valid Slots The NPO2E occupies two slots. Table 16-61 shows the valid slots for the NPO2E board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1826
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-61 Valid slots for the NPO2E board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU3, IU7, IU13, IU17, IU21, IU25, IU29, IU33, IU37, IU41, IU47, IU51, IU55, IU59, IU63, IU67
OptiX OSN 8800 T32 subrack
IU3, IU7, IU14, IU18, IU22, IU26, IU31, IU35
OptiX OSN 8800 T16 subrack
IU3, IU7, IU13, IU17
NOTE
The back connector of the board is mounted to the backplane along the right slot on the subrack. Therefore, the slot number of the NPO2E board displayed on the NM is the number of the right one of the two occupied slots. For example, if the NPO2E occupies slots IU2 and IU3, the slot number of the NPO2E displayed on the NM is IU3.
16.8.7 Characteristic Code of the NPO2E The characteristic code for the NPO2E consists of six digits, respectively indicating the frequency values of the first channel and the last channel of optical signals on the WDM side. The detailed information about the characteristic code is given in Table 16-62. Table 16-62 Characteristic code for the NPO2E Code
Description
Description
The first three digits
The frequency of optical signal
The last three digits of the frequency value of the first channel of signals on the WDM side.
The last three digits
The frequency of optical signal
The last three digits of the frequency value of the last channel of signals on the WDM side.
For example, the characteristic code for the TN55NPO2E is 600380. l
"600380" indicates the frequency of the first channel of optical signals on the WDM side is 196.00 THz, and the frequency of the last channel of optical signals on the WDM side is 193.80 THz.
16.8.8 Physical and Logical Ports This section describes how the physical ports of the board are displayed on the NMS and the logical ports of the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1827
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Display of Physical Ports Table 16-63 lists the mapping between the physical ports on the board and the port numbers displayed on the NMS. Table 16-63 Mapping between the physical ports on the NPO2E board and the port numbers displayed on the NMS Physical Port
Port Number on the NMS
IN/OUT
1
RI/TO
2
RO1/TO1
3
RO2/TO2
4
NOTE
The number of an interface displayed on the U2000 indicates a pair of physical optical interfaces, of which one is used to transmit signals and the other is used to receive signals.
Logical Ports The NPO2E board can work only in standard mode. Figure 16-64 shows the port diagram. NOTE
For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. NOTE
l If any of the ODU2 channels has been configured with a service, the corresponding ODU1 and ODU0 channels cannot be configured with other services. On the opposite, if the ODU1 and ODU0 channels have been configured with services, the corresponding ODU2 channel cannot be configured with other services. l If any of the ODU1 channels has been configured with a service, the corresponding ODU0 channels cannot be configured with other services. On the opposite, if the ODU0 channels have been configured with services, the corresponding ODU1 channel cannot be configured with other services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1828
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-64 Diagram of ports on the NPO2E
12xODU2/ 12XODU2e
1(IN/OUT)-OCH:(1-12) ODU2:1
OCH:1
ODU2:1
OCH:12
1(IN/OUT)-OCH:(1-12)-ODU2:1-ODU1:(1-4) ODU1:1 ODU2:1
OCH:1
ODU2:1
OCH:12
Other tributary board/line board/PID board
ODU1:4 48xODU1 ODU1:1 IN/OUT
ODU1:4
ODU0:1
1(IN/OUT)-OCH:(1-12)-ODU2:1-ODU1:(1-4)-ODU0:(1-2) ODU1:1
ODU0:2 ODU0:1
ODU2:1
OCH:1
ODU2:1
OCH:12
ODU1:4
ODU0:2
96xODU0
ODU0:1 ODU0:2 ODU0:1
ODU1:1
ODU1:4
ODU0:2
Cross-connect module
ODU1 mapping path
Multiplexing module
ODU2 mapping path
Service processing module
Cross-connection that must be configured on the NMS to receive ODUk signals from other boards
ODU0 mapping path
NOTE
The OCH9 to OCH12 optical channels only receive the signals coming from the TN54ENQ2 board. If an ODUk channel has been used, cross-connections cannot be configured on any other channels that correspond to the ODUk channel, regardless of the rate level. For example, if channel 1(IN/OUT)-OCH:1ODU2:1-ODU1:1 has been used, cross-connections cannot be configured on channel 1(IN/OUT)-OCH:1ODU2:1 or 1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:1. The NPO2E board's OCH5 to OCH8 optical channels are available only when the board works with the TN54PQ2 service processing board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1829
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Table 16-64 Description of ports on the NPO2E Port Name
Description
1(IN/OUT)-OCH:(1–12)-ODU2:1-ODU1: (1–4)-ODU0:(1–2)
Indicates the mapping path for the ODU0 signals that are received through the backplane.
1(IN/OUT)-OCH:(1–12)-ODU2:1-ODU1: (1–4)
Indicates the mapping path for the ODU1 signals that are received through the backplane.
1(IN/OUT)-OCH:(1–12)
Indicates the mapping path for the ODU2/ ODU2E signals that are received through the backplane.
1(IN/OUT)
Indicates the WDM-side port.
16.8.9 Configuration of Cross-connection This section describes how to configure cross-connections on boards using the NMS. After the required cross-connections are configured, services can be added to or dropped from the WDM side, or can be passed through on the WDM side at the local site. l
The side.
cross-connection is used to locally add services to or drop services from the WDM
l
The
cross-connection is used to locally pass through services on the WDM side.
NOTE
The NPO2E board can work only in standard mode. For information about the standard and compatible modes, see 12.2.3 Standard Mode and Compatible Mode. In the cross-connection diagram, "ClientLP" and "ODUkLP" are internal logical ports on the board in compatible mode, and "IN1/OUT1-OCH:1-ODU2:1-ODU1:(1-4)-ODU0:(1-2)" is the signal mapping path of the board in standard mode.
ODU0 Cross-Connections Figure 16-65 shows the created ODU0 cross-connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1830
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-65 Diagram of cross-connections of the NPO2E (ODU0 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1
1
Other board a
203(ClientLP3/ClientLP3)-1 204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side 1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN/OUT)-OCH:1-ODU2:1-ODU1:1-ODU0:2
1(IN/OUT)-OCH:8-ODU2:1-ODU1:4-ODU0:1 1(IN/OUT)-OCH:8-ODU2:1-ODU1:4-ODU0:2
NPO2E board
1(IN/OUT)-OCH:9-ODU2:1-ODU1:1-ODU0:1
2 1(IN/OUT)-OCH:12-ODU2:1-ODU1:4-ODU0:2
Cross-connect module WDM side
161(ODU0LP1/ODU0LP1)-1 161(ODU0LP1/ODU0LP1)-2
Other board b (compatible mode) 164(ODU0LP4/ODU0LP4)-1 164(ODU0LP4/ODU0LP4)-2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1-ODU0:2
Other board c (standard mode) 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4-ODU0:2
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NPO2E The WDM side of other boards are cross-connected to the WDM side of the NPO2E
Other board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Other board b
TN52ND2 / TN53ND2 / TN52NQ2 / TN54NQ2 / TN53NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
ODU1 Cross-Connections Figure 16-66 shows the created ODU1 cross-connections. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1831
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Figure 16-66 Diagram of cross-connections of the NPO2E (ODU1 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
1
Other board a
204(ClientLP4/ClientLP4)-1
Cross-connect module WDM side
1(IN/OUT)-OCH:1-ODU2:1-ODU1:1 1(IN/OUT)-OCH:1--ODU2:1-ODU1:2 1(IN/OUT)-OCH:1-ODU2:1-ODU1:3 1(IN/OUT)-OCH:1-ODU2:1-ODU1:4
NPO2E board
1(IN/OUT)-OCH:8-ODU2:1-ODU1:1 1(IN/OUT)-OCH:8-ODU2:1-ODU1:2 1(IN/OUT)-OCH:8-ODU2:1-ODU1:3 1(IN/OUT)-OCH:8-ODU2:1-ODU1:4
2
1(IN/OUT)-OCH:9-ODU2:1-ODU1:1
1(IN/OUT)-OCH:12-ODU2:1-ODU1:4
Cross-connect module WDM side
51(ODU1LP1/ODU1LP1)-1 51(ODU1LP1/ODU1LP1)-2 51(ODU1LP1/ODU1LP1)-3 51(ODU1LP1/ODU1LP1)-4 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:1 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:2 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:3 1(IN1/OUT1)-OCH:1-ODU2:1-ODU1:4
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module
The client side of other boards are cross-connected to the WDM side of the NPO2E The WDM side of other boards are cross-connected to the WDM side of the NPO2E
Other board a
TN54TEM28 / TN52TOG / TN52TOM / TN54THA / TN54TOA
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1832
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
ODU2 Cross-Connections Figure 16-67 shows the created ODU2 cross-connections. Figure 16-67 Diagram of cross-connections of the NPO2E (ODU2 level) Client side 201(ClientLP1/ClientLP1)-1 202(ClientLP2/ClientLP2)-1 203(ClientLP3/ClientLP3)-1
Other board a
1
204(ClientLP4/ClientLP4)-1
Cross-connect module
WDM side
1(IN/OUT)-OCH:1 1(IN/OUT)-OCH:2 1(IN/OUT)-OCH:7 1(IN/OUT)-OCH:8
NPO2E board
1(IN/OUT)-OCH:9
2 1(IN/OUT)-OCH:12
Cross-connect module
WDM side 71(ODU2LP1/ODU2LP1)-1 72(ODU2LP2/ODU2LP2)-1 73(ODU2LP3/ODU2LP3)-1 74(ODU2LP4/ODU2LP4)-1
1(IN1/OUT1)-OCH:1-ODU2:1 2(IN2/OUT2)-OCH:1-ODU2:1 3(IN3/OUT3)-OCH:1-ODU2:1 4(IN4/OUT4)-OCH:1-ODU2:1
Other board b (compatible mode)
Other board c (standard mode)
Cross-connect module The client side of other boards are cross-connected to the WDM side of the NPO2E The WDM side of other boards are cross-connected to the WDM side of the NPO2E
Other board a
TN52TDX / TN54TEM28 / TN53TDX / TN55TQX / TN52TQX / TN53TQX / TN54TTX
Other board b
TN52ND2 / TN53ND2 / TN53NQ2 / TN52NQ2 / TN54NQ2 / TN53NS2 / TN52NS2 / TN52NS3 / TN54NS3 / TN54NPO2 / TN55NPO2 / TN54ENQ2
Other board c
TN52ND2T04 / TN53ND2 / TN55NO2 / TN52NS2T04 / TN52NS2T05 / TN52NS2T06 / TN52NS201M01 / TN52NS201M02 / TN53NS2 / TN54NS3 / TN55NS3 / TN54NS4 / TN53NQ2 / TN55NPO2 / TN55NPO2E / TN54ENQ2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1833
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Cross-Connections Between the NPO2E and ENQ2 Figure 16-68 shows the created cross-connections between the NPO2E and ENQ2. Figure 16-68 Diagram of cross-connections between the NPO2E and ENQ2 WDM side
1(IN/OUT)-OCH:9
ENQ2 board
1(IN/OUT)--OCH:10
(standard mode)
1(IN/OUT)-OCH:11 1(IN/OUT)-OCH:12
Cross-connect module WDM side 1(IN/OUT)-OCH:12 1(IN/OUT)-OCH:9
NPO2E board
1(IN/OUT)-OCH:8
(standard mode)
1(IN/OUT)-OCH:1
Cross-connect module
The cross-connections between the NPO2E and ENQ2, which does not need to be configured on the NMS
Example of Service Cross-Connections Figure 16-69 shows an example of service cross-connections on the NPO2E board. One board can transmit a hybrid of ODU0, ODU1, and ODU2/ODU2e signals. Figure 16-69 Example of service cross-connections on the NPO2E board ODU0
TOM TOM
ODU0 ODU1
TN55
NS2
ODU1 NPO2E ODU1
IN/OUT
ODU2/
TDX/ ODU2e ND2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1834
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
16.8.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the NPO2E, refer to Table 16-65. Table 16-65 NPO2E parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Channel Use Status
Used, Unused Default: Used
Channel Loopback
Non-Loopback, Inloop, Outloop
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information. Queries or sets path Loopback.
Default: NonLoopback Laser Status
Off, On Default: On
FEC Working State
Enabled, Disabled Default: Enabled
FEC Mode
FEC, AFEC Default: FEC
Issue 03 (2013-05-16)
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information. Determines whether to enable or disable the forward error correction (FEC) function for an optical interface. See D.10 FEC Working State (WDM Interface) for more information. The FEC Mode parameter sets the FEC mode of the current optical interface. See D.9 FEC Mode (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Band Type
-
Queries the band type.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1835
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Field
Value
Description
Tunable Wavelength Range
-
Displays the tunable wavelength range supported by the WDM-side optical interface on the board.
Planned Wavelength No./Wavelength (nm)/ Frequency (THz)
l C: 1/1529.16/196.050 to 80/1560.61/192.10 0
The Planned Wavelength No./ Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
l CWDM: 11/1471.00/208.17 0 to 18/1611.00/188.78 0 Default: / OTN Overhead Transparent Transmission
Enabled, Disabled
Line Rate
Standard Mode, Speedup Mode
Default: Disabled
Default: Standard Mode PRBS Test Status
Enabled, Disabled Default: Disabled
NULL Mapping Status
Enabled, Disabled Default: Disabled
NOTE Only C band is supported.
See D.27 Planned Wavelength No./ Wavelength (nm)/Frequency (THz) (WDM Interface) for more information. Determines whether to process GCC1 and GCC2 in OTN overheads. If the processing is not required, set this parameter to Enabled; otherwise, set it to Disabled. The Line Rate parameter provides an option to set the OTN line rate. See D.16 Line Rate for more information. The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. See D.29 PRBS Test Status (WDM Interface) for more information. Determines whether to enable the special frame test before deployment. When this parameter is set to Enabled, the board sends the test frame where the payload consists of only 0. This parameter is used in the deployment commissioning.
16.8.11 NPO2E Specifications The specifications include the optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1836
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Board
WDM-Side Fixed Optical Module
WDM-Side Pluggable Optical Module
TN55NP O2E
800 ps/nm-PID-NRZ-PIN (40 km)
N/A
1500 ps/nm-PID-NRZ-PIN (80 km)
NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Specifications of Optical Modules on the DWDM Side Table 16-66 PID optical module specifications Parameter
Unit
Optical Module Type Line code format
-
Value 800 ps/nm-PID-NRZPIN (40 km)
1500 ps/nm-PID-NRZPIN (80 km)
NRZ
NRZ
Transmitter parameter specifications at point S Center frequency
THz
192.10 to 196.05
192.10 to 196.05
Maximum mean launched power (single wavelength)
dBm
+2
+2
Minimum mean launched power (single wavelength)
dBm
-4
-6.5
Minimum extinction ratio
dB
6
6
Center frequency deviation
GHz
±5
±5
Maximum -20 dB spectral width
nm
0.8
0.8
Minimum side mode suppression ratio
dB
30
30
Dispersion tolerance
ps/nm
800
1500
Receiver parameter specifications at point R Receiver type
Issue 03 (2013-05-16)
-
PIN
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
PIN
1837
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Parameter
Unit
Optical Module Type
Value 800 ps/nm-PID-NRZPIN (40 km)
1500 ps/nm-PID-NRZPIN (80 km)
Operating wavelength range
nm
1200 to 1650
1200 to 1650
Receiver sensitivity (FEC enabled) EOL
dBm
-15
-12
Minimum receiver overload
dBm
3
3
Maximum reflectance
dB
-27
-27
Table 16-67 Specifications of the red and blue band filters on the TN55NPO2E board Item
Unit
Value
Working wavelength in the C band
nm
1528 to 1561
Working wavelength in the blue band (T01/R01)
THz
196.0 to 193.8
Working wavelength in the red band (T02/R02)
THz
193.6 to 191.4
Demultiplexing loss (RI->T01, RI->T02)
dB
≤1
Multiplexing loss (R01–>T0, R02->T0)
dB
≤1
Isolation between red and blue bands
dB
≥ 13
Mechanical Specifications TN55NPO2E: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.7 kg (3.75 lb.)
TN54PQ2: l
Dimensions of front panel (H x W x D): 57 mm (2.24 in.) x 24.5 mm (0.96 in.) x 68 mm (2.69 in.)
l
Weight: 0.1 kg (0.22 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1838
OptiX OSN 8800/6800/3800 Hardware Description
16 PID Board
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN55NPO2E
143
157.3
TN54PQ2
1.1
1.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1839
OptiX OSN 8800/6800/3800 Hardware Description
17
17 Optical Multiplexer and Demultiplexing Board
Optical Multiplexer and Demultiplexing Board
About This Chapter 17.1 Overview Optical multiplexer/demultiplexer boards multiplex/demultiplex optical signals over different wavelengths. 17.2 M40 M40: 40-channel multiplexing board 17.3 M40V M40V: 40-channel multiplexing board with VOA 17.4 D40 D40: 40-channel demultiplexing board 17.5 D40V D40V: 40-channel demultiplexing board with VOA 17.6 DFIU DFIU: bidirectional fiber interface board 17.7 FIU FIU: fiber interface unit 17.8 ITL ITL: interleaver board 17.9 SFIU SFIU: fiber interface unit for sync timing
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1840
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
17.1 Overview Optical multiplexer/demultiplexer boards multiplex/demultiplex optical signals over different wavelengths.
Positions of Optical Multiplexer/Demultiplexer Boards in a WDM System Optical multiplexer boards multiplex multiple optical signals into one ITU-T G.694-compliant optical signal. Optical demultiplexer boards demultiplex one multiplexed optical signal into individual ITU-T G.694-compliant optical signals. Figure 17-1 shows the positions of optical multiplexer/demultiplexer boards in a WDM system. Figure 17-1 Positions of optical multiplexer/demultiplexer boards in a WDM system Client-side services
WDM-side services
OTU OTU
OM (C-ODD)
OTU
OTU OTU
OA
OTU ITL
OSC
FIU/ SFIU
OTU OTU
OD (C-ODD)
WDM-side ODF
Client-side equipment
OM (C-EVEN)
OA
OTU OTU OTU
OD (C-EVEN)
OTU
Main Functions Table 17-1 lists the main functions of optical multiplexer/demultiplexer boards. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1841
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-1 Main functions of optical multiplexer/demultiplexer boards Board
Function
M40
Multiplexes a maximum of 40 C-band wavelength signals into one multi-wavelength signal.
M40V
Multiplexes a maximum of 40 C-band wavelength signals into one multi-wavelength signal and adjusts the optical power for each wavelength.
D40
Demultiplexes one C-band multi-wavelength signal into a maximum of 40 wavelength signals.
D40V
Demultiplexes one C-band multi-wavelength signal into a maximum of 40 wavelength signals and adjusts the optical power for each wavelength.
ITL
Multiplexes and demultiplexes C-band optical signals with 100 GHz channel spacing and Cband optical signals with 50 GHz channel spacing.
FIU
Multiplexes the main channel signal and the OSC signal onto a single communications channel in one optical direction, and performs the reverse process.
DFIU
Multiplexes the main channel signal and the OSC signal onto a single communications channel in two optical directions, and performs the reverse process.
SFIU
Multiplexes the main channel signal and the OSC signal onto a single communications channel in one optical direction, and performs the reverse process. This board applies to IEEE 1588v2 scenarios.
17.2 M40 M40: 40-channel multiplexing board
17.2.1 Version Description The available functional versions of the M40 board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M4 0
Y
Y
Y
Y
Y
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1842
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2M4 0
Y
Y
Y
Y
Y
N
Type Unit
Type
Description
TN11M4 0/ TN12M4 0
01
Multiplexes 40 C_EVEN channels into one main path.
02
Multiplexes 40 C_ODD channels into one main path.
Differences Between Versions Appearance: l
The TN11M40 board uses a front panel different from that of the TN12M40 board. The TN11M40 board occupies three slots. The TN12M40 board occupies two slots. For details, see 17.2.5 Front Panel.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11M40
TN12M40
The TN12M40 board can be created as TN11M40 on the NMS. The former can substitute for the latter without any software upgrade. After the substitution, the TN12M40 board functions as the TN11M40 board. The TN12M40 board occupies two physical slots and three logical slots while the TN11M40 board occupies three physical slots. After the substitution, the remaining one physical slot cannot be used to house any other board.
TN12M40
None
-
17.2.2 Application As a type of optical multiplexing unit, the M40 board multiplexes a maximum of 40 channels of signals into one channel of signals that comply with ITU-T Recommendations. For the position of the M40 board in the WDM system, see Figure 17-2. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1843
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-2 Position of the M40 board in the WDM system OTU OTU
OTU OTU
1
1 M40
OA
OA
D40
40
40
1
1 D40
OA
OA
M40 40
40
OTU OTU
OTU OTU
17.2.3 Functions and Features The M40 board is mainly used to multiplex signals, monitor performance of optical signals, and monitor alarms and performance events. For detailed functions and features, refer to Table 17-2. Table 17-2 Functions and features of the M40 board Function and Feature
Description
Basic function
Multiplexes a maximum of 40 channels of signals into one channel of multiplexed signals. l Multiplexes 40 C_EVEN channels into one main path. l Multiplexes 40 C_ODD channels into one main path.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical-layer ASON
Supported
17.2.4 Working Principle and Signal Flow The M40 board consists of the optical module, detection and temperature control module, control and communication module, and power supply module. Figure 17-3 shows the functional modules and signal flow of the M40 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1844
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-3 Functional modules and signal flow of the M40 board
M01 M02
Multiplexer
Optical module Splitter OUT
M40
MON Temperature Temperature control detection
PIN
Detection and temperature control module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (Controlled by SCC) SCC
Signal Flow Each of the M01-M40 optical interfaces receives one channel of single-wavelength optical signals, and sends the signals to the multiplexer. The multiplexer multiplexes the 40 channels of single-wavelength optical signals into one channel of multiplexed optical signals, and then outputs them through the OUT optical interface.
Module Function l
Optical module – Multiplexes the 40 channels of single-wavelength optical signals into one channel of multiplexed optical signals. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Detection and temperature control module – Monitors and controls in real time the multiplexer operating temperature. – Detects in real time the output optical power of service signals.
l
Control and communication module – Controls operations on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1845
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
– Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.2.5 Front Panel There are indicators and interfaces on the front panel of the M40 board.
Appearance of the Front Panel Figure 17-4 and Figure 17-5 show the front panel of the M40 board. Figure 17-4 Front panel of the TN11M40 board
M40 STAT ACT PROG SRV
M01 M02 M 03 M 04 M 05 M 06 M 07 M 08 M09 M10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
M 11 M12 M13 M14 M15 M16 M17 M18 M19 M20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
M29 M30 M31 M33 M34 M35 M36 M37 M39 M40
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
M32
M27 M28
M25 M26
M38
M11 M12
M23 M24
M09 M10
M21 M22
M07 M08
M20
M05 M06
M19
M04
M17 M18
M03
M15 M16
M01 M02
M13 M14
MON OUT
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10
M40
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1846
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
17 Optical Multiplexer and Demultiplexing Board
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1847
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-5 Front panel of the TN12M40 board
M40 STAT ACT PROG SRV
M13
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12
MON 194.80 193.40 OUT 194.70 193.30 196.00 194.60 193.20 195.90 194.50 193.10 195.80 194.40 193.00 195.70 194.30 192.90 195.60 194.20 192.80 195.50 194.10 192.70 195.40 194.00 192.60 195.30 193.90 192.50 195.20 193.80 192.40 195.10 193.70 192.30 195.00 193.60 192.20 194.90 193.50 192.10 M26
M27 M28
M13
M29 M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
M01 M02 M03 M04 M05 M06
M07 M08
M09 M10 M11 M12
MON
194.80
193.40
OUT OUT
194.70
193.30
196.00
194.60
193.20
195.90
194.50
193.10
195.80
194.40
193.00
195.70
194.30
192.90
195.60
194.20
192.80
195.50
194.10
192.70
195.40
194.00
192.60
195.30
193.90
192.50
195.20
193.80
192.40
195.10
193.70
192.30
195.00
193.60
192.20
194.90
193.50
192.10
M27 M28 M29 M30 M31 M32 M33 M34
M35 M36 M37 M38 M39 M40
M26
M40
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1848
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
NOTE
A table indicating the mapping relationship between interfaces and frequencies is located on the front panel.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 17-3 lists the type and function of each interface. Table 17-3 Types and functions of the interfaces on the M40 board Interface
Type
Function
M01-M40
LC
Receives the signals to be multiplexed, when connected to the "OUT" interface of the OTUs.
OUT
LC
Transmits multiplexed signals, when connected to an optical amplifying board or ITL.
MON
LC
Accomplishes online monitoring of optical spectrum, when connected to the input interface of the MCA4, MCA8 or OPM8. The MON port is a 10/90 tap of the total composite signal at the OUT port (10dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmon (dBm) = 10 x lg(90/10) = 10 dB).
Table 17-4 and Table 17-5 show the mapping between the interfaces, frequency and wavelengths of the M40 board. Table 17-4 Mapping between the optical interfaces, frequencies, and wavelengths of the M4001 board (C_EVEN)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.00
1529.55
M21
194.00
1545.32
M02
195.90
1530.33
M22
193.90
1546.12
M03
195.80
1531.12
M23
193.80
1546.92
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1849
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M04
195.70
1531.90
M24
193.70
1547.72
M05
195.60
1532.68
M25
193.60
1548.51
M06
195.50
1533.47
M26
193.50
1549.32
M07
195.40
1534.25
M27
193.40
1550.12
M08
195.30
1535.04
M28
193.30
1550.92
M09
195.20
1535.82
M29
193.20
1551.72
M10
195.10
1536.61
M30
193.10
1552.52
M11
195.00
1537.40
M31
193.00
1553.33
M12
194.90
1538.19
M32
192.90
1554.13
M13
194.80
1538.98
M33
192.80
1554.94
M14
194.70
1539.77
M34
192.70
1555.75
M15
194.60
1540.56
M35
192.60
1556.55
M16
194.50
1541.35
M36
192.50
1557.36
M17
194.40
1542.14
M37
192.40
1558.17
M18
194.30
1542.94
M38
192.30
1558.98
M19
194.20
1543.73
M39
192.20
1559.79
M20
194.10
1544.53
M40
192.10
1560.61
Table 17-5 Mapping between the optical interfaces, frequencies, and wavelengths of the M4002 board (C_ODD)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.05
1529.16
M21
194.05
1544.92
M02
195.95
1529.94
M22
193.95
1545.72
M03
195.85
1530.72
M23
193.85
1546.52
M04
195.75
1531.51
M24
193.75
1547.32
M05
195.65
1532.29
M25
193.65
1548.11
M06
195.55
1533.07
M26
193.55
1548.91
M07
195.45
1533.86
M27
193.45
1549.72
M08
195.35
1534.64
M28
193.35
1550.52
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1850
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M09
195.25
1535.43
M29
193.25
1551.32
M10
195.15
1536.22
M30
193.15
1552.12
M11
195.05
1537.00
M31
193.05
1552.93
M12
194.95
1537.79
M32
192.95
1553.73
M13
194.85
1538.58
M33
192.85
1554.54
M14
194.75
1539.37
M34
192.75
1555.34
M15
194.65
1540.16
M35
192.65
1556.15
M16
194.55
1540.95
M36
192.55
1556.96
M17
194.45
1541.75
M37
192.45
1557.77
M18
194.35
1542.54
M38
192.35
1558.58
M19
194.25
1543.33
M39
192.25
1559.39
M20
194.15
1544.13
M40
192.15
1560.20
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
17.2.6 Valid Slots Three slots house one TN11M40 board and two slots house one TN12M40 board. Table 17-6 shows the valid slots for the TN11M40 board and Table 17-7 shows the valid slots for the TN12M40 board. Table 17-6 Valid slots for the TN11M40 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27-IU32, IU35IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU11-IU17, IU20-IU25, IU29-IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1851
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN11M40 board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1, IU2, and IU3 house the TN11M40 board, the slot number of the TN11M40 board displayed on the NM is IU1. Table 17-7 Valid slots for the TN12M40 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN12M40 board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1 and IU2 house the TN12M40 board, the slot number of the TN12M40 board displayed on the NM is IU1.
17.2.7 Characteristic Code for the M40 The characteristic code for the M40 board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table 17-8. Table 17-8 Characteristic code for the M40 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1852
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
For example, the characteristic code for the TN11M40 board is CE, indicating C band and even wavelengths.
17.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-9. Table 17-9 Serial numbers of the interfaces of the M40 board displayed on the NM Interface on the Panel
Interface on the NM
OUT
1
M01-M40
2-41
MON
42
17.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For M40 parameters, refer to Table 17-10. Table 17-10 M40 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Configure Band
C
An optical interface name contains a maximum of 64 characters. Any characters are supported. Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1853
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
17.2.10 M40 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-11 lists the optical specifications of the M40 board. Table 17-11 Optical specifications of the M40 board Item
Unit
Value
Adjacent channel spacing
GHz
100
Insertion loss
dB
≤ 6.5
Reflectance
dB
< -40
Operating wavelength range
nm
1529-1561
Adjacent channel isolation
dB
> 22
Non-adjacent channel isolation
dB
> 25
Polarization dependence loss
dB
≤ 0.5
Temperature characteristics
nm/°C
≤ 0.002
Maximum channel insertion loss difference
dB
≤3
Mechanical Specifications l
Dimensions of front panel: – TN11M40 (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.) – TN12M40 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11M40: 2.2 kg ( 4.8 lb.) – TN12M40: 2.0 kg ( 4.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1854
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11M40
10.0
13.0
TN12M40
10.0
13.0
17.3 M40V M40V: 40-channel multiplexing board with VOA
17.3.1 Version Description The available functional versions of the M40V board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M4 0V
Y
Y
Y
Y
Y
N
TN1 2M4 0V
Y
Y
Y
Y
Y
N
Type Unit
Type
Description
TN11M4 0V/ TN12M4 0V
01
Multiplexes 40 C_EVEN channels into one main path.
02
Multiplexes 40 C_ODD channels into one main path.
Differences Between Versions Appearance: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1855
OptiX OSN 8800/6800/3800 Hardware Description
l
17 Optical Multiplexer and Demultiplexing Board
The TN11M40V board uses a front panel different from that of the TN12M40V board. The TN11M40V board occupies three slots. The TN12M40V board occupies two slots. For details, see 17.3.5 Front Panel.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11M40V
TN12M40 V
The TN12M40V can be created as TN11M40V on the NMS. The former can substitute for the latter, without any software upgrade. After the substitution, the TN12M40V board functions as the TN11M40V board. The TN12M40V board occupies two physical slots and three logical slots while the TN11M40V board occupies three physical slots. After the substitution, the remaining one physical slot cannot be used to house any other board.
TN12M40V
None
-
17.3.2 Application As a type of optical multiplexing unit, the M40V board multiplexes a maximum of 40 channels of signals into one channel of signals that comply with ITU-T Recommendations, and adjusts the input optical power of each channel. For the position of the M40V board in the WDM system, see Figure 17-6. Figure 17-6 Position of the M40V board in the WDM system OTU OTU
OTU OTU
1
1 M40V
OA
OA
D40
40
40
1
1 D40
OA
OA
M40V 40
40
OTU OTU
OTU OTU
17.3.3 Functions and Features The M40V board is mainly used to multiplex signals, monitor performance of optical signals, monitor alarms and performance events, and adjust optical power. For detailed functions and features, refer to Table 17-12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1856
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-12 Functions and features of the M40V board Function and Feature
Description
Basic function
Multiplexes a maximum of 40 signals into one multiplexed signal and adjusts the input optical power of each channel. l Multiplexes 40 C_EVEN channels into one main path. l Multiplexes 40 C_ODD channels into one main path.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Adjusts the optical power of each signal before multiplexing.
Optical-layer ASON
Supported
17.3.4 Working Principle and Signal Flow The M40V board consists of the optical module, detection and temperature control module, control and communication module, and power supply module. Figure 17-7 shows the functional modules and signal flow of the M40V board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1857
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-7 Functional modules and signal flow of the M40V board
M01 M02
Optical module Multiplexer
VOA
Splitter
VOA
OUT
VOA
M40
MON VOA Temperature control control
Temperature detection
PIN
Detection and temperature control module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (Controlled by SCC) SCC
Signal Flow Each of the M01-M40 optical interfaces receives one channel of single-wavelength optical signals, and sends the signals to the multiplexer after the optical power adjustment by VOA. The multiplexer multiplexes the 40 channels of single-wavelength optical signals into one channel of multiplexed optical signals, and then outputs them through the OUT optical interface.
Module Function l
Optical module – Adjusts the optical power of the single-wavelength optical signals before multiplexing. – Multiplexes the 40 channels of single-wavelength optical signals into one channel of multiplexed optical signals. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Detection and temperature control module – Monitors and controls in real time the multiplexer operating temperature. – Detects in real time the output optical power of service signals.
l Issue 03 (2013-05-16)
Control and communication module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1858
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
– Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.3.5 Front Panel There are indicators and interfaces on the front panel of the M40V board.
Appearance of the Front Panel Figure 17-8 and Figure 17-9 show the front panel of the M40V board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1859
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-8 Front panel of the TN11M40V board
M40V STAT ACT PROG SRV
M01 M02 M 03 M 04 M 05 M 06 M 07 M 08 M09 M10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
M 11 M12 M13 M14 M15 M16 M17 M18 M19 M20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
M29 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
M28
M27 M30
M11 M12
M25 M26
M09 M10
M23 M24
M07 M08
M21 M22
M05 M06
M19 M20
M03 M04
M17 M18
M02
M15 M16
M01
M13 M14
MON OUT
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
M40V
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1860
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-9 Front panel of the TN12M40V board
M40V STAT ACT PROG SRV
M13
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12
MON 194.80 193.40 OUT 194.70 193.30 196.00 194.60 193.20 195.90 194.50 193.10 195.80 194.40 193.00 195.70 194.30 192.90 195.60 194.20 192.80 195.50 194.10 192.70 195.40 194.00 192.60 195.30 193.90 192.50 195.20 193.80 192.40 195.10 193.70 192.30 195.00 193.60 192.20 194.90 193.50 192.10
M27 M28 M29 M30 M31 M32
M13
M33 M34 M35 M36 M37 M38 M39 M40
M26
M01 M02 M03 M04 M05 M06
M07 M08
M09 M10 M11 M12
MON
194.80
193.40
OUT OUT
194.70
193.30
196.00
194.60
193.20
195.90
194.50
193.10
195.80
194.40
193.00
195.70
194.30
192.90
195.60
194.20
192.80
195.50
194.10
192.70
195.40
194.00
192.60
195.30
193.90
192.50
195.20
193.80
192.40
195.10
193.70
192.30
195.00
193.60
192.20
194.90
193.50
192.10
M27 M28 M29 M30 M31 M32 M33 M34
M35 M36 M37 M38 M39 M40
M26
M40V
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1861
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
NOTE
A table indicating the mapping relationship between interfaces and frequencies is located on the front panel.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 17-13 lists the type and function of each interface. Table 17-13 Types and functions of the interfaces on the M40V board Interface
Type
Function
M01-M40
LC
Receives the signals to be multiplexed, when connected to the "OUT" interface of the OTUs.
OUT
LC
Transmits the multiplexed signals, when connected to an optical amplifier or ITL.
MON
LC
Accomplishes online monitoring of optical spectrum, when connected to the input interface of the MCA4, MCA8 or OPM8 board. The MON port is a 10/90 tap of the total composite signal at the OUT port (10dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmon (dBm) = 10 x lg(90/10) = 10 dB).
Table 17-14 and Table 17-15 show the mapping between the interfaces, frequency, and wavelengths of the M40V board. Table 17-14 Mapping between the optical interfaces, frequencies, and wavelengths of the M40V board (even)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.00
1529.55
M21
194.00
1545.32
M02
195.90
1530.33
M22
193.90
1546.12
M03
195.80
1531.12
M23
193.80
1546.92
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1862
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M04
195.70
1531.90
M24
193.70
1547.72
M05
195.60
1532.68
M25
193.60
1548.51
M06
195.50
1533.47
M26
193.50
1549.32
M07
195.40
1534.25
M27
193.40
1550.12
M08
195.30
1535.04
M28
193.30
1550.92
M09
195.20
1535.82
M29
193.20
1551.72
M10
195.10
1536.61
M30
193.10
1552.52
M11
195.00
1537.40
M31
193.00
1553.33
M12
194.90
1538.19
M32
192.90
1554.13
M13
194.80
1538.98
M33
192.80
1554.94
M14
194.70
1539.77
M34
192.70
1555.75
M15
194.60
1540.56
M35
192.60
1556.55
M16
194.50
1541.35
M36
192.50
1557.36
M17
194.40
1542.14
M37
192.40
1558.17
M18
194.30
1542.94
M38
192.30
1558.98
M19
194.20
1543.73
M39
192.20
1559.79
M20
194.10
1544.53
M40
192.10
1560.61
Table 17-15 Mapping between the optical interfaces, frequencies, and wavelengths of the M40V board (odd)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.05
1529.16
M21
194.05
1544.92
M02
195.95
1529.94
M22
193.95
1545.72
M03
195.85
1530.72
M23
193.85
1546.52
M04
195.75
1531.51
M24
193.75
1547.32
M05
195.65
1532.29
M25
193.65
1548.11
M06
195.55
1533.07
M26
193.55
1548.91
M07
195.45
1533.86
M27
193.45
1549.72
M08
195.35
1534.64
M28
193.35
1550.52
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1863
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M09
195.25
1535.43
M29
193.25
1551.32
M10
195.15
1536.22
M30
193.15
1552.12
M11
195.05
1537.00
M31
193.05
1552.93
M12
194.95
1537.79
M32
192.95
1553.73
M13
194.85
1538.58
M33
192.85
1554.54
M14
194.75
1539.37
M34
192.75
1555.34
M15
194.65
1540.16
M35
192.65
1556.15
M16
194.55
1540.95
M36
192.55
1556.96
M17
194.45
1541.75
M37
192.45
1557.77
M18
194.35
1542.54
M38
192.35
1558.58
M19
194.25
1543.33
M39
192.25
1559.39
M20
194.15
1544.13
M40
192.15
1560.20
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
17.3.6 Valid Slots Three slots house one TN11M40V board and two slots house one TN12M40V board. Table 17-16 shows the valid slots for the TN11M40V board and Table 17-17 shows the valid slots for the TN12M40V board. Table 17-16 Valid slots for the TN11M40V board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU11-IU17, IU20-IU25, IU29IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1864
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN11M40V board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1, IU2, and IU3 house the TN11M40V board, the slot number of the TN11M40V board displayed on the NM is IU1. Table 17-17 Valid slots for the TN12M40V board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN12M40V board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1 and IU2 house the TN12M40V board, the slot number of the TN12M40V board displayed on the NM is IU1.
17.3.7 Characteristic Code for the M40V The characteristic code for the M40V board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table 17-18. Table 17-18 Characteristic code for the M40V board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1865
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
For example, the characteristic code for the TN11M40V board is CE, indicating C band and even wavelengths.
17.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-19. Table 17-19 Serial numbers of the interfaces of the M40V board displayed on the NM Interface on the Panel
Interface on the NM
OUT
1
M01-M40
2-41
MON
42
17.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For M40V parameters, refer to Table 17-20. Table 17-20 M40V parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1866
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Attenuation difference (dB)
-3 to 3, with a step of 0.1 Default: none
Sets the relative optical power attenuation of a board channel. When using this parameter with Attenuation (dB), you can adjust optical power attenuation of a board channel more accurately.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
17.3.10 M40V Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-21 lists the optical specifications of the M40V board. Table 17-21 Optical specifications of the M40V board
Issue 03 (2013-05-16)
Item
Unit
Value
Adjacent channel spacing
GHz
100
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1867
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Item
Unit
Value
Insertion loss
dB
≤ 8a
Reflectance
dB
< -40
Operating wavelength range
nm
1529-1561
Adjacent channel isolation
dB
> 22
Non-adjacent channel isolation
dB
> 25
Attenuation range
dB
0-15
Loss accuracy
dB
≤ 1 (0 to 10 dB) ≤ 1.5 (>10 dB)
Polarization dependent loss
dB
≤ 0.5
Maximum channel insertion loss difference
dB
≤ 3a
NOTE a: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications l
Dimensions of front panel: – TN11M40V (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.) – TN12M40V (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11M40V: 2.3 kg (5.1 lb.) – TN12M40V: 2.3 kg (5.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11M40V
20.0
25.0
TN12M40V
16.0
26.0
17.4 D40 D40: 40-channel demultiplexing board
17.4.1 Version Description The available functional versions of the D40 board are TN11 and TN12. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1868
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1D4 0
Y
Y
Y
Y
Y
N
TN1 2D4 0
Y
Y
Y
Y
Y
N
Type Unit
Type
Description
TN11D40/ TN12D40
01
Demultiplexes one main path into 40 C_EVEN channels.
02
Demultiplexes one main path into 40 C_ODD channels.
Differences Between Versions Appearance: l
The TN11D40 board uses a front panel different from that of the TN12D40 board. The TN11D40 board occupies three slots. The TN12D40 board occupies two slots. For details, see 17.4.5 Front Panel.
Substitution Relationship
Issue 03 (2013-05-16)
Original Board
Substitute Board
Substitution Rules
TN11D40
TN12D40
The TN12D40 can be created as TN11D40 on the NMS. The former can substitute for the latter, without any software upgrade. After the substitution, the TN12D40 board functions as the TN11D40 board. The TN12D40 board occupies two physical slots and three logical slots while the TN11D40 board occupies three physical slots. After the substitution, the remaining one physical slot cannot be used to house any other board.
TN12D40
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1869
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
17.4.2 Application The D40 is a type of optical demultiplexing unit. The D40 implements the demultiplexing of one optical signal into a maximum of 40 ITU-T Recommendation-compliant WDM signals. For the position of the D40 in the WDM system, see Figure 17-10. Figure 17-10 Position of the D40 in the WDM system OTU OTU
OTU OTU
1
1 M40
OA
OA
D40
40
40
1
1 D40
OA
OA
M40 40
40
OTU OTU
OTU OTU
17.4.3 Functions and Features The main functions and features supported by the D40 are demultiplexing, online optical performance monitoring, alarms and performance events monitoring. For detailed functions and features, refer to Table 17-22. Table 17-22 Functions and features of the D40 Function and Feature
Description
Basic function
Demultiplexes main path signal to a maximum of 40 channels of service. l Demultiplexes one main path into 40 C_EVEN channels. l Demultiplexes one main path into 40 C_ODD channels.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical-layer ASON
Supported
17.4.4 Working Principle and Signal Flow The D40 board consists of the optical module, detection and temperature control module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1870
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-11 shows the functional modules and signal flow of the D40. Figure 17-11 Functional modules and signal flow of the D40 Optical module Demultiplexer
Splitter
D01 D02
IN
D40 MON
Temperature detection
PIN
Temperature control
Detection and temperature control module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The IN optical interface receives one channel of multiplexed optical signals and sends the signals to the demultiplexer. The demultiplexer demultiplexes the one channel of multiplexed optical signals into 40 channels of single-wavelength optical signals, and then outputs them through the D01-D40 optical interfaces.
Module Function l
Optical module – Demultiplexes the one channel of multiplexed optical signals into 40 channels of singlewavelength optical signals. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Detection and temperature control module – Monitors and controls in real time the demultiplexer operating temperature. – Detects in real time the input optical power of service signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1871
OptiX OSN 8800/6800/3800 Hardware Description
l
17 Optical Multiplexer and Demultiplexing Board
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.4.5 Front Panel There are indicators and interfaces on the D40 front panel.
Appearance of the Front Panel Figure 17-12 and Figure 17-13 show the front panel of the D40 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1872
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-12 TN11D40 front panel
D40 STAT ACT PROG SRV
D 01 D 02 D 03 D 04 D 05 D 06 D 07 D 08 D09 D10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
D 11 D12 D13 D14 D15 D16 D17 D18 D19 D20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
D21 D22 D23 D24 D25 D26 D27 D28 D29 D30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
D31 D32 D33 D34 D35 D36 D37 D38 D39 D40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39
D26
D40
D12
D25
D11
D24
D10
D23
D09
D22
D08
D21
D07
D20
D06
D19
D05
D18
D04
D17
D03
D16
D02
D15
D01
D14
IN
D13
MON
D01 D02 D03 D04 D05 D06 D07 D08 D09 D10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
D21 D22 D23 D24 D25 D26 D27 D28 D29 D30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
D31 D32 D33 D34 D35 D36 D37 D38 D39 D40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
D40
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1873
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-13 Front panel of the TN12D40 board
D40 STAT ACT PROG SRV
D13
D13
D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12
MON 194.80 193.40 IN 194.70 193.30 196.00 194.60 193.20 195.90 194.50 193.10 195.80 194.40 193.00 195.70 194.30 192.90 195.60 194.20 192.80 195.50 194.10 192.70 195.40 194.00 192.60 195.30 193.90 192.50 195.20 193.80 192.40 195.10 193.70 192.30 195.00 193.60 192.20 194.90 193.50 192.10
D27 D28
MON
194.80
193.40
IN
194.70
193.30
196.00
194.60
193.20
195.90
194.50
193.10
195.80
194.40
193.00
195.70
194.30
192.90
195.60
194.20
192.80
195.50
194.10
192.70
195.40
194.00
192.60
195.30
193.90
192.50
195.20
193.80
192.40
195.10
193.70
192.30
195.00
193.60
192.20
194.90
193.50
192.10
D29 D30 D31 D32
D27 D28
D33 D34 D35 D36 D37 D38
D01 D02
D39 D40
D29 D30
D26
D03 D04 D05 D06
D07 D08
D09 D10 D11 D12
D31 D32 D33 D34
D35 D36 D37 D38 D39 D40
D26
D40
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1874
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
NOTE
A table indicating the mapping relationship between interfaces and frequencies is located on the front panel.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 17-23 lists the type and function of each interface. Table 17-23 Types and functions of the D40 interfaces Interface
Type
Function
IN
LC
Connected to an optical amplifier or ITL, receives the signals to be demultiplexed.
D01-D40
LC
Transmit demultiplexed signals to the connected "IN" interface of the OTUs.
MON
LC
Connected to the input interface of the MCA4, MCA8 or OPM8, accomplishes online monitoring of optical spectrum. The MON port is a 10/90 tap of the total composite signal at the IN port (10 dB lower than the actual signal power, calculation formula: Pin (dBm) - Pmon (dBm) = 10 x lg(90/10) = 10 dB).
Table 17-24 and Table 17-25 show the mapping between the interfaces, frequency and wavelengths of the D40 board. Table 17-24 Mapping between the optical interfaces, frequencies and wavelengths of the D4001 board (C_EVEN)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D01
196.00
1529.55
D21
194.00
1545.32
D02
195.90
1530.33
D22
193.90
1546.12
D03
195.80
1531.12
D23
193.80
1546.92
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1875
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D04
195.70
1531.90
D24
193.70
1547.72
D05
195.60
1532.68
D25
193.60
1548.51
D06
195.50
1533.47
D26
193.50
1549.32
D07
195.40
1534.25
D27
193.40
1550.12
D08
195.30
1535.04
D28
193.30
1550.92
D09
195.20
1535.82
D29
193.20
1551.72
D10
195.10
1536.61
D30
193.10
1552.52
D11
195.00
1537.40
D31
193.00
1553.33
D12
194.90
1538.19
D32
192.90
1554.13
D13
194.80
1538.98
D33
192.80
1554.94
D14
194.70
1539.77
D34
192.70
1555.75
D15
194.60
1540.56
D35
192.60
1556.55
D16
194.50
1541.35
D36
192.50
1557.36
D17
194.40
1542.14
D37
192.40
1558.17
D18
194.30
1542.94
D38
192.30
1558.98
D19
194.20
1543.73
D39
192.20
1559.79
D20
194.10
1544.53
D40
192.10
1560.61
Table 17-25 Mapping between the optical interfaces, frequencies and wavelengths of the D4002 board (C_ODD)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D01
196.05
1529.16
D21
194.05
1544.92
D02
195.95
1529.94
D22
193.95
1545.72
D03
195.85
1530.72
D23
193.85
1546.52
D04
195.75
1531.51
D24
193.75
1547.32
D05
195.65
1532.29
D25
193.65
1548.11
D06
195.55
1533.07
D26
193.55
1548.91
D07
195.45
1533.86
D27
193.45
1549.72
D08
195.35
1534.64
D28
193.35
1550.52
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1876
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D09
195.25
1535.43
D29
193.25
1551.32
D10
195.15
1536.22
D30
193.15
1552.12
D11
195.05
1537.00
D31
193.05
1552.93
D12
194.95
1537.79
D32
192.95
1553.73
D13
194.85
1538.58
D33
192.85
1554.54
D14
194.75
1539.37
D34
192.75
1555.34
D15
194.65
1540.16
D35
192.65
1556.15
D16
194.55
1540.95
D36
192.55
1556.96
D17
194.45
1541.75
D37
192.45
1557.77
D18
194.35
1542.54
D38
192.35
1558.58
D19
194.25
1543.33
D39
192.25
1559.39
D20
194.15
1544.13
D40
192.15
1560.20
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
17.4.6 Valid Slots Three slots house one TN11D40 board and two slots house one TN12D40 board. Table 17-26 shows the valid slots for the TN11D40 board and Table 17-27 shows the valid slots for the TN12D40 board. Table 17-26 Valid slots for the TN11D40 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU11-IU17, IU20-IU25, IU29IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1877
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN11D40 board displayed on the NM is the number of the leftmost one of the three occupied slots. For example, if the TN11D40 occupies slots IU1, IU2 and IU3, the slot number of the TN11D40 displayed on the NM is IU1. Table 17-27 Valid slots for the TN12D40 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN12D40 board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1 and IU2 house the TN12D40 board, the slot number of the TN12D40 board displayed on the NM is IU1.
17.4.7 Characteristic Code for the D40 The characteristic code for the D40 consists of two characters. One indicates the band. The other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even wavelengths. The detailed information about the characteristic code is given in Table 17-28. Table 17-28 Characteristic code for the D40
Issue 03 (2013-05-16)
Code
Meaning
Description
The first character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
The second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1878
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
For example, the characteristic code for the TN11D40 is CE, indicating C band and even wavelengths.
17.4.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-29. Table 17-29 Serial numbers of the interfaces of the D40 displayed on the NM Interface on the Panel
Interface on the NM
IN
1
D01-D40
2-41
MON
42
17.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For D40 parameters, refer to Table 17-30. Table 17-30 D40 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Input Power Loss Threshold (dBm)
-
An optical interface name contains a maximum of 64 characters. Any characters are supported. The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1879
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Configure Band
C Default: C
Used to configure type of the working band of a board.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Enable OAMS Power Monitoring
Disable, Enable
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
OAMS Power Abnormity Threshold (dB)
-0.5 to 1.0
Default: All Enables or disables the OAMS function.
Default: Disable
Default: /
Default:3
Specifies the reference value for OAMS power monitoring. Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
17.4.10 D40 Specifications Specifications include optical specifications, dimensions, weight and power consumption.
Optical Specifications Table 17-31 lists the optical specifications of the D40. Table 17-31 Optical specifications of the D40
Issue 03 (2013-05-16)
Item
Unit
Value
Adjacent channel spacing
GHz
100
Insertion loss
dB
≤ 6.5
Reflectance
dB
< -40
Operating wavelength range
nm
1529-1561
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 25
Polarization dependent loss
dB
≤ 0.5
Temperature characteristics
nm/°C
< 0.002
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1880
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Item
Unit
Value
Maximum channel insertion loss difference
dB
≤3
-1 dB bandwidth
nm
≥ 0.2
-20 dB bandwidth
nm
< 1.4
Mechanical Specifications l
Dimensions of front panel: – TN11D40 (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (10.4 in.) – TN12D40 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (10.4 in.)
l
Weight: – TN11D40: 2.2 kg ( 4.8 lb.) – TN12D40: 2.0 kg ( 4.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11D40
10.0
13.0
TN12D40
10.0
13.0
17.5 D40V D40V: 40-channel demultiplexing board with VOA
17.5.1 Version Description The available functional version of the D40V board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1881
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1D4 0V
Y
Y
N
N
Y
N
Type Unit
Type
Description
TN11D40V
01
Demultiplexes one main path into 40 C_EVEN channels.
02
Demultiplexes one main path into 40 C_ODD channels.
17.5.2 Application As a type of optical demultiplexing unit, the D40V demultiplexes one channel of signals into a maximum of 40 channels of signals that comply with the related ITU-T Recommendations and adjusts the output optical power of each channel. For the position of the D40V board in the WDM system, see Figure 17-14. Figure 17-14 Position of the D40V board in the WDM system OTU OTU
OTU OTU
1
1 M40
OA
OA
D40V
40
40
1
1 D40V
OA
OA
M40 40
40
OTU OTU
OTU OTU
17.5.3 Functions and Features The D40V board is mainly used to demultiplex signals, to monitor performance of optical signals, to monitor alarms and performance events, and to adjust optical power. For detailed functions and features, refer to Table 17-32.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1882
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-32 Functions and features of the D40V board Function and Feature
Description
Basic function
Demultiplexes one channel of signals into a maximum of 40 channels of signals and adjusts the input optical power of each channel. l Demultiplexes one main path into 40 C_EVEN channels. l Demultiplexes one main path into 40 C_ODD channels.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Adjusts the optical power of each channel of signals after demultiplexing.
Optical-layer ASON
Not supported
17.5.4 Working Principle and Signal Flow The D40V board consists of the optical module, detection and temperature control module, control and communication module, and power supply module. Figure 17-15 shows the functional modules and signal flow of the D40V board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1883
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-15 Functional modules and signal flow of the D40V board
Splitter
Optical module Demultiplexer
VOA VOA
IN
VOA
D01 D02 D40
MON Temperature detection
PIN
Temperature VOA control control
Detection and temperature control module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The IN optical interface receives one channel of multiplexed optical signals and sends the signals to the demultiplexer. The demultiplexer demultiplexes the one channel of multiplexed optical signals into 40 channels of single-wavelength optical signals, and then outputs them through the D01-D40 optical interfaces after the optical power adjustment by VOA.
Module Function l
Optical module – Demultiplexes the one channel of multiplexed optical signals into 40 channels of singlewavelength optical signals. – Adjusts the optical power of the single-wavelength optical signals after demultiplexing. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Detection and temperature control module – Monitors and controls in real time the demultiplexer operating temperature. – Detects in real time the input optical power of service signals.
l Issue 03 (2013-05-16)
Control and communication module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1884
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
– Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.5.5 Front Panel There are indicators and interfaces on front panel of the D40V board.
Appearance of the Front Panel Figure 17-16 shows front panel of the D40V board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1885
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-16 Front panel of the D40V board
D40V STAT ACT PROG SRV
D 01 D 02 D 03 D 04 D 05 D 06 D 07 D 08 D09 D10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
D 11 D12 D13 D14 D15 D16 D17 D18 D19 D20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
D21 D22 D23 D24 D25 D26 D27 D28 D29 D30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
D31 D32 D33 D34 D35 D36 D37 D38 D39 D40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39
D26
D40
D12
D25
D11
D24
D10
D23
D09
D22
D08
D21
D07
D20
D06
D19
D05
D18
D04
D17
D03
D16
D02
D15
D01
D14
IN
D13
MON
D01 D02 D03 D04 D05 D06 D07 D08 D09 D10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
D21 D22 D23 D24 D25 D26 D27 D28 D29 D30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
D31 D32 D33 D34 D35 D36 D37 D38 D39 D40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
D40V
NOTE
A table indicating the mapping relationship between interfaces and frequencies is located on the front panel.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1886
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interfaces Table 17-33 lists the type and function of each interface. Table 17-33 Types and functions of the interfaces on the D40V board Interface
Type
Function
IN
LC
Receives signals to be demultiplexed when connected to an optical amplifier or ITL.
D01-D40
LC
Transmits demultiplexed signals when connected to the "IN" interface of the OTUs.
MON
LC
Accomplishes online monitoring of optical spectrum, when connected to the input interface of the MCA4, MCA8 or OPM8 board. The MON port is a 10/90 tap of the total composite signal at the IN port (10 dB lower than the actual signal power, calculation formula: Pin (dBm) - Pmon (dBm) = 10 x lg (90/10) = 10 dB).
Table 17-34 and Table 17-35 show the mapping between the optical interfaces, frequencies and wavelengths of the D40V board. Table 17-34 Mapping between the optical interfaces, frequencies and wavelengths of the TN11D40V01 board (C_EVEN)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D01
196.00
1529.55
D21
194.00
1545.32
D02
195.90
1530.33
D22
193.90
1546.12
D03
195.80
1531.12
D23
193.80
1546.92
D04
195.70
1531.90
D24
193.70
1547.72
D05
195.60
1532.68
D25
193.60
1548.51
D06
195.50
1533.47
D26
193.50
1549.32
D07
195.40
1534.25
D27
193.40
1550.12
D08
195.30
1535.04
D28
193.30
1550.92
D09
195.20
1535.82
D29
193.20
1551.72
D10
195.10
1536.61
D30
193.10
1552.52
D11
195.00
1537.40
D31
193.00
1553.33
D12
194.90
1538.19
D32
192.90
1554.13
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1887
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D13
194.80
1538.98
D33
192.80
1554.94
D14
194.70
1539.77
D34
192.70
1555.75
D15
194.60
1540.56
D35
192.60
1556.55
D16
194.50
1541.35
D36
192.50
1557.36
D17
194.40
1542.14
D37
192.40
1558.17
D18
194.30
1542.94
D38
192.30
1558.98
D19
194.20
1543.73
D39
192.20
1559.79
D20
194.10
1544.53
D40
192.10
1560.61
Table 17-35 Mapping between the optical interfaces, frequencies and wavelengths of the TN11D40V02 board (C_ODD)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D01
196.05
1529.16
D21
194.05
1544.92
D02
195.95
1529.94
D22
193.95
1545.72
D03
195.85
1530.72
D23
193.85
1546.52
D04
195.75
1531.51
D24
193.75
1547.32
D05
195.65
1532.29
D25
193.65
1548.11
D06
195.55
1533.07
D26
193.55
1548.91
D07
195.45
1533.86
D27
193.45
1549.72
D08
195.35
1534.64
D28
193.35
1550.52
D09
195.25
1535.43
D29
193.25
1551.32
D10
195.15
1536.22
D30
193.15
1552.12
D11
195.05
1537.00
D31
193.05
1552.93
D12
194.95
1537.79
D32
192.95
1553.73
D13
194.85
1538.58
D33
192.85
1554.54
D14
194.75
1539.37
D34
192.75
1555.34
D15
194.65
1540.16
D35
192.65
1556.15
D16
194.55
1540.95
D36
192.55
1556.96
D17
194.45
1541.75
D37
192.45
1557.77
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1888
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
D18
194.35
1542.54
D38
192.35
1558.58
D19
194.25
1543.33
D39
192.25
1559.39
D20
194.15
1544.13
D40
192.15
1560.20
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
17.5.6 Valid Slots Three slots house one D40V board. Table 17-36 shows the valid slots for the D40V board. Table 17-36 Valid slots for the D40V board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU11-IU17, IU20-IU25, IU29IU34
OptiX OSN 6800 subrack
IU1-IU15
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the D40V board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1, IU2, and IU3 house the D40V board, the slot number of the D40 board displayed on the NM is IU1.
17.5.7 Characteristic Code for the D40V The characteristic code for the D40V board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table 17-37.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1889
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-37 Characteristic code for the D40V board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
For example, the characteristic code for the TN11D40V board is CE, indicating C band and even wavelengths.
17.5.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-38. Table 17-38 Serial numbers of the interfaces of the D40V board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
D01-D40
2-41
MON
42
17.5.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For D40V parameters, refer to Table 17-39.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1890
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-39 D40V parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information. Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
17.5.10 D40V Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1891
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Optical Specifications Table 17-40 lists the optical specifications of the D40V board. Table 17-40 Optical specifications of the D40V board Item
Unit
Value
Adjacent channel spacing
GHz
100
Insertion loss
dB
≤ 8a
Reflectance
dB
< -40
Operating wavelength range
nm
1529-1561
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 30
Attenuation range
dB
0-15
Loss accuracy
dB
≤ 1 (0 to 10 dB) ≤ 1.5 (>10 dB)
Polarization dependent loss
dB
≤ 0.5
Maximum channel insertion loss difference
dB
≤ 3a
NOTE a: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.3 kg (5.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11D40V
38.5
42.3
17.6 DFIU DFIU: bidirectional fiber interface board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1892
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
17.6.1 Version Description The available functional version of the DFIU board is TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN2 1DF IU
N
N
N
N
N
Y
17.6.2 Application As a type of optical multiplexing and demultiplexing unit, The DFIU board multiplexes and demultiplexes signals in two directions transmitted along the main path and optical supervisory channel. For the position of the DFIU board in the WDM system, see Figure 17-17. Figure 17-17 Position of the DFIU board in the WDM system
OA DFIU
SC2
DFIU
OA
NOTE
The DFIU board is able to process signals in two directions. In the figure, the two DFIU boards actually refer to one physical board.
17.6.3 Functions and Features The DFIU board is mainly used to multiplex and demultiplex signals. For detailed functions and features, refer to Table 17-41.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1893
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-41 Functions and features of the DFIU board Function and Feature
Description
Basic function
Multiplexes and demultiplexes signals in two directions transmitted along the main path and optical supervisory channel.
Optical-layer ASON
Not supported
17.6.4 Working Principle and Signal Flow The DFIU board consists of the optical module, control and communication module, and power supply module. Figure 17-18 shows the functional modules and signal flow of the DFIU board. Figure 17-18 Functional modules and signal flow of the DFIU board Optical module ERC ERM
Multiplexer
EOUT
ETC ETM
Demultiplexer
EIN
WRC WRM
Multiplexer
WOUT
WTC WTM
Demultiplexer
WN
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
Backplane DC power supply from a backplane
SCC
Signal Flow l
Issue 03 (2013-05-16)
The multiplexer multiplexes the main path optical signals received through the WRC optical interface and the supervisory channel signals received through the WRM optical Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1894
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
interface into one channel of optical signals. The multiplexed signals are then output through the WOUT optical interface. l
The WIN optical interface receives line optical signals, which are then sent to the demultiplexer. The demultiplexer demultiplexes the line optical signals into the main path optical signals and supervisory channel signals, and then outputs them through the WTC and WTM optical interfaces
l
The multiplexer multiplexes the main path optical signals received through the ERC optical interface and the supervisory channel signals received through the ERM optical interface into one channel of optical signals. The multiplexed signals are then output through the EOUT optical interface.
l
The EIN optical interface receives line optical signals, which are then sent to the demultiplexer. The demultiplexer demultiplexes the line optical signals into the main path optical signals and supervisory channel signals, and then outputs them through the ETC and ETM optical interfaces
Module Function l
Optical module Performs the multiplexing and demultiplexing of main path signals and supervisory channel signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.6.5 Front Panel There are interfaces on the front panel of the DFIU board.
Appearance of the Front Panel Figure 17-19 shows the front panel of the DFIU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1895
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-19 Front panel of the DFIU board ETM ERM ETC ERC EIN EOUT WTMWRM WTC WRC WIN WOUT
DFIU
Interfaces Table 17-42 lists the type and function of each interface. Table 17-42 Types and functions of the interfaces on the DFIU board
Issue 03 (2013-05-16)
Interface
Type
Function
WIN
LC
Receives the west line signal.
WOUT
LC
Transmits the west line signal.
WTC
LC
Transmits the west main path signal.
WRC
LC
Receives the west main path signal.
WTM
LC
Transmits the west optical supervisory channel signal.
WRM
LC
Receives the west optical supervisory channel signal.
EIN
LC
Receives the east line signal.
EOUT
LC
Transmits the east line signal.
ETC
LC
Transmits the east main path signal.
ERC
LC
Receives the east main path signal.
ETM
LC
Transmits the east optical supervisory channel signal.
ERM
LC
Receives the east optical supervisory channel signal.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1896
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
17.6.6 Valid Slots One slot houses one DFIU board. Table 17-43 shows the valid slots for the DFIU board. Table 17-43 Valid slots for DFIU board Product
Valid Slots
OptiX OSN 3800 chassis
IU1, IU8, IU11
17.6.7 Characteristic Code for the DFIU The characteristic code for the DFIU board contains one character, indicating the band adopted by the board. The detailed information about the characteristic code is given in Table 17-44. Table 17-44 Characteristic code for the DFIU board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band; the value L represents L band.
For example, the characteristic code for the TN21DFIU board is C, indicating that the optical signals are in C band.
17.6.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-45.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1897
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-45 Serial numbers of the interfaces of the DFIU board displayed on the NM Interface on the Panel
Interface on the NM
WIN/WOUT
1
WRM/WTM
2
WRC/WTC
3
EIN/EOUT
4
ERM/ETM
5
ERC/ETC
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
17.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For DFIU parameters, refer to Table 17-46. Table 17-46 DFIU parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Configure Band
C
An optical interface name contains a maximum of 64 characters. Any characters are supported. Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Channel Number Mode
C80 Mode, C40 Mode, CWDM Mode
Sets the number of wavelengths supported by the DFIU board.
Default: C80 Mode Actual Working Band Parity
Issue 03 (2013-05-16)
-
Queries the parity of the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1898
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
PMD Coefficient (ps/SQRT(km))
0 to 1
Chromatic Dispersion Coefficient(ps/ (nm*km))
-15 to 30
Default: All
Default: 0.05
Default: 0
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber. This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber.
17.6.10 DFIU Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-47 Optical specifications of the DFIU board Interface
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Operating wavelength range of optical supervisory channel
nm
1500-1520
-
Optical return loss
dB
> 40
EIN-ETM
Insertion loss
dB
≤ 1.5
Insertion loss
dB
≤1
Isolation
dB
> 40
Isolation
dB
> 12
ERM-EOUT WIN-WTM WRM-WOUT EIN-ETC ERC-EOUT WIN-WTC WRC-WOUT EIN-ETM WIN-WTM EIN-ETC WIN-WTC
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1899
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Item
Unit
Value
-
Polarization dependent loss
dB
< 0.2
Mechanical Specifications l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.8 kg (1.8 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN21DFIU
0.2
0.3
17.7 FIU FIU: fiber interface unit
17.7.1 Version Description The available functional versions of the FIU board are TN11, TN12, TN13, TN14, and TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1FI U
N
N
N
N
Y
N
TN1 2FI U
Y
Y
Y
Y
Y
N
TN1 3FI U
Y
Y
Y
Y
Y
Ya
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1900
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 4FI U
Y
Y
Y
Y
Y
Y
TN2 1FI U
N
N
N
N
N
Y
a: OptiX OSN 3800 only supports the TN13FIU01.
Differences Between Versions l
Function: – The TN13FIU02 board supports high power input and works with the HBA board. The TN14FIU board works with the RAU1 board. The other versions of the FIU board do not support high power input. For details, see 17.7.2 Application. – The TN11FIU and TN12FIU boards support reporting of input optical power, but the TN13FIU, TN14FIU, and TN21FIU boards do not. The TN14FIU supports the OUT optical interface power detection. The other versions of the FIU board do not support high power input. For details, see 17.7.4 Working Principle and Signal Flow.
l
Appearance: – The TN11FIU, TN14FIU, TN12FIU, and TN13FIU01 versions use the same front panel. The TN13FIU02 version uses a different front panel from the preceding versions. The TN21 version uses a different front panel from the preceding versions and is applicable to case-shaped equipment. For details, see 17.7.5 Front Panel and 17.7.10 FIU Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11FIU
TN12FIU/ TN13FIU
l Upgrade the NE software to OptiX OSN 6800 V100R004C01 or a later version. l After the substitution, the TN12FIU/TN13FIU board is functionally different from the TN11FIU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1901
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Original Board
Substitute Board
Substitution Rules
TN12FIU
TN13FIU
l When the ASON function is not required. upgrade the NE software to OptiX OSN 6800 V100R004C01 or a later version, or upgrade the NE software to OptiX OSN 8800 V100R002C00 or a later version. l When the ASON function is required, upgrade the NE software to OptiX OSN 6800 V100R004C03 or a later version, or upgrade the NE software to OptiX OSN 8800 V100R002C00 or a later version. l After the substitution, the TN13FIU board is functionally different from the TN12FIU board.
TN13FIU
None
-
TN14FIU
None
-
TN21FIU
None
-
17.7.2 Application As an optical multiplexing and demultiplexing unit, the FIU board multiplexes and demultiplexes signals transmitted along the main optical path and optical supervisory channel. For the position of the FIU board in the WDM system, see Figure 17-20, Figure 17-21, and Figure 17-22. Figure 17-20 Position of the TN11FIU/TN12FIU/TN13FIU01/TN21FIU/TN14FIU board in the WDM system (normal optical power) OTU OTU
MUX
OA
SC1 OTU OTU
Issue 03 (2013-05-16)
DMUX
OA FIU
FIU
OA
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
DMUX
OTU OTU
SC1
OA
MUX
OTU OTU
1902
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-21 Position of the TN13FIU02 board in the WDM system (high optical power) OTU MUX
OTU
HBA
OA
OTU
DMUX
OTU
OTU
DMUX
FIU
FIU
SC1
SC1
OA
HBA
OTU
MUX
OTU
OTU
Figure 17-22 Position of the TN14FIU board (used together with RAU1/RAU2) in the WDM system OTU OTU
M U X
OBU1
RC
LINE
OUT
RAU1/ RAU2
F I IN TM U
SYS
TC
SYS
IN
IN
OTU
D M U X
OUT
OTU
TM
TC
OTU
OTU
IN
RM
SC1
D M U X
OUT
RAU1/ LINE RAU2
OUT
F RM SC1 I U RC
OBU1
M U X
OTU OTU
17.7.3 Functions and Features The FIU board multiplexes and demultiplexes signals, and monitors performance of optical signals. For detailed functions and features, refer to Table 17-48. Table 17-48 Functions and features of the FIU
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Multiplexes and demultiplexes signals transmitted along the main path and optical supervisory channel.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Optical-layer ASON
Supported by the TN12FIU/TN13FIU/TN14FIU..
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1903
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
17.7.4 Working Principle and Signal Flow The FIU board consists of the optical module, optical power detection module, control and communication module, and power supply module. Figure 17-23 shows the functional modules and signal flow of the TN11FIU board, TN12FIU board, and TN14FIU board. Figure 17-24 shows the functional modules and signal flow of the TN13FIU board, and the TN21FIU board. Figure 17-23 Functional modules and signal flow of the TN11FIU board, TN12FIU board, and TN14FIU board Optical module RC RM
Splitter
Multiplexer
OUT MON
TC TM
Demultiplexer
IN
PIN Optical power detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
1904
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-24 Functional modules and signal flow of the TN13FIU board and the TN21FIU board Optical module RC RM
Splitter
Multiplexer
OUT MON
TC TM
Demultiplexer
IN
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow l
The multiplexer multiplexes the main path optical signals received through the RC optical interface and the supervisory channel signals received through the RM optical interface into one channel of optical signals, and then outputs the multiplexed signals through the OUT optical interface.
l
The IN optical interface receives line optical signals, which are then sent to the demultiplexer. The demultiplexer demultiplexes the line optical signals into the main path optical signals and supervisory channel signals, and then outputs them through the TC and TM optical interfaces
Module Function l
Optical module – Multiplexes and demultiplexes the main path signals and supervisory channel signals. – The splitter splits some optical signals from the line optical signals and sends the signals to the MON interface for detection.
l
Optical power detection module Detects in real time the input optical power of service signals. NOTE
Only the TN11FIU and TN12FIU support the input optical power detection. Only the TN14FIU support the OUT optical interface power detection.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1905
OptiX OSN 8800/6800/3800 Hardware Description
l
17 Optical Multiplexer and Demultiplexing Board
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.7.5 Front Panel There are indicators, interfaces, and a laser hazard level label on the front panel of the FIU board.
Appearance of the Front Panel Figure 17-25 shows the front panel of the TN11FIU/TN12FIU/TN14FIU board. Figure 17-26 and Figure 17-27 show the front panel of the TN13FIU board. Figure 17-28 shows the front panel of the TN21FIU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1906
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-25 Front panel of the TN11FIU/TN12FIU/TN14FIU board
FIU STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TC RC TM RM
FIU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1907
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-26 Front panel of the TN13FIU01 board
FIU STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TC RC TM RM
FIU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1908
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-27 Front panel of the TN13FIU02 board
FIU STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON TM RM IN TC RC OUT
FIU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1909
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-28 Front panel of the TN21FIU board
TM RM TC RC IN OUT MON
FIU
Indicators The TN11FIU/TN12FIU/TN14FIU board has four indicators on the front panel. l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
The TN13FIU board has one indicator on the front panel. l
Board hardware status indicator (STAT) - green
The TN21FIU board has no indicator on the front panel. For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 17-49 lists the type and function of each interface. Table 17-49 Types and functions of the interfaces on the FIU board
Issue 03 (2013-05-16)
Interface
Type
Function
IN
LC
Receives the line signal.
OUT
LCa
Transmits the line signal.
TC
LC
Transmits the main path signal.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1910
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Type
Function
RC
LCa
Receives the main path signal.
TM
LC
Transmits the 1510 nm optical supervisory channel signal.
RM
LC
Receives the 1510 nm optical supervisory channel signal.
MON
LC
Accomplishes online monitoring of optical spectrum when it is connected to the input interface of the MCA4, MCA8 or OPM8 board. l TN11FIU/TN12FIU/TN13FIU01/ TN14FIU/TN21FIU: the MON port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (99/1) = 20 dB). l TN13FIU02: the MON port is a 0.1/99.9 tap of the total composite signal at the OUT port (30 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (99.9/0.1) = 30 dB).
a: the interface type of the "RC" and "OUT" of the TN13FIU02 are "LSH/APC".
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). NOTE
TN13FIU02: After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power output by the optical port on the board ranges 10 dBm (10 mW) to 21.3 dBm (136 mW).
17.7.6 Valid Slots One slots house one FIU board. Table 17-50 shows the valid slots for the TN11FIU board. Table 17-50 Valid slots for the TN11FIU board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
Table 17-51 shows the valid slots for the TN12FIU board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1911
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-51 Valid slots for the TN12FIU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
Table 17-52 shows the valid slots for the TN13FIU board. Table 17-52 Valid slots for the TN13FIU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2–IU5, IU11
Table 17-53 shows the valid slots for the TN14FIU board. Table 17-53 Valid slots for the TN14FIU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 17-54 shows the valid slots for the TN21FIU board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1912
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-54 Valid slots for the TN21FIU board Product
Valid Slots
OptiX OSN 3800 chassis
IU1, IU8, IU11
17.7.7 Characteristic Code for the FIU The characteristic code for the FIU board consists of one character. The character indicates the band adopted by the board. Detailed information about the characteristic code is given in Table 17-55. Table 17-55 Characteristic code for the FIU board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band; the value L represents L band.
For example, the characteristic code for the board is C, indicating that the optical signals are in C band.
17.7.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-56. Table 17-56 Serial numbers of the interfaces of the FIU board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN/OUT
1
RM/TM
2
RC/TC
3
MON
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1913
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
17.7.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For FIU parameters, refer to Table 17-57. Table 17-57 FIU parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Input Power Loss Threshold (dBm)
-
An optical interface name contains a maximum of 64 characters. Any characters are supported. The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. NOTE This parameter is supported only by TN11FIU and TN12FIU .
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Channel Number Mode
C80 Mode, C40 Mode, CWDM Mode
Sets the number of wavelengths supported by the FIU board.
Default: C80 Mode
Issue 03 (2013-05-16)
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All
Selects the desired parity of the working band.
PMD Coefficient (ps/SQRT(km))
0 to 1
Default: All
Default: 0.05
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1914
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Fiber Type
G652 Fiber, G653 Fiber, LEAF Fiber, TWRS Fiber, TWC Fiber, TWPLUS Fiber, SMFLS Fiber, G654B Fiber
Specifies the type of a fiber.
Default: / Chromatic Dispersion Coefficient(ps/ (nm*km))
0 to 429496729.4
Send DCM Dispersion Compensation Value(ps/nm)
0.0 to 6553.5
Receive DCM Dispersion Compensation Value(ps/nm)
0.0 to 6553.5
Default: 0
Default: 0
Default: 0
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber. Specifies the dispersion compensation value for the DCM at the transmit end.
Specifies the dispersion compensation value for the DCM at the receive end.
17.7.10 FIU Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-58 Optical specifications of the FIU board Interface
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Operating wavelength range of optical supervisory channel
nm
TN11FIU/TN12FIU/TN13FIU/ TN21FIU: 1500-1520
-
Optical return loss
dB
> 40
IN-TM
Insertion loss
dB
≤ 1.5
Insertion loss
dB
≤1
TN14FIU: 1480-1520
RM-OUT IN-TC RC-OUT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1915
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface
Item
Unit
Value
IN-TM
Isolation
dB
> 40
IN-TC
Isolation
dB
> 12
-
Polarization dependent loss
dB
< 0.2
Mechanical Specifications TN11FIU/TN12FIU/TN13FIU/TN14FIU: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
TN21FIU: l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220.0 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11FIU/TN12FIU/ TN14FIU
4.2
4.6
TN13FIU/TN21FIU
0.2
0.3
17.8 ITL ITL: interleaver board
17.8.1 Version Description The available functional versions of the ITL board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1916
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1IT L
Y
Y
Y
Y
Y
N
TN1 2IT L
Y
Y
Y
Y
Y
N
Type Unit
Type
Description
TN11ITL
01
The optical module of the ITL01 board consists of one interleaver and one coupler. The interleaver is used for demultiplexing, and the coupler is used for multiplexing. The board is mainly used in systems where the bit rate of a single wavelength is 10 Gbit/s.
04
The optical module of the ITL04 board consists of two interleavers. The interleaver is used for both demultiplexing and multiplexing. The board is mainly used in systems where the bit rate of a single wavelength is 10 Gbit/s, 40 Gbit/s or 100 Gbit/s.
01
The optical module of the ITL01 board consists of one interleaver and one coupler. The interleaver is used for demultiplexing, and the coupler is used for multiplexing. The board is mainly used in systems where the bit rate of a single wavelength is 10 Gbit/s.
TN12ITL
Differences Between Versions l
Function: – The optical module on the TN11ITL04 board consists of two interleavers which are used to multiplex/demultiplex optical signals. This board is mainly used in a system in which the rate of a single wavelength is 40 Gbit/s or 100 Gbit/s. The optical module on the ITL board of other versions consists of an interleaver and a coupler. The interleaver is used to demultiplex optical signals, and the coupler is used to multiplex optical signals. For details, see 17.8.4 Working Principle and Signal Flow. – The TN12ITL board supports the VOA mode, but the ITL board of other versions does not. For details, see 17.7.9 Parameters Can Be Set or Queried by NMS.
l
Appearance: – The TN11 and TN12 versions use different front panels. For details, see 17.8.5 Front Panel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1917
OptiX OSN 8800/6800/3800 Hardware Description
l
17 Optical Multiplexer and Demultiplexing Board
Specification: – The specifications vary according to versions. For details, see 17.8.10 ITL Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11ITL
TN12ITL
Upgrade the NE software to OptiX OSN 6800 V100R004C01 or a later version or update the NE software to OptiX OSN 8800 V100R002C00 or later version. NOTE When used in a 40 Gbit/s or 100 Gbit/s systems, the TN12ITL board cannot replace the TN11ITL board.
TN12ITL
TN11ITL
The TN11ITL board can replace the TN12ITL board only in one application scenario: multiplexing/demultiplexing between the signals at a channel spacing of 100 GHz and the signals at a channel spacing of 50 GHz. NOTE In VOA mode, the TN11ITL board cannot replace the TN12ITL board.
17.8.2 Application As a type of optical multiplexing and demultiplexing unit, the ITL board implements multiplexing/demultiplexing between the optical signals at a channel spacing of 100 GHz and the signals at a channel spacing of 50 GHz. The TN11ITL04 board is mainly used in systems where the bit rate of a single wavelength is 40 Gbit/s or 100 Gbit/s. For the position of the ITL board in the WDM system, see Figure 17-29. Figure 17-29 Position of the ITL board in the WDM system OTU OTU OTU OTU OTU OTU OTU OTU
Issue 03 (2013-05-16)
1
C_ODD
C_ODD
M40 40 1
OA
C_EVEN
WMU
40
ITL
1 D40 40 1
D40 40 1
OA C_EVEN
M40
1
D40 40 1
ITL
C_ODD
WMU OA
C_ODD
M40
OA
C_EVEN D40
40
C_EVEN
40 1 M40 40
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
OTU OTU OTU OTU OTU OTU OTU OTU
1918
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
NOTE
The WMU board must be used when the 10G OTU with fixed wavelengths is used in the system. In other cases, the WMU board is optional.
17.8.3 Functions and Features The ITL board is mainly used to multiplex and demultiplex signals, and to detect online optical spectrum. For detailed functions and features, refer to Table 17-59. Table 17-59 Functions and features of the ITL board Function and Feature
Description
Basic function
Multiplexes/demultiplexes optical signals between C_ODD signals and C_EVEN signals.
Detection and monitoring of the online spectrum
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Optical-layer ASON
Supported by TN11ITL.
17.8.4 Working Principle and Signal Flow The ITL board consists of the optical module, control and communication module, and power supply module. Figure 17-30 and Figure 17-31 shows the functional modules and signal flow of the ITL board. Figure 17-30 Functional modules and signal flow of the TN11ITL01/TN12ITL board Optical module TO TE
Interleaver
RO RE
IN
Splitter
Coupler
OUT MON
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
1919
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-31 Functional modules and signal flow of the TN11ITL04 board
Signal Flow TN11ITL01: l
The multiplexed optical signals received through the IN optical interface are sent to the interleaver that splits the signals into two channels of optical signals in equal spacing. Then, the two channels of optical signals are output through the TO and TE optical interfaces respectively.
l
The coupler multiplexes the two channels of optical signals input from the RO and RE optical interfaces into one channel of optical signals. The one channel of optical signals is output through the OUT optical interface.
TN11ITL04: l
The multiplexed optical signals received through the IN optical interface are sent to the interleaver that splits the signals into two channels of optical signals in equal spacing. Then, the two channels of optical signals are output through the TO and TE optical interfaces respectively.
l
The interleaver multiplexes the two channels of optical signals input from the RO and RE optical interfaces into one channel of optical signals. The one channel of optical signals is output through the OUT optical interface.
TN12ITL: l
Issue 03 (2013-05-16)
The multiplexed optical signals received through the IN optical interface are sent to the interleaver. Then according to the requirement, get the signals all passed through the TE Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1920
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
interface or split the signals into two channels of optical signals in equal spacing. Then, the two channels of optical signals are output through the TO and TE optical interfaces respectively. l
The coupler multiplexes the two channels of optical signals input from the RO and RE optical interfaces into one channel of optical signals. The one channel of optical signals is output through the OUT optical interface.
Module Function l
Optical module Performs the transformation between C band optical signals in 100 GHz spacing and C band optical signals in 50 GHz spacing.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.8.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the ITL board.
Appearance of the Front Panel Figure 17-32 and Figure 17-33 show the front panel of the ITL board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1921
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-32 Front panel of the TN11ITL board
ITL STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TO RO TE RE
ITL
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1922
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-33 Front panel of the TN12ITL board
ITL STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TO RO TE RE
ITL
Indicators There is one indicator on the front panel of TN11ITL board. l
Board hardware status indicator (STAT) - green
There are four indicators on the front panel of TN12ITL board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1923
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 17-60 lists the type and function of each interface. Table 17-60 Types and functions of the interfaces on the ITL board Interface
Type
Function
IN
LC
Accesses the optical signals at 50 GHz channel spacing (C_ODD and C_EVEN multiplexed signals).
OUT
LC
Outputs the optical signals at 50 GHz channel spacing (C_ODD and C_EVEN multiplexed signals).
TE
LC
Outputs the optical signals at 100 GHz channel spacing (C_EVEN multiplexed signals).
RE
LC
Accesses the optical signals at 100 GHz channel spacing (C_EVEN multiplexed signals).
TO
LC
Outputs the optical signals at 100 GHz channel spacing (C_ODD multiplexed signals).
RO
LC
Accesses the optical signals at 100 GHz channel spacing (C_ODD multiplexed signals).
MON
LC
Connects to the input port on the MCA4, MCA8 or OPM8 board so that the MCA4, MCA8 or OPM8 board can detect the optical spectrum in service. The optical power at the MON interface is 10/90 of the optical power at the OUT interface, that is, the optical power at the MON interface is 10 dB lower than the optical power at the OUT interface, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (90/10) = 10 dB.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
17.8.6 Valid Slots One slots house one ITL board. Table 17-61 shows the valid slots for the ITL board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1924
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Table 17-61 Valid slots for the ITL board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
TN11ITL: IU1-IU8, IU11-IU27, IU29-IU36 TN12ITL: IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
17.8.7 Characteristic Code for the ITL The characteristic code for the ITL board contains one character, indicating the band adopted by the board. The detailed information about the characteristic code is given in Table 17-62. Table 17-62 Characteristic code for the ITL board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band.
For example, the characteristic code for the ITL board is C, indicating that the optical signals are in C band.
17.8.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-63. Table 17-63 Serial numbers of the interfaces of the ITL board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN/OUT
1
RE/TE
2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1925
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Interface on the Panel
Interface on the NM
RO/TO
3
MON
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
17.8.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For ITL parameters, refer to Table 17-64. Table 17-64 ITL parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Board Mode
ITL Mode, VOA Mode
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: ITL Mode
Sets the working mode of a board. l ITL Mode: Split the multiplexed optical signals received through the IN optical interface into two channels of signals in equal spacing. Then, the two channels of optical signals are output through the TO and TE optical interfaces respectively. l VOA Mode: The multiplexed optical signals received through the IN optical interface all passed through the TE interface. NOTE VOA Mode can be configured only when the services are less than 40 channels. NOTE Only for TN12ITL.
Configure Band
C
Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1926
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
17.8.10 ITL Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-65 Optical specifications of the TN11ITL01 Item
Unit
Value
Input channel spacinga
GHz
100
Output channel spacinga
GHz
50
dB
< 4.5
dB
< 2.5
Maximum channel insertion loss difference
dB
<1
Isolation
dB
> 25
Maximum reflectance
dB
-40
Directivity
dB
> 45
PMD
ps
< 0.5
Polarization dependent loss
dB
< 0.5
Input optical power range
dBm
≤ 26
Insertion loss
RE-OUT RO-OUT IN-TE IN-TO
IN-TE IN-TO
a: The input and output ends are defined based on the multiplexing process of the interleaver.
Table 17-66 Optical specifications of the TN11ITL04
Issue 03 (2013-05-16)
Item
Unit
Value
Input channel spacinga
GHz
100
Output channel spacinga
GHz
50
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1927
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Item
Unit
Value
dB
<3
dB
<3
Maximum channel insertion loss difference
dB
<1
Isolation
dB
> 25
Maximum reflectance
dB
-40
Directivity
dB
> 45
PMD
ps
< 0.5
Polarization dependent loss
dB
< 0.5
Input optical power range
dBm
≤ 26
Insertion loss
RE-OUT RO-OUT IN-TE IN-TO
IN-TE IN-TO
a: The input and output ends are defined based on the multiplexing process of the interleaver.
Table 17-67 Optical specifications of the TN12ITL Item
Unit
Value
Input channel spacinga
GHz
100
Output channel spacinga
GHz
50
dB
< 4.5
dB
< 3.5
Maximum channel insertion loss difference
dB
<1
Isolation
dB
> 22
Maximum reflectance
dB
-40
Directivity
dB
> 45
PMD
ps
< 0.5
Polarization dependent loss
dB
< 0.5
Input optical power range
dBm
≤ 23
Insertion loss
RE-OUT RO-OUT IN-TE IN-TO
IN-TE IN-TO
a: The input and output ends are defined based on the multiplexing process of the interleaver. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1928
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.7 lb.)
Power Consumption Board
Typical power consumption at 25°C (77° F) (W)
Maximum power consumption at 55°C (131°F) (W)
TN11ITL
0.2
0.3
TN12ITL
10.0
11.5
17.9 SFIU SFIU: fiber interface unit for sync timing
17.9.1 Version Description Only one functional version of the SFIU board is available, that is, TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1SFI U
Y
Y
Y
Y
Y
Y
17.9.2 Application As a type of optical multiplexing and demultiplexing unit, the SFIU board multiplexes and demultiplexes signals transmitted along the main optical path and optical supervisory channel (OSC). For the position of the SFIU board in the WDM system, see Figure 17-34. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1929
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-34 Position of the SFIU board in the WDM system
SYS1
OA
LINE1
SYS1
SYS1
LINE1
LINE1
SYS1
OA
TM1 OSC2
SCC
LINE1
ST2 RM1 OSC1
OA
S F I U
SYS2
S F I U LINE2
LINE2
OSC2 RM2
OA TM1
OSC2
RM1
OSC1
ST2 OSC1 TM2
SCC SYS2
NE1
OA
S F I U
SYS2
S F I U LINE2
LINE2
OSC2
RM2
OSC1
TM2
ST2
SYS2
NE2
SCC
OA NE3
NOTE
Of all the OSC boards, only the ST2 board can work with the SFIU board. A Raman board cannot be configured between two NEs that are interconnected through SFIU boards. The OSC2 optical port supports the 1511 nm wavelength, and the OSC1 optical port supports the 1491 nm wavelength. The SFIU board cannot be used together with the DAS1 board.
17.9.3 Functions and Features The SFIU board is mainly used to multiplex and demultiplex signals. For detailed functions and features, refer to Table 17-68. Table 17-68 Functions and features of the SFIU Function and Feature
Description
Basic function
Multiplexes and demultiplexes signals transmitted along the main path and optical supervisory channel. With this function, neither commissioning nor delay compensation is required for IEEE 1588V2 clocks.
Optical-layer ASON
Not supported
17.9.4 Working Principle and Signal Flow The SFIU board consists of an optical module, control and communication module, and power supply module. Figure 17-35 shows the functional modules and signal flow of the SFIU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1930
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-35 Functional modules and signal flow of the SFIU board
SYS1
LINE1
OSC1
Optical module
OSC2
LINE2
SYS2
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage Backplane (controlled by SCC)
DC power supply from a backplane
SCC
Signal Flow The LINE1 optical interface receives or transmits the OSC signals and the signals of the main optical path. It cannot receive and transmit these signals at the same time. The SYS1, SYS2, and LINE2 optical interfaces receive or transmit the main channel signal. They cannot be receivers and transmitters at the same time. The OSC1 and OSC2 optical interfaces receive or transmit the OSC signal. They cannot be receivers and transmitters at the same time. In other words, if the OSC1 optical interface receives the OSC signal, the OSC2 optical interface must transmit the OSC signal. The following describes the signal flow of the SFIU board when the OSC1 optical interface receives the OSC signal and the OSC2 optical interface transmits the OSC signal: l
The SFIU board receives the OSC signal from the associated ST2 board through the OSC1 optical interface and directs the signal out the LINE1 optical interface.
l
The SFIU board receives the line signal through the LINE1 optical interface and demultiplexes the line signal into a main channel signal and an OSC signal. Then the board sends the OSC signal to the associated ST2 board through the OSC2 optical interface and the main channel signal to the associated OA board through the SYS1 optical interface.
l
The board receives the main channel signal from the associated OA board through the SYS2 optical interface and directs the signal out the LINE2 optical interface.
The following describes the signal flow of the SFIU board when the OSC2 optical interface receives the OSC signal and the OSC1 optical interface transmits the OSC signal: l
Issue 03 (2013-05-16)
The SFIU board receives the OSC signal from the associated ST2 board through the LINE1 optical interface and directs the signal out the OSC1 optical interface. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1931
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
l
The SFIU board receives the main channel signal through the SYS1 optical interface and the OSC signal through the OSC2 optical interface and multiplexes the two signals into a multiplexed signal. Then the board sends the multiplexed signal out the LINE1 optical interface.
l
The SFIU board receives the main channel signal from the associated OA board through the LINE2 optical interface and directs the signal out the SYS2 optical interface.
The OSC2 optical interface supports the 1511 nm wavelength, and the OSC1 optical interface supports the 1491 nm wavelength.
Module Functions l
Optical module Multiplexes the OSC signal and main channel signal into a multiplexed signal, and vice versa.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
17.9.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the SFIU board.
Appearance of the Front Panel Figure 17-36 shows the front panel of the TN11SFIU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1932
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Figure 17-36 Front panel of the TN11SFIU board
SFIU STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
LINE1 LINE2 SYS1 SYS2 OSC1 OSC2
SFIU
Indicators One indicator is present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - green Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1933
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
For details about this indicator, see A.4 Board Indicators.
Interfaces Table 17-69 lists the type and function of each interface. Table 17-69 Types and functions of the interfaces on the SFIU board Interface
Type
Function
LINE1
LC
The LINE1 optical interface is located on the line side. It sends and receives OSC signals in addition to transmitting main optical path signals.
LINE2
LC
The LINE2 optical interface is located on the line side. It transmits the signals of the main optical path.
SYS1
LC
The SYS1 optical interface transmits the signals in the main optical path.
SYS2
LC
The SYS2 optical interface transmits the signals in the main optical path.
OSC1
LC
The OSC1 optical interface transmits the OSC signals.
OSC2
LC
The OSC2 optical interface transmits the OSC signals.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
17.9.6 Valid Slots One slot houses one SFIU board. Table 17-70 shows the valid slots for the SFIU board. Table 17-70 Valid slots for the SFIU board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1934
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
17.9.7 Characteristic Code for the SFIU The characteristic code for the SFIU board consists of one character, indicating the band adopted by the board. The detailed information about the characteristic code is given in Table 17-71. Table 17-71 Characteristic code for the SFIU board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band; the value L represents L band.
For example, the characteristic code for the board is C, indicating that the optical signals are in C band.
17.9.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 17-72. Table 17-72 Serial numbers of the interfaces of the SFIU board displayed on the NM Interface on the Panel
Interface on the NM
LINE1/LINE2
1
OSC1/OSC2
2
SYS1/SYS2
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1935
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
17.9.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For SFIU parameters, refer to Table 17-73. Table 17-73 SFIU parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Configure Band
C
Sets the working band type of a board.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: C Actual Band
-
Queries the actual working band of the board.
Channel Number Mode
C80 Mode, C40 Mode, CWDM Mode
Sets the number of wavelengths supported by the board.
Default: C80 Mode Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
PMD Coefficient (ps/SQRT(km))
0 to 1
Fiber Type
G651 Fiber, G652 Fiber, G655 Fiber
Default: All
Default: 0.05
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber. Sets the fiber type of the board.
Default: /
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1936
OptiX OSN 8800/6800/3800 Hardware Description
17 Optical Multiplexer and Demultiplexing Board
Field
Value
Description
Chromatic Dispersion Coefficient(ps/ (nm*km))
-15 to 30
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber.
Send DCM Dispersion Compensation Value(ps/nm)
-
Sets the DCM dispersion compensation value of the transmitting direction.
Receiving DCM Dispersion Compensation Value(ps/nm)
-
Sets the DCM dispersion compensation value of the receiving direction.
Default: 0
17.9.10 SFIU Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 17-74 Optical specifications of the SFIU board Interface
Item
Uni t
Value
-
Operating wavelength range (C band)
nm
1528-1561
-
Operating wavelength range of optical supervisory channel
nm
1480 to 1520
LINE1SYS1
Insertion loss
dB
≤ 1.0
Insertion loss
dB
≤ 1.5
LINE1OSC1 @λc
Isolation
dB
≥ 65
LINE1OSC2 @λc
Isolation
dB
≥ 40
OSC1SYS1
Directivity
dB
≥ 45
LINE2SYS2 LINE1OSC1 LINE1OSC2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1937
OptiX OSN 8800/6800/3800 Hardware Description
Interface
17 Optical Multiplexer and Demultiplexing Board
Item
Uni t
Value
Directivity
dB
≥ 55
-
Optical return loss
dB
> 40
-
Polarization dependent loss
C band
dB
< 0.1
OSC channel
dB
< 0.15
SYS1OSC1 OSC1OSC2 OSC2OSC1
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F)(W)
Maximum Power Consumption at 55°C (131°F)(W)
TN11SFIU
0.2
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1938
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18
Fixed Optical Add and Drop Multiplexing Board
About This Chapter 18.1 Overview Fixed optical add/drop multiplexer (FOADM) boards drop individual ITU-T G.694-compliant optical signals from a multiplexed signal and send these optical signals to associated OTU boards. In addition, FOADM boards also add and multiplex individual ITU-T G.694-compliant optical signals into one multiplexed signal. 18.2 CMR1 CMR1: CWDM 1-channel optical add/drop multiplexing unit 18.3 CMR2 CMR2: CWDM 2-channel optical add/drop multiplexing unit 18.4 CMR4 CMR4: CWDM 4-channel optical add/drop multiplexing unit 18.5 DMR1 DMR1: CWDM 1-channel bidirectional optical add/drop multiplexing board 18.6 MR2 MR2: 2-channel optical add/drop multiplexing unit 18.7 MR4 MR4: 4-channel optical add/drop multiplexing unit 18.8 MR8 MR8: 8-channel optical add/drop multiplexing unit 18.9 MR8V MR8V: 8-channel optical add/drop multiplexing unit with VOA 18.10 SBM2 SBM2: 2-channel CWDM single-fiber bi-directional add/drop board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1939
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.1 Overview Fixed optical add/drop multiplexer (FOADM) boards drop individual ITU-T G.694-compliant optical signals from a multiplexed signal and send these optical signals to associated OTU boards. In addition, FOADM boards also add and multiplex individual ITU-T G.694-compliant optical signals into one multiplexed signal.
Positions of FOADM Boards in a WDM System Figure 18-1 shows the positions of FOADM boards in a WDM system. Figure 18-1 Positions of FOADM boards in a WDM system
SC2
West line-side ODF
F I U
OA
OA FOADM
FOADM
OA
OA
O T U
O T U
West client-side West signal
O T U
F I U
East line-side ODF
O T U
East client-side
East signal
Pass-through signal
Main Functions The function differences between different FOADM boards lie in the WDM specifications and number of add/drop signals. Table 18-1 lists the functions of FOADM boards. The DMR1 and SBM2 boards support applications different from other FOADM boards. For details, see 18.5 DMR1 and 18.10 SBM2. Table 18-1 Main functions of FOADM boards Board
WDM Specifications
Function
CMR1
CWDM
Adds/Drops and multiplexes one wavelength to/ from a multiplexed signal.
CMR2
CWDM
Adds/Drops and multiplexes two signals to/from a multiplexed signal.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1940
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Board
WDM Specifications
Function
CMR4
CWDM
Adds/Drops and multiplexes four signals to/from a multiplexed signal.
DMR1
CWDM
Adds/Drops and multiplexes one channel of 1310 nm wavelength in east direction and one in west direction.
MR2
DWDM
Adds/Drops and multiplexes two signals to/from a multiplexed signal.
MR4
DWDM
Adds/Drops and multiplexes four signals to/from a multiplexed signal.
MR8
DWDM
Adds/Drops and multiplexes eight signals to/ from a multiplexed signal.
MR8V
DWDM
Adds/Drops and multiplexes eight signals to/ from a multiplexed signal. Adjusts the multiplexed input optical power of WDM-side signal and the input optical power of cascade ports for pass-through wavelengths.
SBM2
CWDM
Adds/Drops two wavelengths to/from one multiplexed signal and multiplexes the other two wavelengths into another multiplexed signal. The optical signals that are added or dropped, and the optical signals that are multiplexed must be carried over different wavelengths. The SBM2 unit is applied to single-fiber bidirectional system.
18.2 CMR1 CMR1: CWDM 1-channel optical add/drop multiplexing unit
18.2.1 Version Description The available functional version of the CMR1 board is TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1941
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN2 1C MR 1
N
N
N
N
N
Y
18.2.2 Application As a type of optical add and drop multiplexing unit, the CMR1 board adds/drops and multiplexes one channel of signals. For the position of the CMR1 in the CWDM system, see Figure 18-2. Figure 18-2 Position of the CMR1 in the CWDM system
Client side
Client side
OTU D
OTU A
D
A
IN
OUT MO
MI
CMR1
CMR1 MI
MO
OUT
IN
18.2.3 Functions and Features The CMR1 is mainly used to add/drop and multiplex signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-2. Table 18-2 Functions and features of the CMR1
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Adds/Drops and multiplexes one channel of signals to/from the multiplexed signals.
WDM specification
Supports the CWDM specification.
Cascade interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1942
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Function and Feature
Description
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.2.4 Working Principle and Signal Flow The CMR1 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-3 shows the functional modules and signal flow of the CMR1 board. Figure 18-3 Functional modules and signal flow of the CMR1 board MO
D
IN
MI
A
Drop optical module
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates one wavelength from the signals and this wavelength is transmitted to the OTU board or integrated client-side equipment through the D interface. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with one wavelength added through the A interface by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1943
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Module Function l
OADM optical module – Adds/drops and multiplexes one channel of signals. – Provides an intermediate cascade interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.2.5 Front Panel There are interfaces on the front panel of the CMR1 board.
Appearance of the Front Panel Figure 18-4 shows the front panel of the CMR1 board. Figure 18-4 Front panel of the CMR1 board
IN D MO MI A OUT
CMR1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1944
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Interfaces Table 18-3 lists the type and function of each interface. Table 18-3 Types and functions of the interfaces on the CMR1 board Interface
Type
Function
A
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
18.2.6 Valid Slots One slot houses on CMR1 board. Table 18-4 shows the valid slots for the CMR1 board. Table 18-4 Valid slots for CMR1 board Product
Valid Slots
OptiX OSN 3800 chassis
IU1, IU8, and IU11
18.2.7 Characteristic Code for the CMR1 The characteristic code for the CMR1 board contains four digits, indicating the wavelength that carries the signals processed by the board. Table 18-5 lists details on the characteristic code for the CMR1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1945
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-5 Characteristic code for the CMR1 Code
Meaning
Description
First four digits
Wavelength that carries optical signals
Indicates the wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN21CMR1 is 1471, indicating that the wavelength that carries the signals is 1471 nm.
18.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-6. Table 18-6 Serial numbers of the interfaces of the CMR1 displayed on the NM Interface on the Panel
Interface on the NM
A/D
1
MI/MO
2
IN/OUT
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For CMR1 parameters, refer to Table 18-7. Table 18-7 CMR1 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1946
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
11/1471.00/208.170 to 18/1611.00/188.780 Default:/
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
CWDM
Sets the band type.
Default: CWDM
18.2.10 CMR1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-8 lists the optical specifications of the CMR1 board. Table 18-8 Optical specifications of the CMR1 board
Issue 03 (2013-05-16)
Correspondi ng interfaces
Item
Unit
Value
-
Operating wavelength range
nm
1260-1360
IN-D
Drop channel insertion loss
dB
≤1
Isolation
dB
> 40
A-OUT
Add channel insertion loss
dB
≤1
IN-MO MI-OUT
Insertion loss
dB
≤ 0.8
Isolation
dB
≥ 25
-
Reflectance
dB
-40
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1947
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Rules for Adding/Dropping Wavelength The CMR1 adds/drops and multiplexes one channel of signals to/from the multiplexed signals. There are no rules for adding/dropping signals.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN21CMR1
0.2
0.3
18.3 CMR2 CMR2: CWDM 2-channel optical add/drop multiplexing unit
18.3.1 Version Description The available functional versions of the CMR2 board are TN11 and TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1C MR 2
Y
Y
Y
Y
Y
Y
TN2 1C MR 2
N
N
N
N
N
Y
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1948
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Differences Between Versions l
Appearance: – The TN11 and TN21 versions use different front panels with different dimensions. See 18.3.5 Front Panel and 18.3.10 CMR2 Specifications.
l
Specification: – The mechanical specifications vary according to versions. For details, see 18.3.10 CMR2 Specifications.
Substitution Relationship The CMR2 boards of different versions cannot replace each other.
18.3.2 Application As a type of optical add and drop multiplexing unit, the CMR2 board adds/drops and multiplexes two channels of signals. For the position of the CMR2 board in the CWDM system, see Figure 18-5. Figure 18-5 Position of the CMR2 board in the CWDM system
Client side OTU D1
Client side
OTU A1 D2
IN
OTU
A2
D1
MO
MI
OTU A1 D2
A2 OUT
CMR2
CMR2 MI
MO
OUT
IN
18.3.3 Functions and Features The CMR2 board is mainly used to add/drop and multiplex two channels of signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-9. Table 18-9 Functions and features of the CMR2 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Adds/Drops and multiplexes two channels of signals to/from the multiplexed signals. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1949
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Function and Feature
Description
WDM specification
Supports the CWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.3.4 Working Principle and Signal Flow The CMR2 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-6 shows the functional modules and signal flow of the CMR2 board. Figure 18-6 Functional modules and signal flow of the CMR2 board D1
IN
D2
MO
MI
Drop optical module
A1
A2
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates two wavelengths from the signals and these two wavelengths are transmitted Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1950
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
to the OTU boards or integrated client-side equipment through the D1 and D2 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with two wavelengths added through the A1 and A2 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface.
Module Function l
OADM optical module – Performs the add/drop multiplexing of two wavelengths. – Provides an intermediate cascade interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.3.5 Front Panel There are one indicator and eight interfaces on the front panel of the CMR2 board.
Appearance of the Front Panel Figure 18-7 shows the front panel of the TN11CMR2 board. Figure 18-8 shows the front panel of the TN21CMR2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1951
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-7 Front panel of the TN11CMR2 board
CMR2 STAT
CAUTION CAUTION HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN MO MI D1 A1 D2 A2
CMR2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1952
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-8 Front panel of the TN21CMR2 board
IN D1 D2 MO MI A2 A1 OUT CMR2
Indicators There is one indicator on the front panel of the TN11CMR2 board. There is no indicator on the front panel of the TN21CMR2 board. l
Board hardware status indicator (STAT) - green
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 18-10 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1953
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-10 Types and functions of the interfaces on the CMR2 board Interface
Type
Function
A1-A2
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D2
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.3.6 Valid Slots One slot houses one CMR2 board. Table 18-11 shows the valid slots for the TN11CMR2 board. Table 18-12 shows the valid slots for the TN21CMR2 board. Table 18-11 Slots for the TN11CMR2 Product
Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5
Table 18-12 Slots for the TN21CMR2
Issue 03 (2013-05-16)
Product
Slots
OptiX OSN 3800 chassis
IU1, IU8, and IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1954
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.3.7 Characteristic Code for the CMR2 The characteristic code for the CMR2 board contains eight digits, indicating the two wavelengths that carry the signals processed by the board. The detailed information about the characteristic code is given in Table 18-13. Table 18-13 Characteristic code for the CMR2 board Code
Meaning
Description
First four digits
First wavelength that carries optical signals
Indicates the first wavelength that carries the optical signals processed by the board.
Last four digits
Second wavelength that carries optical signals
Indicates the second wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN11CMR2 is 14711571. l
"1471" indicates that the first wavelength is 1471 nm.
l
"1571" indicates that the second wavelength is 1571 nm.
18.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-14. Table 18-14 Serial numbers of the interfaces of the CMR2 board displayed on the NM Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2
MI/MO
3
IN/OUT
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1955
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For CMR2 parameters, refer to Table 18-15. Table 18-15 CMR2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
CWDM
Sets the band type.
Default: CWDM
18.3.10 CMR2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-16 lists the optical specifications of the CMR2 board. Table 18-16 Optical specifications of the CMR2 board
Issue 03 (2013-05-16)
Correspondin g interfaces
Item
Unit
Value
-
Operating wavelength range
nm
1271-1611
-
Adjacent channel spacing
nm
20
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1956
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Correspondin g interfaces
Item
Unit
Value
IN-D1 IN-D2
0.5 dB spectral width
nm
≥ ±6.5
Drop channel insertion loss
dB
≤ 1.5
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT
0.5 dB spectral width
nm
≥ ±6.5
Add channel insertion loss
dB
≤ 1.5
IN-MO MI-OUT
Insertion loss
dB
≤ 1.0
Isolation
dB
≥ 13
-
Maximum reflectance
dB
-40
NOTE
The equipment can transmit the 1271 nm wavelength by connecting the CMR2 board to corresponding third-party equipment, though the equipment does not provide the 1271 nm OTU board and line board.
Rules for Adding/Dropping Wavelength The CMR2 adds/drops and multiplexes two random channels of signals to/from the multiplexed signals. There are no rules for adding/dropping signals.
Mechanical Specifications The mechanical specifications of TN11CMR2 are as follows. l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.8 kg (1.8 lb.)
The mechanical specifications of TN21CMR2 are as follows. l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1957
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11CMR2/TN21CMR2
0.2
0.3
18.4 CMR4 CMR4: CWDM 4-channel optical add/drop multiplexing unit
18.4.1 Version Description The available functional versions of the CMR4 board are TN11 and TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1C MR 4
Y
Y
Y
Y
Y
Y
TN2 1C MR 4
N
N
N
N
N
Y
Differences Between Versions l
Appearance: – The TN11 and TN21 versions have different front panels that have different dimensions. See 18.4.5 Front Panel and 18.4.10 CMR4 Specifications.
l
Specification: – The mechanical specifications vary according to the version of the board that you use. For details, see 18.4.10 CMR4 Specifications.
Substitution Relationship The CMR4 boards of different versions cannot replace each other. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1958
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.4.2 Application As a type of optical add and drop multiplexing unit, the CMR4 board adds/drops and multiplexes four channels of signals. For the position of the CMR4 board in the CWDM system, see Figure 18-9. Figure 18-9 Position of the CMR4 board in the CWDM system
Client side 4
OTU
OTU
A1 D4
D1
Client side
IN
OTU
A4
D1
MO
MI
4
OTU
A1 D4
A4 OUT
CMR4
CMR4 MI
MO
OUT
IN
18.4.3 Functions and Features The CMR4 board adds/drops and multiplexes signals, queries wavelengths, and provides a cascading interface. For detailed functions and features, refer to Table 18-17. Table 18-17 Functions and features of the CMR4 board Function and Feature
Description
Basic function
Adds/Drops and multiplexes four channels of signals to/from the multiplexed signals.
WDM specification
Supports the CWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.4.4 Working Principle and Signal Flow The CMR4 board consists of the OADM optical module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1959
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-10 shows the functional modules and signal flow of the CMR4 board. Figure 18-10 Functional modules and signal flow of the CMR4 board D1
IN
D4
MO
MI
A1
Drop optical module
A4
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates four wavelengths from the signals and these four wavelengths are transmitted to the OTU boards or integrated client-side equipment through the D1 to D4 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with four wavelengths added through the A1 to A4 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface.
Module Function l
OADM optical module – Performs the add/drop multiplexing of four wavelengths. – Provides an intermediate cascade interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1960
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
– Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.4.5 Front Panel There are one indicator and 12 interfaces on the front panel of CMR4 board.
Appearance of the Front Panel Figure 18-11 show the front panel of the TN11CMR4 board. Figure 18-12 show the front panel of the TN21CMR4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1961
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-11 Front panel of the TN11CMR4 board
CMR4 STAT
CAUTION CAUTION HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN MO MI D1 A1 D2 A2 D3 A3 D4 A4
CMR4
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1962
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-12 Front panel of the TN21CMR4 board
IN D1 D2 D3 D4 MO MI A4 A3 A2 A1 OUT CMR4
Indicators There is one indicator on the front panel of the TN11CMR4 board. There is no indicator on the front panel of the TN21CMR4 board. l
Board hardware status indicator (STAT) - green
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 18-18 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1963
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-18 Types and functions of the interfaces on the CMR4 board Interface
Type
Function
A1-A4
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D4
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.4.6 Valid Slots One slot houses one CMR4 board. Table 18-19 shows the valid slots for the TN11CMR4 board. Table 18-20 shows the valid slots for the TN21CMR4 board. Table 18-19 Slots for the TN11CMR4 Product
Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5
Table 18-20 Slots for the TN21CMR4
Issue 03 (2013-05-16)
Product
Slots
OptiX OSN 3800 chassis
IU1, IU8, and IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1964
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.4.7 Characteristic Code for the CMR4 The characteristic code for the CMR4 board contains eight digits, indicating the four wavelengths that carry the signals processed by the board. Detailed information about the characteristic code is given in Table 18-21. Table 18-21 Characteristic code for the CMR4 board Code
Meaning
Description
First and second digits
First wavelength that carries optical signals
Indicates the middle two digits of the first wavelength that carries the optical signals processed by the board.
Third and fourth digits
Second wavelength that carries optical signals
Indicates the middle two digits of the second wavelength that carries the optical signals processed by the board.
Fifth and sixth digits
Third wavelength that carries optical signals
Indicates the middle two digits of the third wavelength that carries the optical signals processed by the board.
Seventh and eighth digits
Fourth wavelength that carries optical signals
Indicates the middle two digits of the fourth wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN11CMR4 board is 47495961. l
"47" indicates that the first wavelength is 1471 nm.
l
"49" indicates that the second wavelength is 1491 nm.
l
"59" indicates that the third wavelength is 1591 nm.
l
"61" indicates that the fourth wavelength is 1611 nm.
18.4.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-22. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1965
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-22 Serial numbers of the interfaces of the CMR4 board displayed on the NM Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2
A3/D3
3
A4/D4
4
MI/MO
5
IN/OUT
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For CMR4 parameters, refer to Table 18-23. Table 18-23 CMR4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
CWDM
Sets the band type.
Default: CWDM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1966
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.4.10 CMR4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-24 lists the optical specifications of the CMR4 board. Table 18-24 Optical specifications of the CMR4 board Correspondin g interfaces
Item
Unit
Value
-
Operating wavelength range
nm
1271-1611 (1371 nm excluded)
-
Adjacent channel spacing
nm
20
IN-D1 IN-D2 IN-D3 IN-D4
0.5 dB spectral width
nm
≥ ±6.5
Drop channel insertion loss
dB
≤2
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT A3-OUT A4-OUT
0.5 dB spectral width
nm
≥ ±6.5
Add channel insertion loss
dB
≤2
IN-MO MI-OUT
Insertion loss
dB
≤ 1.5
Isolation
dB
≥ 13
-
Maximum reflectance
dB
-40
NOTE
The equipment can transmit the 1291 nm wavelength by connecting the CMR4 board to corresponding third-party equipment, though the equipment does not provide the 1291 nm OTU board and line board.
Rules for Adding/Dropping Wavelengths The CMR4 board adds/drops and multiplexes four channels of signals to/from the multiplexed signals. There are four wavelength groups.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1967
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-25 Rules for adding/dropping wavelengths on the CMR4 board Group
Wavelength (nm) A1/D1
A2/D2
A3/D3
A4/D4
1
1291
1311
1331
1351
2
1391
1411
1431
1451
3
1471
1491
1591
1611
4
1511
1531
1551
1571
Mechanical Specifications The mechanical specifications of TN11CMR4 board are as follows: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.9 kg (2.0 lb.)
The mechanical specifications of TN21CMR4 board are as follows: l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11CMR4/TN21CMR4
0.2
0.3
18.5 DMR1 DMR1: CWDM 1-channel bidirectional optical add/drop multiplexing board
18.5.1 Version Description The available functional versions of the DMR1 board are TN11 and TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1968
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1D MR 1
Y
Y
N
N
Y
Y
TN2 1D MR 1
N
N
N
N
N
Y
Differences Between Versions l
Appearance: – The TN11DMR1 and TN21DMR1 versions use different front panels with different dimensions. See 18.5.5 Front Panel and 18.5.10 DMR1 Specifications.
l
Specification: – The mechanical specifications vary according to versions. For details, see 18.5.10 DMR1 Specifications.
Substitution Relationship The DMR1 boards of different versions cannot replace each other.
18.5.2 Application The DMR1 board is used to add/drop and multiplex a 1310 nm wavelength in the east and west directions. For the position of the DMR1 board in the CWDM system, see Figure 18-13. Figure 18-13 Position of the DMR1 board in the CWDM system 1310nm
OTU
OTU
WD WIN
D M R 1
WOUT
WMO
EA
O A D M
O A D M
EMI
D M R EMO 1
WMI WA
1310nm
Issue 03 (2013-05-16)
1310nm
EOUT
EIN ED 1310nm
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1969
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
NOTE
The DMR1 board is able to process signals in two directions. In the figure, the two DMR1 boards are actually one physical board. In the figure, the OADM boards are actually the CMR2 or CMR4 boards. The OADM board in the figure supports wavelengths ranging from 1471 nm to 1611 nm.
18.5.3 Functions and Features The DMR1 board is mainly used to add/drop and multiplex signals, to concatenate ports, and to query wavelengths. Table 18-26 provides the detailed features and functions of the DMR1 board. Table 18-26 Functions and features of the DMR1 board Functions and Features
Description
Basic functions
Adds/drops and multiplexes a 1310 nm wavelength in the east and west directions.
WDM specification
Supports the CWDM specifications.
Port concatenation
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.5.4 Working Principle and Signal Flow The DMR1 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-14 shows the functional modules and signal flow of the DMR1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1970
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-14 Functional modules and signal flow of the DMR1 board WD ED
WMO EMO EMI WMI
EA WA
WIN EIN
Drop optical module
Add optical module
EOUT WOUT
OADM optical module Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow WIN receives signals from the west main path. The Drop optical module extracts 1310 nm signals from the received signals. The extracted signals are dropped through WD. The remaining signals are connected to other OADM equipment through WMO. EIN receives signals from the east main path. The Drop optical module extracts 1310 nm signals from the received signals. The extracted signals are dropped through ED. The remaining signals are connected to other OADM equipment through EMO. Local 1310 nm signals are added through EA, and other signals are added through EMI. After being multiplexed by the Add optical module, the signals are sent to east main path by EOUT. Similarly, Local 1310 nm signals are added through WA, and other signals are added through WMI. After being multiplexed by the Add optical module, the signals are sent to west main path by WOUT.
Module Function l
OADM optical module – Performs the add/drop multiplexing of 1310nm signals and other signals. – Provides an intermediate cascade interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l Issue 03 (2013-05-16)
Control and communication module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1971
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
– Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.5.5 Front Panel There are interfaces on the front panel of the board.
Appearance of the Front Panel Figure 18-15 shows the front panel of the TN11DMR1 board. Figure 18-16 shows the front panel of the TN21DMR1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1972
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-15 Front panel of the TN11DMR1 board
DMR1 STAT
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
WOUT WIN EOUT EIN WMO WMI EMO EMI WD WA ED EA DMR1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1973
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-16 Front panel of the TN21DMR1 board
WIN WD WMO WMI WA WOUT EIN ED EMO EMI EA EOUT
DMR1
Indicators There is one indicator on the front panel of the TN11DMR1 board. There is no indicator on the front panel of the TN21DMR1 board. l
Board hardware status indicator (STAT) - green
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 18-27 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1974
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-27 Types and functions of the interfaces on the DMR1 board Interface
Type
Function
EA/WA
LC
Receives the 1310 nm optical signals that west and east client-side equipment transmits.
ED/WD
LC
Transmits 1310 nm optical signals to west and east client-side equipment.
EIN/WIN
LC
Receives the multiplexed signals on west and east main paths.
EOUT/WOUT
LC
Transmits multiplexed signals to west and east main paths.
EMI/WMI
LC
Serves as concatenation input optical interface. It connects to the output interfaces on other boards.
EMO/WMO
LC
Serves as concatenation output optical interface. It connects to the input interfaces on other boards.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.5.6 Valid Slots One slot houses one DMR1 board. Table 18-28 shows the valid slots for the TN11DMR1 board. Table 18-29 shows the valid slots for the TN21DMR1 board. Table 18-28 Slots for the TN11DMR1 Product
Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5
Table 18-29 Slots for the TN21DMR1
Issue 03 (2013-05-16)
Product
Slots
OptiX OSN 3800 chassis
IU1, IU8, and IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1975
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.5.7 Characteristic Code for the DMR1 The characteristics code for the DMR1 board contains four digits, identifying the frequency of the optical signals processed by the board. Table 18-30 provides the details on the characteristics code. Table 18-30 Characteristic code for the DMR1 board Barcode
Meaning
Description
First to fourth digits
Optical signal frequency
Frequency of the optical signals processed by the board
For example, the characteristics code of the TN11DMR1 board is 9210. The code indicates that the frequency of the optical signals is 192.1 THz.
18.5.8 Optical Interfaces This topic describes the interface information on the U2000.
Interface Display Table 18-31 lists the number on the NM indicating each optical interface on the board. Table 18-31 Number on the NM indicating each optical interface on the DMR1 board Interface on Front Panel
Number on the NM
WA/WD
1
EA/ED
2
WMI/WMO
3
WIN/WOUT
4
EMI/EMO
5
EIN/EOUT
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.5.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the DMR1, refer to Table 18-32. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1976
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-32 DMR1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Used to configure the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
C+L
Used to configure the band type.
Default: C+L
18.5.10 DMR1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-33 Optical specifications of the DMR1 board Correspondin g interfaces
Item
Unit
Value
EA/ED/WA/ WD
Operating wavelength range
nm
1260-1360
EIN-ED WIN-WD
Drop channel insertion loss
dB
≤1
Isolation
dB
≥40
Add channel insertion loss
dB
≤1
Isolation
dB
≥40
Insertion loss
dB
≤ 0.8
EA-EOUT WA-WOUT
EIN-EMO Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1977
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Correspondin g interfaces
Item
Unit
Value
WIN-WMO
Isolation
dB
≥ 25
EMI-EOUT WMI-WOUT
Insertion loss
dB
≤ 0.8
Isolation
dB
≥ 15
-
Maximum reflectance
dB
-40
Rules for Adding/Dropping Wavelength The DMR1 board adds/drops and multiplexes a 1310 nm wavelength in the east and west directions from the multiplexed signals.
Mechanical Specifications Mechanical specifications of the TN11DMR1 board: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.7 kg (1.5 lb.)
Mechanical specifications of the TN21DMR1 board: l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.7 kg (1.5 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11DMR1/TN21DMR1
0.2
0.3
18.6 MR2 MR2: 2-channel optical add/drop multiplexing unit
18.6.1 Version Description The available functional versions of the MR2 board are TN11 and TN21.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1978
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M R2
Y
Y
Y
Y
Y
Y
TN2 1M R2
N
N
N
N
N
Y
Differences Between Versions l
Appearance: – The TN11MR2 and TN21MR2 versions use different front panels with different dimensions. See 18.6.5 Front Panel and 18.6.10 MR2 Specifications.
l
Specification: – The mechanical specifications vary according to versions. For details, see 18.6.10 MR2 Specifications.
Substitution Relationship The MR2 boards of different versions cannot replace each other.
18.6.2 Application As a type of optical add and drop multiplexing unit, the MR2 board adds/drops and multiplexes two channels of signals. For the position of the MR2 board in the DWDM system, see Figure 18-17. Figure 18-17 Position of the MR2 board in the DWDM system
Client side OTU D1
OA
Client side
OTU A1 D2
IN
OTU
A2
D1
MO
MI
Issue 03 (2013-05-16)
A1 D2
A2 OUT
OA
MR2
MR2 OA
OTU
MI
OA
MO
OUT
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
IN
1979
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.6.3 Functions and Features The MR2 board is mainly used to add/drop and multiplex signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-34. Table 18-34 Functions and features of the MR2 board Function and Feature
Description
Basic function
Adds/drops and multiplexes two random channels of signals to/from the multiplexed signals.
WDM specification
Supports the DWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Supported by the TN11MR2.
18.6.4 Working Principle and Signal Flow The MR2 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-18 shows the functional modules and signal flow of the MR2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1980
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-18 Functional modules and signal flow of the MR2 board D1
IN
D2
MO
MI
Drop optical module
A1
A2
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates two wavelengths from the signals and these two wavelengths are transmitted to the OTU boards or integrated client-side equipment through the D1 and D2 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with two wavelengths added through the A1 and A2 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface.
Module Function l
OADM optical module – Adds/drops and multiplexes two channels of signals. – Provides an intermediate cascading interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1981
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.6.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the MR2 board.
Appearance of the Front Panel Figure 18-19 shows the front panel of the TN11MR2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1982
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-19 Front panel of the TN11MR2 board
MR2 STAT
CAUTION CAUTION HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN MO MI D1 A1 D2 A2
MR2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1983
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-20 shows the front panel of the TN21MR2 board. Figure 18-20 Front panel of the TN21MR2 board
IN D1 D2 MO MI A2 A1 OUT MR2
Indicators There is one indicator on the front panel of the TN11MR2 board. There is no indicator on the front panel of the TN21MR2 board. l
Board hardware status indicator (STAT) - green
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 18-35 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1984
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-35 Types and functions of the interfaces on the MR2 board Interface
Type
Function
A1-A2
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D2
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.6.6 Valid Slots One slot houses one MR2 board. Table 18-36 and Table 18-37 shows the valid slots for the MR2 board. Table 18-36 Valid slots for the TN11MR2 board Product
Slot
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5
Table 18-37 Valid slots for the TN21MR2 board
Issue 03 (2013-05-16)
Product
Slot
OptiX OSN 3800 chassis
IU1, IU8, and IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1985
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.6.7 Characteristic Code for the MR2 The characteristic code for the MR2 board contains eight digits that indicate the frequencies of the two signals processed by the board. The detailed information about the characteristic code is given in Table 18-38. Table 18-38 Characteristic code for the MR2 board Code
Meaning
Description
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal.
Last four digits
Frequency of the second optical signal
Indicates the last four digits of the frequency that carries the second optical signal.
For example, the characteristic code for the TN11MR2 board is 93609370. l
"9360" indicates that the frequency of the first optical signal is 193.60 THz.
l
"9370" indicates that the frequency of the second optical signal is 193.70 THz.
18.6.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-39. Table 18-39 Serial numbers of the interfaces of the MR2 board displayed on the NM Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2
MI/MO
3
IN/OUT
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1986
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
For MR2 parameters, refer to Table 18-40. Table 18-40 MR2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
1/1529.16/196.050 to 80/1560.61/192.100 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
C
Sets the band type.
Default: C
18.6.10 MR2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-41 lists the optical specifications of the MR2 board. Table 18-41 Optical specifications of the MR2 board
Issue 03 (2013-05-16)
Correspondin g interfaces
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Adjacent channel spacing
GHz
100
IN-D1 IN-D2
-1dB spectral width
nm
≥ 0.2
Drop channel insertion loss
dB
≤ 1.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1987
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Correspondin g interfaces
Item
Unit
Value
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT
-1dB spectral width
nm
≥ 0.2
Add channel insertion loss
dB
≤ 1.5
IN-MO MI-OUT
Insertion loss
dB
≤ 1.0
Isolation
dB
> 13
-
Polarization dependence loss
dB
< 0.2
-
Maximum reflectance
dB
-40
Rules for Adding/Dropping Wavelength The MR2 adds/drops and multiplexes random two channels of signals to/from the multiplexed signals. There are no rules for adding/dropping wavelengths.
Mechanical Specifications The mechanical specifications of TN11MR2 are as follows: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.9 kg (2.0 lb.)
The mechanical specifications of TN21MR2 are as follows: l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11MR2/TN21MR2
0.2
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1988
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.7 MR4 MR4: 4-channel optical add/drop multiplexing unit
18.7.1 Version Description The available functional versions of the MR4 board are TN11 and TN21.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M R4
Y
Y
Y
Y
Y
Y
TN2 1M R4
N
N
N
N
N
Y
Differences Between Versions l
Appearance: – The TN11MR4 and TN21MR4 versions use different front panels with different dimensions. See 18.7.5 Front Panel and 18.7.10 MR4 Specifications.
l
Specification: – The mechanical specifications vary according to versions. For details, see 18.7.10 MR4 Specifications.
Substitution Relationship The MR4 boards of different versions cannot replace each other.
18.7.2 Application As a type of optical add/drop multiplexing unit, the MR4 board adds/drops and multiplexes four channels of signals. For the position of the MR4 board in the DWDM system, see Figure 18-21.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1989
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-21 Position of the MR4 board in the DWDM system
Client side OTU D1
OA
4
OTU
A1 D4
IN
Client side
A4
D1
MO
MI
OTU
A1 D4
A4 OUT
OA
MR4
MR4 OA
4
OTU
MI
MO
OUT
IN
OA
18.7.3 Functions and Features The MR4 board is mainly used to add/drop and multiplex signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-42. Table 18-42 Functions and features of the MR4 board Function and Feature
Description
Basic function
Adds/drops and multiplexes four consecutive channels of signals to/ from the multiplexed signals.
WDM specification
Supports the DWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.7.4 Working Principle and Signal Flow The MR4 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-22 shows the functional modules and signal flow of the MR4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1990
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-22 Functional modules and signal flow of the MR4 board D1
IN
D4
MO
MI
A1
Drop optical module
A4
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates four wavelengths from the signals and these four wavelengths are transmitted to the OTU boards or integrated client-side equipment through the D1 to D4 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with four wavelengths added through the A1 to A4 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface.
Module Function l
OADM optical module – Adds/drops and multiplexes four channels of signals. – Provides an intermediate cascading interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1991
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.7.5 Front Panel There are indicators, interfaces and a laser hazard level label on the front panel of the MR4 board.
Appearance of the Front Panel Figure 18-23 shows the front panel of the TN11MR4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1992
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-23 Front panel of the TN11MR4 board
MR4 STAT
CAUTION CAUTION HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN MO MI D1 A1 D2 A2 D3 A3 D4 A4
MR4
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1993
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-24 shows the front panels of the TN21MR4 boards respectively. Figure 18-24 Front panel of the TN21MR4 board
IN D1 D2 D3 D4 MO MI A4 A3 A2 A1 OUT MR4
Indicators There is one indicator on the front panel of the TN11MR4 board. There is no indicator on the front panel of the TN21MR4 board. l
Board hardware status indicator (STAT) - green
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 18-43 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1994
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-43 Types and functions of the interfaces on the MR4 board Interface
Type
Function
A1-A4
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D4
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.7.6 Valid Slots One slot house one MR4 board. Table 18-44 and Table 18-45 shows the valid slots for the MR4 board. Table 18-44 Valid slots for the TN11MR4 board Product
Slot
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-U17
OptiX OSN 3800 chassis
IU2-IU5
Table 18-45 Valid slots for the TN21MR4 board
Issue 03 (2013-05-16)
Product
Slot
OptiX OSN 3800 chassis
IU1, IU8, and IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1995
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.7.7 Characteristic Code for the MR4 The characteristic code for the MR4 board contains eight digits. Each digit indicates the frequencies of the first and the fourth signals processed by the board. Detailed information about the characteristic code is given in Table 18-46. Table 18-46 Characteristic code for the MR4 board Code
Meaning
Description
First four digits
Frequency of first optical signal
Indicates the last four digits of the frequency that carries the first optical signal processed by the board.
Last four digits
Frequency of forth optical signal
Indicates the last four digits of the frequency that carries the fourth optical signal processed by the board.
For example, the characteristic code for the MR4 board is 92109240. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9240" indicates that the frequency of the fourth optical signal is 192.40 THz.
Since the four channels of optical signals processed by the MR4 board are in sequence, it can be inferred that: l
The frequency of the second channel of optical signals is 192.20 THz.
l
The frequency of the third channel of optical signals is 192.30 THz.
For the mapping between the characteristic codes of the MR4 boards and signal frequencies, see Table 18-50 in 18.7.10 MR4 Specifications.
18.7.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-47. Table 18-47 Serial numbers of the interfaces of the MR4 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2
A3/D3
3 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1996
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Interface on the Panel
Interface on the NM
A4/D4
4
MI/MO
5
IN/OUT
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.7.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For MR4 parameters, refer to Table 18-48. Table 18-48 MR4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
1/1529.16/196.050 to 80/1560.61/192.100 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
C
Sets the band type.
Default: C
18.7.10 MR4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1997
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Optical Specifications Table 18-49 lists the optical specifications of the MR4 board. Table 18-49 Optical specifications of the MR4 board Interface
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Adjacent channel spacing
GHz
100
IN-D1 IN-D2 IN-D3 IN-D4
-1dB spectral width
nm
≥ 0.2
Drop channel insertion loss
dB
≤ 2.2
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT A3-OUT A4-OUT
-1dB spectral width
nm
≥ 0.2
Add channel insertion loss
dB
≤ 2.2
IN-MO MI-OUT
Insertion loss
dB
≤ 1.5
Isolation
dB
> 13
-
Maximum reflectance
dB
-40
Rules for Adding/Dropping Wavelengths The MR4 board adds/drops and multiplexes four consecutive channels of signals to/from the multiplexed signals. There are ten groups of wavelengths.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1998
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-50 Rules for adding/dropping wavelengths of the MR4 board
Issue 03 (2013-05-16)
G r o u p
C h ar a ct er is ti c C o d e
A1/D1
A2/D2
A3/D3
Wa vel en gth No .
Wav elen gth (nm)
Fre que ncy (T Hz)
W a v el e n gt h N o.
Wa vele ngt h (nm )
Fre qu enc y (T Hz )
W av el en gt h N o.
Wa vele ngt h (nm )
Fre que ncy (TH z)
W av el en gt h N o.
Wave lengt h (nm)
Freq uenc y (THz )
1
9 2 1 0 9 2 4 0
80
1560 .61
192. 10
7 8
155 9.79
192 .20
76
155 8.98
192. 30
74
1558. 17
192.4 0
2
9 2 5 0 9 2 8 0
72
1557 .36
192. 50
7 0
155 6.55
192 .60
68
155 5.75
192. 70
66
1554. 94
192.8 0
3
9 2 9 0 9 3 2 0
64
1554 .13
192. 90
6 2
155 3.33
193 .00
60
155 2.52
193. 10
58
1551. 72
193.2 0
4
9 3 3 0 9 3 6 0
56
1550 .92
193. 30
5 4
155 0.12
193 .40
52
154 9.32
193. 50
50
1548. 51
193.6 0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
A4/D4
1999
OptiX OSN 8800/6800/3800 Hardware Description
Issue 03 (2013-05-16)
18 Fixed Optical Add and Drop Multiplexing Board
G r o u p
C h ar a ct er is ti c C o d e
A1/D1
A2/D2
A3/D3
Wa vel en gth No .
Wav elen gth (nm)
Fre que ncy (T Hz)
W a v el e n gt h N o.
Wa vele ngt h (nm )
Fre qu enc y (T Hz )
W av el en gt h N o.
Wa vele ngt h (nm )
Fre que ncy (TH z)
W av el en gt h N o.
Wave lengt h (nm)
Freq uenc y (THz )
5
9 3 7 0 9 4 0 0
48
1547 .72
193. 70
4 6
154 6.92
193 .80
44
154 6.12
193. 90
42
1545. 32
194.0 0
6
9 4 1 0 9 4 4 0
40
1544 .53
194. 10
3 8
154 3.73
194 .20
36
154 2.94
194. 30
34
1542. 14
194.4 0
7
9 4 5 0 9 4 8 0
32
1541 .35
194. 50
3 0
154 0.56
194 .60
28
153 9.77
194. 70
26
1538. 98
194.8 0
8
9 4 9 0 9 5 2 0
24
1538 .19
194. 90
2 2
153 7.40
195 .00
20
153 6.61
195. 10
18
1535. 82
195.2 0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
A4/D4
2000
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
G r o u p
C h ar a ct er is ti c C o d e
A1/D1
A2/D2
A3/D3
A4/D4
Wa vel en gth No .
Wav elen gth (nm)
Fre que ncy (T Hz)
W a v el e n gt h N o.
Wa vele ngt h (nm )
Fre qu enc y (T Hz )
W av el en gt h N o.
Wa vele ngt h (nm )
Fre que ncy (TH z)
W av el en gt h N o.
Wave lengt h (nm)
Freq uenc y (THz )
9
9 5 3 0 9 5 6 0
16
1535 .04
195. 30
1 4
153 4.25
195 .40
12
153 3.47
195. 50
10
1532. 68
195.6 0
1 0
9 5 7 0 9 6 0 0
8
1531 .90
195. 70
6
153 1.12
195 .80
4
153 0.33
195. 90
2
1529. 55
196.0 0
Mechanical Specifications Mechanical specifications of TN11MR4 board are as follows: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.9 kg (1.98 lb.)
Mechanical specifications of TN21MR4 board are as follows: l
Dimensions of front panel (H x W x D): 118.9 mm (4.7 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2001
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11MR4/TN21MR4
0.2
0.3
18.8 MR8 MR8: 8-channel optical add/drop multiplexing unit
18.8.1 Version Description The available functional version of the MR8 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M R8
Y
Y
N
Y
Y
N
18.8.2 Application As a type of optical add and drop multiplexing unit, the MR8 boar adds/drops and multiplex eight channels of signals. For the position of the MR8 board in the DWDM system, see Figure 18-25.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2002
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-25 Position of the MR8 board in the DWDM system
Client side OTU D1
OA
8
Client side
OTU
A1 D8
IN
OTU
A8
D1
MO
MI
OTU
A1 D8
A8 OUT
OA
MR8
MR8 OA
8
MI
MO
OUT
IN
OA
18.8.3 Functions and Features The MR8 board is mainly used to add/drop and multiplex signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-51. Table 18-51 Functions and features of the MR8 board Function and Feature
Description
Basic function
Adds/drops and multiplexes eight channels of signals to/from the multiplexed signals.
WDM specification
Supports the DWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Not supported
18.8.4 Working Principle and Signal Flow The MR8 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-26 shows the functional modules and signal flow of the MR8 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2003
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-26 Functional modules and signal flow of the MR8 board D1
IN
D8
MO
MI
A1
Drop optical module
A8
Add optical module
OUT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates eight wavelengths from the signals and these eight wavelengths are transmitted to the OTU boards or integrated client-side equipment through the D1 to D8 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The MI interface receives the signals transmitted by the main path. The signals are multiplexed with eight wavelengths added through the A1 to A8 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface.
Module Function l
OADM optical module – Adds/drops and multiplexes eight channels of wavelengths. – Provides an intermediate cascading interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2004
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
– Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.8.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the MR8 board.
Appearance of the Front Panel Figure 18-27 shows the front panel of the MR8 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2005
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-27 Front panel of the MR8 board
MR8 STAT
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
D4
IN
A4
OUT
D5
MO
A5
MI
D6
D1
A6
A1
D7
D2
A7
A2
D8
D3
A8
A3
MR8
Indicators One indicator is present on the front panel: l
Board hardware status indicator (STAT) - green
For details about this indicator, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2006
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Interfaces Table 18-52 lists the type and function of each interface. Table 18-52 Types and functions of the interfaces on the MR8 board Interface
Type
Function
A1-A8
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D8
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signals.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.8.6 Valid Slots Two slots house one MR8 board. Table 18-53 shows the valid slots for the MR8 board. Table 18-53 Valid slots for the MR8 board Product
Slot
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack, so the slot number of the MR8 board displayed on the NM is the number of the leftmost one of the two slots. For example, if slots IU1 and IU2 house the MR8 board, the slot number of the MR8 board displayed on the NM is IU1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2007
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.8.7 Characteristic Code for the MR8 The characteristic code for the MR8 board contains eight digits that indicate the frequencies of the first and the eighth signals processed by the board. The detailed information about the characteristic code is given in Table 18-54. Table 18-54 Characteristic code for the MR8 board Code
Meaning
Description
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal processed by the board.
Last four digits
Frequency of the eighth optical signal
Indicates the last four digits of the frequency that carries the eighth optical signal processed by the board.
For example, the characteristic code for the MR8 board is 92109280. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9280" indicates that the frequency of the eighth optical signal is 192.80 THz.
Since the eight channels of optical signals processed by the MR8 board are consecutive, it can be inferred that: l
The frequency of the second optical signal is 192.20 THz.
l
The frequency of the third optical signal is 192.30 THz.
l
The frequency of the seventh signal is 192.70 THz.
For the mapping between the characteristic codes of the MR8 boards and signal frequencies, see Table 18-58 in 18.8.10 MR8 Specifications.
18.8.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-55. Table 18-55 Serial numbers of the interfaces of the MR8 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2008
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Interface on the Panel
Interface on the NM
A3/D3
3
A4/D4
4
A5/D5
5
A6/D6
6
A7/D7
7
A8/D8
8
MI/MO
9
IN/OUT
10
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.8.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For MR8 parameters, refer to Table 18-56. Table 18-56 MR8 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
1/1529.16/196.050 to 80/1560.61/192.100
Sets the operating wavelength at the WDM-side optical interface of a board.
Default: /
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2009
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Field
Value
Description
Configure Band Type
C
Sets the band type.
Default: C
18.8.10 MR8 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-57 lists the optical specifications of the MR8 board. Table 18-57 Optical specifications of the MR8 board
Issue 03 (2013-05-16)
Interface
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Adjacent channel spacing
GHz
100
IN-D1 IN-D2 IN-D3 IN-D4 IN-D5 IN-D6 IN-D7 IN-D8
-1dB spectral width
nm
≥ 0.2
Drop channel insertion loss
dB
≤4
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT A3-OUT A4-OUT A5-OUT A6-OUT A7-OUT A8-OUT
-1dB spectral width
nm
≥ 0.2
Add channel insertion loss
dB
≤4
IN-MRO MRI-OUT
Insertion loss
dB
≤ 3.5
Isolation
dB
> 13
-
Maximum reflectance
dB
-40
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2010
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Rules for Adding/Dropping Wavelength The MR8 adds/drops and multiplexes eight channels of signals to/from the multiplexed signals. There are five groups of wavelengths. Table 18-58 Rules for adding/dropping wavelength of the MR8 Group
1
2
3
4
5
Characteristic Code
92109280
92909360
93709440
94509520
95309600
A1/D1
Waveleng th No.
80
64
48
32
16
Waveleng th (nm)
1560.61
1554.13
1547.72
1541.35
1535.04
Frequenc y (THz)
192.10
192.90
193.70
194.50
195.30
Waveleng th No.
78
62
46
30
14
Waveleng th (nm)
1559.79
1553.33
1546.92
1540.56
1534.25
Frequenc y (THz)
192.20
193.00
193.80
194.60
195.40
Waveleng th No.
76
60
44
28
12
Waveleng th (nm)
1558.98
1552.52
1546.12
1539.77
1533.47
Frequenc y (THz)
192.30
193.10
193.90
194.70
195.50
Waveleng th No.
74
58
42
26
10
Waveleng th (nm)
1558.17
1551.72
1545.32
1538.98
1532.68
Frequenc y (THz)
192.40
193.20
194.00
194.80
195.60
Waveleng th No.
72
56
40
24
8
Waveleng th (nm)
1557.36
1550.92
1544.53
1538.19
1531.90
Frequenc y (THz)
192.50
193.30
194.10
194.90
195.70
Waveleng th No.
70
54
38
22
6
A2/D2
A3/D3
A4/D4
A5/D5
A6/D6
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2011
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Group
1
2
3
4
5
Characteristic Code
92109280
92909360
93709440
94509520
95309600
Waveleng th (nm)
1556.55
1550.12
1543.73
1537.40
1531.12
Frequenc y (THz)
192.60
193.40
194.20
195.00
195.80
Waveleng th No.
68
52
36
20
4
Waveleng th (nm)
1555.75
1549.32
1542.94
1536.61
1530.33
Frequenc y (THz)
192.70
193.50
194.30
195.10
195.90
Waveleng th No.
66
50
34
18
2
Waveleng th (nm)
1554.94
1548.51
1542.14
1535.82
1529.55
Frequenc y (THz)
192.80
193.60
194.40
195.20
196.00
A7/D7
A8/D8
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11MR8
0.2
0.3
18.9 MR8V MR8V: 8-channel optical add/drop multiplexing unit with VOA
18.9.1 Version Description The available functional version of the MR8V board is TN11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2012
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M R8V
Y
Y
Y
Y
Y
N
18.9.2 Application The MR8V adds/drops and multiplexes eight channels of signals, and adjusts the multiplexed input optical power of WDM-side signal and the input optical power of each adding channel. For the position of the MR8V board in the DWDM system, see Figure 18-28. Figure 18-28 Position of the MR8V board in the DWDM system Client side
OTU D1
OA
8
Client side
OTU
A1 D8
IN
A8
D1
MO
MI
OTU
A1 D8
A8 OUT
OA
MR8V
MR8V OA
8
OTU
MI
OA
MO
OUT
IN
18.9.3 Functions and Features The MR8V board is mainly used to add/drop signals, to query wavelengths, and to provide a cascading interface. For detailed functions and features, refer to Table 18-59.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2013
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-59 Functions and features of the MR8V board Function and Feature
Description
Basic function
Adds/drops and multiplexes eight channels of signals to/from the multiplexed signals and adjusts the multiplexed input optical power of WDM-side signal and the input optical power of each adding channel.
WDM specification
Supports the DWDM specifications.
Cascading interface
Provides the interface to cascade another optical add and drop multiplexing board to achieve expansion.
Wavelength query
Queries the wavelengths for the added or dropped signals.
Optical-layer ASON
Supported
18.9.4 Working Principle and Signal Flow The MR8V board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-29 shows the functional modules and signal flow of the MR8V board. Figure 18-29 Functional modules and signal flow of the MR8V board D1
D8
MO
MI
A1
A2
A8
VOA
VOA
VOA
IN VO VI
V O A
Drop optical module
Add optical module
OUT
OADM optical module Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
2014
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Signal Flow The IN interface receives the multiplexed signals sent from the upstream station. The drop optical module separates eight wavelengths from the signals and these eight wavelengths are transmitted to the OTU boards or integrated client-side equipment through the D1 to D8 interfaces. The remaining wavelengths are transmitted to other OADM equipment through the MO interface. The VI interface receives the multiplexed signals. After the optical power adjustment by VOA, the signals are transmitted through the VO interface. Then the IN or MI interface receives the adjusted multiplexed signals. The IN or MI interface receives the signals transmitted by the main path. The signals are multiplexed with eight wavelengths added through the A1 to A8 interfaces by the add optical module. Then, the multiplexed signals are transmitted through the OUT interface. NOTE
l The OTM station receives the multiplexed signals through the IN interface and transmits the multiplexed signals through the VO interface. l The OADM station receives the multiplexed signals through the MI interface and transmits the multiplexed signals through the VO interface. By default, the VO interface is connected to the IN interface on the VOA. The connection on the VOA can be changed manually.
Module Function l
OADM optical module – Adds/drops and multiplexes eight channels of signals. – Adjusts the input optical power of eight channels. Adjusts the input optical power of pass-through wavelengths. – Provides an intermediate cascade interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.9.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the MR8V board.
Appearance of the Front Panel Figure 18-30 shows the front panel of the MR8V board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2015
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-30 Front panel of the MR8V board
MR8V STAT ACT PROG SRV
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
D4
OUT
A4
IN
D5
MO
A5
MI
D6
D1
A6
A1
D7
D2
A7
A2
D8
D3
A8
A3
VO VI
MR8V
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2016
OptiX OSN 8800/6800/3800 Hardware Description
l
18 Fixed Optical Add and Drop Multiplexing Board
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 18-60 lists the type and function of each interface. Table 18-60 Types and functions of the interfaces on the MR8V board Interface
Type
Function
A1-A8
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1-D8
LC
Transmits the signals to the OTU or the integrated client-side equipment.
IN
LC
Receives the multiplexed signal from the WDM side when the IN interface is not connected to the VO interface on the same MR8V board. Receives the adjusted multiplexed signal from the VO interface when the IN interface is connected to the VO interface on the same MR8V board by a fiber.
OUT
LC
Transmits the multiplexed signals.
MI
LC
Cascading input interface, connected to the output interface of another OADM board.
MO
LC
Cascading output interface, connected to the input interface of another OADM board.
VI
LC
Receives the multiplexed signal from the WDM side.
VO
LC
Transmits the adjusted multiplexed signal to the IN interface.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.9.6 Valid Slots Two slots house one MR8V board. Table 18-61 shows the valid slots for the MR8V board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2017
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-61 Valid slots for the MR8V board Product
Slot
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack, so the slot number of the MR8V board displayed on the NM is the number of the leftmost one of the two slots. For example, if slots IU1 and IU2 house the MR8 board, the slot number of the MR8V board displayed on the NM is IU1.
18.9.7 Characteristic Code for the MR8V The characteristic code for the MR8V board contains of eight digits that indicate the frequencies of the first and the eighth signals processed by the board. The detailed information about the characteristic code is given in Table 18-62. Table 18-62 Characteristic code for the MR8V board Code
Meaning
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal processed by the board.
Last four digits
Frequency of the eighth optical signal
Indicates the last four digits of the frequency that carries the eighth optical signal processed by the board.
"V"
Adjustment of the input optical power of each channel
Indicates that the board adjusts the input optical power of each channel.
Description
For example, the characteristic code for the TN11MR8V board is 92109280V. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9280" indicates that the frequency of the eighth optical signal is 192.80 THz.
l
"V" indicates that adjusts the input optical power of each channel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2018
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Since the eight channels of optical signals processed by the MR8V board are consecutive, it can be inferred that: l
The frequency of the second optical signal is 192.20 THz.
l
The frequency of the third optical signal is 192.30 THz.
l
The frequency of the seventh signal is 192.70 THz.
18.9.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-63. Table 18-63 Serial numbers of the interfaces of the MR8V board displayed on the NM Interface on the Panel
Interface on the NM
A1/D1
1
A2/D2
2
A3/D3
3
A4/D4
4
A5/D5
5
A6/D6
6
A7/D7
7
A8/D8
8
MI/MO
9
IN/OUT
10
VI
11
VO
12
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
18.9.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For MR8V parameters, refer to Table 18-64. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2019
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-64 MR8V parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Add-Drop Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Add-Drop Wavelength ( nm ) / Frequency ( THz )
1/1529.16/196.050 to 80/1560.61/192.100 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
C
Sets the band type.
Default: C Optical Interface Attenuation Ratio (dB)
Min. Attenuation Rate (dB) to Max. Attenuation Rate (dB) Default:Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
18.9.10 MR8V Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2020
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Optical Specifications Table 18-65 lists the optical specifications of the MR8V board. Table 18-65 Optical specifications of the MR8V board Correspondin g interfaces
Item
Unit
Value
-
Operating wavelength range
nm
1529-1561
-
Adjacent channel spacing
GHz
100
IN-D1 IN-D2 IN-D3 IN-D4 IN-D5 IN-D6 IN-D7 IN-D8
–1 dB spectral width
nm
≥ 0.2
Drop channel insertion loss
dB
≤4
Adjacent channel isolation
dB
> 25
Non-adjacent channel isolation
dB
> 35
A1-OUT A2-OUT A3-OUT A4-OUT A5-OUT A6-OUT A7-OUT A8-OUT VI-VO
–1 dB spectral width
nm
≥ 0.2
Add channel insertion loss
dB
≤6
Attenuation range
dB
0-20
Adjustment accuracy
dB
1 (attenuation ≤ 10 dB)
IN-MRO MRI-OUT
Insertion loss
dB
≤ 3.5
Isolation
dB
> 13
-
Maximum reflectance
dB
-40
1.5 (attenuation ≤ 15 dB) 1.8 (attenuation >15 dB)
Rules for Adding/Dropping Wavelength The MR8V adds/drops and multiplexes eight channels of signals to/from the multiplexed signals. There are five groups of wavelengths.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2021
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Table 18-66 Rules for adding/dropping wavelength of the MR8V Group A1/D1
A2/D2
A3/D3
A4/D4
A5/D5
A6/D6
Issue 03 (2013-05-16)
1
2
3
4
5
Waveleng th No.
80
64
48
32
16
Waveleng th (nm)
1560.61
1554.13
1547.72
1541.35
1535.04
Frequenc y (THz)
192.10
192.90
193.70
194.50
195.30
Waveleng th No.
78
62
46
30
14
Waveleng th (nm)
1559.79
1553.33
1546.92
1540.56
1534.25
Frequenc y (THz)
192.20
193.00
193.80
194.60
195.40
Waveleng th No.
76
60
44
28
12
Waveleng th (nm)
1558.98
1552.52
1546.12
1539.77
1533.47
Frequenc y (THz)
192.30
193.10
193.90
194.70
195.50
Waveleng th No.
74
58
42
26
10
Waveleng th (nm)
1558.17
1551.72
1545.32
1538.98
1532.68
Frequenc y (THz)
192.40
193.20
194.00
194.80
195.60
Waveleng th No.
72
56
40
24
8
Waveleng th (nm)
1557.36
1550.92
1544.53
1538.19
1531.90
Frequenc y (THz)
192.50
193.30
194.10
194.90
195.70
Waveleng th No.
70
54
38
22
6
Waveleng th (nm)
1556.55
1550.12
1543.73
1537.40
1531.12
Frequenc y (THz)
192.60
193.40
194.20
195.00
195.80
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2022
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Group A7/D7
A8/D8
1
2
3
4
5
Waveleng th No.
68
52
36
20
4
Waveleng th (nm)
1555.75
1549.32
1542.94
1536.61
1530.33
Frequenc y (THz)
192.70
193.50
194.30
195.10
195.90
Waveleng th No.
66
50
34
18
2
Waveleng th (nm)
1554.94
1548.51
1542.14
1535.82
1529.55
Frequenc y (THz)
192.80
193.60
194.40
195.20
196.00
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11MR8V
7.7
8.6
18.10 SBM2 SBM2: 2-channel CWDM single-fiber bi-directional add/drop board
18.10.1 Version Description The available functional versions of the SBM2 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2023
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1SB M2
Y
Y
N
Y
Y
Y
18.10.2 Application The SBM2 board adds/drops two channels of signals to/from the multiplexed signals. For the position of the SBM2 board in the CWDM system, see Figure 18-31. Figure 18-31 Position of the SBM2 board in the CWDM system
Client side OTU D1
Client side
OTU A1 D2
LINE
A2
OTU D1
OTU A1 D2
EXT EXT
SBM2
A2 LINE
SBM2
18.10.3 Functions and Features The SBM2 board is mainly used to add/drop and multiplex signals, and to provide a cascading interface. For detailed functions and features, refer to Table 18-67. Table 18-67 Functions and features of the SBM2 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Adds/drops two channels of signals to/from the multiplexed signals. The added and dropped optical signals must be of different wavelengths.
WDM specification
Supports only the single-fiber dual fed CWDM system.
Cascading interface
Provides a cascading optical interface to cascade other single-fiber bi-directional OADM boards.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2024
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Function and Feature
Description
Optical-layer ASON
Not supported
18.10.4 Working Principle and Signal Flow The SBM2 board consists of the OADM optical module, control and communication module, and power supply module. Figure 18-32 shows the functional modules and signal flow of the SBM2 board. Figure 18-32 Functional modules and signal flow of the SBM2 board D1
LINE
D2
A1
Drop optical module
A2
Add optical module
EXT
OADM optical module Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The board receives the multiplexed signals through the LINE interface. After the optical module processes the multiplexed signals, the board separates the multiplexed signals into two wavelengths of optical signals and outputs them through the D1 and D2 optical interfaces to the OTU boards or integrated client-side equipment. The board also receives two wavelengths of optical signals through the A1 and A2 interfaces, couples them to the multiplexed signals and outputs the coupled signals through the LINE interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2025
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
The EXT interface is used as a cascade interface. It transmits the multiplexed signals to other single-fiber bi-directional OADM boards to add/drop the remaining channels of the multiplexed signals.
Module Function l
OADM optical module – Adds/drops and multiplexes two channels of signals. – Provides an intermediate cascading interface for cascading to other OADM boards, so that the system can add/drop more wavelengths at the local station.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
18.10.5 Front Panel There are interfaces on the front panel of the SBM2 board.
Appearance of the Front Panel Figure 18-33 shows the front panel of the SBM2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2026
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Figure 18-33 Front panel of the SBM2 board
SBM2 STAT
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
EXT LINE D1 A1 D2 A2
SBM2
Indicators One indicator is present on the front panel: l
Board hardware status indicator (STAT) - green
For details about this indicator, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2027
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Interfaces Table 18-68 lists the type and function of each interface. Table 18-68 Types and functions of the interfaces on the SBM2 board Interface
Type
Function
A1/A2
LC
Receives the signals sent from the OTU or the integrated client-side equipment.
D1/D2
LC
Transmits the signals to the OTU or the integrated client-side equipment.
LINE
LC
Receives and transmits multiplexed signals.
EXT
LC
Cascading interface, transmits the multiplexed signals to other single-fiber bi-directional OADM boards to add/drop the remaining channels of the multiplexed signals.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
18.10.6 Valid Slots One slot houses one SBM2 board. Table 18-69 shows the valid slots for the SBM2 board. Table 18-69 Valid slots for the SBM2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
18.10.7 Optical Interfaces This topic describes the interface information on the U2000.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2028
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 18-70. Table 18-70 Serial numbers of the interfaces of the SBM2 board displayed on the NM Interface on the Panel
Interface on the NM
A1
1
D1
2
A2
3
D2
4
LINE
5
EXT
6
18.10.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For SBM2 parameters, refer to Table 18-71. Table 18-71 SBM2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Actual Wavelength No./ Wavelength ( nm ) / Frequency ( THz )
-
Queries the operating wavelength at the WDM-side optical interface of a board.
Actual Band Type
-
Queries the band type.
Configure Wavelength No./Wavelength ( nm ) / Frequency ( THz )
11/1471.00/208.170 to 18/1611.00/188.780 Default: /
Sets the operating wavelength at the WDM-side optical interface of a board.
Configure Band Type
CWDM
Sets the band type.
Default: CWDM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2029
OptiX OSN 8800/6800/3800 Hardware Description
18 Fixed Optical Add and Drop Multiplexing Board
18.10.9 SBM2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 18-72 lists the optical specifications of the SBM2 board. Table 18-72 Optical specifications of the SBM2 board Interface
Item
Unit
Value
-
Operating wavelength range
nm
1271 to 1611
LINE-D1 LINE-D2
Drop channel insertion loss
dB
≤3
Isolation
dB
≥ 30
A1-LINE A2-LINE
Add channel insertion loss
dB
≤3
Isolation
dB
≥ 30
Optical return loss
dB
> 40
Pass-through loss
dB
≤ 1.5
CWDM
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.8 kg (1.8 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11SBM2
0.2
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2030
OptiX OSN 8800/6800/3800 Hardware Description
19
19 Reconfigurable Optical Add and Drop Multiplexing Board
Reconfigurable Optical Add and Drop Multiplexing Board
About This Chapter 19.1 Overview Reconfigurable optical add/drop multiplexer (ROADM) boards add/drop any single or multiwavelength signals to/from a multiplexed signal, and route the signals to any port in any order, achieving flexible wavelength grooming in multiple directions. These boards apply to DWDM systems. 19.2 RDU9 RDU9: 9-port ROADM splitting board (C_Band) 19.3 RMU9 RMU9: 9-port ROADM multiplexing board 19.4 ROAM ROAM: reconfigurable optical adding module board 19.5 TD20 TD20: 20-ports Tunable DeMultiplexing Board 19.6 TM20 TM20: 20-ports Tunable Multiplexing Board 19.7 WSD9 WSD9: 9-port wavelength selective switching demultiplexing board 19.8 WSM9 WSM9: 9-port wavelength selective switching multiplexing board 19.9 WSMD2 WSMD2: 2-port wavelength selective switching multiplexer and demultiplexer board 19.10 WSMD4 WSMD4: 4-port wavelength selective switching multiplexer and demultiplexer board 19.11 WSMD9
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2031
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
WSMD9: 9-Port wavelength selective multiplexing and demultiplexing board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2032
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.1 Overview Reconfigurable optical add/drop multiplexer (ROADM) boards add/drop any single or multiwavelength signals to/from a multiplexed signal, and route the signals to any port in any order, achieving flexible wavelength grooming in multiple directions. These boards apply to DWDM systems.
Positions of ROADM Boards in a WDM System Figure 19-1 shows the position of RAODM boards in a WDM system by using the WSMD4 board as an example.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2033
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-1 Positions of ROADM boards in a WDM system Client services
Client services
Tributary Units
Tributary Units
Tributary Units
Tributary Units
Line units
Line units
Line units
Line units
OD C-ODD
OD C-EVEN
OM C-ODD
OM C-EVEN
Client services
OD C-ODD
West
F I U
OA OA
OA OA
OA
OA
OA
WSMD4 (north)
WSMD4 (south)
WSMD4 (west)
WSMD4 (east)
OA
OA
OA
OD C-EVEN
OA OA
F I U
South
F I U
East
OA OA
OA
ITL
ITL OM C-EVEN
OM C-EVEN
ITL
OA
North
OD C-EVEN
OM C-ODD
ITL
F I U
Client services
OM C-ODD
OD C-ODD
OM C-EVEN
OD C-EVEN
OM C-ODD
OD C-ODD
Line units
Line units
Line units
Line units
Tributary Units
Tributary Units
Tributary Units
Tributary Units
Client services
Client services
Client services West signal
North signal
East signal
Client services South signal
Pass-through signal
Main Functions Table 19-1 lists the main functions of ROADM boards. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2034
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-1 Main functions of ROADM boards Board
Function
Number of Wavelengths
RDU9
Broadcasts service signals to nine directions.
80
RMU9
Adds eight optical signals. Each add port on the board can connect to a tunable wavelength OTU board to flexibly receive eight optical signals.
80
ROAM
Flexibly adds/drops, passes, and blocks 40 services to achieve dynamic grooming of wavelengths on a WDM ring.
40
TD20
Broadcasts 20 coherent service signals in one multiplexed signal to 20 directions.
80
TM20
Adds 20 coherent optical signals carried over different wavelengths and multiplexes the signals into one multi-wavelength signal.
80
WSD9
Demultiplexes wavelengths and routes any wavelength to any port.
l TN11WSD9 and TN12WSD9: 40 l TN13WSD9: 80
WSM9
Multiplexes wavelengths and routes any wavelength to any port.
l TN11WSM9 and TN12WSM9: 40 l TN13WSM9: 80
WSMD2
Broadcasts the main channel signal to two directions and adds any wavelengths.
40
WSMD4
Broadcasts the main channel signal to four directions and adds any wavelengths.
l TN11WSMD4: 40
Broadcasts the main channel signal to nine directions and adds any wavelengths.
80
WSMD9
l TN12WSMD4: 80
19.2 RDU9 RDU9: 9-port ROADM splitting board (C_Band)
19.2.1 Version Description The available functional version of the RDU9 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2035
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1RD U9
Y
Y
Y
Y
Y
N
19.2.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the RDU9 board is used with the WSM9 board to implement the wavelength grooming at the nodes in the DWDM network. For the position of the RDU9 board in the DWDM system, see Figure 19-2. Figure 19-2 Position of the RDU9 board in the DWDM system Client-side O T U
O O T T U U
O T U
8
DM8
DM1
OA
OA
RDU9
IN
OUT
EXPO
EXPI
WSM9
AM8
8
AM1
O T U
O T U
MUX AM1
EXPI
EXPO
8
AM8
WSM9
RDU9
OUT
IN
DMUX O T U
Client-side
O T U
OA
OA
DM1
DM8
8
MUX
O T U
O O T T U U
DMUX
DMUX DCM
Client-side
DCM DMUX
O O T T U U
O T U
Client-side
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2036
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.2.3 Functions and Features The RDU9 board is used to dynamically groom wavelengths, monitor online optical performance, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-2. Table 19-2 Functions and features of the RDU9 board Function and Feature
Description
Basic function
Broadcasts the signals received from the main optical path in nine directions at the same time.
WDM specification
Supports the DWDM specification.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical-layer ASON
Supported
19.2.4 Working Principle and Signal Flow The RDU9 board consists of the optical module, control and communication module, and power supply module. Figure 19-3 shows the functional modules and signal flow of the RDU9.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2037
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-3 Functional modules and signal flow of the RDU9 board DM1
DM2
DM3
DM4
DM5
DM6
DM7
DM8
Optical demultiplexer module ROA
MONI
TOA
MONO
IN
EXPO
Optical module
Control Memory
CPU
Communication
Control and communication module
Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The multiplexed signals that need to be dropped are input to the board through the IN interface. The optical signals from the IN optical interface are divided into two channels of signals based on the optical power by the optical splitter. The main path optical signals are output through the EXPO interface and other signals are output through the TOA interface. The RDU9 board can be cascaded to the optical amplifier unit (OAU) through the TOA interface. If no cascade is required, the signals from the TOA interface should be input to the ROA interface directly. The optical wavelength signal from the ROA interface is split equally into different channels of optical signals, and the signals are then output through the DM1-DM8 interfaces. A few signals are extracted from the main path optical signals that are from the IN interface and are then output through the MONO interface for performance detection. A few signals are extracted from the optical signals that are from the ROA interface and are output through the MONI interface for performance detection.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2038
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Module Function l
Optical module – Broadcasts signals in nine directions. – The splitter splits some optical signals from the main optical path and provides them to the MONI/MONO interface for detection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.2.5 Front Panel There are indicators and interfaces on the front panel of the RDU9 board
Appearance of the Front Panel Figure 19-4 shows the front panel of the RDU9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2039
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-4 Front panel of the RDU9 board
RDU9 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MONO MONI EXPO IN TOA ROA DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8
RDU9
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2040
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-3 lists the type and function of each interface. Table 19-3 Types and functions of the interfaces on the RDU9 board Interface
Type
Function
DM1-DM8
LC
Transmits the multiplexed signals to be output at the local station to the optical demultiplexing unit or the optical add/drop multiplexing unit.
IN
LC
Transmits the main path signal.
EXPO
LC
Receives the main path signal.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online detection of the optical spectrum for the input through the ROA interface. The MONI port is a 3/97 tap of the total composite signal at the ROA port (15 dB lower than the actual signal power, calculation formula: Proa (dBm) - Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, detects the optical spectrum online for the signals output through the EXPO interface. The MONO port is a 3/97 tap of the total composite signal at the EXPO port (15 dB lower than the actual signal power, calculation formula: Pexpo (dBm) Pmono (dBm) = 10 x lg (97/3) = 15 dB).
TOA
LC
Used as the cascade output interface.
ROA
LC
Used as the cascade input interface.
NOTE
When cascading is not adopted, the TOA and ROA interfaces should be directly connected by a fiber jumper.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2041
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.2.6 Valid Slots One slot houses one RDU9 board. Table 19-4 shows the valid slots for the RDU9 board. Table 19-4 Valid slots for the RDU9 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
19.2.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-5. Table 19-5 Serial numbers of the interfaces of the RDU9 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
EXPO
2
DM1-DM8
3-10
TOA/ROA
11
MONI
12
MONO
13
19.2.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For RDU9 parameters, refer to Table 19-6. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2042
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-6 RDU9 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name.
Configure Band
C
An optical interface name contains a maximum of 64 characters. Any characters are supported. Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
19.2.9 RDU9 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-7 Optical specifications of the RDU9 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Insertion loss
IN-Drop (DM1-DM8)
dB
≤ 12.5
ROA-Drop (DM1-DM8)
dB
≤ 11.5
IN-EXPO
dB
≤ 12.5
IN-TOA
dB
≤1
dB
≤ 1.2
Consistency of the insertion loss of each channel
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2043
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit
Value
Reflectance
dB
< -40
Polarization dependence loss
dB
≤ 0.5
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11RDU9
6.0
6.6
19.3 RMU9 RMU9: 9-port ROADM multiplexing board
19.3.1 Version Description The available functional version of the RMU9 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1R MU 9
Y
Y
Y
Y
Y
N
Type Table 19-8 lists the types of the RMU9 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2044
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-8 Type description of the RMU9 board Board
Type
Description
TN11RMU 9
01
Processes the odd and even wavelengths in the C band.
02
Processes the odd and even wavelengths in the C band and supports the port blocking function.
19.3.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the RMU9 board is used with the WSD9 board to implement wavelength grooming at the nodes in the DWDM network. The RMU9 board can add eight single-wavelength signal or multi-channel signals to the main path. Being multiplexed by the optical multiplexer unit or optical add and drop multiplexing unit, the multiplexed channels enter the RMU9 board through the channel-adding port. As for the single channels, they are directly sent to the RMU9 board through the channel-adding port by the optical transponder units. For the position of the RMU9 board in the DWDM system, see Figure 19-5. Figure 19-5 Position of the RMU9 board in the DWDM system Client-side O O T T U U
Client-side
O O T T U U
O O O T T T U U U
DMUX
O T U
MUX
DCM DM1 IN
WSD9
OA
OA
DM8
8
AM1
MUX
O T U
O O T T U U
OUT
WSD9 EXPI
8
AM8
8 RMU9
RMU9 OUT AM8
EXPO
IN
DM8
8
OA
OA
DM1
DCM
DMUX
O T U
Client-side
Issue 03 (2013-05-16)
AM1
EXPO EXPI
O O T T U U
O O T T U U
Client-side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2045
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
19.3.3 Functions and Features The RMU9 board is mainly used to dynamically groom wavelengths, monitor online optical performance, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-9. Table 19-9 Functions and features of the RMU9 board Function and Feature
Description
Basic function
Adds eight single-wavelength signals or multi-wavelength signals to the main path. When working with an OTU board supporting tunable wavelengths, the RMU9 board can receive any wavelength through any of the AM1-AM8 optical ports.
WDM specification
Supports the DWDM specifications.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Port blocking
Blocks all input wavelengths at one of the AM1 to AM8 optical interfaces. NOTE Only the TN11RMU902 board supports this function.
Optical-layer ASON
Supported
19.3.4 Working Principle and Signal Flow The RMU9 board consists of the optical module, optical power detection module, control and communication module, and power supply module. Figure 19-6 shows the functional modules and signal flow of the RMU9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2046
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-6 Functional modules and signal flow of the RMU9 board AM1
AM2
AM3
AM4
AM5
AM6
AM7
AM8
VOA
VOA
VOA
VOA
VOA
VOA
VOA
VOA
Optical multiplexer module TOA
MONO
ROA
OUT
EXPI
MONI
Optical module PIN optical power detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The wavelengths to be added are input through the AM1-AM8 optical interfaces. NOTE
l The channel corresponding to each interface (AM1-AM8) must use a unique wavelength. Otherwise, the services in the two channels that use the same wavelength are interrupted. l The wavelength used by the channel corresponding to each interface (AM1-AM8) cannot be the same as the wavelength of the optical signals input through the EXPI optical interface. Otherwise, the services in the two channels that use the same wavelength are interrupted.
After being multiplexed by the optical multiplexer module, the optical signals input through the AMn optical interface are output through the TOA optical interface. The optical signals output through the TOA optical interface can be cascaded with an optical amplifier board. If no cascading is required, the optical signals are directly input to the ROA optical interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2047
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
After the main optical path input through the EXPI optical interface is multiplexed with the optical wavelength signals added on the board through the ROA optical interface, the multiplexed signals are output through the OUT optical interface. A small number of optical signals that are input through the EXPI interface are separated from the main path and then output through the MONI interface. They are used for optical performance detection. A small number of optical signals are separated from those that are output through the TOA interface and then sent to the MONO interface. These signals are used for optical performance detection.
Module Function l
Optical module – Multiplexes eight wavelengths added on the board. – Eight VOAs achieve the in-service adjustment of input optical power. – The splitter splits some optical signals from the main optical path and provides them to the MONI/MONO interface for detection.
l
Optical power detection module – Detects in real time the optical power of TOA and EXPI interface.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.3.5 Front Panel There are indicators and interfaces on the front panel of the RMU9 board.
Appearance of the Front Panel Figure 19-7 shows the front panel of the RMU9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2048
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-7 Front panel of the RMU9 board
RMU9 STAT ACT PROG SRV
MONO MONI OUT EXPI TOA ROA AM1 AM2 AM3 AM4 AM5 AM6 AM7 AM8
RMU9
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-10 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2049
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-10 Types and functions of the interfaces on the RMU9 board Interface
Type
Function
AM1-AM8
LC
Receives a single-wavelength signal that must be multiplexed into the main optical path from an OTU or line board, or receives a multi-wavelength signal that must be multiplexed into the main optical path from an optical multiplexer board.
OUT
LC
Transmits the main path signal.
EXPI
LC
Receives the main path signal.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online detection of the optical spectrum for the input signals transmitted by the main optical path. The MONI port is a 3/97 tap of the total composite signal at the EXPI port (15 dB lower than the actual signal power, calculation formula: Pexpi (dBm) Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, detects the optical spectrum online for the signals output through the TOA interface. The MONO port is a 3/97 tap of the total composite signal at the TOA port (15 dB lower than the actual signal power, calculation formula: Ptoa (dBm) - Pmono (dBm) = 10 x lg(97/3) = 15 dB).
TOA
LC
Used as the cascade output interface.
ROA
LC
Used as the cascade input interface.
NOTE
When cascading is not adopted, the TOA and ROA interfaces should be directly connected by a fiber jumper.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
19.3.6 Valid Slots One slot houses one RMU9 board. Table 19-11 shows the valid slots for the RMU9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2050
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-11 Valid slots for the RMU9 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
19.3.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-12. Table 19-12 Serial numbers of the interfaces of the RMU9 board displayed on the NM Interface on the Panel
Interface on the NM
EXPI
1
OUT
2
AM1-AM8
3-10
TOA/ROA
11
MONI
12
MONO
13
19.3.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For RMU9 parameters, refer to Table 19-13. Table 19-13 RMU9 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2051
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Name
-
Sets and displays the optical interface name.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information. Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Block Port
Disabled, Enabled
Before wavelengths are added to the AM interface of the RMU9, set this parameter to Enabled. After configurations of wavelengths and services on the OTU are complete, set this parameter to Disabled.
Default: Disabled
Before the OTU where wavelengths are added is replaced, set this parameter to Enabled. After the OTU is replaced, and wavelengths and services are configured, set this parameter to Disabled.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2052
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
19.3.9 RMU9 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-14 lists the optical specifications of the RMU9 board. Table 19-14 Optical specifications of the RMU9 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Insertion loss
EXPI-OUT
dB
≤ 8.5
AMxa-TOA
dB
≤ 12.5b
ROA-OUT
dB
≤ 1.5
Reflectance
dB
< -40
Attenuation range
dB
0-15
Attenuation precision
dB
< 1 (0 to 10 dB) < 1.5 (> 10 dB)
VOA attenuation under channel blocking functionc
dB
> 42
Polarization dependence loss
dB
≤ 0.5
NOTE a: AMx represents the AM1-AM8 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB. c: Only the TN11RMU902 supports the channel blocking function.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.1 kg (2.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2053
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11RMU901
7.7
8.6
TN11RMU902
8.2
9
19.4 ROAM ROAM: reconfigurable optical adding module board
19.4.1 Version Description The available functional version of the ROAM board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1RO AM
Y
Y
N
N
Y
N
Type Table 19-15 lists the types of the ROAM board. Table 19-15 Type description of the ROAM board
Issue 03 (2013-05-16)
Board
Type
Description
TN11ROAM
01
Processes the even wavelengths in C band.
02
Processes the odd wavelengths in C band.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2054
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.4.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the ROAM board is used with the optical demultiplexer unit or the optical add and drop multiplexing unit to implement wavelength grooming at the nodes in the DWDM network. For the position of the ROAM board in the DWDM system, see Figure 19-8. Figure 19-8 Position of the ROAM board in the DWDM system IN
EXPO EXPI
OUT
OA ROAM
ROAM OA
OUT
EXPI
DM
M01
O O T T U U
M40
EXPO
O O T T U U
M40
40
O T U
OA
IN
M01
40
DMUX
OA
O T U
Client-side
DM
DMUX O O O T T T U U U
O T U
Client-side
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
19.4.3 Functions and Features The ROAM board is mainly used to dynamically groom wavelengths, achieve built-in power equilibrium, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-16. Table 19-16 Functions and features of the ROAM board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Implements dynamic adding/dropping, pass-through, and blocking of a maximum of 40 wavelengths with the demultiplexing board as well as dynamic grooming of wavelengths for services on the ring network.
WDM specification
Supports the DWDM specification.
Power equilibrium
Implements the wavelength-level equilibrium and control of optical power to flatten the spectrum for the working signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2055
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Function and Feature
Description
Alarms and performance events monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical-layer ASON
Not supported
19.4.4 Working Principle and Signal Flow The ROAM board consists of the planar lightwave circuit (PLC) optical module, control and communication module, and power supply module. Figure 19-9 shows the functional modules and signal flow of the ROAM. Figure 19-9 Functions and features of the ROAM board
OUT
M01
M02
M40
VOA
VOA
VOA EXPI
Optical multiplexer module Splitter
IN
EXPO DM
PLC optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow The main path signals are received through the IN interface. The splitter divides the main path signals into two channels of the same signals. One signal is output to the optical demultiplexer Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2056
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
unit through the DM interface and demultiplexed into single wavelengths dropped at the local station. The other signal passes through and is output through the EXPO interface. The signals to be added at the local station are received through the corresponding M01-M40 interfaces. These signals are multiplexed with the signal input through the EXPI interface and then output through the OUT interface.
Module Function l
PLC optical module – Multiplexes forty wavelengths added on the board. – The PLC optical module contains the VOA modules that implement the power adjustment at the wavelength level. – The PLC optical module blocks and terminates the signals dropped at the local station and adjusts the optical power of other signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.4.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the ROAM board.
Appearance of the Front Panel Figure 19-10 shows the front panel of the ROAM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2057
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-10 Front panel of the ROAM board ROAM STAT ACT PROG SRV
CAUTION
CAUTION
HAZARDLEVEL1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICAL INSTRUMENTS
EXPI
DM
M21
M31
M12
M22
M32
M13
M23
M14
M24
M33 M34
M15
M25
M35
M16
M26
M36
M17 M18
M27 M28
M37 M38
M19 M20
M29 M30
M39 M40
IN M11
EXPO
OUT
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
M01 196.00 M11195.00 M21 194.00 M31 193.00 M02 195.90 M12 194.90 M22 193.90 M32 192.90 M03 195.80 M13 194.80 M23 193.80 M33 192.80 M04 195.70 M14 194.70 M24 193.70 M34 192.70 M05 195.60 M15 194.60 M25 193.60 M35 192.60 M06 195.50 M16 194.50 M26 193.50 M36 192.50 M07 195.40 M17194.40 M27 193.40 M37 192.40 M08 195.30 M18194.30 M28 193.30 M38 192.30 M09 195.20 M19 194.20 M29 193.20 M39 192.20 M10 195.10 M20 194.10 M30 193.10 M40 192.10
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10
196.00 195.90 195.80 195.70 195.60 195.50 195.40 195.30 195.20 195.10
M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
195.00 194.90 194.80 194.70 194.60 194.50 194.40 194.30 194.20 194.10
M21 M22 M23 M24 M25 M26 M27 M28 M29 M30
194.00 193.90 193.80 193.70 193.60 193.50 193.40 193.30 193.20 193.10
M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
193.00 192.90 192.80 192.70 192.60 192.50 192.40 192.30 192.20 192.10
M01 M02 M03 M04 M05 M06 M07 M08 M09 M10
ROAM
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-17 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2058
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-17 Types and functions of the interfaces on the ROAM board Interface
Type
Function
M01-M40
LC
Receives a single-wavelength signal that must be multiplexed into the main optical path from an OTU or line board.
DM
LC
Drops channels to the local station.
OUT
LC
Transmits the main path signal.
IN
LC
Receives the main path signal.
EXPO
LC
Used as the cascade interface to transmit the passthrough signal.
EXPI
LC
Used as the cascade interface to receive the passthrough signal.
There are 40 output interfaces on the front panel of the ROAM board. Table 19-18 and Table 19-19 show the mapping between the interfaces, frequency and wavelengths of the ROAM board. Table 19-18 Mapping between the optical interfaces, frequencies and wavelengths of the ROAM board (even)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.00
1529.55
M21
194.00
1545.32
M02
195.90
1530.33
M22
193.90
1546.12
M03
195.80
1531.12
M23
193.80
1546.92
M04
195.70
1531.90
M24
193.70
1547.72
M05
195.60
1532.68
M25
193.60
1548.51
M06
195.50
1533.47
M26
193.50
1549.32
M07
195.40
1534.25
M27
193.40
1550.12
M08
195.30
1535.04
M28
193.30
1550.92
M09
195.20
1535.82
M29
193.20
1551.72
M10
195.10
1536.61
M30
193.10
1552.52
M11
195.00
1537.40
M31
193.00
1553.33
M12
194.90
1538.19
M32
192.90
1554.13
M13
194.80
1538.98
M33
192.80
1554.94
M14
194.70
1539.77
M34
192.70
1555.75
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2059
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M15
194.60
1540.56
M35
192.60
1556.55
M16
194.50
1541.35
M36
192.50
1557.36
M17
194.40
1542.14
M37
192.40
1558.17
M18
194.30
1542.94
M38
192.30
1558.98
M19
194.20
1543.73
M39
192.20
1559.79
M20
194.10
1544.53
M40
192.10
1560.61
Table 19-19 Mapping between the optical interfaces, frequencies and wavelengths of the ROAM board (odd)
Issue 03 (2013-05-16)
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M01
196.05
1529.16
M21
194.05
1544.92
M02
195.95
1529.94
M22
193.95
1545.72
M03
195.85
1530.72
M23
193.85
1546.52
M04
195.75
1531.51
M24
193.75
1547.32
M05
195.65
1532.29
M25
193.65
1548.11
M06
195.55
1533.07
M26
193.55
1548.91
M07
195.45
1533.86
M27
193.45
1549.72
M08
195.35
1534.64
M28
193.35
1550.52
M09
195.25
1535.43
M29
193.25
1551.32
M10
195.15
1536.22
M30
193.15
1552.12
M11
195.05
1537.00
M31
193.05
1552.93
M12
194.95
1537.79
M32
192.95
1553.73
M13
194.85
1538.58
M33
192.85
1554.54
M14
194.75
1539.37
M34
192.75
1555.34
M15
194.65
1540.16
M35
192.65
1556.15
M16
194.55
1540.95
M36
192.55
1556.96
M17
194.45
1541.75
M37
192.45
1557.77
M18
194.35
1542.54
M38
192.35
1558.58
M19
194.25
1543.33
M39
192.25
1559.39
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2060
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Interface
Frequency (THz)
Wavelengt h (nm)
Interface
Frequency (THz)
Wavelengt h (nm)
M20
194.15
1544.13
M40
192.15
1560.20
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.4.6 Valid Slots Three slots house one ROAM board. Table 19-20 shows the valid slots for the ROAM board. Table 19-20 Valid slots for the ROAM board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU11-IU17, IU20-IU25, IU29IU34
OptiX OSN 6800 subrack
IU1-IU15
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the ROAM board displayed on the NM is the number of the leftmost one of the three slots. For example, if slots IU1, IU2, and IU3 house the ROAM board, the slot number of the ROAM board displayed on the NM is IU1.
19.4.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-21. Table 19-21 Serial numbers of the interfaces of the ROAM board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN
1 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2061
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Interface on the Panel
Interface on the NM
EXPO
2
EXPI
3
OUT
4
DM
5
A01-A40
6-45
NOTE The A01–A40 interfaces correspond to the M01– M40 interfaces on the physical front panel.
19.4.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For ROAM parameters, refer to Table 19-22. Table 19-22 ROAM parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name.
Configure Band
C
An optical interface name contains a maximum of 64 characters. Any characters are supported. Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: Even
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2062
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Wavelength Target -32 to 8 Output Power (dBm) Default: /
Description Applies to the ROAM board only and is used to set the single wavelength target output optical power after add wavelengths are multiplexed.
19.4.9 ROAM Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-23 lists the optical specifications of the ROAM board. Table 19-23 Optical specifications of the ROAM board Item
Unit
Value
Adjacent channel spacing
GHz
100
Insertion loss
Mxa-OUT
dB
≤ 9b
IN-DM
dB
≤7
EXPI-OUT
dB
≤ 14b
IN-EXPO
dB
≤3
Operating wavelength range
nm
1529 - 1561
Adjacent channel isolation
dB
> 22
Non-adjacent channel isolation
dB
> 25
Attenuation range
dB
0 to 20
Attenuation precision
dB
< 1 (0 to 10 dB) < 1.5 (> 10 dB)
Module switch time
ms
≤ 50
Extinction ratio
dB
≥ 30
-0.5 dB bandwidth of adding wavelength
nm
> 0.3
-0.5 dB bandwidth of pass-through wavelength
nm
> 0.2
NOTE a: Mx represents the M01-M40 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2063
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.2 kg (7.0 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11ROAM
66
72.6
19.5 TD20 TD20: 20-ports Tunable DeMultiplexing Board
19.5.1 Version Description The available functional version of the TD20 board is TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2TD 20
Y
Y
Y
Y
Y
N
19.5.2 Application The TD20 board is a demultiplexer board and applies to ROADM sites. It is used to broadcast a multi-wavelength signal that contains 20 coherent optical signals over different wavelengths. The TD20 board must work with coherent OTU or line boards. It is intended for colorless applications because coherent OTU or line board supports wavelength selection. For the position of the TD20 board in the DWDM system, see Figure 19-11.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2064
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-11 Position of the TD20 board in the DWDM system W
NE1
NE3
OA
OA
NE2
N
OUT
NE4
OA IN
OUT
DM1
AM1
WSMD4 AM1
W S
N
OA S
OA
NE1
OA
IN WSMD4 DM1
IN W S DM1 M D AM1 OUT 4
AM1
DM1
W OUT S OA M D 4
E
OA
IN
E DM1 DM2 DM3 DM4 AM1 AM2 AM3 AM4
NE5
WSMD4
IN
NE7
OA
OA
IN
OUT
WSM9
NE6
WSD9
AM1
AM4
DM1
OUT
OUT
IN
TM20 AM1
AM20
O T U
AM1
O T U
O T U
Directionless
OUT
TM20
TD20
AM20
DM1 DM20
O T U
O T U
Colorless
DM4 IN
TD20 DM1
O O T T U U
DM20
O T U
: Current path : Other path (S direction) : Other path (N direction) : Other path (E direction) OTU
: Coherent OTU
19.5.3 Functions and Features The TD20 board performs the colorless drop function. It drops a maximum of 20 optical signals that are carried over different wavelengths, compensates for broadcast loss, and supports online monitoring of optical power, alarms, and performance. Table 19-24 lists the functions and features of the TD20 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2065
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-24 Functions and features of the TD20 board Function and Feature
Description
Basic function
Demultiplexes a multi-wavelength signal into 20 coherent optical signals that are carried over different wavelengths and broadcasts the signals. The board is intended for colorless applications.
WDM specification
Supports the DWDM specification.
Compensation for broadcast loss
Uses a built-in EDFA module to compensate for broadcast loss. l The EDFA module works in gain-locking mode. – Adding or dropping one or more channels of signals does not affect the gain of signals on other channels. – The optical signal power jitter on some channels does not affect the signal gain of other channels. l The EDFA module has the transient control function. When channels are added or dropped, the system can be upgraded or expanded without interrupting services by using this function to suppress channel optical power jitter.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
l Monitors and reports optical power of the built-in EDFA module.
Optical-layer ASON
Supported
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
19.5.4 Working Principle and Signal Flow The TD20 board consists of the optical module, control and communication module, and power supply module. Figure 19-12 shows the functional modules and signal flow of the TD20.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2066
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-12 Functional modules and signal flow of the TD20
IN
DM01 DM02
EDFA optical module Optical Splitter demultiplexer VOA VO AIN AOUT DMIN module
MON
DM20
Optical module Detection for PIN pump current and temperature
Driving current
Driving and detection module
Control Memory
Communication
CPU
Power supply module Fuse
DC power supply from a backplane
Required voltage
SCC
Backplane (controlled by SCC)
Signal flow 1.
The board receives the coherent multi-wavelength signal to be dropped through its IN port and sends the signal to the VOA for power adjustment.
2.
After the power adjustment by the VOA, the signal is sent to the EDFA module for power amplification.
3.
The power splitter splits the amplified optical power into two and sends the less optical power to the MON port for performance monitoring.
4.
The optical demultiplexer module equally splits the amplified multi-wavelength optical signal into 20 light beams, each containing 20 single-wavelength signals, and transmits the light beams through the DM1-DM20 ports.
Module function l
Optical module – The VOA adjusts the signal power to ensure that the signal power meets the system requirement. – The EDFA module amplifies the optical power to compensate for the broadcast loss. – The power splitter splits the amplified optical power into two and sends the less optical power to the MON port for performance monitoring. – The optical demultiplexer module equally splits the coherent multi-wavelength signal into 20 light beams, each containing 20 single-wavelength signals, and broadcasts the light beams to 20 directions.
l Issue 03 (2013-05-16)
Driving and detection module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2067
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
– Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module. – Reports alarms and performance events to the control and communication module. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.5.5 Front Panel There are indicators and interfaces on the front panel of the TD20 board.
Appearance of the Front Panel Figure 19-13 shows the front panel of the TD20 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2068
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-13 Front panel of the TD20 board
TD20 STAT ACT PROG SRV
IN DM17 DM18 DM19 DM20
DM01 DM02 DM03 DM04 DM05 DM06 DM07 DM08 DM09 DM10 DM11 DM12 DM13 DM14 DM15 DM16
MON
TD20
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2069
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-25 lists the type and function of each interface. Table 19-25 Types and functions of the interfaces on the TD20 board Interface
Type
Function
DM01–DM20
LC
Equally splits the multi-wavelength signal into 20 light beams, each with 20 single-wavelength signals, and broadcasts the light beams to the IN ports on coherent OTU or line boards.
IN
LC
Receives a coherent multi-wavelength signal and sends the signal to the DMx port on a WSD9 board.
MON
LC
Connects to an optical spectrum analysis board or an optical spectrum analyzer for online spectrum monitoring. The MON port is a 1/99 of the total composite signal at the EDFA OUT port (20 dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmon (dBm) = 10 x lg(99/1) = 20 dB).
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
19.5.6 Valid Slots Two slots house one TD20 board. Table 19-26 shows the valid slots for the TD20 board. Table 19-26 Valid slots for the TD20 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27-IU33, IU35IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29-IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2070
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU16
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TD20 board displayed on the NM is the number of the leftmost one of the two slots. For example, if slots IU1 and IU2 house the TD20 board, the slot number of the TD20 board displayed on the NM is IU1.
19.5.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-27. Table 19-27 Serial numbers of the interfaces of the TD20 displayed on the NM Interface on the Panel
Interface on the NM
IN
1
AIN
2
AOUT
3
VO
4
DMIN
5
DM01 to DM20
6 to 25
MON
26
19.5.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For TD20 Parameters, refer to Table 19-28. Table 19-28 TD20 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2071
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Attenuation difference (dB)
-3 to 3, with a step of 0.1 Default: none
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Used to configure type of the working band of a board.
Default: C
Issue 03 (2013-05-16)
Specifies the difference between the current attenuation and the required attenuation.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All
Selects the desired parity of the working band.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Default: All
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2072
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. See D.22 Nominal Gain (dB) (WDM Interface) for more information.
Default: The specific value is related to the module.
19.5.9 TD20 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-29 Optical specifications of the TD20 board
Issue 03 (2013-05-16)
Item
Unit
Value
Operating wavelength range
nm
1529 to 1561
Total input power range of IN port
dBm
-17.5 to 17
Input power range per channel of IN port
dBm
-17.5 to 4
Inherent insertion loss of internal VOA
dB
≤1.5
Dynamic attenuation range of internal VOA
dB
20
Adjustment accuracy of internal VOA
dB
1
Nominal input power range of internal OA
dBm
-19 to -3
Input power range per channel of internal OA
dBm
-19 to -16
Nominal gain of internal OA
dB
23
Noise figure (NF) of internal OA
dB
≤6.0
Maximum total output optical power of internal OA
dBm
20
Total output power range of DMxa ports
dBm
-13 to 9
Single output power range of DMxa ports
dBm
-13 to -4
Maximum channel insertion loss difference (IN-DMxa)
dB
3
Maximum reflectance tolerance at input
dB
<-40
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2073
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit
Value
Maximum reflectance tolerance at output
dB
<-40
Polarization dependent loss
dB
≤0.5
a: DMx represents the DM01-DM20 interface.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.6 kg (3.5 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN12TD20
13.0
15.0
19.6 TM20 TM20: 20-ports Tunable Multiplexing Board
19.6.1 Version Description The available functional version of the TM20 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1T M20
Y
Y
Y
Y
Y
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2074
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.6.2 Application The TM20 board is a multiplexer board and is intended for colorless applications. It applies to ROADM sites and is used to add 20 coherent optical signals over different wavelengths and multiplex these signals into one multi-wavelength signal. For the position of the TM20 board in the DWDM system, see Figure 19-14. Figure 19-14 Position of the TM20 board in the DWDM system W
NE1
NE3
OA
OA
NE2
N
OUT
NE4
OA IN
OUT
DM1
AM1
WSMD4 AM1
W S
N
OA S
OA
NE1
OA
IN WSMD4 DM1
IN W S DM1 M D AM1 OUT 4
AM1
DM1
W OUT S OA M D 4
E
OA
IN
E DM1 DM2 DM3 DM4 AM1 AM2 AM3 AM4
NE5
WSMD4
IN
NE7
OA
OA
IN
OUT
WSM9
NE6
WSD9
AM1
AM4
DM1
OUT
OUT
IN
TM20 AM1
TM20
AM20
O T U
AM1
O T U
O T U
Directionless
OUT
DM4
TD20
TD20
AM20 DM1
O T U
DM20
O T U
Colorless
IN DM1
O O T T U U
DM20
O T U
: Current path : Other path (S direction) : Other path (N direction) : Other path (E direction) OTU
: Coherent OTU
NOTE
Optical cross-connections must be created for the TM20 board on the U2000 and wavelengths must be specified during the cross-connection creation.
19.6.3 Functions and Features The TM20 board performs the colorless add function. It adds a maximum of 20 coherent optical signals and supports online monitoring of optical power, alarms, and performance. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2075
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
For detailed functions and features, refer to Table 19-30. Table 19-30 Functions and features of the TM20 board Function and Feature
Description
Basic function
l Adds a maximum of 20 coherent optical signals carried over different wavelengths and multiplexes the signals into one multiwavelength signal. The board is intended for colorless applications. l Supports manual configuration of add wavelengths.
WDM specification
Supports the DWDM specification.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects optical power and reports alarms and performance events of the board.
Optical-layer ASON
Supported
19.6.4 Working Principle and Signal Flow The TM20 board consists of the multiplexer, splitter, detection and temperature control module, control and communication module, and power supply module. Figure 19-15 shows the functional modules and signal flow of the TM20 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2076
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-15 Functional modules and signal flow of the TM20 board
Multiplexer
AM01 AM02
Splitter OUT
AM20
MON
Optical module Temperature control
Temperature detection
PIN
Detection and temperature control module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (Controlled by SCC) SCC
Signal Flow 1.
Each of the AM01–AM20 optical ports receives one single-wavelength coherent optical signal and sends the signal to the interconnected multiplexer.
2.
The multiplexer multiplexes the 20 single-wavelength optical signals into one multiwavelength optical signal, and then transmits the signal through its OUT optical port.
3.
The power splitter splits the multi-wavelength signal power into two and sends the less signal power to the MON port for performance monitoring. NOTE
The AM01–AM20 optical ports support tunable wavelengths but they must use different wavelengths.
Module Function l
Multiplexer Multiplexes the 20 single-wavelength coherent optical signals into one multi-wavelength optical signal.
l
Splitter Uses the power splitter to split the optical power on the main optical path into two and sends the less optical power to the MON port for performance monitoring.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2077
OptiX OSN 8800/6800/3800 Hardware Description
l
19 Reconfigurable Optical Add and Drop Multiplexing Board
Detection and temperature control module – Monitors and controls in real time the multiplexer operating temperature. – Detects in real time the output optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.6.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the TM20 board.
Appearance of the Front Panel Figure 19-16 shows the front panel of the TM20 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2078
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-16 Front panel of the TM20 board
TM20 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
MON OUT AM17 AM18 AM19 AM20
AM01 AM02 AM03 AM04 AM05 AM06 AM07 AM08 AM09 AM10 AM11 AM12 AM13 AM14 AM15 AM16
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
TM20
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2079
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-31lists the type and function of each interface. Table 19-31 Types and functions of the interfaces on the TM20 board Interface
Type
Function
AM01 to AM20
LC
Receives one single-wavelength coherent light signal from an OTU or line board.
OUT
LC
Transmits a multi-wavelength signal to the AMx optical port on a WSM9 board.
MON
LC
Connects to an optical spectrum analysis board or an optical spectrum analyzer for online spectrum monitoring. The MON port power is 3/97 of the OUT port power. That is, the MON port power is 15 dB lower than the OUT port power. The calculation is: Pout(dBm) - Pmon (dBm) = 10 x lg(97/3) = 15 dB.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.6.6 Valid Slots Three slots house one TM20 board. Table 19-32 shows the valid slots for the TM20 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2080
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-32 Valid slots for the TM20 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27-IU32, IU35IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU12-IU17, IU20-IU25, IU29-IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TM20 board displayed on the NM is the number of the left most one of three slots. For example, if slots IU1, IU2, and IU3 house the TM20 board, the slot number of the TM20 board displayed on the NM is IU1.
19.6.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-33. Table 19-33 Serial numbers of the interfaces of the TM20 displayed on the NM Interface on the Panel
Interface on the NM
OUT
1
AM01 to AM20
2 to 21
MON
22
19.6.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For TM20 parameters, refer to Table 19-34.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2081
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-34 TM20 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Band
C
Sets the working band type of a board.
Default: C Configure Working Band Parity
All
Selects the desired parity of the working band.
Default: All
19.6.9 TM20 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-35 Optical specifications of the TM20 board Item
Unit
Value
Optical channels
-
80
Adjacent channel spacing
GHz
50
Operating wavelength range
nm
1529 to 1561
Insertion loss-AMxa-OUT
dB
≤8
Maximum channel insertion loss difference
dB
1.5
-1 dB spectral width
nm
>0.16
Port isolation
dB
≥20
Extinction ratio
dB
≥30
Reconfiguration time
Second
≤3
Maximum reflectance
dB
–40
Polarization dependence loss
dB
≤1
a: AMx represents the AM01 to AM20 interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2082
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.51 kg (7.74 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TM20
30.0
45.0
19.7 WSD9 WSD9: 9-port wavelength selective switching demultiplexing board
19.7.1 Version Description The available functional versions of the WSD9 board are TN11, TN12, and TN13.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W SD9
N
N
N
N
Y
N
TN1 2W SD9
Y
Y
Y
Y
Y
N
TN1 3W SD9
Y
Y
Y
Y
Y
N
Differences Between Versions l
Appearance: – The TN13WSD9 board uses a front panel different from that of the WSD9 board of other versions. The TN13WSD9 board occupies three slots. The TN12WSD9 and
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2083
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
TN11WSD9 boards occupy two slots. For details, see 19.7.5 Front Panel and 19.7.9 WSD9 Specifications. l
Specification: – The wavelength of the TN13WSD9 board is separated at 50 GHz channel spacing. The wavelength of the TN12WSD9 and TN11WSD9 boards are separated at 100 GHz channel spacing. For details, see 19.7.9 WSD9 Specifications. – The mechanical specifications and power consumption vary according to the version of the board that you use. For details, see 19.7.9 WSD9 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11WSD 9
TN12WSD 9
Upgrade the NE software to OptiX OSN 6800 V100R003 or a later version.
TN12WSD 9
None
-
TN13WSD 9
None
-
19.7.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the WSD9 board is used with the WSM9 or RMU9 board to implement wavelength grooming at the nodes in the DWDM network. The single-wavelength or multi-channel signals to be dropped at the local station are output through the interfaces of the WSD9 board based on the configuration. l
If the dropped signal is a multi-channel signal, it is sent to the optical demultiplexer unit for demultiplexing. Then, the demultiplexed signals enter corresponding OTUs and are sent to the client-side equipment at the local station.
l
If the dropped signal is a single-wavelength signal, it is sent directly to the OTU at the local station.
For the position of the WSD9 board in the DWDM system, see Figure 19-17.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2084
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-17 Position of the WSD9 board in the DWDM system Client-side
O O T T U U
O O T T U U
O O O T T T U U U
DMUX
DCM
MUX
8 DM1
OA
OUT
OA
AM1
DM8
WSD9
IN
EXPO
AM8
AM1
8
O T U
O O T T U U
OUT
IN
WSD9
DM8
OA
OA
DM1
8
8 MUX
AM8
WSM9
EXPI
EXPI EXPO
WSM9
O T U
DCM
DMUX
O O T T U U
O T U
O O T T U U
Client-side
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
19.7.3 Functions and Features The WSD9 board is used to dynamically groom wavelengths, monitor online optical performance, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-36. Table 19-36 Functions and features of the WSD9 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Configures any wavelengths to any interfaces. A node on the ring or chain network can output any wavelength combination to any interface to achieve the dynamic allocation of wavelengths. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2085
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Function and Feature
Description
WDM specification
Supports the DWDM specification.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Provides the function to adjust the optical power of each channel.
Optical-layer ASON
Supported
19.7.4 Working Principle and Signal Flow The WSD9 board consists of the optical module, temperature and optical power detection module, control and communication module, and power supply module. Figure 19-18 shows the functional modules and signal flow of the WSD9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2086
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-18 Functional modules and signal flow of the WSD9 board DM1 DM2
DM8
Splitter 1 IN
Splitter 2 EXPO
WSS module
MONI
MONO
Optical module Temperature detection
PIN
Temperature and optical power detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power from the backplane
SCC
Backplane (controlled by SCC)
Signal Flow The main path signal is received through the IN interface. The single-wavelength or multichannel signals to be dropped at the local station are output through the DM1-DM8 interfaces based on the configuration. Other channels pass through the station and are output through the EXPO interface.
Module Function l
Optical module – The WSS module inside the optical module extracts any single wavelengths or wavelength combinations from the multiplexed wavelength, and directs them out the predefined ports of the DM1-DM8 ports. The optical module then sends the remaining wavelengths to the EXPO port. – The WSS module supports wavelength-level power adjustments. – Splitters 1 and 2 provide a small amount of the IN and EXPO port power to the MONI and MONO ports for in-service performance monitoring.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2087
OptiX OSN 8800/6800/3800 Hardware Description
l
19 Reconfigurable Optical Add and Drop Multiplexing Board
Temperature and optical power detection module – Monitors in real time the WSS optical module operating temperature. – Detects in real time the input optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.7.5 Front Panel There are indicators, interfaces, and a laser hazard level label on the front panel of the WSD9 board.
Appearance of the Front Panel Figure 19-19 shows the front panel of the WSD9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2088
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-19 Front panel of the WSD9 board
WSD9
WSD9
STAT ACT PROG SRV
STAT ACT PROG SRV
CAUTION CAUTION
CAUTION
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
MONO MONI
MONO MONI
EXPO
EXPO
IN
IN
DM1 DM2
DM1 DM2
DM3 DM4
DM3 DM4
DM5 DM6
DM5 DM6
DM7 DM8
DM7 DM8
WSD9
WSD9
TN11WSD9/ TN12WSD9
TN13WSD9
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2089
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-37 lists the type and function of each interface. Table 19-37 Types and functions of the interfaces on the WSD9 board Interface
Type
Function
DM1-DM8
LC
Transmits the single-wavelength or multi-channel signal separated from the main path. If the signal is a multi-channel signal, it is sent to the optical demultiplexer unit or the optical add and drop multiplexing unit. If the signal is a single-wavelength signal, it is directly sent to the optical transponder unit.
EXPO
LC
Transmits the main path signal.
IN
LC
Receives the main path signal.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the received main path signal. The MONI port is a 3/97 tap of the total composite signal at the IN port (15 dB lower than the actual signal power, calculation formula: Pin (dBm) - Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the transmitted main path signal. The MONO port is a 3/97 tap of the total composite signal at the EXPO port (15 dB lower than the actual signal power, calculation formula: Pexpo (dBm) Pmono (dBm) = 10 x lg (97/3) = 15 dB).
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.7.6 Valid Slots Two slots house one TN11WSD9 or TN12WSD9 board. Three slots house one TN13WSD9 board. Table 19-38, Table 19-39 and Table 19-40 show the valid slots for the WSD9 boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2090
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-38 Valid slots for the TN11WSD9 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU16
Table 19-39 Valid slots for the TN12WSD9 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
Table 19-40 Valid slots for the TN13WSD9 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU12-IU17, IU20-IU25, IU29IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16,
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2091
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
NOTE
OptiX OSN 8800:The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN12WSD9 board displayed on the NM is the number of the left one of the two slots, and the slot number of the TN13WSD9 board displayed on the NM is the number of the left one of the three slots. For example, if slots IU1 and IU2 house the TN12WSD9 board, the slot number of the WSD9 board displayed on the NM is IU1. If slots IU1, IU2 and IU3 house the TN13WSD9 board, the slot number of the WSD9 board displayed on the NM is IU1. OptiX OSN 6800:The rear connector of the board is mounted to the backplane along the left slot in the subrack. Hence, the slot number of the TN11WSD9 or TN12WSD9 board displayed on the NM is the number of the left one of the two slots, and the slot number of the TN13WSD9 board displayed on the NM is the number of the left one of the three slots. For example, if slots IU1 and IU2 house the TN12WSD9 board, the slot number of the WSD9 board displayed on the NM is IU1. If slots IU1, IU2 and IU3 house the TN13WSD9 board, the slot number of the WSD9 board displayed on the NM is IU1.
19.7.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-41. Table 19-41 Serial numbers of the interfaces of the WSD9 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
EXPO
2
DM1-DM8
3-10
MONI
11
MONO
12
19.7.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the WSD9 board, refer to Table 19-42. Table 19-42 WSD9 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2092
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB), Blocking, /
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. l When no optical cross-connections are present, the parameter value is displayed as /. l When NE-level optical cross-connections are present or when the end-to-end configuration function is used to configure optical cross-connections and OPA Mode is set to Manual, the parameter value is displayed as Blocking after an OCh trail is created. If you set the parameter at this time, the specified value is then displayed. l To obtain the value range of this parameter, query the value of the Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: l TN11WSD9/ TN12WSD9: Even l TN13WSD9: All
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2093
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.7.9 WSD9 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-43 Optical specifications of the WSD9 board Item
Unit
Value
Type
-
TN11WSD9/ TN12WSD9
TN13WSD9
Optical channels
-
40
80
Adjacent channel spacing
GHz
100
50
Insertion loss
dB
≤ 8b
≤ 8b
Maximum channel insertion loss difference
dB
1.5
1.5
Operating wavelength range
nm
1529-1561
1529-1561
-1dB spectral width
nm
> 0.32
> 0.16
Port isolation
dB
> 25
> 25
Adjacent channel isolation
dB
> 25
> 25
Non-adjacent channel isolation
dB
> 30
> 30
Extinction ratio
dB
≥ 35
≥ 35
Reconfiguration time
s
≤3
≤3
Maximum reflectance
dB
-40
-40
Directivity
dB
35
35
Polarization dependence loss
dB
≤1
≤1
Attenuation range of each of dropping wavelengths
dB
0-15
0-15
Attenuation precision of each of dropping wavelengths
dB
≤ 1 (0 to 10 dB)
≤ 1 (0 to 10 dB)
≤ 1.5 (>10 dB)
≤ 1.5 (>10 dB)
IN-DMxa IN-EXPO
NOTE a: DMx represents the DM1-DM8 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2094
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Mechanical Specifications Dimensions of front panel: l
TN11WSD9 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
TN12WSD9 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
TN13WSD9 (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
Weight: l
TN11WSD9: 2.2 kg (4.9 lb.)
l
TN12WSD9: 2.7 kg (5.94 lb.)
l
TN13WSD9: 2.9 kg (6.38 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WSD9
17.0
18.7
TN12WSD9
25.4
28.5
TN13WSD9
25.4
28.5
19.8 WSM9 WSM9: 9-port wavelength selective switching multiplexing board
19.8.1 Version Description The available functional versions of the WSM9 board are TN11, TN12, TN13.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W SM9
N
N
N
N
Y
N
TN1 2W SM9
Y
Y
Y
Y
Y
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2095
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 3W SM9
Y
Y
Y
Y
Y
N
Differences Between Versions l
Appearance: – The TN13WSM9 board uses a front panel different from that of the WSM9 board of other versions. The TN13WSM9 board occupies three slots. The TN12WSM9 and TN11WSM9 boards occupy two slots. For details, see 19.8.5 Front Panel and 19.8.9 WSM9 Specifications. – The laser safety class of TN13WSM9 board is different from that of the WSM9 board of other versions. The laser safety class of TN13WSM9 board is HAZARD LEVEL 1. The laser safety class of TN12WSM9 and TN11WSM9 boards is HAZARD LEVEL 1M. For details, see 19.8.5 Front Panel.
l
Specification: – The wavelength of the TN13WSM9 board is separated at 50 GHz channel spacing. The wavelength of the TN12WSM9 and TN11WSM9 boards are separated at 100 GHz channel spacing. For details, see 19.8.9 WSM9 Specifications. – The mechanical specifications and power consumption vary according to versions. For details, see19.8.9 WSM9 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11WSM 9
TN12WSM 9
Upgrade the NE software to OptiX OSN 6800 V100R003 or a later version.
TN12WSM 9
None
-
TN13WSM 9
None
-
19.8.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the WSM9 board is used with the WSD9 board to implement wavelength grooming at the nodes in the DWDM network. For the position of the WSM9 board in the DWDM system, see Figure 19-20.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2096
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-20 Position of the WSM9 board in the DWDM system Client-side
O O T T U U
Client-side
O O T T U U
O O O T T T U U U
DMUX
DCM
8
DM1
OA
OA
OUT
MUX
DM 8
WSD9
IN
EXPO
EXPI
EXPI
EXPO
AM1
8 MUX
O T U
O O T T U U
8
AM1
AM 8
WSM9
OUT
IN
WSD9
WSM9
AM8
O T U
DM8
8
OA
OA
DM1
DCM
DMUX
O T U
Client-side
O O T T U U
O O T T U U
Client-side
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
19.8.3 Functions and Features The WSM9 board is mainly used to dynamically groom wavelengths, monitor online optical performance, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-44. Table 19-44 Functions and features of the WSM9 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Configures any wavelengths to any interfaces. A node on the ring or chain network can receive any wavelengths at the local station through any interfaces to achieve the dynamic wavelength allocation.
WDM specification
Supports the DWDM specifications.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2097
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Function and Feature
Description
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Provides the function to adjust the optical power of each channel.
Optical-layer ASON
Supported by the TN12WSM9 and TN13WSM9.
19.8.4 Working Principle and Signal Flow The WSM9 board consists of four parts: the optical module, temperature and optical power detection module, control and communication module, and power supply module. Figure 19-21 shows the functional modules and signal flow of the WSM9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2098
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-21 Functional modules and signal flow of the WSM9 board AM1 AM2
AM8
Splitter 2
Splitter 1 EXPI
OUT
WSS module
MONI
MONO
Optical module Temperature detection
PIN
Temperature and optical power detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power from the backplane
Backplane (controlled by SCC) SCC
Signal Flow The board receives the multiplexed optical signals of the main optical path through the EXPI optical interface. The single-wavelength or multiplexed optical signals to be added are input through the AM1-AM8 optical interfaces. l
If multiple wavelengths are to be added, the signals are first sent to the multiplexer unit for processing and then input to the WSM9 board through the AMn optical interface.
l
If single wavelength is to be added, the signal can be directly input to the WSM9 board from the optical transponder unit through the AMn interface.
After the main optical path input through the EXPI optical interface is multiplexed with the optical wavelength signals added through the AMn optical interface, the multiplexed signals are output through the OUT optical interface.
Module Function l Issue 03 (2013-05-16)
Optical module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2099
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
– Receives any wavelengths (either single wavelengths or wavelength combinations) through the EXPI port and any of AM1-AM8 ports. – The WSS module supports wavelength-level power adjustments. – Splitters 1 and 2 provide a small amount of the EXPI and OUT port power to the MONI and MONO ports for in-service performance monitoring. l
Temperature and optical power detection module – Monitors in real time the WSS optical module operating temperature. – Detects in real time the output optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.8.5 Front Panel There are indicators, interfaces, and a laser hazard level label on the front panel of the WSM9 board.
Appearance of the Front Panel Figure 19-22 shows the front panel of the WSM9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2100
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-22 Front panel of the WSM9 board
WSM9
WSM9
STAT ACT PROG SRV
STAT ACT PROG SRV
CAUTION
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS MONO MONI
MONO MONI
OUT EXPI
OUT EXPI
AM1
AM2
AM2
AM1
AM3 AM4
AM3 AM4
AM5
AM6
AM6
AM5
AM7 AM8
AM7 AM8
WSM9
WSM9
TN11WSM9/ TN12WSM9
TN13WSM9
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2101
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Interfaces Table 19-45 lists the type and function of each interface. Table 19-45 Types and functions of the interfaces on the WSM9 board Interface
Type
Function
AM1-AM8
LC
Receive the single-wavelength or multi-wavelength signals that are to be multiplexed into the main path.
OUT
LC
Transmits the main path signal.
EXPI
LC
Receives the main path signal.
MONI
LC
Connects to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the received main path signal. The MONI port is a 3/97 tap of the total composite signal at the EXPI port (15 dB lower than the actual signal power, calculation formula: Pexpi (dBm) Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connects to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the transmitted main path signal. The MONO port is a 3/97 tap of the total composite signal at the OUT port (15 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmono (dBm) = 10 x lg (97/3) = 15 dB).
Laser Safety Level TN11WSM9 and TN12WSM9: The laser safety class of the optical interface is HAZARD LEVEL 1, indicating that the maximum output optical power of each optical interface is lower than 10 dBm (10 mW). TN13WSM9: The laser safety class of the optical interface is HAZARD LEVEL 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.8.6 Valid Slots Two slots house one TN11WSM9/TN12WSM9 board. Three slots house one TN13WSM9 board. Table 19-46, Table 19-47 and Table 19-48 show the valid slots for the WSM9 boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2102
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-46 Valid slots for the TN11WSM9 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU16
Table 19-47 Valid slots for the TN12WSM9 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
Table 19-48 Valid slots for the TN13WSM9 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU6, IU11-IU16, IU19-IU24, IU27IU32, IU35-IU40, IU45-IU50, IU53-IU58, IU61-IU66
OptiX OSN 8800 T32 subrack
IU1-IU6, IU12-IU17, IU20-IU25, IU29IU34
OptiX OSN 8800 T16 subrack
IU1-IU6, IU11-IU16
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2103
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
NOTE
OptiX OSN 8800:The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the TN12WSM9 board displayed on the NM is the number of the left one of the two slots, and the slot number of the TN13WSM9 board displayed on the NM is the number of the left one of the three slots. For example, if slots IU1 and IU2 house the TN12WSM9 board, the slot number of the WSM9 board displayed on the NM is IU1. If slots IU1, IU2 and IU3 house the TN13WSM9 board, the slot number of the WSM9 board displayed on the NM is IU1. OptiX OSN 6800:The rear connector of the board is mounted to the backplane along the left slot in the subrack. Hence, the slot number of the TN11WSM9 or TN12WSM9 board displayed on the NM is the number of the left one of the two slots, and the slot number of the TN13WSM9 board displayed on the NM is the number of the left one of the three slots. For example, if slots IU1 and IU2 house the TN12WSM9 board, the slot number of the WSM9 board displayed on the NM is IU1. If slots IU1, IU2 and IU3 house the TN13WSM9 board, the slot number of the WSM9 board displayed on the NM is IU1.
19.8.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-49. Table 19-49 Serial numbers of the interfaces of the WSM9 board displayed on the NM Interface on the Panel
Interface on the NM
EXPI
1
OUT
2
AM1-AM8
3-10
MONI
11
MONO
12
19.8.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For WSM9 parameters, refer to Table 19-50. Table 19-50 WSM9 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2104
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB), Blocking, /
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. l When no optical cross-connections are present, the parameter value is displayed as /. l When NE-level optical crossconnections are present or when the end-to-end configuration function is used to configure optical crossconnections and OPA Mode is set to Manual, the parameter value is displayed as Blocking after an OCh trail is created. If you set the parameter at this time, the specified value is then displayed. l To obtain the value range of this parameter, query the value of the Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2105
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: l TN11WSM9/ TN12WSM9: Even l TN13WSM9: All
19.8.9 WSM9 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-51 Optical specifications of the WSM9 board
Issue 03 (2013-05-16)
Item
Unit
Value
Type
-
TN11WSM9/ TN12WSM9
TN13WSM9
Optical channels
-
40
80
Adjacent channel spacing
GHz
100
50
Insertion loss
dB
≤ 8b
≤ 8b
Maximum channel insertion loss difference
dB
1.5
1.5
Operating wavelength range
nm
1529-1561
1529-1561
-1 dB spectral width
nm
> 0.32
> 0.16
Port isolation
dB
> 25
> 25
Adjacent channel isolation
dB
> 25
> 25
Non-adjacent channel isolation
dB
> 30
> 30
Extinction ratio
dB
≥ 35
≥ 35
Reconfiguration time
s
≤3
≤3
Directivity
dB
35
35
Maximum reflectance
dB
-40
-40
Polarization dependence loss
dB
≤1
≤1
AMxa-OUT EXPI-OUT
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2106
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit
Value
Type
-
TN11WSM9/ TN12WSM9
TN13WSM9
Attenuation range of each of adding wavelengths
dB
0-15
0-15
Attenuation precision of each of adding wavelengths
dB
≤ 1 (0 to 10 dB)
≤ 1 (0 to 10 dB)
≤ 1.5 (>10 dB)
≤ 1.5 (>10 dB)
NOTE a: AMx represents the AM1-AM8 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications Dimensions of front panel: l
TN11WSM9 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
TN12WSM9 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
TN13WSM9 (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
Weight: l
TN11WSM9: 2.2 kg (4.84 lb.)
l
TN12WSM9: 2.7 kg (5.94 lb.)
l
TN13WSM9: 2.9 kg (6.38 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WSM9
17.0
18.7
TN12WSM9
25.4
28.5
TN13WSM9
25.4
28.5
19.9 WSMD2 WSMD2: 2-port wavelength selective switching multiplexer and demultiplexer board
19.9.1 Version Description The available functional version of the WSMD2 board is TN11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2107
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W SM D2
Y
Y
N
Y
Y
N
19.9.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the WSMD2 board is used with the optical multiplexer and demultiplexer unit and the optical add and drop multiplexing unit to implement wavelength grooming at the nodes in the DWDM network. For the position of the WSMD2 board in the DWDM system, see Figure 19-23. Figure 19-23 Position of the WSMD2 board in the DWDM system O T U
O T U
Clientside
O T U
DMUX
O T U
MUX
DCM AM
DM IN
OA
OUT
OA
WSMD2
WSMD2 OA
OUT
EXPO EXPI
EXPI
EXPO
IN
AM
OA
DM
DCM MUX
O T U
Issue 03 (2013-05-16)
DMUX O T U
Clientside
O T U
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
O T U
2108
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.9.3 Functions and Features The WSMD2 board is mainly used to broadcast services, dynamically groom wavelengths, monitor online optical performance monitoring, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-52. Table 19-52 Functions and features of the WSMD2 board Function and Feature
Description
Basic function
Provides service broadcasting function, and supports the function of configurable multiplexing any wavelengths. Any node on a ring or chain network can broadcast the signals received from the main optical path as two channels of the same signals, and can input any wavelengths added locally to the AM port.
WDM specification
Supports the DWDM specification.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Provides the function to adjust the optical power of any add wavelengths at the local station.
Optical-layer ASON
Not supported
19.9.4 Working Principle and Signal Flow The WSMD2 board consists of the WSS optical module, temperature and optical power detection module, control and communication module, and power supply module. Figure 19-24 shows the functional modules and signal flow of the WSMD2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2109
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-24 Functional modules and signal flow of the WSMD2 DM
AM
EXPO
EXPI
Splitter
Splitter
IN
OUT
WSS optical module Optical module
Coupler
MONI
MONO
Temperature detection
PIN
PIN
Temperature and optical power deteciton module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal flow The optical signals of the main path are accessed through the IN interface. The signals are broadcast into two same optical signals through the coupler. Then, the board drops one channel of optical signals at the local station through the DM optical interface. The other channel of optical signals is output through the EXPO optical interface to other directions. Optical signals (single-wavelength or multiplexed signals) added at the local station are input to WSMD2 board through the AM optical interface. If multiple wavelengths are to be added, the signals are first sent to the multiplexer unit for processing and then input to the WSMD2 board through the AM optical interface; if single wavelength is to be added, the signals can be directly input to the WSMD2 board from the optical transponder unit through the AM interface. Optical signals cross-connected from other directions are input to the WSMD2 board through the EXPI optical interfaces. Then, they are multiplexed with the wavelengths added at the local station. The multiplexed signals are finally output through the OUT optical interface.
Module function l
Optical module – The WSS optical module can access any combination of wavelengths through the following optical interface: EXPI and AM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2110
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
– The WSS optical module implements the power adjustment at the wavelength level. – The Coupler optical module selects any combination of wavelengths and outputs it through DM. It implements the broadcasting from wavelength signals to two ports. – The splitter splits some optical signals from the main optical path and sends them to MONI/MONO for detection. l
Temperature and optical power detection module – Monitors in real time the WSS optical module operating temperature. – Detects in real time the input and output optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.9.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the WSMD2 board.
Appearance of the Front Panel Figure 19-25 shows the front panel of the WSMD2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2111
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-25 Front panel of the WSMD2 board
WSMD2 STAT ACT PROG SRV
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
MONO MONI OUT IN EXPO EXPI DM AM
WSMD2
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2112
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-53 lists the type and function of each interface. Table 19-53 Types and functions of the interfaces on the WSMD2 board
Issue 03 (2013-05-16)
Interface
Type
Function
IN
LC
Receives the main path signal.
OUT
LC
Transmits the main path signal.
DM
LC
Transmits the multiplexed signals to be output at the local station or other stations to the optical demultiplexing unit or the optical add/drop multiplexing unit.
AM
LC
Receives the single-wavelength signal or multiplexed signal from the local station or other stations. Then, the accessed signal is multiplexed into the main path.
EXPO
LC
Functions as a cascade output optical interface. Multiple WSMD2 boards can be cascaded through their EXPO optical interfaces.
EXPI
LC
Functions as a cascade input optical interface. Multiple WSMD2 boards can be cascaded through their EXPI optical interfaces.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the received main path signal. The MONI port is a 3/97 tap of the total composite signal at the EXPI port (15 dB lower than the actual signal power, calculation formula: Pexpi (dBm) Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, monitors the optical performance of the transmitted main path signal online. The MONO port is a 3/97 tap of the total composite signal at the OUT port (15 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmono (dBm) = 10 x lg (97/3) = 15 dB).
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2113
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.9.6 Valid Slots Two slots house one WSMD2 board. Table 19-54 shows the valid slots for the WSMD2 board. Table 19-54 Valid slots for the WSMD2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, and IU29IU35
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the WSMD2 board displayed on the NM is the number of the leftmost one of the two slots. For example, if slots IU1 and IU2 house the WSMD2 board, the slot number of the WSMD2 board displayed on the NM is IU1.
19.9.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-55. Table 19-55 Serial numbers of the interfaces of the WSMD2 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN
1
DM
2
AM
3
OUT
4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2114
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Interface on the Panel
Interface on the NM
EXPO
5
EXPI
6
MONO
7
MONI
8
19.9.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For WSMD2 parameters, refer to Table 19-56. Table 19-56 WSMD2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB), Blocking, /
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. l When no optical cross-connections are present, the parameter value is displayed as /. l When NE-level optical crossconnections are present or when the end-to-end configuration function is used to configure optical crossconnections and OPA Mode is set to Manual, the parameter value is displayed as Blocking after an OCh trail is created. If you set the parameter at this time, the specified value is then displayed. l To obtain the value range of this parameter, query the value of the Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2115
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: Even
19.9.9 WSMD2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-57 lists the optical specifications of the WSMD2 board. Table 19-57 Optical specifications of the TN11WSMD2 board Item
Unit
Value
Optical channels
-
40
Adjacent channel spacing
GHz
100
Operating wavelength range
nm
1529-1561
-1 dB spectral width
nm
> 0.32
dB
≤ 8a
Insertion loss
AM-OUT EXPI-OUT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2116
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit IN-DM
Value ≤ 4.5a
IN-EXPO Maximum channel insertion loss difference
dB
1.5
Port isolation
dB
> 25
Extinction ratio
dB
≥ 35
Reconfiguration time
s
≤3
Maximum reflectance
dB
-40
Directivity
dB
35
Polarization dependence loss
dB
≤1
Attenuation range of each of adding wavelength
dB
0-15
Attenuation precision of each of adding wavelength
dB
≤ 1 (0 dB to 10 dB) ≤ 1.5 (> 10 dB)
a: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.2 kg (7.0 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WSMD2
17.0
18.7
19.10 WSMD4 WSMD4: 4-port wavelength selective switching multiplexer and demultiplexer board
19.10.1 Version Description The available functional versions of the WSMD4 board are TN11 and TN12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2117
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W SM D4
Y
Y
N
Y
Y
N
TN1 2W SM D4
Y
Y
Y
Y
Y
N
Type Table 19-58 lists the version description of the WSMD4 board. Table 19-58 Version description of the WSMD4 board Board
Type
Description
TN11WSMD4
01
Processes the even wavelengths in C band.
02
Processes the odd wavelengths in C band.
01
Processes the even wavelengths and odd wavelengths in C band.
TN12WSMD4
Differences Between Versions l
Function: – The TN11WSMD4 processes 40 wavelengths in C band. The TN12WSMD4 processes 80 wavelengths in C band. For details, see Table 19-58.
l
Specification: – The specifications vary according to the version of the board that you use. For details, see 19.10.9 WSMD4 Specifications.
Substitution Relationship The TN12WSMD4 board and TN11WSMD4 board are not interchangeable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2118
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.10.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the WSMD4 board is used with the optical multiplexer and demultiplexer unit and optical add and drop multiplexing unit to implement wavelength grooming at the nodes in the DWDM network. For the position of the WSMD4 board in the DWDM system, see Figure 19-26. Figure 19-26 Position of the WSMD4 board in the DWDM system
West client side
IN
West ODF
F I U
TC
IN
OUT RC
South ODF
TC
OUT
F I U
DM1 DM2 DM3 DM4
AM1 AM2 AM3 AM 4
AM1
DM1
AM2 AM3
DM2
WSMD4
OUT
IN
East client side
AM4 AM3
DM3 DM2 DM1
RC
South client side
East ODF IN
RC
OUT
OUT
WSMD 4
AM4 AM3 AM2 AM1
OUT
TC
AM2 AM1
WSMD4
F I U
IN
DM3 DM4
DM4
OUT
RC
WSMD 4
AM4
IN
OUT
DM4 DM3 DM2 DM1
IN
TC
F I U
North ODF IN
North client side
19.10.3 Functions and Features The WSMD4 board is mainly used to broadcast services, dynamically groom wavelengths, monitor online optical performance monitoring, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-59. Table 19-59 Functions and features of the WSMD4 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Provides service broadcasting function, and supports the function of configurable multiplexing any wavelengths. Any node on a ring or chain network can broadcast the signals received from the main optical path as four channels of the same signals, and can input any wavelengths added locally to any port. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2119
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Function and Feature
Description
WDM specification
Supports the DWDM specification.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Provides the function to adjust the optical power of any add wavelengths at the local station.
Optical-layer ASON
Supported by the TN11WSMD401 and TN12WSMD4.
19.10.4 Working Principle and Signal Flow The WSMD4 board consists of the RDU optical module, WSS optical module, temperature and optical power detection module, control and communication module, and power supply module. Figure 19-27 shows the functional modules and signal flow of the WSMD4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2120
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-27 Functional modules and signal flow of the WSMD4 board D D D D M M M M 1 2 3 4
Splitter IN
A A A A M M M M 1 2 3 4
Splitter
Optical demultiplexer module
OUT
RDU optical WSS optical module module Optical module
MONI
MONO
Temperature detection
PIN
PIN
Temperature and optical power deteciton module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal flow The optical signals on the main path are accessed through the IN interface. It is broadcast into four same optical signals through the RDU optical module. The four channels of optical signals are output through the DM1-DM4 optical interfaces separately. According to the network planning, the WSMD4 board drops one channel locally and outputs the other three channels to other directions. The optical signals (single-wavelength or multiplexed signals) added at the local station are input to the WSMD4 board through one of the AM1-AM4 optical interfaces. Assume that the optical signals are input through the AM1 optical interface. If multiple wavelengths are to be added, the signals are first sent to the multiplexer unit for processing and then input to the WSMD4 board through the AM1 optical interface; if single wavelength is to be added, the signals can be directly input to the WSMD4 board from the optical transponder unit through the AM1 interface. Optical signals cross-connected from other directions are input to the WSMD4 board through the AM2AM4 optical interfaces. Then, they are multiplexed with the added wavelengths at the local station. The multiplexed signals are output through the OUT optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2121
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Module function l
Optical module – The WSS optical module can access any combination of wavelengths through any of the following optical interfaces: AM1, AM2, AM3 and AM4. – The WSS optical module implements the power adjustment at the wavelength level. – The RDU optical module locally drops optical signals and broadcasts wavelength signals to its four ports. – The splitter splits some optical signals from the main optical path and sends them to MONI/MONO for detection.
l
Temperature and optical power detection module – Monitors in real time the WSS optical module operating temperature. – Detects in real time the input and output optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.10.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the WSMD4 board.
Appearance of the Front Panel Figure 19-28 shows the front panel of the WSMD4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2122
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-28 Front panel of the WSMD4 board
WSMD4 STAT ACT PROG SRV
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
MONO MONI OUT IN DM1 AM1 DM2 AM2 DM3 AM3 DM4 AM4
WSMD4
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2123
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-60 lists the type and function of each interface. Table 19-60 Types and functions of the interfaces on the WSMD4 board Interface
Type
Function
AM1-AM4
LC
Receives the single-wavelength signal or multiplexed signal from the local station or other stations. Then, the accessed signal is multiplexed into the main path.
DM1-DM4
LC
Transmits the multiplexed signals to be output at the local station or other stations to the optical demultiplexing unit or the optical add/drop multiplexing unit.
OUT
LC
Transmits the main path signal.
IN
LC
Receives the main path signal.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the received main path signal. The MONI port is a 3/97 tap of the total composite signal at the EXPI port (15 dB lower than the actual signal power, calculation formula: Pexpi (dBm) Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the transmitted main path signal. The MONO port is a 3/97 tap of the total composite signal at the OUT port (15 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmono (dBm) = 10 x lg (97/3) = 15 dB).
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
19.10.6 Valid Slots Two slots house one WSMD4 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2124
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-61 shows the valid slots for the TN11WSMD4 board. Table 19-61 Valid slots for the TN11WSMD4 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, and IU29IU35
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
Table 19-62 shows the valid slots for the TN12WSMD4 board. Table 19-62 Valid slots for the TN12WSMD4 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, and IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the WSMD4 board displayed on the NM is the number of the left one of the two slots. For example, if slots IU1 and IU2 house the WSMD4 board, the slot number of the WSMD4 board displayed on the NM is IU1.
19.10.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-63. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2125
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Table 19-63 Serial numbers of the interfaces of the WSMD4 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
DM1
2
AM1
3
OUT
4
DM2-DM4
5 to 7
AM2-AM4
8 to 10
MONO
11
MONI
12
19.10.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For WSMD4 parameters, refer to Table 19-64. Table 19-64 WSMD4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2126
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB), Blocking, /
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. l When no optical cross-connections are present, the parameter value is displayed as /. l When NE-level optical crossconnections are present or when the end-to-end configuration function is used to configure optical crossconnections and OPA Mode is set to Manual, the parameter value is displayed as Blocking after an OCh trail is created. If you set the parameter at this time, the specified value is then displayed. l To obtain the value range of this parameter, query the value of the Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface. Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2127
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: l TN11WSMD4: Even l TN12WSMD4: All
19.10.9 WSMD4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-65 Optical specifications of the WSMD4 board Item
Unit
TN11WSMD4
TN12WSMD4
Optical channels
-
40
80
Adjacent channel spacing
GHz
100
50
Operating wavelength range
nm
1529-1561
1529-1561
-1dB spectral width
nm
> 0.32
> 0.16
Insertion loss
dB
≤ 8b
≤ 8b
≤8
≤8
AMxa-OUT IN-DMxa
Issue 03 (2013-05-16)
Value
Maximum channel insertion loss difference
dB
1.5
1.5
Port isolation
dB
> 25
> 25
Extinction ratio
dB
≥ 35
≥ 35
Reconfiguration time
s
≤3
≤3
Maximum reflectance
dB
-40
-40
Directivity
dB
35
35
Polarization dependence loss
dB
≤1
≤1
Attenuation range of each of adding wavelength
dB
0-15
0-15
Attenuation precision of each of adding wavelength
dB
≤ 1 (0 to 10 dB)
≤ 1 (0 to 10 dB)
≤ 1.5 (> 10 dB)
≤ 1.5 (> 10 dB)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2128
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit
Dimension
-
Value TN11WSMD4
TN12WSMD4
4
4
a: AMx represents the AM1-AM4 interface. DMx represents the DM1-DM4 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11WSMD4: 3.2 kg (7.1 lb.) – TN12WSMD4: 2.6 kg (5.7 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WSMD4
17
18.7
TN12WSMD4
12
15
19.11 WSMD9 WSMD9: 9-Port wavelength selective multiplexing and demultiplexing board
19.11.1 Version Description The available functional version of the WSMD9 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2129
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W SM D9
Y
Y
Y
Y
Y
N
19.11.2 Application As a type of reconfigurable optical add and drop multiplexing unit, the WSMD9 board is used with the optical multiplexer and demultiplexer unit and optical add and drop multiplexing unit to implement wavelength grooming at the nodes in the DWDM network. For the position of the WSMD9 board in the DWDM system, see Figure 19-29. Figure 19-29 Position of the WSMD9 board in the DWDM system Client side
Client side O T U
MUX
DMUX
DCM
O T U
O T U
O T U
DM1 IN
LIN
SIN
EXPI
WSMD9 SIN
WSMD9 EXPO
MUX
O T U
O T U
Client side
DAS1 IN SOUT
AM1
DCM
LOUT
OUT
EXPI
OUT
LOUT
AM1 EXPO
SOUT
DAS1
DCM
LIN
DM1
DMUX
O T U
DCM
O T U
Client side
NOTE
Optical interfaces AM2–AM8 and DM2–DM8 on the WSMD9 board can be used to cross-connect boards in other dimensions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2130
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.11.3 Functions and Features The WSMD9 board is mainly used to broadcast services, dynamically groom wavelengths, monitor online optical performance monitoring, and monitor alarms and performance events. For detailed functions and features, refer to Table 19-66. Table 19-66 Functions and features of the WSMD9 board Function and Feature
Description
Basic function
Provides service broadcasting function, and supports the function of configurable multiplexing any wavelengths. Any node on a ring or chain network can broadcast the signals received from the main optical path as nine channels of the same signals, and can input any wavelengths added locally to any port.
WDM specification
Supports the DWDM specification. The wavelength of the TN11WSMD9 board is separated at 50 GHz channel spacing.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarm and performance event monitoring
Detects the optical power and reports the alarms and performance events for the board.
Optical power adjustment
Provides the function to adjust the optical power of any add wavelengths at the local station.
Optical-layer ASON
Supported
19.11.4 Working Principle and Signal Flow The WSMD9 board consists of the RDU optical module, WSS optical module, temperature and optical power detection module, control and communication module, and power supply module. Figure 19-30 shows the functional modules and signal flow of the WSMD9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2131
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-30 Functional modules and signal flow of the WSMD9 board DDDDDDDD MMMMMMMM 1 2 3 4 5 6 7 8 EXPO EXPI
A A A A A A A A MMMMMMMM 1 2 3 4 5 6 7 8
Optical demultiplexer module
Splitter IN MONI
Splitter OUT
Splitter
WSS optical module
RDU optical module
MONO
Optical module PIN
PIN
Temperature detection
Optical power deteciton module
Control Memory
CPU Communication Control and communication module Power supply module
Fuse
DC power supply from a backplane
Required voltage
Backplane (controlled by SCC) SCC
Signal flow The multiplexed signals that need to be dropped are input to the board through the IN interface. It is broadcast into nine same optical signals through the RDU optical module. The nine channels of optical signals are output through the DM1-DM8 and EXPO optical interfaces separately. One channel of the signals is dropped locally through the multiplexer board and the other eight channels of signals are scheduled to other eight directions. A few signals are extracted from the main path optical signals that are from the IN interface and are then output through the MONI interface for performance detection. The board receives the multiplexed optical signals of the main optical path through the EXPI optical interface. The single-wavelength or multiplexed optical signals to be added are input through the AM1-AM8 optical interfaces. l
If multiple wavelengths are to be added together, the wavelengths are first sent to the multiplexer board for multiplexing. Then the multiplexed wavelength is sent to the WSMD9 board through one of the AM1-AM8 ports.
l
If single wavelengths are to be added separately, the wavelengths are directly sent to the WSMD9 board from associated OTUs through the AM1-AM8 ports.
After the main optical path input through the EXPI optical interface is multiplexed with the optical wavelength signals added through the AMn optical interface, the multiplexed signals are output through the OUT optical interface.
Module function l Issue 03 (2013-05-16)
Optical module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2132
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
– The RDU optical module broadcasts signals in nine directions. The nine channels of optical signals are output through the DM1-DM8 and EXPO optical interfaces separately. – The WSS optical module can access any combination of wavelengths through any of the following optical interfaces: AM1 - AM8 and EXPI. – The WSS optical module implements the power adjustment at the wavelength level. – The splitter splits some optical signals from the main optical path and sends them to MONI/MONO for detection. l
Optical power detection module – Detects in real time the input and output optical power of service signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
19.11.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the WSMD9 board.
Appearance of the Front Panel Figure 19-31 shows the front panel of the WSMD9 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2133
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Figure 19-31 Front panel of the WSMD9 board
WSMD9 STAT ACT PROG SRV
CAUTION CAUTION
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
DM1 AM1 DM2 AM2 DM3 AM3 DM4 AM4 DM5 AM5 DM6 AM6
MONO MONI
DM7
OUT
AM7
IN
DM8 AM8
EXPO EXPI
WSMD9
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2134
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 19-67 lists the type and function of each interface. Table 19-67 Types and functions of the interfaces on the WSMD9 board Interface
Type
Function
AM1-AM8
LC
Receives the single-wavelength signal or multiplexed signal from the local station or other stations. Then, the accessed signal is multiplexed into the main path.
DM1-DM8
LC
Transmits the multiplexed signals to be output at the local station or other stations to the optical demultiplexing unit or the optical add/drop multiplexing unit.
OUT
LC
Transmits the main path signal.
IN
LC
Receives the main path signal.
MONI
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the received main path signal. The MONI port is a 3/97 tap of the total composite signal at the IN port (15 dB lower than the actual signal power, calculation formula: Pin (dBm) - Pmoni (dBm) = 10 x lg (97/3) = 15 dB).
MONO
LC
Connected to the input interface of the spectrum analyzer unit, accomplishes the online optical performance monitoring for the transmitted main path signal. The MONO port is a 3/97 tap of the total composite signal at the OUT port (15 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmono (dBm) = 10 x lg (97/3) = 15 dB).
EXPO
LC
Transmits the main path signal.
EXPI
LC
Receives the main path signal.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2135
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.11.6 Valid Slots Two slots house one WSMD9 board. Table 19-68 shows the valid slots for the WSMD9 board. Table 19-68 Valid slots for the WSMD9 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU12-IU18, IU20-IU26, IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
NOTE
The rear connector of the board is mounted to the backplane along the left slot in the subrack. Therefore, the slot number of the WSMD9 board displayed on the NM is the number of the left one of the two slots. For example, if slots IU1 and IU2 house the WSMD9 board, the slot number of the WSMD9 board displayed on the NM is IU1.
19.11.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 19-69. Table 19-69 Serial numbers of the interfaces of the WSMD9 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN
1
EXPO
2
EXPI
3
OUT
4
DM1-DM8
5-12
AM1-AM8
13-20
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2136
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
19.11.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For WSMD9 Parameters, refer to Table 19-70. Table 19-70 WSMD9 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB), Blocking, /
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. l When no optical cross-connections are present, the parameter value is displayed as /. l When NE-level optical crossconnections are present or when the end-to-end configuration function is used to configure optical crossconnections and OPA Mode is set to Manual, the parameter value is displayed as Blocking after an OCh trail is created. If you set the parameter at this time, the specified value is then displayed. l To obtain the value range of this parameter, query the value of the Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Used to configure type of the working band of a board.
Default: C Actual Band
Issue 03 (2013-05-16)
-
Queries the actual working band of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2137
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Field
Value
Description
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Input Power Loss Threshold (dBm)
-
Default: All
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
19.11.9 WSMD9 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 19-71 Optical specifications of the TN11WSMD9 board Item
Unit
Value
Optical channels
-
80
Adjacent channel spacing
GHz
50
Insertion loss
dB
≤ 8b
AMxa/EXPI-OUT IN-DMxa/EXPO
Issue 03 (2013-05-16)
≤ 12
Maximum channel insertion loss difference
dB
1.5
Operating wavelength range
nm
1529-1561
-1dB spectral width
nm
> 0.16
Port isolation
dB
> 25
Extinction ratio
dB
≥ 35
Reconfiguration time
s
≤3
Maximum reflectance
dB
-40
Directivity
dB
35
Polarization dependence loss
dB
≤1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2138
OptiX OSN 8800/6800/3800 Hardware Description
19 Reconfigurable Optical Add and Drop Multiplexing Board
Item
Unit
Value
Attenuation range of each of adding wavelength
dB
0 to 15
Attenuation precision of each of adding wavelength
dB
< 1 (0 to 10 dB)
Dimension
-
< 1.5 (> 10 dB) 9
a: AMx represents the AM1-AM8 interface. DMx represents the DM1-DM8 interface. b: This value can be reached when the attenuation of the VOA is set to 0 dB.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.1 kg (6.8 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WSMD9
25
30
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2139
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20
Optical Amplifier Board
About This Chapter 20.1 Overview The optical amplifier board amplifies the power of the multiplexed optical signals to extend the transmission distance. 20.2 CRPC CRPC: case-shape raman pump amplifier unit for C band 20.3 DAS1 DAS1: optical amplifier unit 20.4 HBA HBA: high-power booster amplifier board 20.5 OAU1 OAU1: optical amplifier unit 20.6 OBU1 OBU1: optical booster unit 20.7 OBU2 OBU2: optical booster unit 20.8 RAU1 RAU1: backward raman and erbium doped fiber hybrid optical amplifier unit 20.9 RAU2 RAU2: backward raman and erbium doped Fiber hybrid optical amplifier Unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2140
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.1 Overview The optical amplifier board amplifies the power of the multiplexed optical signals to extend the transmission distance.
Positions of Optical Amplifier Boards in a WDM System Optical amplifier boards are used to compensate for power loss caused by long haul transmission in fiber communication systems. They are classified into erbium-doped fiber amplifier (EDFA) boards and Raman boards. Figure 20-1 shows the positions of optical amplifier boards at an OTM site in a WDM system. Figure 20-1 Positions of EDFA and Raman boards in a WDM system
OTU
EDFA
OM
OTU
FIU
SC1
Raman
OD
EDFA
OTU
OTU
The RAU board integrates the functions of both EDFA and Raman boards. Figure 20-2 shows the positions of RAU boards in a WDM system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2141
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-2 Positions of RAU boards in a WDM system
OTU
EDFA
OM
OTU
FIU
SC1
EDFA
OD
Raman
OTU
OTU RAU
In Figure 20-1 and Figure 20-2: l
EDFA: HBA/OAU1/OBU1/OBU2
l
Raman: CRPC01, RAU1, or RAU2. The WDM system in Figure 20-1 is a backward Raman system where the CRPC01 board is used.
l
RAU: RAU1/RAU2 NOTE
Different from the DAS1 board shown in Figure 20-1, the DAS1 board is mainly used at ROADM sites in a WDM system. For the typical application scenario of the DAS1 board, see 20.3.2 Application.
Main Functions Table 20-1 lists the main functions of optical amplifier boards. For the detailed specifications of each board, see the relevant specification pages. Table 20-1 Main functions of optical amplifier Boards Board
Function
Gain
CRPC
Case-shape Raman pump amplifier board for C band. It generates multi-channel pump light of high power and must be used with EDFA boards.
For the gain range, see 20.2.11 CRPC Specifications.
DAS1
Double optical amplifier board with supervisory channel. It amplifies optical signals using an EDFA optical module, multiplexes and demultiplexes the optical supervisory channel (OSC) signal and the main optical path signal, and processes one OSC signal.
Gain range: 20 dB to 31 dB. For details, see 20.3.9 DAS1 Specifications.
The board is equipped with VOAs to adjust the power of input optical signals. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2142
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Board
Function
Gain
HBA
High-power booster amplifier board. It amplifies optical signals in the C band using an EDFA optical module. The board provides a high gain and is generally configured at the transmit end of a long-span system.
Typical gain: 29 dB. For details, see 20.4.10 HBA Specifications.
OAU1
Optical amplifier board. It amplifies optical signals in the C band using an EDFA optical module. The board is equipped with VOAs to adjust the power of input optical signals.
Gain range: 16 dB to 25.5 dB. For details, see 20.5.10 OAU1 Specifications.
The OAU1 board provides two amplifiers for power amplification and a DCM module can be installed in between for dispersion compensation. OBU1
Optical amplifier board. It amplifies optical signals in the C band using an EDFA optical module. The board is equipped with VOAs to adjust the power of input optical signals.
Gain range: 17±1.5 dB to 23±1.5 dB. For details, see 20.6.10 OBU1 Specifications.
OBU2
Optical amplifier board. It amplifies optical signals in the C band using an EDFA optical module. The board is equipped with VOAs to adjust the power of input optical signals.
Gain range: 23±1.5 dB. For details, see 20.7.10 OBU2 Specifications.
RAU1
Raman and EDFA hybrid optical amplifier board. It is used at the receive end to generate multi-channel pump light of high power.
For the gain range, see 20.8.9 RAU1 Specifications.
RAU2
Raman and EDFA hybrid optical amplifier board. It is used at the receive end to generate multi-channel pump light of high power.
For the gain range, see 20.9.9 RAU2 Specifications.
The board is equipped with VOAs to adjust the power of input optical signals.
20.2 CRPC CRPC: case-shape raman pump amplifier unit for C band
20.2.1 Version Description The available functional version of the CRPC board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2143
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1CR PC
Y
Y
Y
Y
Y
N
Type Table 20-2 lists the types of the CRPC board. Table 20-2 Type description of the CRPC board Board
Type
Description
CRPC
01
Adopts the backward pumping technology.
03
Adopts the forward pumping technology.
20.2.2 Application As a type of optical amplifier unit, the CRPC board supports transmission over ultra-long distance and application of the 40G OTU, and can generate multi-channel pump light of high power. The CRPC board must be used with the EDFA.
CAUTION Always turn off the pump laser of the CRPC board before removing or inserting the fiber to the CRPC. For the position of the CRPC board in the WDM system, see Figure 20-3 and Figure 20-4. Figure 20-3 Position of the CRPC board in the WDM system (backward pump) Client side
Client side
Issue 03 (2013-05-16)
OTU OTU OTU OTU
M U X
D M U X
OBU1
OAU1
F I U F I U
CRPC 01
CRPC 01
F I U F I U
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
OAU1
OBU1
D M U X
M U X
OTU OTU OTU OTU
Client side
Client side
2144
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-4 Position of the CRPC board in the WDM system (forward pump) Client side
OTU
M U X
OTU
D M U X
OTU Client side
OTU
OBU1
OAU1
F I U F I U
F I U
CRPC 03
CRPC 03
F I U
OAU1
OBU1
D M U X
M U X
OTU OTU
OTU OTU
Client side
Client side
20.2.3 Functions and Features The main function and feature supported by the CRPC board is online optical performance monitoring. For detailed functions and features, refer to Table 20-3. Table 20-3 Functions and features of the CRPC board Function and Feature
Description
Basic function
l Generates multi-channel pump light of high power, providing energy for the amplification of signals in the fiber. l Implements the distributed online amplification of signals over long distance with wide bandwidth and low noise.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Alarms and performance events monitoring
Detects the optical power of the pump laser, temperature control current, pump current, and back facet current. Supports return loss detection.
Working mode
Supports the gain locking modes.
Optical-layer ASON
Supported
20.2.4 Working Principle and Signal Flow The CRPC board consists of the Raman pump optical module, driving and detection module, control and communication module, and power supply module. The CRPC board is used at the receive end and the transmit end of the system, making use of the stimulated Raman scattering effect to amplify the optical signals during transmission. The CRPC board is located before the receiver. The pump light travels in the reverse direction of the signal light. Figure 20-5 shows the functional modules and signal flow of the CRPC. The CRPC board is located after the transmit end. The pump light travels in the same direction of the signal light. Figure 20-6 shows the functional modules and signal flow of the CRPC. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2145
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-5 Functional modules and signal flow of the CRPC board (backward pump)
LINE
Splitter
Signal
Signal
Pump light
Pump source
Raman pump optical module
Detection for pump light power and current
Pumping current and temperature control
PIN
SYS MON
Detection for temperature
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
Backplane (controlled by SCC) DC power supply from PDU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
2146
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-6 Functional modules and signal flow of the CRPC board (forward pump)
LINE
Splitter
Signal
Signal
Pump light
Pump source
Raman pump optical module
Detection for pump light power and current
Pumping current and temperature control
PIN
SYS MON
Detection for temperature
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
Backplane (controlled by SCC) SCC DC power supply from PDU
Signal Flow l
Backward pump The pump source of the CRPC board sends the pump light to the WDM side through the LINE optical interface. On the line, the signals that are amplified through the distributed amplification are input through the LINE interface. The splitter then splits them into two, among which the service optical signals are output through the SYS interface. A few supervisory signals are output to the multi-channel spectrum analyzer unit (MCA4, MCA8) or test instrument through the MON interface for online optical performance monitoring.
l
Forward pump The signal light is input through the SYS interface and output to the optical line through the LINE interface. A few supervisory signals are output to the multi-channel spectrum analyzer unit (MCA4, MCA8) or test instrument through the MON interface for online optical performance monitoring. The pump light that is generated by the CRPC board is output to the optical line through the LINE interface in the same direction as the signal light, to implement the distributed amplification of the optical signal.
For OptiX OSN 6800: The Ethernet interface of the CRPC is connected to the ETH1/ETH2 interface of the AUX or the ETH3 interface of the EFI board for communication with the SCC. For OptiX OSN 8800 T64/OptiX OSN 8800 T32: The Ethernet interface of the CRPC board is connected to the ETH1/ETH2/ETH3 interface of the EFI2 board for the communication with the SCC. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2147
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
For OptiX OSN 8800 T16: The Ethernet interface of the CRPC board is connected to the ETH1/ ETH2/ETH3 interface of the EFI board for the communication with the SCC. For OptiX OSN 8800 platform subrack: The Ethernet interface of the CRPC board is connected to the ETH1/ETH2 or NM_ETH1/NM_ETH2 interface of the AUX board for the communication with the SCC. NOTE
Only when OptiX OSN 8800 platform subrack as a slave subrack, the Ethernet interface of the CRPC board can be connected to the NM_ETH1/NM_ETH2 interface of the AUX board.
Module Function l
Raman pump optical module – The laser in the pump source generates the pump light and sends the light to the optical line for transmission. The Raman pump optical module makes use of the stimulated Raman scattering effect of the fiber to amplify the optical signals during transmission. – The splitter splits one channel of optical signals from the pump source module into two channels of signals of different power. One of them is output through the SYS interface and transmitted in the main optical path. The other channel of signals is output to the MON interface for spectrum detection and supervising.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the pump optical module. – Drives the pump laser inside the pump optical module. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the PDU into the power required by each module on the board.
20.2.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the CRPC board.
Appearance of the Front Panel Figure 20-7 shows the front panel of the CRPC board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2148
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-7 Front panel of the CRPC board
CAUTION HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON
SYS
LINE
CAUTION
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICAL INSTRUMENTS
CRPC
ALM
RUN
警告:开启电源前,务必连好光纤
!
!
WARNING: FIBERS MUST BE CONNECTED BEFORE POWER UP
RS232-1
RS232-2
LAN
警告:开启电源前,务必连好光纤 WARNING: FIBERS MUST BE CONNECTED BEFORE POWER UP
Indicators Two indicators are present on the front panel: l
Running status indicator (RUN) - green
l
Service alarm indicator (ALM) - red
See Table 20-4 and Table 20-5 for details. Table 20-4 Red alarm indicator
Issue 03 (2013-05-16)
Flash State
Description
Off
There is no alarm.
Three times every other second
There is a critical alarm.
Twice every other second
There is a major alarm.
Once every other second
There is a minor alarm.
On
Hardware is faulty, or the self-check fails.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2149
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-5 Green running indicator Flash State
Description
Flashes five times per second
The board is not in service.
Flashes once every other second
The board is in service (normal).
2 seconds on and 2 seconds off
The communication with the SCC unit stops, and the board is in off-line working state.
Interfaces Table 20-6 lists the type and function of each interface. Table 20-6 Types and functions of the interfaces on the CRPC board Interface
Type
Function
LINE
LSH/APC
l For backward pump: receives optical signals from the line, which have been amplified in distributed manner. l For forward pump: transmits optical signals to the line.
SYS
LC
l For backward pump: connects to an FIU board and transmits amplified optical signals to the FIU board. l For forward pump: receives optical signals from an FIU board.
MON
LC
Connected to the MCA4, MCA8 or OPM8, monitors performance online. The MON port is a 1/99 tap of the total composite signal at the SYS port (20 dB lower than the actual signal power, calculation formula: Psys (dBm) - Pmon (dBm) = 10 x lg (99/1) = 20 dB).
LAN
RJ45
For OptiX OSN 6800: Connected to the ETH1/ETH2 of the AUX interface or the ETH3 interface of the EFI board for the communications with the SCC. For OptiX OSN 8800: Connected to the ETH1/ETH2/ ETH3 of the EFI2 board for the communications with the SCC.
RS232-1/ RS232-2
Issue 03 (2013-05-16)
-
RS232 communication interface
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2150
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Laser Hazard Level After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power launched by the board rangesfrom10 dBm (10 mW) to 21.3 dBm (136 mW).
20.2.6 Valid Slots The CRPC board is a case-shaped Raman amplifier. It is installed outside the cabinet and not inside the subrack. The LAN interface on the CRPC board can be connected to the ETH1/ETH2/ETH3 interface on the master or a slave subrack to implement communication with the system control board in the master subrack. The CRPC board is installed outside a cabinet, but a logical slot is designed for a CRPC board for the management purpose. Table 20-7 lists the supported logical slots for the CRPC board. On the NMS, the logical slot of the CRPC board can be managed only by the master subrack. Each NE supports a maximum of four CRPC boards. Table 20-7 Valid slots for the CRPC board Product
Supported Logical Slots
OptiX OSN 8800 T64 subrack
IU120-IU123
OptiX OSN 8800 T32 subrack
IU120-IU123
OptiX OSN 8800 T16 subrack
IU120-IU123
OptiX OSN 8800 platform subrack
IU120-IU123
OptiX OSN 6800 subrack
Non-extended slot numbering mode: IU28IU31 Extended slot numbering mode: IU120IU123
20.2.7 Dip Switch and Jumper There are two groups of jumpers on the CRPC boards. The two groups are identified as J3 and J4. Figure 20-8 shows the number of each jumper.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2151
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-8 Jumpers on the CRPC board
CRPC
9
1
1
9
2
10
J3
2
J4
10
CPU
Jumpers 9 to 10 in J3 and 1 to 6 in J4 are used for internal identification on the board. To ensure the normal operation of the board, follow the requirements below to set the jumpers. For OptiX OSN 6800: l
Do not connect jumpers 1 to 2 in J3.
l
Do not connect jumpers 3 to 4 in J3.
l
Do not connect jumpers 5 to 6 in J3.
l
Do not connect jumpers 7 to 8 in J3.
l
Do not connect jumpers 9 to 10 in J3. (Non-extended slot numbering mode)
l
Connect jumpers 9 to 10 in J3. (Extended slot numbering mode)
l
Connect jumpers 1 to 2 in J4.
l
Connect jumpers 3 to 4 in J4.
l
Connect jumpers 5 to 6 in J4.
l
Jumpers 7-8 and 9-10 in J4 are used to set the slot of the CRPC board. The following are jumper setting regulations in the non-extended slot numbering mode: – When jumpers 7-8 and 9-10 in J4 are not connected, the board slot is IU28. – When jumpers 7-8 in J4 are connected and jumpers 9-10 are not connected, the board slot is IU29. – When jumpers 7-8 in J4 are not connected and jumpers 9-10 are connected, the board slot is IU30. – When jumpers 7-8 and 9-10 in J4 are connected, the board slot is IU31. The following are jumper setting regulations in the extended slot numbering mode: – When jumpers 7-8 and 9-10 in J4 are not connected, the board slot is IU120. – When jumpers 7-8 in J4 are connected and jumpers 9-10 are not connected, the board slot is IU121. – When jumpers 7-8 in J4 are not connected and jumpers 9-10 are connected, the board slot is IU122. – When jumpers 7-8 and 9-10 in J4 are connected, the board slot is IU123.
For OptiX OSN 8800: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2152
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Do not connect jumpers 1 to 2 in J3.
l
Do not connect jumpers 3 to 4 in J3.
l
Do not connect jumpers 5 to 6 in J3.
l
Do not connect jumpers 7 to 8 in J3.
l
Connect jumpers 9 to 10 in J3.
l
Connect jumpers 1 to 2 in J4.
l
Connect jumpers 3 to 4 in J4.
l
Connect jumpers 5 to 6 in J4.
l
Jumpers 7-8 and 9-10 in J4 are used to set the slot of the CRPC board. The following are jumper setting regulations: – When jumpers 7-8 and 9-10 in J4 are not connected, the board slot is IU120. – When jumpers 7-8 in J4 are connected and jumpers 9-10 are not connected, the board slot is IU121. – When jumpers 7-8 in J4 are not connected and jumpers 9-10 are connected, the board slot is IU122. – When jumpers 7-8 and 9-10 in J4 are connected, the board slot is IU123.
20.2.8 Characteristic Code for the CRPC The characteristic code for the CRPC board contains one character and two digits, indicating the gain of the optical signals processed by the board. The detailed information about the characteristic code is given in Table 20-8. Table 20-8 Characteristic code for the CRPC board Code
Meaning
Description
First character
-
Is always G.
Two digits
Gain
Indicate the gain value.
For example, the characteristic code for the TN11CRPC board is G10, indicating 10 dB gain.
20.2.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-9. Table 20-9 Serial numbers of the interfaces of the CRPC board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
LINE
1 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2153
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Interface on the Panel
Interface on the NM
SYS
2
MON
3
20.2.10 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For CRPC parameters, refer to Table 20-10. Table 20-10 CRPC parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Board Work Type
C, C + L, L Default: C
Sets the working mode of a board. According to the board working mode, you can specify the type of the band from which the optical signals are accessed.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Band
C
Sets the working band type of a board.
Default: C Configure Working Band Parity
All, Odd, Even
Laser Status
Off, On
Default: All
Default: Off
Selects the desired parity of the working band. The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2154
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Fixed Pump Optical Power (dBm)
-
The Fixed Pump Optical Power (dBm) parameter sets or queries the output optical power of an optical amplifier board. If the fixed pump optical power value is smaller than the minimum value or larger than the maximum value, the board might work abnormally. See D.12 Fixed Pump Optical Power (dBm) (WDM Interface) for more information.
Minmun Fixed Pump Optical Power (dBm)
-
The Minmun Fixed Pump Optical Power (dBm) parameter is used to query the minimum pump optical power that an optical amplifier board can fix. See D.19 Minmun Fixed Pump Optical Power (dBm) (WDM Interface) for more information.
Maxmun Fixed Pump Optical Power (dBm)
-
The Maxmun Fixed Pump Optical Power (dBm) parameter is used to query the maximum pump optical power that an optical amplifier board can fix. See D.18 Maxmun Fixed Pump Optical Power (dBm) (WDM Interface) for more information.
The Upper Threshold of RL to starting the pump (dB)
-
Displays the upper threshold of the return loss to starting the pump.
The Lower Threshold of RL to starting the pump (dB)
-
Displays the lower threshold of the return loss to starting the pump.
The Upper Threshold of RL alarm (dB)
-
Displays the upper threshold of the return loss alarm.
The Lower Threshold of RL alarm (dB)
-
Displays the lower threshold of the return loss alarm.
RL Flag
Enable, Disable
Determines whether to enable the return loss check.
Default: Enable
20.2.11 CRPC Specifications Specifications include optical specifications, weight and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2155
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Optical Specifications Table 20-11 Optical specifications of the CRPC board Item
Un it
Value CRPC01
CRPC03
Pump wavelength range
nm
1400-1500
1400-1500
Operating wavelength range
nm
1529-1561
1529-1561
Maximum pump power
dB m
29
29.5
Channel gain on G.652 fiber
dB
> 10
> 10
Channel gain on G.653 fiber
dB
N/A
> 16
Channel gain on LEAF fiber
dB
> 12
N/A
Channel gain on TWRS fiber
dB
> 13
N/A
Effective noise figure on G.652 fiber
dB
≤0
N/A
Effective noise figure on G.653 fiber
dB
N/A
N/A
Effective noise figure on LEAF fiber
dB
≤ -1
N/A
Effective noise figure on TWRS fiber
dB
≤ -1.5
N/A
Polarization dependence loss
dB
≤ 0.5
≤ 0.5
Output connector type
-
LSH/APC, LC/PC
LSH/APC, LC/PC
Mechanical Specifications l
Dimensions of board (H x W x D): 345.0 mm (13.8 in.) x 76.0 mm (3.0 in.) x 218.5 mm (8.7 in.)
l
Weight: – CRPC01: 4.0 kg (8.8 1b.) – CRPC03: 4.2 kg (9.2 1b.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11CRPC01
110.0
121.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2156
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11CRPC03
70.0
77.0
20.3 DAS1 DAS1: optical amplifier unit
20.3.1 Version Description The available functional version of the DAS1 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1DA S1
Y
Y
Y
Y
Y
Y
20.3.2 Application The DAS1 board is used to amplify optical signals, multiplex and demultiplex the optical supervisory channel and main optical channel, and process optical supervisory signals in one direction. The DAS1 board can be used at either the transmit end or the receive end. For the position of the DAS1 board in the WDM system, see Figure 20-9.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2157
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-9 Position of the DAS1 board in the WDM system Client side
Client side O T U
O T U
O T U
MUX
DMUX
DCM
O T U
DM1 IN
LIN
AM1 EXPO
SIN
DAS1
WSMD9 SIN
WSMD9 EXPO
SOUT
AM1
DCM
MUX
O T U
O T U
Client side
DAS1 IN
EXPI
OUT
LOUT
OUT
EXPI
SOUT
LOUT
DCM
LIN
DM1
DMUX
O T U
DCM
O T U
Client side
NOTE
Optical interfaces AM2–AM8 and DM2–DM8 on the WSMD9 board can be used to cross-connect boards in other dimensions. It is recommended that the DAS1 board be used at a ROADM station. The DAS1 board cannot be used at an OLA station. The DAS1 board cannot be used together with the SFIU board.
20.3.3 Functions and Features The DAS1 board integrates the functions of an optical amplifier unit, an FIU board (used to multiplexes the main optical channel and supervisory channel or demultiplexes the supervisory channel from the main channel signal), and an optical supervisory board. It supports gain adjustment, in-service monitoring of optical performance, gain locking, and transient state control. For detailed functions and features, refer to Table 20-12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2158
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-12 Functions and features of the DAS1 board Function and Feature
Description
Basic function
l Amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration. l Multiplexes and demultiplexes signals transmitted along the main path and optical supervisory channel. l Processes one channel of optical supervisory signals. l Supports transparent transmission of one channel of FE electrical signals.
Gain adjustment
The DAS1 board continuously adjusts the gain from 20 dB to 31 dB based on the input optical power.
Online optical performance monitoring
Provides the online monitoring interface. A small number of EDFAamplified optical signals is output through this interface to the optical spectrum analysis board. In this manner, the spectrum and optical performance of the multiplexed signal are monitored without interrupting the services.
Gain lock function
The EDFA inside the board has the gain lock function. Adding or dropping one or more channels or optical signal fluctuation does not affect the signal gain of other channels.
Working mode
Supports the gain locking and power locking modes. l In the gain locking mode, the gain of the board is tunable and users can query the actual gain of the board. The gain locking mode is enabled by default. l The power locking mode applies to scenarios in which there is only dummy light to lock the output power of the board.
Issue 03 (2013-05-16)
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects and reports the optical power.
OSC signal regeneration
The DAS1 board transmits signals from section to section. It also has the 3R function. In each regenerating station that has optical amplifiers, information can be correctly received and new supervisory signals are added.
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2159
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Operating wavelength for OSC signals
1511nm
Optical-layer ASON
Supported
eSFP
The RX/TX optical port supports pluggable optical modules.
20.3.4 Working Principle and Signal Flow The DAS1 board consists of the multiplexer, VOA, EDFA module, demultiplexer, OSC optical module, service processing module, driving and detection module, control and communication module, and power supply module. Figure 20-10 shows the functional modules and signal flow of the DAS1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2160
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-10 Functional modules and signal flow of the DAS1 board RTDC RRDC MONR
LIN
Demultiplexer
RVI
VOA
RPAIN
EDFA module
Splitter
SOUT
TM
RX TX
O/E
FE signal processing module
E/O
Supervisory signal processing module Service processing module
OSC optical module
WSC
RM
LOUT
EDFA module
Splitter
Multiplexer
TBA OUT
MONT TRDC TTDC
TPA IN
PIN
VOA
SIN
PIN
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Required voltage
Power supply module Fuse
DC power supply from a backplane
SCC
Backplane (controlledby SCC)
Signal Flow Signal flow in the main optical channel l
In the transmit direction: – The board receives line optical signals through the LIN optical interfaces and sends the signals to the demultiplexer module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2161
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
– The demultiplexer splits OSC signals from main optical channel signals. The demultiplexer outputs OSC signals through the TM optical interface and sends the main optical channel signals to the VOA. – The VOA adjusts optical power of the main optical channel signals and then sends the signals to the EDFA optical module. – The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then, the EDFA optical module outputs the signals to a DCM board through the RTDC optical interface. After the DCM finishes compensating dispersion for the signals, the EDFA optical module receives the signals through the RRDC optical interface. Then, the EDFA module outputs the amplified signals through the SOUT optical interface. l
In the receive direction: – The board receives multiplexed signals through the SIN optical interface and sends the signals to the VOA. – The VOA adjusts optical power of the signals and then sends the signals to the EDFA optical module. – The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then, the EDFA optical module outputs the signals to a DCM board through the TTDC optical interface. After the DCM finishes compensating dispersion for the signals, the EDFA optical module receives the signals through the TRDC optical interface. The EDFA optical module sends the amplified multiplexed signals to the multiplexer module. – The multiplexer multiplexes the amplified multiplexed signals and OSC signals input through the RM optical interface as line optical signals, and outputs the signals through the LOUT optical interface.
Signal flow in the OSC l
The board receives OSC signals through the TM optical interface, and sends the OSC signals to the optical receiver module through the RX optical interface.
l
The optical receiver module converts the optical signals into electrical signals and sends the electrical signals to the service processing module.
l
The service processing module extracts overhead bytes from the electrical signals and sends the overhead bytes to the SCC board. This module also processes FE electrical signals.
l
The overhead bytes processed by the SCC board are sent to the optical receiver module and then are converted into OSC signals by the optical receiver module.
l
The optical receiver module sends the signals to the RM optical interface on the local board. After multiplexing the signals, the multiplexer sends the OSC signals to other NEs.
Signal flow in the FE l
In the transmit direction: The DAS1 board receives a local FE electrical signal through its WSC port and sends it to the FE signal processing module for encapsulation. Then, the DAS1 board transmits it together with the optical supervisory signal through its TX port. The optical receiver module sends the signals to the RM optical interface on the local board. After multiplexing the signals, the multiplexer sends the OSC signals to other NEs.
l
In the receive direction: The DAS1 board receives an optical signal from the upstream board through its LIN port. The demultiplexer splits FE optical signal from main optical channel signals. The demultiplexer outputs FE signal through the TM optical interface and sends it to the FE signal processing module for decapsulation through the RX optical interface. Then, the DAS1 board drops it through its WSC port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2162
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Module Function l
Multiplexer Multiplexes main optical channel signals and OSC signals as line optical signals.
l
Demultiplexer Demultiplexes line optical signals into main optical channel signals and OSC signals.
l
VOA Adjusts optical power of optical signals according to system requirements.
l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump laser can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Service processing module – FE signal processing module: Encapsulates and decapsulates FE signals. – Supervisory signal processing module: Encapsulates electrical supervisory signals into OTU frames, processes overheads, and performs encoding/decoding.
l
OSC optical module Performs O/E and E/O conversion for one channel of OSC signals.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.3.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the DAS1 board.
Appearance of the Front Panel Figure 20-11 shows the front panel of the DAS1 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2163
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-11 Front panel of the DAS1 board
DAS1 STAT ACT PROG SRV
CAUTION HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
CAUTION
HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICAL INSTRUMENTS
WSC
TX RX TM RM MONT MONR LOUT LIN SOUT SIN TTDC TRDC RTDC RRDC
DAS1
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2164
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Interfaces Table 20-13 lists the type and function of each interface. Table 20-13 Types and functions of the interfaces on the DAS1 board Interface
Type
Function
WSC
RJ45
Transmits/Receives the FE electrical signals. NOTE The FE electrical port works in 100M full-duplex mode and can transmit or receive a packet consisting of a maximum of 1518 bytes.
TX
LC
Transmits the supervisory signal.
RX
LC
Receives the supervisory signal.
TM
LC
Transmits the supervisory signal.
RM
LC
Receives the supervisory signal.
MONT
LC
MONR
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MONT port is a 1/99 tap of the total composite signal at the LOUT port (20 dB lower than the actual signal power, calculation formula: Plout (dBm) Pmont (dBm) = 10 x lg (99/1) = 20 dB). The MONR port is a 1/99 tap of the total composite signal at the SOUT port (20 dB lower than the actual signal power, calculation formula: Psout (dBm) Pmonr (dBm) = 10 x lg (99/1) = 20 dB).
LOUT
LC
Transmits the amplified signal (including the supervisory signal).
LIN
LC
Receives the multiplexed signal to be amplified (including the supervisory signal).
SOUT
LC
Transmits the amplified signal(not including the supervisory signal).
SIN
LC
Receives the multiplexed signal to be amplified (not including the supervisory signal).
TTDC/TRDC
LC
RTDC/RRDC
LC
Connected to the interface of the DCM for dispersion compensation.
Connect a shielded network cable without protection boot to the WSC interface on the DAS1 board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2165
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.3.6 Valid Slots One slot house one DAS1 board. Table 20-14 shows the valid slots for the DAS1 board. Table 20-14 Valid slots for the DAS1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
20.3.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-15. Table 20-15 Serial numbers of the interfaces of the DAS1 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
LIN/LOUT
1
RM/TM
3
RX/TX
4
RVIa
5
RPAINa
6
RRDC
8
SOUT
9
RTDC
10
MONR
11
SIN
12 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2166
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Interface on the Panel
Interface on the NM
TPAINa
13
TRDC
15
TBAOUTa
16
TTDC
17
MONT
18
a: Virtual port
20.3.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the DAS1, refer to Table 20-16. Table 20-16 DAS1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
Default: C
Issue 03 (2013-05-16)
This parameter provides an option to set the optical power attenuation of a board channel so that the input signals power of the board is within the preset range.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2167
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even Default: All
Selects the desired parity of the working band.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm.
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: On
See D.15 Laser Status (WDM Interface) for more information. Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: The specific value is related to the module.
See D.22 Nominal Gain (dB) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2168
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Channel Number Mode
C80 Mode, C40 Mode, CWDM Mode
Sets the number of wavelengths supported by the FIU board.
Default: C80 Mode DEG Threshold
0 to 10167 Default: 190
DEG Monitoring Time(s)
2 to 10
Degrade Threshold Before FEC
1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7, 1E-8, 1E-9, 1E-10, 1E-11, 1E-12,
Default: 7
Sets signal deterioration thresholds. An alarm is reported when error codes detected in DEG Monitoring Time(s) are more than the value of this parameter. Sets the signal monitoring time. If the number of bit errors in the signal exceeds DEG Threshold during this time, an alarm is reported. Sets error codes thresholds for signals before FEC.
Default: 1E-4
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2169
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Rated Optical Power (dBm)
-30 to 30
The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit.
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
The value can be set or queried. NOTE SIN/LIN port: The rated optical power is same as Nominal single wavelength input optical power, SOUT/LOUT port: The rated optical power is same as Nominal single-wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
See D.30 Rated Optical Power (dBm) (WDM Interface) for more information. PMD Coefficient(ps/ SQRT(km))
0 to 1
Fiber Type
G652 Fiber, G653 Fiber, LEAF Fiber, TWRS Fiber, TWC Fiber, TWPLUS Fiber, SMFLS Fiber, G654B Fiber
Default: 0.05
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber. Specifies the type of a fiber.
Default: G652 Fiber
Issue 03 (2013-05-16)
Chromatic Dispersion Coefficient(ps/ (nm*km))
-15 to 30
Send DCM Dispersion Compensation Value (ps/nm)
0.0 to 6553.5
Receive DCM Dispersion Compensation Value (ps/nm)
0.0 to 6553.5 Default: 0
Specifies the dispersion compensation value for the DCM at the receive end.
Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: 0
Default: 0
This parameter is available only in the ASON system. Set the parameter according to the fiber type. Usually, take the nominal value of the fiber. Specifies the dispersion compensation value for the DCM at the transmit end.
Default: Disable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2170
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Working Mode
l Gain locking, Power locking
Specifies the working mode of an optical amplifier.
l Default: Gain locking
For more information on the working mode, see 20.3.3 Functions and Features.
-7 to 23
This parameter specifies the output optical power when Working Mode is set to Power Value.
Power Value
Default: /
Default:3
Default: 0 Incident Optical Power (dBm)
-60.0 to 60.0
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.3.9 DAS1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-17 Optical specifications of the TN11DAS1 board Item Specifica tions of OA
Uni t
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
20
26
31
Nominal input power range
dB m
-32 to 0
-32 to -6
-32 to -11
Input power range per channel
dB m
-32 to -16
-32 to -22
-32 to -27
Issue 03 (2013-05-16)
40 channels
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2171
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Specifica tions of
Uni t
Value
80 channels
dB m
-32 to -19
-32 to -25
-32 to -30
Nominal singlewavelength input optical power
40 channels
dB m
-16
-22
-27
80 channels
dB m
-19
-25
-30
Nominal singlewavelength input optical power
40 channels
dB m
4
4
4
80 channels
dB m
1
1
1
Noise figure (NF)a
dB
≤ 8.5
≤ 5.5
≤ 5.5
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Channel gain
dB
20 to 31
Gain flatness
dB
≤ 2.0
≤ 2.0
≤ 2.0
Multi-channel gain slope
dB/ dB
≤ 2.0
≤ 2.0
≤ 2.0
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dB m
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dB m
20
20
20
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Input VOA inherent insertion loss
dB
≤ 1.5
Input VOA dynamic attenuation range
dB
20
Input VOA adjustment accuracy
dB
1
Operating wavelength range of optical supervisory channel
nm
1480 to 1520
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2172
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item demultipl exer and multiplex er
Specifica tions of OSC optical module
Uni t
Value
dB
> 40
dB
≤ 1.5
Insert loss of C-band
dB
≤1
Polarization dependent loss
dB
< 0.2
Operating wavelength range
nm
1504.5 to 1517.5
Signal rate
Mbi t/s
155.52
Launched optical power
dB m
0.5 to 5
Receiver sensitivity
dB m
≤ -41
Receiver overload
dB m
-10
Optical return loss Insert loss of optical supervisory channel
LIN-TM RMLOUT
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11DAS1
22
28.6
20.4 HBA HBA: high-power booster amplifier board
20.4.1 Version Description The available functional version of the HBA board is TN11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2173
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1HB A
Y
Y
Y
Y
Y
N
20.4.2 Application As a type of optical amplifier unit, the HBA board provides a high gain and therefore is generally used in long-hop applications. It is configured at the transmit end. For the position of the HBA board in the WDM system, see Figure 20-12. Figure 20-12 Position of the HBA board in the WDM system Client side Client side
OTU
OTU MUX
OTU OTU
HBA FIU
DMUX
OAU1
DMUX
HBA
MUX
FIU
OAU1
OTU
OTU OTU OTU
Client side Client side
NOTE
Only the TN13FIU02 board can work with the HBA board.
20.4.3 Functions and Features The HBA board is mainly used for online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-18.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2174
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-18 Functions and features of the HBA board Function and Feature
Description
Basic function
l Only applied on the transmit edge of the OTM station in the system that covers a long fiber span transmission. l The HBA can amplify the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration.
Typical gain
The typical gain of the HBA is 29 dB.
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Gain lock function
The EDFA inside the board has the gain lock function. Adding or dropping one or more channels or optical signal fluctuation does not affect the signal gain of other channels.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path to implement smooth upgrade and expansion.
Alarms and performance events monitoring
l Detects and reports the optical power.
Optical-layer ASON
Supported
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
20.4.4 Working Principle and Signal Flow The HBA board consists of the EDFA optical module, driving and detection module, control and communication module, and power supply module. Figure 20-13 shows the functional modules and signal flow of the HBA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2175
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-13 Functional modules and signal flow of the HBA board
Splitter IN
OUT
EDFA optical module Driving current
PIN
MON
Detection for pump current and temperature
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
DC power supply from a backplane
Required voltage
Backplane (controlled by SCC) SCC
Signal Flow One channel of multiplexed optical signal received through the IN interface is input to the EDFA optical module. The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then, the amplified multiplexed signal is output through the OUT interface.
Module Function l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump laser can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2176
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
– Reports alarms and performance events to the control and communication module. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.4.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the HBA board.
Appearance of the Front Panel Figure 20-14 shows the front panel of the HBA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2177
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-14 Front panel of the HBA board
HBA STAT ACT PROG SRV
CAUTION
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON IN OUT
HBA
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2178
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-19 lists the type and function of each interface. Table 20-19 Types and functions of the interfaces on the HBA board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LSH/APC
Transmits the amplified signal.
MON
LC
Connected to the MCA4, MCA8, WMU or OPM8, monitors performance online. The MON port is a 1/999 tap of the total composite signal at the OUT port (30 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (999/1) = 30 dB).
Laser Hazard Level After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
20.4.6 Valid Slots Three slots house one HBA board. Table 20-20 shows the valid slots for the HBA board. Table 20-20 Valid slots for the HBA board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU7, IU12-IU17, IU20-IU25, IU28IU33, IU36-IU41, IU46-IU51, IU54-IU59, IU62-IU67
OptiX OSN 8800 T32 subrack
IU2-IU7, IU12-IU18, IU21-IU26, IU30IU35
OptiX OSN 8800 T16 subrack
IU2-IU7, IU12-IU17
OptiX OSN 8800 platform subrack
IU2-IU17
OptiX OSN 6800 subrack
IU2-IU16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2179
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
NOTE
l The rear connector of the board is mounted to the backplane along the middle slot of the three occupied slots in the subrack. Therefore, the slot number of the HBA board displayed on the NM is the number of the middle slot. l For example, if slots IU1, IU2, and IU3 house the HBA board, the slot number of the HBA board displayed on the NM is IU2.
20.4.7 Characteristic Code for the HBA The characteristic code for the HBA board contains seven characters and digits, indicating the band, the gain range and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table 20-21. Table 20-21 Characteristic code for the HBA board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
-
The second character is always G.
Third to the fourth digits
Gain
The third to the fourth digits indicate the gain value.
Fifth character
-
The fifth character is always I.
Sixth and seventh digits
Maximum nominal input optical power
Indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11HBA board is CG29I-8. The code indicates that the HBA board is used in C band, the gain is 29 dB, and the maximum nominal input optical power is -8 dBm.
20.4.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-22. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2180
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-22 Serial numbers of the interfaces of the HBA board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
OUT
2
MON
3
20.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For HBA parameters, refer to Table 20-23. Table 20-23 HBA parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: C Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: On
See D.15 Laser Status (WDM Interface) for more information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2181
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: 29
See D.22 Nominal Gain (dB) (WDM Interface) for more information. Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Issue 03 (2013-05-16)
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2182
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Rated Optical Power (dBm)
-30 to 30
Description
The Rated Optical Power (dBm) parameter provides an option to set and query the perDefault: The default channel rated optical power. It is a reference value is determined value for automatic adjustment of the optical when the system is power. When the optical amplifier unit and provisioned with 80 ROADM unit are used in a network, this wavelengths and varies according to parameter is available for the optical amplifier unit. boards. NOTE IN port: The rated optical power is same as Nominal single wavelength input optical power, OUT port: The rated optical power is same as Nominal single wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information. Enable OAMS Power Monitoring
Disable, Enable
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Incident Optical Power (dBm)
-60.0 to 60.0
Enables or disables the OAMS function.
Default: Disable
Default: /
Default: 3
Specifies the reference value for OAMS power monitoring. Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold. In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.4.10 HBA Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2183
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Optical Specifications Table 20-24 Optical specifications of the HBA board Item
Unit
Value
Type
-
TN11HBA
Channel allocation
nm
1529 - 1561
Nominal input power range
dBm
-25 to -3
Typical input power of a single wavelength
dBm
80-channel system: -22 40-channel system: -19 10-channel system: -13
Noise figure (NF)
dB
<8
Input reflectance
dB
< -45
Output reflectance
dB
< -45
Maximum total output power
dBm
26
Gain response time on adding/dropping of channels
ms
< 10
Channel gain
dB
29±1
Gain flatness
dB
≤ 2.5
Polarization dependent loss
dB
< 0.5
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 76.2 mm (3.0 in.) x 220 mm (8.7 in.)
l
Weight: 3.0 kg (6.6 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11HBA
47
75
20.5 OAU1 OAU1: optical amplifier unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2184
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.5.1 Version Description The available functional versions of the OAU1 board are TN11, TN12 and TN13.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1O AU 1
Y
Y
N
N
Y
Y
TN1 2O AU 1
Y
Y
Y
Y
Y
Y
TN1 3O AU 1
Y
Y
Y
Y
Y
Y
Type Table 20-25 lists the types of the OAU1 board. Table 20-25 Type description of the OAU1 board Unit
Type
Description
Gain Range
TN11OAU1
01
Amplifies the input optical signals in C band.
20 dB to 31 dB
02
Amplifies the input optical signals in C band.
20 dB to 31 dB
03
Amplifies the input optical signals in C band.
24 dB to 36 dB
05
Amplifies the input optical signals in C band.
23 dB to 34 dB
00
Amplifies the input optical signals in C band.
16 dB to 25.5 dB
01
Amplifies the input optical signals in C band.
20 dB to 31 dB
02
Amplifies the input optical signals in C band.
20 dB to 31 dB
03
Amplifies the input optical signals in C band.
24 dB to 36 dB
05
Amplifies the input optical signals in C band.
23 dB to 34 dB
TN12OAU1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2185
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Unit
Type
Description
Gain Range
TN13OAU1
01
Amplifies the input optical signals in C band.
20 dB to 31 dB
03
Amplifies the input optical signals in C band.
24 dB to 36 dB
05
Amplifies the input optical signals in C band.
23 dB to 34 dB
06
Amplifies the input optical signals in C band.
16 dB to 23 dB
Differences Between Versions l
Function: – The TN11OAU1 board does not support adjustment of input optical power, whereas the TN12OAU1 and TN13OAU1 board supports. For details, see 20.5.4 Working Principle and Signal Flow.
l
Appearance: – The TN11, TN12 and TN13 versions have different front panels. For details, see 20.5.5 Front Panel.
l
Specification: – For the power consumption of each version, see 20.5.10 OAU1 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11OAU1
TN12OAU 1, TN13OAU 1
The TN12OAU1 and TN13OAU1 can be created as TN11OAU1 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12OAU1 and TN13OAU1 function as the TN11OAU1.
TN12OAU1
TN13OAU 1
The TN13OAU1 can be created as TN12OAU1 on the NMS. The former can substitute for the latter at type 01,03,05, without any software upgrade. After substitution, the TN13OAU1 functions as the TN12OAU1.
TN13OAU1
None
-
20.5.2 Application As a type of optical amplifier unit, the OAU1 board amplifies optical signals at the transmit end or receive end. For the position of the OAU1 board in the WDM system, see Figure 20-15.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2186
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-15 Position of the OAU1 board in the WDM system Client side Client side
OTU
MUX
OBU1
DMUX
OAU1
OAU1
DMUX
OTU OTU OTU
OBU1
MUX
OTU OTU OTU OTU
Client side Client side
20.5.3 Functions and Features The OAU1 is mainly used for gain adjustment, online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-26. Table 20-26 Functions and features of the OAU1 board Function and Feature
Description
Basic function
l Amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration.
Gain adjustment
The OAU100 continuously adjusts the gain from 16 dB to 25.5 dB based on the input optical power. The OAU101/OAU102 continuously adjusts the gain from 20 dB to 31 dB based on the input optical power. The OAU103 continuously adjusts the gain from 24 dB to 36 dB based on the input optical power. The OAU105 continuously adjusts the gain from 23 dB to 34 dB based on the input optical power. The OAU106 continuously adjusts the gain from 16 dB to 23 dB based on the input optical power. NOTE 20.5.10 OAU1 Specifications only provides the value of nominal gain. Actual gain includes the noise, and the value is bigger than that of nominal gain.
Issue 03 (2013-05-16)
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Gain lock function
The EDFA inside the board has the gain lock function. Adding or dropping one or more channels or optical signal fluctuation does not affect the signal gain of other channels.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2187
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Working mode
Supports the gain locking and power locking modes. l In the gain locking mode, the gain of the board is tunable and users can query the actual gain of the board. The gain locking mode is enabled by default. l The power locking mode applies to scenarios in which there is only dummy light to lock the output power of the board.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects and reports the optical power.
Optical-layer ASON
Supported
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
20.5.4 Working Principle and Signal Flow The OAU1 board consists of the EDFA optical module, driving and detection module, control and communication module, and power supply module. Figure 20-16 shows the functional modules and signal flow of the TN11OAU1 board. Figure 20-17 shows the functional modules and signal flow of the TN12OAU1 and TN13OAU1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2188
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-16 Functional modules and signal flow of the TN11OAU1 TDC
PAOUT IN
RDC
MON
BAIN
OUT
EDFA optical module Driving current
PIN
Splitter Detection for pump current and temperature
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Backplane (controlled by SCC) SCC
2189
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-17 Functional modules and signal flow of the TN12OAU1 and TN13OAU1 TDC
PAOUT IN
RDC
MON
BAIN
OUT
EDFA optical module Driving current
VOA
VO
Splitter Detection for pump current and temperature
PIN
VI
Driving and detection module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow One channel of multiplexed optical signal received through the IN interface is input to the EDFA optical module. The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then the signal is sent to the DCM through the TDC interface for dispersion compensation and returns to the EDFA optical module through the RDC interface. At last, the amplified multiplexed signal is output through the OUT interface. The VI interface receives the multiplexed signals sent from the upstream station. After the optical power adjustment by VOA, the signals are transmitted through the VO interface. Then, the IN interface receives the adjusted multiplexed signals.
Module Function l
VOA – Adjusts optical power of optical signals according to system requirements.
l
Issue 03 (2013-05-16)
EDFA optical module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2190
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
– Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump laser can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection. l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.5.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the OAU1 board.
Appearance of the Front Panel Figure 20-18, Figure 20-19 and Figure 20-20 show the front panel of the OAU1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2191
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-18 Front panel of the TN11OAU1 board
OAU1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TDC RDC
OAU1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2192
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-19 Front panel of the TN12OAU1 board
OAU1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TDC RDC VO VI
OAU1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2193
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-20 Front panel of the TN13OAU1 board
OAU1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN TDC RDC VO VI
OAU1
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2194
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-27 lists the type and function of each interface. Table 20-27 Types and functions of the interfaces on the OAU1 board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LC
Transmits the amplified signal.
TDC/RDC
LC
Connected to the interface of the DCM for dispersion compensation.
MON
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MON port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmon(dBm) = 10 x lg(99/1) = 20 dB).
VIa
LC
Outputs a multi-wavelength signal. A VOA is attached before the interface for adjusting the optical power of the multi-wavelength signal.
VOa
LC
Receives a multi-wavelength signal. A VOA is attached before the interface for adjusting the optical power of the multi-wavelength signal.
a: Only the TN12OAU1 and TN13OAU1 boards support the interfaces.
Laser Hazard Level OAU100, OAU101, OAU102, OAU103, OAU106: The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW). OAU105: After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power output by the optical port on the board ranges 10 dBm (10 mW) to 21.3 dBm (136 mW).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2195
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.5.6 Valid Slots Two slots house one TN11OAU1 board or TN12OAU1 board, and one slot houses one TN13OAU1 board. Table 20-28 shows the valid slots for the TN11OAU1 board. Table 20-28 Valid slots for the TN11OAU1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
Table 20-29 shows the valid slots for the TN12OAU1 board. Table 20-29 Valid slots for the TN12OAU1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack
IU2-IU18
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
Table 20-30 shows the valid slots for the TN13OAU1 board. Table 20-30 Valid slots for the TN13OAU1 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2196
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
NOTE
For OptiX OSN 8800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the OAU1 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the OAU1 board, the slot number of the OAU1 board displayed on the NM is IU2. For OptiX OSN 6800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the OAU1 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the OAU1 board, the slot number of the OAU1 board displayed on the NM is IU2. For OptiX OSN 3800: l The rear connector of the board is mounted to the backplane along the upper slot in the chassis. Therefore, the slot number of the OAU1 board displayed on the NM is the number of the upper one of the two slots. l For example, if slots IU2 and IU3 house the OAU1 board, the slot number of the OAU1 displayed on the NM is IU2.
20.5.7 Characteristic Code for the OAU1 The characteristic code for the OAU1 board contains eight characters and digits, indicating the gain range and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table 20-31. Table 20-31 Characteristic code for the OAU1 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
-
Is always G.
Second to fifth digits
Gain range
Indicates the range within which the gain can be continuously adjusted.
Sixth character
-
Is always I.
Seventh and eighth digits
Maximum nominal input optical power
Indicates the maximum nominal input optical power.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2197
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
For example, the characteristic code for the TN11OAU1 board is G2031I0. The code indicates that the gain can be continuously adjusted from 20 dB to 31 dB and the maximum nominal input optical power is 0 dBm.
20.5.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-32 and Table 20-33. Table 20-32 Serial numbers of the interfaces of the TN11OAU1 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
PAOUTa
2
BAINa
3
OUT
4
RDC/TDC
5
MON
6
a: Virtual port
Table 20-33 Serial numbers of the interfaces of the TN12OAU1/TN13OAU1 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
PAOUTa
2
BAINa
3
OUT
4
RDC/TDC
5
MON
6
VI
7
VO
8
a: Virtual port
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2198
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.5.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the OAU1, refer to Table 20-34. Table 20-34 OAU1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB) Default: Value of Max. Attenuation Rate (dB)
This parameter provides an option to set the optical power attenuation of a board channel so that the input signals power of the board is within the preset range. You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Attenuation difference (dB)
-3 to 3, with a step of 0.1 Default: none
Specifies the difference between the current attenuation and the required attenuation. NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface. NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface. NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
Default: C Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2199
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: On
See D.15 Laser Status (WDM Interface) for more information. Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: The specific value is related to the module.
See D.22 Nominal Gain (dB) (WDM Interface) for more information. Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2200
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Upper Threshold of Actual Gain (dB)
-
Displays the upper threshold of the actual gain of the optical amplifier unit.
Lower Threshold of Actual Gain (dB)
-
Displays the lower threshold of the actual gain of the optical amplifier unit.
Rated Optical Power (dBm)
-30 to 30
The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit.
Default: All
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
NOTE IN port: The rated optical power is same as Nominal single wavelength input optical power, OUT port: The rated optical power is same as Nominal single wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
Default: /
NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2201
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
Default:3
NOTE Only the TN12OAU1/TN13OAU1 supports this parameter.
Working Mode
Power Value
l Gain locking, Power locking
Specifies the working mode of an optical amplifier.
l Default: Gain locking
For more information on the working mode, see 20.5.3 Functions and Features.
-7 to 23
This parameter specifies the output optical power when Working Mode is set to Power Value.
Default: 0 Incident Optical Power (dBm)
-60.0 to 60.0
In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.5.10 OAU1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-35 Optical specifications of the TN12OAU100 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
16
22
25.5
Nominal input power range
dBm
-20 to 2
-26 to -4
-32 to -7.5
Input power range per channel
40 channels
dBm
-32 to -14
-32 to -20
-32 to -23.5
80 channels
dBm
-32 to -17
-32 to -23
-32 to -26.5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2202
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
Nominal singlewavelength input optical power
40 channels
dBm
-14
-20
-23.5
80 channels
dBm
-17
-23
-26.5
Nominal singlewavelength output optical power
40 channels
dBm
2
2
2
80 channels
dBm
-1
-1
-1
Noise figure (NF)a
dB
≤8
≤ 5.5
≤ 5.5
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Channel gain
dB
16 to 25.5
Gain flatness
dB
≤ 2.0
≤ 2.0
≤ 2.0
Multi-channel gain slope
dB/dB
≤ 2.0
≤ 2.0
≤ 2.0
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
18
18
18
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
VI-VO
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuation range
dB
20
dB
1
Adjustment accuracy
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value.
Table 20-36 Optical specifications of the TN11OAU101/TN12OAU101/TN13OAU101 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Issue 03 (2013-05-16)
1529-1561
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1529-1561
2203
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
Nominal gain
dB
20
26
31
Nominal input power range
dBm
-32 to 0
-32 to -6
-32 to -11
Input power range per channel
40 channels
dBm
-32 to -16
-32 to -22
-32 to -27
80 channels
dBm
-32 to -19
-32 to -25
-32 to -30
Nominal singlewavelength input optical power
40 channels
dBm
-16
-22
-27
80 channels
dBm
-19
-25
-30
Nominal singlewavelength output optical power
40 channels
dBm
4
4
4
80 channels
dBm
1
1
1
dB
≤ 8.5 (TN11OAU101, TN12OAU101)
≤ 5.5
≤ 5.5
< 10
< 10
Noise figure (NF)a
≤ 7.5 (TN13OAU101) Gain response time on adding/ dropping of channels
ms
< 10
Channel gain
dB
20 to 31
Gain flatness
dB
≤ 2.0
≤ 2.0
≤ 2.0
Multi-channel gain slope
dB/dB
≤ 2.0
≤ 2.0
≤ 2.0
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
20
20
20
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuation range
dB
20
dB
1
VI-VOb
Adjustment accuracyb
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2204
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The items are supported on the TN12OAU1 and TN13OAU1.
Table 20-37 Optical specifications of the TN11OAU102/TN12OAU102 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
20
26
31
Nominal input power range
dBm
-32 to -3
-32 to -9
-32 to -14
Input power range per channel
40 channels
dBm
-32 to -19
-32 to -25
-32 to -30
80 channels
dBm
-32 to -22
-32 to -28
-32
Nominal singlewavelength input optical power
40 channels
dBm
-19
-25
-30
80 channels
dBm
-22
-28
-32
Nominal singlewavelength output optical power
40 channels
dBm
1
1
1
80 channels
dBm
-2
-2
-2
Noise figure (NF)a
dB
≤ 7.5
≤5.5
≤5.5
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Channel gain
dB
20 to 31
Gain flatness
dB
≤2
≤2
≤2
Multi-channel gain slope
dB/dB
≤2
≤2
≤2
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
17
17
17
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2205
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item VI-VOb
Unit
Value
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuation range
dB
20
dB
1
Adjustment accuracyb
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The items are supported on the TN12OAU1.
Table 20-38 Optical specifications of the TN11OAU103/TN12OAU103/TN13OAU103 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
24
29
36
Nominal input power range
dBm
-32 to -4
-32 to -9
-32 to -16
Input power range per channel
40 channels
dBm
-32 to -20
-32 to -25
-32
80 channels
dBm
-32 to -23
-32 to -28
-32
Nominal singlewavelength input optical power
40 channels
dBm
-20
-25
-32
80 channels
dBm
-23
-28
-32
Nominal singlewavelength output optical power
40 channels
dBm
4
4
4
80 channels
dBm
1
1
1
dB
≤ 7.5 (TN11OAU103, TN12OAU103)
≤ 5.5
≤ 5.5
< 10
< 10
Noise figure (NF)a
≤ 6.5 (TN13OAU103) Gain response time on adding/ dropping of channels
ms
< 10
Channel gain
dB
24 to 36
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2206
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
Gain flatness
dB
≤2
≤2
≤2
Multi-channel gain slope
dB/dB
≤2
≤2
≤2
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
20
20
20
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuation range
dB
20
dB
1
VI-VOb
Adjustment accuracyb
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The items are supported on the TN12OAU1 and TN13OAU1.
Table 20-39 Optical specifications of the TN11OAU105/TN12OAU105/TN13OAU105 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
23
30
34
Nominal input power range
dBm
-32 to 0
-32 to -7
-32 to -11
Input power range per channel
40 channels
dBm
-32 to -16
-32 to -23
-32 to -27
80 channels
dBm
-32 to -19
-32 to -26
-32 to -30
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2207
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
40 channels
dBm
-16
-23
-27
80 channels
dBm
-19
-26
-30
40 channels
dBm
7
7
7
80 channels
dBm
4
4
4
Noise figure (NF)a
dB
< 8.5
<6
<6
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Channel gain
dB
23 to 34
Gain flatness
dB
≤2
≤2
≤2
Multi-channel gain slope
dB/dB
≤2
≤2
≤2
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
<-40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
23
23
23
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuation range
dB
20
dB
1
Nominal singlewavelength input optical power
Nominal singlewavelength output optical power
VI-VOb
Adjustment accuracyb
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The items are supported on the TN12OAU1 and TN13OAU1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2208
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-40 Optical specifications of the TN13OAU106 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal gain
dB
16
19
23
Nominal input power range
dBm
-24 to 4
-24 to 1
-24 to -3
Input power range per channel
40 channels
dBm
-24 to -12
-24 to -15
-24 to -19
80 channels
dBm
-24 to -15
-24 to -18
-24 to -22
Nominal singlewavelength input optical power
40 channels
dBm
-12
-15
-19
80 channels
dBm
-15
-18
-22
Nominal singlewavelength output optical power
40 channels
dBm
4
4
4
80 channels
dBm
1
1
1
Noise figure (NF)a
dB
≤7
≤6
≤5
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Channel gain
dB
16 to 23
Gain flatness
dB
≤2
≤2
≤2
Multi-channel gain slope
dB/dB
≤2
≤2
≤2
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
<-40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
20
20
20
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
VI-VO
dB
≤ 1.5
Issue 03 (2013-05-16)
Inherent insertion loss
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2209
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item Dynamic attenuation range Adjustment accuracy
Unit
Value
dB
20
dB
1
a: The gain can be adjusted continuously. The noise figure varies with the gain. The previous table lists the noise figure when the noise figure uses the typical value.
Mechanical Specifications l
Dimensions of front panel: – TN11OAU1/TN12OAU1 (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.) – TN13OAU1 (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11OAU1/TN12OAU1: 1.8 kg (4.0 lb.) – TN13OAU1: 1.6 kg (3.5 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F)
Maximum Power Consumption at 55°C (131°F)
TN11OAU101
18.0
24.0
TN11OAU102
14.0
18.0
TN11OAU103
18.0
24.0
TN11OAU105
22.0
29.0
TN12OAU100
11.0
14.0
TN12OAU101
12.0
15.0
TN12OAU102
10.0
13.0
TN12OAU103
12.0
15.0
TN12OAU105
15.0
21.0
TN13OAU101
12.0
15.0
TN13OAU103
12.0
15.0
TN13OAU105
15.0
21.0
TN13OAU106
12.0
15.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2210
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.6 OBU1 OBU1: optical booster unit
20.6.1 Version Description The available functional versions of the OBU1 board are TN11, TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1OB U1
Y
Y
N
N
Y
Y
TN1 2OB U1
Y
Y
Y
Y
Y
Y
Type Table 20-41 lists the types of the TN11OBU1 board. Table 20-41 Type description of the TN11OBU1 board Unit
Type
Description
Gain Range
TN11OBU1
01
Amplifies the input optical signals in C band.
20±1.5 dB
03
Amplifies the input optical signals in C band.
23±1.5 dB
04
Amplifies the input optical signals in C band.
17±1.5 dB
Table 20-42 lists the types of the TN12OBU1 board. Table 20-42 Type description of the TN12OBU1 board
Issue 03 (2013-05-16)
Unit
Type
Description
Gain Range
TN12OBU1
01
Amplifies the input optical signals in C band.
20±1.5 dB
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2211
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Unit
Type
Description
Gain Range
03
Amplifies the input optical signals in C band.
23±1.5 dB
04
Amplifies the input optical signals in C band.
17±1.5 dB
P1
The TN12OBU1P1 board is an OA board intended for PID
-
NOTE
The TN12BOU1P1 board, configured at the receive site, is an OA board intended for PID and is used together with the TN55NPO2/TN55NPO2E board.
Differences Between Versions l
Function:
l
– The TN11OBU1 board does not support adjustment of input optical power, whereas the TN12OBU1 board supports. For details, see 20.6.4 Working Principle and Signal Flow. Appearance:
l
– The TN11 and TN12 versions use different front panels. For details, see 20.6.5 Front Panel. Specification: – For the power consumption of each version, see 20.6.10 OBU1 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11OBU1
TN12OBU 1
The TN12OBU1 can be created as TN11OBU1 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12OBU1 functions as the TN11OBU1.
TN12OBU1
None
-
20.6.2 Application As a type of optical amplifier unit, the OBU1 amplifies optical signals. For the position of the OBU101/OBU103/OBU104 board in the WDM system, see Figure 20-21. Figure 20-21 Position of the OBU101/OBU103/OBU104 board in the WDM system Client side
Client side
Issue 03 (2013-05-16)
OTU
MUX
OBU1
OBU1
DMUX
OTU OTU
DMUX
OBU1
OBU1
OTU
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
MUX
OTU OTU OTU OTU
Client side
Client side
2212
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
For the position of the OBU1P1 board in the WDM system, see Figure 20-22. Figure 20-22 Position of the OBU1P1 board in the WDM system
Client side
Tributary board
NPO2 + ENQ2
OBU1P1 OBU1P1
NPO2 + ENQ2
Tributary board
Client side
NOTE
The TN12OBU1P1 board, configured at the receive site, is an OA board intended for PID and is used together with the TN55NPO2/TN55NPO2E board. In a PID-featured NE with separated optical and electrical subracks, the TN12OBU1P1 board is configured on the OptiX OSN 6800, and the TN55NPO2 and TN54ENQ2 boards are configured on the OptiX OSN 8800.
20.6.3 Functions and Features The OBU1 board is mainly used for online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-43. Table 20-43 Functions and features of the OBU1 board Function and Feature
Description
Basic function
l Amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration. l The typical gain of the OBU101 is 20 dB.
Typical gain
l The typical gain of the OBU103 is 23 dB. l The typical gain of the OBU104 is 17 dB. NOTE 20.6.10 OBU1 Specifications only provides the value of nominal gain. Actual gain includes the noise, and the value is bigger than that of nominal gain.
Issue 03 (2013-05-16)
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Gain lock function
The EDFA inside the board has the gain lock function. Adding or dropping one or more channels or optical signal fluctuation does not affect the signal gain of other channels.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2213
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Working mode
Supports the gain locking and power locking modes. l In the gain locking mode, the gain of the board is tunable and users can query the actual gain of the board. The gain locking mode is enabled by default. l The power locking mode applies to scenarios in which there is only dummy light to lock the output power of the board.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects and reports the optical power.
Optical-layer ASON
Supported
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
20.6.4 Working Principle and Signal Flow The OBU1 board consists of the EDFA optical module, driving and detection module, control and communication module, and power supply module. Figure 20-23 shows the functional modules and signal flow of the TN11OBU1 board. Figure 20-24 shows the functional modules and signal flow of the TN12OBU1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2214
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-23 Functional modules and signal flow of the TN11OBU1 board
Splitter IN
OUT EDFA optical module Driving current
MON
Detection for pump current and temperature
PIN
Driving and detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
Backplane (Controlled by SCC)
DC power supply from a backplane
SCC
Figure 20-24 Functional modules and signal flow of the TN12OBU1 board Splitter IN
OUT
EDFA optical module Detection for Driving PIN pump current current and temperature Driving and detection module
VO
VOA
VI
MON
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
DC power supply from a backplane
Issue 03 (2013-05-16)
Required voltage
( Backplane Controlled by SCC ) SCC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2215
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Signal Flow One channel of multiplexed optical signal received through the IN interface is input to the EDFA optical module. The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then, the amplified multiplexed signal is output through the OUT interface. The VI interface receives the multiplexed signals sent from the upstream station. After the optical power adjustment by VOA, the signals are transmitted through the VO interface. Then the IN interface receives the adjusted multiplexed signals too. NOTE
On a network where PID boards are used, optical signals are input through the TN12OBU1P1 board's VI port and are transmitted over the fiber connection between its VO and IN ports.
Module Function l
VOA – Adjusts optical power of optical signals according to system requirements.
l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump laser can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.6.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the OBU1 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2216
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Appearance of the Front Panel Figure 20-25 and Figure 20-26 show the front panel of the OBU1 board. Figure 20-25 Front panel of the TN11OBU1 board
OBU1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN
OBU1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2217
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-26 Front panel of the TN12OBU1 board
OBU1 STAT ACT PROG SRV
CAUTION
CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN VO VI
OBU1
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2218
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-44 lists the type and function of each interface. Table 20-44 Types and functions of the interfaces on the OBU1 board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LC
Transmits the amplified signal.
MON
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MON port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (99/1) = 20 dB).
VIa
LC
Receives the multiplexed signal from the WDM side.
VOa
LC
Transmits the adjusted multiplexed signal to the IN interface.
a: Only the TN12OBU1 board supports the interfaces.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
20.6.6 Valid Slots One slot houses one OBU1 board. Table 20-45 shows the valid slots for the TN11OBU1 board. Table 20-45 Valid slots for the TN11OBU1 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 6800 subrack
IU1-IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2219
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Product
Valid Slots
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 20-46 shows the valid slots for the TN12OBU1 board. Table 20-46 Valid slots for the TN12OBU1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
NOTE
The TN12OBU1P1 can be installed only in an OptiX OSN 8800 or OptiX OSN 6800 subrack.
20.6.7 Characteristic Code for the OBU1 The characteristic code for the OBU1 board contains six characters and digits, indicating the gain and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table 20-47. Table 20-47 Characteristic code for the OBU1 board Code
Meaning
Description
First character
-
The first character is always G.
Second and third digits
Gain
The second and the third digits indicate the gain value.
Fourth character
-
The fourth character is always I.
Fifth and sixth digits
Maximum nominal input optical power
The fifth and the sixth digits indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11OBU1 board is G23I-3. This code indicates that the gain is 23 dB and the maximum nominal input optical power is -3 dBm. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2220
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.6.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-48 and Table 20-49. Table 20-48 Serial numbers of the interfaces of the TN11OBU1 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
OUT
2
MON
3
Table 20-49 Serial numbers of the interfaces of the TN12OBU1 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
OUT
2
MON
3
VI
4
VO
5
20.6.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the OBU1, refer to Table 20-50. Table 20-50 OBU1 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2221
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
This parameter provides an option to set the optical power attenuation of a board channel so that the input signals power of the board is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Attenuation difference (dB)
-3 to 3, with a step of 0.1 Default: none
Specifies the difference between the current attenuation and the required attenuation. NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface. NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface. NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
Default: C Input Power Loss Threshold (dBm)
Issue 03 (2013-05-16)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2222
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: On
See D.15 Laser Status (WDM Interface) for more information. Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: l OBU101: 20dB l OBU103: 23dB l OBU104: 17dB
See D.22 Nominal Gain (dB) (WDM Interface) for more information. Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Issue 03 (2013-05-16)
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2223
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Rated Optical Power (dBm)
-30 to 30
The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit.
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
NOTE IN port: The rated optical power is same as Nominal single wavelength input optical power, OUT port: The rated optical power is same as Nominal single-wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information. Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Default: /
NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Default:3
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold. NOTE Only the TN12OBU101/TN12OBU103/ TN12OBU104 support this parameter.
Working Mode
Power Value
l Gain locking, Power locking
Specifies the working mode of an optical amplifier.
l Default: Gain locking
For more information on the working mode, see 20.6.3 Functions and Features.
-7 to 23
This parameter specifies the output optical power of the EDFA module when Working Mode is set to Gain locking.
Default: 0
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2224
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Incident Optical Power (dBm)
-60.0 to 60.0
In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.6.10 OBU1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-51 Optical specifications of the OBU101/OBU103/OBU104 board Item
Issue 03 (2013-05-16)
Unit
Value TN11OBU10 1/ TN12OBU10 1
TN11OBU10 3/ TN12OBU10 3
TN11OBU10 4/ TN12OBU10 4
Operating wavelength range
nm
1529-1561
1529-1561
1529-1561
Nominal input power range
dBm
-32 to -4
-32 to -3
-32 to -1
Input power range per channel
40 channels
dBm
-32 to -20
-32 to -19
-32 to -17
-32 to -23
-32 to -22
-32 to -20
Nominal singlewavelength input optical power
40 channels
-20
-19
-17
-23
-22
-20
Nominal singlewavelength output optical power
40 channels
0
4
0
-3
1
-3
80 channels dBm
80 channels dBm
80 channels
Noise figure (NF)
dB
≤ 5.5
≤ 6.0
≤ 5.5
Nominal gain
dB
20
23
17
Gain response time on adding/ dropping of channels
ms
< 10
< 10
< 10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2225
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value TN11OBU10 1/ TN12OBU10 1
TN11OBU10 3/ TN12OBU10 3
TN11OBU10 4/ TN12OBU10 4
Channel gain
dB
20±1.5
23±1.5
17±1.5
Gain flatness
dB
≤ 2.0
≤ 2.0
≤ 2.0
Input reflectance
dB
< -40
< -40
< -40
Output reflectance
dB
< -40
< -40
< -40
Pump leakage at input
dBm
< -30
< -30
< -30
Maximum reflectance tolerance at input
dB
-27
-27
-27
Maximum reflectance tolerance at output
dB
-27
-27
-27
Maximum total output optical power
dBm
16
20
16
Multi-channel gain slope
dB
≤ 2.0
≤ 2.0
≤ 2.0
Polarization dependent loss
dB
≤ 0.5
≤ 0.5
≤ 0.5
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuatio n range
dB
20
dB
1
VI-VOa
Adjustment accuracya
a: The items are supported on the TN12OBU1.
Table 20-52 Optical specifications of the OBU1P1 board
Issue 03 (2013-05-16)
Item
Unit
Value
Operating wavelength range
nm
1529 to 1561
Total input power range at the VI optical port
dBm
-30 to 7
Input reflectance
dB
< -40
Output reflectance
dB
< -40
Pump leakage at input
dBm
< -30
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2226
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value
Maximum reflectance tolerance at input
dB
-27
Maximum reflectance tolerance at output
dB
-27
Maximum total output optical power
dBm
9
Multi-channel gain slope
dB/dB
≤ 2.0
Polarization dependent loss
dB
≤ 0.5
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11OBU1: 1.3 kg (2.9 lb.) – TN12OBU1: 1.1 kg (2.4 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11OBU101
11.0
13.0
TN11OBU103
13.0
15.0
TN11OBU104
12.0
14.0
TN12OBU101
10.0
11.0
TN12OBU103
11.0
12.0
TN12OBU104
10.0
12.0
TN12OBU1P1
10.0
11.0
20.7 OBU2 OBU2: optical booster unit
20.7.1 Version Description The available functional versions of the OBU2 board are TN11 and TN12. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2227
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1OB U2
Y
Y
N
N
Y
Y
TN1 2OB U2
Y
Y
Y
Y
Y
Y
Type The OBU2 board is available only in one type, that is, OBU205.
Differences Between Versions l
Function: – The TN11OBU2 board does not support adjustment of input optical power, whereas the TN12OBU2 board supports. For details, see 20.7.4 Working Principle and Signal Flow.
l
Appearance: – The TN11 and TN12 versions use different front panels. For details, see 20.7.5 Front Panel.
l
Specification: – For the power consumption of each version, see 20.7.10 OBU2 Specifications.
Substitution Relationship
Issue 03 (2013-05-16)
Original Board
Substitute Board
Substitution Rules
TN11OBU2
TN12OBU 2
The TN12OBU2 can be created as TN11OBU2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12OBU2 functions as the TN11OBU2.
TN12OBU2
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2228
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.7.2 Application As a type of optical amplifier unit, the OBU2 board amplifies optical signals at the transmit end or receive end. For the position of the OBU2 board in the WDM system, see Figure 20-27. Figure 20-27 Position of the OBU2 board in the WDM system Client side Client side
OTU
MUX
OTU OTU
DMUX
OBU2
OBU2
OBU2
OBU2
DMUX
MUX
OTU
OTU OTU OTU OTU
Client side Client side
20.7.3 Functions and Features The OBU2 is mainly used for online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-53. Table 20-53 Functions and features of the OBU2 board Function and Feature
Description
Basic function
l Amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration.
Typical gain
The typical gain of the OBU205 is 23 dB. NOTE 20.7.10 OBU2 Specifications only provides the value of nominal gain. Actual gain includes the noise, and the value is bigger than that of nominal gain.
Issue 03 (2013-05-16)
Online optical performance monitoring
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Gain lock function
The EDFA inside the board has the gain lock function. Adding or dropping one or more channels or optical signal fluctuation does not affect the signal gain of other channels.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2229
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Working mode
Supports the gain locking and power locking modes. l In the gain locking mode, the gain of the board is tunable and users can query the actual gain of the board. The gain locking mode is enabled by default. l The power locking mode applies to scenarios in which there is only dummy light to lock the output power of the board.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects and reports the optical power.
Optical-layer ASON
Supported
l Monitors the temperature of the pump laser. l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board.
20.7.4 Working Principle and Signal Flow The OBU2 board consists of the EDFA optical module, driving and detection module, control and communication module, and power supply module. Figure 20-28 and Figure 20-29 shows the functional modules and signal flow of the OBU2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2230
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-28 Functional modules and signal flow of the TN11OBU2 board Splitter IN
OUT
EDFA optical module Driving current
MON
Detection for pump current and temperature
PIN
Driving and detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
Backplane (controlled by SCC)
DC power supply from a backplane
SCC
Figure 20-29 Functional modules and signal flow of the TN12OBU2 board Splitter IN
OUT
EDFA optical module Detection for Driving PIN pump current current and temperature Driving and detection module
VO
VOA
VI
MON
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
DC power supply from a backplane
Issue 03 (2013-05-16)
Required voltage
( Backplane Controlled by SCC ) SCC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2231
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Signal Flow One channel of multiplexed optical signal received through the IN interface is input to the EDFA optical module. The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then, the amplified multiplexed signal is output through the OUT interface. The VI interface receives the multiplexed signals sent from the upstream station. After the optical power adjustment by VOA, the signals are transmitted through the VO interface. Then the IN interface receives the adjusted multiplexed signals too.
Module Function l
VOA – Adjusts optical power of optical signals according to system requirements.
l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump laser can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MON interface for detection.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser inside the EDFA. – Drives the pump laser inside the EDFA optical module. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.7.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the OBU2 board.
Appearance of the Front Panel Figure 20-30 and Figure 20-31 show the front panel of the OBU2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2232
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-30 Front panel of the TN11OBU2 board
OBU2 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN
OBU2
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2233
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-31 Front panel of the TN12OBU2 board
OBU2 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MON OUT IN VO VI
OBU2
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2234
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-54 lists the type and function of each interface. Table 20-54 Types and functions of the interfaces on the OBU2 board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LC
Transmits the amplified signal.
MON
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MON port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout (dBm) - Pmon (dBm) = 10 x lg (99/1) = 20 dB).
VOa
LC
Transmits the adjusted multiplexed signal to the IN interface.
VIa
LC
Receives the multiplexed signal from the WDM side.
a: Only the TN12OBU2 board supports the interfaces.
Laser Hazard Level After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
20.7.6 Valid Slots Two slots house one OBU2 board. Table 20-55 shows the valid slots for the TN11OBU2 board. Table 20-55 Valid slots for the TN11OBU2 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2235
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
Table 20-56 shows the valid slots for the TN12OBU2 board. Table 20-56 Valid slots for the TN12OBU2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack
IU2-IU18
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
NOTE
For OptiX OSN 8800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the OBU2 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the OBU2 board, the slot number of the OBU2 board displayed on the NM is IU2. For OptiX OSN 6800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the OBU2 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the OBU2 board, the slot number of the OBU2 board displayed on the NM is IU2. For OptiX OSN 3800: l The rear connector of the board is mounted to the backplane along the upper slot in the chassis. Therefore, the slot number of the OBU2 board displayed on the NM is the number of the upper one of the two slots. l For example, if slots IU2 and IU3 house the OBU2 board, the slot number of the OBU2 displayed on the NM is IU2.
20.7.7 Characteristic Code for the OBU2 The characteristic code for the OBU2 board contains six characters and digits, indicating the gain range and the maximum nominal input optical power of the signals processed by the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2236
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
The detailed information about the characteristic code is given in Table 20-57. Table 20-57 Characteristic code for the OBU2 board Code
Meaning
Description
First character
-
The first character is always G.
Second and third digits
Gain
The second and the third digits indicate the gain value.
Fourth character
-
The fourth character is always I.
Fifth and sixth digits
Maximum nominal input optical power
The fifth and the sixth digits indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11OBU2 board is G23I00. The code indicates that the gain is 23 dB and the maximum nominal input optical power is 0 dBm.
20.7.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-58 and Table 20-59. Table 20-58 Serial numbers of the interfaces of the TN11OBU2 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
OUT
2
MON
3
Table 20-59 Serial numbers of the interfaces of the TN12OBU2 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN
1
OUT
2
MON
3
VI
4 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2237
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Interface on the Panel
Interface on the NM
VO
5
20.7.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the OBU2, refer to Table 20-60. Table 20-60 OBU2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: Value of Max. Attenuation Rate (dB)
This parameter provides an option to set the optical power attenuation of a board channel so that the input signals power of the board is within the preset range. You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. NOTE Only the TN12OBU2 supports this parameter.
Attenuation difference (dB)
Max. Attenuation Rate (dB)
-3 to 3, with a step of 0.1
Specifies the difference between the current attenuation and the required attenuation.
Default: none
NOTE Only the TN12OBU2 supports this parameter.
-
Displays the maximum attenuation allowed by a board optical interface. NOTE Only the TN12OBU2 supports this parameter.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface. NOTE Only the TN12OBU2 supports this parameter.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
Default: C Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2238
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: On
See D.15 Laser Status (WDM Interface) for more information. Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: Nominal Gain Upper Threshold (dB)
See D.22 Nominal Gain (dB) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2239
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Rated Optical Power (dBm)
-30 to 30
Default: All
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
The Rated Optical Power (dBm) parameter provides an option to set and query the perchannel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit. NOTE IN port: The rated optical power is same as Nominal single wavelength input optical power, OUT port: The rated optical power is same as Nominal single-wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information. Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
NOTE Only the TN12OBU2 supports this parameter.
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
OAMS Power Abnormity Threshold (dB)
-0.5 to 10.0
Default: /
NOTE Only the TN12OBU2 supports this parameter.
Default:3
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold. NOTE Only the TN12OBU2 supports this parameter.
Working Mode
Power Value
l Gain locking, Power locking
Specifies the working mode of an optical amplifier.
l Default: Gain locking
For more information on the working mode, see 20.7.3 Functions and Features.
-7 to 23
This parameter specifies the output optical power when Working Mode is set to Power Value.
Default: 0
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2240
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Incident Optical Power (dBm)
-60.0 to 60.0
In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.7.10 OBU2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-61 Optical specifications of the OBU2 board Item
Unit
Value OBU205
Operating wavelength range
nm
1529-1561
Nominal input power range
dBm
-24 to 0
Input power range per channel
dBm
-24 to -16
40 Channels 80 Channels
Issue 03 (2013-05-16)
Nominal singlewavelength input optical power
40 Channels
Nominal singlewavelength output optical power
40 Channels
-24 to -19 dBm
80 Channels
-16 -19
dBm
80 Channels
7 4
Noise figure (NF)
dB
≤ 7.0
Nominal gain
dB
23
Gain response time on adding/ dropping of channels
ms
< 10
Channel gain
dB
23±1.5
Gain flatness
dB
≤ 2.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2241
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Item
Unit
Value OBU205
Input reflectance
dB
< -40
Output reflectance
dB
< -40
Pump leakage at input
dBm
< -30
Maximum reflectance tolerance at input
dB
-27
Maximum reflectance tolerance at output
dB
-27
Maximum total output optical power
dBm
23
Multi-channel gain slope
dB/dB
≤ 2.0
Polarization dependent loss
dB
≤ 0.5
Inherent insertion loss
dB
≤ 1.5
Dynamic attenuatio n range
dB
20
dB
1
VI-VOa
Adjustment accuracya
a: The items are supported on the TN12OBU2.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN11OBU2: 1.9 kg (4.2 lb.) – TN12OBU2: 1.6 kg (3.5 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11OBU205
17
24
TN12OBU205
14
19
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2242
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.8 RAU1 RAU1: backward raman and erbium doped fiber hybrid optical amplifier unit
20.8.1 Version Description The available functional versions of the RAU1 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1RA U1
Y
Y
Y
Y
Y
Y
Type Table 20-62 lists the types of the RAU1 board. Table 20-62 Type description of the RAU1 board Unit
Type
Description
RAU1
06
Adopts the backward pumping and optical amplification technology.
20.8.2 Application As a type of optical amplifier unit, the RAU1 board integrates a backward Raman unit, an EDFA unit, Different from an EDFA, the RAU1 board is used to improve system performance. It amplifies optical signals at the receive end.
CAUTION Always turn off the pump Raman laser of the RAU1 board before removing or inserting the fiber to the RAU1. Figure 20-32 shows two applications of the RAU1 board in a WDM system. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2243
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-32 Application of the RAU1 board in a WDM system OTU
Client Side
M U X
OTU
OBU1
RC
LINE
OUT
F RM I U SC1
TM
IN SYS
IN TC
TC IN
SYS
IN
OTU
Client Side
OTU
D M U X
OUT
D M U X
OUT
RAU1
LINE
OTU
Client Side
TM
F RM SC1 I U RC
OUT
RAU1
OTU
OBU1
M U X
OTU OTU
Client Side
When the RAU1 board is used on the OptiX OSN 3800, the OptiX OSN 3800 must function as an OLA site, as shown in Figure 20-33. The RAU1 board can be configured in only one direction. In the other direction, the TN21FIU+OAU combination can be used. Figure 20-33 Application of the RAU1 board in a WDM system (OptiX OSN 3800 as an OLA site) OUT
LINE
RC
OUT
RAU1 IN SYS
TC
RM
RM2
TM1
TM
SC2 IN OUT
F TM I U RC
RM1 OUT
TM2 RM
OAU
IN
TC
F I U IN
NOTE
When RAU1 works in gain mode, the FIU board connected to the SYS port and IN port on RAU1 must be TN14FIU.
20.8.3 Functions and Features The RAU1 is mainly used for gain adjustment, online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-63.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2244
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-63 Functions and features of the RAU1 board Function and Feature
Description
Basic function
l Integrates a backward Raman unit and an EDFA unit and amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration. l Implements the distributed online amplification of signals over long distance with wide bandwidth and low noise.
Gain adjustment
The RAU1 continuously adjusts the gain continuously based on the input optical power: l G.652 fibers: 19dB to 33dB l LEAF fibers: 19dB to 35dB l G.653 fibers: 19dB to 35dB l TWRS fibers: 19dB to 35dB l TW-C fibers: 19dB to 35dB l TWPLUS fibers: 19dB to 35dB l SMFLS fibers: 19dB to 35dB l G.656 fibers: 19dB to 35dB l G.654A fibers: 19dB to 33dB l TERA_LIGHT fibers: 19dB to 35dB l G.654B fibers: 19dB to 29dB NOTE Users can separately configure the gain adjustment point for the Raman amplifier and EDFA using the NMS. The RAU1 board supports only the G.652, G.653, LEAF, TWRS, and TW-C fibers supported. If other types of fiber must be used, the RAU1 board must be upgraded. To perform the upgrade, contact Huawei engineers.
Online optical performance monitoring
Issue 03 (2013-05-16)
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2245
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Working mode
The Raman amplifier module supports the gain locking, maximum gain, and power locking modes. l In gain locking mode. This mode applies to multi-span or singleshort-span systems that use G.652/G.653/LEAF/TWRS/TW-C/ TWPLUS/SMFLS/G.656/G.654A/TERA_LIGHT/G.654B fibers. In addition, the gain of the Raman unit is tunable and users can query the actual gain of the Raman unit. l The maximum gain mode applies to single-UL-span systems that use G.652/G.653/LEAF/TWRS/TW-C/TWPLUS/SMFLS/G. 656/G.654A/TERA_LIGHT/G.654B fibers. In this mode, the Raman amplifier module automatically adjusts its pump power to ensure that its gain reaches the maximum value. In addition, users can query the actual gain of the Raman amplifier module. l In the pump power mode, users can set the pump power for the Raman amplifier module. This mode applies to systems that use any fibers but the G.652/G.653/LEAF/TWRS/TW-C/TWPLUS/ SMFLS/G.656/G.654A/TERA_LIGHT/G.654B fibers or to situations in which the pump power of the Raman amplifier module must be adjusted manually. The EDFA module supports the gain locking and power locking modes. l In the gain locking mode, the gain of the EDFA module is tunable and users can query the actual gain of the EDFA module. The gain locking mode is enabled by default. l The power locking mode is used for the commissioning and fault location purposes.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board. l The EDFA optical module can detect and report optical power. l The Raman amplifier module supports return loss detection.
Optical-layer ASON
Supported
20.8.4 Working Principle and Signal Flow The RAU1 board consists of Raman optical module, EDFA optical module, driving and detection module, control and communication module, and power supply module. Figure 20-34shows the functional modules and signal flow of the TN11RAU1 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2246
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-34 Functional modules and signal flow of the TN11RAU1
LINE
Signal
Signal
MONO
PAOUT
Pump light Splitter Pump source Raman optical module Detection for Pumping current and pump light PIN temperature power and current control
TDC RDC
IN
MONS SYS
BAIN
OUT
Splitter EDFA optical module
Detection Driving for PIN temperature current
Detection for pump current and temperature
Driving and detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
SCC
Backplane (controlled by SCC)
DC power supply from a backplane
Signal Flow The pump source of the RAU1 board sends the pump light to the WDM side through the LINE optical interface. On the line, the signals that are amplified through the distributed amplification are input through the LINE interface. The splitter then splits them into two, among which the service optical signals are output through the SYS interface. A few supervisory signals are output to the multi-channel spectrum analyzer unit or test instrument through the MONS interface for online optical performance monitoring. One service optical signal received through the SYS interface is input to the EDFA optical module. The EDFA optical module amplifies the optical power of the signal and locks the gain of the signal. Then the signal is sent to the DCM through the TDC interface for dispersion compensation and returns to the EDFA optical module through the RDC interface. At last, the amplified multiplexed signal is output through the OUT interface.
Module Function l
Issue 03 (2013-05-16)
Raman optical module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2247
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
– The laser in the pump source generates the pump light and sends the light to the optical line for transmission. The Raman pump optical module makes use of the stimulated Raman scattering effect of the fiber to amplify the optical signals during transmission. – The splitter splits one channel of optical signals from the pump source module into two channels of signals of different power. One of them is output through the SYS interface and transmitted in the main optical path. The other channel of signals is output to the MONS interface for spectrum detection and supervising. l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump light can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MONO interface for detection.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser. – Drives the pump laser. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.8.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the RAU1 board.
Appearance of the Front Panel Figure 20-35shows the front panel of the RAU1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2248
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-35 Front panel of the TN11RAU1 board
RAU1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MONO MONS OUT IN TDC RDC SYS LINE LAS
RAU1
Indicators Five indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2249
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
l
Laser emission status indicator (LAS) – green
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-64lists the type and function of each interface. Table 20-64 Types and functions of the interfaces on the TN11RAU1 board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LC
Transmits the amplified signal.
TDC/RDC
LC
Connected to the interface of the DCM for dispersion compensation.
MONO
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MONO port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmono (dBm) = 10 x lg(99/1) = 20 dB).
LINE
LSH/APC
Receives the line optical signal and sends the pump light.
SYS
LC
Transmits the amplified signal to the FIU.
MONS
LC
Connected to the MCA4, MCA8 or OPM8, monitors performance online. The MONS port is a 1/99 tap of the total composite signal at the SYS port (20 dB lower than the actual signal power, calculation formula: Psys(dBm) - Pmons (dBm) = 10 x lg (99/1) = 20 dB).
Laser Hazard Level RAU1: After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power output by the optical port on the board ranges 10 dBm (10 mW) to 21.3 dBm (136 mW).
20.8.6 Valid Slots Two slots house one TN11RAU1. Table 20-65shows the valid slots for the TN11RAU1. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2250
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-65 Valid slots for the board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack
IU2-IU18
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
NOTE
For OptiX OSN 8800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the RAU1 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the RAU1 board, the slot number of the RAU1 board displayed on the NM is IU2. For OptiX OSN 6800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the RAU1 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the RAU1 board, the slot number of the RAU1 board displayed on the NM is IU2. For OptiX OSN 3800: l The rear connector of the board is mounted to the backplane along the upper slot in the chassis. Therefore, the slot number of the RAU1 board displayed on the NM is the number of the upper one of the two slots. l For example, if slots IU2 and IU3 house the RAU1 board, the slot number of the RAU1 displayed on the NM is IU2.
20.8.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interface The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-66. Table 20-66 Serial numbers of the interfaces of the TN11RAU1 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN
1
PAOUT
2 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2251
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Interface on the Panel
Interface on the NM
RDC
3
OUT
4
TDC
5
MONO
6
LINE
9
SYS
10
MONS
11
20.8.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the RAU1, refer to Table 20-67. Table 20-67 RAU1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical port.
Optical Interface Name
-
Sets and displays the optical port name.
Actual Band
-
Queries the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: C Input Power Loss Threshold (dBm)
Issue 03 (2013-05-16)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2252
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: l OUT port: On l LINE port: Off
See D.15 Laser Status (WDM Interface) for more information.
Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: The specific value is related to the module.
NOTE When the insertion loss between the TDC and RDC ports is larger than 9 dB, the Nominal Gain (dB) parameter is unavailable.
See D.22 Nominal Gain (dB) (WDM Interface) for more information. Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2253
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Upper Threshold of Actual Gain (dB)
-
Displays the upper threshold of the actual gain of the optical amplifier unit. NOTE When the insertion loss between the TDC and RDC ports is larger than 9 dB, the actual gain is displayed as an invalid value.
Lower Threshold of Actual Gain (dB)
-
Displays the lower threshold of the actual gain of the optical amplifier unit. NOTE When the insertion loss between the TDC and RDC ports is larger than 9 dB, the actual gain is displayed as an invalid value.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All
Selects the desired parity of the working band.
Rated Optical Power (dBm)
-30 to 30
Default: All
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit. NOTE For the LINE port, the rated optical power is same as Nominal single wavelength input optical power. For the OUT port, the rated optical power is same as Nominal single wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information.
Issue 03 (2013-05-16)
Fixed Pump Optical Power (dBm)
/
This parameter is available only when the Working Mode is set to Pump power for the LINE port.
Minimum Fixed Pump Optical Power (dBm)
-
Displays the minimum fixed pump optical power that is queried
Maximum Fixed Pump Optical Power (dBm)
-
Displays the maximum fixed pump optical power that is queried
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2254
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
The Upper Threshold of RL to starting the pump (dB)
-
Displays the upper threshold of the return loss to starting the pump.
The Lower Threshold of RL to starting the pump (dB)
-
Displays the lower threshold of the return loss to starting the pump.
The Upper Threshold of RL alarm (dB)
-
Displays the upper threshold of the return loss alarm.
The Lower Threshold of RL alarm (dB)
-
Displays the lower threshold of the return loss alarm.
Fiber Type
G652 Fiber, G653 Fiber, LEAF Fiber, TWRS Fiber, TWC Fiber, TWPLUS Fiber, SMFLS Fiber, G654B Fiber, G656 Fiber, G654A Fiber, TERA_LIGHT_Fibe r
Specifies the type of a fiber. The gain range of the board varies according to the fiber type.
Default: G652 Fiber
Issue 03 (2013-05-16)
Enable OAMS Power Monitoring
Disable, Enable
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
OAMS Power Abnormity Threshold (dB)
-0.5 to 10.0
NOTE When the Raman amplifier module works in gain locking or maximum gain mode, the fiber type must be configured for the module. To configure the fiber type, start the desired NE Explorer, select the board and choose Configuration > WDM Interface in the navigation tree. The actual fiber type must be the same as the fiber type specified in the Fiber/ Cable Management window.
Enables or disables the OAMS function.
Default: Disable
Default: /
Default:3
Specifies the reference value for OAMS power monitoring. Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2255
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Working Mode
l OUT port:
Specifies the working mode for an optical amplifier. For the OUT port, it specifies the working mode of the EDFA module; for the LINE port, it specifies the working mode of the Raman amplifier module.
– Gain locking, Power locking – Default: Gain locking l LINE port: – Gain locking, Maximum power, Pump power
For more information on the working mode, see 20.8.3 Functions and Features.
– Default: Gain locking -7 to 23
Power Value
Default: 0
This parameter specifies the output optical power of the EDFA module when Working Mode is set to Power locking for the OUT port
20.8.9 RAU1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-68 Optical specifications of the TN11RAU1 board Item RAU1 board specific ations
Unit
Value
Operating wavelength range
nm
1529 to 1561
Gain range
dB
G.652 fibers
19 to 33
LEAF fibers
19 to 35
G.653 fibers
19 to 35
TWRS fibers
19 to 35
TW-C fibers
19 to 35
TWPLUS fibers
19 to 35
SMFLS fibers
19 to 35
G.656 fibers
19 to 35
G.654A fibers
19 to 33
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2256
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Equivalent noise figurea
dB
Value TERA_LIGHT fibers
19 to 35
G.654B fibers
19 to 29
G.652 fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.5 (26 dB gain) < 1.0 (30 dB gain)
LEAF fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
G.653 fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
TWRS fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
TW-C fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
TWPLUS fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
SMFLS fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
G.656 fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2257
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Value G.654A fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
TERA_LIGHT fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
G.654B fibers
< 5.5 (19 dB gain) < 3.0 (22 dB gain) < 1.0 (26 dB gain) < 0.5 (30 dB gain)
Gain flatness (LINE port to OUT port)
dB
G.652 fibers
< 3.0
LEAF fibers
< 3.0
G.653 fibers
< 3.0
TWRS fibers
< 3.0
TW-C fibers
< 3.0
TWPLUS fibers
< 3.0
SMFLS fibers
< 3.0
G.656 fibers
< 3.0
G.654A fibers
< 3.0
TERA_LIGHT fibers
< 3.0
G.654B fibers
< 3.0
LINE port input optical power
dBm
-40 to 1
Max. OUT port optical power
dBm
20
Pump wavelength for the LINE port
nm
1400 to 1500
Pump optical power of the LINE port
mW
≥700
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2258
OptiX OSN 8800/6800/3800 Hardware Description
Item
Raman module specific ations
EDFA specific ations
20 Optical Amplifier Board
Unit
Value
PDG
dB
≤ 0.7
PMD
ps
≤ 0.7
Operating wavelength range
nm
1529 to 1561
Input optical power
dBm
≤1
Valid gainb
dB
G.652 fibers
5 to 10
LEAF fibers
5 to 12
G.653 fibers
5 to 12
TWRS fibers
5 to 12
TW-C fibers
5 to 12
TWPLUS fibers
5 to 12
SMFLS fibers
5 to 12
G.656 fibers
5 to 12
G.654A fibers
5 to 10
TERA_LIGHT fibers
5 to 12
G.654B fibers
5 to 6
SYS port reflectance
dB
< -40
LINE port reflectance
dBm
< -40
PDG
dB
≤ 0.5
PMD
ps
≤ 0.5
Pump wavelength
nm
1400 to 1500
Max. pump optical power
mW
≥700
Operating wavelength range
nm
1529 to 1561
Input optical power
dBm
-30 to 6
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2259
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Value
Output optical power
dBm
-7 to 20
Nominal singlewavelength output optical power
dBm
40 channels: 4
Channel gain
dB
14 to 23
Gain flatness
dB
< 2.0
Multichannel gain slope
dB/dB
< 2.0
PDG
dB
≤ 0.5
PMD
ps
≤ 0.5
Input reflectance
dB
< -40
Output reflectance
dB
< -40
80 channels: 1
a: The gain can be adjusted continuously. The noise figure varies according to the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The gain of the Raman module can be set to the maximum value. The actual gain of the board is a variable and depends on the fiber type and status.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.5 kg (5.5 Ib.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11RAU1
55
70
20.9 RAU2 RAU2: backward raman and erbium doped Fiber hybrid optical amplifier Unit Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2260
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.9.1 Version Description The available functional versions of the RAU2 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1RA U2
Y
Y
Y
Y
Y
Y
Type Table 20-69 lists the types of the RAU2 board. Table 20-69 Type description of the RAU2 board Unit
Type
Description
RAU2
01
Adopts the backward pumping and optical amplification technology.
20.9.2 Application As a type of optical amplifier unit, the RAU2 board integrates a backward Raman unit, an EDFA unit, and a VOA. Different from an EDFA, the RAU2 board improves system performance, and amplifies optical signals at the receive end.
CAUTION Always turn off the pump Raman laser of the RAU2 board before removing or inserting the fiber to the RAU2. Figure 20-36 shows two applications of the RAU2 board in a WDM system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2261
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-36 Position of the RAU2 board in the WDM system (OTM site) OTU
M U X
OTU
OBU1
LINE
OUT
RC
IN RM SC1
TM
F I U
SYS
IN
D M U X
OTU
IN OUT
OTU
TM IN
SYS VO
OTU
VI VO TC
TC
OTU
D M U X
OUT
RAU2
F I U
VI LINE
RM
OUT
RAU2
SC1
RC OBU1
M U X
OTU OTU
When the RAU2 board is used on the OptiX OSN 3800, the OptiX OSN 3800 must function as an OLA site, as shown in Figure 20-37. The RAU2 board can be configured in only one direction. In the other direction, the TN21FIU+OAU combination can be used. Figure 20-37 Position of the RAU2 board in the WDM system (OptiX OSN 3800 as an OLA site)
LINE
RC
OUT
RAU2
OUT
IN VI SYS
RM
VO
OUT
TM
SC2
TC IN
RM2
TM1
F TM I U RC
RM1 OUT
TM2 RM
OAU
IN
TC
F I U IN
NOTE
When the RAU2 board works in gain mode, the FIU board connected to the SYS and IN ports on the RAU2 board must be TN14FIU.
20.9.3 Functions and Features The RAU2 board is mainly used for gain adjustment, online optical performance monitoring, gain lock, and transient control. For detailed functions and features, refer to Table 20-70.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2262
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-70 Functions and features of the RAU2 board Function and Feature
Description
Basic function
l Integrates a backward Raman unit and an EDFA unit and amplifies the input optical signals in C band. The total wavelengths range from 1529 nm to 1561 nm. l Supports the system to transmit services over different fiber spans without electrical regeneration. l Generates multi-channel pump light of high power, providing energy for the amplification of signals in the fiber.
Gain adjustment
The RAU2 continuously adjusts the gain continuously based on the input optical power: l G.652 fibers: 30dB to 41dB l LEAF fibers: 32dB to 43dB l G.653 fibers: 32dB to 43dB l TWRS fibers: 32dB to 43dB l TW-C fibers: 32dB to 43dB l TWPLUS fibers: 32dB to 43dB l SMFLS fibers: 32dB to 43dB l G.656 fibers: 32dB to 43dB l G.654A fibers: 30dB to 41dB l TERA_LIGHT fibers: 32dB to 43dB l G.654B fibers: 27dB to 37dB NOTE Users can separately configure the gain adjustment point for the Raman amplifier and EDFA using the NMS.
Online optical performance monitoring
Issue 03 (2013-05-16)
Provides an in-service monitoring port (MON). This port connects to an optical spectrum analyzer or spectrum analyzer unit to monitor the spectrum and optical performance of the multiplexed signal without affecting traffic.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2263
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Function and Feature
Description
Working mode
The Raman amplifier optical module supports the gain locking, maximum gain, and power locking modes. l In gain locking mode. This mode applies to multi-span or singleshort-span systems that use G.652/G.653/LEAF/TWRS/TW-C/ TWPLUS/SMFLS/G.656/G.654A/TERA_LIGHT/G.654B fibers. In addition, the gain of the Raman unit is tunable and users can query the actual gain of the Raman unit. l The maximum gain mode applies to ultra-long-single-span systems that use G.652/G.653/LEAF/TWRS/TW-C/TWPLUS/ SMFLS/G.656/G.654A/TERA_LIGHT/G.654B fibers. In this mode, the Raman amplifier module automatically adjusts its pump power to ensure that its gain reaches the maximum value. In addition, users can query the actual gain of the Raman amplifier module. l In the pump power mode. This mode applies to systems that use any fibers but the G.652/G.653/LEAF/TWRS/TW-C/TWPLUS/ SMFLS/G.656/G.654A/TERA_LIGHT/G.654B fibers or to situations in which the pump power of the Raman amplifier module must be adjusted manually. The EDFA optical module supports the gain locking and power locking modes. l In the gain locking mode, the gain of the EDFA module is tunable and users can query the actual gain of the EDFA module. The gain locking mode is enabled by default. l The power locking mode is used for the commissioning and fault location purposes.
Transient control function
The EDFA inside the board has the transient control function. When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to implement the smooth upgrading and expansion.
Alarms and performance events monitoring
l Detects the pump driving current, back facet current, pump cooling current, temperature of the pump laser and the ambient temperature of the board. l The EDFA optical module can detect and report optical power. l The Raman amplifier optical module supports return loss detection.
Optical-layer ASON
Supported
20.9.4 Working Principle and Signal Flow The RAU2 board consists of Raman optical module, EDFA optical module, VOA, driving and detection module, control and communication module, and power supply module. Figure 20-38shows the functional modules and signal flow of the TN11RAU2 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2264
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-38 Functional modules and signal flow of the TN11RAU2 VI VO
MONS SYS
LINE
Signal
Signal
MONO
PAOUT VOA
Pump light Splitter Pump source Raman optical module Detection for Pumping current and pump light PIN temperature power and current control
TDC RDC
IN
BAIN
OUT
Splitter EDFA optical module Detection Driving for PIN temperature current
Detection for pump current and temperature
Driving and detection module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
SCC
Backplane (controlled by SCC)
DC power supply from a backplane
Signal Flow The pump source of the RAU2 board transmits pump light to the WDM side through the LINE optical port. In addition, the RAU2 board receives a line optical signal through the LINE optical port after the optical signal is amplified by distributed amplifiers on the line. Then the splitter inside the Raman amplifier of the board splits the signal into two: One is the service signal and is output through the SYS optical port on the board and the other is sent to a multi-channel spectrum analyzer or test instrument through the MONS optical port for real-time performance monitoring. The board sends the service signal to the EDFA module through the IN optical port. The EDFA module performs power amplification and gain locking for the signal. Then the EDFA module outputs the signal to the DCM module through the TDC optical port for dispersion compensation and receives the signal again through the RDC optical port. The splitter inside the EDFA module then splits the signal in two: One is the service signal and is finally output through the OUT optical port. The other is sent to a multi-channel spectrum analyzer or test instrument through the MONO optical port for real-time performance monitoring. Before the multi-channel signal is sent to the IN optical port, it can be first sent to a VOA through the VI optical port on the VOA for power adjustment. After the power adjustment, the signal is output through the VO optical port on the VOA and then sent to the IN optical port.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2265
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Module Function l
Raman optical module – The laser in the pump source generates the pump light and sends the light to the optical line for transmission. The Raman pump optical module makes use of the stimulated Raman scattering effect of the fiber to amplify the optical signals during transmission. – The splitter splits one channel of optical signals from the pump source module into two channels of signals of different power. One of them is output through the SYS interface and transmitted in the main optical path. The other channel of signals is output to the MONS interface for spectrum detection and supervising.
l
EDFA optical module – Multiplexed signal light and pump light enter the erbium-doped fiber for amplification. The erbium-doped fiber that is excited by the pump light can amplify the optical signal to implement the optical power amplification function. – The splitter splits some optical signals from the main optical path for optical power detection. – The splitter splits some optical signals from the main optical path and provides them to the MONO interface for detection.
l
VOA – Adjusts optical power of optical signals according to system requirements.
l
Driving and detection module – Detects in real time the optical power of service signals. – Detects in real time the drive current, back facet current, cooling current and operating temperature of the pump laser. – Drives the pump laser. – Reports alarms and performance events to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
20.9.5 Front Panel There are indicators, interfaces, and laser hazard level label on the front panel of the RAU2 board.
Appearance of the Front Panel Figure 20-39shows the front panel of the TN11RAU2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2266
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Figure 20-39 Front panel of the TN11RAU2 board
RAU2 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
MONO MONS OUT IN TDC RDC VO VI SYS LINE LAS
RAU2
Indicators Five indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2267
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
l
Laser emission status indicator (LAS) – green
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 20-71lists the type and function of each interface. Table 20-71 Types and functions of the interfaces on the TN11RAU2 board Interface
Type
Function
IN
LC
Receives the multiplexed signal to be amplified.
OUT
LC
Transmits the amplified signal.
TDC/RDC
LC
Connected to the interface of the DCM for dispersion compensation.
MONO
LC
Connected to the MCA4, MCA8, OPM8 or WMU, accomplishes the online performance monitoring. The MONO port is a 1/99 tap of the total composite signal at the OUT port (20 dB lower than the actual signal power, calculation formula: Pout(dBm) - Pmono (dBm) = 10 x lg(99/1) = 20 dB).
LINE
LSH/APC
Receives the line optical signal and sends the pump light.
SYS
LC
Transmits the amplified signal to the FIU.
MONS
LC
Connected to the MCA4, MCA8 or OPM8, monitors performance online. The MONS port is a 1/99 tap of the total composite signal at the SYS port (20 dB lower than the actual signal power, calculation formula: Psys(dBm) - Pmons (dBm) = 10 x lg (99/1) = 20 dB).
VO
LC
Transmits the adjusted multiplexed signal.
VI
LC
Receives the multiplexed signal.
Laser Hazard Level RAU2: After the IPA function is enabled, the laser hazard level of the board is HAZARD LEVEL 1M, which indicates that the maximum power output by the optical port on the board ranges 10 dBm (10 mW) to 21.3 dBm (136 mW).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2268
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
20.9.6 Valid Slots Two slots house one TN11RAU2. Table 20-72shows the valid slots for the TN11RAU2. Table 20-72 Valid slots for the board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU2-IU8, IU12-IU18, IU20-IU26, IU28IU34, IU36-IU42, IU46-IU52, IU54-IU60, IU62-IU68
OptiX OSN 8800 T32 subrack
IU2-IU8, IU12-IU19, IU21-IU27, IU30IU36
OptiX OSN 8800 T16 subrack
IU2-IU8, IU12-IU18
OptiX OSN 8800 platform subrack
IU2-IU18
OptiX OSN 6800 subrack
IU2-IU17
OptiX OSN 3800 chassis
IU2-IU4, IU11
NOTE
For OptiX OSN 8800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the RAU2 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the RAU2 board, the slot number of the RAU2 board displayed on the NM is IU2. For OptiX OSN 6800: l The rear connector of the board is mounted to the backplane along the right slot in the subrack. Therefore, the slot number of the RAU2 board displayed on the NM is the number of the right one of the two slots. l For example, if slots IU1 and IU2 house the RAU2 board, the slot number of the RAU2 board displayed on the NM is IU2. For OptiX OSN 3800: l The rear connector of the board is mounted to the backplane along the upper slot in the chassis. Therefore, the slot number of the RAU2 board displayed on the NM is the number of the upper one of the two slots. l For example, if slots IU2 and IU3 house the RAU2 board, the slot number of the RAU2 displayed on the NM is IU2.
20.9.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interface The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 20-73. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2269
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Table 20-73 Serial numbers of the interfaces of the TN11RAU2 board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
PAOUT
2
RDC
3
OUT
4
TDC
5
MONO
6
VI
7
VO
8
LINE
9
SYS
10
MONS
11
20.9.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the RAU2, refer to Table 20-74. Table 20-74 RAU2 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical port.
Optical Interface Name
-
Sets and displays the optical port name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2270
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Default: Value of Max. Attenuation Rate (dB)
You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Attenuation difference (dB)
-3 to 3, with a step of 0.1 Default: none
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Band
C
Used to configure type of the working band of a board.
Default: C Configure Working Band Parity
All
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Laser Status
Off, On
The Laser Status parameter sets the laser status of a board.
Default: All
Default: l OUT port: On l LINE port: Off Issue 03 (2013-05-16)
Specifies the difference between the current attenuation and the required attenuation.
Selects the desired parity of the working band.
See D.15 Laser Status (WDM Interface) for more information.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2271
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Gain (dB)
-
The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm). See D.13 Gain (dB) (WDM Interface) for more information.
Nominal Gain (dB)
Value of Nominal Gain Lower Threshold (dB) to Value of Nominal Gain Upper Threshold (dB)
The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power. You can obtain the value range of this parameter by querying the corresponding Nominal Gain Lower Threshold (dB) and Nominal Gain Upper Threshold (dB) parameters.
Default: The specific value is related to the module.
NOTE When the insertion loss between the TDC and RDC ports is larger than 11 dB, the Nominal Gain (dB) parameter is unavailable.
See D.22 Nominal Gain (dB) (WDM Interface) for more information. Nominal Gain Upper Threshold (dB)
-
The Nominal Gain Upper Threshold (dB) parameter provides an option to query the maximum nominal gain of the optical amplifier unit (OAU). This parameter value cannot be set and depends on the optical module type. The value can be queried.
Nominal Gain Lower Threshold (dB)
-
The Nominal Gain Lower Threshold (dB) parameter provides an option to query the minimum nominal gain of the optical amplifier unit. This parameter value cannot be set and depends on the optical module type. The value can be queried.
Upper Threshold of Actual Gain (dB)
-
Displays the upper threshold of the actual gain of the optical amplifier unit. NOTE When the insertion loss between the TDC and RDC ports is larger than 11 dB, the actual gain is displayed as an invalid value.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2272
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Lower Threshold of Actual Gain (dB)
-
Displays the lower threshold of the actual gain of the optical amplifier unit. NOTE When the insertion loss between the TDC and RDC ports is larger than 11 dB, the actual gain is displayed as an invalid value.
Gain Slope Direction
Up, Down Default: /
Gain Slope step
0 to 65535 Default: 1
Issue 03 (2013-05-16)
Specifies the direction where gain slope is generated on a board. Specifies the step length for setting gain slope of a board.
Fixed Pump Optical Power (dBm)
/
This parameter is available only when the Working Mode is set to Pump power for the LINE port.
Minimum Fixed Pump Optical Power (dBm)
-
Displays the minimum fixed pump optical power that is queried
Maximum Fixed Pump Optical Power (dBm)
-
Displays the maximum fixed pump optical power that is queried
The Upper Threshold of RL to starting the pump (dB)
-
Displays the upper threshold of the return loss to starting the pump.
The Lower Threshold of RL to starting the pump (dB)
-
Displays the lower threshold of the return loss to starting the pump.
The Upper Threshold of RL alarm (dB)
-
Displays the upper threshold of the return loss alarm.
The Lower Threshold of RL alarm (dB)
-
Displays the lower threshold of the return loss alarm.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2273
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Rated Optical Power (dBm)
-30 to 30
The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit.
Default: The default value is determined when the system is provisioned with 80 wavelengths and varies according to boards.
NOTE For the LINE port, the rated optical power is same as Nominal single wavelength input optical power. For the OUT port, the rated optical power is same as Nominal single wavelength output optical power. The default rated optical power is measured in an 80-wavelength system. It needs to be changed accordingly for a 40-wavelength system.
The value can be set or queried. See D.30 Rated Optical Power (dBm) (WDM Interface) for more information. G652 Fiber, G653 Fiber, LEAF Fiber, TWRS Fiber, TWC Fiber, TWPLUS Fiber, SMFLS Fiber, G654B Fiber, G656 Fiber, , G654A Fiber, TERA_LIGHT_Fibe r
Fiber Type
Default: G652 Fiber
Issue 03 (2013-05-16)
Enable OAMS Power Monitoring
Disable, Enable
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
OAMS Power Abnormity Threshold (dB)
-0.5 to 10.0
Specifies the type of a fiber. The gain range of the board varies according to the fiber type. NOTE When the Raman amplifier module works in gain locking or maximum gain mode, the fiber type must be configured for the module. To configure the fiber type, start the desired NE Explorer, select the board and choose Configuration > WDM Interface in the navigation tree. The actual fiber type must be the same as the fiber type specified in the Fiber/ Cable Management window.
Enables or disables the OAMS function.
Default: Disable
Default: /
Default:3
Specifies the reference value for OAMS power monitoring. Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2274
OptiX OSN 8800/6800/3800 Hardware Description
20 Optical Amplifier Board
Field
Value
Description
Working Mode
l OUT port:
Specifies the working mode for an optical amplifier. For the OUT port, it specifies the working mode of the EDFA module; for the LINE port, it specifies the working mode of the Raman amplifier module.
– Gain locking, Power locking – Default: Gain locking l LINE port: – Gain locking, Maximum power, Pump power
For more information on the working mode, see 20.9.3 Functions and Features.
– Default: Gain locking -7 to 23
Power Value
Default: 0
Chromatic Dispersion Coefficient(ps/ (nm*km))
-15 to 30
Incident Optical Power (dBm)
-60.0 to 60.0
Default: 0
This parameter specifies the output optical power of the EDFA module when Working Mode is set to Power locking for the OUT port This parameter is available only in the ASON system. Set the parameter based on the fiber type. Usually, take the nominal value of the fiber. In a coherent system, when the incident optical power of the transmission fiber is less than the nominal output power of the transmitting OA board, set Incident Optical Power for the transmitting OA board to ensure desired ALC adjustment effects.
20.9.9 RAU2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 20-75 Optical specifications of the TN11RAU2 board Item RAU2 board specific ations
Unit
Value
Operating wavelength range
nm
1529 to 1561
Gain range
dB
G.652 fibers
30 to 41
LEAF fibers
32 to 43
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2275
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Equivalent noise figurea
Gain flatness (LINE port to OUT port)
Issue 03 (2013-05-16)
dB
dB
Value G.653 fibers
32 to 43
TWRS fibers
32 to 43
TW-C fibers
32 to 43
TWPLUS fibers
32 to 43
SMFLS fibers
32 to 43
G.656 fibers
32 to 43
G.654A fibers
30 to 41
TERA_LIGHT fibers
32 to 43
G.654B fibers
27 to 37
G.652 fibers
< 1.5 (30 dB gain)
LEAF fibers
< 1.0 (32 dB gain)
G.653 fibers
< 1.0 (32 dB gain)
TWRS fibers
< 1.0 (32 dB gain)
TW-C fibers
< 1.0 (32 dB gain)
TWPLUS fibers
< 1.0 (32 dB gain)
SMFLS fibers
< 1.0 (32 dB gain)
G.656 fibers
< 1.0 (32 dB gain)
G.654A fibers
< 1.5 (30 dB gain)
TERA_LIGHT fibers
< 1.0 (32 dB gain)
G.654B fibers
< 4.0 (27 dB gain)
G.652 fibers
< 3.0
LEAF fibers
< 3.0
G.653 fibers
< 3.0
TWRS fibers
< 3.0
TW-C fibers
< 3.0
TWPLUS fibers
< 3.0
SMFLS fibers
< 3.0
G.656 fibers
< 3.0
G.654A fibers
< 3.0
TERA_LIGHT fibers
< 3.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2276
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Value G.654B fibers
Raman module specific ations
< 3.0
LINE port input optical power
dBm
-42 to -2
Max. OUT port optical power
dBm
20
Pump wavelength for the LINE port
nm
1400 to 1500
Pump optical power of the LINE port
nW
≥700
PDG
dB
≤ 0.7
PMD
ps
≤ 0.7
Operating wavelength range
nm
1529 to 1561
Input optical power
dBm
≤2
Valid gainb
dB
G.652 fibers
5 to 10
LEAF fibers
5 to 12
G.653 fibers
5 to 12
TWRS fibers
5 to 12
TW-C fibers
5 to 12
TWPLUS fibers
5 to 12
SMFLS fibers
5 to 12
G.656 fibers
5 to 12
G.654A fibers
5 to 10
TERA_LIGHT fibers
5 to 12
G.654B fibers
5 to 6
SYS port reflectance
dB
< -40
LINE port reflectance
dBm
< -40
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2277
OptiX OSN 8800/6800/3800 Hardware Description
Item
EDFA specific ations
20 Optical Amplifier Board
Unit
Value
PDG
dB
≤ 0.5
PMD
ps
≤ 0.5
Pump wavelength
nm
1400 to 1500
Max. pump optical power
mW
≥700
Operating wavelength range
nm
1529 to 1561
Input optical power
dBm
-32 to 0
Output optical power
dBm
-1 to 20
Nominal singlewavelength output optical power
dBm
40 channels: 4
Channel gain
dB
20 to 31
Gain flatness
dB
< 2.0
Multichannel gain slope
dB/dB
< 1.0 ± 0.5
VI-VO Inherent insertion loss
dB
≤ 1.5
VI-VO Dynamic attenuation range
dB
15
VI-VO Adjustment accuracy
dB
1
PDG
dB
≤ 0.5
PMD
ps
≤ 0.5
Input reflectance
dB
< -40
Output reflectance
dB
< -40
Issue 03 (2013-05-16)
80 channels: 1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2278
OptiX OSN 8800/6800/3800 Hardware Description
Item
20 Optical Amplifier Board
Unit
Value
a: The gain can be adjusted continuously. The noise figure varies according to the gain. The previous table lists the noise figure when the noise figure uses the typical value. b: The gain of the Raman module can be set to the maximum value. The actual gain of the board is a variable and depends on the fiber type and status.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 2.58 kg (5.69 Ib.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11RAU2
55
70
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2279
OptiX OSN 8800/6800/3800 Hardware Description
21
21 Cross-Connect Board and System and Communication Board
Cross-Connect Board and System and Communication Board
About This Chapter 21.1 Overview A cross-connect board establishes physical channels for electrical signals on service boards inside a subrack, and grooms electrical signals by working with the service boards. 21.2 USXH USXH: 6.4T Universal Cross Connect Board 21.3 UXCT UXCT: 6.4T Universal Cross Connect Board 21.4 SXM SXM: OptiX OSN 8800 T64 centralized cross connect board 21.5 SXH SXH: OptiX OSN 8800 T64 centralized cross connect board 21.6 XCT XCT: OptiX OSN 8800 T64 centralized cross connect board 21.7 TN52UXCM TN52UXCM: 3.2T Universal Cross Connect Board 21.8 XCM XCM: Cross & connect process board (Support high- cross and low-cross) 21.9 UXCH UXCH: 3.2T Universal Cross Connect Board 21.10 TN52XCH TN52XCH: OptiX OSN 8800 T32 centralized cross connect board 21.11 TN16XCH TN16XCH: high cross-connection, system control and clock processing board 21.12 TN16UXCM TN16UXCM: 1.6T Universal Cross Connect, System Control and Clock Processing Board Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2280
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.13 XCS XCS: centralized cross connect board 21.14 SCC SCC: system control and communication board 21.15 AUX AUX: system auxiliary interface unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2281
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.1 Overview A cross-connect board establishes physical channels for electrical signals on service boards inside a subrack, and grooms electrical signals by working with the service boards.
Positions of Cross-Connect Boards in a WDM System Figure 21-1 shows the positions of cross-connect boards in a WDM system. Figure 21-1 Positions of cross-connect boards in a WDM system
Cross-connect board Client side
Tributary board
Line board ODUk
Client side
Client side
Packet service board
Packet service board Packet service board
Line board
Packet
OCS board
Packet service board
OCS board VC-n
OCS board
WDM side
WDM side
Line side
Client service add/dropped from the WDM/line-side Pass-through WDM service Pass-through client service
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2282
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Mapping Between Cross-Connect Boards and Subrack Types Subrack Type
Cross-Connect Board
Cross-Connect Capacity
OptiX OSN 8800 T64a
TNK2USXH, TNK2UXCT, TNK4SXH, TNK2SXH, TNK4SXM, TNK2SXM, TNK4XCT, and TNK2XCT
OptiX OSN 8800 T64 CrossConnect Capacities
OptiX OSN 8800 T32a
TN52UXCH, TN52UXCM, TN52XCH, and TN52XCM
OptiX OSN 8800 T32 CrossConnect Capacities
OptiX OSN 8800 T16
TN16XCHb, and TN16UXCMb
OptiX OSN 8800 T16 CrossConnect Capacities
OptiX OSN 6800
TN12XCS and TN11XCS
OptiX OSN 6800 Cross-Connect Capacities
a: An enhanced OptiX OSN 8800 T64 subrack supports the TNK2USXH and TNK2UXCT boards, and an enhanced OptiX OSN 8800 T32 subrack supports the TN52UXCH and TN52UXCM boards. b: The TN16UXCM/TN16XCH has integrated with the functions of a cross-connect board, system control board, and clock board.
21.2 USXH USXH: 6.4T Universal Cross Connect Board
21.2.1 Version Description The available functional version of the USXH board is TNK2. The USXH board is only used on the enhanced OptiX OSN 8800 T64 subrack.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
Enhanced 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TNK 2US XH
Y
N
N
N
N
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2283
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.2.2 Application As a type of cross-connect unit, the USXH board cross-connects services. The USXH board applies to enhanced OptiX OSN 8800 T64 subracks. For the position of the USXH board in the system, see Figure 21-2 and Figure 21-3.
Independent use of the USXH board Figure 21-2 Position of the USXH board in the OCS system 1 SLO16
STM-16
1
SLD64
SLD64 USXH
USXH SLD64
SLD64
8
STM-16
SLO16
8
Joint use of the USXH board and the UXCT board Figure 21-3 Position of the USXH board in the WDM system G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
TOM
4
MUX
DMUX 4
NS2 4
4
UXCT USXH
NS2 Client side
4
DMUX
MUX 4
WDM side
UXCT USXH
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
Client side
NOTE
For a subrack with USXH boards but without UXCT boards, the UXCT boards must be installed if ODUk transmission is required. When adding the UXCT boards, install the physical UXCT boards before creating their logical boards; otherwise, the existing SDH services on the subrack will be interrupted.
21.2.3 Functions and Features The USXH board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-1. Table 21-1 Functions and features of the USXH board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Grooms services.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2284
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Cross-connect function
Supports a maximum of 1.28 Tbit/s VC-4 cross-connect grooming. Supports a maximum of 6.4 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) cross-connect grooming when the USXH board is jointly used with the UXCT board. Supports hybrid transmission of the above-mentioned services with the maximum cross-connect capacity of 6.4 Tbit/s.
Protection scheme
l Supports cross-connection 1+1 protection. l provides 1+1 hot backup. l provides 1+1 warm backup.
Switching mode
Supports manual switching and auto switching. Supports non-revertive switching.
Electrical-layer ASON
Supported
21.2.4 Working Principle and Signal Flow The USXH board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-4 shows the functional modules and signal flow of the USXH board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2285
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-4 Functional modules and signal flow of the USXH board Backplane(service cross-connection)
ODU0/ODU1/ODU2/ODU2e/ ODU3/ODU4/ODUflex/VC-4
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data of each service board through the backplane, performs electrical grooming of the VC-4/ODUk (k=0, 1, 2, 2e, 3, 4, or flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.2.5 Front Panel There are indicators on the front panel of the USXH board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2286
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Appearance of the Front Panel Figure 21-5 shows the front panel of the USXH board. Figure 21-5 Front panel of the USXH board
USXH
STAT ACT PROG SRV
USXH
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2287
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The USXH board does not provide external interfaces.
21.2.6 Valid Slots One slot houses one USXH board. Table 21-2 shows the valid slots for the USXH board. Table 21-2 Valid slots for the USXH board Product
Valid Slots
Enhanced OptiX OSN 8800 T64 subrack
IU10, IU44
21.2.7 USXH Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H)
l
Weight: 3.7 kg (8.1 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2USXH +TNK2UXCT
169
186
630–7.4 x (64– n)
693–8.1 x (64– n)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2288
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
NOTE When the OptiX OSN 8800 T64 subrack grooms electrical-layer signals through the backplane, the USXH and UXCT must be configured. "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.3 UXCT UXCT: 6.4T Universal Cross Connect Board
21.3.1 Version Description The available functional version of the UXCT board is TNK2. The UXCT board is only used on the enhanced OptiX OSN 8800 T64 Subrack.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
Enhanced 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TNK 2UX CT
Y
N
N
N
N
N
N
21.3.2 Application As a type of cross-connect unit, the UXCT board works with the USXH board to cross-connect ODUk signals. The UXCT board applies to enhanced OptiX OSN 8800 T64 subracks. For the position of the UXCT board in the WDM system, see Figure 21-6. Figure 21-6 Position of the UXCT board in the WDM system G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
TOM
UXCT USXH
Issue 03 (2013-05-16)
MUX
DMUX 4
NS2 4
4 NS2
Client side
4
4
WDM side
DMUX
MUX 4
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
UXCT USXH
Client side
2289
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
NOTE
For a subrack with USXH boards but without UXCT boards, the UXCT boards must be installed if ODUk transmission is required. When adding the UXCT boards, install the physical UXCT boards before creating their logical boards; otherwise, the existing SDH services on the subrack will be interrupted.
21.3.3 Functions and Features The UXCT board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-3. Table 21-3 Functions and features of the UXCT board Function and Feature
Description
Basic function
Grooms services.
Cross-connect function
Supports a maximum of 6.4 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) cross-connect grooming when the UXCT board is jointly used with the USXH board.
Protection scheme
l Supports cross-connection 1+1 protection. l provides 1+1 hot backup. l provides 1+1 warm backup.
Switching mode
Supports manual switching and auto switching. Supports non-revertive switching.
Electrical-layer ASON
Supported
21.3.4 Working Principle and Signal Flow The UXCT board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-7 shows the functional modules and signal flow of the UXCT board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2290
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-7 Functional modules and signal flow of the UXCT board ODU0/ODU1/ODU2/ODU2e/ ODU3/ODU4/ODUflex Backplane(service cross-connection)
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data of each service board through the backplane, performs electrical grooming of the ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.3.5 Front Panel There are indicators on the front panel of the UXCT board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2291
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Appearance of the Front Panel Figure 21-8 shows the front panel of the UXCT board. Figure 21-8 Front panel of the UXCT board
UXCT
STAT ACT PROG SRV
UXCT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2292
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The UXCT board does not provide external interfaces.
21.3.6 Valid Slots One slot houses one UXCT board. Table 21-4 shows the valid slots for the UXCT board. Table 21-4 Valid slots for the UXCT board Product
Valid Slots
Enhanced OptiX OSN 8800 T64 subrack
IU9, IU43
21.3.7 UXCT Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H)
l
Weight: 3.8 kg (8.4 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2293
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2USXH +TNK2UXCT
169
186
630–7.4 x (64– n)
693–8.1 x (64– n)
NOTE When the OptiX OSN 8800 T64 subrack grooms electrical-layer signals through the backplane, the USXH and UXCT must be configured. "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.4 SXM SXM: OptiX OSN 8800 T64 centralized cross connect board
21.4.1 Version Description The available functional versions of the SXM board are TNK2 and TNK4. The SXM board is only used on the OptiX OSN 8800 T64.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Bo ard
Enhanc ed 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN K2 SX M
N
Y
N
N
N
N
N
TN K4 SX M
Y
Y
N
N
N
N
N
Differences Between Versions The specifications vary according to versions. For details, see 21.4.7 SXM Specifications. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2294
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Substitution Relationship Table 21-5 Substitution rules of the SXM board Original Board
Substitute Board
Substitution Rules
TNK2SXM
TNK4SXM
The TNK4SXM can be created as TNK2SXM on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TNK4SXM functions as the TNK2SXM.
TNK4SXM
None
None
21.4.2 Application As a type of cross-connect unit, the SXM board cross-connects services. The SXM board applies to OptiX OSN 8800 T64 subracks. For the position of the SXM board in the system, see Figure 21-9 and Figure 21-10.
Independent use of the SXM board Figure 21-9 Position of the SXM board in the OCS system
SLO1 6
STM-16
1
SLQ6 4
SLQ6 4
1 SXM
SLO1 6
SXM SLQ6 4
SLQ6 4
8
STM-16
8
Joint use of the SXM board and the XCT board Figure 21-10 Position of the SXM board in the WDM system G.694. 1
G.694. 1 NS2 100Mbit/s 2.5Gbit/s
TOM
XCT
SXM
Issue 03 (2013-05-16)
MUX
DMUX 4
NS2 4
4 NS2
Client side
4
4
DMUX
WDM side
MUX 4 WDM side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SXM
XCT
TOM
100Mbit/s 2.5Gbit/s
NS2 Client side
2295
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION For a subrack with SXH/SXM boards but without XCT boards, the XCT boards must be installed if ODUk transmission is required. When adding the XCT boards, install the physical XCT boards before creating their logical boards; otherwise, the existing SDH services on the subrack will be interrupted.
21.4.3 Functions and Features The SXM board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-6. Table 21-6 Functions and features of the SXM board Function and Feature
Description
Basic function
Grooms services.
Cross-connect function
Supports a maximum of 1.28 Tbit/s VC-4 cross-connect grooming. Supports a maximum of 80 Gbit/s lower-order VC-12 and VC-3 cross-connect grooming. Supports a maximum of 2.56 Tbit/s ODUk (k = 0, 1, 2, 2e, 3 or flex) cross-connect grooming when the SXM board is jointly used with the XCT board.
Protection scheme
l Supports cross-connection 1+1 protection. l provides 1+1 hot backup. l provides 1+1 warm backup.
Switching mode
Supports manual switching and auto switching. Supports non-revertive switching.
Electrical-layer ASON
Supported
21.4.4 Working Principle and Signal Flow The SXM board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-11 shows the functional modules and signal flow of the SXM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2296
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-11 Functional modules and signal flow of the SXM board VC-12/VC-3/VC-4/ODU0/ODU1/ODU2/ ODU2e/ODU3/ODUflex
Backplane(service cross-connection)
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data of each service board through the backplane, performs electrical grooming of the VC-4/VC-3/VC-12/ODUk (k=0, 1, 2, 2e, 3, flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.4.5 Front Panel There are indicators on the front panel of the SXM board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2297
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Appearance of the Front Panel Figure 21-12 shows the front panel of the SXM board. Figure 21-12 Front panel of the SXM board
SXM
STAT ACT PROG SRV
SXM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2298
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The SXM board does not provide external interfaces.
21.4.6 Valid Slots One slot houses one SXM board. Table 21-7 shows the valid slots for the SXM board. Table 21-7 Valid slots for the SXM board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU10, IU44
NOTE
Enhanced OptiX OSN 8800 T64 subrack only supports the TNK4SXM.
21.4.7 SXM Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications TNK2SXM: l
Issue 03 (2013-05-16)
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2299
OptiX OSN 8800/6800/3800 Hardware Description
l
21 Cross-Connect Board and System and Communication Board
Weight: 3.74 kg (8.2 lb.)
TNK4SXM: l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H)
l
Weight: 3.00 kg (6.59 lb.)
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2SXM +TNK2XCT
190
209
530–3.6 x (64– n)
583–3.6 x (64– n)
TNK4SXM +TNK4XCT
97
107
188–1.2 x (64– n)
207–1.32 x (64– n)
TNK2SXM +TNK4XCT
173
190
378–2.5 x (64– n)
416–2.5 x (64– n)
TNK4SXM +TNK2XCT
114
125
324–2.5 x (64– n)
356–2.5 x (64– n)
NOTE When the OptiX OSN 8800 T64 subrack grooms electrical-layer signals through the backplane, the SXM and XCT must be configured. "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.5 SXH SXH: OptiX OSN 8800 T64 centralized cross connect board
21.5.1 Version Description The available functional versions of the SXH board are TNK2 and TNK4. The SXH board is only used on the OptiX OSN 8800 T64.The available functional version of the SXH board is TNK4. The SXH board is only used on the OptiX OSN 8800 T64.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2300
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Bo ard
Enhanc ed 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN K2 SX H
N
Y
N
N
N
N
N
TN K4 SX H
Y
Y
N
N
N
N
N
Differences Between Versions The specifications vary according to versions. For details, see 21.5.7 SXH Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TNK2SXH
TNK4SXH
The TNK4SXH can be created as TNK2SXH on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TNK4SXH functions as the TNK2SXH.
TNK4SXH
None
None
21.5.2 Application As a type of cross-connect unit, the SXH board cross-connects services. The SXH board applies to OptiX OSN 8800 T64 subracks. For the position of the SXH board in the system, see Figure 21-13 and Figure 21-14.
Independent use of the SXH board Figure 21-13 Position of the SXH board in the OCS system 1 SLO16
STM-16
8
Issue 03 (2013-05-16)
SLQ64
1
SLQ64
SXH
SXH SLQ64
SLQ64
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
STM-16
SLO16
8
2301
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Joint use of the SXH board and the XCT board Figure 21-14 Position of the SXH board in the WDM system G.694.1
G.694.1 4
NS2 100Mbit/s2.5Gbit/s
TOM
XCT
MUX
DMUX 4
NS2 4
4
SXH
NS2
4
DMUX
MUX 4
WDM side
Client side
SXH
XCT
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
Client side
CAUTION For a subrack with SXH/SXM boards but without XCT boards, the XCT boards must be installed if ODUk transmission is required. When adding the XCT boards, install the physical XCT boards before creating their logical boards; otherwise, the existing SDH services on the subrack will be interrupted.
21.5.3 Functions and Features The SXH board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-8. Table 21-8 Functions and features of the SXH board Function and Feature
Description
Basic function
Grooms services.
Cross-connect function
Supports a maximum of 1.28 Tbit/s VC-4 cross-connect grooming.
Protection scheme
l Supports cross-connection 1+1 protection.
Supports a maximum of 2.56 Tbit/s ODUk (k = 0, 1, 2, 2e, 3 or flex) cross-connect grooming when the SXH board is jointly used with the XCT board.
l provides 1+1 hot backup. l provides 1+1 warm backup. Switching mode
Supports manual switching and auto switching. Supports non-revertive switching.
Electrical-layer ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2302
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.5.4 Working Principle and Signal Flow The SXH board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-15 shows the functional modules and signal flow of the SXH board. Figure 21-15 Functional modules and signal flow of the SXH board Backplane(service cross-connection)
VC-4/ODU0/ODU1/ODU2/ ODU2e/ODU3/ODUflex
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data of each service board through the backplane, performs electrical grooming of the VC-4/ODUk (k=0, 1, 2, 2e, 3 or flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2303
OptiX OSN 8800/6800/3800 Hardware Description
l
21 Cross-Connect Board and System and Communication Board
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.5.5 Front Panel There are indicators on the front panel of the SXH board.
Appearance of the Front Panel Figure 21-16 shows the front panel of the SXH board. Figure 21-16 Front panel of the SXH board
SXH
STAT ACT PROG SRV
SXH
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2304
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The SXH board does not provide external interfaces.
21.5.6 Valid Slots One slot houses one SXH board. Table 21-9 shows the valid slots for the SXH board. Table 21-9 Valid slots for the SXH board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU10, IU44
NOTE
Enhanced OptiX OSN 8800 T64 only supports the TNK4SXH.
21.5.7 SXH Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications TNK2SXH: l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H)
l
Weight: 3.74 kg (8.1lb.)
TNK4SXH: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2305
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) or 1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H)
l
Weight: 2.68 kg (5.8Ib.)
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2SXH +TNK2XCT
130
143
470–3.6 x (64– n)
517–3.6 x (64– n)
TNK4SXH +TNK4XCT
95
105
169–1.2 x (64– n)
186–1.32 x (64– n)
TNK2SXH +TNK4XCT
113
124
318–2.5 x (64n)
350–2.5 x (64n)
TNK4SXH +TNK2XCT
112
123
321–2.5 x (64n)
353–2.5 x (64n)
NOTE When the OptiX OSN 8800 T64 subrack grooms electrical-layer signals through the backplane, the SXH and XCT must be configured. "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.6 XCT XCT: OptiX OSN 8800 T64 centralized cross connect board
21.6.1 Version Description The available functional versions of the XCT board are TNK2 and TNK4. The XCT board is only used on the OptiX OSN 8800 T64.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
Enhanced 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TNK 2XC T
N
Y
N
N
N
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2306
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Boar d
Enhanced 8800 T64 Subrack
General 8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TNK 4XC T
Y
Y
N
N
N
N
N
Differences Between Versions The specifications vary according to versions. For details, see 21.6.7 XCT Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TNK2XCT
TNK4XCT
The TNK4XCT can be created as TNK2XCT on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TNK4XCT functions as the TNK2XCT.
TNK4XCT
None
None
21.6.2 Application As a type of cross-connect unit, the XCT board is used with the SXH/SXM board to implement cross-connect grooming. The XCT board applies to OptiX OSN 8800 T64 subracks. For the position of the XCT board in the WDM system, see Figure 21-17. Figure 21-17 Position of the XCT board in the WDM system G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
TOM
XCT
SXH / SXM
Issue 03 (2013-05-16)
MUX
DMUX 4
NS2 4
4 NS2
Client side
4
4
DMUX
WDM side
MUX 4
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SXH XCT / SXM
Client side
2307
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION For a subrack with SXH/SXM boards but without XCT boards, the XCT boards must be installed if ODUk transmission is required. When adding the XCT boards, install the physical XCT boards before creating their logical boards; otherwise, the existing SDH services on the subrack will be interrupted.
21.6.3 Functions and Features The XCT board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-10. Table 21-10 Functions and features of the XCT board Function and Feature
Description
Basic function
Grooms services.
Cross-connect function
Supports a maximum of 2.56 Tbit/s ODUk (k = 0, 1, 2, 2e, 3 or flex) cross-connect grooming when the XCT board is jointly used with the SXM/SXH board.
Protection scheme
l Supports cross-connection 1+1 protection. l provides 1+1 hot backup. l provides 1+1 warm backup.
Switching mode
Supports manual switching and auto switching. Supports non-revertive switching.
Electrical-layer ASON
Supported
21.6.4 Working Principle and Signal Flow The XCT board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-18 shows the functional modules and signal flow of the XCT board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2308
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-18 Functional modules and signal flow of the XCT board ODU0/ODU1/ODU2/ODU2e/ODU3/ODUflex
Backplane(service cross-connection)
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data of each service board through the backplane, performs electrical grooming of the ODUk (k = 0, 1, 2, 2e, 3, flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.6.5 Front Panel There are indicators on the front panel of the XCT board.
Appearance of the Front Panel Figure 21-19 shows the front panel of the XCT board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2309
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-19 Front panel of the XCT board
XCT
STAT ACT PROG SRV
XCT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2310
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The XCT board does not provide external interfaces.
21.6.6 Valid Slots One slot houses one XCT board. Table 21-11 shows the valid slots for the XCT board. Table 21-11 Valid slots for the XCT board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU9, IU43
NOTE
Enhanced OptiX OSN 8800 T64 subrack only supports the TNK4XCT.
21.6.7 XCT Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications TNK2XCT: l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) (1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H))
l
Weight: 3.6 kg (7.9 lb.)
TNK4XCT: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2311
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
l
Dimensions of front panel: 34.1 mm (W) x 220 mm (D) x 602.5 mm (H) (1.4 in. (W) x 8.7 in. (D) x 23.7 in. (H))
l
Weight: 2.9 kg (6.4 lb.)
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2SXM +TNK2XCT
190
209
530–3.6 x (64– n)
583–3.6 x (64– n)
TNK2SXH +TNK2XCT
130
143
470–3.6 x (64– n)
517–3.6 x (64– n)
TNK4SXM +TNK4XCT
97
107
188–1.2 x (64– n)
207–1.32 x (64– n)
TNK4SXH +TNK4XCT
95
105
169–1.2 x (64– n)
186–1.32 x (64– n)
TNK2SXM +TNK4XCT
173
190
378–2.5 x (64– n)
416–2.5 x (64– n)
TNK4SXM +TNK2XCT
114
125
324–2.5 x (64– n)
356–2.5 x (64– n)
TNK2SXH +TNK4XCT
113
124
318–2.5 x (64n)
350–2.5 x (64n)
TNK4SXH +TNK2XCT
112
123
321–2.5 x (64n)
353–2.5 x (64n)
NOTE When the OptiX OSN 8800 T64 subrack grooms electrical-layer signals through the backplane, the SXM/SXH and XCT must be configured. "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.7 TN52UXCM TN52UXCM: 3.2T Universal Cross Connect Board
21.7.1 Version Description Only one functional version of the TN52UXCM board is available, that is TN52.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2312
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Bo ard
8800 T64 Subrack
Enhanc ed 8800 T32 Subrack
General 8800 T32 Subrack
8800 T16 Subrack
8800 Platfor m Subrack
6800 Subrack
3800 Chassis
TN 52 UX C M
N
Y
N
N
N
N
N
21.7.2 Application The TN52UXCM board is a cross-connect board. It implements cross-connections of ODUk (k=0, 1, 2, 2e, 3, 4, flex)/VC-4/VC-3/VC-12services and packet switching of Ethernet services. The TN52UXCM board applies to enhanced OptiX OSN 8800 T32 subracks For the position of the TN52UXCM in the OCS system, see Figure 21-20. For the position of the TN52UXCM in the WDM system, see Figure 21-21 and Figure 21-22. Figure 21-20 Position of the TN52UXCM in the OCS system 1
SLQ64 SLO16
STM-16
1
SLQ64
UXCM
UXCM SLQ64
8
STM-16
SLO16
SLQ64
8
Figure 21-21 Position of the TN52UXCM in the WDM system (ODUk cross-connect) G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
TOM
UXCM
Issue 03 (2013-05-16)
MUX
DMUX 4
NS2 4
4 NS2
Client side
4
4
WDM side
DMUX
MUX 4
UXCM
TOM
100Mbit/s2.5Gbit/s
NS2 WDM side
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Client side
2313
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-22 Position of the TN52UXCM in the WDM system (Packet switch) G.694.1
G.694.1 MUX GE
EG16
UXCM
DMUX PND2
PND2 DMUX
Client side
UXCM
EG16
GE
MUX
WDM side
WDM side
Client side
21.7.3 Functions and Features The main function and feature of the UXCM is the cross-connection at the electrical layer. For detailed functions and features, refer to Table 21-12. Table 21-12 Functions and features of the TN52UXCM Function and Feature
Description
Basic function
Grooms services.
Cross-connect functions
l Cross-connects a maximum of 3.2 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) signals. l Performs packet switching of a maximum of 1.6 Tbit/s Ethernet services. l Cross-connects a maximum of 1.28 Tbit/s VC-4 signals. l Cross-connects a maximum of 80 Gbit/s VC-3/VC-12 signals. l Supports hybrid transmission of the above-mentioned services with the maximum cross-connect capacity of 3.2 Tbit/s.
Protection scheme
l Supports cross-connection 1+1 protection. l provides 1+1 hot backup. l provides 1+1 warm backup.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported
21.7.4 Working Principle and Signal Flow The TN52UXCM board consists of the ODUk/VC cross-connect module, packet switch module, control and communication module, and power supply module. Figure 21-23 shows the functional modules and signal flow of the UXCM. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2314
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-23 Functional modules and signal flow of the UXCM Backplane(service cross-connection) ODU0/ODU1/ODU2/ODU2e /ODU3/ODU4/ODUflex/VC4/VC-3/VC-12
Packets
ODUk/VC cross-connect module
Packet switch module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
ODUk/VC cross-connect module The cross-connect module receives the data from each service board through the backplane to implement the electrical-layer grooming of ODUk (k= 0, 1, 2, 2e, 3, 4 or flex) signals or VC-4/VC-3/VC-12 signals. Then, the cross-connect module sends the signals to each service board to complete service cross-connection.
l
Packet switch module The packet switch module receives packets from the packet processing boards through the backplane and sends services to the packet processing boards. In this manner, the packet switch module implements packet switching of Ethernet services.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2315
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
– Converts the DC power supplied by the backplane into the power required by each module on the board.
21.7.5 Front Panel There are indicators on the TN52UXCM front panel.
Appearance of the Front Panel Figure 21-24 shows the TN52UXCM front panel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2316
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-24 TN52UXCM front panel
UXCM
STAT ACT PROG SRV
UXCM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2317
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The TN52UXCM does not provide external interfaces.
21.7.6 Valid Slots One slot houses one UXCM board. Table 21-13 shows the valid slots for the TN52UXCM board. Table 21-13 Valid slots for the UXCM board Product
Valid Slots
Enhanced OptiX OSN 8800 T32 subrack
IU9, IU10
21.7.7 TN52UXCM Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 27.2 mm (W) x 220 mm x (D) 581.5 mm (H) or 1.1 in. (W) x 8.7 in. (D) x 22.9 in. (H)
l
Weight: 4.0 kg (8.8 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2318
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52UXCM
119
131
372 - 7.4 x (32 n) -24 x m
409 - 8.1 x (32 n) -26.4 x m
NOTE l "n" is equal to the total number of tributary, line, and PID boards housed in a subrack. l If a subrack is configured with VC-3 or VC-12 cross-connections, "m" is equal to 0. l If a subrack is not configured with any VC-3 or VC-12 cross-connections, "m" is equal to 1.
21.8 XCM XCM: Cross & connect process board (Support high- cross and low-cross)
21.8.1 Version Description Only one functional version of the XCM board is available, that is TN52.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 2XC M
N
Y
N
N
N
N
21.8.2 Application The XCM board is a cross-connect board. It supports 1.28 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, or flex)/VC-4/VC-3/VC-12 cross-connections. The XCM board applies to OptiX OSN 8800 T32 subracks For the position of the XCM in the OCS system, see Figure 21-25. For the position of the XCM in the WDM system, see Figure 21-26. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2319
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-25 Position of the XCM in the OCS system 1 SLO16
STM-16
1
SLQ64
SLQ64 XCM
XCM SLQ64
SLQ64
8
STM-16
SLO16
8
Figure 21-26 Position of the XCM in the WDM system G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
XCM
TOM
4
MUX
DMUX 4
NS2 4
4 NS2
Client side
4
DMUX
MUX 4
WDM side
XCM
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
Client side
21.8.3 Functions and Features The main function and feature of the XCM is the cross-connection at the electrical layer. For detailed functions and features, refer to Table 21-14. Table 21-14 Functions and features of the XCM Function and Feature
Description
Basic function
Grooms services.
Cross-connect functions
l Implements cross-connection of 1.28 Tbit/s ODUk (k = 0, 1, 2, 2e, 3 or flex)/VC-4 signals. l Implements cross-connection of 80 Gbit/s VC-3/VC-12 signals.
Protection scheme
Supports cross-connection 1+1 protection and provides 1+1 hot backup.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported
21.8.4 Working Principle and Signal Flow The XCM board consists of the cross-connect module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2320
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-27 shows the functional modules and signal flow of the XCM. Figure 21-27 Functional modules and signal flow of the XCM ODU0/ODU1/ODU2/ODU2e/ODUflex/ ODU3/VC-4/VC-3/VC-12
Backplane (for service cross-connection)
Cross-connect module
Control Storage
CPU
communication
Control and communication module Voltages for boards Power module Fuse
DC power provided by the backplane
SCC
Backplane (for SCC control)
Module Function l
Cross-connect module The cross-connect module receives the data from each service board through the backplane to implement the electrical-layer grooming of ODUk (k= 0, 1, 2, 2e, 3 or flex) signals or VC-4/VC-3/VC-12 signals. Then, the cross-connect module sends the signals to each service board to complete service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2321
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.8.5 Front Panel There are indicators on the XCM front panel.
Appearance of the Front Panel Figure 21-28 shows the XCM front panel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2322
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-28 XCM front panel
XCM
STAT ACT PROG SRV
XCM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2323
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The XCM does not provide external interfaces.
21.8.6 Valid Slots One slot houses one XCM board. Table 21-15 shows the valid slots for the XCM board. Table 21-15 Valid slots for the XCM board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU9, IU10
21.8.7 XCM Board Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 27.2 mm (W) x 220 mm (D) x 581.5 mm (H) or 1.1 in. (W) x 8.7 in. (D) x 22.9 in. (H)
l
Weight: 3.84 kg (8.45 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2324
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52XCM01
125
138
339 - 3.6 x (32 n) -80 x m
368 - 3.6 x (32 n) -80 x m
TN52XCM02
67
73.7
124 - 1.12 x (32 - n) -80 x m
136.4 - 1.12 x (32 - n) -80 x m
NOTE l "n" is equal to the total number of tributary, line, and PID boards housed in a subrack. l If a subrack is configured with VC-3 or VC-12 cross-connections, "m" is equal to 0. l If a subrack is not configured with any VC-3 or VC-12 cross-connections, "m" is equal to 1.
21.9 UXCH UXCH: 3.2T Universal Cross Connect Board
21.9.1 Version Description The available functional version of the UXCH board is TN52. The UXCH board is only used on the enhanced OptiX OSN 8800 T32 Subrack.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
Enhanced 8800 T32 Subrack
General 8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 2UX CH
N
Y
N
N
N
N
N
21.9.2 Application The UXCH board is a cross-connect board and applies to enhanced OptiX OSN 8800 T32 subracks. It can cross-connect ODUk (k = 0, 1, 2, 2e, 3, 4, or flex) signals and VC-4 signals and performs packet switching of Ethernet services. For the position of the UXCH board in the WDM system, see Figure 21-29 and Figure 21-30. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2325
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
For the position of the UXCH in the OCS system, see Figure 21-31. Figure 21-29 Position of the UXCH board in the WDM system (ODUk cross-connection) G.694.1
G.694.1 NS2 100Mbit/s2.5Gbit/s
MUX
DMUX 4
NS2 4
4
UXCH
TOM
4
NS2 Client side
DMUX
4
MUX 4
UXCH
100Mbit/s2.5Gbit/s
TOM
NS2 WDM side
WDM side
Client side
Figure 21-30 Position of the UXCH board in the WDM system (Packet switch) G.694.1
G.694.1 MUX GE
UXCH
EG16
DMUX PND2
PND2 DMUX
Client side
UXCH
EG16
GE
MUX WDM side
WDM side
Client side
Figure 21-31 Position of the UXCH in the OCS system 1
SLQ64 SLO16
STM-16
UXCH
UXCH SLQ64
8
1
SLQ64
STM-16
SLO16
SLQ64
8
21.9.3 Functions and Features The UXCH board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-16. Table 21-16 Functions and features of the UXCH board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Implements grooming of services.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2326
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Cross-connect function
l Cross-connects a maximum of 3.2 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) signals. l Performs packet switching of a maximum of 1.6 Tbit/s Ethernet services. l Cross-connects a maximum of 1.28 Tbit/s VC-4 signals. l Supports hybrid transmission of the above-mentioned services with the maximum cross-connect capacity of 3.2 Tbit/s.
Protection scheme
l Supports cross-connection 1+1 protection. l Provides 1+1 hot backup. l Provides 1+1 warm backup.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported
21.9.4 Working Principle and Signal Flow The UXCH board consists of the ODUk/VC cross-connect module, packet switch module, control and communication module, and power supply module. Figure 21-32 shows the functional modules and signal flow of the UXCH board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2327
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-32 Functional modules and signal flow of the UXCH board Backplane(service cross-connection) ODU0/ODU1/ODU2/ODU2e/ ODU3/ODU4/ODUflex/VC-4
Packets
ODUk/VC cross-connect module
Packet switch module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
ODUk/VC cross-connect module The cross-connect module receives data from each service board through the backplane, performs electrical grooming of the ODUk (k = 0, 1, 2, 2e, 3, 4 or flex) service and VC-4 service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Packet switch module The packet switch module receives packets from the packet processing boards through the backplane and sends services to the packet processing boards. In this manner, the packet switch module implements packet switching of Ethernet services.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l Issue 03 (2013-05-16)
Power supply module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2328
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
– Converts the DC power supplied by the backplane into the power required by each module on the board.
21.9.5 Front Panel There are indicators on the front panel of the UXCH board.
Appearance of the Front Panel Figure 21-33 shows the front panel of the UXCH board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2329
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-33 Front panel of the UXCH board
UXCH
STAT ACT PROG SRV
UXCH
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2330
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The UXCH board does not provide external interfaces.
21.9.6 Valid Slots One slot houses one UXCH board. Table 21-17 shows the valid slots for the UXCH board. Table 21-17 Valid slots for the UXCH board Product
Valid Slots
Enhanced OptiX OSN 8800 T32 subrack
IU9, IU10
21.9.7 UXCH Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 27.9 mm (W) x 220 mm (D) x 581.5 mm (H) or 1.1 in. (W) x 8.7 in. (D) x 22.9 in. (H)
l
Weight: 3.9 kg (8.6 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2331
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52UXCH
87
96
340 - 7.4 x (32 n)
374 - 8.1 x (32 n)
NOTE "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.10 TN52XCH TN52XCH: OptiX OSN 8800 T32 centralized cross connect board
21.10.1 Version Description The available functional version of the XCH board is TN52.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN5 2XC H
N
Y
N
N
N
N
NOTE
The TN52XCH board are available in two variants: TN52XCH01 and TN52XCH02. The two board variants are interchangeable.
21.10.2 Application The XCH board is a cross-connect board. It supports 1.28 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, or flex)/VC-4 cross-connections. The XCH board applies to OptiX OSN 8800 T32 subracks For the position of the XCH board in the WDM system, see Figure 21-34. For the position of the XCH board in the OCS system, see Figure 21-35 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2332
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-34 Position of the XCH board in the WDM system G.694.1
G.694.1 4
NS2 100Mbit/s-
DMUX 4
2.5Gbit/s
NS2
4
DMUX
MUX 4
XCH
100Mbit/s-
TOM
2.5Gbit/s NS2 Client side
WDM side
WDM side
Client side
NS2 4
4
XCH
TOM
MUX
Figure 21-35 Position of the XCH board in the OCS system 1
SLQ64 SLO16
STM-16
XCH
XCH SLQ64
8
1
SLQ64
STM-16
SLO16
SLQ64
8
21.10.3 Functions and Features The XCH board is mainly used to cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-18. Table 21-18 Functions and features of the XCH board Function and Feature
Description
Basic function
Implements grooming of services.
Cross-connect function
Implements non-congestion full cross-connection of 1.28 Tbit/s ODUk (k = 0, 1, 2, 2e, 3 or flex)/VC-4 signals.
Protection scheme
Supports cross-connection 1+1 protection and provides 1+1 hot backup. Supports warm backup.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported
21.10.4 Working Principle and Signal Flow The XCH board consists of the cross-connect module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2333
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-36 shows the functional modules and signal flow of the XCH board. Figure 21-36 Functional modules and signal flow of the XCH board ODU0/ODU1/ODU2/ODU2e/ ODUflex/ODU3/VC-4
Backplane(service cross-connection)
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module The cross-connect module receives data from each service board through the backplane, performs electrical grooming of the ODUk (k = 0, 1, 2, 2e, 3, or flex)/VC-4 service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.10.5 Front Panel There are indicators on the front panel of the XCH board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2334
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Appearance of the Front Panel Figure 21-37 shows the front panel of the XCH board. Figure 21-37 Front panel of the XCH board
XCH
STAT ACT PROG SRV
XCH
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2335
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION : Indicates that the board surface temperature is high and it may cause bodily injuries.
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces The XCH board does not provide external interfaces.
21.10.6 Valid Slots One slot houses one XCH board. Table 21-19 shows the valid slots for the XCH board. Table 21-19 Valid slots for the XCH board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU9, IU10
21.10.7 TN52XCH Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 27.9 mm (W) x 220 mm (D) x 581.5 mm (H) or 1.1 in. (W) x 8.7 in. (D) x 22.9 in. (H)
l
Weight: 3.40 kg (7.49 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2336
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN52XCH01
65
72
243 - 3.6 x (32 n)
267.3 - 3.6 x (32 - n)
TN52XCH02
43
47.3
101 - 1.12 x (32 - n)
111 - 1.12 x (32 - n)
NOTE "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.11 TN16XCH TN16XCH: high cross-connection, system control and clock processing board
21.11.1 Version Description TThe available functional version of the XCH board is TN16.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 6XC H
N
N
Y
N
N
N
21.11.2 Application The TN16XCH, a cross-connect and system control board, implements communication between equipment, synchronizes physical clocks and PTP clocks on the entire NE, implements service cross-connections, and manages each board on the equipment with the U2000. The TN16XCH board applies to OptiX OSN 8800 T16 subracks. For the position of the TN16XCH board in the WDM system, see Figure 21-38.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2337
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-38 Position of the TN16XCH board in the WDM system External clock
External clock
TN16ATE
TN16ATE G.694.1
G.694.1 4 4
TQX
4
TN16 XCH
4
l
DMUX 4 NQ2
NQ2 4
Client side
MUX
DMUX
4
TN16 4 XCH
TQX
4
MUX 4
WDM side
WDM side
Client side
Principles for configuring main control boards in OptiX OSN 8800 T16 subracks: – Electrical subracks: The TN16XCH/TN16UXCM boards must be configured. – Optical subracks (master): The TN16SCC boards must be configured. – Optical subracks (slave): No main control boards are required.
l
Principles for configuring main control boards in OptiX OSN 8800 platform subracks: – Master subracks: Main control boards must be configured. – Slave subracks: No main control boards are required.
l
Principles for configuring main control boards in other types of subracks: – Main control boards must be configured in both master and slave subracks.
21.11.3 Functions and Features The TN16XCH board is mainly used to cross-connect services at the electrical layer, system control function and clock function. For detailed functions and features, refer to Table 21-20. Table 21-20 Functions and features of the TN16XCH board
Issue 03 (2013-05-16)
Function and Feature
Description
Cross-connect function
Implements non-congestion full cross-connection of 640 Gbit/s ODUk (k = 0, 1, 2, 2e, 3, flex) signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2338
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
System control function
l Accomplishes the service grooming, configuration management and alarm output of a subrack.
NOTE The TN16XCH board does not support the system control function when the subrack housing the board is a slave subrack.
l Supports the backup of the NE data. When the NE data changes, the real-time database backup function immediately saves the changed configuration data into the storage medium to ensure that no configuration data is lost after the NE is reset (cold) or powered off. This improves the reliability of the NE. l Supports the function of the CF card to back up database. The NE date (except NE IP, NE ID, Gateway ID and Node ID) and the board software are backed up to the CF card, so that the NE needs not to be re-configured after the replacement of the TN16XCH. l Supports interconnection and communication between NEs through IP over DCC, OSI over DCC, or HWECC. l Implements communication between NEs when used with the TN16AUX by using DCC bytes. l Supports subrack cascading. The TN16XCH board processes subrack overheads and alarms and delivers configurations to slave subracks. It connects to the U2000 so that the U2000 can manage the entire NE.
Clock function
l Basic function: – Locks the reference clock source. – Provides the system with ITU-T clock signals that comply with G.813- and ITU-T G.823 and frame signals. – Synchronizes the time of an NE with the time of the upstream system. l Clock source selection function: Traces the external clock source, service clock source, or local clock source, to provide the synchronization clock source for itself and the system. l Time synchronization function: Synchronizes the time of an NE with the time of the upstream NE.
Protection scheme
Supports 1+1 protection. Provides 1+1 hot backup. Supports warm backup.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2339
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
21.11.4 Working Principle and Signal Flow The TN16XCH board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-39 shows the functional modules and signal flow of the TN16XCH board. Figure 21-39 Functional modules and signal flow of the TN16XCH board Service cross-connection from backplane (ODU0/ODU1/ODU2/ODU2e/ODUflex/ODU3)
Time signals/ Clock signals
Clock processing module
Cross-connect module
CPU and control module
Monitoring module
Power supply module
Overhead processing module
Communication module
Required voltage
Fuse
Backplane
DC power supply from a backplane Other boards
Module Function l
Cross-connect module The cross-connect module receives data from each service board through the backplane, performs electrical grooming of the ODUk (k = 0, 1, 2, 2e, 3 or flex) service, and then sends the service to each service board. In this manner, the cross-connect module implements service cross-connection.
l
Clock procession module Provides a synchronous clock signal for the system. The system clock supports three modes: free-run, holdover, and locked. When the system clock runs in lock mode, the it synchronizes to the line/external clock, tributary clock, or OSC board clock. This module also supports IEEE 1588v2 time and frequency synchronization.
l
CPU and control module Implements the control, monitoring and management of each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2340
OptiX OSN 8800/6800/3800 Hardware Description
l
21 Cross-Connect Board and System and Communication Board
Overhead processing module – Receives overhead signals from the TN16AUX board and processes the overhead bytes. In the TN16XCH board, the 512 DCCs (D1-D3) are processed by the control module. – Sends the overhead signals to the TN16AUX board.
l
Monitoring module Detects whether the boards are in position and reports alarms to the U2000.
l
Communication module Communicates with each board, and reports the data of other boards to the U2000. – Transmits data with other boards through the Ethernet and reports to the U2000. – Transmits urgent data through the RS485.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.11.5 Front Panel There are indicators on the front panel of the TN16XCH board.
Appearance of the Front Panel Figure 21-40 shows the front panel of the TN16XCH board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2341
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-40 Front panel of the TN16XCH board
XCH
STAT ACT PROG SRV
RESET
XCH
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2342
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Buttons Table 21-21 Functions of the buttons on the TN16XCH board Button
Function
RESET
Used to perform a warm reset on the TN16XCH board.
Interfaces The TN16XCH board does not provide external interfaces.
21.11.6 Valid Slots One slot houses one TN16XCH board. Table 21-22 shows the valid slots for the TN16XCH board. Table 21-22 Valid slots for the TN16XCH board Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU9, IU10
21.11.7 Switch and Jumper Switches and jumpers that can be set on the TN16XCH board include battery jumpers and BIOS switches. The battery on the TN16XCH helps to ensure that the configuration is kept upon a power failure of the TN16XCH. If the board is in use, place a jumper cap over the battery jumper to make a short circuit, which allows the battery to supply power normally. If the board is not in use, use a jumper cap to disconnect the battery jumper. The BIOS switches helps clear the system parameter area and database in the flash memory on the SCC board. Table 21-23 shows the function of the BIOS switches. Figure 21-41 shows the position of switches on the TN16XCH board. Table 21-23 Function of the BIOS Switch
Issue 03 (2013-05-16)
BIOS State
Description
Binary value
A
Clear the system parameter area.
1010
B
Restores the system parameter area, database, and NE software from the CF card.
1001
C
Clear the database in the flash memory.
1011
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2343
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
BIOS State
Description
Binary value
D
Clear all the data in the flash memory except the board manufacturing information. The data includes the system data, system parameter areas, and extended BIOS files. The upper layer part of BIOS is not started.
1111
Figure 21-41 Position of the switches on the TN16XCH board BIOS Switch
Battery Jumper
Binary Value 1010 0 1 0 1 ON
Battery Jumper ON DIP
BIOS DIP Switch
2
2
SW1
3
1 234
1 J1
DIP SW1
State A 1 2 3 4
2 J1
1
Binary Value 1001 1 0 0 1 ON
DIP SW1
State B 1 2 3 4
CF Card
Battery is used 3
Battery is not used 3
2 J1
1
Binary Value 1011 1 1 0 1 ON
DIP SW1
State C 1 2 3 4
Binary Value 1111 1 1 1 1 ON
DIP
State D
SW1 1 2 3 4
21.11.8 TN16XCH Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 37.6 mm (W) x 220 mm (D) x 350.3 mm (H) (1.5 in. (W) x 8.7 in. (D) x 13.8 in. (H))
l
Weight: 1.8 kg (4.0 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2344
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Power Consumption Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN16XCH
40
48
73–1.4 x (16–n)
88.8–1.4 x (16– n)
NOTE "n" is equal to the total number of tributary, line, and PID boards housed in a subrack.
21.12 TN16UXCM TN16UXCM: 1.6T Universal Cross Connect, System Control and Clock Processing Board
21.12.1 Version Description The available functional version of the TN16UXCM board is TN16.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 6UX CM
N
N
Y
N
N
N
21.12.2 Application As a cross-connect board, the TN16UXCM board achieves cross-connections of ODUk (k = 0, 1, 2, 2e, 3, 4, and flex) signals and VC–4/VC–12/VC–3 signals, and packet switching of Ethernet services. It helps the NMS to manage boards, ensures that devices can communicate with each other, and achieves physical-layer clock synchronization and Precision Time Protocol (PTP) clock synchronization on the entire NE. The TN16UXCM board applies to OptiX OSN 8800 T16 subracks. For the position of the TN16UXCM board in the WDM system, see Figure 21-42 and Figure 21-43. For the position of the TN16UXCM board in the OCS system, see Figure 21-44. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2345
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-42 Position of the TN16UXCM board in the WDM system (ODUk cross-connect) External colck TN16ATE
External colck TN16ATE G.694.1
G.694.1 4
NS2 100Mbit/s2.5Gbit/s
TN16 UXCM
TOM
MUX
DMUX 4
NS2
NS2
4
DMUX
MUX 4
TOM
100Mbit/s2.5Gbit/s
NS2
WDM side
WDM side
Client side
TN16 UXCM
4
4
Client side
Figure 21-43 Position of the TN16UXCM board in the WDM system (Package switch) External colck TN16ATE
External colck TN16ATE G.694.1
G.694.1 GE
MUX
EG16 TN16 UXCM
DMUX
Client side
WDM side
GE
TN16 UXCM
PND2
PND2
EX2
10GE LAN
EG16
DMUX
10GE LAN
EX2
MUX
Client side
WDM side
Figure 21-44 Position of the TN16UXCM board in the OCS system 1
SLQ64 SLO16
STM-16
TN16 UXCM
l
TN16 UXCM SLQ64
8
1
SLQ64
STM-16
SLO16
SLQ64
8
Principles for configuring main control boards in OptiX OSN 8800 T16 subracks: – Electrical subracks: The TN16XCH/TN16UXCM boards must be configured. – Optical subracks (master): The TN16SCC boards must be configured. – Optical subracks (slave): No main control boards are required.
21.12.3 Functions and Features The TN16UXCM board is mainly used to cross-connect services at the electrical layer, system control function and clock function. For detailed functions and features, refer to Table 21-24. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2346
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-24 Functions and features of the TN16UXCM board Function and Feature
Description
Cross-connect function
l Supports non-blocking full cross-connections of 1.6 Tbit/s ODUk (k = 0, 1, 2, 2e, 3, 4, or flex). l Supports cross-connections of 20 Gbit/s VC-12/VC-3 services. l Supports cross-connections of 640 Gbit/s VC-4 services. l Supports cross-connections of 800 Gbit/s packet services.
System control function
l Accomplishes the service grooming, configuration management and alarm output of a subrack.
NOTE The TN16UXCM board does not support the system control function when the subrack housing the board is a slave subrack.
l Supports the backup of the NE data. When the NE data changes, the real-time database backup function immediately saves the changed configuration data into the storage medium to ensure that no configuration data is lost after the NE is reset (cold) or powered off. This improves the reliability of the NE. l Supports the function of the CF card to back up database. The NE date (except NE IP, NE ID, Gateway ID and Node ID) and the board software are backed up to the CF card, so that the NE needs not to be re-configured after the replacement of the TN16UXCM. l Supports interconnection and communication between NEs through IP over DCC, OSI over DCC, or HWECC. l Implements communication between NEs when used with the TN16AUX by using DCC bytes. l Supports subrack cascading. The TN16UXCM board processes subrack overheads and alarms and delivers configurations to slave subracks. It connects to the U2000 so that the U2000 can manage the entire NE.
Clock function
l Basic function: – Locks the reference clock source. – Provides the system with ITU-T clock signals that comply with G.813- and ITU-T G.823 and frame signals. – Synchronizes the time of an NE with the time of the upstream system. l Clock source selection function: Traces the external clock source, service clock source, or local clock source, to provide the synchronization clock source for itself and the system. l Time synchronization function: Synchronizes the time of an NE with the time of the upstream NE.
Protection scheme
l Supports 1+1 protection. l Provides 1+1 hot backup. l Provides 1+1 warm backup.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2347
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported
21.12.4 Working Principle and Signal Flow TN16UXCM board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-45 shows the functional modules and signal flow of the TN16UXCM board. Figure 21-45 Functional modules and signal flow of the TN16UXCM board Time signals/ Clock signals
Clock processing module
Service cross-connection from backplane ODU0/ODU1/ODU2/ODU2e/ODU3/ ODU4/ODUflex/VC-12/VC-3/VC-4
ODUk/VC Cross-connect module
Packets
Packet switch module
CPU and control module
Monitoring module
Power supply module
Overhead processing module
Communication module
Required voltage
Fuse
Backplane
DC power supply from a backplane Other boards
Module Function l
ODUk/VC cross-connect module The cross-connect module receives data from each service board through the backplane to realize the electrical-layer grooming of ODUk (k = 0, 1, 2, 2e, 3, 4, or flex) signals or VC-4/
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2348
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
VC-3/VC-12 signals. Then, the cross-connect module sends the signals to each service board to implement service cross-connections. l
Packet switch module The packet switch module receives packets from each packet board through the backplane to realize packet switching of Ethernet services, and then sends the signals to each packet board.
l
Clock procession module Provides a synchronous clock signal for the system. The system clock supports three modes: free-run, holdover, and locked. When the system clock runs in lock mode, the it synchronizes to the line/external clock, tributary clock, or OSC board clock. This module also supports IEEE 1588v2 time and frequency synchronization.
l
CPU and control module Implements the control, monitoring and management of each functional module on the board.
l
Overhead processing module – Receives overhead signals from the TN16AUX board and processes the overhead bytes. – Sends the overhead signals to the TN16AUX board.
l
Monitoring module Detects whether the boards are in position and reports alarms to the U2000.
l
Communication module Communicates with each board, and reports the data of other boards to the U2000. – Transmits data with other boards through the Ethernet and reports to the U2000. – Transmits urgent data through the RS485.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.12.5 Front Panel There are indicators on the front panel of the TN16UXCM board.
Appearance of the Front Panel Figure 21-46 shows the front panel of the TN16UXCM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2349
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-46 Front panel of the TN16UXCM board
UXCM
STAT ACT PROG SRV
RESET
UXCM
Indicators Four indicators are present on the front panel: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2350
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Buttons Table 21-25 Functions of the buttons on the TN16UXCM board Button
Function
RESET
Used to perform a warm reset on the TN16UXCM board.
Interfaces The TN16UXCM board does not provide external interfaces.
21.12.6 Valid Slots One slot houses one TN16UXCM board. Table 21-26 shows the valid slots for the TN16UXCM board. Table 21-26 Valid slots for the TN16UXCM board Product
Valid Slots
OptiX OSN 8800 T16
IU9, IU10
21.12.7 Switch and Jumper Switches and jumpers that can be set on the TN16UXCM board include battery jumpers and BIOS switches. The battery on the TN16UXCM helps to ensure that the configuration is kept upon a power failure of the TN16UXCM. If the board is in use, place a jumper cap over the battery jumper to make a short circuit, which allows the battery to supply power normally. If the board is not in use, use a jumper cap to disconnect the battery jumper. Figure 21-47 shows the battery jumper. The BIOS switch helps clear the system parameter area and database in the flash memory on the SCC board. Table 21-27 shows the function of the BIOS switch. Figure 21-48 shows the position of switches on the TN16UXCM board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2351
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-47 battery jumper
Not used
Used
3
2
1
Table 21-27 Function of the BIOS switch
Issue 03 (2013-05-16)
BIOS State
Description
Binary value
A
Clear the system parameter area.
1010
B
Restores the system parameter area, database, and NE software from the CF card.
1001
C
Clear the database in the flash memory.
1011
D
Clear all the data in the flash memory except the board manufacturing information. The data includes the system data, system parameter areas, and extended BIOS files. The upper layer part of BIOS is not started.
1111
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2352
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-48 Position of the switches on the TN16UXCM board BIOS DIP Switch
Battery Jumper
Binary Value 1010 0 1 0 1 ON
J39
DIP
State A
SW1
Battery is 2 used
1 3
1 2 3 4
Binary Value1001 1 0 0 1
SW1 ON
BIOS DIP Switch
DIP
1 2 3 4
Battery Jumper
ON
U
SW1
State B
J39 1
2CP
DIP
1 2 3 4
3
J39
Battery is 2 not used
1 3
Binary Value1011 1 1 0 1 ON
DIP SW1
State C
CF Card
1 2 3 4
Binary Value1111 1 1 1 1 ON
DIP SW1
State D 1 2 3 4
21.12.8 TN16UXCM Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: 37.6 mm (W) x 220 mm (D) x 350.3 mm (H) (1.5 in. (W) x 8.7 in. (D) x 13.8 in. (H))
l
Weight: 3.0 kg (6.6 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN16UXCM
84–1.7 x (16– n)–2 x m
92–1.8 x (16– n)–2.2 x m
178–7.2 x (16– n)
195–7.9 x (16– n)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2353
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Board
Power Consumption at Warm Backup (25°C, 77°F) (W)
Power Consumption at Warm Backup (55°C, 131°F) (W)
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
NOTE "n" is equal to the total number of tributary, line, and PID boards housed in a subrack, and it is within 0-16 range. l "m" represents the subrack lower-order cross-connection flag. It is either 0 or 1. l If a subrack is configured with VC-3 or VC-12 cross-connections, "m" is 0. l If a subrack is not configured with any VC-3 or VC-12 cross-connections, "m" is 1.
21.13 XCS XCS: centralized cross connect board
21.13.1 Version Description The available functional versions of the XCS board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boar d
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN11 XCS
N
N
N
N
Y
N
TN12 XCS
N
N
N
N
Y
N
Differences Between Versions l
Function: The cross-connection capacities vary according to versions. For details, see 21.13.3 Functions and Features.
l
Specification: The specifications vary according to versions. For details, see 21.13.7 XCS Specifications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2354
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Substitution Relationship Table 21-28 Substitution rules of the XCS board Original Board
Substitute Board
Substitution Rules
TN11XCS
TN12XCS
Upgrade NE software to OptiX OSN 6800 V100R004C01 or a later version.
TN12XCS
None
–
21.13.2 Application The XCS board is a cross-connect board. The TN11XCS board supports 280 Gbit/s crossconnections of ODU1/ODU2/10GE signals and 140 Gbit/s cross-connections of GE signals. The TN12XCS board supports 360 Gbit/s cross-connections of ODU1/ODU2/10GE signals and 180 Gbit/s cross-connections of GE signals. The XCS board applies to OptiX OSN 6800 subracks. For the position of the XCS board in the WDM system, see Figure 21-49. Figure 21-49 Position of the XCS board in the WDM system OTU
M40
XCS OTU OTU
OA
OA
40
1
1 D40
OA
OA
M40
OTU OTU XCS
40
40
OTU XCS
D40
40
XCS OTU
1
1
OTU
21.13.3 Functions and Features The XCS board cross-connect services at the electrical layer. For detailed functions and features, refer to Table 21-29. Table 21-29 Functions and features of the XCS board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Implements grooming of services.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2355
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Cross-connect function
TN11XCS: l Supports the integrated grooming of ODU1 signals or ODU2/ ODU2e signals or GE services or 10GE services. l Supports a maximum cross-connect and grooming capacity of 280 Gbit/s for ODU1 signals or ODU2/ODU2e signals or 10GE services. Supports a maximum cross-connect and grooming capacity of 140 Gbit/s for GE services. TN12XCS: l Supports the integrated grooming of ODU1 signals or ODU2/ ODU2e signals or GE services or 10GE services. l Supports a maximum cross-connect and grooming capacity of 360 Gbit/s for ODU1 signals or ODU2/ODU2e signals or 10GE services. Supports a maximum cross-connect and grooming capacity of 180 Gbit/s for GE services.
Active/standby backup
Provides the 1+1 hot backup.
Protection scheme
Supports cross-connect board 1+1 protection.
Switching mode
Supports the manual switching and auto switching. Supports the non-revertive switching.
Electrical-layer ASON
Supported by the TN12XCS02.
21.13.4 Working Principle and Signal Flow The XCS board consists of the cross-connect module, control and communication module, and power supply module. Figure 21-50 shows the functional modules and signal flow of the XCS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2356
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-50 Functional modules and signal flow of the XCS board Backplane(service cross-connection)
ODU1/ODU2/ODU2e/GE/10GE
Cross-connect module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Module Function l
Cross-connect module Receives the data from each service board from the backplane. It performs the grooming of ODU1 signals or ODU2/ODU2e signals or GE services or 10GE services at the electrical layer, then sends the signals to each service board and implements the cross-connection.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
21.13.5 Front Panel There are indicators on the front panel of the XCS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2357
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Appearance of the Front Panel Figure 21-51 shows the front panel of the XCS board. Figure 21-51 Front panel of the XCS board
XCS STAT ACT PROG SRV
XCS
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2358
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Interfaces The XCS board does not provide external interfaces.
21.13.6 Valid Slots One slot houses one XCS board. Table 21-30 shows the valid slots for the XCS board. Table 21-30 Valid slots for the XCS board Product
Valid Slots
OptiX OSN 6800 subrack
IU9, IU10
21.13.7 XCS Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
Weight l
TN11XCS: 1.0 kg (2.20 lb.)
l
TN12XCS: 1.2 kg (2.65 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11XCS
20.0
22.0
TN12XCS
25.0
27.5
21.14 SCC SCC: system control and communication board
21.14.1 Version Description The available functional versions of the SCC board are TN11, TN16, TN21, TN22, TN23, TN51, TN52, and TNK2. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2359
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Product
Board
OptiX OSN 8800 T64 Subrack
TNK2SCC
Enhanced OptiX OSN 8800 T32 Subrack
TN52SCC
General OptiX OSN 8800 T32 Subrack
TN51SCC and TN52SCC
OptiX OSN 8800 T16 Subrack
TN16SCC
OptiX OSN 8800 Platform Subrack
TN52SCC
OptiX OSN 6800 Subrack
TN11SCC, TN51SCC and TN52SCC
OptiX OSN 3800 Chassis
TN21SCC, TN22SCC and TN23SCC. NOTE Only the TN23SCC board supports V100R007 and later versions together with their features. In other words, the TN21SCC/TN22SCC board does not. For example, the OptiX OSN 3800 supports the LEM24 board feature in V100R007 and later versions.
Differences Between Versions l
Function: – Only the TN23SCC board supports OptiX OSN 3800 V100R007 and later versions together with their features. In other words, the TN21SCC/TN22SCC board does not. – The TN21SCC, TN22SCC, and TN23SCC boards do not support SCC data backup, IP over DCC, subrack cascading, and power supply backup. The other versions support these functions. For details, see 21.14.3 Functions and Features.
l
Appearance: – The TN11, TN51, and TN52 versions use the same front panel; the TN21SCC, TN22SCC, and TN23SCC versions use the same front panel; The TNK2 and TN16 version use a front panel different from that of other versions. The TN21SCC, TN22SCC, and TN23SCC versions are applicable to case-shaped equipment. There are shelf ID LEDs on panels of TN11SCC, TN51SCC, TN52SCC, and TNK2SCC boards of the TN21 and TN22 versions only. For details, see 21.14.5 Front Panel and 21.14.8 SCC Specifications.
l
Specification: – The specifications vary according to the version of the board that you use. For details, see 21.14.8 SCC Specifications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2360
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11SCC
TN51SCC
When the TN51SCC board is installed in a master subrack with ASON disabled, it can replace the TN11SCC board. But after the replacement, the board software must be upgraded. When it is installed in a master subrack with ASON disabled, it cannot replace the TN11SCC board. When it is installed in a slave subrack, it can directly replace the TN11SCC board.
TN52SCC
Software upgrade is required after the replacement.
NOTE It is recommen ded that the TN11SCC board be replaced with the TN52SCC board.
TN16SCC
None
-
TN51SCC
TN52SCC
Software upgrade is required after the replacement.
TN52SCC
None
-
TNK2SCC
None
-
TN21SCC
TN22SCC/ TN23SCC
Software upgrade is required after the replacement.
TN22SCC
TN23SCC
Software upgrade is required after the replacement.
TN23SCC
None
-
NOTE If a subrack/chassis uses two SCC boards (one is active and the other is standby), the versions of the two SCC boards must be the same.
21.14.2 Application The SCC board is a system control and communication unit that works with the network management system to manage each board and implements inter-equipment communication. l
Principles for configuring main control boards in OptiX OSN 8800 T16 subracks: – Electrical subracks: The TN16XCH/TN16UXCM boards must be configured. – Optical subracks (master): The TN16SCC boards must be configured. – Optical subracks (slave): No main control boards are required.
l
Principles for configuring main control boards in OptiX OSN 8800 platform subracks: – Master subracks: Main control boards must be configured.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2361
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
– Slave subracks: No main control boards are required. l
Principles for configuring main control boards in other types of subracks: – Main control boards must be configured in both master and slave subracks.
21.14.3 Functions and Features The SCC board is used for DCC communication, subrack cascading, power supply backup and clock. Table 21-31 shows the detailed functions and features of the TN11SCC/TN51SCC/TN52SCC/ TNK2SCC board. Table 21-32 shows the detailed functions and features of the TN16SCC. Table 21-33 shows the detailed functions and features of the TN21SCC/TN22SCC/TN23SCC board. Table 21-31 Functions and features of the TN11SCC/TN51SCC/TN52SCC/TNK2SCC board Function and Feature
Description
Basic function
l Accomplishes the service grooming, configuration management and alarm output of a subrack. l Supports the backup of the NE data. When the NE data changes, the real-time database backup function immediately saves the changed configuration data into the storage medium to ensure that no configuration data is lost after the NE is reset (cold) or powered off. This improves the reliability of the NE. l Supports the function of the CF card to back up the database. The NE data (except NE IP, NE ID, Gateway ID, and Node ID) and the board software are backed up to the CF card. Backing up data to the CF means that you do not need to reconfigure the NE after replacing the SCC.
Issue 03 (2013-05-16)
DCN communication
Supports interconnection and communication between NEs through IP over DCC, OSI over DCC, or HWECC.
Active/Standby backup
Supports active/standby backup: There are two SCCs in the system that can provide 1+1 hot backup. If the active board fails, the standby board automatically becomes active.
Clock function
Provides clock source for the system communications.
Subrack cascading
Supports subrack cascading. The SCC accomplishes different functions based on the mode (master or slave) of the subrack in which it is installed. The SCC in a slave subrack processes the overhead bytes, handles alarms and manages the configuration inside the subrack. The SCC in a master subrack performs the same functions as the SCC in the slave subrack, and also processes overhead bytes and handles the alarms of all its slave subracks. The SCC in the master subrack connects to the network management system (NM). The configuration commands are issued to the SCC of a slave subrack through the SCC in the master subrack.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2362
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Optical-layer ASON
Supported
Electrical-layer ASON
Supported
Table 21-32 Functions and features of the TN16SCC board Function and Feature
Description
Basic function
l Accomplishes the service grooming, configuration management and alarm output of a subrack. l Supports the backup of the NE data. When the NE data changes, the real-time database backup function immediately saves the changed configuration data into the storage medium to ensure that no configuration data is lost after the NE is reset (cold) or powered off. This improves the reliability of the NE. l Supports the function of the CF card to back up database. The NE date (except NE IP, NE ID, Gateway ID and Node ID) and the board software are backed up to the CF card, so that the NE needs not to be re-configured after the replacement of the SCC.
DCN communication
Supports interconnection and communication between NEs through IP over DCC, OSI over DCC, or HWECCwhen used with the TN16AUX.
Active/Standby backup
Supports active/standby backup: There are two SCCs in the system that can provide 1+1 hot backup. If the active board fails, the standby board automatically becomes active.
Clock function
l Basic function: – Locks the reference clock source. – Provides the system with ITU-T clock signals that comply with G.813- and ITU-T G.823 and frame signals. – Synchronizes the time of an NE with the time of the upstream system. l Clock source selection function: Traces the external clock source, service clock source, or local clock source, to provide the synchronization clock source for itself and the system. l Time synchronization function: Synchronizes the time of an NE with the time of the upstream NE.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2363
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Subrack cascading
Supports subrack cascading. The SCC accomplishes different functions based on the mode (master or slave) of the subrack in which it is installed. The SCC in a slave subrack processes the overhead bytes, handles alarms and manages the configuration inside the subrack. The SCC in a master subrack performs the same functions as the SCC in the slave subrack, and also processes overhead bytes and handles the alarms of all its slave subracks. The SCC in the master subrack connects to the network management system (NM). The configuration commands are issued to the SCC of a slave subrack through the SCC in the master subrack.
Optical-layer ASON
Supported
Table 21-33 Functions and features of the TN21SCC/TN22SCC/TN23SCC board Function and Feature
Description
Basic function
Accomplishes the service grooming, configuration management and alarm output of a chassis.
DCN communication
Supports interconnection and communication between NEs through IP over DCC, OSI over DCC, or HWECC.
Active/standby backup
Supported: In DC-powered systems, the two SCCs are used to provide 1+1 hot backup. If the active SCC fails, the standby SCC becomes active automatically. NOTE Active/standby backup configuration is not supported in AC-powered systems.
Clock function
Provides clock source for the system communications.
Optical-layer ASON
Not supported
Electrical-layer ASON
Not supported
NOTE
Only the TN23SCC board supports V100R007 and later versions together with their features. In other words, the TN21SCC/TN22SCC board does not. For example, the OptiX OSN 3800 supports the LEM24 board feature in V100R007 and later versions.
21.14.4 Working Principle and Signal Flow The SCC board consists of the overhead processing module, clock module, monitoring module, communication module, CPU and control module, and power supply module. Figure 21-52 shows the functional modules and signal flow of the SCC. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2364
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-52 Functional modules and signal flow of the SCC board
Clock module
CPU and control module
Required voltage Power supply module
Monitoring module
Overhead processing module
Communication module
Fuse
Backplane DC power supply from a backplane Other boards
Module Function l
CPU and control module Implements the control, monitoring and management of each functional module on the board.
l
Overhead processing module – Sends the overhead signals to the service board.
l
Monitoring module Detects whether the boards are in position and reports alarms to the U2000.
l
Clock module Provides the clock source for the system. TN11SCC/TN51SCC/TN52SCC/TNK2SCC/TN21SCC/TN22SCC/TN23SCC: – Receives the clock signals from the OSC board at the upstream station, and ensures that the local clock of the local board is synchronized with the clock signals from the OSC board at the upstream station. – Sends a local clock to the downstream station through the OSC board. TN16SCC: – Traces the external clock source, line clock source, tributary clock source, and provides the board and system with a synchronization clock source. – Provides a synchronization clock signal, which enables the system to satisfy the requirements of data setup time and holdoff time.
l Issue 03 (2013-05-16)
Communication module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2365
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Communicates with each board, and reports the data of other boards to the U2000. – Transmits data with other boards through the Ethernet and reports to the U2000. – Transmits urgent data through the RS485. l
Power supply module TN11SCC/TN51SCC/TN52SCC/TNK2SCC: The power supply module for the OptiX OSN 6800/8800 provides the entire system with 3.3 V integrated power backup to protect the 3.3 V power supply of any board in the system. In addition, it provides power backup to the boards of which the total power consumption is less than 60W. TN16SCC: Converts the DC power supplied by the backplane into the power required by each module on the board, and provides the system with 10W backup power. TN21SCC/TN22SCC/TN23SCC: The power supply module for the OptiX OSN 3800 converts the DC power supplied by the backplane into the power required by each module of the board.
21.14.5 Front Panel There are indicators, buttons, and an LED indicator on the front panel.
Appearance of the Front Panel Figure 21-53 shows the front panel of the TN11SCC/TN51SCC/TN52SCC board. Figure 21-54 shows the front panel of the TN16SCC board. Figure 21-55 shows the front panel of the TN21SCC/TN22SCC/TN23SCC board. Figure 21-56 shows the front panel of the TNK2SCC board. For the mapping between the values displayed in the shelf ID LED and the actual shelf IDs, see Figure 21-57.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2366
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-53 Front panel of the TN11SCC/TN51SCC/TN52SCC board
SCC STAT ACT PROG SRV PWRA PWRB PWRC ALMC
SubRACK_ID
RESET
LAMP TEST
ALM CUT
SCC
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2367
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-54 Front panel of the TN16SCC board SCC
STAT ACT PROG SRV
RESET
SCC
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2368
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-55 Front panel of the TN21SCC/TN22SCC/TN23SCC board
STAT ACT PROG SRV PWRA PWRB PWRC ALMC
RESET LAMP TEST ALM CUT PWR CRI MAJ MIN
SCC
Figure 21-56 Front panel of the TNK2SCC board
SCC
STAT ACT PROG SRV PWRC ALMC
SubRACK_ID
RESET LAMP TEST ALM CUT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2369
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Indicators There are eight indicators on the front panel. l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
l
System power supply indicator (PWRA)- dual-colored (red, green)
l
System power supply indicator (PWRB)- dual-colored (red, green)
l
Protection power indicator (PWRC)- dual-colored (red, green)
l
Alarm cut-off indicator (ALMC)- yellow NOTE
The TN16SCC/TNK2SCC board does not have PWRA and PWRB. The TN16SCC board does not have ALMC.
There are also four chassis indicators on the front panel of the TN21SCC/TN22SCC/ TN23SCC board. l
Chassis power supply indicator (PWR) - green
l
Minor alarm indicator (MIN) - yellow
l
Major alarm indicator (MAJ) - orange
l
Critical alarm indicator (CRI) - red
For details about indicators on the board, see A.4 Board Indicators.
Buttons There are three buttons on the front panel. Table 21-34 lists the function of each button. Table 21-34 Functions of the buttons on the SCC board Button
Function
RESET
Used to perform a warm reset on the SCC board.
ALM CUT
Used to clear an audible alarm.
LAMP TEST
Used to test all of the indicators.
NOTE
The TN16SCC board does not have ALM CUT and LAMP TEST.
LED There is an LED indicator on the front panel. Table 21-35 shows its function. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2370
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-35 Function of the LED indicator on the SCC board LED indicator
Function
SubRack_ID
The LED on the front panel is used to indicate whether the subrack is a master or slave subrack when master/slave subrack mode is used. l "0" indicates the master subrack. l "EE" indicates that the subrack ID is incorrect or fails to be read. l The other values indicate slave subracks. For the values displayed on the LED, see Figure 21-57. For details on the principle for configuring the master and slave subracks, see "Master-Slave Subrack" in the Product Description.
Figure 21-57 LED
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Error
Hexadecimal subrack ID displayed in the LED
0
Issue 03 (2013-05-16)
Decimal subrack ID
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2371
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Interfaces The SCC board does not provide external interfaces.
21.14.6 Valid Slots One slot houses one SCC board. Table 21-36 shows the valid slots for the TN11SCC board. Table 21-37 shows the valid slots for the TN16SCC board. Table 21-38 shows the valid slots for the TN21SCC/TN22SCC/TN23SCC board. Table 21-39 shows the valid slots for the TN51SCC board. Table 21-40 shows the valid slots for the TN52SCC board. Table 21-41 shows the valid slots for the TNK2SCC board. Table 21-36 Valid slots for the TN11SCC board Product
Valid Slots
OptiX OSN 6800 subrack
IU17, IU18
Table 21-37 Valid slots for the TN16SCC board Product
Valid Slots
OptiX OSN 8800 T16 subrack
IU9, IU10
Table 21-38 Valid slots for the TN21SCC/TN22SCC/TN23SCC board Product
Slot
OptiX OSN 3800 chassis
IU8, IU9
Table 21-39 Valid slots for the TN51SCC board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU11, IU28
OptiX OSN 6800 subrack
IU17, IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2372
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-40 Valid slots for the TN52SCC board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU11, IU28
OptiX OSN 8800 platform subrack
IU17, IU18
OptiX OSN 6800 subrack
IU17, IU18
NOTE
The Enhanced OptiX OSN 8800 T32 only supports TN52SCC.
Table 21-41 Valid slots for the TNK2SCC board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU74, IU85
21.14.7 Switch and Jumper Switches and jumpers that can be set on the SCC board include battery jumpers and BIOS switches or jumpers. The battery on the SCC helps to ensure that the configuration is kept upon a power failure of the SCC. If the board is in use, place a jumper cap over the battery jumper to make a short circuit, which allows the battery to supply power normally. The BIOS jumper or switch helps clear the system parameter area and database in the flash memory on the SCC board. Table 21-42 shows the function of the BIOS jumper or switch. Table 21-42 Function of the BIOS switch or jumper BIOS State
Description
Binary value
A
Clear the system parameter area.
1010
B
Restores the system parameter area, database, and NE software from the CF card.
1001
C
Clear the database in the flash memory.
1011
D
Clear all the data in the flash memory except the board manufacturing information. The data includes the system data, system parameter areas, and extended BIOS files. The upper layer part of BIOS is not started.
1111
Figure 21-58 shows the position of jumpers on the TN11SCC board. Figure 21-59 shows the position of swiches and jumpers on the TN16SCC board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2373
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-60 shows the position of jumpers on the TN21SCC board. Figure 21-61 shows the position of jumpers on the TN22SCC/TN23SCC board. Figure 21-62 shows the jumpers on the TN51SCC board. Figure 21-63 shows jumpers on the TN52SCC board. Figure 21-64 shows jumpers on the TNK2SCC board. Figure 21-58 Position of the jumpers on the TN11SCC board BIOS Jumper
Battery Jumper
2
J6 4
J17 2 4
State A 1
Battery is used
J11
Binary Value 1010 1 0 1 0
1
Binary Value 1001 1 0 0 1 J6 4
1
CPU
J17 2 4
Battery is not used
1
J11
2
Binary Value 1011 1 0 1 1 2
J6 4
2
J17 4
State C 1
J6 J17 24 24 1
J11
1
CF Card
Binary Value 1111 1 1 1 1 2
J6 4
J17 2 4
State D
1
1
1
BIOS Jumper Battery Jumper
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2374
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-59 Position of the switches and jumpers on the TN16SCC board BIOS Switch
Battery Jumper
Binary Value 1010 0 1 0 1 ON
ON DIP
3
1 234
Battery is used 3
1 2 3 4
2 J1
1
Binary Value 1001 1 0 0 1
2
2
SW1
SW1
State A
Battery Jumper BIOS DIP Switch
DIP
ON
1 J1
DIP SW1
State B 1 2 3 4
Battery is not used 3
2 J1
1
Binary Value 1011 1 1 0 1
CF Card
ON
DIP SW1
State C 1 2 3 4
Binary Value 1111 1 1 1 1 ON
DIP
State D
SW1 1 2 3 4
Figure 21-60 Position of the jumpers on the TN21SCC board BIOS Jumper
1
1 2 4
4 1
1
4
1
0 1
Battery is used
J1
Binary Value 1001
J1 J14 4
0 1
1
1
0 1
4
0
1
State B
1
1 2
J13 2
2 4
CPU
J14
0
2
State A
J1
J14
J13
J13
Battery Jumper
Binary Value 1010
1
BIOS Battery Jumper Jumper
Battery is not used
Binary Value 1011 J14 4 1 2
1
1 1
2
State C
4
J13
Binary Value 1111 J14
Issue 03 (2013-05-16)
1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
4
1
1 2
1
2
1 State D 1
4
J13
2375
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-61 Position of the jumpers on the TN22SCC/TN23SCC board BIOS Jumper Battery Jumper
J11
2 4
1 J13
J1
2 4
1
CPU
Battery Jumper
Binary Value
J11
4
1
1
Battery is used
Battery is not used
Binary Value 1111
J11
J11
4
1
2
1
4
1
4
1
1
1
State D 1
2
1
0
2
4
1
1
2
1
1
State C 1
0
J13
Binary Value 1011
Issue 03 (2013-05-16)
0
2
J13
J13
4
4
1
1
State B 1
2
1
0
2
4
1
1
2
1
0
State A 1
1001 J11
J1
Binary Value 1010
J1
BIOS Jumper
J13
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2376
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-62 Position of the jumpers on the TN51SCC board BIOS Jumper
9
State D
1
9
1
1001
9
2 J42 10
9 1
0101
1 1 1 1 1111
3 1
Sate C
Battery Jumper
Binary value
2 J42 10
J1
1 0 0 1
1 0 1 1
1
J12 2
Binary value State B
1101
Binary value
2 J42 10
State A
1 0 1 0
2 J42 10
9
Binary value
1
2 J42 10
BIOS Jumper
Battery Jumper
Battery is used
CF Card
Battery is not used
2
2
J1
J1
3
3
1
1
Figure 21-63 Position of the jumpers on the TN52SCC board BIOS Jumper
BIOS Jumper
1001
1 3
10
9
9
10
2
2
State B J11
2
J11
1011
2
2
1
10
9
State C
Binary 11 11 value 1
Binary 1 0 11 value J11
1
State A 1
J1
Binary 10 01 value
2
1
1010
Binary 10 10 value
1111
Battery Jumper
State D
10
9
10
9
J11
J11
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
1
Battery is not used
J1
3
2
2 3
CFCCard 卡 F
Battery is used
1
Battery Jumper
J1
2377
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-64 Position of the jumpers on the TNK2SCC board Battery Jumper
BIOS Jumper
J9
J41
10
2
9
1
1
3
2
CF Card
The underlying PCB Battery Jumper
BIOS Jumper
J9
State A
10
1
9
2
J9
J41
Battery is not used
Binary Value 1111 1 1 1 1
10
State C
9
Battery is used
2
J9
1
10
1
2
State B
J9
3
Binary Value 1011 1 1 0 1
2
J41 1
2
Binary Value 1001 1 0 0 1
3
Binary Value 1010 0 1 0 1
10
State D 1
9
1
9
21.14.8 SCC Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications Dimensions of front panel: l
TN11SCC: 25.4 mm (W) x 220 mm (D) x 264.6 mm (H) or 1.0 in. (W) x 8.7 in. (D) x 10.4 in. (H)
l
TN16SCC: 37.6 mm (W) x 220 mm x (D) 350.3 mm (H) or 2.1 in. (W) x 8.7 in. (D) x 13.8 in. (H)
l
TN21SCC: 25.4 mm (W) x 220 mm (D) x 118.9 mm (H) or 1.0 in. (W) x 8.7 in. (D) x 4.7 in. (H)
l
TN22SCC/TN23SCC: 25.4 mm (W) x 220 mm (D) ox 118.9 mm (H) or 1.0 in. (W) x 8.7 in. (D) x 4.7 in. (H)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2378
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
l
TN51SCC: 25.4 mm (W) x 220 mm (D) x 264.6 mm (H) or 1.0 in. (W) x 8.7 in. (D) x 10.4 in. (H)
l
TN52SCC: 25.4 mm (W) x 220 mm (D) x 264.6 mm (H) or 1.0 in. (W) x 8.7 in. (D) x 10.4 in. (H)
l
TNK2SCC: 76.2 mm (W) x 220 mm (D) x 110.0 mm (H) or 3.0 in. (W) x 8.7 in. (D) x 4.4 in. (H)
Weight: l
TN11SCC: 1.2 kg (2.6 lb.)
l
TN16SCC: 1.3 kg (2.8 lb.)
l
TN21SCC: 0.5 kg (1.1 lb.)
l
TN22SCC/TN23SCC: 0.5 kg (1.1 lb.)
l
TN51SCC: 1.2 kg (2.6 lb.)
l
TN52SCC: 1.0 kg (2.2 lb.)
l
TNK2SCC: 0.9 kg (2.0 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11SCC
27.0
30.0
TN16SCC
32.0
35.0
TN21SCC
14.0
16.0
TN22SCC
10.0
13.0
TN23SCC
10.0
13.0
TN51SCC
18.0
20.0
TN52SCC
23.0
25.1
TNK2SCC
26.7
29.3
21.15 AUX AUX: system auxiliary interface unit
21.15.1 Version Description The available functional versions of the AUX board are TN11, TN15, TN16, TN21, TN22, TN51, and TN52.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2379
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Product
Board
OptiX OSN 8800 T64 Subrack
TN51AUX/TN52AUX
OptiX OSN 8800 T32 Subrack
TN51AUX/TN52AUX
OptiX OSN 8800 T16 Subrack
TN16AUX
OptiX OSN 8800 Platform Subrack
TN15AUX
OptiX OSN 6800 Subrack
TN11AUX
OptiX OSN 3800 Chassis
TN21AUX/TN22AUX
NOTE
The TN52AUX board supports 1+1 protection only when it is used in an enhanced OptiX OSN 8800 T64 or an enhanced OptiX OSN 8800 T32 subrack.
Type The system provides two types of the TN11AUX. Table 21-43 lists the types of the TN11AUX. Table 21-43 Type description of the TN11AUX Board
Type
Description
TN11AUX
TN11AUX01
The TN11AUX01 board is available in two types. One type provides three jumpers and the other type provides eight jumpers to setting the subrack ID, which ranges from 0 to 7.
TN11AUX02
Provides eight jumpers to set subrack ID, which ranges from 0 to 31.
Differences Between Versions l
Function: – The TN11AUX/TN15AUX board provides various auxiliary interfaces and management interfaces. For detail, see 21.15.3 Functions and Features and 21.15.4 Working Principle and Signal Flow. The TN11AUX01 board is available in two types. One type provides three jumpers and the other type provides eight jumpers for setting the subrack ID. There are eight jumpers inside the TN11AUX02 board, which are used
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2380
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
to set the subrack ID. The TN15AUX board provides eight DIP switches for setting the subrack ID. For detail, see 21.15.7 Jumper. – The TN16AUX does not provide external interfaces. It provides the inter-subrack management function. For details, see 21.15.3 Functions and Features and 21.15.4 Working Principle and Signal Flow. – The TN21AUX and TN22AUX boards are mainly used to provide backup power supply, various auxiliary interfaces, and management interfaces. For detail, see 21.15.3 Functions and Features and 21.15.4 Working Principle and Signal Flow. There are three jumpers inside the TN21AUX board. There are eight jumpers inside the TN22AUX board. For detail, see 21.15.7 Jumper. – The TN51AUX/TN52AUX board does not provide external interfaces. For detail, see 21.15.3 Functions and Features and 21.15.4 Working Principle and Signal Flow. – The TN52AUX board supports 1+1 protection. For details, see 21.15.3 Functions and Features. l
Appearance: – The board software status indicators of the TN21 and TN22 are different. For details, see 21.15.5 Front Panel. – Compared with other AUX boards, the TN51AUX/TN52AUX board uses a different front panel. The front panel for the TN21AUX and TN22AUX boards uses a different size from other AUX boards and applies to case-shaped equipment. For details, see 21.15.5 Front Panel and 21.15.8 AUX Specifications.
l
Specification: – The power consumption of the boards of different versions is different. For details, see 21.15.8 AUX Specifications.
Substitution Relationship
Issue 03 (2013-05-16)
Original Board
Substitute Board
Substitution Rules
TN11AUX
None
-
TN15AUX
None
-
TN16AUX
None
-
TN21AUX
TN22AUX
If the SCC is the TN22SCC, upgrade the NE software to OptiX OSN 3800 V100R004C01 or a later version.
TN22AUX
None
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2381
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Original Board
Substitute Board
Substitution Rules
TN51AUX
TN52AUX
When a TN51AUX board in a general OptiX OSN 8800 T64 or OptiX OSN 8800 T32 subrack is replaced with a TN52AUX board, the logical board for the TN52AUX board can be created as TN51AUX on the NMS. This substitution does not require a board software upgrade. After the substitution, the TN52AUX board provides only the functions of the TN51AUX board. When a TN51AUX board in an enhanced OptiX OSN 8800 T64 or OptiX OSN 8800 T32 subrack is replaced with a TN52AUX board, the logical board for the TN52AUX board must be created as TN52AUX on the NMS. This substitution does not require a board software upgrade. After the substitution, the TN52AUX board functions are available.
None
TN52AUX
-
21.15.2 Application AUX board is a system control and communication unit.
21.15.3 Functions and Features This section describes the functions and features of AUX boards. For detailed functions and features of the TN11AUX board, refer to Table 21-44. Table 21-44 Functions and features of the TN11AUX board Function and Feature
Description
Basic function
Provides the system with various auxiliary interfaces and management interfaces.
Interface
Provides the Ethernet communications interface and management interface. Provides the common and the emergent inter-subrack communications interfaces
Setting of subrack ID
Supported.
For detailed functions and features of the TN15AUX board, refer to Table 21-45.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2382
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-45 Functions and features of the TN15AUX board Function and Feature
Description
Basic function
Implements inter-board and inter-subrack communication, and intrasubrack management. The TN15AUX board collects overheads of other boards and sends the overheads to the SCC board. Then the SCC board processes the overheads and sends the processed overheads to the TN15AUX board. Subsequently, the TN15AUX board sends the processed overheads back to the other boards.
Interface
Provides Ethernet and management interfaces. Provides common and emergency interfaces for inter-subrack communication.
For detailed functions and features of the TN16AUX board, refer to Table 21-46. Table 21-46 Functions and features of the TN16AUX board Function and Feature
Description
Basic function
Implements communication between boards or subracks and intersburack management. Supports 1+1 protection. The TN16AUX collects overhead information about other boards and sends the information to the TN16XCH/TN16SCC/TN16UXCM. After processing overhead information, the TN16XCH/TN16SCC/ TN16UXCM sends the processed information to the TN16AUX. Then, the TN16AUX sends the information to the other boards. NOTE In an OptiX OSN 8800 T16 subrack, two TN16AUX boards must be configured if the IEEE 1588v2 function is required.
Does not provide external interfaces.
Interface
For detailed functions and features of the TN21/TN22AUX board, refer to Table 21-47. Table 21-47 Functions and features of the TN21/TN22AUX board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Provides the system with backup power supplies as well as various auxiliary and management interfaces.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2383
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Function and Feature
Description
Interface
Provides the Ethernet communications interface and management interface. Provides the OAM interface for remote maintenance. Provides the alarm channel for chassis indicators.
Power supply backup
Provides the entire system with the 3.3 V integrated power supply backup.
Alarm function
Provides alarms on the failure of 3.3 V integrated backup power supply, including over-voltage and under-voltage alarms.
For detailed functions and features of the TN51AUX board, refer to Table 21-48. Table 21-48 Functions and features of the TN51AUX board Function and Feature
Description
Basic function
Implements communications between boards or subracks.
Interface
Does not provide external interfaces.
For detailed functions and features of the TN52AUX board, refer to Table 21-49. Table 21-49 Functions and features of the TN52AUX board Function and Feature
Description
Basic function
Implements communications between boards or subracks, and supports 1+1 protection.
Interface
Does not provide external interfaces.
21.15.4 Working Principle and Signal Flow The AUX board consists of the CPU and control module, communication module, and power supply module. Figure 21-65 shows the functional modules and signal flow of the TN11AUX/TN21AUX/ TN22AUX/TN51AUX/TN52AUX board. Figure 21-66 shows the functional modules and signal flow of the TN15AUX/TN16AUX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2384
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-65 Functional modules and signal flow of the TN11AUX/TN21AUX/TN22AUX/ TN51AUX/TN52AUX board
CPU and control module
Power supply module Required voltage
Fuse
Communication module
Backplane DC power supply from a backplane Other boards
Figure 21-66 Functional modules and signal flow of the TN15AUX/TN16AUX board CPU and control module
Monitoring module
Power supply module
Overhead processing module
Communication module
Required voltage
Fuse
Backplane
DC power supply from a backplane Other boards
Module Function l
CPU and control module The CPU module implements the control, monitoring and management of the communication module and detects the power supply at the same time. TN11AUX/TN15AUX/: The control module provides the subrack ID and collects the alarms and performance events of each functional module as well as the clock information. TN16AUX: The control module collects the alarms and performance events of each functional module as well as the clock information. TN21AUX/TN22AUX: The control module collects the alarms and performance events of each functional module as well as the clock information.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2385
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
TN51AUX/TN52AUX: The control module collects the alarms and performance events of each functional module as well as the clock information. l
Communication module NOTE
The TN16AUX board is connected to the EFI board through the backplane. The interfaces as follows are provided on the EFI board. The TN51AUX/TN52AUX board is connected to the EFI1 and EFI2 boards through the backplane. The interfaces as follows are provided on the EFI1 and EFI2 boards.
– Provides the inter-board communication interface to connect the service boards and the SCC. Implements the data communication between boards. – Provides the NM interface and the NM cascading interface that connect the AUX and the NM terminal. – TN11AUX/TN15AUX: Provides the common and the emergent inter-subrack communication network interfaces. TN21AUX/TN22AUX: Provides the OAM interface for remote maintenance. l
Power supply module TN11AUX: Converts the DC power supplied by the backplane into the power required by each module on the board. TN15AUX/TN16AUX/TN51AUX/TN52AUX: Converts the DC power supplied by the backplane into the power required by each module on the board. TN21AUX/TN22AUX: Supplies power for the AUX. It also provides the entire OptiX OSN 3800 system with 3.3 V integrated power backup to protect the 3.3 V power supply of any board in the system.
l
Overhead Processing module – Collects overhead information about other boards and sends the information to the TN16XCH/TN16SCC/TN16UXCM. – Receives the processed overhead information from TN16XCH/TN16SCC/ TN16UXCM and sends the information to the other boards.
l
Monitoring module Detects whether the boards are in position and reports alarms to the U2000.
21.15.5 Front Panel There are indicators on the front panel of the AUX board.
Appearance of the Front Panel Figure 21-67 shows the front panel of the TN11AUX/TN15AUX board. Figure 21-68 shows the front panel of the TN16AUX board. Figure 21-69 shows the front panel of the TN21AUX/TN22AUX board. Figure 21-70 shows the front panel of the TN51AUX/TN52AUX board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2386
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-67 Front panel of the TN11AUX/TN15AUX board
NM_ETH1 NM_ETH2 ETH1 ETH2
STAT PROG
AUX
Figure 21-68 Front panel of the TN16AUX board AUX STAT ACT PROG SRV ALMC
RESET
SubRACK-ID
LAMP TEST ALM CUT
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2387
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-69 Front panel of the TN21AUX/TN22AUX board
STAT PROG
NM_ETH1 NM_ETH2 EXT
AUX
Figure 21-70 Front panel of the TN51AUX/TN52AUX board AUX
STAT ACT PROG SRV
Indicators There are two indicators on the front panel of the TN11AUX/TN15AUX/TN21AUX/TN22AUX board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2388
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
There are five indicators on the front panel of the TN16AUX board. There are four indicators on the front panel of the TN51AUX , and TN52AUX board. l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - dual-colored (green, orange)
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
l
Alarm cut-off indicator (ALMC)- yellow NOTE
Only the ACT indicator of TN51AUX board supports the orange color.
For details about indicators on the board, see A.4 Board Indicators.
Interfaces Table 21-50 lists the type and function of each interface of the TN11AUX board. The TN16AUX/TN51AUX/TN52AUX board does not provide external interfaces. Table 21-50 Types and functions of the interfaces on the TN11AUX board Interface
Type
Function
NM_ETH1
RJ45
l Using a network cable, the port connects the network interface on the equipment to the U2000 server to enable the management of the U2000 over the equipment. l Using a network cable, the port connects the NM_ETH1/NM_ETH2 network interface on one NE to another NE for communication between NEs.
NM_ETH2
RJ45
l Using a network cable, the port connects the network interface on the equipment to the U2000 server to enable the management of the U2000 over the equipment. l Using a network cable, the port connects the NM_ETH1/NM_ETH2 network interface on one NE to another NE for communication between NEs.
ETH1
RJ45
Using a network cable, the port connects the ETH1/ ETH2/ETH3 interface on one subrack to the other subracks for communication between the master subrack and slave subracks.
ETH2
RJ45
Using a network cable, the port connects the ETH1/ ETH2/ETH3 interface on one subrack to the other subracks for communication between the master subrack and slave subracks.
Table 21-51 lists the type and function of each interface of the TN15AUX board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2389
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-51 Types and functions of the interfaces on the TN15AUX board Interface
Type
Function
NM_ETH1
RJ45
NM_ETH2
RJ45
l Connects the network interface on the OptiX OSN 8800 platform through a network cable to that on the U2000 server to achieve the management of the U2000 over the OptiX OSN 8800 platform. l Connects to the external CRPC or ROP board of a slave subrack using a network cable so that the slave subrack can communicate with the CRPC or ROP board.
ETH1
RJ45
ETH2
RJ45
l Connects the ETH1/ETH2 interface on one subrack through a network cable to such interfaces on the other subracks to achieve the communication between the master subrack and slave subracks. l Connects a network cable to a CRPC or ROP board to achieve communication with the CRPC or ROP board.
Table 21-52 lists the type and function of each interface of the TN21AUX/TN22AUX board. Table 21-52 Types and functions of the interfaces on the TN21AUX/TN22AUX board Interface
Type
Function
NM_ETH1
RJ45
l Using a network cable, the port connects the network interface on the equipment to the U2000 server to enable the management of the U2000 over the equipment. l Using a network cable, the port connects the NM_ETH1/NM_ETH2 network interface on one NE to another NE for communication between NEs.
NM_ETH2
RJ45
l Using a network cable, the port connects the network interface on the equipment to the U2000 server to enable the management of the U2000 over the equipment. l Using a network cable, the port connects the NM_ETH1/NM_ETH2 network interface on one NE to another NE for communication between NEs.
EXT
DB64
Provides the alarm input/output interface, cascading interface, commissioning network interface and management serial interface.
Buttons Buttons are present on only the TN16AUX. For details on the buttons, see Table 21-53. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2390
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-53 Functions of the buttons on the TN16AUX board Button
Function
RESET
Used to perform a warm reset on the TN16AUX board.
ALM CUT
Used to clear an audible alarm.
LAMP TEST
Used to test all of the indicators.
LED LED indicators are present on only the TN16AUX. For details on the LED indicators, see Table 21-54. Table 21-54 Function of the LED indicator on the TN16AUX board
Issue 03 (2013-05-16)
LED indicator
Function
SubRack-ID
The LED on the front panel is used to indicate whether the subrack is a master or slave subrack in the case of master/slave subrack mode. "0" indicates the master subrack. "EE" indicates that the subrack ID is incorrect or fails to be read. The other values indicate slave subracks. For the values displayed on the LED, see Figure 21-71.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2391
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-71 LED
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Error
Hexadecimal subrack ID displayed in the LED
0
Decimal subrack ID
21.15.6 Valid Slots One slot houses one AUX board. Table 21-55 shows the valid slots for the TN11AUX board. Table 21-55 Valid slots for the TN11AUX board Product
Slot
OptiX OSN 6800 subrack
IU21
Table 21-56 shows the valid slots for the TN15AUX board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2392
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Table 21-56 Valid slots for the TN15AUX board Product
Slot
OptiX OSN 8800 platform subrack
IU21
Table 21-57 shows the valid slots for the TN16AUX board. Table 21-57 Valid slots for the TN16AUX board Product
Slot
OptiX OSN 8800 T16 subrack
IU21, IU22
Table 21-58 shows the valid slots for the TN21AUX/TN22AUX board. Table 21-58 Valid slots for the TN21AUX/TN22AUX board Product
Slot
OptiX OSN 3800 chassis
IU10
Table 21-59 shows the valid slots for the TN51AUX board. Table 21-59 Valid slots for the TN51AUX board Product
Slot
General OSN 8800 T32 subrack
IU41
Enhanced OptiX OSN 8800 T32 subrack
IU41
General OptiX OSN 8800 T64 subrack
IU72, IU83
Enhanced OptiX OSN 8800 T64 subrack
IU72, IU83
Table 21-60 shows the valid slots for the TN52AUX board. Table 21-60 Valid slots for the TN52AUX board
Issue 03 (2013-05-16)
Product
Slot
General OptiX OSN 8800 T32 subrack
IU41
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2393
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Product
Slot
Enhanced OptiX OSN 8800 T32 subrack
IU41, IU43
General OptiX OSN 8800 T64 subrack
IU72, IU83
Enhanced OptiX OSN 8800 T64 subrack
IU72, IU73, IU83, IU84
21.15.7 Jumper The TN11AUX01 board is available in two types. For one type there are three jumpers and for the other type there are eight jumpers inside the board. There are eight jumpers inside the TN11AUX02 board. There are eight DIP switches inside the TN15AUX board.The jumpers and DIP switches are used to set the subrack ID. There is no jumper inside the TN16AUX/ TN51AUX/TN52AUX board.
Jumper of TN11AUX The SCC detects the subrack ID and identifies whether the subrack is a primary or a secondary one. The result is indicated by the LED indicator of the SCC front panel. The TN11AUX01 board is available in two types. For one type there are three jumpers and for the other type there are eight jumpers inside the board. l
For the TN11AUX01 board that has three jumpers inside, the jumpers can be set in eight combinations, representing decimal values 0-7. The default setting of the three jumpers is 000. The value 0 indicates the master subrack, and the other values indicate slave subracks. Figure 21-72 shows the position of the three jumpers. When the two pins on the right of each jumper are capped, the setting is 1; when the two pins on the left of each jumper are capped, the setting is 0. As shown in Figure 21-72, the jumper setting represents the decimal value of 1, which means that the subrack ID is 1.
l
For the TN11AUX01 board that has eight jumpers inside, the J14, J15, J16, J17, and J18, jumpers are reserved and the two pins on the left of each reserved jumper must be capped. The J4, J3, and J2 jumpers can be set in 8 combinations, representing decimal values 0-7. The default setting of the three jumpers is 000. The value 0 indicates the master subrack and the other values indicate slave subracks. Figure 21-73 shows the position of the jumpers. When the two pins on the right of each of the three jumpers are capped, the setting is 1; when the two pins on the left of each of the three jumpers are capped, the setting is 0. As shown in Figure 21-73, the jumper setting represents the decimal value of 1, which means that the subrack ID is 1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2394
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-72 Position of the three jumpers on the TN11AUX01 board Representing Representing Representing
0
0
1
1
2
3
Junper cap
Jumpers
1
2
3 CPU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2395
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-73 Position of the eight jumpers on the TN11AUX01 board Representing 0
Representing 0
J3
J4
J2
Representing 0
Representing 0
J17
Representing 1
Representing0
J15
J16 Representing 0
Representing0
Junper cap J14
J18
J4
J3
J2
J17
J16
J15
J18
J14
Jumpers
CPU
CAUTION The J14, J15, J16, J17, and J18 jumpers must be set as specified in Figure 21-73 . Exercise caution when modifying the subrack ID, because the modification may cause service interruption.
The TN11AUX02 board has eight jumpers, which can be used to implement 32 states that represent decimal values 0-31. Each jumper represents a binary value: 0 or 1. In the TN11AUX02 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2396
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
board, the J14, J17, and J18 jumpers are reserved. The default value of the five jumpers is 00000. "0" indicates the master subrack. The other values indicate slave subracks. Figure 21-74 shows the jumpers on the board. Figure 21-74 Position of the jumper on the TN11AUX02 board Representing 0
Representing 0
J3
J4
J2
Representing 0
Representing 0
J17
Representing 1
Representing0
J15
J16 Representing 0
Representing0
Junper cap J14
J18
J4
J3
J2
J17
J16
J15
J18
J14
Jumpers
CPU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2397
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
CAUTION The J14, J17, and J18 jumpers must be set as specified in Figure 21-74. Exercise caution when modifying the subrack ID, because the modification may cause service interruption.
DIP Switches of the TN15AUX Board The TN15AUX board has two DIP switches. The value set by each switch can be 0 or 1 (in binary code). ID1–ID4 correspond to pins 1–4 on SW2 and ID5–ID8 correspond to pins 1–4 on SW1. Only ID1–ID5 are valid. (ID6–ID8 are reserved.) From higher bits to lower bits are ID5– ID1, which can be set to 32 combinations and the default value is 00000. The value 0 indicates the master subrack, and the other values indicate slave subracks. Figure 21-75 shows the position of the DIP switches on the TN15AUX board. l
When the DIP switch is toggled to ON, the value of the corresponding bit is set to 0.
l
As shown in Figure 21-75, values ID5–ID1 correspond to 00001 (in binary code), which indicates that the subrack ID is 1 in decimal.
Figure 21-75 Positions of the DIP switches on the TN15AUX board ON (ID1)
ON (ID5)
ON (ID2)
ON (ID6)
ON (ID3) ON (ID4)
ON (ID7) ON (ID8)
SW1
SW1 SW2
SW2
Jumper of TN21/TN22AUX The TN21AUX has 3 jumpers. Figure 21-76 shows the jumpers. The TN22AUX has 8 jumpers. Before the board is used, make sure that the setting of the J4 jumper is the same as that shown in Figure 21-77.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2398
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
Figure 21-76 Position of the jumper on the TN21AUX
CPU
Jumper
Figure 21-77 Position of the jumper on the TN22AUX
J4J11J10J21J20J19J23J22
Jumper
Jumper cap
8 (J4)
21.15.8 AUX Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: – TN11AUX/TN15AUX: 25.4 mm (W) x 220 mm (D) x 107.6 mm (H) (1.0 in. (W) x 8.7 in. (D) x 4.2 in. (H))
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2399
OptiX OSN 8800/6800/3800 Hardware Description
21 Cross-Connect Board and System and Communication Board
– TN16AUX: 76.2 mm (W) x 220 mm (D) x 80 mm (H) (3.0 in. (W) x 8.7 in. (D) x 3.1 in. (H)) – TN51AUX/TN52AUX: 25.4 mm (W) x 220 mm (D) x 107.5 mm (H) (1.0 in. (W) x 8.7 in. (D) x 4.2 in. (H)) – TN21AUX: 25.4 mm (W) x 220 mm (D) x 118.9 mm (H) (1.0 in. (W) x 8.7 in. (D) x 4.7 in. (H)) – TN22AUX: 25.4 mm (W) x 220 mm (D) x 118.9 mm (H) (1.0 in. (W) x 8.7 in. (D) x 4.7 in. (H)) l
Weight: – TN11AUX/TN15AUX: 0.5 kg (1.1 lb.) – TN16AUX: 0.6 kg (1.32 lb.) – TN51AUX: 0.4 kg (0.88 lb.) – TN52AUX: 0.4 kg (0.88 lb.) – TN21AUX: 0.6 kg (1.32 lb.) – TN22AUX: 0.5 kg (1.1 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11AUX
12.0
17.0
TN15AUX
11.0
14.0
TN16AUX
16.5
19.2
TN21AUX
11.7
13.0
TN22AUX
15.0
17.0
TN51AUX
17.5
19.0
TN52AUX
15.0
20.0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2400
OptiX OSN 8800/6800/3800 Hardware Description
22
22 Optical Supervisory Channel Board
Optical Supervisory Channel Board
About This Chapter 22.1 Overview OSC boards transmit optical supervisory information between two NEs. OSC boards provide high reliability of network monitoring because OSC boards transmit an OSC signal using a wavelength different service wavelengths. 22.2 HSC1 HSC1: high power unidirectional optical supervisory channel board 22.3 SC1 SC1: unidirectional optical supervisory channel board 22.4 SC2 SC2: bi-directional optical supervisory channel unit 22.5 ST2 ST2: bidirectional optical supervisory channel and timing transmission unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2401
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.1 Overview OSC boards transmit optical supervisory information between two NEs. OSC boards provide high reliability of network monitoring because OSC boards transmit an OSC signal using a wavelength different service wavelengths.
Positions of OSC Boards in a WDM System Figure 22-1 shows the positions of OSC boards in a WDM system. Figure 22-1 Positions of OSC boards in a WDM system OA
SCC
OSC board
OA
S F I U / F I U
NE 1
S F I U / F I U
OA OSC board
SCC OA
S F I U / F I U
S F I U / F I U
OA OSC board
SCC
OA
NE 2
NE 3
NOTE
Among all the OSC boards, only the ST2 board can work with the SFIU board.
In the preceding figure, the SCC board on NE1 sends the local NMS monitored data to the OSC board. Then the OSC board converts the NMS monitored data into an OSC signal and sends the signal to the SFIU/FIU board. Lastly, the SFIU/FIU board multiplexes the signal with the main channel signal onto the line for transmission. On NE2, the FIU/SFIU board extracts the OSC signal from the line and sends it to the OSC board. Then the OSC board restores the monitoring information from the OSC signal and sends the information to the SCC board for processing.
Main Functions Board
Dimen sion
Span Distance
Center Wavelength
Signal Bandwidth
HSC1
1
53 dB
1510 nm
4.096 Mbit/s
SC1
1
48 dB
1510 nm
4.096 Mbit/s 16.896 Mbit/s
SC2
2
48 dB
1510nm
4.096 Mbit/s 16.896 Mbit/s
ST2a
2
40 dB
1491 nm
155.52 Mbit/s
1511 nm a: The ST2 board also supports clock signals and FE electrical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2402
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.2 HSC1 HSC1: high power unidirectional optical supervisory channel board
22.2.1 Version Description The available functional version of the HSC1 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1HS C1
Y
Y
Y
Y
Y
Y
22.2.2 Application As a type of optical supervisory channel unit, the HSC1 board processes one channel of supervisory signals in one direction, transmits and extracts the overhead information about the system, and processes and sends the overhead information to the SCC. For the position of the HSC1 board in the WDM system, see Figure 22-2. Figure 22-2 Position of the HSC1 board in the WDM system OAU
OAU
SCC
HSC1
OAU
NE1
F I U
F I U
HSC1
HSC1
SCC
OAU F I U
OAU
NE2
F I U
HSC1
SCC
OAU
NE3
In the WDM network that adopts the optical supervisory channel, the NEs can make use of the supervisory channel to transmit supervisory and management data. As shown in Figure 22-2, the user can use the Ethernet to log in to the NE1 to manage the NE1 directly. NE2 and NE3 are remote equipment. They can be remotely managed through the supervisory channel when there is no data line connected. In this way, the entire network is under management. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2403
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
The SCC of NE1 sends the network management (NM) data to the optical supervisory channel (OSC) unit. The OSC unit converts the data into optical signals and sends the signals to the FIU. The supervisory signals are multiplexed with the signals transmitted by the main path. Then, all the signals are transmitted on line. The FIU of NE2 separates the supervisory signals from the line and sends them to the OSC unit of NE2. The OSC unit converts the optical signals into supervisory data and sends the data to the SCC for processing.
22.2.3 Functions and Features The HSC1 board is mainly used to process and regenerate optical supervisory signals. For detailed functions and features, refer to Table 22-1. Table 22-1 Functions and features of the HSC1 board Function and Feature
Description
Basic function
The HSC1 board is used to receive, process, and transmit one optical supervisory signal. The HSC1 board supports a maximum of 53 dB span transmission.
Technical features
The OSC has no limitation on the distance between two optical line amplifiers. The failure of an optical line amplifier does not affect the performance of the OSC. The HSC1 is independent of the SCC. When the SCC is not in position, the HSC1 can still ensure the pass-through of ECC with the two optical interfaces and monitor other stations.
Regenerati on function
The HSC1 board transmits signals from section to section. It also has the 3R function. In each regenerating station that has optical amplifiers, information can be correctly received and new supervisory signals are added.
Operating wavelengt h
The signal wavelength of supervisory channel is 1510 nm.
Loopback
Inloop
Supported
Outloop
Supported
Opticallayer ASON
Supported
22.2.4 Working Principle and Signal Flow The HSC1 board consists of the optical receiving module, optical transmitting module, CMI encoding module, CMI decoding module, overhead processing module, control and communication module, and power supply module. Figure 22-3 shows the functional modules and signal flow of the HSC1 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2404
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-3 Functional modules and signal flow of the HSC1 board
CMI decoding module
O/E
RM
Overhead processing module
CMI encoding module
E/O
TM
Optical transmitting module
Optical receiving module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
Backplane (controlled by SCC)
DC power supply from a backplane
SCC
Signal Flow The optical receiving module converts the optical supervisory signals from the FIU into electrical signals. The electrical signals enter the overhead processing module after CMI decoding. The overhead processing module extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module. Finally, the electrical supervisory signals are converted into optical supervisory signals through the optical transmitting module.
Frame Structure of the OSC Signals Figure 22-4 shows the timeslots of the E1 frame adopted by the OSC signals. There are 32 timeslots in a frame, numbered 0 to 31. Figure 22-4 Timeslot assignment diagram of the OSC overhead 0
Issue 03 (2013-05-16)
1
2
3
...
14
15
16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
...
31
2405
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
For the definition and functions of the timeslots in the E1 frame of the OSC, refer to Table 22-2. Table 22-2 Functions of the timeslots in the E1 frame of the OSC Timeslot Number
Name
Function
1
E1 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
2
F1 byte
Co-directional 64 kbit/s data interface.
3-13, 15
D1-D12 bytes
DCC channel Used to transmit the OAM data information, such as the issued commands and the data of the queried alarms and performance events. The OSC board extracts relevant bytes and sends them to the SCC for processing.
14
ALC byte
Provides the channel for the transmission of ALC protocol byte.
17
F2 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
18
F3 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
19
E2 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
21-23
Optical layer overhea d bytes
Used to transmit optical layer overhead information.
Other
Reserve d
-
Module Function l
Optical receiving module Performs O/E conversion of an optical supervisory signal.
l
Optical transmitting module Performs E/O conversion of an electrical supervisory signal.
l
CMI encoding/decoding module Performs mutual conversion between the 2 Mbit/s signal.
l Issue 03 (2013-05-16)
Overhead processing module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2406
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
22.2.5 Front Panel There are indicators and interfaces on the front panel of the HSC1 board.
Appearance of the Front Panel Figure 22-5 shows the front panel of the HSC1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2407
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-5 Front panel of the HSC1 board
HSC1 STAT ACT PROG SRV EOW
TM RM
HSC1
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 22-3 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2408
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-3 Types and functions of the interfaces on the HSC1 board Interface
Type
Function
TM
LC
Transmits the supervisory signal.
RM
LC
Receives the supervisory signal.
EOW
RJ45
Connects to an orderwire phone set through telephone wires to implement orderwire communication between NEs.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
22.2.6 Valid Slots One slot houses one HSC1 board. Table 22-4 shows the valid slots for the HSC1 board. Table 22-4 Valid slots for the HSC1 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5 and IU11
22.2.7 Characteristic Code for the HSC1 The characteristic code for the HSC1 board contains twelve characters and digits, indicating the wavelength range and numbers of optical interface. The detailed information about the characteristic code is given in Table 22-5. Table 22-5 Characteristic code for the HSC1 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
-
The first character is always W.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2409
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Code
Meaning
Description
Second to tenth characters
Optical signal wavelength range
The optical signal wavelength range is 1500 nm to 1520 nm processed by the board.
Eleventh character
-
The eleventh character is always P.
Twelfth character
Numbers of optical interface
The number of the optical interface is one.
For example, the characteristic code for the HSC1 board is W1500/1520P1. This code indicates that the optical signal wavelength range is 1500 nm to 1520 nm, and the number of the optical interface is one.
22.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 22-6. Table 22-6 Serial numbers of the interfaces of the HSC1 board displayed on the NM Interface on the Panel
Interface on the NM
RM/TM
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
22.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For HSC1 Parameters, refer to Table 22-7. Table 22-7 HSC1 parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2410
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Field
Value
Description
Optical Interface Name
-
Sets and displays the optical interface name.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
240/1510.00/198.540
This parameter is queriable only.
Band Type
SMC
This parameter is queriable only.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback
NOTE When setting this parameter, ensure that the automatic loopback release function is enabled.
Off, On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Laser Status
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: On
22.2.10 HSC1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. NOTE
A margin of the lower threshold of input optical power compared with the receiver sensitivity of the board and a margin of the upper threshold of output optical power compared with the overload point of the board are reserved on the U2000 as a precaution.
Optical Specifications Table 22-8 lists the optical specifications of the HSC1 board. Table 22-8 Optical specifications of the HSC1 board
Issue 03 (2013-05-16)
Item
Unit
Value
Signal rate
Mbit/s
4.096
Operating wavelength range
nm
1500 to 1520
Signal coding
-
CMI
Launched optical power
dBm
5 to 10
Receiver sensitivity
dBm
≤ -48
Receiver overload
dBm
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2411
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11HSC1
8.0
8.8
22.3 SC1 SC1: unidirectional optical supervisory channel board
22.3.1 Version Description The available functional versions of the SC1 board are TN11, TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1SC 1
N
N
N
N
Y
Y
TN1 2SC 1
Y
Y
Y
Y
Y
Y
Differences Between Versions None
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2412
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11SC1
TN12SC1
The TN12SC1 can be created as TN11SC1 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12SC1 functions as the TN11SC1.
TN12SC1
None
-
22.3.2 Application Because it is a type of optical supervisory channel unit, the SC1 board processes one channel of supervisory signals in one direction, transmits and extracts the overhead information about the system, processes and sends the overhead information to the SCC. For the position of the SC1 board in the WDM system, see Figure 22-6. Figure 22-6 Position of the SC1 board in the WDM system OA
SCC
SC1
OA F I U
OA
NE1
F I U
SC2 SCC
OA F I U
F I U
OA
NE2
SC1
SCC
OA
NE3
In the WDM network that adopts the optical supervisory channel, the NEs can use supervisory channels to transmit supervisory and management data. As shown in Figure 22-6, the user can use the Ethernet to log in to the NE1 to manage the NE1 directly. NE2 and NE3 can be remotely managed through the supervisory channel when there is no data line connected. When configured as described above, the entire network can be managed. The SCC of NE1 sends the network management (NM) data to the optical supervisory channel (OSC) unit. The OSC unit converts the data into optical signals and sends the signals to the FIU. The supervisory signals are multiplexed with the signals transmitted by the main path. Then, all the signals are transmitted on the line. The FIU of NE2 separates the supervisory signals from the line and sends them to the OSC unit of NE2. The OSC unit converts the optical signals into supervisory data and sends the data to the SCC for processing.
22.3.3 Functions and Features The SC1 board processes and regenerates optical supervisory signals. For detailed functions and features, refer to Table 22-9. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2413
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-9 Functions and features of the SC1 board Function and Feature
Description
Basic function
The SC1 board receives, processes, and transmits one optical supervisory signal. The SC1 supports a maximum of 42 dB span transmission.
Technical features
The distance between two optical line amplifiers is not limited by the optical supervisory channel (OSC). The failure of an optical line amplifier does not affect the performance of the OSC. The SC1 is independent of the SCC. When the SCC is not in position, the SC1 board can still ensure the pass-through of ECC with the two optical interfaces and monitor other stations.
Regenerati on function
The SC1 board transmits signals from section to section. It also performs the 3R function. In each regenerating station that has optical amplifiers, information can be received and new supervisory signals are added.
Operating wavelengt h
The supervisory channel signal wavelength is 1510 nm.
Loopback
Inloop
Supported
Outloop
Supported
Opticallayer ASON
Supported
22.3.4 Working Principle and Signal Flow The SC1 board consists of the optical receiving module, CMI decoding module, overhead processing module, CMI encoding module, optical transmitting module, control and communication module, and power supply module. Figure 22-7 shows the functional modules and signal flow of the SC1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2414
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-7 Functional modules and signal flow of the SC1 board
CMI decoding module
O/E
RM
Overhead processing module
CMI encoding module
E/O
TM
Optical transmitting module
Optical receiving module
Control CPU
Memory
Communication
Control and communication module Power supply module Required voltage
Fuse
Backplane (controlled by SCC)
DC power supply from a backplane
SCC
Signal Flow The optical receiving module converts the optical supervisory signals from the FIU into electrical signals. The electrical signals enter the overhead processing module after CMI decoding. The overhead processing module extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module. Finally, the electrical supervisory signals are converted into optical supervisory signals through the optical transmitting module.
Frame Structure of the OSC Signals Figure 22-8 shows the timeslots of the E1 frame adopted by the OSC signals. There are 32 timeslots in a frame, numbered 0 to 31. Figure 22-8 Timeslot assignment diagram of the OSC overhead 0
Issue 03 (2013-05-16)
1
2
3
...
14
15
16
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
...
31
2415
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
For the definition and functions of the timeslots in the E1 frame of the OSC, refer to Table 22-10. Table 22-10 Functions of the timeslots in the E1 frame of the OSC Timeslot Number
Name
Function
1
E1 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
2
F1 byte
Co-directional 64 kbit/s data interface.
3-13, 15
D1-D12 bytes
DCC channel Used to transmit the OAM data information, such as the issued commands and the data of the queried alarms and performances. The OSC board extracts relevant bytes and sends them to the SCC for processing.
14
ALC byte
Provides the channel for the transmission of ALC protocol byte.
17
F2 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
18
F3 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
19
E2 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
21-23
Optical layer overhea d bytes
Used to transmit optical layer overhead information.
Other
Reserve d
-
Module Function l
Optical receiving module Performs O/E conversion of an optical supervisory signal.
l
Optical transmitting module Performs E/O conversion of an electrical supervisory signal.
l
CMI encoding/decoding module Performs mutual conversion between the 8 Mbit/s CMI-coded signal and the 2 Mbit/s signal.
l Issue 03 (2013-05-16)
Overhead processing module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2416
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
22.3.5 Front Panel There are indicators and interfaces on the front panel of the SC1 board.
Appearance of the Front Panel Figure 22-9 shows the front panel of the SC1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2417
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-9 Front panel of the SC1 board
SC1 STAT ACT PROG SRV EOW
TM RM
SC1
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 22-11 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2418
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-11 Types and functions of the interfaces on the SC1 board Interface
Type
Function
TM
LC
Transmits the supervisory signal.
RM
LC
Receives the supervisory signal.
EOW
RJ45
Connects to an orderwire phone set through telephone wires to implement orderwire communication between NEs.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
22.3.6 Valid Slots One slot houses one SC1 board. Table 22-12 shows the valid slots for the TN11SC1 board. Table 22-12 Valid slots for the TN11SC1 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 22-13 shows the valid slots for the TN12SC1 board. Table 22-13 Valid slots for the TN12SC1 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2419
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.3.7 Characteristic Code for the SC1 The characteristic code for the SC1 board contains twelve characters and digits, indicating the wavelength range and optical interface number. The detailed information about the characteristic code is given in Table 22-14. Table 22-14 Characteristic code for the SC1 board Code
Meaning
Description
First character
-
The first character is always W.
Second to the tenth characters
Optical signal wavelength range
The optical signal wavelength range is 1500 nm to 1520 nm processed by the board.
Eleventh character
-
The eleventh character is always P.
Twelfth character
Numbers of optical interface
The number of the optical interface is one.
For example, the characteristic code for the SC1 board is W1500/1520P1. This code indicates that the optical signal wavelength range is 1500 nm to 1520 nm, and the number of the optical interface is one.
22.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 22-15. Table 22-15 Serial numbers of the interfaces of the SC1 board displayed on the NM Interface on the Panel
Interface on the NM
RM/TM
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
22.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2420
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
For parameters of the SC1, refer to Table 22-16. Table 22-16 SC1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
240/1510.00/198.540
This parameter is queriable only.
Band Type
SMC
This parameter is queriable only.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback
NOTE When setting this parameter, ensure that the automatic loopback release function is enabled.
Off, On Default: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
NOTE Only the TN12SC1 support this parameter.
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
AMS Power Abnormity Threshold (dB)
0.5 to 10.0
Laser Status
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: /
NOTE Only the TN12SC1 support this parameter.
Default:3
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold. NOTE Only the TN12SC1 support this parameter.
22.3.10 SC1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2421
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Optical Specifications Table 22-17 lists the optical specifications of the SC1 board. Table 22-17 Optical specifications of the SC1 board Item
Unit
Value
Signal ratea
Mbit/s
16.896
Operating wavelength range
nm
1500 to 1520
Signal coding
-
CMI
Launched optical power
dBm
-4 to 0
Receiver sensitivity
dBm
≤ -46
Receiver overload
dBm
-3
4.096
≤ -48
a: The SC1 board at the receive end can automatically determines the signal rate of the OSC channel based on the OSC board configured at the transmit end. By default, the signal rate of the OSC channel is 16 Mbit/s.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11SC1/TN12SC1
11.0
14.9
22.4 SC2 SC2: bi-directional optical supervisory channel unit
22.4.1 Version Description Two functional versions of the SC2 board are available: TN11 and TN12. There is no difference between the two versions in terms of functionality.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2422
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1SC 2
N
N
N
N
Y
Y
TN1 2SC 2
Y
Y
Y
Y
Y
Y
Differences Between Versions None
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11SC2
TN12SC2
The TN12SC2 can be created as TN11SC2 on the NMS. The former can substitute for the latter, without any software upgrade. After substitution, the TN12SC2 functions as the TN11SC2.
TN12SC2
None
-
22.4.2 Application Because it is a type of optical supervisory channel unit, the SC2 board processes two channels of supervisory signals in opposite directions, transmits and extracts the overhead information about the system, and processes and sends the overhead information to the SCC. For the position of the SC2 board in the WDM system, see Figure 22-10. Figure 22-10 Position of the SC2 board in the WDM system OA
SCC
SC1
OA
NE1
Issue 03 (2013-05-16)
OA F I U
F I U
SC2 SCC
OA F I U
OA
NE2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
F I U
SC1
SCC
OA
NE3
2423
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
In the WDM network that adopts the optical supervisory channel, the NEs can use supervisory channels to transmit supervisory and management data. As shown in Figure 22-10, you can manage NE1 directly by logging in to it through the Ethernet. NE2 and NE3 are remote equipment that you can manage through the supervisory channel when there is no data line connected. By logging in to NE1 and managing NE2 and NE3 through the supervisory channel, the entire network can be managed. The SCC of NE1 sends the network management (NM) data to the optical supervisory channel (OSC) unit. The OSC unit converts the data into optical signals and sends the signals to the FIU. The supervisory signals are multiplexed with the signals transmitted by the main path. Then, all the signals are transmitted on the line. The FIU of NE2 separates the supervisory signals from the line and sends them to the OSC unit of NE2. The OSC unit converts the optical signals into supervisory data and sends the data to the SCC for processing.
22.4.3 Functions and Features The SC2 board processes and regenerates optical supervisory signals. For detailed functions and features, refer to Table 22-18. Table 22-18 Functions and features of the SC2 board Function and Feature
Description
Basic function
The SC2 board receives, processes, and transmits two optical supervisory signals. The SC2 board supports a maximum of 42 dB span transmission.
Technical features
The distance between two optical line amplifiers is not limited by the OSC. The failure of an optical line amplifier does not affect the performance of the OSC. The SC2 board is independent of the SCC. When the SCC is not in position, the SC2 board can still ensure the pass-through of ECC with the two optical interfaces and monitor other stations.
Regenerati on function
The SC2 board transmits signals from section to section. It also provides the 3R function. In each regenerating station that has optical amplifiers, information can be received and new supervisory signals are added.
Operating wavelengt h
The supervisory channel signal wavelength is 1510 nm.
Loopback
Inloop
Supported
Outloop
Supported
Opticallayer ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2424
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.4.4 Working Principle and Signal Flow The SC2 board consists of the optical receiving module, optical transmitting module, CMI encoding module, CMI decoding module, overhead processing module, control and communication module, and power supply module. Figure 22-11 shows the functional modules and signal flow of the SC2 board. Figure 22-11 Functional modules and signal flow of the SC2 board
RM1
RM2
O/E CMI decoding module
O/E
Overhead processing module
CMI encoding module
Optical receiving module
E/O
TM1
E/O
TM2
Optical transmitting module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The optical receiving module converts the optical supervisory signals from the FIU into electrical signals. The electrical signals enter the overhead processing module after CMI decoding. The overhead processing module extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module. Finally, the electrical supervisory signals are converted into optical supervisory signals through the optical transmitting module.
Frame Structure of the OSC Signals Figure 22-12 shows the timeslots of the E1 frame adopted by the OSC signals. There are 32 timeslots in a frame, numbered 0 to 31. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2425
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-12 Timeslot assignment diagram of the OSC overhead 0
1
2
3
...
14
15
16
...
31
For the definition and functions of the timeslots in the E1 frame of the OSC, refer to Table 22-19. Table 22-19 Functions of the timeslots in the E1 frame of the OSC Timeslot Number
Name
Function
1
E1 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
2
F1 byte
Co-directional 64 kbit/s data interface.
3-13, 15
D1-D12 bytes
DCC channel Used to transmit the OAM data information, such as the issued commands and the data of the queried alarms and performances. The OSC board extracts relevant bytes and sends them to the SCC for processing.
14
ALC byte
Provides the channel for the transmission of ALC protocol byte.
17
F2 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
18
F3 byte
Reserved for the user (usually, the network provider) for the temporary orderwire communication with the purpose of specific maintenance.
19
E2 byte
Provides the path for orderwire phone. Transmission of one orderwire phone requires three bytes.
21-23
Optical layer overhea d bytes
Used to transmit optical layer overhead information.
Other
Reserve d
-
Module Function l
Optical receiving module Performs O/E conversion of two optical supervisory signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2426
OptiX OSN 8800/6800/3800 Hardware Description
l
22 Optical Supervisory Channel Board
Optical transmitting module Performs E/O conversion of two electrical supervisory signals.
l
CMI encoding/decoding module Performs mutual conversion between the 8 Mbit/s CMI-coded signal and the 2 Mbit/s signal.
l
Overhead processing module Extracts overhead bytes from the electrical signals, and sends them to the SCC for processing. After the overhead bytes are processed by the SCC, this module sends the electrical signals to be encoded in the CMI encoding module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
22.4.5 Front Panel There are indicators and interfaces on the front panel of the SC2 board.
Appearance of the Front Panel Figure 22-13 shows the front panel of the SC2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2427
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-13 Front panel of the SC2 board
SC2 STAT ACT PROG SRV EOW
TM1 RM1 TM2 RM2
SC2
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 22-20 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2428
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-20 Types and functions of the interfaces on the SC2 board Interface
Type
Function
TM1/TM2
LC
Transmits the first/second supervisory signal.
RM1/RM2
LC
Receives the first/second supervisory signal.
EOW
RJ45
Connects to an orderwire phone set through telephone wires to realize orderwire communication between NEs.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
22.4.6 Valid Slots One slot houses one SC2 board. Table 22-21 shows the valid slots for the TN11SC2 board. Table 22-21 Valid slots for the TN11SC2 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 22-22 shows the valid slots for the TN12SC2 board. Table 22-22 Valid slots for the TN12SC2 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2429
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.4.7 Characteristic Code for the SC2 The characteristic code for the SC2 board contains twelve characters and digits, indicating the wavelength range and optical interface number. The detailed information about the characteristic code is given in Table 22-23. Table 22-23 Characteristic code for the SC2 board Code
Meaning
Description
First character
-
The first character is always W.
Second to tenth characters
Optical signal wavelength range
The optical signal wavelength range is 1500 nm to 1520 nm processed by the board.
Eleventh character
-
The eleventh character is always P.
Twelfth character
Numbers of optical interface
The numbers of optical interface are two.
For example, the characteristic code for the SC2 board is W1500/1520P2. This code indicates that the optical signal wavelength range is 1500 nm to 1520 nm, and the numbers of optical interface are two.
22.4.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 22-24. Table 22-24 Serial numbers of the interfaces of the SC2 board displayed on the NM Interface on the Panel
Interface on the NM
RM1/TM1
1
RM2/TM2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2430
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the SC2, refer to Table 22-25. Table 22-25 SC2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
240/1510.00/198.540
This parameter is queriable only.
Band Type
SMC
This parameter is queriable only.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback
NOTE When setting this parameter, ensure that the automatic loopback release function is enabled.
Off, On Default: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Enable OAMS Power Monitoring
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
NOTE Only the TN12SC2 support this parameter.
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Laser Status
An optical interface name contains a maximum of 64 characters. Any characters are supported.
Default: /
NOTE Only the TN12SC2 support this parameter.
Default:3
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold. NOTE Only the TN12SC2 support this parameter.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2431
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.4.10 SC2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 22-26 lists the optical specifications of the SC2. Table 22-26 Optical specifications of the SC2 board Item
Unit
Value
Signal ratea
Mbit/s
16.896
Operating wavelength range
nm
1500 to 1520
Signal coding
-
CMI
Launched optical power
dBm
-4 to 0
Receiver sensitivity
dBm
≤ -46
Receiver overload
dBm
-3
4.096
≤ -48
a: The SC2 board at the receive end can automatically determines the signal rate of the OSC channel based on the OSC board configured at the transmit end. By default, the signal rate of the OSC channel is 16 Mbit/s.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11SC2/TN12SC2
13.5
14.5
22.5 ST2 ST2: bidirectional optical supervisory channel and timing transmission unit
22.5.1 Version Description The available functional versions of the ST2 board is TN11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2432
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1ST 2
Y
Y
Y
Y
Y
Y
22.5.2 Application Because it is a type of optical supervisory channel unit, the ST2 board processes two channels of supervisory signals in opposite directions, transmits and extracts the overhead information about the system, processes and sends the overhead information to the SCC.In addition, the ST2 board can process the IEEE 1588v2 protocol for time synchronization. The ST2 board also supports transparent transmission of two channels of FE electrical signals. For the position of the ST2 board in the WDM system, see Figure 22-14. Figure 22-14 Position of the ST2 board in the WDM system
OA
SCC
ST2
OA
NE1
l
S F I U / F I U
S F I U / F I U
OA ST2 scc
OA
S F I U / F I U
NE2
S F I U / F I U
OA
ST2
SCC
OA
NE3
Transmits and receives two channels of optical supervisory signals in the west and east directions. In the WDM network that adopts the optical supervisory channel, the NEs can use the supervisory channel to transmit supervisory and management data. You can use the Ethernet to log in to the NE1 to manage it directly. NE2 and NE3 are remote equipment that you can manage remotely through the supervisory channel if there is no data line connected. In the scenario described above, you can manage the entire network. The SCC of NE1 sends network management (NM) data to the optical supervisory channel (OSC) unit. The OSC unit converts the data into optical signals and sends the signals to the SFIU/FIU. The supervisory signals are multiplexed with the signals transmitted by the main path. Then, all the signals are transmitted on the line. The SFIU/FIU of NE2 separates the supervisory signals from the line and sends them to the OSC unit of NE2. The OSC unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2433
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
converts the optical signals into supervisory data and sends the data to the SCC for processing. l
Performs IEEE 1588v2 clock synchronization. Extracts clock signals and provides the clock signals for clock synchronization on an NE. The extracted clock signals can also function as a clock source for the clock board on this NE. Sends clock signals of an NE to the downstream NE. Passes through west and east IEEE 1588v2 packets and service clock signals. Reports the time information to a clock board for time synchronization on an NE where the clock board is located. NOTE
When the ST2 board is used in an OptiX OSN 8800 platform subrack, the board can transparently transmit IEEE 1588v2 clock and physical clock signals, but the board cannot process IEEE 1588v2 clock and physical clock signals.
l
Transparently transmit two channels of FE electrical signals. NE1: – In the transmit direction: The ST2 board receives a local FE electrical signal through its WSC1 port and sends it to the downstream board through its TM1 port. Or the ST2 board receives a local FE electrical signal through its WSC2 port and sends it to the downstream board through its TM2 port. – In the receive direction: The ST2 board receives an FE optical signal through its RM1 board and drops it through its WSC1 port. Or the ST2 board receives an FE optical signal through its RM2 board and drops it through its WSC2 port. NE2: FE optical signals are directly passed at this NE. The ST2 board receives the FE optical signal through its RM1 board and send it to the downstream board through its TM2 port. NE3: – In the receive direction: The ST2 board receives the FE optical signal through its RM1 board and drops it through its WSC1 port. Or the ST2 board receives the FE optical signal through its RM2 board and drops it through its WSC2 port. – In the transmit direction: The ST2 board receives a local FE electrical signal through its WSC1 port and sends it to the downstream board through its TM1 port. Or the ST2 board receives a local FE electrical signal through its WSC2 port and sends it to the downstream board through its TM2 port.
22.5.3 Functions and Features The ST2 board is mainly used to process and regenerate optical supervisory signals. In addition, the ST2 board supports the IEEE 1588v2 function. For detailed functions and features, refer to Table 22-27.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2434
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-27 Functions and features of the ST2 board Function and Feature
Description
Basic function
Receives, processes, and transmits two optical supervisory signals. Supports transparent transmission of two channels of FE electrical signals. Supports IEEE 1588 V2 function. Supports physical clock function. Supports a maximum of 40.5 dB transmission. NOTE When the ST2 board is used in an OptiX OSN 8800 platform subrack, the board can transparently transmit IEEE 1588v2 clock and physical clock signals, but the board cannot process IEEE 1588v2 clock and physical clock signals.
Technical features
The OSC has no limitation on the distance between two optical line amplifiers. The failure of an optical line amplifier does not affect the performance of the OSC. The ST2 board is independent of the SCC. When the SCC is not properly installed, the ST2 board can still ensure the pass-through of ECC with the two optical interfaces and monitor other stations.
Regeneration function
The ST2 board transmits signals from section to section. It also has the 3R function. In each regenerating station that has optical amplifiers, information can be correctly received and new supervisory signals are added.
Operating wavelength
When the ST2 board works with the SFIU board, the signal wavelengths of supervisory channel for RM1/TM1 is 1511 nm, and the signal wavelengths of supervisory channel for RM2/TM2 is 1491 nm. When the ST2 board works with the FIU board, the supervisory channel signal wavelength is 1511 nm.
Loopback
Supports outloops.
Optical-layer ASON
Supported
eSFP
The board supports pluggable optical modules that use 1511 nm and 1491 nm wavelengths.
22.5.4 Working Principle and Signal Flow The ST2 board consists of the optical receiving module, service processing module, 1588 module, optical transmitting module, control and communication module, and power supply module. Figure 22-15 shows the functional modules and signal flow of the ST2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2435
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-15 Functional modules and signal flow of the ST2 board WSC1
WSC2
RM1 RM2
O/E
FE signal processing module
O/E
Supervisory signal processing module
Optical receiving module
1588 module
E/O
TM1
E/O
TM2
Optical transmitting module
Service processing module
Control Memory
Communication
CPU
Control and communication module Power supply module
Required Voltage
Fuse
DC power supply from a backplane
Backplane SCC (controlled by SCC)
Signal Flow l
The optical supervisory signal from the FIU/SFIU board is converted into an electrical signal by the O/E module. After the conversion, the electrical signal is sent to the service processing module. The service processing module extracts the supervisory information from the electrical signal and sends the supervisory information to the SCC board for processing. In addition, the service processing module extracts a clock signal and sends the clock signal to the STG board for processing. The overhead bytes processed by the SCC board, and the clock signal and time information processed by the STG board are sent to the E/O module, where they are converted into an optical supervisory signal.
The FE signals are processed separately in the transmit and receive directions. l
In the transmit direction: The ST2 board receives a local FE electrical signal through its WSC1 port and sends it to the FE signal processing module for encapsulation. Then, the ST2 board transmits it together with the optical supervisory signal to the downstream board through its TM1 port. The ST2 board receives another local FE electrical signal through its WSC2 port and sends it to the FE signal processing module for encapsulation. Then, the ST2 board transmits it together with the optical supervisory signal to the downstream board through its TM2 port.
l
In the receive direction: The ST2 board receives the optical supervisory signal and an FE optical signal from the upstream board through its RM1 board and sends the FE optical
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2436
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
signal to the FE signal processing module for decapsulation. Then, the ST2 board drops it through its WSC1 port. In addition, the ST2 board receives the optical supervisory signal and another FE optical signal from the upstream board through its RM2 board and sends the FE optical signal to the FE signal processing module for decapsulation. Then, the ST2 board drops it through its WSC2 port.
Module Function l
Optical receiving module Performs O/E conversion of two optical supervisory signals.
l
Optical transmitting module Performs E/O conversion of two electrical supervisory signals.
l
Service processing module – FE signal processing module: Encapsulates and decapsulates FE signals. – Supervisory signal processing module: Encapsulates electrical supervisory signals into OTU frames, processes overheads, and performs encoding/decoding. – 1588 module Sends the clock signal of the STG board to the next NE according to the IEEE 1588v2 protocol, or extracts the clock signal from the optical supervisory signals according to the IEEE 1588v2 protocol and then sends the clock signal to the STG board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
22.5.5 Front Panel There are indicators and interfaces on the front panel of the ST2 board.
Appearance of the Front Panel Figure 22-16 shows the front panel of the ST2 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2437
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Figure 22-16 Front panel of the ST2 board ST2 STAT ACT PROG SRV EOW
WSC1
WSC2
TM1 RM1 TM2 RM2
ST2
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 22-28 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2438
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Table 22-28 Types and functions of the interfaces on the ST2 board Interface
Type
Function
TM1/TM2
LC
Transmits the first/second supervisory signal.
RM1/RM2
LC
Receives the first/second supervisory signal.
WSC1/WSC2a
RJ45
Transmits/Receives the first/second channel of FE electrical signals. NOTE The FE electrical port works in 100M full-duplex mode and can transmit or receive a packet consisting of a maximum of 1518 bytes.
EOW
RJ45
Connects to an orderwire phone set through telephone wires to implement orderwire communication between NEs.
a: Connect a shielded network cable without protection boot to the WSC1 or WSC2 interface on the TN11ST2 board.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
22.5.6 Valid Slots One slot houses one ST2 board. Table 22-29 shows the valid slots for the ST2 board. Table 22-29 Valid slots for the ST2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU8, IU11-IU18
OptiX OSN 8800 platform subrack
IU1-IU16
OptiX OSN 6800 subrack
IU1-IU8, IU11-IU16
OptiX OSN 3800 chassis
IU2-IU5
NOTE
If the ST2 board uses the clock function, it must be installed in a subrack housing clock boards.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2439
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.5.7 Characteristic Code for the ST2 The characteristic code for the ST2 board contains twelve characters and digits, indicating the wavelength range and optical interface number. Detailed information about the characteristic code is given in Table 22-30. Table 22-30 Characteristic code for the ST2 board Code
Meaning
Description
First character
-
The first character is always W.
Second to tenth characters
Optical signal wavelength range
The optical signal wavelength range is 1484.5 nm to 1517.5 nm processed by the board.
Eleventh character
-
The eleventh character is always P.
Twelfth character
Numbers of optical interface
The numbers of optical interface are two.
For example, the characteristic code for the ST2 board is W1484.5/1517.5P2. This code indicates that the optical signal wavelength range is 1484.5 nm to 1517.5 nm, and the numbers of optical interface are two.
22.5.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 22-31. Table 22-31 Serial numbers of the interfaces of the ST2 board displayed on the NM Interface on the Panel
Interface on the NM
RM1/TM1
1
RM2/TM2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2440
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
22.5.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the ST2, refer to Table 22-32. Table 22-32 ST2 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name.
Optical Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback mode for the optical interface on a board.
Default: NonLoopback
NOTE Only support Non-Loopback and Outloop.
An optical interface name contains a maximum of 64 characters. Any characters are supported.
When setting this parameter, ensure that the automatic loopback release function is enabled.
Off, On Default: On
The Laser Status parameter sets the laser status of a board. See D.15 Laser Status (WDM Interface) for more information.
Band Type/ Wavelength No./ Wavelength (nm)/ Frequency (THz)
-
This parameter is queriable only.
Band Type
-
This parameter is queriable only.
DEG Threshold
0 to 10167
Sets signal deterioration thresholds. An alarm is reported when error codes detected in DEG Monitoring Time(s) are more than the value of this parameter.
Laser Status
Default: 190
DEG Monitoring Time(s)
2 to 10
Degrade Threshold Before FEC
1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7, 1E-8, 1E-9, 1E-10, 1E-11, 1E-12,
Default: 7
Sets the signal monitoring time. If the number of bit errors in the signal exceeds DEG Threshold during this time, an alarm is reported. Sets error codes thresholds for signals before FEC.
Default: 1E-4 Enable OAMS Power Monitoring
Issue 03 (2013-05-16)
Disable, Enable
Enables or disables the OAMS function.
Default: Disable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2441
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Field
Value
Description
Standard Value of OAMS Power Monitoring (dBm)
-60.0 to 50.0
Specifies the reference value for OAMS power monitoring.
OAMS Power Abnormity Threshold (dB)
0.5 to 10.0
Default: /
Specifies the OAMS power abnormity threshold. The OAMS function is started if the variation between the detected power value and the specified Standard Value of OAMS Power Monitoring exceeds this threshold.
Default:3
22.5.10 ST2 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 22-33 lists the optical specifications of the ST2. Table 22-33 Optical specifications of the ST2 board Item
Unit
Value 150 km OSC Module
80 km OSC Module
Signal rate
Mbit/s
155.52
155.52
Target distance
-
150 km (62 mi.)
80 km (49.7 mi.)
Operating wavelength range
nm
1504.5 to 1517.5
1504.5 to 1517.5
1484.5 to 1497.5
1484.5 to 1497.5
Launched optical power
dBm
0.5 to 5
-4 to 1
Receiver sensitivity
dBm
≤ -41
≤ -34
Receiver overload
dBm
-10
-10
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.95 kg (2.09 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2442
OptiX OSN 8800/6800/3800 Hardware Description
22 Optical Supervisory Channel Board
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11ST2
17.5
19.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2443
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
23
Optical Protection Board
About This Chapter 23.1 Overview Optical protection boards provide 1+1 protection for services using their dual-fed and selective receiving function. 23.2 DCP DCP: 2-channel optical path protection unit 23.3 OLP OLP: optical line protection unit 23.4 SCS SCS: sync optical channel separator unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2444
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
23.1 Overview Optical protection boards provide 1+1 protection for services using their dual-fed and selective receiving function.
Positions of Optical Protection Boards in a WDM System Different optical protection boards support different types of protection. Figure 23-1 shows the position of DCP boards in a WDM system when it offers client 1+1 protection. For the positions of the DCP, OLP, and SCS boards in other protection scenarios, see 23.2 DCP, 23.3 OLP, and 23.4 SCS. Figure 23-1 Position of DCP boards in a WDM system (client 1+1 protection) MUX
MUX FIU
FIU
DMUX
OTU (W)
DMUX
DCP
DCP
OTU (P)
MUX
MUX FIU
FIU
DMUX
Working signal
OTU (P)
Client-side equipment
Client-side equipment
OTU (W)
DMUX
Protection signal
Main Functions Table 23-1 lists the main functions of optical protection boards. Table 23-1 Main functions of optical protection boards Board
Function
Supported Protection Type
DCP
l Protects two optical signals.
l Intra-board 1+1 protection
l For each protected signal, selects the better signal from the working and protection channels using its optical switch.
l Client 1+1 protection
l Protects one signal.
l Optical line protection
l Selects the better signal from the working and protection channels using its optical switch.
l Intra-board 1+1 protection
OLP
Issue 03 (2013-05-16)
l Optical wavelength shared protection
l Client 1+1 protection
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2445
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Board
Function
Supported Protection Type
SCS
l Protects two signals.
l Client 1+1 protection
l For each protected signal, selects the better signal from the working and protection channels based on instructions sent by the SCC board. The board receives and couples the signals from both the working and protection channels when it does not work with an SCC board.
23.2 DCP DCP: 2-channel optical path protection unit
23.2.1 Version Description The available functional versions of the DCP board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1DC P
Y
Y
N
Y
Y
Y
TN1 2DC P
Y
Y
Y
Y
Y
Y
Type Board
Type
Description
TN11DCP
01
Supports the single-mode optical module.
02
Supports the multi-mode optical module.
01
Supports the single-mode optical module.
TN12DCP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2446
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Differences Between Versions l
Function: – The TN11DCP supports single-mode and multi-mode optical modules. – The TN12DCP supports single-mode optical module.
l
Specification: – The power consumption varies according to versions. For details, see 23.2.10 DCP Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11DCP
TN12DCP
In the case of single mode, the TN12DCP can substitute for the TN11DCP. For the substitution, upgrade the NE software to OptiX OSN 6800 V100R004C01 or a later version, upgrade the NE software to OptiX OSN 3800 V100R004C01 or a later version, or upgrade the NE software to OptiX OSN 8800 V100R002C00 or a later version.
TN12DCP
None
-
23.2.2 Application Because it is a type of optical protection unit, the DCP board implements intra-board 1+1 protection, optical wavelength shared protection (OWSP protection) and client-side 1+1 protection. For the position of the DCP board in the WDM system, see Figure 23-2, Figure 23-3 and Figure 23-4. Figure 23-2 Position of the DCP board in the WDM system (intra-board 1+1 protection) TO11
RI1 1
TO21 MUX
OTU
TI1 RO1
RI11
DMUX RI21 FIU
FIU
RI21 DMUX
TI2
RI12
TO22 MUX RI12
TI1 OTU
MUX TO21
DCP TO12 OTU RO2
RO1
TO11
DMUX RI22 FIU
FIU
RI22 DMUX
TO12
DCP RO2 TI2
OTU
MUX TO22
NOTE
When used for intra-board 1+1 protection, the DCP board does not support the 2.5 Gbit/s OTU.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2447
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-3 Position of the DCP board in the WDM system (OWSP protection) OTU1
λ1/λ2 2 x DCP
λ2/λ1
OTU1
OTU2
OADM λ2/λ1 (East) λ1/λ2 (East)
λ2 λ1 OADM (West) λ2 λ1 (West)
FIU
FIU OADM λ1/λ2 (West) λ2/λ1 2 x DCP λ2/λ1
λ1/λ2
λ2 λ1 OADM (East)
FIU
FIU
A
D
B
C
FIU
FIU
λ1 λ2
λ2 λ1 OADM (East) λ1 λ2
OTU2
λ2/λ1
λ1/λ2
2 x DCP OADM λ2/λ1 (West) λ1/λ2 FIU
FIU
λ2 λ1 OADM (West) λ1 λ2
λ2/λ1 OADM λ1/λ2 (East)
2 x DCP
λ2/λ1 OTU2
OTU2
OTU1
: Working signal
λ1/λ2 OTU1
: Optical signal
: Protection signal
Figure 23-4 Position of the DCP board in the WDM system (client-side 1+1 protection) Client-side
TO11 RI11
TI1 TO21
RO1
RI21
DCP TI2 RO2
TO12 RI12
MUX OTU (W)
OTU TO22 (P) RI22
DMUX FIU
FIU
DMUX
MUX DMUX
MUX FIU
MUX
Client-side RO1 TI1
OTU RI21 (W)
TO21 RI12 TO12
OTU (P) RI22
FIU
DMUX
RI11 TO11
DCP RO2 TI2
TO22
NOTE
When the working OTU and the protection OTU are installed in different subracks or chassis, the DCP board can be used for client-side protection.
23.2.3 Functions and Features The DCP board provides intra-board 1+1 protection, OWSP protection and client-side 1+1 protection. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2448
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
For detailed functions and features, refer to Table 23-2. Table 23-2 Functions and features of the DCP board Function and Feature
Description
Basic function
l Provides intra-board 1+1 protection to protect the services of the OTU, which has no dual-fed and selective receiving function. Compared with the OLP, the DCP provides protection for two signals to implement 1+1 protection. l Provides client-side 1+1 protection, using a working OTU and a protection OTU to protect the client-side services. l Provides the OWSP protection, make use of two different channels to achieve the protection of one channel of service between all stations.
Protection scheme
Dual-fed and selective receiving. (At the transmit end, the protected signal is dually fed to the working and protection paths. At the receive end, the working or protection signal is selected if it has the higher power level.)
Optical-layer ASON
The DCP board supports optical-layer ASON only through client 1 +1 protection.
23.2.4 Working Principle and Signal Flow The DCP board contains the optical module, control and communication module, and power supply module. Figure 23-5 shows the functional modules and signal flow of the DCP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2449
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-5 Functional modules and signal flow of the DCP board TO11 TO12 TO21 TO22 RI11
TI1 TI2
Optical switch
RO1
RI12
Optical switch
RI21
RO2
RI22
Optical power detecting module Optical module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow One DCP board supports the dual-fed and selective receiving of two channels of optical signals. The DCP board processes the two channels of optical signals in the same way. This section describes the service flow of only one channel of optical signals. l
Transmit direction The TI1 optical interface receives one channel of optical signals. After passing through the splitter, the signals are output to the working and the protection fibers (channels) through the TO11 and TO12 optical interfaces.
l
Receive direction The signals in the working and the protection fibers (channels) are input through the RI11 and RI12 optical interfaces, and then are transmitted to the optical switch. The optical switch selects one from the two channels of signals based on the optical power of the signals. In this way, the selection of signals from the working and the protection channels is achieved. The selected optical signals are output through the RO1 optical interface. The optical power detecting module detects the detection signals that are extracted from the working and protection signals, and reports the detection results to the control and
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2450
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
communication module. The control and communication module compares the optical power of the two channels of optical signals, and controls the operation of the optical switch based on the optical power. In this way, the selection of signals from the working and the protection channels is achieved.
Module Function l
Optical module The optical module consists of two signal dual-fed parts and two signal selection parts. – Signal dual-fed part Divides the one channel of optical signals into two channels of the same power, and outputs them to the working and protection channels. – Signal selection part Receives the optical signals from the working and protection channels. The optical power detecting module detects and compares the optical power of the two channels of optical signals. Based on the results, the signal selection part selects one channel of optical signals and outputs it.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
23.2.5 Front Panel There are indicators and interfaces on the front panel of the DCP board.
Appearance of the Front Panel Figure 23-6 shows the front panel of the DCP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2451
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-6 Front panel of the DCP board
DCP STAT ACT PROG SRV
TO11 RI11 TO12 RI12 TO21 RI21 TO22 RI22 RO1 TI1 RO2 TI2
DCP
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 23-3 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2452
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-3 Types and functions of the interfaces on the DCP board Interface
Type
Function
TI1
LC
Receives the first channel of WDM-side signals. (intraboard 1+1 protection) Receives the first channel of client-side signals. (clientside 1+1 protection) Receives one channel of client-side signals. (OWSP protection)
TI2
LC
Receives the second channel of WDM-side signals. (intra-board 1+1 protection) Receives the second channel of client-side signals. (client-side 1+1 protection) Receives the optical signals from the adjacent stations. (OWSP protection)
RO1
LC
Transmits the first channel of WDM-side signals. (intra-board 1+1 protection) Transmits the first channel of client-side signals. (client-side 1+1 protection) Transmits one WDM-side optical signal to the OTU board. (OWSP protection)
RO2
LC
Transmits the second channel of WDM-side signals. (intra-board 1+1 protection) Transmits the second channel of client-side signals. (client-side 1+1 protection) Transmits one optical signal to the adjacent stations. (OWSP protection)
TO11
LC
Transmits the first channel of signals to the working multiplexer unit. (intra-board 1+1 protection) Transmits the first channel of signals to the working OTU. (client-side 1+1 protection) Serves as a dual-fed optical interface, transmitting one optical signal to the working router. (OWSP protection)
TO12
LC
Transmits the first channel of signals to the protection multiplexer unit. (intra-board 1+1 protection) Transmits the first channel of signals to the protection OTU. (client-side 1+1 protection) Dual fed optical interface, transmitting one optical signal to the protection router. (OWSP protection)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2453
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Interface
Type
Function
TO21
LC
Transmits the second channel of signals to the working multiplexer unit. (intra-board 1+1 protection) Transmits the second channel of signals to the working OTU. (client-side 1+1 protection) Connects to the RI12 interface of another DCP board in the same station by using a fiber. (OWSP protection)
TO22
LC
Transmits the second channel of signals to the protection multiplexer unit. (intra-board 1+1 protection) Transmits the second channel of signals to the protection OTU. (client-side 1+1 protection) Connects to the RI22 interface on the same DCP board by using a fiber. (OWSP protection)
RI11/RI12
LC
Receives the first channel of signals from the working and the protection multiplexer unit. (intra-board 1+1 protection) Receives the first channel of signals from the working and protection OTU. (client-side 1+1 protection) Serve as selective receive interfaces, connecting to the working route and protection route, respectively. (OWSP protection)
RI21/RI22
LC
Receives the second channel of signals from the working and the protection multiplexer unit. (intraboard 1+1 protection) Receives the second channel of signals from the working and protection OTU. (client-side 1+1 protection) Connects to the TO12 and TO22 interfaces on the same DCP board, respectively, by using a fiber. (OWSP protection)
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
23.2.6 Valid Slots One slot houses one DCP board. Table 23-4 shows the valid slots for the TN11DCP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2454
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-4 Valid slots for the TN11DCP board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU11, IU2-IU5
Table 23-5 shows the valid slots for the TN12DCP board. Table 23-5 Valid slots for the TN12DCP board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IIU1-IU17
OptiX OSN 3800 chassis
IU11, IU2-IU5
23.2.7 Characteristic Code for the DCP The characteristic code for the DCP board contains one character and two digits, indicating the maximum protection switching time. Detailed information about the characteristic code is given in Table 23-6. Table 23-6 Characteristic code for the DCP board Code
Meaning
Description
First character
-
The first character is always P.
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN12DCP board is P50. This code indicates that the maximum protection switching time is 50ms. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2455
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
23.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 23-7. Table 23-7 Serial numbers of the interfaces of the DCP board displayed on the NM Interface on the Panel
Interface on the NM
TO11/RI11
1
TO12/RI12
2
TO21/RI21
3
TO22/RI22
4
TI1/RO1
5
TI2/RO2
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
23.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the DCP, refer to Table 23-8. Table 23-8 DCP parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2456
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Field
Value
Description
Input Power Loss Threshold (dBm)
-35 to -10
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Initial Variance Value Between Primary and Secondary Input Power (dB)
-10 to 10
Variance Threshold Between Primary and Secondary Input Optical Power (dB)
3 to 8
Default: -35
Default: 0
Default: 5
The Initial Variance Value Between Primary and Secondary Input Power (dB) parameter provides an option to set the reference value of the optical power variance between the primary and secondary input optical interfaces of a board. See D.14 Initial Variance Value Between Primary and Secondary Input Power (dB) (WDM Interface) for more information. The Variance Threshold Between Primary and Secondary Input Optical Power (dB) parameter provides an option to set the optical power variance threshold of the primary and secondary optical interfaces of a board. When the threshold is reached, signal fail (SF) occurs. When the variance between the primary and secondary optical power exceeds the threshold, the optical switch switches services to the channel with better optical power. The configured value can be queried. See D.34 Variance Threshold Between Primary and Secondary Input Power (dB) (WDM Interface) for more information.
23.2.10 DCP Specifications Specifications include optical specifications, dimensions, weight, and power consumption. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2457
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Optical Specifications Table 23-9 Optical specifications of the DCP board Interface
Item
Unit
Value TN11DC P01
TN11DC P02
TN12DC P01
TI1-TO11 TI1-TO12 TI2-TO21 TI2-TO22
Insertion loss at the transmit end
Singlemode
dB
≤4
-
≤4
Multimode
dB
-
≤4.5
-
RI11-RO1 RI12-RO1 RI21-RO2 RI22-RO2
Insertion loss at the receive end
Singlemode
dB
≤1.5
-
≤1.5
Multimode
dB
-
≤2
-
Singlemode
dBm
-35 to 7
-
-35 to 7
Multimode
dBm
-
-35 to 0
-
Singlemode
nm
1270 to 1350, 1528 to 1567
-
1270 to 1350, 1528 to 1567
Multimode
nm
-
830 to 870
-
Switching threshold of optical power difference
dB
5
5
5
Range of the alarm threshold for the optical power difference
dB
3 to 8
3 to 8
3 to 8
Range of the input optical power
Operating wavelength range
NOTE l The OptiX OSN 8800 only supports TN11DCP02 and TN12DCP01. l The OptiX OSN 6800/OptiX OSN 3800 supports TN11DCP01, TN11DCP02, and TN12DCP01.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2458
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11DCP/TN12DCP
6.8
7.5
23.3 OLP OLP: optical line protection unit
23.3.1 Version Description The available functional versions of the OLP board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1OL P
Y
Y
N
Y
Y
Y
TN1 2OL P
Y
Y
Y
Y
Y
Y
Type Table 23-10 lists the type description of the TN11OLP board. Table 23-10 Type description of the TN11OLP board
Issue 03 (2013-05-16)
Board
Type
Description
TN11OLP
01
Supports single-mode optical module and is intended for normal power application; supports client 1+1 protection, intra-board 1+1 protection, and optical line protection.
02
Supports multi-mode optical module and is intended for normal power application; supports client 1+1 protection.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2459
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-11 lists the type description of the TN12OLP board. Table 23-11 Type description of the TN12OLP board Board
Type
Description
TN12OLP
01
Supports single-mode optical module and is intended for normal power application; supports client 1+1 protection, intra-board 1+1 protection, and optical line protection.
03
Supports single-mode optical module and is intended for high power application; supports client 1+1 protection, intra-board 1+1 protection, and optical line protection.
04
Supports single-mode optical module; supports optical line protection.
Differences Between Versions l
Function: – The TN11OLP supports single-mode and multi-mode optical modules. It supports only normal power application. – The TN12OLP supports single mode optical modules. It supports not only normal power application but also high power application.
l
Specification: – The power consumption varies according to versions. For details, see 23.3.10 OLP Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11OLP
TN12OLP
In single mode, the TN12OLP can substitute for the TN11OLP. For the substitution, upgrade the NE software to OptiX OSN 6800 V100R004C01 or a later version, upgrade the NE software to OptiX OSN 3800 V100R004C01 or a later version, or upgrade the NE software to OptiX OSN 8800 V100R002C00 or a later version.
TN12OLP
None
-
23.3.2 Application Because it is a type of optical protection unit, the OLP board provides the optical line protection, intra-board 1+1 protection, and client-side 1+1 protection. For the position of the OLP board in the WDM system, see Figure 23-7, Figure 23-8, Figure 23-9, Figure 23-10 and Figure 23-11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2460
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-7 Position of the TN11OLP01/TN12OLP01/TN12OLP03 board in the WDM system (optical line protection, application 1) OTU
TI
MUX
OTU
FIU OTU OTU
RI1
RI1
TO1
RO
DMUX
TO2
RI2
RI2
TO2
OTU OTU
OLP
OLP RO
DMUX
TO1
FIU TI
OTU
MUX
OTU
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
Figure 23-8 Position of the TN11OLP01/TN12OLP01/TN12OLP03 board in the WDM system (optical line protection, application 2) OTU OTU
TO1
TI
MUX
OA
RI1
OA FIU
FIU
OA
OTU
DMUX
RO
RO TO1
RI2
OA
RI2
OTU
DMUX
OTU OTU
OA
OLP TO2
RI1
OLP
OA FIU
FIU
OA
OA
TO2
TI
MUX
OTU OTU
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
Figure 23-9 Position of the TN11OLP01/TN12OLP01/TN12OLP03 board in the WDM system (intra-board 1+1 protection) TO1
RI1
OTU
TI RO OLP
TO2
MUX
DMUX
FIU
FIU
DMUX
MUX
MUX
DMUX
FIU
RI2
FIU
DMUX
MUX
RI1 TO1
RI2
OLP
RO TI OTU
TO2
NOTE
When used for intra-board 1+1 protection, the OLP does not support the 2.5 Gbit/s OTU.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2461
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-10 Position of the TN11OLP01/TN11OLP02/TN12OLP01/TN12OLP03 board in the WDM system (client-side 1+1 protection) Client-side
Cient-side TO1 RI1
DMUX
MUX
OTU (W)
FIU
FIU MUX
DMUX
TI
RO OLP
OTU RI1 (W) TO1 OLP
MUX
TO2 OTU RI2 (P)
DMUX
FIU
FIU MUX
DMUX
RO TI
OTU RI2 (P) TO2
NOTE
When the working OTU and the protection OTU are installed in different subracks or chassis, the OLP board can be used for client-side protection.
Figure 23-11 Position of the TN12OLP04 board in the WDM system (optical line protection, application) OTU OTU
MUX
OTU
DMUX
RI1 RO
OLP
SFIU OTU
T01
TI
RO
T02
RI2
RI1
T01
RI2
T02
DMUX
OTU OTU
SFIU
OLP TI
MUX
OTU OTU
NOTE
An OTU is a transceiver that process signals propagated over the same wavelength at the same time.
23.3.3 Functions and Features The OLP board provides optical line protection, intra-board 1+1 protection and client-side 1+1 protection. For detailed functions and features, refer to Table 23-12. Table 23-12 Functions and features of the OLP board Function and Feature
Description
Basic function
Provides the optical line protection to ensure the normal receiving of signals when the line fiber fails. Provides intra-board 1+1 protection to protect the services of the OTU that has no dual-fed and selective receiving function. Provides client-side 1+1 protection, making use of a working OTU and a protection OTU to protect the client-side services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2462
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Function and Feature
Description
Protection scheme
Dual-fed and selective receiving. (At the transmit end, the protected signal is dually fed to the working and protection paths. At the receive end, the working or protection signal is selected if it has the higher power level.)
Optical-layer ASON
The OLP board supports optical-layer ASON only through client 1+1 protection.
23.3.4 Working Principle and Signal Flow The OLP board consists of the optical module, control and communication module, and power supply module. Figure 23-12 shows the functional modules and signal flow of the OLP board. Figure 23-12 Functional modules and signal flow of the OLP board TO1 TO2
TI
Optical switch
RI1
RO
RI2 Optical power detecting module
Optical module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow l Issue 03 (2013-05-16)
Transmit direction Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2463
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
The TI optical interface receives one channel of optical signals. After passing through the splitter, the signals are output to the working and the protection fibers (channels) through the TO1 and TO2 optical interfaces. l
Receive direction The signals in the working and the protection fibers (channels) are input through the RI1 and RI2 optical interfaces, and then are transmitted to the optical switch. The optical switch selects one from the two channels of signals based on the optical power of the signals. In this way, the selection of signals from the working and the protection channels is achieved. The selected optical signals are output through the RO optical interface. The optical power detecting module detects the detection signals that are extracted from the working and protection signals, and reports the detection results to the control and communication module. The control and communication module compares the optical power of the two channels of optical signals, and controls the operation of the optical switch based on the optical power. In this way, the selection of signals from the working and the protection channels is achieved.
Module Function l
Optical module The optical module consists of a signal dual-fed part and a signal selection part. – Signal dual-fed part Divides the one channel of optical signals into two channels of the same power, and outputs them to the working and protection channels. – Signal selection part Receives the optical signals from the working and protection channels. The optical power detecting module detects and compares the optical power of the two channels of optical signals. Based on the results, the signal selection part selects one channel of optical signals and outputs it.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
23.3.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the OLP board.
Appearance of the Front Panel Figure 23-13 shows the front panel of the OLP board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2464
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-13 Front panel of the OLP board
OLP STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
TO1 RI1 TO2 RI2 RO TI
OLP
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2465
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 23-13 lists the type and function of each interface. Table 23-13 Types and functions of the interfaces on the OLP board Interface
Type
Function
TI
LC
Receives the line signal from the FIU board. (optical line protection) Receives one WDM-side signal. (intra-board 1+1 protection) Receives one client-side signal. (client-side 1+1 protection)
RO
LC
Transmits the line signal to the FIU board. (optical line protection) Transmits one WDM-side signal. (intra-board 1+1 protection) Transmits one client-side signal. (client-side 1+1 protection)
TO1/TO2
LC
Transmits the working and the protection signals to the line side. (optical line protection) Transmits signals to the working and the protection multiplexer unit. (intra-board 1+1 protection) Transmits signals to the working and the protection OTU. (client-side 1+1 protection)
RI1/RI2
LC
Receives the working or the protection signal from the line side. (optical line protection) Receives the signals from the working and the protection multiplexer unit. (intra-board 1+1 protection) Receives the signals from the working and protection OTU. (client-side 1+1 protection)
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2466
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
23.3.6 Valid Slots One slot houses one OLP board. Table 23-14 shows the valid slots for the TN11OLP board. Table 23-14 Valid slots for the TN11OLP board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU11, IU2-IU5
Table 23-15 shows the valid slots for the TN12OLP board. Table 23-15 Valid slots for the TN12OLP board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IIU1-IU17
OptiX OSN 3800 chassis
IU11, IU2-IU5
23.3.7 Characteristic Code for the OLP The characteristic code for the OLP board contains one character and two digits, indicating the maximum protection switching time. Detailed information about the characteristic code is given in Table 23-16. Table 23-16 Characteristic code for the OLP board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
-
The first character is always P.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2467
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Code
Meaning
Description
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN12OLP board is P50. This code indicates that the maximum protection switching time is 50ms.
23.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 23-17. Table 23-17 Serial numbers of the interfaces of the OLP board displayed on the NM Interface on the Panel
Interface on the NM
TO1/RI1
1
TO2/RI2
2
TI/RO
3
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
23.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the OLP, refer to Table 23-18. Table 23-18 OLP parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2468
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Field
Value
Description
Input Power Loss Threshold (dBm)
-35 to -10
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information
Initial Variance Value Between Primary and Secondary Input Power (dB)
-10 to 10
Variance Threshold Between Primary and Secondary Input Optical Power (dB)
0, 3 to 8
Default: -35 for more information.
Default: 0
Default: 5
The Initial Variance Value Between Primary and Secondary Input Power (dB) parameter provides an option to set the reference value of the optical power variance between the primary and secondary input optical interfaces of a board. See D.14 Initial Variance Value Between Primary and Secondary Input Power (dB) (WDM Interface) for more information. The Variance Threshold Between Primary and Secondary Input Optical Power (dB) parameter provides an option to set the optical power variance threshold of the primary and secondary optical interfaces of a board. When the threshold is reached, signal fail (SF) occurs. When the variance between the primary and secondary optical power exceeds the threshold, the optical switch switches services to the channel with better optical power. The configured value can be queried. See D.34 Variance Threshold Between Primary and Secondary Input Power (dB) (WDM Interface) for more information.
23.3.10 OLP Specifications Specifications include optical specifications, dimensions, weight, and power consumption. NOTE
Margins exist between the default input power low threshold and the receiver sensitivity and between the default input power high threshold and the overload point. These margins ensure that the system can report an input power low or high alarm before the actual input power reaches the receiver sensitivity or overload point.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2469
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Optical Specifications Table 23-19 Optical specifications of the OLP board Interf ace
Item
Unit
TITO1 TITO2
Inserti on loss at the trans mit end
single mode
RI1RO RI2RO
Inserti on loss at the receiv e end
Value TN11OL P
TN12OLP0 1a
TN12OLP0 3a
TN12OLP0 4a
dB
≤4
≤4
≤4
≤4
multi mode
dB
≤4.5
-
-
-
single mode
dB
≤1.5
≤1.5
≤1.5
≤1.5
multi mode
dB
≤2
-
-
-
Range of the input optical power
single mode
dBm
-35 to 7
-35 to 7
-30 to 23
-32 to 23
multi mode
dBm
-35 to 0
-
-
-
Operating wavelength range
single mode
nm
1270 to 1350, 1528 to 1567
1270 to 1350, 1528 to 1567
1270 to 1350, 1528 to 1567
1528 to 1567
multi mode
nm
830 to 870
-
-
-
Switching threshold of optical power difference
dB
5
5
5
5
Range of the alarm threshold for the optical power difference
dB
3 to 8
3 to 8
3 to 8
3 to 8
NOTE l OptiX OSN 8800 supports TN11OLP02, TN12OLP01, TN12OLP03 and TN12OLP04. l OptiX OSN 6800/OptiX OSN 3800 supports TN11OLP01, TN11OLP02, TN12OLP01, TN12OLP03 and TN12OLP04. l a: TN12OLP has no multimode optical module.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2470
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
Weight l
TN11OLP: 0.9 kg (1.98 lb.)
l
TN12OLP: 1.0 kg (2.20 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11OLP
6.0
6.6
TN12OLP
4.0
4.5
23.4 SCS SCS: sync optical channel separator unit
23.4.1 Version Description The available functional versions of the SCS board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1SC S
Y
Y
Y
Y
Y
Y
Type
Issue 03 (2013-05-16)
Board
Type
Description
SCS
01
Supports single-mode optical module.
02
Supports multi-mode optical module.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2471
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
23.4.2 Application As a type of optical protection unit, the SCS board provides client-side 1+1 protection and boardlevel protection (extended mode). For the position of the SCS board in the WDM system, see Figure 23-14 and Figure 23-15. Figure 23-14 Position of the SCS board in the WDM system (client-side 1+1 protection) Client-side
TO11 RI11
MUX
OTU TO21 (W)
TI1 RO1
RI21
SCS TI2 RO2
DMUX
FIU
TO12 RI12
OTU TO22 (P)
FIU
DMUX
MUX
MUX
DMUX
FIU
OTU (W) RI21
RO1 TI1
TO21 RI12 TO12
SCS
OTU (P) RI22
FIU
DMUX
RI22
Client-side
RI11 TO11
MUX
RO2 TI2
TO22
Figure 23-15 Position of the SCS in the WDM system (board-level protection with extended mode)
TBE1
R1
S C S
TBE2 TBE1
TBE1
L 4 G
O A D M
F I U
F I U
TBE2
O A D M
L 4 G
TBE2 TBE1
S C S
R1
TBE2
23.4.3 Functions and Features The SCS board provides client-side 1+1 protection and board-level protection (extended mode). For detailed functions and features, refer to Table 23-20. Table 23-20 Functions and features of the SCS board Function and Feature
Description
Basic function
l Receives signals from the working and the protection OTUs and implements client-side 1+1 protection. l Receives signals from the working and the protection TBE and implements board-level protection (extended mode).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2472
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Function and Feature
Description
Protection scheme
The channel protection supported by the SCS board does not need protocol support. Instead, the channel protection executes switching by detecting SD and SF events of the channel.
Optical-layer ASON
Not supported
23.4.4 Working Principle and Signal Flow The SCS board consists of the optical module, control and communication module, and power supply module. Figure 23-16 shows the functional modules and signal flow of the SCS board. Figure 23-16 Functional modules and signal flow of the SCS board Optical module TI1
Splitter
TO11 TO12
TI2
Splitter
TO21 TO22
RO1
Coupler
RI11 RI12
RO2
Coupler
RI21 RI22
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow One SCS board supports the dual-fed and dual receiving of two channels of optical signals. The SCS board processes the two channels of optical signals in the same way. This section describes the service flow of only one channel of optical signals. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2473
OptiX OSN 8800/6800/3800 Hardware Description
l
23 Optical Protection Board
Transmit direction The TI1 optical interface receives one channel of optical signals. After passing through the splitter, the signals are output to the working and the protection channels through the TO11 and TO12 optical interfaces.
l
Receive direction The signals in the working and the protection channels are input through the RI1 and RI2 optical interfaces, and then are transmitted to the coupler. The system activates one of the two channels of optical signals based on the service quality. In this way, the selection of path optical signals is achieved. The selected optical signals are output through the RO1 optical interface. Normally, the working OTU at the receive end is active, and the protection OTU is standby. Once a fault occurs in the services, an alarm triggers a protection switching. The system shuts down the working OTU, and activates the protection OTU.
Module Function l
Optical module The optical module consists of the splitters and couplers. – Splitter Divides the one channel of optical signals into two channels of the same power, and outputs them to the working and protection channels. – Coupler Receives the signals in the working and the protection channels. The system selects one channel of optical signals based on the service quality.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
23.4.5 Front Panel There are indicators and interfaces on the front panel of the SCS board.
Appearance of the Front Panel Figure 23-17 shows the front panel of the SCS board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2474
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Figure 23-17 Front panel of the SCS board
SCS STAT
TO11 RI11 TO12 RI12 TO21 RI21 TO22 RI22 RO1 TI1 RO2 TI2
SCS
Indicators One indicator is present on the front panel: l
Board hardware status indicator (STAT) - green
For details about this indicator, see A.4 Board Indicators.
Interfaces Table 23-21 lists the type and function of each interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2475
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-21 Types and functions of the interfaces on the SCS board Interface
Type
Function
TI1/TI2
LC
Receives the first/second channel of client-side signals.
RO1/RO2
LC
Transmits the first/second channel of client-side signals.
TO11/TO12
LC
Transmits the first channel of signals to the working and protection OTU.
TO21/TO22
LC
Transmits the second channel of signals to the working and the protection OTU.
RI11/RI12
LC
Receives the first channel of signals from the working and protection OTU.
RI21/RI22
LC
Receives the second channel of signals from the working and protection OTU.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
23.4.6 Valid Slots One slot houses one SCS board. Table 23-22 shows the valid slots for the TN11SCS board. Table 23-22 Valid slots for the TN11SCS board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU11, IU2-IU5
23.4.7 Characteristic Code for the SCS The characteristic code for the SCS board contains one character and two digits, indicating the maximum protection switching time. The detailed information about the characteristic code is given in Table 23-23. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2476
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-23 Characteristic code for the SCS board Code
Meaning
Description
First character
-
The first character is always P.
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN11SCS board is P50. This code indicates that the maximum protection switching time is 50 ms.
23.4.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 23-24. Table 23-24 Serial numbers of the interfaces of the SCS board displayed on the NM Interface on the Panel
Interface on the NM
TI1/RO1
1
TO11/RI11
2
TO12/RI12
3
TI2/RO2
4
TO21/RI21
5
TO22/RI22
6
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
23.4.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the SCS, refer to Table 23-25.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2477
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Table 23-25 SCS parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and queries the optical interface name. It is recommended to use the default value.
23.4.10 SCS Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 23-26 lists the optical specifications of the SCS board. Table 23-26 Optical specifications of the SCS board Interface
Item
TI1-TO11 TI1-TO12 TI2-TO21 TI2-TO22
Splitting insertion loss
RI11-RO1 RI12-RO1 RI21-RO2 RI22-RO2
Coupling insertion loss
Operating wavelength range
Unit
Value
Single-mode
dB
≤4
Multi-mode
dB
≤4.5
Single-mode
dB
≤4
Multi-mode
dB
≤4.5
Single-mode
nm
1270 to 1350, 1528 to 1567
Multi-mode
nm
830 to 870
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.8 kg (1.8 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2478
OptiX OSN 8800/6800/3800 Hardware Description
23 Optical Protection Board
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11SCS
0.2
0.3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2479
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24
Spectrum Analyzer Board
About This Chapter 24.1 Overview Spectrum analyzer boards support centralized monitoring of optical signals without impacting the signal performance. 24.2 MCA4 MCA4: 4-channel spectrum analyzer unit 24.3 MCA8 MCA8: 8-channel spectrum analyzer unit 24.4 OPM8 OPM8: 8-channel optical power monitor board 24.5 WMU WMU: wavelength monitored unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2480
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24.1 Overview Spectrum analyzer boards support centralized monitoring of optical signals without impacting the signal performance.
Positions of Spectrum Analyzer Boards in a WDM System Figure 24-1 illustrates the position of spectrum analyzer boards in a WDM system by using the OPM8 board as an example. Figure 24-1 Positions of spectrum analyzer boards in a WDM system
OTU
OM
OAU
OD
OAU
OTU
OD
OAU
OM
OAU
OTU
OPM8
IN1 MON OUT
OTU
OPM8
OPM8
OTU
OTU
OTU OTU
Spectral information can be queried using the U2000
IN
OAU
Main Functions Board
Number of Ports
Monitoring Capabilitya Number of Wavelength s
Optical Power
Center Wavelength
OSNRb
MCA4
4
Y
Y
Y
Y
MCA8
8
Y
Y
Y
Y
Issue 03 (2013-05-16)
Remarks
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
It is recommended that these boards be configured at 2481
OptiX OSN 8800/6800/3800 Hardware Description
Board
24 Spectrum Analyzer Board
Number of Ports
Monitoring Capabilitya
Remarks
Number of Wavelength s
Optical Power
Center Wavelength
OSNRb
OPM8
8
Y
Y
N
Yc
the receive end.
WMU
2
Y
Y
Y
N
This board must be configured at the transmit end.
a: "Y" indicates that the board supports the function. "N" indicates that the board does not support the function. b: Observe the following information when OSNR monitoring is required: MCA4/MCA8: l The Optical Doctor Management System Function Software is optional. l When the Optical Doctor Management System Function Software is not used, there are the following restrictions: OSNR monitoring is not supported if adjacent channels have 50 GHz channel spacing spacing. OSNR monitoring is supported only for 10 Gbit/s or lower rate wavelengths if the channel spacing is 100 GHz l OSNR monitoring is supported for all signals if their rates are 10 Gbit/s or lower, regardless of whether the Optical Doctor Management System Function Software is used. TN12OPM8: l The Optical Doctor Management System Function Software must be used. l OSNR monitoring is supported for 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signals. c: Only the TN12OPM8 can monitor OSNR.
24.2 MCA4 MCA4: 4-channel spectrum analyzer unit
24.2.1 Version Description The available functional versions of the MCA4 board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2482
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M CA4
Y
Y
Y
Y
Y
Y
Type Table 24-1 lists the types of the MCA4 board. Table 24-1 Type description of the MCA4 board Board
Type
Description
TN11MCA 4
01
Detects optical power and OSNR of 10 Gbit/s or lower signals.
02
Detects optical power of 100 Gbit/s or lower signals. Detects OSNR of 10 Gbit/s or lower signals. Supports 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signal OSNR detection when the OD (Optical Doctor) Management System Function Software is installed and OD (Optical Doctor) functions have been configured. NOTE l When the Optical Doctor Management System Function Software is not used, and 40 Gbit/s or higher rate wavelengths are deployed in the system. there are the following restrictions: l OSNR monitoring is not supported if adjacent channels have 50 GHz channel spacing spacing. l OSNR monitoring is supported only for 10 Gbit/s or lower rate wavelengths if the channel spacing is 100 GHz. l OSNR monitoring is supported for all signals if their rates are 10 Gbit/s or lower, regardless of whether the Optical Doctor Management System Function Software is used.
24.2.2 Application As a type of spectrum analyzer unit, the MCA4 board provides four ports and each of the ports supports spectrum analysis of up to 80 wavelengths. For the position of the MCA4 board in the WDM system, see Figure 24-2. Figure 24-2 Position of the MCA4 board in the WDM system OTU
MUX
OAU
OAU
DMUX
OTU MCA4
OTU
DMUX
OAU
OTU
MCA4
OAU
MUX
OTU
Issue 03 (2013-05-16)
OTU
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
OTU OTU
2483
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
NOTE
The MCA4 board is usually configured at the receive end. If supervision is required at both the receive and transmit ends, you can configure the MCA4 boards at both ends for supervision.
24.2.3 Functions and Features The MCA4 board is mainly used for spectral analysis, APE and power detection. For detailed functions and features, refer to Table 24-2. Table 24-2 Functions and features of the MCA4 board Function and Feature
Description
Basic function
Provides four ports and each of the ports supports spectrum analysis of up to 80 wavelengths.
Detection function
Supports monitoring of the following information and reports to the SCC board. The following information can be displayed on the U2000. l Optical power of each wavelength l Central wavelength l Number of wavelengths in the main optical path l OSNR of 10 Gbit/s or lower rate signals l Supports 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signal OSNR detection when the OD (Optical Doctor) Management System Function Software is installed and OD (Optical Doctor) functions have been configured. NOTE l When the Optical Doctor Management System Function Software is not used, and 40 Gbit/s or higher rate wavelengths are deployed in the system. there are the following restrictions: l OSNR monitoring is not supported if adjacent channels have 50 GHz channel spacing spacing. l OSNR monitoring is supported only for 10 Gbit/s or lower rate wavelengths if the channel spacing is 100 GHz. l OSNR monitoring is supported for all signals if their rates are 10 Gbit/s or lower, regardless of whether the Optical Doctor Management System Function Software is used. NOTE If the power deviation between some wavelengths monitored by the MCA4 board exceeds 6 dB, then the wavelength with lower power may be regarded as noise and cannot be scanned by the MCA4 board.
APE function
Supported Detects the optical power of each wavelength.
Optical-layer ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2484
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24.2.4 Working Principle and Signal Flow The MCA4 board consists of the 1x4 optical switch, spectral analysis module, driving and control module, control and communication module, and power supply module. Figure 24-3 shows the functional modules and signal flow of the MCA4 board. Figure 24-3 Functional modules and signal flow of the MCA4 board IN01 IN02 IN03 IN04
Spectrum analysis module
1× 4
optical switch Control signal
Driving signal
Data signal
Driving and control module
Control CPU
Memory
Communication
Control and控制与通信模块 communication module Power supply module Fuse
DC power supply from a backplane
Required voltage
Backplane (controlled by SCC) SCC
Signal Flow The 1x4 optical switch selects one channel of optical signals and sends it to the spectral analysis module for parameter analysis. After being analyzed and converted, each data parameter is sent to the control and communication module through a data interface. The control and communication module further reports the parameter to the SCC board and the U2000. The final spectrum analysis results are displayed on the U2000.
Module Function l
1x4 optical switch Selects one channel of optical signals from the accessed four channels of optical signals for spectrum analysis.
l
Spectrum analysis module Monitors parameters such as the central wavelength, optical power, OSNR, and number of wavelengths.
l Issue 03 (2013-05-16)
Driving and control module Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2485
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
– Drives and controls spectrum. – Controls the 1x4 optical switch to select one channel of optical signals for spectrum analysis. l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
24.2.5 Front Panel There are indicators and interfaces on the front panel of the MCA4 board.
Appearance of the Front Panel Figure 24-4 shows the front panel of the MCA4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2486
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-4 Front panel of the MCA4 board
MCA4 STAT ACT PROG SRV
IN1 IN2 IN3 IN4
MCA4
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 24-3 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2487
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Table 24-3 Types and functions of the interfaces on the MCA4 board Interface
Type
Function
IN1-IN4
LC
Connected to the "MON" interfaces of other boards to receive optical signals for analysis. The interfaces can be connected to four "MON" interfaces at the same time.
24.2.6 Valid Slots Two slots house one MCA4 board. Table 24-4 shows the valid slots for the MCA4 board. Table 24-4 Valid slots for the MCA4 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
OptiX OSN 3800 chassis
IU2-IU5
NOTE
For OptiX OSN 8800, the rear connector of the board is mounted to the backplane along the left slot of the two slots in the subrack. Therefore, the slot number of the MCA4 board displayed on the NM is the number of the left slot. For example, if slots IU1 and IU2 house the MCA4 board, the slot number of the MCA4 board displayed on the NM is IU1. For OptiX OSN 6800, the rear connector of the board is mounted to the backplane along the left slot of the two slots in the subrack. Therefore, the slot number of the MCA4 board displayed on the NM is the number of the left slot. For example, if slots IU1 and IU2 house the MCA4 board, the slot number of the MCA4 board displayed on the NM is IU1. For OptiX OSN 3800, the rear connector of the board is mounted to the backplane along the bottom slot of the two slots in the chassis. Therefore, the slot number of the MCA4 board displayed on the NM is the number of the bottom slot. For example, if slots IU11 and IU2 house the MCA4 board, the slot number of the MCA4 board displayed on the NM is IU2.
24.2.7 Characteristic Code for the MCA4 The characteristic code for the MCA4 board contains one character, indicating the band of the optical signals processed by the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2488
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
The detailed information about the characteristic code is given in Table 24-5. Table 24-5 Characteristic code for the MCA4 board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band.
For example, the characteristic code for the TN11MCA4 board is C, indicating C band.
24.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 24-6. Table 24-6 Serial numbers of the interfaces of the MCA4 board displayed on the NM Interface on the Panel
Interface on the NM
IN1-IN4
1-4
24.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the MCA4, refer to Table 24-7. Table 24-7 MCA4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2489
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Field
Value
Description
Optical Monitoring
Enabled, Disabled
Sets the optical interface monitoring state. When the monitoring of an optical interface is set to Disabled, the spectrum analyzer board does not analyze the wavelength at this interface.
Default: Enabled
Configure Band
C
Sets the working band types of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Port
-
Displays port name and wavelength frequency.
Band
-
Displays the current band.
Wavelength Monitor Status
No Monitor, Monitor Default: No Monitor
Sets whether to monitor the current wavelength. It is recommended to set the monitor status of wavelengths that bear services to Monitor.
Board
-
Displays the board name.
Optical Switch No.
-
The Optical Switch No. parameter provides an option to query the current working optical interface of the multichannel spectrum analyzer board.
Monitor Interval (min.)
5 to 49995
parameter provides an option to set the supervisory channel for the current board and to analyze the time interval of the channel status.
WDM type
Default, 100-GHz Spacing with CRZ, 50-GHz Spacing with CRZ, 100-GHz Spacing with 40Gbps, 50-GHz Spacing with 40Gbps
Default: All
Default: 10
This parameter is reserved for future use. Users do not need to set it.
Default: Default
24.2.10 MCA4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2490
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Optical Specifications Table 24-8 lists the optical specifications of the MCA4 board. Table 24-8 Optical specifications of the MCA4 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Channel spacing
GHz
50/100
Detect range for single channel optical power
dBm
-30 to -10
Detect accuracy for optical power
dB
±1.5
OSNR detection accuracy A (The OSNR of 10 Gbit/s signals can be detected.)
dB
±1.5 (OSNR: 13 to 19) ±2 (OSNR: 19 to 23)
OSNR detection accuracy Ba (The OSNR of 10, 40, and 100 Gbit/s signals can be detected.)
dB
±1.5 (OSNR detection range: 13-23)
Detect accuracy for central wavelength
nm
±0.1
Numbers of optical interface
pcs
4
a: The OSNR detection function is available only when the board works with the OD (Optical Doctor) Management System Function Software and the OD (Optical Doctor) function has been configured on the NMS.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.9 kg (4.2 lb.)
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
MCA4
8.0
8.5
24.3 MCA8 MCA8: 8-channel spectrum analyzer unit
24.3.1 Version Description The available functional versions of the MCA8 board is TN11. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2491
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1M CA8
Y
Y
Y
Y
Y
Y
Type Table 24-9 lists the types of the MCA8 board. Table 24-9 Type description of the MCA8 board Board
Type
Description
TN11MCA 8
01
Detects optical power and OSNR of 10 Gbit/s or lower signals.
02
Detects optical power of 100 Gbit/s or lower signals. Supports 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signal OSNR detection when the OD (Optical Doctor) Management System Function Software is installed and OD (Optical Doctor) functions have been configured. NOTE l When the Optical Doctor Management System Function Software is not used, and 40 Gbit/s or higher rate wavelengths are deployed in the system. there are the following restrictions: l OSNR monitoring is not supported if adjacent channels have 50 GHz channel spacing spacing. l OSNR monitoring is supported only for 10 Gbit/s or lower rate wavelengths if the channel spacing is 100 GHz. l OSNR monitoring is supported for all signals if their rates are 10 Gbit/s or lower, regardless of whether the Optical Doctor Management System Function Software is used.
24.3.2 Application As a type of spectrum analyzer unit, the MCA8 board provides eight ports and each of the ports supports spectrum analysis of up to 80 wavelengths. For the position of the MCA8 board in the WDM system, see Figure 24-5.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2492
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-5 Position of the MCA8 board in the WDM system OTU
MUX
OAU
OAU
DMUX
OTU MCA8
OTU
DMUX
OAU
OTU OTU
MCA8
OAU
MUX
OTU
OTU OTU
NOTE
The MCA8 board is usually configured at the receive end. If supervision is required at the receive and transmit ends, you can configure one MCA8 board at each end to provide supervision.
24.3.3 Functions and Features The MCA8 board provides spectral analysis, automatic power equilibrium (APE) and detection. For detailed functions and features, refer to Table 24-10. Table 24-10 Functions and features of the MCA8
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Provides eight ports and each of the ports supports spectrum analysis of up to 80 wavelengths.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2493
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Function and Feature
Description
Detection function
Supports the following detection functions and reports to the SCC board. The following information can be displayed on the U2000. l Optical power of each wavelength l Central wavelength l Number of wavelengths in the main optical path l OSNR of 10 Gbit/s or lower rate signals l Supports 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signal OSNR detection when the OD (Optical Doctor) Management System Function Software is installed and OD (Optical Doctor) functions have been configured. NOTE l When the Optical Doctor Management System Function Software is not used, and 40 Gbit/s or higher rate wavelengths are deployed in the system. there are the following restrictions: l OSNR monitoring is not supported if adjacent channels have 50 GHz channel spacing spacing. l OSNR monitoring is supported only for 10 Gbit/s or lower rate wavelengths if the channel spacing is 100 GHz. l OSNR monitoring is supported for all signals if their rates are 10 Gbit/s or lower, regardless of whether the Optical Doctor Management System Function Software is used. NOTE If the power deviation between some wavelengths monitored by the MCA8 board exceeds 6 dB, then the wavelength with lower power may be regarded as noise and cannot be scanned by the MCA8 board.
APE function
Supported Detects the optical power of each wavelength.
Optical-layer ASON
Supported
24.3.4 Working Principle and Signal Flow The MCA8 board consists of the 1x8 optical switch, spectral analysis module, driving and control module, control and communication module, and power supply module. Figure 24-6 shows the functional modules and signal flow of the MCA8 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2494
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-6 Functional modules and signal flow of the MCA8 board IN01 IN02 IN03 IN04 IN05 IN06 IN07 IN08
Spectrum analysis module 1× 8
optical switch Driving signal
Control signal
Data signal
Driving and control module
Control CPU Communication Control and控制与通信模块 communication module
Memory
Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The 1x8 optical switch selects one channel of optical signals and transmits the channel to the spectral analysis module for parameter analysis. After being analyzed and converted, each data parameter is sent to the control and communication module through a data interface. The control and communication module further reports the parameter to the SCC board and the U2000. The U2000 reports the final spectrum analysis results.
Module Function l
1x8 optical switch Selects one channel of optical signals from the accessed eight channels of optical signals for spectrum analysis.
l
Spectrum analysis module Monitors parameters such as the central wavelength, optical power, OSNR, and number of wavelengths.
l
Driving and control module – Drives and controls spectrum. – Controls the 1x8 optical switch to select one channel of optical signals for spectrum analysis.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2495
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
– Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
24.3.5 Front Panel There are indicators and interfaces on the front panel of the MCA8 board.
Appearance of the Front Panel Figure 24-7 shows the front panel of the MCA8 board. Figure 24-7 Front panel of the MCA8 board
MCA8 STAT ACT PROG SRV
IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8
MCA8
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2496
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 24-11 lists the type and function of each interface. Table 24-11 Types and functions of the interfaces on the MCA8 board Interface
Type
Function
IN1-IN8
LC
Connected to the "MON" interfaces of other boards to receive optical signals for analysis. The interfaces can be connected to eight "MON" interfaces at the same time.
24.3.6 Valid Slots Two slots house one MCA8 board. Table 24-12 shows the valid slots for the MCA8 board. Table 24-12 Valid slots for the MCA8 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU7, IU11-IU17, IU19-IU25, IU27IU33, IU35-IU41, IU45-IU51, IU53-IU59, IU61-IU67
OptiX OSN 8800 T32 subrack
IU1-IU7, IU11-IU18, IU20-IU26, and IU29IU35
OptiX OSN 8800 T16 subrack
IU1-IU7, IU11-IU17
OptiX OSN 8800 platform subrack
IU1-IU17
OptiX OSN 6800 subrack
IU1-IU16
OptiX OSN 3800 chassis
IU2-IU5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2497
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
NOTE
For the OptiX OSN 8800, the rear connector of the board is mounted to the backplane along the left slot of the two slots in the subrack. The slot number of the MCA8 board displayed on the NM is the number of the left slot. For example, if slots IU1 and IU2 house the MCA8 board, the slot number of the MCA8 board displayed on the NM is IU1. For the OptiX OSN 6800, the rear connector of the board is mounted to the backplane along the left slot of the two slots in the subrack. The slot number of the MCA8 board displayed on the NM is the number of the left slot. For example, if slots IU1 and IU2 house the MCA8 board, the slot number of the MCA8 board displayed on the NM is IU1. For the OptiX OSN 3800, the rear connector of the board is mounted to the backplane along the bottom slot of the two slots in the chassis. The slot number of the MCA8 board displayed on the NM is the number of the bottom slot. For example, if slots IU11 and IU2 house the MCA8 board, the slot number of the MCA8 board displayed on the NM is IU2.
24.3.7 Characteristic Code for the MCA8 The characteristic code for the MCA8 board consists of one character, indicating the band of the optical signals processed by the board. Detailed information about the characteristic code is given in Table 24-13. Table 24-13 Characteristic code for the MCA8 board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band.
For example, the characteristic code for the TN11MCA8 board is C, indicating that the card processes optical signals in the C band.
24.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 24-14. Table 24-14 Serial numbers of the interfaces of the MCA8 board displayed on the NM Interface on the Panel
Interface on the NM
IN1-IN8
1-8
24.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2498
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
For parameters of the MCA8, refer to Table 24-15. Table 24-15 MCA8 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Monitoring
Enabled, Disabled Default: Enabled
Configure Band
C
Sets the optical interface monitoring state. When the monitoring of an optical interface is set to Disabled, the spectrum analyzer board does not analyze the wavelength at this interface. Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Port
-
Displays port name and wavelength frequency.
Band
-
Displays the current band.
Wavelength Monitor Status
No Monitor, Monitor Default: No Monitor
Sets whether to monitor the current wavelength. It is recommended to set the monitor status of wavelengths that bear services to Monitor.
Board
-
Displays the board name.
Optical Switch No.
-
The Optical Switch No. parameter provides an option to query the current working optical interface of the multichannel spectrum analyzer board.
Monitor Interval (min.)
5 to 49995
parameter provides an option to set the supervisory channel for the current board and to analyze the time interval of the channel status.
Default: All
Default: 10
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2499
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Field
Value
Description
WDM type
Default, 100-GHz Spacing with CRZ, 50GHz Spacing with CRZ, 100-GHz Spacing with 40Gbps, 50-GHz Spacing with 40Gbps
This parameter is reserved for future use. Users do not need to set it.
Default: Default
24.3.10 MCA8 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 24-16 lists the optical specifications of the MCA8 board. Table 24-16 Optical specifications of the MCA8 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Channel spacing
GHz
50/100
Detect range for single channel optical power
dBm
-30 to -10
Detect accuracy for optical power
dB
±1.5
OSNR detection accuracy A (The OSNR of 10 Gbit/s signals can be detected.)
dB
±1.5 (OSNR: 13 to 19) ±2 (OSNR: 19 to 23)
OSNR detection accuracy Ba (The OSNR of 10, 40, and 100 Gbit/s signals can be detected.)
dB
±1.5 (OSNR detection range: 13-23)
Detect accuracy for central wavelength
nm
±0.1
Numbers of optical interface
pcs
8
a: The OSNR detection function is available only when the board works with the OD (Optical Doctor) Management System Function Software and the OD (Optical Doctor) function has been configured on the NMS.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 50.8 mm (2.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.9 kg (4.2 lb.)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2500
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Power Consumption Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
MCA8
12.0
13.0
24.4 OPM8 OPM8: 8-channel optical power monitor board
24.4.1 Version Description The available functional versions of the OPM8 board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1OP M8
Y
Y
Y
Y
Y
Y
TN1 2OP M8
Y
Y
Y
Y
Y
Y
Differences Between Versions Function: l
Only the TN12OPM8 supports detection of OSNR for 10 Gbit/s, 40 Gbit/s, and 100 Gbit/ s signals.
Substitution Relationship The OPM8 boards of different versions cannot replace each other.
24.4.2 Application The OPM8 board provides eight ports and each of the ports supports optical power monitor of up to 80 wavelengths. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2501
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
For the position of the OPM8 board in the WDM system, see Figure 24-8. Figure 24-8 Position of the OPM8 board in the WDM system OTU
MUX
OAU
OAU
DMUX
OTU OPM8
OTU
DMUX
OAU
OTU OTU
OPM8
OAU
MUX
OTU
OTU OTU
NOTE
The OPM8 board is usually configured at the receive end. If supervision is required at the receive and transmit ends, you can configure the OPM8 boards at each end for supervision.
24.4.3 Functions and Features The OPM8 board is mainly used for optical power monitoring and APE. For detailed functions and features, refer to Table 24-17. Table 24-17 Functions and features of the OPM8 Function and Feature
Description
Basic function
Provides eight ports and each of the ports supports optical power monitor of up to 80 wavelengths.
Monitoring function
Detects optical power of each wavelength and reports the standard wavelength and optical power to the SCC board. NOTE TN12OPM8 supports detection of OSNR for 10 Gbit/s, 40 Gbit/s, and 100 Gbit/s signals.
The results are reported to the SCC and can be displayed on the U2000. Implements the APE function when the board is used with other required boards.
APE function
Monitors the optical power of each channel. Optical-layer ASON
Supported
24.4.4 Working Principle and Signal Flow The OPM8 board consists of the 1x8 optical switch, optical power monitor module, driving and control module, control and communication module, and power supply module. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2502
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-9 and Figure 24-10 show the functional modules and signal flow of the TN11OPM8 and TN12OPM8 boards. Figure 24-9 Functional modules and signal flow of the TN11OPM8 board IN01 IN02 IN03 IN04 IN05 IN06 IN07 IN08
Optical power monitor module
1× 8 optical switch Control signal
Driving signal
Data signal
Driving and control module
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
DC power supply from a backplane
Issue 03 (2013-05-16)
Required voltage
Backplane (controlled by SCC) SCC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2503
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-10 Functional modules and signal flow of the TN12OPM8 board IN01 IN02 IN03 IN04 IN05 IN06 IN07 IN08
Spectrum analysis module
1× 8 optical switch Control signal
Driving signal
Data signal
Driving and control module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The 1x8 optical switch selects one channel of optical signals from the board it is connected to, and sends the channel to the optical power monitor module. After being analyzed and converted, the optical power value is sent to the control and communication module through a data interface. The control and communication module reports the value to the SCC board and the U2000. The final spectrum analysis results are displayed on the U2000.
Module Function l
1x8 optical switch Selects one channel of optical signals from the accessed eight channels of optical signals for optical.
l
Optical power monitor module Monitors channel optical power and wavelength information and reports the data to the driving and control module.
l
Issue 03 (2013-05-16)
Spectrum analysis module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2504
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Monitors channel optical power, wavelength information and OSNR, then reports the data to the driving and control module. l
Driving and control module – Drives and scans spectrum. – Instructs the 1x8 optical switch to select one channel of optical signals for spectrum analysis.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
24.4.5 Front Panel There are indicators and interfaces on the front panel of the OPM8 board.
Appearance of the Front Panel Figure 24-11 shows the front panel of the OPM8 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2505
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-11 Front panel of the OPM8 board
OPM8 STAT ACT PROG SRV
IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8
OPM8
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 24-18 lists the type and function of each interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2506
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Table 24-18 Types and functions of the interfaces on the OPM8 board Interface
Type
Function
IN1-IN8
LC
Connects to the "MON" interfaces of other boards to receive optical signals for analysis. The interfaces can be connected to eight "MON" interfaces of other boards at the same time.
24.4.6 Valid Slots One slot houses one OPM8 board. Table 24-19 shows the valid slots for the OPM8 board. Table 24-19 Valid slots for the OPM8 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
24.4.7 Characteristic Code for the OPM8 The characteristic code for the OPM8 board consists of one character, indicating the band of the optical signals processed by the board. Detailed information about the characteristic code is given in Table 24-20. Table 24-20 Characteristic code for the OPM8 board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band.
For example, the characteristic code for the TN11OPM8 board is C, indicating C band. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2507
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24.4.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the OPM8, refer to Table 24-21. Table 24-21 OPM8 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Monitoring
Configure Band
Enabled, Disabled Default: Enabled
Sets the optical interface monitoring state. When the monitoring of an optical interface is set to Disabled, the MCA board does not analyze the wavelength at this interface.
C
Sets the working band type of a board.
Default: C
Issue 03 (2013-05-16)
Actual Band
-
Queries the actual working band of the board.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Port
-
Displays port name and wavelength frequency.
Band
-
Displays the current band.
Wavelength Monitor Status
No Monitor, Monitor Default: No Monitor
Sets whether to monitor the current wavelength. It is recommended to set the monitor status of wavelengths that bear services to Monitor.
Board
-
Displays the board name.
Optical Switch No.
-
The Optical Switch No. parameter provides an option to query the current working optical interface of the multichannel spectrum analyzer board.
Default: All
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2508
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Field
Value
Description
Monitor Interval (min.)
5 to 49995
parameter provides an option to set the supervisory channel for the current board and to analyze the time interval of the channel status.
Default: 10
24.4.9 OPM8 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 24-22 lists the optical specifications of the OPM8 board. Table 24-22 Optical specifications of the OPM8 board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Detect range for single channel optical power
dBm
-30 to -10
Detected accuracy for optical power
dB
±1.5
Channel spacing
GHz
50/100
Numbers of optical interface
pcs
8
Detect accuracy for OSNRa
dB
±1.5 NOTE This item is valid only for TN12OPM8.
a: The OSNR detection function is available only the OD (Optical Doctor) functions have been configured.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11OPM8/TN12OPM8
12
15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2509
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24.5 WMU WMU: wavelength monitored unit
24.5.1 Version Description The available functional version of the WMU board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1W MU
Y
Y
Y
Y
Y
N
24.5.2 Application The WMU board monitors the wavelengths at a 50 GHz/100 GHz channel spacing in the system. For the position of the WMU board in the WDM system, see Figure 24-12. Figure 24-12 Position of the WMU board in the WDM system OSC MUX
DMUX
OA
OA
WMU
MUX
DMUX
FIU
FIU ITL WMU
ITL DMUX
MUX
OA
OA
DMUX
MUX
O O O O T T T T U U U U
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2510
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
NOTE
One WMU board can implement the centralized wavelength monitoring in two directions. Figure 24-12 shows the two WMU boards, which, however, refer to the same WMU board.
24.5.3 Functions and Features The WMU board supports the centralized monitoring of the wavelengths at a channel spacing of 50 GHz/100 GHz on the OTU board at the transmit end in the system. For detailed functions and features, refer to Table 24-23. Table 24-23 Functions and features of the WMU board Function and Feature
Description
Basic function
The board supports the centralized monitoring of the wavelengths on the OTU board at the transmit end in the system with wavelengths at 50 GHz/100 GHz channel spacing, and performs centralized monitoring of the fixed-wavelengths on the OTU at the transmit end in a transmission system. In addition, the board can monitor the wavelengths in two different optical transmit directions.
Optical switch
The optical switch is used to select the optical signals from the desired transmission direction to monitor.
Optical-layer ASON
Supported
24.5.4 Working Principle and Signal Flow The WMU board consists of the 1x2 optical switch, optical wavelength detection module, control and communication module, and power supply module. Figure 24-13 shows the functional modules and signal flow of the WMU board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2511
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Figure 24-13 Functional block diagram of the WMU board
IN1 IN2
Optical wavelength detection module
1X2 optical switch Control signal
Driving signal
Data signal
Control Memory
CPU
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Signal Flow The 1x2 optical switch selects one channel of optical signals and sends it to the optical wavelength detection module for parameter analysis. After being analyzed and converted, the wavelength information is sent to the control and communication module through a data interface. The control and communication module further reports the results to the SCC board and the U2000. The final results are displayed on the U2000.
Module Function l
1x2 optical switch Selects one channel of signals from the signals accessed through two optical interfaces for optical wavelength detection.
l
Optical wavelength detection module Detects each single-wavelength optical signals from the optical channel selection module, and reports the wavelength information to the SCC board.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2512
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
24.5.5 Front Panel There are indicators and interfaces on the front panel of the WMU board.
Appearance of the Front Panel Figure 24-14 shows the front panel of the WMU board. Figure 24-14 Front panel of the WMU board
WMU STAT ACT PROG SRV
IN1 IN2
WMU
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2513
OptiX OSN 8800/6800/3800 Hardware Description
l
24 Spectrum Analyzer Board
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 24-24 lists the type and function of each interface. Table 24-24 Types and functions of the interfaces on the WMU board Interface
Type
Function
IN1/IN2
LC
Each connect to the MON optical interface on an optical amplifier in the transmit direction or an FIU board for centralized wavelength monitoring.
24.5.6 Valid Slots One slot houses on WMU board. Table 24-25 shows the valid slots for the WMU board. Table 24-25 Valid slots for the WMU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
24.5.7 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 24-26. Table 24-26 Serial numbers of the interfaces of the WMU board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
IN1
1 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2514
OptiX OSN 8800/6800/3800 Hardware Description
24 Spectrum Analyzer Board
Interface on the Panel
Interface on the NM
IN2
2
24.5.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For WMU parameters, refer to Table 24-27. Table 24-27 WMU parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. It is recommended to use the default value.
24.5.9 WMU Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 24-28 Optical specifications of the WMU board Item
Unit
Value
Operating wavelength range
nm
1529-1561
Adjacent channel spacing
GHz
50/100
Per-channel input optical power range
dBm
-36 to -16
Detect accuracy for central wavelength
GHz
<2.5
Detect accuracy for single channel optical power
dB
<2
Detect range for Central wavelength offset
GHz
-10 to 10
Mechanical Specifications l
Issue 03 (2013-05-16)
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2515
OptiX OSN 8800/6800/3800 Hardware Description
l
24 Spectrum Analyzer Board
Weight: 1.0 kg (2.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Optical Module Type
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11WMU
-
12
15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2516
OptiX OSN 8800/6800/3800 Hardware Description
25
25 Variable Optical Attenuator Board
Variable Optical Attenuator Board
About This Chapter 25.1 Overview Electrical variable optical attenuator (EVOA) boards are mainly configured at input ports on optical amplifier (OA) boards, or wavelength-adding and pass-through ports on optical add/drop multiplexer (OADM) boards to adjust optical power. 25.2 VA1 VA1: 1-channel variable optical attenuator unit 25.3 VA4 VA4: 4-channel variable optical attenuator unit
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2517
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
25.1 Overview Electrical variable optical attenuator (EVOA) boards are mainly configured at input ports on optical amplifier (OA) boards, or wavelength-adding and pass-through ports on optical add/drop multiplexer (OADM) boards to adjust optical power.
Application of EVOAs EVOA boards adjust the optical power of optical signals as required by system control boards in the following scenarios: l
EVOA boards are configured before the input ports of OA boards to adjust the input optical power of OA boards to the OA nominal power or the target power specified in network design. See Figure 25-1. Figure 25-1 EVOA configured at the input port of an OA board
OA
EVOA
FIU
OA
l
Issue 03 (2013-05-16)
EVOA boards are configured at the wavelength-adding ports and pass-through ports of OADM boards to adjust the optical power of added signals and pass-through signals so that the optical spectrum is flat at an OADM site. See Figure 25-2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2518
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Figure 25-2 EVOAs configured at the wavelength-adding ports and pass-through ports of an OADM board
OTU EVOA
OTU
OTU
OTU
EVOA
EVOA
EVOA
EVOA
OA
OA MRx
EVOA
MRx OA
OA
Main Functions of EVOA Boards The VA1 and VA4 boards provide the following functions: l
The VA1 board adjusts the optical power for one channel of optical signals and the VA4 board adjusts the optical power for four channels of optical signals.
l
Supports power-off protection to avoid damage to the corresponding optical receiver caused by too-high optical power when the power supply recovers.
l
Supports the variable attenuation range of 1.5 dB to 21.5 dB. The resolution is 0.1 dB.
l
Supports optical-layer ASON.
25.2 VA1 VA1: 1-channel variable optical attenuator unit
25.2.1 Version Description The available functional versions of the VA1 board are TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office.
Issue 03 (2013-05-16)
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1VA 1
N
N
N
N
Y
Y
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2519
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 2VA 1
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Specification: – For the specification of each version, see 25.2.10 VA1 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11VA1
TN12VA1
Upgrade the NE software to OptiX OSN 6800 V100R003 or a later version, or upgrade the NE software to OptiX OSN 3800 V100R003 or a later version.
TN12VA1
None
-
25.2.2 Application As a type of variable optical attenuator unit, the VA1 board implements the power adjustment for one signal. For the position of the VA1 board in the WDM system, see Figure 25-3. Figure 25-3 Position of the VA1 board in the WDM system OTU OTU
OTU
VA1 VA1 VA1
OTU
VA1 VA1
OA
VA1
OA
OA
VA1
VA1 MR2
MR2 VA1 OA
VA1
25.2.3 Functions and Features The VA1 board adjusts optical power and provides power-off protection. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2520
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
For detailed functions and features, refer to Table 25-1. Table 25-1 Functions and features of the VA1 board Function and Feature
Description
Basic function
Queries the attenuation and adjusts the optical power of one optical signal according to the control command sent by the SCC.
Power-off protection
Supports the power-off protection to avoid the damages to the corresponding optical receiver due to high optical power when the power supply recovers.
Attenuation range
The variable attenuation range is between 1.5 dB and 21.5 dB. The resolution is 0.1 dB. NOTE The maximum inherent insertion loss of the VA1 is 1.5 dB.
Optical-layer ASON
Supported
25.2.4 Working Principle and Signal Flow The VA1 board consists of the variable optical attenuator, driving and control module, control and communication module, and power supply module. Figure 25-4 shows the functional modules and signal flow of the VA1. Figure 25-4 Functional modules and signal flow of the VA1
Variable optical attenuator
IN
OUT
Driving and control module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SCC
Backplane (controlled by SCC)
2521
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Signal Flow According to commands sent by the SCC board, the VA1 board adjusts the power of the input optical signals by using a variable optical attenuator.
Module Function l
Variable optical attenuator Adjusts the optical power of the input optical signals.
l
Driving and control module – Detects the input and output optical power of the VA1 board. – Drives and controls the variable optical attenuator, and reports the detected attenuation to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
25.2.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the VA1 board.
Appearance of the Front Panel Figure 25-5 shows the front panel of the VA1 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2522
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Figure 25-5 Front panel of the VA1 board
VA1 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT IN
VA1
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2523
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 25-2 lists the type and function of each interface. Table 25-2 Types and functions of the interfaces on the VA1 board Interface
Type
Function
IN
LC
Receives the optical signals to be adjusted.
OUT
LC
Transmits the adjusted optical signals.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
25.2.6 Valid Slots One slot houses one VA1. Table 25-3 shows the valid slots for the TN11VA1 board. Table 25-3 Valid slots for the TN11VA1 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 25-4 shows the valid slots for the TN12VA1 board. Table 25-4 Valid slots for the TN12VA1 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2524
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
25.2.7 Characteristic Code for the VA1 The characteristic code for the VA1 board contains three digits, indicating the maximum attenuation of the optical signals processed by the board. Detailed information about the characteristic code is given in Table 25-5. Table 25-5 Characteristic code for the VA1 board Code
Meaning
Description
Digits 1 through 3
Attenuation value
Indicate the maximum attenuation.
For example, the characteristic code for the TN11VA1 board is 21.5, indicating that the maximum allowable attenuation value is 21.5 dB.
25.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 25-6. Table 25-6 Serial numbers of the interfaces of the VA1 displayed on the NM Interface on the Panel
Interface on the NM
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
25.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the VA1, refer to Table 25-7. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2525
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Table 25-7 VA1 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB) Default: Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Issue 03 (2013-05-16)
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2526
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
25.2.10 VA1 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
TN11VA1 Optical Specifications Table 25-8 lists the optical specifications of the TN11VA1 board. Table 25-8 Optical specifications of the TN11VA1 board Item IN-OUT
Unit
Value
Inherent insertion loss
dB
≤1.5
Dynamic attenuation range
dB
20
dB
1
Adjustment accuracy
TN12VA1 Optical Specifications Table 25-9 lists the optical specifications of the TN12VA1 board. Table 25-9 Optical specifications of the TN12VA1 board Item IN-OUT
Unit
Value
Inherent insertion loss
dB
≤1.5
Dynamic attenuation range
dB
20
dB
1 (attenuation≤10dB) 1.5 (attenuation≤15dB)
Adjustment accuracy
1.8 (attenuation>15dB)
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Optical Module Type
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
VA1
-
6.5
7.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2527
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
25.3 VA4 VA4: 4-channel variable optical attenuator unit
25.3.1 Version Description The available functional versions of the VA4 board areare TN11 and TN12.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1VA 4
N
N
N
N
Y
Y
TN1 2VA 4
Y
Y
Y
Y
Y
Y
Differences Between Versions l
Specification: – For the specification of each version, see 25.3.10 VA4 Specifications.
Substitution Relationship Original Board
Substitute Board
Substitution Rules
TN11VA4
TN12VA4
Upgrade the NE software to OptiX OSN 6800 V100R003 or a later version, or upgrade the NE software to OptiX OSN 3800 V100R003 or a later version.
TN12VA4
None
-
25.3.2 Application As a type of variable optical attenuator unit, the VA4 board adjusts optical power for four optical signals. For the position of the VA4 board in the WDM system, see Figure 25-6. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2528
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Figure 25-6 Position of the VA4 board in the WDM system
VA4
OTU OTU
OTU OTU
VA4
VA4 VA4
OA MR2
OA
VA4
OA
MR2
VA4
OA
VA4
25.3.3 Functions and Features The VA4 board is mainly used to adjust optical power and provide power-off protection. For detailed functions and features, refer to Table 25-10. Table 25-10 Functions and features of the VA4 board Function and Feature
Description
Basic function
Queries the attenuation and adjust the optical power of four optical signals respectively according to the control command sent by the SCC.
Power-off protection
Supports power-off protection to avoid damage to the corresponding optical receiver caused by too-high optical power when the power supply recovers.
Attenuation range
The variable attenuation ranges between 1.5 dB and 21.5 dB. The resolution is 0.1 dB. NOTE The maximum inherent insertion loss of the VA4 is 1.5 dB.
Optical-layer ASON
Supported
25.3.4 Working Principle and Signal Flow The VA4 board consists of the variable optical attenuator, driving and control module, control and communication module, and power supply module. Figure 25-7 shows the functional modules and signal flow of the VA4.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2529
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Figure 25-7 Functional modules and signal flow of the VA4 IN1
Variable optical attenuator
OUT1
IN2
Variable optical attenuator
OUT2
IN3
Variable optical attenuator
OUT3
IN4
Variable optical attenuator
OUT4
Driving and control module
Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
SCC
Backplane (controlled by SCC)
Signal Flow According to the instructions from the SCC board, the VA4 board adjusts the power of four channels of optical signals by using a variable optical attenuator.
Module Function l
Variable optical attenuator Adjusts the optical power of the input optical signals.
l
Driving and control module – Detects the input and output optical power of the VA4 board. – Drives and controls the variable optical attenuator, and reports the detected attenuation to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2530
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
25.3.5 Front Panel There are indicators, interfaces and laser hazard level label on the front panel of the VA4 board.
Appearance of the Front Panel Figure 25-8 shows the front panel of the VA4 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2531
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Figure 25-8 Front panel of the VA4 board
VA4 STAT ACT PROG SRV
CAUTION CAUTION HAZARDLEVEL 1MINVISIBLE LASERRADIATION DONOTVIEWDIRECTLYWITH NON-ATTENUATINGOPTICALINSTRUMENTS
HAZARD LEVEL 1M INVISIBLE LASER RADIATION DO NOT VIEWDIRECTLY WITH NON-ATTENUATING OPTICAL INSTRUMENTS
OUT1 IN1 OUT2 IN2 OUT3 IN3 OUT4 IN4
VA4
Indicators Four indicators are present on the front panel: l Issue 03 (2013-05-16)
Board hardware status indicator (STAT) - triple-colored (red, green, yellow) Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2532
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 25-11 lists the type and function of each interface. Table 25-11 Types and functions of the interfaces on the VA4 board Interface
Type
Function
IN1-IN4
LC
Receives the optical signals to be adjusted.
OUT1-OUT4
LC
Transmits the adjusted optical signals.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1M, indicating that the maximum power launched by the board ranges from 10 dBm (10 mW) to 21.3 dBm (136 mW).
25.3.6 Valid Slots One slot houses one VA4 board. Table 25-12 shows the valid slots for the TN11VA4 board. Table 25-12 Valid slots for TN11VA4 board Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
Table 25-13 shows the valid slots for the TN12VA4 board. Table 25-13 Valid slots for TN12VA4 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU12-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2533
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Product
Valid Slots
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
25.3.7 Characteristic Code for the VA4 The characteristic code for the VA4 board contains three digits, indicating the maximum attenuation of the optical signals processed by the board. Detailed information about the characteristic code is given in Table 25-14. Table 25-14 Characteristic code for the VA4 board Code
Meaning
Description
First to third digits
Attenuation value
Indicate the maximum attenuation.
For example, the characteristic code for the TN11VA4 board is 21.5, indicating that the maximum attenuation value is 21.5 dB.
25.3.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 25-15. Table 25-15 Serial numbers of the interfaces of the VA4 board displayed on the NM Interface on the Panel
Interface on the NM
IN1/OUT1
1
IN2/OUT2
2
IN3/OUT3
3
IN4/OUT4
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2534
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
25.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For VA4 Parameters, refer to Table 25-16. Table 25-16 VA4 parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Optical Interface Attenuation Ratio (dB)
Value of Min. Attenuation Rate (dB) to Value of Max. Attenuation Rate (dB) Default: Value of Max. Attenuation Rate (dB)
The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range. You can obtain the value range of this parameter by querying the corresponding Min. Attenuation Rate (dB) and Max. Attenuation Rate (dB) parameters. See D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) for more information.
Max. Attenuation Rate (dB)
-
Displays the maximum attenuation allowed by a board optical interface.
Min. Attenuation Rate (dB)
-
Displays the minimum attenuation allowed by a board optical interface.
Configure Band
C
Sets the working band type of a board.
Default: C Actual Band
-
Queries the actual working band of the board.
Channel Use Status
Used, Unused
The Channel Use Status parameter sets the occupancy status of the current channel of a board. See D.4 Channel Use Status (WDM Interface) for more information.
Default: Used
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2535
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Field
Value
Description
Input Power Loss Threshold (dBm)
-
The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. See D.33 Input Power Loss Threshold (dBm) (WDM Interface) for more information.
Actual Working Band Parity
-
Queries the parity of the actual working band of the board.
Configure Working Band Parity
All, Odd, Even
Selects the desired parity of the working band.
Default: All
25.3.10 VA4 Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
TN11VA4 Optical Specifications Table 25-17 lists the optical specifications of the TN11VA4 board. Table 25-17 Optical specifications of the TN11VA4 board Item IN-OUT
Unit
Value
Inherent insertion loss
dB
≤1.5
Dynamic attenuation range
dB
20
dB
1
Adjustment accuracy
TN12VA4 Optical Specifications Table 25-18 lists the optical specifications of the TN12VA4 board. Table 25-18 Optical specifications of the TN12VA4 board Item IN-OUT
Issue 03 (2013-05-16)
Inherent insertion loss
Unit
Value
dB
≤1.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2536
OptiX OSN 8800/6800/3800 Hardware Description
25 Variable Optical Attenuator Board
Item Dynamic attenuation range Adjustment accuracy
Unit
Value
dB
20
dB
1 (attenuation≤10 dB) 1.5 (attenuation≤15 dB) 1.8 (attenuation>15 dB)
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Optical Module Type
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
VA4
-
8.5
9.4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2537
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26
Dispersion Equalizing Board
About This Chapter 26.1 Overview Dispersion equalization boards compensate for dispersion accumulated during fiber transmission of optical signals and compress the pulses of the propagated optical signals. This enables the propagated optical signals to be restored at the output end. 26.2 DCU DCU: dispersion compensation unit 26.3 TDC TDC: single-wavelength tunable-dispersion compensation board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2538
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26.1 Overview Dispersion equalization boards compensate for dispersion accumulated during fiber transmission of optical signals and compress the pulses of the propagated optical signals. This enables the propagated optical signals to be restored at the output end.
Main Functions Table 26-1 lists the main functions of dispersion equalization boards. Table 26-1 Main functions of dispersion equalization boards Device Type
Description
Function
Application
M o d ul e
Uses a dispersion compensation fiber (DCF) and provides fixed dispersion.
Provides span-based dispersion compensation, enabling long-haul optical transmission.
l Works with optical amplifier boards at the transmit and receive ends of a transmission line.
D C M
DCM (DCF)
l Supports G.652, G.653, and G.655 fiber applications. DCM (FBG)
Uses fiber Bragg grating (FBG) and provides fixed compensation.
l Works with optical amplifier boards at the transmit and receive ends of a transmission line. l Supports G.652 and G.655 fiber applications.
B o ar d
DCU
Uses a DCF and provides fixed dispersion.
l Works with optical amplifier boards at the transmit and receive ends of a transmission line. l Supports G.652 and G.655 fiber applications.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2539
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Device Type TDC
Description
Function
Application
Provides tunable dispersion to precisely compensate for dispersion inside a channel.
Precisely compensates for residual dispersion inside an OTU channel that cannot be compensated by DCM modules.
l Works with an OTU board at the receive end of a transmission line. The TDC board must precede the OTU board. l Applies to scenarios that allow for relatively small dispersion, such as, 40 Gbit/s communication systems.
NOTE
For details on the DCM, see 11.1 DCM Frame and DCM Module.
26.2 DCU DCU: dispersion compensation unit
26.2.1 Version Description The available functional version of the DCU board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1DC U
Y
Y
Y
Y
Y
Y
26.2.2 Application As a kind of dispersion compensation board, the DCU board is used at the transmit or receive end in the transmission system to compensate for the dispersion that is accumulated in an optical transmission system. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2540
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
For the position of the DCU board in the WDM system, see Figure 26-1. Figure 26-1 Position of the DCU board in the WDM system DCU OTU
MUX
OBU
DMUX
OAU
OTU OTU
DMUX
OAU
MUX
OBU
OTU
OTU OTU OTU OTU
DCU OTU
MUX
DCU
OBU
DMUX
OAU
OTU OTU
DMUX
OAU
OBU
DCU
OTU
MUX
OTU OTU OTU OTU
26.2.3 Functions and Features The DCU board compensates for the dispersion that is accumulated in the fiber during transmission and compresses optical signal pulse. This enables the transmitted optical signals to be restored at the output end. In addition, when used together with an optical amplifier board, the DCU board can implement long haul optical transmission. For detailed functions and features, refer to Table 26-2. Table 26-2 Functions and features of the DCU board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic function
Provides dispersion compensation for different transmission distance.
Dispersion compensation method
Compensates for the dispersion accumulated in an optical transmission system, and compresses the optical signal pulse. This enables the transmitted optical signals to be restored at the output end.
Long haul transmission with optical regeneration
Implements long haul transmission when used together with an optical amplifier board.
Optical-layer ASON
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2541
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26.2.4 Working Principle and Signal Flow The DCU board consists of the dispersion compensation module, control and communication module, and power supply module. Figure 26-2 shows the functional modules and signal flow of the DCU board. Figure 26-2 Functional modules and signal flow of the DCU board
IN
OUT
Dispersion compensation EDFA optical module module Control CPU
Memory
Communication
Control and communication module Power supply module Fuse
Required voltage
DC power supply from a backplane
Backplane (Controlled by SCC) SCC
Signal Flow The dispersion compensation module (DCM) performs the dispersion compensation with the main path optical signals received through the IN optical interface. Then, the signals are output through the OUT optical interface.
Module Function l
The dispersion compensation module After the optical signal is transmitted for a certain distance, the optical signal pulse is widened because of the positive dispersion accumulated in the system. This severely affects the system transmission performance. The DCM employs the negative dispersion borne with the dispersion compensating fiber (DCF) to offset the positive dispersion in the transmission fiber, and compresses the input optical signal pulse. In this way, the optical signals at the output end are restored back to the original signals.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2542
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
26.2.5 Front Panel There are interfaces on the front panel of the DCU board.
Appearance of the Front Panel Figure 26-3 shows the front panel of the DCU board. Figure 26-3 Front panel of the DCU board
DCU
OUT IN
DCU
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2543
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Interfaces Table 26-3 lists the type and function of each interface. Table 26-3 Types and functions of the interfaces on the DCU board Interface
Type
Function
IN
LC
Accesses the multiplexed signals to be compensated in terms of dispersion.
OUT
LC
Outputs the multiplexed signals that have been compensated in terms of dispersion.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
26.2.6 Valid Slots One slot houses one DCU board. Table 26-4 shows the valid slots for the DCU board. Table 26-4 Valid slots for the DCU board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
OptiX OSN 3800 chassis
IU2-IU5, IU11
26.2.7 Characteristic Code for the DCU The characteristic code for the DCU board contains characters, indicating the type of the fiber that the board works with and the dispersion compensation distance. The detailed information about the characteristic code is given in Table 26-5.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2544
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Table 26-5 Characteristic code for the DCU board Code
Meaning
Description
Character before hyphen (-)
Fiber type
Type of the fiber that the DCU board works with
Character after hyphen (-)
Dispersion compensation distance
The transmission distance achieved through dispersion compensation
For example, the characteristic code for the TN11DCU board is G.655LEAF-40. It indicates that the DCU board works with G.655LEAF fibers, and the dispersion compensation distance is 40 km. NOTE
If the characteristic code contains various dispersion compensation distances, the symbol "&" is used to separate each distance.
26.2.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 26-6. Table 26-6 Serial numbers of the interfaces of the DCU board displayed on the NM Interface on the Panel
Interface on the NM
IN
1
OUT
2
26.2.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the DCU, refer to Table 26-7. Table 26-7 DCU parameters
Issue 03 (2013-05-16)
Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2545
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Field
Value
Description
Optical Interface Name
-
Sets and displays the optical interface name. It is recommended to use the default value.
26.2.10 DCU Specifications Specifications include optical specifications, dimensions, weight, and power consumption.
Optical Specifications Table 26-8 Optical specifications of the DCU board (1) Item
Unit
Value DC U0 1
DC U0 2
DC U0 3
DC U0 4
DC U0 5
DC U06
D CU 07
DCU0 8
Typical dispersion compensation distance
km
20
40
60
80
100
120
5
10
Maximum insertion loss
dB
3.3
4.7
6.4
8
9
9.8
2.3
2.8
Dispersion compensation slope
-
90%-110%
Polarization mode dispersion
ps
0.4
0.5
0.6
0.7
0.8
0.8
0.3
0.3
Polarization-dependent loss
dB
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
Maximum input power a
dBm
20
20
20
20
20
20
20
20
Operating wavelength range
nm
1528-1568
Dispersion compensating fiber type
-
G.652 fiber
a: The maximum input power refers to the maximum input optical power permitted by the optical module on the condition that the optical module is not damaged.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2546
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Table 26-9 Optical specifications of the DCU board (2) Item
Unit
Value DCU 11
DCU 12
DCU 13
DCU 14
DCU1 5
DCU1 6
Typical dispersion compensation distance
km
20
40
60
80
100
120
Maximum insertion loss
dB
4
5
5.9
6.9
7.8
8.8
Dispersion compensation slope
-
90%-110%
Polarization mode dispersion
ps
0.4
0.5
0.7
0.8
0.9
1.0
Polarization-dependent loss
dB
0.3
0.3
0.3
0.3
0.3
0.3
Maximum input power a
dBm
20
20
20
20
20
20
Operating wavelength range
nm
1528-1568
Dispersion compensating fiber type
-
G.655 fiber
a: The maximum input power refers to the maximum input optical power permitted by the optical module on the condition that the optical module is not damaged.
Mechanical Specifications l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 1.5 kg (3.3 lb)
Power Consumption Board
Optical Module Type
Typical Power Consumption at 25°C (77°F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11DCU
–
0.2
0.3
26.3 TDC TDC: single-wavelength tunable-dispersion compensation board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2547
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26.3.1 Version Description The available hardware version of the TDC board is TN11.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1TD C
Y
Y
Y
Y
Y
N
Type Table 26-10 lists the types of the TDC board. Table 26-10 Type description of the TDC board Board
Type
Description
TN11TDC
01
Compensates for dispersion of DQPSK and ODB optical modules.
02
Compensates for dispersion of DRZ optical modules.
26.3.2 Application The TDC board compensates for the dispersion in one channel. If a 40 Gbit/s OTU board is configured with intra-board 1+1 protection, the TDC board must be configured on the protection path at the receive end. For the application of the board in a WDM system, see Figure 26-4. Figure 26-4 Application of the TDC board in a WDM system
O T U
O L P
TDC
M40
OA
OA
D40
M40
OA
OA
D40
D40
OA
OA
M40
D40
OA
OA
M40
TDC
O L P
O T U
Working channel Protection channel
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2548
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26.3.3 Functions and Features The TDC board compensates for the dispersion in a single channel and reports information. For detailed functions and features, refer to Table 26-11. Table 26-11 Functions and features of the TDC board Function and Feature
Description
Basic function
The TDC board is used for C-band optical signals. Compensates for the dispersion in the single channel. The dispersion is adjustable.
Information report
Reports the ambient temperature and alarm information about the board.
Optical-layer ASON
Supported by TN11TDC01.
26.3.4 Working Principle and Signal Flow The TDC board consists of the optical module, the driving and detection module, the control and communication module, and the power supply module. Figure 26-5 is the functional block diagram of the TDC board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2549
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Figure 26-5 Functional block diagram of the TDC board Optical module Tunable dispersion compensation module
IN
OUT
Data signal
Driving signal
Driving and detection module
Control CPU
Memory
Communication
Control and communication module
Power supply module Fuse
Required voltage
SCC
DC power supply from a backplane
Back plane (Controlled by SCC)
Signal Flow The TDC reports hardware information and alarm events to the SCC through the communication module. One single wavelength optical signal is input through the IN interface. After the dispersion is compensated for by the compensation module, the signal is output through the OUT.
Module Function l
Optical module The optical module of the TDC board contains a tunable dispersion compensation module. The system can adjust for the dispersion of the compensation module.
l
Driving and detection module Drives and controls the TDC module, and reports the detected dispersion to the control and communication module.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2550
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
– Communicates with the system control and communication board. l
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
26.3.5 Front Panel There are indicator and interfaces on the front panel of the TDC board.
Appearance of the Front Panel Figure 26-6 shows the front panel of the TDC board. Figure 26-6 Front panel of the TDC board
TDC STAT ACT PROG SRV
OUT IN
TDC
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2551
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Interfaces Table 26-12 lists the type and function of each interface. Table 26-12 Types and functions of the TDC interfaces Interface
Connector Type
Description
IN
LC
Connected to the optical demultiplexer to input a single signal that is to be equalized.
OUT
LC
Connected to the OTU to output the equalized a single signal.
Laser Hazard Level The laser hazard level of the board is HAZARD LEVEL 1, indicating that the maximum power launched by the board is less than 10 dBm (10 mW).
26.3.6 Valid Slots One slot houses one TDC board. Table 26-13 shows the valid slots for the TDC board. Table 26-13 Valid slots for the TDC board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1-IU8, IU11-IU42, IU45-IU68
OptiX OSN 8800 T32 subrack
IU1-IU8, IU11-IU27, IU29-IU36
OptiX OSN 8800 T16 subrack
IU1-IU18
OptiX OSN 8800 platform subrack
IU1-IU18
OptiX OSN 6800 subrack
IU1-IU17
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2552
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
26.3.7 Characteristic Code for the TDC The characteristic code for the TDC board contains characters, indicating the type of the fiber that the board works with and the dispersion compensation distance. Detailed information about the characteristic code is given in Table 26-14. Table 26-14 Characteristic code for the TDC board Code
Meaning
Description
Character before hyphen (-)
Fiber type
Fiber type that the TDC board is compatible with
Character after hyphen (-)
Dispersion compensation distance
The transmission distance achieved through dispersion compensation
For example, the characteristic code for the TN11TDC board is G.655LEAF_T. It indicates that the TDC board works with G.655LEAF fibers, and the dispersion compensation distance is tunable.
26.3.8 Optical Interfaces This section introduces information such as slots, interfaces and parameters for the TDC configuration in an NM system.
Display of Optical Interfaces Table 26-15 shows the sequence number displayed in an NM system of the optical interface on the panel of the board. Table 26-15 Display of the optical interfaces on the TDC board Interface on the Panel
Interface on the NM
IN/OUT
1
NOTE
An optical interface displayed on the NM denotes a pair of actual optical interfaces, one of which serves to receive signals and the other of which serves to transmit signals.
26.3.9 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For parameters of the TDC, refer to Table 26-16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2553
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Table 26-16 TDC parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. It is recommended to use the default value. An optical interface name contains a maximum of 64 characters. Any characters are supported.
Receive Wavelength
l C: 1/1529.16/196.050 to 80/1560.61/192.100
Sets Receive Wavelength of a board. The value of the Receive Wavelength is as follows:
l CWDM: 11/1471.00/208.170 to 18/1611.00/188.780
l When the receive wavelength of the board is the same as the transmit wavelength of the local board, use the default value, which indicates keeping the receive wavelength the same as the transmit wavelength of the local board automatically.
Default: /
l When the receive wavelength of the board is different from the transmit wavelength of the local board, the value of this parameter must be the same as the transmit wavelength of the peer board; otherwise, services are affected. NOTE For ASON services, this parameter must be set to the default value. Only C band is supported.
Planned Band Type
C, CWDM Default: C
The Planned Band Type parameter sets the band type of the current working wavelength. NOTE Only C band is supported.
See D.26 Planned Band Type (WDM Interface) for more information.
26.3.10 TDC Specifications Specifications include optical specifications, laser safety level, mechanical specifications and power consumption.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2554
OptiX OSN 8800/6800/3800 Hardware Description
26 Dispersion Equalizing Board
Optical Specifications Table 26-17 lists the optical specifications of the TDC board. Table 26-17 Optical specifications of the TDC board Parameter
Unit
Value
Optical channels
-
80
Dispersion tuning range
ps/nm
±400
Dispersion tuning speed
sec
<15
Input power range
dBm
-13 to 0
Dispersion accuracy
ps/nm
±10
Output optical power
dBm
The output optical power should be close to the input power, with an error range of ±1.5 dB.
Mechanical Specifications The mechanical specifications of the board are as follows: l
Dimensions of front panel (H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: 0.5 kg (1.1 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TN11TDC
13
15
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2555
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
27
Clock Board
About This Chapter 27.1 STG STG: Centralized Clock Board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2556
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
27.1 STG STG: Centralized Clock Board
27.1.1 Version Description The available functional versions of the STG board are TN11, TN52, TNK2.
Mappings Between the Board and Equipment The following provides the board(s) supported by the product. However, the availability of the board(s) is subject to PCNs. For PCN information, contact the product manager at your local Huawei office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
TN1 1ST G
N
N
N
N
Y
N
TN5 2ST G
N
Y
N
N
N
N
TN K2S TG
Y
N
N
N
N
N
Differences Between Versions l
Appearance: – The TN11, TN52 and TNK2 versions use different front panels with different dimensions. See 27.1.5 Front Panel and 27.1.9 STG Specifications.
l
Specification: – The specifications vary according to versions. For details, see 27.1.9 STG Specifications.
Substitution Relationship The STG boards of different versions cannot replace each other.
27.1.2 Application The STG board is a type of clock board, which locks the reference clock source and provides clock signals and frame signals to the system. The clock signals comply with ITU-T G.813 and ITU-T G.823. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2557
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
For the position of the STG in the OptiX OSN 8800 T64, see Figure 27-1. For the position of the STG in the OptiX OSN 8800 T32, see Figure 27-2. For the position of the STG in the OptiX OSN 6800, see Figure 27-3. Figure 27-1 Position of the TNK2STG in OptiX OSN 8800 T64 external clock
external clock
STI
STG
STG
Clock signals & Frame signals NS2
100Mbit/s2.5Gbit/s
Clock signals & Frame signals
G.694.1
G.694.1 1
STI
MUX
1
NS2
DMUX
TOM
100Mbit/s2.5Gbit/s
TOM 4
DMUX
NS2
Client side
MUX
4
NS2 WDM side
WDM side
Client side
NOTE
The STI is optional and it is configured when the 2M clock signals need to be transmitted, the IEEE 1588V2 function needs to be supported, and certain sites in the OCS system need to access the BITS clock.
Figure 27-2 Position of the TN52STG in OptiX 8800 T32 external clock
external clock
STI
STG
STG
Clock signals & Frame signals
100Mbit/s2.5Gbit/s
NS2
Clock signals & Frame signals
G.694.1
G.694.1 1
STI
MUX
DMUX
NS2
1
TOM
TOM 4
Client side
NS2
DMUX
MUX
WDM side
NS2 WDM side
100Mbit/s2.5Gbit/s
4 Client side
NOTE
The STI is optional and it is configured when the 2M clock signals need to be transmitted, the IEEE 1588V2 function needs to be supported, and certain sites in the OCS system need to access the BITS clock.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2558
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
Figure 27-3 Position of the TN11STG in OptiX OSN 6800 external clock
external clock
STG
STG
Clock signals & Frame signals 1 100Mbit/s 2.5Gbit/s
Clock signals & Frame signals
G.694.1
G.694.1 NS 2
MU X
DMU X
NS2
1
TO M
TO M 4
Client side
NS 2
DMU X
MU X
WDM side
NS2 WDM side
100Mbit/s 2.5Gbit/s
4 Client side
NOTE
When the 2M clock signals need to be transmitted, the IEEE 1588V2 function needs to be supported, the external clock is input on the STG board.
27.1.3 Functions and Features The STG board is mainly used to lock the reference clock source and provide signal signals and frame signals to the system. For detailed functions and features, refer to Table 27-1. Table 27-1 Functions and features of the STG board Function and Feature
Description
Basic function
l Locks the reference clock source. l Provides the system with ITU-T clock signals that comply with G. 813 and G.823 and frame signals. l Synchronizes the time of an NE with the time of the upstream system.
Issue 03 (2013-05-16)
Active/standby switching function
In the OptiX OSN 8800, the STG board uses a 1+1 hot backup scheme. The two STGs serve as mutual backups. When both of them are normal, one of them functions as the active board, and the other functions as the standby board. Service boards select the clock source according to the status of the two STGs. When the active STG is faulty, an active/standby switching occurs. Then, the standby STG becomes active, and the services boards select the clock from the current active STG according to the status of the two STGs.
Clock source selection function
Traces the external clock source, service clock source, or local clock source, to provide the synchronization clock source for itself and the system.
Time synchronization function
Synchronizes the time of an NE with the time of the upstream NE.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2559
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
27.1.4 Working Principle and Signal Flow The STG board consists of a control and communication module and a clock processing module. Figure 27-4 shows the functional block diagram of the STG board. Figure 27-4 Functional modules and signal flow of the STG board Time signals/ Clock signals
Clock signals/Frame signals
Clock processing module
Control Memory
CPU
Communication
Control and communication module Power supply module Required voltage
Fuse
DC power supply from a backplane
Backplane (controlled by SCC) SCC
Module Function l
Clock processing module The clock processing module consists of the clock signal receiver, clock signal transmitter, clock signal trace sub-module, clock source selection sub-module, IEEE 1588 clock synchronization sub-module, and active/standby STG board switching control sub-module. – Locks the external clock source, service clock source, or local clock source, to provide the STG board and the system with the synchronization clock source. – Updates the clock signals periodically to ensure the time synchronization within an NE.
l
Control and communication module – Controls operations on the board. – Controls operations on each module of the board according to CPU instructions. – Collects information about alarms, performance events, working states and voltage detection from each functional module on the board. – Communicates with the system control and communication board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2560
OptiX OSN 8800/6800/3800 Hardware Description
l
27 Clock Board
Power supply module – Converts the DC power supplied by the backplane into the power required by each module on the board.
27.1.5 Front Panel There are indicators on the front panel of the STG board.
Appearance of the Front Panel Figure 27-5 shows the front panel of the TNK2STG board. Figure 27-6 shows the front panel of the TN52STG board. Figure 27-7 shows the front panel of the TN11STG board. Figure 27-5 Front panel of the TNK2STG board STG STAT ACT PROG SRV
Figure 27-6 Front panel of the TN52STG board STG STAT ACT PROG SRV
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2561
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
Figure 27-7 Front panel of the TN11STG board
STG STAT ACT PROG SRV
TOD
CLK
IN
OUT
STG
Indicators Four indicators are present on the front panel: l
Board hardware status indicator (STAT) - triple-colored (red, green, yellow)
l
Service active status indicator (ACT) - green
l
Board software status indicator (PROG) - dual-colored (red, green)
l
Service alarm indicator (SRV) - triple-colored (red, green, yellow)
For details about these indicators, see A.4 Board Indicators.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2562
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
Interfaces Table 27-2 lists details on the interfaces of the TN11STG board. Table 27-2 Interface description of the STG board Interface
Connector
Function
IN
SMB
Clock signal input interface
OUT
SMB
Clock signal output interface
CLK
RJ45
Clock signal input and output interface
TOD
RJ45
Time signal input and output interface
NOTE The CLK port and the IN/OUT port cannot be used as the input or output port at the same time. If the CLK port is used to input or output clock signals, the IN/OUT port cannot be used to input/output clock signals. If the IN/OUT port is used to input/output clock signals, the CLK port cannot be used to input or output clock signals.
Pin Assignment of the CLK Interface Table 27-3 Pin assignment of the CLK interface Pin
Signal
Function
1
RJ0_E1_RX_N
2MHz/2Mbit input negative
2
RJ0_E1_RX_P
2MHz/2Mbit input positive
3
NC
Not connected
4
RJ0_E1_TX_N
2MHz/2Mbit output negative
5
RJ0_E1_TX_P
2MHz/2Mbit output positive
6
NC
Not connected
7
NC
Not connected
8
NC
Not connected
Pin Assignment of the TOD Interface Table 27-4 Pin assignment of the TOD interface
Issue 03 (2013-05-16)
Pin
Signal
Function
1
GND
Ground
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2563
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
Pin
Signal
Function
2
GND
Ground
3
DCLS_IN0_N
1PPS negative
4
GND
Ground
5
GND
Ground
6
DCLS_IN0_P
1PPS positive
7
DCLS_OUT0_N
TOD negative
8
DCLS_OUT0_P
TOD positive
27.1.6 Valid Slots One slot houses one STG board. Table 27-5 shows the valid slots for the TN11STG board. Table 27-5 Valid slots for the TN11STG board Product
Valid Slots
OptiX OSN 6800 subrack
IU15, IU16
Table 27-6 shows the valid slots for the TN52STG board. Table 27-6 Valid slots for the TN52STG board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU42, IU44
Table 27-7 shows the valid slots for the TNK2STG board. Table 27-7 Valid slots for the TNK2STG board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU75, IU86
27.1.7 Characteristic Code for the STG None Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2564
OptiX OSN 8800/6800/3800 Hardware Description
27 Clock Board
27.1.8 Parameters Can Be Set or Queried by NMS This section lists the board parameters that can be set or queried by using the NMS. For STG Parameters, refer to Table 27-8. Table 27-8 STG parameters Field
Value
Description
Optical Interface/ Channel
-
Displays the position of the optical interface.
Optical Interface Name
-
Sets and displays the optical interface name. It is recommended to use the default value.
27.1.9 STG Specifications Specifications include dimensions, weight, and power consumption.
Mechanical Specifications l
Dimensions of the front panel: – TNK2STG(H x W x D): 107.5 mm (4.2 in.) x 50.3mm (2.0 in.) x 220 mm (8.7 in.) – TN52STG(H x W x D): 107.5 mm (4.2 in.) x 28.8 mm (1.1 in.) x 220 mm (8.7 in.) – TN11STG(H x W x D): 264.6 mm (10.4 in.) x 25.4 mm (1.0 in.) x 220 mm (8.7 in.)
l
Weight: – TN52STG/TNK2STG: 0.5 kg (1.1 lb.) – TN11STG: 1.1 kg (2.4 lb.)
Power Consumption
Issue 03 (2013-05-16)
Board
Typical Power Consumption at 25°C (77° F) (W)
Maximum Power Consumption at 55°C (131°F) (W)
TNK2STG
14.0
16.0
TN52STG
13.0
14.1
TN11STG
8.7
9.57
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2565
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28
OCS System Unit
About This Chapter 28.1 BPA BPA: optical booster and pre-amplifier board 28.2 EAS2 EAS2: 2-port 10xGE switching and processing board 28.3 EGSH EGSH: 16xGE Ethernet switching and processing board 28.4 SF64 SF64: 1xSTM-64 optical interface board with the FEC function 28.5 SF64A SF64A: 1xSTM-64 optical interface board with the FEC function 28.6 SFD64 SFD64: 2xSTM-64 optical interface board with the FEC function 28.7 SL64 SL64: 1xSTM-64 optical interface board 28.8 SLD64 SLD64: 2xSTM-64 optical interface board 28.9 SLH41 SLH41: 16xSTM-4/STM-1 optical/electrical interface board 28.10 SLO16 SLO16: 8xSTM-16 optical interface board 28.11 SLQ16 SLQ16: 4xSTM-16 optical interface board 28.12 SLQ64 SLQ64: 4xSTM-64 line interface board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2566
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.1 BPA BPA: optical booster and pre-amplifier board
28.1.1 Version Description Only one functional version of the BPA board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4B PA
Y
Y
Y
N
N
N
28.1.2 Application The BPA is an optical booster and pre-amplifier board. The BPA board provides a BA and a PA, which are respectively used at the transmit end and receive end of the OptiX OSN 8800. Figure 28-1 shows the position of the BA and PA in an optical transmission system. Figure 28-1 Position of the BA and PA in an optical transmission system Tx
Tx
BA
Rx
PA
Rx
28.1.3 Functions and Features During the long-haul transmission of optical signals, the attenuation of the signals is high. Therefore, the BA and PA are required to ensure that the optical receiver can receive normal optical signals. For detailed functions and features, refer to Table 28-1. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2567
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-1 Functions and features of the BPA board Function and Feature
Description
Basic functions
Increases the launched optical power of the line board to 13–15 dBm. As a result, when the G.652 optical fiber with a loss of 0.275 dB/km is used, the transmission distance can be 120 km or above.
Pre-amplification function
Provides the PA module to pre-amplify the received optical signals. Increases the power of the small-volume optical signals by 22–33 dB so that the sensitivity of the receiver increases to –37 dBm.
EDFA
l Supports the automatic control of the laser temperature and optical power of the EDFA module. l Supports the automatic monitoring of the input and output optical power of the EDFA module and query of the optical power of the EDFA module. l Supports the protection function of the EDFA module. When no optical signals are received, the laser is automatically turned off. When optical signals are received, the laser is automatically turned on.
Performance events and alarms monitoring
Supports the reporting of the performance parameters of the laser. Reports various alarms and performance events, which facilitates the management and maintenance of the equipment.
Software upgrade
Supports the software upgrade without interrupting services.
28.1.4 Working Principle and Signal Flow The BPA board consists of the optical part, driving and detecting part, and data processing and communication part. Figure 28-2 shows the function modules and signal flow of the BPA board. Figure 28-2 Function modules and signal flow of the BPA board Optical input
Optical output
Optical input
Optical output
Optical part
EDFA optical module
Pump current check
Drive module
Module temperature control
Input/output power check
Pump Drive current module check
Module temperature control
Input/output power check
Driving and detecting part
A/D or D/A conversion
SCC
Issue 03 (2013-05-16)
Communication module
Control module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Data processing and communication part
2568
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Optical Part The BPA board has one EDFA optical module. The EDFA optical module magnifies the optical power.
Driving and Detecting Part The driving and detecting part provides the EDFA optical module with the driving current. It also checks the working status of each part in the EDFA optical module. In addition, it predicts and handles possible faults. The driving and detecting part performs the following functions: checking the pump current, driving the optical module, controlling the temperature of the optical module, and checking the input and output optical power.
Data Processing and Communication Part The data processing and communication part consists of the CPU and peripheral chips. The data processing and communication part analyzes the test result of the tested circuit. Then, it adjusts the driving circuit based on the analysis result so that the gain or output optical power of the EDFA optical module remains in the range of the rated value. It also classifies the abnormal states represented by the measured values and reports the abnormal states to the NMS.
28.1.5 Front Panel There are indicators, interfaces, and a laser safety class label on the front panel of the BPA board.
Appearance of the Front Panel Figure 28-3 shows the front panel of the BPA board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2569
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-3 Front panel of the BPA board
BPA
LASER
STAT ACT PROG SRV
RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL
LASER RADIATION DO NOT VIEW DIRECTLY
INSTRUMENTS
WITH OPTICAL INSTRUMENTS
CLASS 1M LASER PRODUCT
CLASS 1M LASER PRODUCT
BOUT BIN POUT PIN
BPA
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are two LC optical interfaces on the front panel of the BPA board. Table 28-2 lists the type and function of each optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2570
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-2 Types and functions of the interfaces on the BPA board Interface
Type
Function
BIN
LC
Receives one channel of optical signals for amplification.
BOUT
LC
Transmits one channel of amplified optical signals.
PIN
LC
Receives one channel of optical signals for preamplification.
POUT
LC
Transmits one channel of pre-amplified optical signals.
28.1.6 Valid Slots The BPA board occupies one slot and must be installed in the valid slot on the subrack. Otherwise, the board does not function. Table 28-3 shows the valid slots for the BPA board. Table 28-3 Valid slots for the BPA board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, IU11–IU18
28.1.7 Characteristic Code for the BPA The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the BPA board indicates the output optical power of the optical interfaces. Table 28-4 provides the relationship between the characteristic code for the BPA board and the output optical power.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2571
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-4 Relationship between the characteristic code for the BPA board and the output optical power Board
Characteristic Code
Description
N4BPA01
01
The receiver sensitivity of the PA module is –37 dBm. The output optical power of the BA module is 14 dBm.
28.1.8 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces on the NMS Table 28-5 lists the displayed serial numbers of the optical interfaces of the board on the NMS. Table 28-5 Displayed serial numbers of the optical interfaces of the BPA board on the NMS Optical interface
Displayed serial number on the NMS
BOUT
1
BIN
2
POUT
3
PIN
4
28.1.9 BPA Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-6 lists the optical specifications of the BPA board. Table 28-6 Optical specifications of the BPA board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
2488320 kbit/s or 9953280 kbit/s
Application code
V-16.2, U-16.2, L-64.2, V-64.2, and U-64.2
Line code pattern
NRZ
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2572
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Input wavelength (nm)
BA: 1530 to 1565 PA: 1550.12
Input optical power (dBm)
BA: -6 to +3 PA: -28 to -10 (when the BPA board works with the line board at the rate of 10 Gbit/s) PA: -38 to -10 (when the BPA board works with the line board at the rate less than 10 Gbit/s)
Output optical power (dBm)
13 to 15 (BA) -16 to 14 (PA)
Sensitivity (dBm)
PA: -37
Noise figure (dB)
BA: < 6.5 PA: < 6
Minimum signal gain (dB)
+22
NOTE
When you perform a loopback on the PA module of the BPA board, prevent the damage caused by high input optical power to the optical module.
Laser Safety Class The laser safety class of the optical interface is CLASS 1M, indicating that the maximum output optical power of each optical interface ranges from 10 dBm (10 mW) to 22.15 dBm (164 mW).
Mechanical Specifications The mechanical specifications of the BPA board are as follows: l
Dimensions (mm): 25.4 (W) x 220 (D) x 262.05 (H)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 11 W Maximum power consumption at 55°C (131°F): 12 W
28.2 EAS2 EAS2: 2-port 10xGE switching and processing board
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2573
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.2.1 Version Description The EAS2 is available in the following functional version: N3.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N3E AS2
Y
Y
Y
N
N
N
28.2.2 Application The EAS2 is used to access Ethernet services, manage bandwidths, and realize Layer 2 switching of Ethernet services. Figure 28-4 shows the typical networking and application of the Ethernet switching board. The Ethernet switching board accesses and converges Ethernet services, and provides the Ethernet data with the following data features: Layer 2 switching, port isolation, flow classification, traffic control, VLAN management, and priority configuration. In addition, the Ethernet switching board performs encapsulation/decapsulation, virtual concatenation, and SDH mapping/demapping for data. The Ethernet switching board can be interconnected with the bandwidth access equipment and the data communication equipment at the same time, thus to provide a network-level solution.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2574
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-4 Networking and application of the Ethernet switching board
NMS
NE1
User A2 PORT 1 VLAN 100
NE2
MSP ring
NE4
NE3
PORT 2 VLAN 100
PORT 2 User B2
VLAN 100 Service flow
PORT 1 VLAN 100
User B1
Line board Data board Cross-connect and timing board
User A1
28.2.3 Functions and Features The EAS2 supports the access of 10 GE Ethernet services, LCAS, and test frame functions. Table 28-7 provides the functions and features of the EAS2. Table 28-7 Functions and features of the EAS2
Issue 03 (2013-05-16)
Funct ion and Featu re
Description
Basic functi ons
Receives/Transmits 2x10 GE Ethernet services.
Interfa ce types
The optical interfaces are 10GBASE-LR and 10GBASE-LW Ethernet optical interfaces, which comply with IEEE 802.3ae.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2575
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Funct ion and Featu re
Description
Functi ons when being used with an interfa ce board
Provides interfaces on the front panel.
Interfa ce charac teristic s
Working modes
10GE full-duplex
Flow control at ports
Auto-negotiation mode
Not supported
Non-autonegotiation mode
Supported
Query/ Supported Setting of port status Query of interface types
Supported
RMON measure ment
Supported
Setting of Not supported optical power threshold s
Servic e catego ries
Issue 03 (2013-05-16)
Hot optical module swapping
Supports hot swapping of SFP+ optical modules.
EPL service
Supports the PORT-based transparent transmission.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2576
OptiX OSN 8800/6800/3800 Hardware Description
Funct ion and Featu re
28 OCS System Unit
Description
EVPL service
l Supports EVPL services based on PORT+VLAN. l Supports EVPL services based on VCTRUNK+VLAN. l Supports QinQ-based EVPL services. l Supports a maximum of 4096 links.
EPLAN service
l Supports the creation, deletion, and query of the VB. The maximum number of supported VBs is 1. l Supports the blacklist that can contain 512 records and also the static MAC address table that can contain 512 records. l Supports the setting and query of the aging time of the MAC address
Servic e specifi cation s
EVPLA N service
l Supports EVPLAN services that use the stack VLAN encapsulation.
Formats of Ethernet data frames
IEEE 802.3
Supported
Ethernet II
Supported
IEEE 802.1q TAG
Supported
Maximu m frame length
l Supports the frame with a length ranging from 64 bytes to 9600 bytes.
MTU
Supports the setting of the packet length, which ranges from 1518 bytes to 9600 bytes. After the setting becomes valid, the length of the packets that enter the IP ports is restricted by the pre-set MTU.
Bound bandwidt h
128xVC-4
Mapping granularit ies
Supports VC-4-Xv (X ≤ 64), and VC-4-4c/16c/64c contiguous concatenation services.
Encapsul ation formats
HDLC
Not supported
LAPS
Not supported
GFP-F
Supported
MPLS technolo gy
Issue 03 (2013-05-16)
l Supports data isolation based on VB+VLAN.
l Supports the Jumbo frame with a length less than 9600 bytes.
Supports tunnel-based MPLS.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2577
OptiX OSN 8800/6800/3800 Hardware Description
Funct ion and Featu re
28 OCS System Unit
Description
VLAN technolo gy
Supports a total number of 4094 VLANs, which comply with IEEE 802.1q/p.
Maximu m uplink bandwidt h
20 Gbit/s
VCTRU NK specificat ions
Number of VCTRUNKs: 34 Configuration principles are as follows: l VCTRUNKs 1 and 18 can be bound with a maximum of 64 VC-4 paths. The other VCTRUNKs can be bound with a maximum of eight VC-4 paths. l VCTRUNK 1–VCTRUNK 17 can be bound with VC-4s numbered 1–64 only. VCTRUNK 18–VCTRUNK 34 can be bound with VC-4s numbered 65–128 only. l Only VCTRUNKs 1-17 support the binding of VC-3 paths and the maximum bandwidth is 10 Gbit/s.
Protec tion schem es
DLAG
Supported
LCAS
Dynamically increases or decreases the bandwidth and protects the bandwidth in compliance with ITU-T G.7042.
LPT
Supports the P2P LPT and P2MP LPT.
STP/ RSTP
Supports the broadcast packet suppression and RSTP, which comply with IEEE 802.1w.
MSTP
Supports MSTP, which complies with IEEE 802.1s.
LAG
Supports manual link aggregation and static link aggregation. Supports the load sharing mode and load non-sharing mode.
ERPS
Supports ERPS, which complies with ITU-T G.8032. NOTE ERPS cannot be used on the following bridges: l IEEE 802.1d bridges l IEEE 802.1ad bridges in SVL/Ingress filter disable mode
Clock synchr onizati on
Issue 03 (2013-05-16)
Synchron ous Ethernet
Supported
IEEE 1588v2
Not supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2578
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Funct ion and Featu re
Description
Maint enanc e featur es
ETHOAM
QoS
l Supports multicast continuity check (CC), unicast loopback (LB), link trace (LT), and associated alarms, and complies with IEEE 802.1ag. l Supports OAM automatic discovery and loopback at the remote end, and complies with IEEE 802.3ah.
Test frame
Supports test frames in ETH and GFP bearer modes.
Response to ping
Not supported
Port mirroring
Supported
Loopbac k capabilit y
PHY layer at Ethernet ports
Inloops
MAC layer at Ethernet ports
Inloops
VC-4 level
Not supported
VC-3 level
Not supported
VC-12 level
Not supported
Ethernet performa nce monitori ng (RMON)
l Supports the Ethernet performance monitoring at the port level.
Alarms and performa nce events
Provides various alarm and performance events, which facilitates the management and maintenance of the equipment.
l Supports the query of the rate of a port. l Supports the detection of alarms indicating that the traffic at a port exceeds the threshold.
l Supports traffic classification that is based on PORT, PORT+VLAN ID, PORT +VLAN ID+VLAN PRI, MPLS label, or MPLS label+EXP. l Supports CAR with a granularity of 64 kbit/s. l Supports eight levels of priority queues at each port. l Supports port- and queue-based traffic shaping.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2579
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Funct ion and Featu re
Description
IGMP snoopi ng
l Supports the enabling of the IGMP snooping protocol. Supports a maximum of 1024 multicast groups. l Supports the query of the enabling status of the IGMP snooping protocol. l Supports the setting and query of the IGMP snooping protocol parameters. l Supports a maximum of 1024 static multicast groups.
Flow contro l functi on
Supports the port-based flow control function that complies with IEEE 802.3x.
SDH ASON
Supported
28.2.4 Working Principle and Signal Flow The EAS2 consists of the interface processing module, mapping module, interface converting module, logic and control module, clock module, and power module. Figure 28-5 shows the functional block diagram of the EAS2 by describing how to process 1x10 GE signals. Figure 28-5 Functional block diagram of the EAS2 Backplane
10GE
Interface processing module
Laser shutdown
Service processing module
Interface converting module
Encapsulation module Digital encapsulation module Mapping module
Cross-connect unit
Cross-connect unit
LOS
Logic and control module
Communication Clock reference and frame delimitation
+3.3 V Clock module
Issue 03 (2013-05-16)
Virtual concatenation processing module
Power module
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Power module
Fuse
SCC unit SCC unit -48 V/-60 V -48 V/-60 V
2580
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
In the Transmit Direction The encapsulation or conversion module demaps and decapsulates the signals received from the cross-connect unit. Then, the interface converting module performs the interface converting operations and transmits the signals to the service processing module. The service processing module implements the functions of the Layer 2 switching and private line service. After the interface processing module converts parallel signals to serial signals and encodes the serial signals, the Ethernet interface module transmits the serial signals.
In the Receive Direction The SFP+ optical module performs O/E conversion on the 10 GE Ethernet signals, and then transmits the signals to the Ethernet interface module. The Ethernet interface module transmits the parallel signals to the service processing module to realize the functions of the Layer 2 switching and private line service. The encapsulation module encapsulates and maps the Ethernet GFP-F frames, and then transmits the signals to the cross-connect unit.
Logic and Control Module The logic and control module provides the communication, control, and service configuration functions of the board.
Clock Module The clock module traces the system reference clock, and generates the required clock signals when the board is working.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.2.5 Front Panel The front panel of the EAS2 has indicators, interfaces, a bar code, and a laser safety class label.
Diagram of the Front Panel Figure 28-6 shows the appearance of the front panel of the EAS2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2581
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-6 Front panel of the EAS2
EAS2 STAT ACT PROG SRV LINK1 ACT1 LINK2 ACT2
OUT1 IN1 OUT2 IN2
EAS2
Indicators The front panel of the board has the following indicators: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
l
Connection status indicator (LINK) – one color (green)
l
Data receiving and transmission indicator (ACT) – one color (orange)
Interfaces The front panel of the EAS2 has two 10 GE interfaces. Table 28-8 describes the types and usage of the interfaces of the EAS2. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2582
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-8 Interfaces of the EAS2 Interface
Type of Interface
Usage
IN1–IN2
LC
Receives 10 GE signals.
OUT1–OUT2
LC
Transmits 10 GE signals.
28.2.6 Jumpers and DIP Switches The EAS2 does not have any jumpers or DIP switches that are used for board settings.
28.2.7 Valid Slots The EAS2 must be installed in a valid slot in the subrack. Otherwise, the EAS2 fails to work properly. The EAS2 occupies one slot in the subrack. Table 28-9 shows the valid slots for the EAS2 board. Table 28-9 Valid slots for the EAS2 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1 to IU8, and IU11 to IU18
28.2.8 Feature Code The EAS2 does not have the feature code.
28.2.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the panel of the board displayed on the NM are listed in Table 28-10.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2583
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-10 Serial numbers of the interfaces of the EAS2 board displayed on the NM Interface on the Panel
Interface on the NM
IN1/OUT1
1
IN2/OUT2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.2.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the EAS2 board. On the NMS user interface, Ethernet Interface of the EAS2 board provides parameters classified according to External Port and Internal Port. Regardless of an external port or internal port, the parameter configuration window involves many tab pages. Table 28-11 lists the tab pages in the parameter configuration window. Table 28-11 Tabs of the parameter configuration windows for external port and internal port on the EAS2 board Port
Tab
External Port
Basic Attributes Flow Control TAG Attributes Network Attributes Advanced Attributes
Internal Port
TAG Attributes Network Attributes Encapsulation/Mapping LCAS Bound Path Advanced Attributes
Each parameter of the EAS2 on each tab page is described as follows. l
Issue 03 (2013-05-16)
In the case of external ports, the parameters on the Basic Attributes tab page are listed in Table 28-12.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2584
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-12 Parameters on the Basic Attributes tab page (external port) Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Name
For example, PORT-1
Specifies the name of a port. The name can contain up to 32 characters in English or 16 characters in Chinese.
Enable Port
Enabled, Disabled
The Enabled/Disabled parameter determines whether to enable a port. A port can receive services if this parameter is set to Enabled but cannot receive services if this parameter is set to Disabled.
Default: Disabled
Working Mode
Maximum Frame Length
Auto-Negotiation, 10M Half-Duplex, 10M FullDuplex, 100M HalfDuplex, 100M FullDuplex, 1000M HalfDuplex, 1000M FullDuplex, 10GE Full-Duplex LAN, 10GE Full-Duplex WAN, 10GE Full-Duplex WAN(SONET mode)
Specifies the working mode of the Ethernet port on a board. This parameter determines the maximum transmission rate and communication mode of the Ethernet port.
1518 to 9600
Specifies the maximum frame length supported by the Ethernet port.
Default: 1522 Port Physical Parameters
-
Displays the actual working state of a port.
MAC Loopback
Non-Loopback, Inloop, Outloop
The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path. See D.17 MAC Loopback to obtain the details.
Default: Non-Loopback
Issue 03 (2013-05-16)
When setting this parameter, you must ensure the working modes of the interconnected ports are the same. Otherwise, the services are not available.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2585
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
PHY Loopback
Non-Loopback, Inloop, Outloop
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path. See D.25 PHY Loopback to obtain the details.
Default: Non-Loopback
l
In the case of external ports, the parameters on the Flow Control tab page are listed in Table 28-13. Table 28-13 Parameters on the Flow Control tab page (external port) Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Non-Autonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Non-Autonegotiation Flow Control Mode is selected when a port works in non-autonegotiation mode.
Default: Disable
See D.23 NonAutonegotiation Flow Control Mode to obtain the details. l
In the case of external ports, the parameters on the TAG Attributes tab page are listed in Table 28-14. Table 28-14 Parameters on the TAG tab page (external port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays the type of a VCTRUNK port.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2586
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
TAG
Tag Aware, Access, Hybrid
Specifies the type of a data packet that a port processes. This parameter is available only when the network attribute of the port is PE or UNI.
Default: Tag Aware
Default VLAN ID
1 to 4095 Default: 1
VLAN Priority
0 to 7 Default: 0
Entry Detection
Enabled, Disabled Default: Enabled
l
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. The Entry Detection parameter determines whether a port detects packets by tag identifier.
In the case of internal ports, the parameters on the TAG Attributes tab page are listed in Table 28-15. Table 28-15 Parameters on the TAG tab page (internal port) Field
Value
Description
Port
-
Displays the type of port, either PORT or VCTRUNk.
Name
For example, VCTRUNK-3
Specifies the name of a VCTRUNK port. The name can contain up to 32 characters in English or 16 characters in Chinese.
TAG
Tag Aware, Access, Hybrid
Specifies the type of a data packet that a port processes. This parameter is available only when the network attribute of the port is PE or UNI.
Default: Tag Aware
Default VLAN ID
1 to 4095 Default: 1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. 2587
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
VLAN Priority
0 to 7
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port.
Default: 0
Entry Detection
Enabled, Disabled Default: Enabled
l
The Entry Detection parameter determines whether a port detects packets by tag identifier.
The parameters on the Network Attributes tab page are listed in Table 28-16. Table 28-16 Parameters on the Network Attributes tab page Field
Value
Description
Port
-
Displays the type of port, either PORT or VCTRUNk.
Port Attributes
UNI, C-Aware, S-Aware, NNI
Specifies the position of the port in the network. Different port attributes support different types of packets.
Default: UNI
l
In the case of external ports, the parameters on the Advanced Attributes tab page are listed in Table 28-17. Table 28-17 Parameters on the Advanced Attributes tab page (external port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Broadcast Packet Suppression
Enabled, Disabled
The Broadcast Packet Suppression parameter determines whether to suppress the traffic of broadcast packets.
Default: Disabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2588
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Broadcast Packet Suppression Threshold
10% to 100%
The Broadcast Packet Suppression Thresholdparameter allocates the specified bandwidth to the broadcast packets. The bandwidth is allocated on the basis of the traffic proportion at the port. If the bandwidth allocated to the broadcast packets reaches the specified threshold, the port discards the broadcast data packets that are received.
Threshold of Port Receiving Rates (Mbit/s)
0 to 10000
The Threshold of Port Receiving Rates (Mbit/s) parameter specifies the data flow threshold at external physical ports.
Port Traffic Threshold Time Window (Min)
0 to 30
Loop Detection
Enabled, Disabled
Default: 10000
Default: 0
Default: Disabled
Loop Port Shutdown
Enabled, Disabled Default: Enabled
l
Sets traffic threshold time window for the external port. Sets whether to enable loop detection, which is used to check whether a loop exists at the port. Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port.
In the case of internal ports, the parameters on the Advanced Attributes tab page are listed in Table 28-18. Table 28-18 Parameters on the Advanced Attributes tab page (internal port) Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Loop Detection
Enabled, Disabled
Sets whether to enable loop detection, which is used to check whether a loop exists at the port.
Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2589
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Loop Port Shutdown
Enabled, Disabled
Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port.
Default: Enabled
l
In the case of internal ports, the parameters on the Encapsulation/Mapping tab page are listed in Table 28-19. Table 28-19 Parameters on the Encapsulation/Mapping tab page (internal port) Field
Value
Description
Port
-
Displays the VCTRUNK ports.
Mapping Protocol
GFP
Specifies the mapping protocol adopted by the VCTRUNK port.
Default: GFP Scramble
Unscrambled, Scrambling mode[X43+1], Scrambling mode[X48+1] Default: Scrambling Mode [X43+1]
Set Inverse Value for CRC
-
Specifies whether to scramble the payload area of the encapsulation protocol and which scramble mode is adopted. Specifies whether to set an inverse value for the CRC field of the HDLC or LAPS protocol. You can set this parameter only when the mapping protocol is HDLC or LAPS.
Check Field Length
FCS32, No Default: FCS32
FCS Calculated Bit Sequence
Big endian, Little endian
Extension Header Option
Yes, No
Default: Big endian
Default: No
l
Issue 03 (2013-05-16)
Specifies the length of the CRC field of the mapping protocol. Specifies the sequence of storing the bits in the CRC field in the FCS frame of the mapping protocol. Specifies whether the GFP encapsulation protocol supports the extension header.
In the case of internal ports, the parameters on the LCAS tab page are listed in Table 28-20.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2590
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-20 Parameters on the LCAS tab page (internal port) Field
Value
Description
Port
VCTRUNKn
Indicates the VCTRUNK port. The letter n indicates the number of the VCTRUNK port.
Enabling LCAS
Enabled, Disabled
The Enabling LCAS parameter can increase or decrease the SDH network capacity without affecting the service. The capacity is automatically decreased if a member fails, and is automatically increased if the member recovers.
Default: Disabled
LCAS Mode
Huawei Mode, Standard Mode Default: Huawei Mode
Hold off Time(ms)
0 to 10000 Default: 2000
WTR Time(s)
0 to 720 Default: 300
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The LCAS Mode parameter specifies the sequence for the sink end to respond to the MST and Rs_Ack messages received from the source end. The Hold off Time(ms) (LCAS) parameter is also called HO Procedure Timer Duration. It specifies HO Procedure Timer Duration of the LCAS protocol. If the LCAS coexists with another network-level protection scheme (for example, MSP or SNCP), you can set this parameter to postpone the LCAS switching. The WTR Time(s) parameter is also called WTR Procedure Timer Duration. It specifies WTR Procedure Timer Duration of the LCAS protocol. Set this parameter to avoid impact caused by the alarm jitter on the link status.
2591
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
TSD
Enabled, Disabled
The TSD parameter specifies the B3 or BIP error status of a VCTRUNK member. TSD stands for trail signal degrade. When this parameter is set to Enabled and if a VCTRUNK member has excessive B3 or BIP bit errors, the LCAS protocol regards that this member fails and deletes it from the available members. If this parameter is set to Disabled, the LCAS protocol does not monitor the status of the B3 or BIP bit errors of a VCTRUNK member.
Default: Disabled
l
Issue 03 (2013-05-16)
Min. Members - Transmit Direction
2 to 256
Min. Members - Receive Direction
2 to 256
Default: 256
Default: 256
When the LCAS is enabled, the LCAS_PLCT alarm is reported if certain members in the transmit direction fail and the number of valid members is smaller than a certain value. The Min. Members - Transmit Direction parameter specifies the certain number of the valid members in the transmit direction. Specifies the minimum number of members in the receive direction. If the LCAS is enabled and the number of valid members is less than the specified value, an alarm is reported.
In the case of internal ports, the parameters on the Bound Path tab page are listed in Table 28-21.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2592
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-21 Parameters on the Bound Path tab page (internal port) Field
Value
Description
VCTRUNCK Port
-
Displays the number of the VCTRUNK port.
Level
-
Specifies the level of the VCTRUNK bound path.
Service Direction
-
Specifies the direction of the Ethernet service.
Bound Path
-
Specifies the number of the bound path, including the VC4 path number and VC3 path number.
Bound Path Count
-
Displays the number of the bound VCTRUNK ports.
Used Channel
-
Displays the channels in use.
Activation Status
-
Displays whether the path is active.
28.2.11 EAS2 Specifications The technical specifications of the EAS2 include the parameters specified for optical interfaces, dimensions, weight, and power consumption.
Parameters Specified for Optical Interfaces Table 28-22 lists the parameters specified for the optical interfaces of the EAS2. Table 28-22 Parameters specified for the optical interfaces of the EAS2
Issue 03 (2013-05-16)
Parameter
Value
Transmission rate
10.3125 Gbit/s or 9.953 Gbit/s
Processing capability
2x10GE signals
Type of optical interface
10GBASE-LR/LW
Type of fiber
Single-mode LC
Operating wavelength range (nm)
1290 to 1330
Transmission distance (km)
10
Maximum mean launched power (dBm)
0.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2593
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Parameter
Value
Minimum mean launched power (dBm)
-8.2
Receiver sensitivity (dBm)
-12.6
Minimum extinction ratio (dB)
3.5
Connector type
LC
Laser Safety Class The safety class of the laser on the board is Class 1. The maximum launched optical power of the optical interfaces is less than 10 dBm (10 mW).
Ethernet Performance Specifications Figure 28-7 shows the connection for testing the throughput specifications, packet loss ratio in the case of overloading, latency specifications, and back-to-back specifications of the EAS2. Figure 28-7 Connection for testing the throughput specifications, packet loss ratio in the case of overloading and latency specifications Tested equipment 1
Tested equipment 2
Port 1
Port 2 Data network performance analyzer
Table 28-23 lists the throughput specifications of the EAS2. Table 28-24 lists the packet loss ratio in the case of overloading of the EAS2. Table 28-25 lists the latency specifications of the EAS2.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2594
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
NOTE
l
The specifications vary according to the configuration and networking of the test environment and the VC services bound on the VCG side. The specifications that are obtained in the actual environment are used.
l
The specifications in the following tables are obtained in the following scenario: EPL services are configured and 64 VC-4s are bound on the 10xGE port.
l
The data network performance is measured by using the SmartBits. The specification values in the following tables are obtained by using the SmartFlow software of the SmartBits analyzer.
l
The specific test results depend on the settings on the SmartFlow. The values listed in the following tables are the values displayed on the SmartBits analyzer.
l
In the following tables, the value such as (01,01,01) indicates the equipment No., slot No., and port No. "(01,01,01) to (01,01,02)" and "(01,01,02) to (01,01,01)", however, indicate the forward and reverse tests values, respectively.
Table 28-23 Throughput specifications of the EAS2 Frame Size (byte)
Passed Rate (%)
Tx Frames (pks/ sec)
Rx Frames (pks/ sec)
Total (%)
64
100.00000
14880952
14880952
100.00000
128
98.00000
8278145
8278145
100.00000
256
98.00000
4432624
4432624
100.00000
512
98.00000
2302025
2286453
99.32000
1024
97.00000
1161710
1156436
99.55000
1280
97.00000
932835
927296
99.41000
1518
97.00000
788146
783050
99.35000
Table 28-24 Packet loss ratio in the case of overloading of the EAS2
Issue 03 (2013-05-16)
Frame Size (byte)
Rate Tested (%)
Tx Frames (pks/ sec)
Rx Frames (pks/ sec)
Total (%)
64
100.00000
14880952
14880952
0.00
128
100.00000
8445945
8445945
0.00
256
99.00000
4480286
4470526
0.21
512
98.00000
2302025
2286453
0.67
1024
97.00000
1161710
1156469
0.45
1280
97.00000
932835
927323
0.59
1518
97.00000
788146
783073
0.64
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2595
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-25 Latency specifications of the EAS2 Frame Size (byte)
Rate Tested (%)
Tx Frames (pks/sec)
Rx Frames (pks/sec)
Min Latency (us)
Ave Latency (us)
Max Latency (us)
64
96.00000
14204544
14204544
24.4
25.681
27.9
128
96.00000
8116883
8116883
24.6
25.944
28.1
256
96.00000
4340277
4340277
25
26.322
28.5
512
96.00000
2256317
2256317
25.9
27.176
29.3
1024
96.00000
1148897
1148897
27.7
28.949
31.2
1280
96.00000
923190
923190
28.6
29.802
32
1518
96.00000
780274
780274
29.4
30.562
32.8
Mechanical Specifications The mechanical specifications of the EAS2 board are as follows: l
Dimensions : 25.4 mm (W) x 220 mm (D) x 254.1 mm (H)
l
Weight : 1.1 kg (2.4 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 83 W Maximum power consumption at 55°C (131°F): 93 W
28.3 EGSH EGSH: 16xGE Ethernet switching and processing board
28.3.1 Version Description Only one functional version of the EGSH board is available, that is, N1.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2596
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Subrack
N1E GS H
Y
Y
Y
N
N
N
28.3.2 Application The EGSH board is used in telecommunication domains such as Ethernet service access, bandwidth management, and Ethernet service L2 switching. Figure 28-8 shows the typical networking of the EGSH board. The board provides the following functions: receives and converges Ethernet services; performs L2 switching of Ethernet data; isolates Ethernet data ports; classifies the traffic; controls the data traffic; manages the VLAN; configures data attributes such as the priority; encapsulates and decapsulates data; forms virtual concatenation; maps and demaps SDH signals. In addition, the board can be interconnected with the broadband access equipment and data communication equipment to provide a networkwide solution. Figure 28-8 Networking and application of the EGSH board
U2000
NE1
User A2 PORT 1 VLAN 100
NE2
MSP ring
NE4
NE3
PORT 2 VLAN 100
PORT 2 User B2 Service flow
VLAN 100 PORT 1 VLAN 100
User B1
OCS line board OCS data board Cross-connect and timing board
Issue 03 (2013-05-16)
User A1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2597
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.3 Functions and Features The EGSH board accesses multiple types of Ethernet services and provides various functions and features such as the MPLS function, VLAN multicast function, QinQ function, and interboard link aggregation function. Table 28-26 provides the functions and features of the EGSH. Table 28-26 Functions and features of the EGSH Function and Feature
Description
Basic functions
The board processes 16xGE services. It provides functions such as O/E conversion, Ethernet frame processing, mapping, Layer 2 (L2) switching, and overhead and pointer processing of the service signals. The board is connected to the active and standby cross-connect boards through the backplane. In this manner, data is exchanged and services are groomed.
Interface types
l Supports the 1000 BASE-LX and 1000 BASE-SX optical interface. l Port 6 and port 8 can work as the 1000 BASE-T electrical interface at the same time. l All the sixteen interfaces comply with IEEE 802.3z.
Issue 03 (2013-05-16)
Functions when being used with an interface board
Transmits/Receives 16 channels of Ethernet signals through the interfaces on the front panel.
Interface characteristic s
Working modes
Auto-negotiation, 1000M full-duplex (Port 2 and 4 support 1000M full-duplex only).
Traffic control at ports
Autonegotiation mode
Supported.
Nonautonegotiation mode
Supported.
Query/ Setting of port status
Supported.
Query of interface types
Supported.
RMON measurement
Supported.
Setting of optical power thresholds
Supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2598
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
Service categories
28 OCS System Unit
Description Hotswapping SFP optical module
Supported.
EPL service
Supports the PORT-based transparent transmission.
EVPL service
Supports PORT+VLAN-based EVPL services that use the frame encapsulation formats of MartinioE and stack VLAN.
EPLAN service
l Supports the L2 convergence and point-to-multipoint (P2MP) convergence. l Supports the L2 forwarding function. l Supports switching on the client and SDH sides. l Supports the self-learning of the source MAC address. The capacity of the MAC address table is 32k. The aging time of the MAC address can be set and queried. l Supports the configuration of the static MAC route. l Supports the query of the dynamic MAC address. l Supports the creation, deletion, and query of the VB. Only one VB is supported. The maximum number of logical ports for one VB is 40. l Supports the data isolation based on VB+VLAN. l Queries the number of actually learned MAC addresses based on VB+VLAN or VB+LP. l The services that are based on the IEEE 802.1d MAC bridge are referred to as EPLAN services.
Service specifications
EVPLAN service
l Supports the data isolation based on VB+VLAN.
Formats of Ethernet data frames
IEEE 802.3
Supported.
Ethernet II
Supported.
IEEE 802.1 q/p
Supported.
Frame length range
l Supports the EVPLAN services that are based on IEEE 802.1Q Virtual Bridge or IEEE 802.1ad Provider Bridge.
l Supports the setting of the frame length to a value ranging from 1518 bytes to 9600 bytes. l Supports a jumbo frame with a maximum length of 9600 bytes.
Issue 03 (2013-05-16)
Bound bandwidth
64 x VC-4, or 192 x VC-3
Mapping granularities
Supports VC-4, VC-3, VC-4-Xv (X≤8), and VC-3-Xv (X ≤24) granularities.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2599
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
28 OCS System Unit
Description Encapsulatio n formats
Protection schemes
HDLC
Not supported.
LAPS
Not supported.
GFP-F
Supported.
MPLS technology
Supported.
VLAN technology
Supports a maximum of 4094 VLANs. The VLAN technology complies with IEEE 802.1q/p.
Maximum uplink bandwidth
The maximum uplink bandwidth of the EGSH is 10 Gbit/s.
VCTRUNK specifications
l The number of supported VCTRUNKs is 24.
DLAG
Supported.
LCAS
Dynamically increases or decreases the bandwidth and protects the bandwidth in compliance with ITU-T G.7042.
LPT
Supports the point-to-point (P2P) LPT and point-tomultipoint (P2MP) LPT.
STP/RSTP
Supports the broadcast packet suppression function and rapid spanning tree protocol (RSTP) that comply with IEEE 802.1w.
MSTP
Supported.
LAG
Supports manual link aggregation and static link aggregation.
l One VCTRUNK can be bound with a maximum of eight VC-4s or 24 VC-3s.
Supports the load sharing mode and load non-sharing mode. ERPS
Supported. NOTE ERPS cannot be used on the following bridges: l IEEE 802.1d bridges l IEEE 802.1ad bridges in SVL/Ingress filter disable mode
Clock synchronizati on
Issue 03 (2013-05-16)
Synchronous Ethernet
Only ports 2 and 4 supports the Synchronous Ethernet.
IEEE 1588v2
Only ports 2 and 4 supports the IEEE 1588 V2.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2600
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Maintenance features
ETH-OAM
l Supports the multicast continuity check (CC), unicast loopback (LB), link trace (LT), network loop detection (LD), auto-negotiation, fault diagnosis, and link performance check. l The ETH-OAM function complies with IEEE 802.1ag and 802.3ah.
Issue 03 (2013-05-16)
Test frame
Supports test frames in Ethernet bearer mode.
Response to ping
Not supported.
Port mirroring
Supported.
Loopback capability
PHY layer at Ethernet ports
Supports inloops.
MAC layer at Ethernet ports
Supports inloops.
VC-4 level
Not supported.
VC-3 level
Not supported.
VC-12 level
Not supported.
Ethernet performance monitoring (RMON)
Supports Ethernet performance monitoring at the port level.
Alarms and performance events
Reports various alarms and performance events, which facilitates the management and maintenance of the equipment.
QoS
Supports the flow classification based on PORT, PORT+VLAN ID, PORT +VLAN ID+VLAN PRI, Label Flow, or Label Exp Flow.
IGMP snooping
Supported.
Traffic control
Supports the port-based traffic control function that complies with IEEE 802.3x.
Traffic monitoring
Supports port-based and VCTRUNK-based traffic monitoring.
SDH ASON
Supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2601
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.4 Working Principle and Signal Flow The EGSH board consists of the interface module, 1588 clock processing module, L2 service processing module, SDH encapsulation and mapping module, active/standby interface converting module, logic control module, clock module, and power module. The processing of 1xGE signal is considered as an example to describe the working principle and signal flow of the EGSH board. Figure 28-9 shows the function modules and signal flow of the EGSH board. Figure 28-9 Function modules and signal flow of the EGSH board Backplane GE
O/E conversion
1588 clock processing module
E/O conversion
GE
L2 service processing module
Active/ standby interface converting module
SDH encapsulation and mapping module
Interface module Laser shutdown
Cross-connect unit Cross-connect unit
LOS Communication
Logic and control module
Reference clock and frame header +3.3V Clock module
Power module
Power Fuse module
SCC unit SCC unit -48 V/-60 V -48 V/-60 V
66 25 125 155 MHz MHz MHz MHz
NOTE
Among the 16 ports of the board, only ports 2 and 4 support the 1588 clock processing module.
In the Receive Direction The interface module receives the series signals from an external Ethernet device (such as the Ethernet switch or router), decodes the signals, and converts the signals into parallel signals. Then, the service processing module delimits the frames, strips the preamble code, terminates the cyclic redundancy check (CRC) code, and collects the statistics of Ethernet performance. The service processing module also classifies the traffic according to the service type and configuration requirements (the packets in the formats of MPLS, L2 MPLS VPN, and Ethernet/ VLAN are supported). In addition, the service processing module adds the tunnel and VC tags to the services according to the service configuration for mapping and forwarding the services. At last, the encapsulation module encapsulates the Ethernet frames in the GFP-F format, and sends the frames to the mapping module where the frames are mapped and are sent to the crossconnect unit on the backplane through the active/standby interface converting module.
In the Transmit Direction The cross-connect unit sends parallel signals to the encapsulation and mapping module through the active/standby interface converting module for demapping and decapsulation. Then, the service processing module determines a route for the signals according to the level of the Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2602
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
equipment on the network, and performs L2 processing of the data services according to the service type and configuration requirements. The service processing module also delimits the frames, adds the preamble code, computes the CRC code, and collects the statistics of Ethernet performance. At last, the interface module converts the parallel signals into serial signals, encodes the serial signals, and outputs the serial signals through the Ethernet interface.
Interface Module In the receive direction, the interface module converts the optical signals from an external Ethernet device (such as the Ethernet switch or router) into electrical signals, and sends the electrical signals to the L2 service processing module. In the transmit direction, the interface module converts the electrical signals from the L2 service processing module into optical signals.
1588 Clock Processing Module The board supports the synchronization protocol for two 1588 clocks. On the uplink, the 1588 clock processing module extracts service packets from the Ethernet data signals that it receives, processes the packets, and transparently transmits the Ethernet data signals to the L2 service processing module. The signal flow on the downlink reverses that on the uplink.
L2 Service Processing Module This module provides functions such as L2 switching of the received and transmitted Ethernet data services, port isolation, traffic classification, data traffic control, VLAN management, and priority configuration.
SDH Encapsulation and Mapping Module This module encapsulates the received data services in the GFP format, decapsulates the transmitted data services in the GFP format, and maps and demaps the VC-3/4 service granules in the SDH format.
Active/Standby Interface Converting Module The active/standby interface module sends the encapsulated SDH service at the VC-3/VC-4 level to the active and standby cross-connect boards, and selects the SDH service at the VC-3/VC-4 level sent from the active and standby cross-connect boards.
Logic Control Module The logic control module controls the modules on the board and configures services for these modules. In addition, the logic control module selects and traces the clock and header signal sent from the active and standby clock boards.
Clock Module The clock module traces the system reference clock and generates the clock signals required for each chip. The clock frequency can be 66 MHz, 25 MHz, 125 MHz, or 155 MHz.
Power Supply Module The power supply module provides the DC voltage required by each module on the board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2603
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.5 Front Panel There are indicators, interfaces, and a bar code on the front panel of the EGSH board.
Appearance of the Front Panel Figure 28-10 shows the front panel of the EGSH board. Figure 28-10 Front panel of the EGSH board SM SFP WORK WITH G.657A2 FIBER ONLY 单模光模块仅配合使用 G.657A2 光纤
EGSH
SM SFP WORK WITH G.657A2 FIBER ONLY 单模光模块仅配合使用 G.657A2 光纤
STAT ACT PROG SRV RX 1
2 TX
TX 15
16 RX
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2604
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are 16 interfaces on the front panel of the EGSH board, and "16 SFP" is silkscreened under the silkscreening for the indicator on the front panel. Figure 28-11 Silk-screen
Table 28-27 lists the type and function of each optical interface. Table 28-27 Types and functions of the interfaces on the EGSH board Interface
Type
Function
RX1–RX16
LC
Receives GE signals.
TX1–TX16
LC
Transmits GE signals.
NOTE
When the 1000BASE-LX optical interface board is used, the G.657A2 fiber jumper rather than the G.652D fiber jumper is used if an optical attenuator is inserted into the transmit port. Otherwise, the cabinet door cannot be closed. Figure 28-12 shows the G.657A2 fiber jumper and G.652D fiber jumper.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2605
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-12 G.657A2 fiber jumper and G.652D fiber jumper
G.652D fiber jumper
58.25 50.75
G.657A2 fiber jumper
42.5
28.3.6 DIP Switches and Fiber Jumpers No DIP switch or fiber jumper for setting the board is equipped on the EGSH board.
28.3.7 Valid Slots The EGSH board must be installed in a valid slot on a subrack. Otherwise, the board cannot work normally.. Table 28-28 shows the valid slots for the EGSH board. Table 28-28 Valid slots for the EGSH board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1 to IU8, and IU11 to IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2606
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.8 Characteristic Code for the EGSH The characteristic code of a board is the code after the board name in the bar code on the board. The characteristic code of the EGSH board indicates the optical interface type of the board. Table 28-29 provides the relationship between the characteristic code and optical interface type of the EGSH board. Table 28-29 Relationship between the characteristic code and optical interface type of the EGSH board Board
Characteristic Code
Optical Interface Type
N1EGSH10
10
1000 BASE-SX (0.5 km)
N1EGSH11
11
1000 BASE-LX (10 km)
N1EGSH12
12
1000 BASE-T & 1000 BASE-SX (0.5 km)a
N1EGSH13
13
1000 BASE-T & 1000 BASE-LX (10 km)b
a: The port 6 and port 8 interfaces on the EGSH board are 1000 BASE-T electrical interfaces, and the other interfaces on the board are 1000 BASE-SX optical interfaces. b: The port 6 and port 8 interfaces on the EGSH board are 1000 BASE-T electrical interfaces, and the other interfaces on the board are 1000 BASE-LX optical interfaces. The G.657A2 fiber jumper is required because the single-mode optical module is used over the 1000 BASE-LX optical interface.
28.3.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-30. Table 28-30 Serial numbers of the interfaces of the EGSH board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
TX1/RX1
1
TX2/RX2
2
TX3/RX3
3
TX4/RX4
4
TX5/RX5
5
TX6/RX6
6 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2607
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Interface on the Panel
Interface on the NM
TX7/RX7
7
TX8/RX8
8
TX9/RX9
9
TX10/RX10
10
TX11/RX11
11
TX12/RX12
12
TX13/RX13
13
TX14/RX14
14
TX15/RX15
15
TX16/RX16
16
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.3.10 Board Protection The EGSH board supports the distributed link aggregation group (DLAG) protection. The DLAG protection is a board-level port protection technology. Figure 28-13 shows the slot configuration for the working and protection EGSH boards in the OptiX OSN 8800.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2608
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-13 Slot configuration for the working EGSH board of a DLAG protection group FAN
EFI2
EF I1
PIU
PIU
A S U T X G
A U X
IU20 IU21 IU22 IU23 IU24 IU25 IU26 IU27
S T G
PIU
PIU
STI
ATE
IU28 IU29 IU30 IU31 IU32 IU33 IU34 IU35 IU36
S C C X C H / X C M
Fiber routing
X C H / X C M
Fiber routing
IU9 IU10 IU1 IU2
IU3 IU4 IU5
E G S H (A)
IU6
IU7 IU8
IU11 IU12 IU13 IU14 IU15 IU16 IU17 IU18 IU19
S C C
E G S H (B)
E G S H (A)
E G S H (B)
FAN (A): Active
(B): Standby
In Table 28-31, the board in slot 5 protects the board in slot 3, and the board in slot 17 protects the board in slot 14. DLAG protection is of board level and protects the services between the ports configured in a protection group on the working and protection boards. Table 28-31 Slot assignment for the EGSH board
Issue 03 (2013-05-16)
Board
Protection Group 1
Protection Group 2
EGSH (protection board)
Slot 5
Slot 17
EGSH (working board)
Slot 3
Slot 14
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2609
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.11 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the EGSH board. On the NMS user interface, Ethernet Interface of the EGSH board provides parameters classified according to External Port and Internal Port. Regardless of an external port or internal port, the parameter configuration window involves many tab pages. Table 28-32 lists the tab pages in the parameter configuration window. Table 28-32 Tabs of the parameter configuration windows for external port and internal port on the EGSH board Port
Tab
External Port
Basic Attributes Flow Control TAG Attributes Network Attributes Advanced Attributes
Internal Port
TAG Attributes Network Attributes Encapsulation/Mapping LCAS Bound Path Advanced Attributes
Each parameter of the EGSH on each tab page is described as follows. l
In the case of external ports, the parameters on the Basic Attributes tab page are listed in Table 28-33. Table 28-33 Parameters on the Basic Attributes tab page (external port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Name
For example, PORT-1
Specifies the name of a port. The name can contain up to 32 characters in English or 16 characters in Chinese.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2610
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Enable Port
Enabled, Disabled
The Enabled/Disabled parameter determines whether to enable a port. A port can receive services if this parameter is set to Enabled but cannot receive services if this parameter is set to Disabled.
Default: Disabled
Working Mode
Maximum Frame Length
Auto-Negotiation, 10M Half-Duplex, 10M FullDuplex, 100M HalfDuplex, 100M FullDuplex, 1000M HalfDuplex, 1000M FullDuplex, 10GE Full-Duplex LAN, 10GE Full-Duplex WAN, 10GE Full-Duplex WAN(SONET mode)
Specifies the working mode of the Ethernet port on a board. This parameter determines the maximum transmission rate and communication mode of the Ethernet port.
1518 to 9600
Specifies the maximum frame length supported by the Ethernet port.
Default: 1522 Port Physical Parameters
-
Displays the actual working state of a port.
MAC Loopback
Non-Loopback, Inloop, Outloop
The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path. See D.17 MAC Loopback to obtain the details.
Default: Non-Loopback
Issue 03 (2013-05-16)
When setting this parameter, you must ensure the working modes of the interconnected ports are the same. Otherwise, the services are not available.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2611
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
PHY Loopback
Non-Loopback, Inloop, Outloop
The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path. See D.25 PHY Loopback to obtain the details.
Default: Non-Loopback
l
Physical Type
-
Displays the physical type of port.
Logic Type
SDH-OPPORT, SDHEPORT
Displays the logic type of port.
In the case of external ports, the parameters on the Flow Control tab page are listed in Table 28-34. Table 28-34 Parameters on the Flow Control tab page (external port) Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Non-Autonegotiation Flow Control Mode
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Non-Autonegotiation Flow Control Mode is selected when a port works in non-autonegotiation mode.
Default: Disable
See D.23 NonAutonegotiation Flow Control Mode to obtain the details. Autonegotiation Flow Control Mode
Disabled, Enable Dissymmetric Flow Control, Enable Symmetric Flow Control, Enable Symmetric/Dissymmetric Flow Control
Specifies the flow control mode adopted when an Ethernet port works in autonegotiation mode.
Default: Disabled
l
Issue 03 (2013-05-16)
The parameters on the TAG Attributes tab page are listed in Table 28-35.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2612
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-35 Parameters on the TAG tab page (external port) Field
Value
Description
Port
-
Displays the type of a VCTRUNK port.
TAG
Tag Aware, Access, Hybrid
Specifies the type of a data packet that a port processes. This parameter is available only when the network attribute of the port is PE or UNI.
Default: Tag Aware
Default VLAN ID
1 to 4095 Default: 1
VLAN Priority
0 to 7 Default: 0
Entry Detection
Enabled, Disabled Default: Enabled
l
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets. The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. The Entry Detection parameter determines whether a port detects packets by tag identifier.
In the case of internal ports, the parameters on the TAG Attributes tab page are listed in Table 28-36. Table 28-36 Parameters on the TAG tab page (internal port) Field
Value
Description
Port
-
Displays the type of port, either PORT or VCTRUNk.
Name
For example, VCTRUNK-3
Specifies the name of a VCTRUNK port. The name can contain up to 32 characters in English or 16 characters in Chinese.
TAG
Tag Aware, Access, Hybrid
Specifies the type of a data packet that a port processes. This parameter is available only when the network attribute of the port is PE or UNI.
Default: Tag Aware
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2613
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Default VLAN ID
1 to 4095
The Default VLAN ID parameter specifies a default VLAN ID for a port that transmits untagged packets.
Default: 1
VLAN Priority
0 to 7 Default: 0
Entry Detection
Enabled, Disabled Default: Enabled
l
The VLAN Priority parameter specifies the priority of the default VLAN ID of a port. The Entry Detection parameter determines whether a port detects packets by tag identifier.
The parameters on the Network Attributes tab page are listed in Table 28-37. Table 28-37 Parameters on the Network Attributes tab page Field
Value
Description
Port
-
Displays the type of port, either PORT or VCTRUNk.
Port Attributes
UNI, C-Aware, S-Aware, NNI
Specifies the position of the port in the network. Different port attributes support different types of packets.
Default: UNI
l
In the case of external ports, the parameters on the Advanced Attributes tab page are listed in Table 28-38. Table 28-38 Parameters on the Advanced Attributes tab page (external port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Broadcast Packet Suppression
Enabled, Disabled
The Broadcast Packet Suppression parameter determines whether to suppress the traffic of broadcast packets.
Default: Disabled
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2614
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Broadcast Packet Suppression Threshold
10% to 100%
The Broadcast Packet Suppression Thresholdparameter allocates the specified bandwidth to the broadcast packets. The bandwidth is allocated on the basis of the traffic proportion at the port. If the bandwidth allocated to the broadcast packets reaches the specified threshold, the port discards the broadcast data packets that are received.
Threshold of Port Receiving Rates (Mbit/s)
0 to 1000
The Threshold of Port Receiving Rates (Mbit/s) parameter specifies the data flow threshold at external physical ports.
Port Traffic Threshold Time Window (Min)
0 to 30
Loop Detection
Enabled, Disabled
Default: 1000
Default: 0
Default: Disabled
Loop Port Shutdown
Enabled, Disabled Default: Enabled
Zero-Flow Monitor
Enabled, Disabled Default: Disabled
Zero-Flow Monitor Interval (min)
l
1 to 30 Default: 15
Sets traffic threshold time window for the external port. Sets whether to enable loop detection, which is used to check whether a loop exists at the port. Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port. Sets whether to monitor the zero flow. Sets the time interval for the zero-flow monitoring.
In the case of external ports, the parameters on the Advanced Attributes tab page are listed in Table 28-39. Table 28-39 Parameters on the Advanced Attributes tab page (internal port)
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the Ethernet board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2615
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Loop Detection
Enabled, Disabled
Sets whether to enable loop detection, which is used to check whether a loop exists at the port.
Default: Disabled
Loop Port Shutdown
Enabled, Disabled Default: Enabled
Zero-Flow Monitor
Enabled, Disabled Default: Disabled
Zero-Flow Monitor Interval (min)
l
1 to 30 Default: 15
Sets whether to enable shutdown of a loop port, which is used to set blocking for a loop port. Sets whether to monitor the zero flow. Sets the time interval for the zero-flow monitoring.
In the case of internal ports, the parameters on the Encapsulation/Mapping tab page are listed in Table 28-40. Table 28-40 Parameters on the Encapsulation/Mapping tab page (internal port) Field
Value
Description
Port
-
Displays the VCTRUNK ports.
Mapping Protocol
GFP
Specifies the mapping protocol adopted by the VCTRUNK port.
Default: GFP Scramble
Unscrambled, Scrambling mode[X43+1], Scrambling mode[X48+1] Default: Scrambling Mode [X43+1]
Set Inverse Value for CRC
-
Specifies whether to scramble the payload area of the encapsulation protocol and which scramble mode is adopted. Specifies whether to set an inverse value for the CRC field of the HDLC or LAPS protocol. You can set this parameter only when the mapping protocol is HDLC or LAPS.
Check Field Length
FCS32, No Default: FCS32
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Specifies the length of the CRC field of the mapping protocol.
2616
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
FCS Calculated Bit Sequence
Big endian, Little endian
Specifies the sequence of storing the bits in the CRC field in the FCS frame of the mapping protocol.
Extension Header Option
Yes, No
Default: Big endian
Default: No
l
Specifies whether the GFP encapsulation protocol supports the extension header.
In the case of internal ports, the parameters on the LCAS tab page are listed in Table 28-41. Table 28-41 Parameters on the LCAS tab page (internal port) Field
Value
Description
Port
VCTRUNKn
Indicates the VCTRUNK port. The letter n indicates the number of the VCTRUNK port.
Enabling LCAS
Enabled, Disabled
The Enabling LCAS parameter can increase or decrease the SDH network capacity without affecting the service. The capacity is automatically decreased if a member fails, and is automatically increased if the member recovers.
Default: Disabled
LCAS Mode
Huawei Mode, Standard Mode Default: Huawei Mode
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The LCAS Mode parameter specifies the sequence for the sink end to respond to the MST and Rs_Ack messages received from the source end.
2617
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Hold off Time(ms)
0 to 10000
The Hold off Time(ms) (LCAS) parameter is also called HO Procedure Timer Duration. It specifies HO Procedure Timer Duration of the LCAS protocol. If the LCAS coexists with another network-level protection scheme (for example, MSP or SNCP), you can set this parameter to postpone the LCAS switching.
Default: 2000
WTR Time(s)
0 to 720 Default: 300
TSD
Enabled, Disabled Default: Disabled
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The WTR Time(s) parameter is also called WTR Procedure Timer Duration. It specifies WTR Procedure Timer Duration of the LCAS protocol. Set this parameter to avoid impact caused by the alarm jitter on the link status. The TSD parameter specifies the B3 or BIP error status of a VCTRUNK member. TSD stands for trail signal degrade. When this parameter is set to Enabled and if a VCTRUNK member has excessive B3 or BIP bit errors, the LCAS protocol regards that this member fails and deletes it from the available members. If this parameter is set to Disabled, the LCAS protocol does not monitor the status of the B3 or BIP bit errors of a VCTRUNK member.
2618
OptiX OSN 8800/6800/3800 Hardware Description
l
28 OCS System Unit
Field
Value
Description
Min. Members - Transmit Direction
2 to 256
When the LCAS is enabled, the LCAS_PLCT alarm is reported if certain members in the transmit direction fail and the number of valid members is smaller than a certain value. The Min. Members - Transmit Direction parameter specifies the certain number of the valid members in the transmit direction.
Min. Members - Receive Direction
2 to 256
Default: 256
Default: 256
Specifies the minimum number of members in the receive direction. If the LCAS is enabled and the number of valid members is less than the specified value, an alarm is reported.
In the case of internal ports, the parameters on the Bound Path tab page are listed in Table 28-42. Table 28-42 Parameters on the Bound Path tab page (internal port)
Issue 03 (2013-05-16)
Field
Value
Description
VCTRUNCK Port
-
Displays the number of the VCTRUNK port.
Level
-
Specifies the level of the VCTRUNK bound path.
Service Direction
-
Specifies the direction of the Ethernet service.
Bound Path
-
Specifies the number of the bound path, including the VC4 path number and VC3 path number.
Bound Path Count
-
Displays the number of the bound VCTRUNK ports.
Used Channel
-
Displays the channels in use.
Activation Status
-
Displays whether the path is active.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2619
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.3.12 EGSH Specifications Specifications include optical specifications, electrical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-43 lists the optical specifications of the EGSH board. Table 28-43 Optical specifications of the EGSH board Item
Value
Type of optical interface
1000BASE-LX (10 km)
1000BASE-SX (0.5 km)
Type of fiber
Single-mode LC
Multi-mode LC
Operating wavelength range (nm)
1270 to 1355
770 to 860
Launched optical power range (dBm)
–9 to –3
–9.5 to –3.5
Receiver sensitivity (dBm)
–20
–18
Minimum overload (dBm)
–3
0
Minimum extinction ratio (dB)
9
9
Electrical Specifications Table 28-44 lists the electrical specifications of the EGSH board. Table 28-44 Electrical specifications of the EGSH board Type of Interface
Code Pattern
1000BASE-T, RJ45
4D-PAM5
NOTE
Only port 6 and port 8 of the EGSH board can work as the GE electrical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2620
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the EGSH board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 82 W Maximum power consumption at 55°C (131°F): 85 W
28.4 SF64 SF64: 1xSTM-64 optical interface board with the FEC function
28.4.1 Version Description Only one functional version of the SF64 board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S F64
Y
Y
Y
N
N
N
28.4.2 Application The SF64 board is a line board. The SF64 board can be used on the OptiX OSN equipment to transmit and receive STM-64 FEC optical signals. The SF64 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SF64 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-14 shows the application of the SF64 board. The SF64 boards can form a ring network or a chain network in the system. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2621
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-14 Networking and application of the SF64 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.4.3 Functions and Features The SF64 board receives and transmits 1xSTM-64 FEC optical signals and processes overhead bytes. For detailed functions and features, refer to Table 28-45. Table 28-45 Functions and features of the SF64 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic functions
l Transmits and receives 1xSTM-64 FEC optical signals.
Specification s of the optical interface
l Supports different types of standard optical interfaces, namely, the Ue-64.2c, Ue-64.2d, and Ue-64.2e. The characteristics of the optical interfaces comply with the standards defined by Huawei.
Specification s of the optical module
l Supports XFP pluggable optical modules.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchronizati on
SDH Clock Synchronization
l Supports configuration of the normal FEC or enhanced FEC function.
l Supports the output of the standard DWDM wavelengths that comply with ITU-T G.692 and can be directly connected to the WDM equipment.
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
Supported.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2622
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
28 OCS System Unit
Description IEEE 1588v2
Overhead processing
Supports the IEEE 1588 V2 time synchronization feature.
l Processes the section overheads of the STM-64 signals. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports one channel of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performance events
Reports various alarms and performance events.
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection. l Supports the fiber-shared MSP. NOTE Supports processes two sets of K bytes. One SF64 board supports a maximum of two MSP rings.
Maintenance features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.774.7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2623
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
28 OCS System Unit
Description Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.4.4 Working Principle and Signal Flow The SF64 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, and power module. Figure 28-15 shows the function modules and signal flow of the SF64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2624
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-15 Function modules and signal flow of the SF64 board Backplane 622 MHz 622 MHz PLL 10.71 Gbit/s
10.71 Gbit/s
O/E
DEMU X
SPI 10.71 Gbit/s
E/O
10.71 Gbit/s
O/E converting module
MUX
4x2.67G bit/s
4x2.5G bit/s
4x2.67G FEC 4x2.5G bit/s bit/s
622 MHz PLL
Reference clock
K1 and K2 insertion/extraction
K1 and K2 High-speed bus
RST MST MSA HPT
High-speed bus DCC
SDH overhead processing module
MUX/ DEMUX 669 MHz PLL
IIC LOS Laser shutdown
Logic and control module +3.3 V Power module
Power module
Frame header Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48 V/-60 V -48 V/-60 V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination -
SDH: synchronous digital hierarchy
-
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2625
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
– In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.4.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SF64 board.
Appearance of the Front Panel Figure 28-16 shows the front panel of the SF64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2626
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-16 Front panel of the SF64 board
SF64 STAT ACT PROG SRV CLASS 1 LASER PRODUCT
CLASS 1 LASER PRODUCT
OUT
IN
SF64
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There is one optical interface on the front panel of the SF64 board. Table 28-46 lists the type and function of the optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2627
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-46 Type and function of the interface on the SF64 board Interface
Type
Function
IN
LC
Receives optical signals.
OUT
LC
Transmits optical signals.
28.4.6 Jumpers and DIP Switches The SF64 board does not have any jumpers or DIP switches that are used for board settings.
28.4.7 Valid Slots The SF64 board must be installed in a valid slot in the subrack. Otherwise, the SF64 board cannot work normally. Table 28-47 shows the valid slots for the SF64 board. Table 28-47 Valid slots for the SF64 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.4.8 Characteristic Code for the SF64 The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the SF64 board indicates the type of optical interface. Table 28-48 provides the relationship between the characteristic code for the SF64 board and the type of optical interface. Table 28-48 Relationship between the characteristic code for the SF64 board and the type of optical interface
Issue 03 (2013-05-16)
Board
Characteristic Code
Type of Optical Interface
N4SF6401M01
01M01
Fixed-wavelength optical interface
N4SF6401
01
Ue-64.2c, Ue-64.2d, and Ue-64.2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2628
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.4.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-49. Table 28-49 Serial numbers of the interfaces of the SF64 board displayed on the NM Interface on the Panel
Interface on the NM
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.4.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SF64 board. Table 28-50 lists all the parameters of the SF64 board. Table 28-50 Parameters of the SF64 board Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Overhead Transfer Mode
DCC Mode, GCC Mode
Sets overhead transfer mode of the optical interface.
MSP Sharing
Enabled, Disabled
The MSP Sharing parameter determines whether multiple multiplex section (MS) protection groups can be configured at the same optical interface.
Default: Disabled
Laser Switch
Off, On Default: On
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Specifies the laser state of the line board. In general, the parameter is set to On.
2629
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.4.11 SF64 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-51 lists the optical specifications of the SF64 board. Table 28-51 Optical specifications of the SF64 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
10.709 Gbit/s
Application codea
Ue-64.2c
Ue-64.2d
Ue-64.2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2630
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value OBU101 (-28 dBm to -31 dBm)+ OAU103b + DCU03 (60) + MR2
Type of fiber
Single-mode LC
Operating wavelength range (nm)
1550.12
Launched optical power range (dBm)c
–1 to +2
Receiver sensitivity (dBm)
-19
Minimum overload (dBm)
0
Minimum extinction ratio (dB)
10.5
OBU101 (-31 dBm to -34 dBm) + CRPC + OAU103 + DCU03 (60) + DCU03 (60) + DCU08 (10) + MR2
OBU101 (-34 dBm to -37 dBm) + CRPC + OAU103 + DCU03 (60) + DCU04 (80) + MR2
OBU101 (-37 dBm to -40 dBm) + CRPC + OAU103 + DCU03 (60) + DCU04 (80) + DCU08 (10) + MR2
a: The numbers in the brackets indicate the corresponding parameter values. For example, "OBU101 (-28 dBm to -31 dBm)" indicates that the optical power amplified by the OBU101 is -28 dBm to -31 dBm. b: "OBU101 + OAU103" indicates that the specifications of the optical interface are measured when the OBU101 and OAU103 are used. c: The parameters are only for the optical modules. The parameters of the amplifier are not provided.
Table 28-52 lists the specifications of the tunable XFP optical interfaces of the SF64 board. Table 28-52 Specifications of the tunable XFP optical interfaces of the SF64 board
Issue 03 (2013-05-16)
Item
Value
Type of optical module
1600 ps/nm - NRZ - tunable
Line code format
NRZ - 80 channels tunable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2631
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Transmitter parameter specifications at point S Maximum mean launched power (dBm)
3
Minimum mean launched power (dBm)
-1
Minimum extinction ratio (dB)
9
Central wavelength (THz)
192.10 to 196.05
Central wavelength deviation (GHz)
±5
Maximum -20 dB spectral width (nm)
0.3
Minimum side mode suppression ratio (dB)
35
Dispersion tolerance (ps/nm)
1600
Receiver parameter specifications at point R Receiver type
APD
Operating wavelength range (nm)
1260 to 1600
Receiver sensitivity (FEC on) EOL (dBm)
-24
Minimum overload (dBm)
-7
Maximum reflectance (dB)
-27
Table 28-53 lists the specifications of the colored optical interfaces of the SF64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2632
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-53 Specifications of the colored optical interfaces that comply with ITU-T G.692 Item
Value
Nominal bit rate
10.709 Gbit/s
Dispersion limit (km)
40
Mean launched optical power (dBm)
-1 to 2
Receiver sensitivity (dBm)
-19
Minimum overload (dBm)
0
Maximum allowed dispersion (ps/nm)
800
Minimum extinction ratio (dB)
10
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SF64 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 0.7 kg (1.5 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 26 W Maximum power consumption at 55°C (131°F): 27.3 W
28.5 SF64A SF64A: 1xSTM-64 optical interface board with the FEC function
28.5.1 Version Description Only one functional version of the SF64A board is available, that is, N1.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2633
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N1S F64 A
Y
Y
Y
N
N
N
28.5.2 Application The SF64A optical interface board is an OCS line board. It can be used in the OptiX OSN 8800 to receive and transmit STM-64 FEC optical signals. The SF64A board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SF64A board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-17 shows the application of the SF64A board. The board supports the ring and chain networking modes. Figure 28-17 Networking and application of the SF64A board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.5.3 Functions and Features The SF64A board receives and transmits 1xSTM-64 FEC optical signals and processes overhead bytes. For detailed functions and features, refer to Table 28-54.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2634
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-54 Functions and features of the SF64A board Function and Feature
Description
Basic functions
Transmits and receives 1xSTM-64 FEC optical signals.
Specificatio ns of the optical interface
l Supports different types of standard optical interfaces, namely, the Ue-64.2c, Ue-64.2d, and Ue-64.2e. The characteristics of the optical interfaces comply with the standards defined by Huawei. l Supports the output of the DWDM standard wavelengths that comply with ITU-T G.692 and can be directly connected to the WDM equipment. l Supports adjustable wavelengths in DWDM applications.
Specificatio ns of the optical module
l Supports fixed optical modules.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchroniza tion
SDH Clock Synchronization
Supported.
IEEE 1588v2
Not supported.
Overhead processing
l Processes the section overheads of the STM-64 signals.
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports one channel of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performanc e events
Issue 03 (2013-05-16)
Reports various alarms and performance events to facilitate the management and maintenance.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2635
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection l Supports the optical-path-shared MSP. NOTE Supports processes two sets of K bytes. One SF64A supports a maximum of two MSP protection rings.
Maintenanc e features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2636
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
SDH ASON
Supported
28.5.4 Working Principle and Signal Flow The SF64A board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, DC/DC converter, and other modules. Figure 28-18 shows the function modules and signal flow of the SF64A board. Figure 28-18 Function modules and signal flow of the SF64A board 622MHz 622MHz PLL 10.71 Gbit/s 10.71 Gbit/s
O/E
E/O
S P I
10.71 Gbit/s
DEMUX
16x669 Mbit/s
10.71 Gbit/s
MUX
16x669 FEC 16x622 Mbit/s Mbit/s
O/E converting module
MUX/ DEMUX module
IIC LOS Laser shutdown
622MHz PLL
Reference clock
K1 and K2 insertion/ extraction
16x622 Mbit/s
Backplane
K1 and K2 Highspeed bus
RST MST MSA HPT
Highspeed bus DCC
SDH overhead processing module 669MHzPLL
Frame header Logic and control module +3.3V
Power module
Communication Fuse
Power module
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48V/-60V -48V/-60V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination IIC: inter-integrated circuit
SDH: synchronous digital hierarchy
-
The function modules are described as follows:
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2637
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH.
l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2638
OptiX OSN 8800/6800/3800 Hardware Description
l
28 OCS System Unit
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.5.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SF64A board.
Appearance of the Front Panel Figure 28-19 shows the front panel of the SF64A board. Figure 28-19 Front panel of the SF64A board
SF64A STAT ACT PROG SRV
CLASS 1 LASER
CLASS 1 LASER PRODUCT
PRODUCT
OUT
IN
SF64A
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2639
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There is one optical interface on the front panel of the SF64A board. Table 28-55 lists the type and function of the optical interface. Table 28-55 Type and function of the optical interface on the SF64A board Interface
Type
Function
IN
LC
Receives optical signals.
OUT
LC
Transmits optical signals.
28.5.6 Jumpers and DIP Switches The SF64A board does not have any jumpers or DIP switches that are used for board settings.
28.5.7 Valid Slots The SF64A board must be installed in a valid slot on a subrack. Otherwise, the board cannot work normally. Table 28-56 shows the valid slots for the SF64A board. Table 28-56 Valid slots for the SF64A board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2640
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.5.8 Characteristic Code for the SF64A The characteristic code of a board is the code after the board name in the bar code on the board. The characteristic code of the SF64A board indicates the optical interface type of the board. Table 28-57 provides the relationship between the characteristic code and optical interface type of the SF64A board. Table 28-57 Relationship between the characteristic code and optical interface type of the SF64A board Board
Characteristic Code
Optical Interface Type
N1SF64A01
01
Ue-64.2c, Ue-64.2d, Ue-64.2e
28.5.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-58. Table 28-58 Serial numbers of the interfaces of the SF64A board displayed on the NM Interface on the Panel
Interface on the NM
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.5.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SF64A board. Table 28-59 lists all the parameters of the SF64A board. Table 28-59 Parameters of the SF64A board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2641
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Overhead Transfer Mode
DCC Mode, GCC Mode
Sets overhead transfer mode of the optical interface.
MSP Sharing
Enabled, Disabled
The MSP Sharing parameter determines whether multiple multiplex section (MS) protection groups can be configured at the same optical interface.
Default: Disabled
Laser Switch
Off, On Default: On
Specifies the laser state of the line board. In general, the parameter is set to On.
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.5.11 SF64A Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-60 lists the optical specifications of the SF64A board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2642
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-60 Optical specifications of the SF64A board Item
Value
Nominal bit rate
10.709 Gbit/s
Application codea
Ue-64.2c
Ue-64.2d
Ue-64.2e
OBU101 (-29 dBm to -26 dBm) + OAU103b + DCU03 (60) + DCU04 (80) + MR2
OBU103 (-28 dBm to -25 dBm) + OAU103 + DCU03 (60) + DCU04 (80) + DCU08 (10) + MR2
OBU101 (-34.6 dBm to -32 dBm) + CRPC + OAU103 + DCU04 (80) + DCU04 (80) + MR2
Type of fiber
Single-mode LC
Operating wavelength range (nm)
1550.12
Launched optical power range (dBm)c
–1 to +2
Receiver sensitivity (dBm)
-19
Minimum overload (dBm)
0
Minimum extinction ratio (dB)
10.5
OBU101 (-37.9 dBm to -34.9 dBm) + CRPC + OAU103 + DCU04 (80) + DCU04 (80) + DCU08 (10) + MR2
a: The numbers in the brackets indicate the corresponding parameter values. For example, "OBU101 (-29 dBm to -26 dBm)" indicates that the optical power amplified by the OBU101 is -29 dBm to -26 dBm. b: "OBU101 + OAU103" indicates that the specifications of the optical interface are measured when the OBU101 and OAU103 are used. c: The parameters are only for the optical modules. The parameters of the amplifier are not provided.
Table 28-61 lists the specifications of the colored optical interfaces of the SF64A board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2643
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-61 Specifications of the colored optical interfaces that comply with ITU-T G.692 Item
Value
Nominal bit rate
10.709 Gbit/s
Dispersion limit (km)
40
Mean launched optical power (dBm)
–3 to 2
Receiver sensitivity (dBm)
–19
Minimum overload (dBm)
0
Maximum allowed dispersion (ps/nm)
800
Minimum extinction ratio (dB)
13.5
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SF64A board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 34 W Maximum power consumption at 55°C (131°F): 35.7 W
28.6 SFD64 SFD64: 2xSTM-64 optical interface board with the FEC function
28.6.1 Version Description Only one functional version of the SFD64 board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2644
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S FD6 4
Y
Y
Y
N
N
N
28.6.2 Application The SFD64 board is a line board. The SFD64 board can be used on the OptiX OSN equipment to transmit and receive STM-64 FEC optical signals. The SFD64 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SFD64 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-20 shows the application of the SFD64 board. The SFD64 boards can form a ring network or a chain network in the system. Figure 28-20 Networking and application of the SFD64 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.6.3 Functions and Features The SFD64 board receives and transmits 2xSTM-64 FEC optical signals and processes overhead bytes. For detailed functions and features, refer to Table 28-62.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2645
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-62 Functions and features of the SFD64 board Function and Feature
Description
Basic functions
l Transmits and receives 2xSTM-64 FEC optical signals.
Specificati ons of the optical interface
l Supports different types of standard optical interfaces, namely, the Ue-64.2c, Ue-64.2d, and Ue-64.2e. The characteristics of the optical interfaces comply with the standards defined by Huawei.
Specificati ons of the optical module
l Supports XFP pluggable optical modules.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchroniz ation
SDH Clock Synchronization
Supported.
IEEE 1588v2
Supports the IEEE 1588 V2 time synchronization feature.
Overhead processing
l Processes the section overheads of the STM-64 signals.
l Supports configuration of the normal FEC or enhanced FEC function.
l Supports the output of the standard DWDM wavelengths that comply with ITU-T G.692 and can be directly connected to the WDM equipment.
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports two channels of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performanc e events
Reports various alarms and performance events.
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection. l Supports the fiber-shared MSP. NOTE Supports processes four sets of K bytes. A single optical interface can process two sets of K bytes. One SFD64 board supports a maximum of four MSP rings.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2646
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Maintenan ce features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.6.4 Working Principle and Signal Flow The SFD64 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, and power module. Figure 28-21 shows the function modules and signal flow of the SFD64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2647
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-21 Function modules and signal flow of the SFD64 board Backplane 622 MHz 622 MHz PLL 10.71 Gbit/s
10.71 Gbit/s
O/E
DEMU X
SPI 10.71 Gbit/s
E/O
10.71 Gbit/s
O/E converting module
MUX
4x2.67G bit/s
4x2.5G bit/s
4x2.67G FEC 4x2.5G bit/s bit/s
622 MHz PLL
Reference clock
K1 and K2 insertion/extraction
K1 and K2 High-speed bus
RST MST MSA HPT
High-speed bus DCC
SDH overhead processing module
MUX/ DEMUX 669 MHz PLL
IIC LOS Laser shutdown
Logic and control module +3.3 V Power module
Power module
Frame header Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48 V/-60 V -48 V/-60 V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination -
SDH: synchronous digital hierarchy
-
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2648
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
– In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.6.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SFD64 board.
Appearance of the Front Panel Figure 28-22 shows the front panel of the SFD64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2649
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-22 Front panel of the SFD64 board
SFD64 STAT ACT PROG SRV
CLASS 1 LASER
CLASS 1 LASER PRODUCT
PRODUCT TX1 RX1 TX2 RX2
SFD64
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There is one optical interface on the front panel of the SFD64 board. Table 28-63 lists the type and function of the optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2650
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-63 Type and function of the interface on the SFD64 board Interface
Type
Function
RX1–RX2
LC
Receives optical signals.
TX1–TX2
LC
Transmits optical signals.
28.6.6 Jumpers and DIP Switches The SFD64 board does not have any jumpers or DIP switches that are used for board settings.
28.6.7 Valid Slots The SFD64 board must be installed in a valid slot in the subrack. Otherwise, the SFD64 board cannot work normally. Table 28-64 shows the valid slots for the SFD64 board. Table 28-64 Valid slots for the SFD64 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.6.8 Characteristic Code for the SFD64 The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the SFD64 board indicates the type of optical interface. Table 28-65 provides the relationship between the characteristic code for the SFD64 board and the type of optical interface. Table 28-65 Relationship between the characteristic code for the SFD64 board and the type of optical interface
Issue 03 (2013-05-16)
Board
Characteristic Code
Type of Optical Interface
N4SFD6401M01
01M01
Fixed-wavelength optical interface
N4SFD6401
01
Ue-64.2c, Ue-64.2d, and Ue-64.2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2651
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.6.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-66. Table 28-66 Serial numbers of the interfaces of the SFD64 board displayed on the NM Interface on the Panel
Interface on the NM
RX1/TX1
1
RX2/TX2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.6.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SFD64 board. Table 28-67 lists all the parameters of the SFD64 board. Table 28-67 Parameters of the SFD64 board Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Overhead Transfer Mode
DCC Mode, GCC Mode
Sets overhead transfer mode of the optical interface.
Laser Switch
Off, On
Specifies the laser state of the line board. In general, the parameter is set to On.
Default: On
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2652
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.6.11 SFD64 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-68 lists the optical specifications of the SFD64 board. Table 28-68 Optical specifications of the SFD64 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
10.709Gbit/s
Application codea
Ue-64.2c
Ue-64.2d
Ue-64.2e
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2653
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value OBU101 (-28 dBm to -31 dBm)+ OAU103b + DCU03 (60) + MR2
Type of fiber
Single-mode LC
Operating wavelength range (nm)
1550.12
Launched optical power range (dBm)c
–1 to +2
Receiver sensitivity (dBm)
-19
Minimum overload (dBm)
0
Minimum extinction ratio (dB)
10.5
OBU101 (-31 dBm to -34 dBm) + CRPC + OAU103 + DCU03 (60) + DCU03 (60) + DCU08 (10) + MR2
OBU101 (-34 dBm to -37 dBm) + CRPC + OAU103 + DCU03 (60) + DCU04 (80) + MR2
OBU101 (-37 dBm to -40 dBm) + CRPC + OAU103 + DCU03 (60) + DCU04 (80) + DCU08 (10) + MR2
a: The numbers in the brackets indicate the corresponding parameter values. For example, "OBU101 (-28 dBm to -31 dBm)" indicates that the optical power amplified by the OBU101 is -28 dBm to -31 dBm. b: "OBU101 + OAU103" indicates that the specifications of the optical interface are measured when the OBU101 and OAU103 are used. c: The parameters are only for the optical modules. The parameters of the amplifier are not provided.
Table 28-69 lists the specifications of the tunable XFP optical interfaces of the SFD64 board. Table 28-69 Specifications of the tunable XFP optical interfaces of the SFD64 board
Issue 03 (2013-05-16)
Item
Value
Type of optical module
1600 ps/nm - NRZ - tunable
Line code format
NRZ - 80 channels tunable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2654
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Transmitter parameter specifications at point S Maximum mean launched power (dBm)
3
Minimum mean launched power (dBm)
-1
Minimum extinction ratio (dB)
9
Central wavelength (THz)
192.10 to 196.05
Central wavelength deviation (GHz)
±5
Maximum -20 dB spectral width (nm)
0.3
Minimum side mode suppression ratio (dB)
35
Dispersion tolerance (ps/nm)
1600
Receiver parameter specifications at point R Receiver type
APD
Operating wavelength range (nm)
1260 to 1600
Receiver sensitivity (FEC on) EOL (dBm)
-24
Minimum overload (dBm)
-7
Maximum reflectance (dB)
-27
Table 28-70 lists the specifications of the colored optical interfaces of the SFD64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2655
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-70 Specifications of the colored optical interfaces that comply with ITU-T G.692 Item
Value
Nominal bit rate
10.709 Gbit/s
Dispersion limit (km)
40
Mean launched optical power (dBm)
-1 to 2
Receiver sensitivity (dBm)
-19
Minimum overload (dBm)
0
Maximum allowed dispersion (ps/nm)
800
Minimum extinction ratio (dB)
10
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SFD64 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.2 kg (2.6 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 36.4 W Maximum power consumption at 55°C (131°F): 38.2 W
28.7 SL64 SL64: 1xSTM-64 optical interface board
28.7.1 Version Description Only one functional version of the SL64 board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2656
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S L64
Y
Y
Y
N
N
N
28.7.2 Application The SL64 board is a line board. The SL64 board can be used on the OptiX OSN equipment to transmit and receive STM-64 optical signals. The SL64 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SL64 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-23 shows the application of the SL64 board. The SL64 boards can form a ring network or a chain network in the system. Figure 28-23 Networking and application of the SL64 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.7.3 Functions and Features The SL64 board receives and transmits 1xSTM-64 optical signals and processes overhead bytes. For detailed functions and features, refer to Table 28-71. Table 28-71 Functions and features of the SL64 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic functions
Transmits and receives 1xSTM-64 optical signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2657
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Specifications of the optical interface
l The N4SL64 board supports the I-64.1, S-64.2b, Le-64.2, P1L1-2D2, and V-64.2b optical interfaces. The characteristics of the optical interfaces of the I-64.1, S-64.2b, Le-64.2, and V-64.2b types comply with ITU-T G.691. The characteristics of the optical interface of the P1L1-2D2 type comply with ITU-T G.959. l Supports the output of the DWDM standard wavelengths that comply with ITU-T G.692 and can be directly connected to the WDM equipment. l Supports XFP pluggable optical modules.
Specifications of the optical module
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchronizatio n
SDH Clock Synchronization
Supported.
IEEE 1588v2
Supports the IEEE 1588 V2 time synchronization feature.
Overhead processing
l Processes the section overheads of the STM-64 signals. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports one channel of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performance events
Reports various alarms and performance events.
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection. l Supports the fiber-shared MSP. NOTE Supports processes two sets of K bytes. One SL64 supports a maximum of two MSP rings.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2658
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Maintenance features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.7.4 Working Principle and Signal Flow The SL64 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, DC/DC converter, and other modules. Figure 28-24 shows the function modules and signal flow of the SL64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2659
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-24 Function modules and signal flow of the SL64 board Backplane 622 MHz PLL
622 MHz
9.953 Gbit/s
O/E
9.953 Gbit/s
DEMU X
16x622 Mbit/s
9.953 Gbit/s
MUX
16x622 Mbit/s
SPI 9.953 Gbit/s
E/O O/E converting module
MUX/ DEMUX
Reference clock
K1 and K2 insertion/extraction
K1 and K2 High-speed bus
RST MST MSA HPT
High-speed bus DCC
SDH overhead processing module
IIC LOS Laser shutdown
Logic and control module +3.3 V Power module
Power module
Frame header Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48 V/-60 V -48 V/-60 V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination IIC: inter-integrated circuit
SDH: synchronous digital hierarchy
-
The function modules are described as follows:
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2660
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.7.5 Front Panel There are indicators, interfaces, a bar code, a laser safety class label, and an APD alarm label on the front panel of the SL64 board.
Appearance of the Front Panel Figure 28-25 shows the front panel of the SL64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2661
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-25 Appearance of the front panel of the SL64 board
SL64 STAT ACT PROG SRV CLASS 1 LASER PRODUCT
CLASS 1 LASER PRODUCT
OUT
IN
SL64
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There is one optical interface on the front panel of the SL64 board. Table 28-72 lists the type and function of the optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2662
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-72 Type and function of the interface on the SL64 board Interface
Type
Function
IN
LC
Receives optical signals.
OUT
LC
Transmits optical signals.
28.7.6 Jumpers and DIP Switches The SL64 board does not have any jumpers or DIP switches that are used for board settings.
28.7.7 Valid Slots The SL64 board must be installed in a valid slot on a subrack. Otherwise, the board cannot work normally. Table 28-73 shows the valid slots for the SL64 board. Table 28-73 Valid slots for the SL64 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.7.8 Characteristic Code for the SL64 The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the SL64 board indicates the type of optical interface. Table 28-74 provides the relationship between the characteristic code for the SL64 board and the type of optical interface. Table 28-74 Relationship between the characteristic code for the SL64 board and the type of optical interface
Issue 03 (2013-05-16)
Board
Characteristic Code
Type of Optical Interface
N4SL6401M01
01M01
Fixed-wavelength optical interface
N4SL6401
01
I-64.1
N4SL6402
02
S-64.2b
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2663
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Board
Characteristic Code
Type of Optical Interface
N4SL6403
03
P1L1-2D2
N4SL6404
04
V-64.2b
N4SL6405
05
Le-64.2
28.7.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-75. Table 28-75 Serial numbers of the interfaces of the SL64 board displayed on the NM Interface on the Panel
Interface on the NM
IN/OUT
1
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.7.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SL64 board. Table 28-76 lists all the parameters of the SL64 board. Table 28-76 Parameters of the SL64 board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2664
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
MSP Sharing
Enabled, Disabled
The MSP Sharing parameter determines whether multiple multiplex section (MS) protection groups can be configured at the same optical interface.
Default: Disabled
Laser Switch
Off, On Default: On
Specifies the laser state of the line board. In general, the parameter is set to On.
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.7.11 SL64 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-77 lists the optical specifications of the SL64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2665
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-77 Optical specifications of the SL64 board Item
Value
Nominal bit rate
9953280 kbit/s
Application code
I-64.1
S-64.2b
P1L1-2D2
Le-64.2
V-64.2b (OBU101 + OBU101 + DCU + MR2)a
Transmissio n distance (km)
0 to 2
2 to 40
40 to 80
35 to 60
80 to 120
Type of fiber
Single-mode LC
Single-mode LC
Single-mode LC
Single-mode LC
Single-mode LC
Operating wavelength range (nm)
1290 to 1330
1530 to 1565
1530 to 1565
1530 to 1565
1550.12
Mean launched optical power (dBm)
-6 to -1
-1 to +2
0 to +4
+2 to +4
-1 to 2 (without the OBU, DCU, or MR2) 16 (with the OBU, DCU, or MR2)
Receiver sensitivity (dBm)
-11
-14
-24
-21
-17 (without the OBU, DCU, or MR2) -26 (with the OBU, DCU, or MR2)
Minimum overload (dBm)
-1
-1
-7
-8
-1
Minimum extinction ratio (dB)
6
8.2
9
8.2
10.5
a: "OBU101 + OBU101 + DCU + MR2" indicates that the specifications of the V-64.2b optical interface are measured when the OBU, DCU, and MR2 are used.
Table 28-78 lists the specifications of the colored optical interfaces of the SL64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2666
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-78 Specifications of the colored optical interfaces that comply with ITU-T G.692 Item
Value
Nominal bit rate
9953280 kbit/s
Dispersion limit (km)
40
Mean launched optical power (dBm)
-1 to 2
Receiver sensitivity (dBm)
-17
Minimum overload (dBm)
-1
Maximum allowed dispersion (ps/nm)
800
Minimum extinction ratio (dB)
10.5
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SL64 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 0.6 kg (1.3 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 14.5 W Maximum power consumption at 55°C (131°F): 15.2 W
28.8 SLD64 SLD64: 2xSTM-64 optical interface board
28.8.1 Version Description Only one functional version of the SLD64 board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2667
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S LD6 4
Y
Y
Y
N
N
N
28.8.2 Application The SLD64 board is a line board. The SLD64 board can be used on the OptiX OSN equipment to transmit and receive STM-64 optical signals. The SLD64 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SLD64 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-26 shows the application of the SLD64 board. The SLD64 boards can form a ring network or a chain network in the system. Figure 28-26 Networking and application of the SLD64 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.8.3 Functions and Features The SLD64 board receives and transmits 2xSTM-64 optical signals, processes overhead bytes, and performs the MSP protection. For detailed functions and features, refer to Table 28-79.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2668
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-79 Functions and features of the SLD64 board Function and Feature
Description
Basic functions
Transmits and receives 2xSTM-64 optical signals.
Specificatio ns of the optical interface
Supports different types of standard optical interfaces, namely, the I-64.1 and S-64.2b. The characteristics of the optical interfaces comply with ITU-T G. 691.
Specificatio ns of the optical module
l Supports XFP pluggable optical modules.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchroniza tion
SDH Clock Synchronization
Supported.
IEEE 1588v2
Supports the IEEE 1588 V2 time synchronization feature.
Overhead processing
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
l Processes the section overheads of the STM-64 signals. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports two channels of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performance events
Reports various alarms and performance events.
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection. l Supports the fiber-shared MSP. NOTE Supports processes four sets of K bytes. A single optical interface can process two sets of K bytes. One SLD64 board supports a maximum of four MSP rings
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2669
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Maintenanc e features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Protocols or standards for transparent transmission (non-performance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.8.4 Working Principle and Signal Flow The SLD64 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, and power module. Figure 28-27 shows the function modules and signal flow of the SLD64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2670
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-27 Function modules and signal flow of the SLD64 board Backplane 622 MHz
9.953 Gbit/s
SPI 9.953 E/O Gbit/s
DEMUX 16x622 Mbit/s
. . . .
9.953 Gbit/s
O/E
O/E
SPI
9.953 Gbit/s
16x622 Mbit/s
MUX
E/O
Reference clock
K1 and K2 insertion/extraction
K1 and K2 High-speed bus
RST MST MSA HPT
High-speed bus DCC
SDH overhead processing module
MUX/DE MUX
O/E converting module
622 MHz PLL
IIC LOS Laser shutdown
Logic and control module +3.3 V Power module
Power module
Frame header Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48 V/-60 V -48 V/-60 V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination -
SDH: synchronous digital hierarchy
-
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2671
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.8.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SLD64 board.
Appearance of the Front Panel Figure 28-28 shows the front panel of the SLD64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2672
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-28 Front panel of the SLD64 board
SLD64 STAT ACT PROG SRV
CLASS 1 LASER
CLASS 1 LASER PRODUCT
PRODUCT
TX1 RX1 TX2 RX2
SLD64
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are two optical interfaces on the front panel of the SLD64 board. Table 28-80 lists the type and function of each optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2673
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-80 Types and functions of the interfaces on the SLD64 board Interface
Type
Function
RX1–RX2
LC
Receives optical signals.
TX1–TX2
LC
Transmits optical signals.
28.8.6 Jumpers and DIP Switches The SLD64 board does not have any jumpers or DIP switches that are used for board settings.
28.8.7 Valid Slots The SLD64 board must be installed in a valid slot in the subrack. Otherwise, the SLD64 board cannot work normally. Table 28-81 shows the valid slots for the SLD64 board. Table 28-81 Valid slots for the SLD64 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.8.8 Characteristic Code for the SLD64 The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the SLD64 board indicates the type of optical interface. Table 28-82 provides the relationship between the characteristic code for the SLD64 board and the type of optical interface. Table 28-82 Relationship between the characteristic code for the SLD64 board and the type of optical interface
Issue 03 (2013-05-16)
Board
Characteristic Code
Type of Optical Interface
N4SLD6401
01
I-64.1
N4SLD6402
02
S-64.2b
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2674
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.8.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-83. Table 28-83 Serial numbers of the interfaces of the SLD64 board displayed on the NM Interface on the Panel
Interface on the NM
RX1/TX1
1
RX2/TX2
2
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.8.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SLD64 board. Table 28-84 lists all the parameters of the SLD64 board. Table 28-84 Parameters of the SLD64 board Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
MSP Sharing
Enabled, Disabled
The MSP Sharing parameter determines whether multiple multiplex section (MS) protection groups can be configured at the same optical interface.
Default: Disabled
Laser Switch
Off, On Default: On
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Specifies the laser state of the line board. In general, the parameter is set to On.
2675
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.8.11 SLD64 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-85 lists the optical specifications of the SLD64 board. Table 28-85 Optical specifications of the SLD64 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
9953280 kbit/s
Application code
I-64.1
S-64.2b
Transmission distance (km)
0 to 2
2 to 40
Type of fiber
Single-mode LC
Single-mode LC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2676
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Operating wavelength range (nm)
1290 to 1330
1530 to 1565
Mean launched optical power (dBm)
-6 to -1
-1 to +2
Receiver sensitivity (dBm)
-11
-14
Minimum overload (dBm)
-1
-1
Minimum extinction ratio (dB)
6
8.2
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SLD64 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.1 kg (2.4 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 19.3 W Maximum power consumption at 55°C (131°F): 20.3 W
28.9 SLH41 SLH41: 16xSTM-4/STM-1 optical/electrical interface board
28.9.1 Version Description Only one functional version of the SLH41 board is available, that is, N3.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2677
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N3S LH4 1
Y
Y
Y
N
N
N
28.9.2 Application The SLH41 optical interface board is an OCS line board. It can be used in the OptiX OSN 8800 to receive and transmit STM-1/STM-4 optical signals. The SLH41 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SLH41 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-29 shows the application of the SLH41 board. The board supports the ring and chain networking modes. Figure 28-29 Networking and application of the SLH41 board
NE1 NE2
SNCP ring
NE4
NE3
Service flow OCS line board Cross-connect and timing board
28.9.3 Functions and Features The SLH41 board transmits and receives 16xSTM-1/STM-4 optical signals or 16xSTM-1 electrical signals, performs O/E conversion for the STM-1 or STM-4 optical signals, extracts and inserts overhead bytes, and generates alarm signals on the line. For detailed functions and features, refer to Table 28-86. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2678
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-86 Functions and features of the SLH41 board Function and Feature
Description
Basic functions
Transmits and receives 16xSTM-1/STM-4 optical signals, or 16xSTM-1 electrical signals.
Specifications of the optical interface
l The 16xSTM-1/STM-4 optical module can be used. – When the STM-1 optical module is used, the SLH41 board supports the optical interfaces of the S-1.1 type. The characteristics of the optical interfaces of the S-1.1 type comply with ITU-T G.957. – When the STM-4 optical module is used, the SLH41 board supports the optical interface of the S-4.1 type. The characteristics of the optical interface of the S-4.1 type comply with ITU-T G.957. – The optical interfaces are adaptive. The SLH41 board supports hybrid configuration of STM-1/STM-4 optical interfaces. l The 16xSTM-1 electrical module can be used. l Supports SFP pluggable optical/electrical module.
Specifications of the optical module
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser. l When the STM-1 optical/electrical module is used, the SLH41 board supports the VC-12 services, VC-3 services, and VC-4 services.
Service processing
l When the STM-4 optical module is used, the SLH41 board supports the VC-12 services, VC-3 services, VC-4 services, and VC-4-4c concatenation services. Clock synchronizatio n
SDH Clock Synchronization
Supported.
IEEE 1588v2
Only interfaces 1-4 supports the IEEE 1588 V2 time synchronization feature.
Overhead processing
l Processes the section overheads of the STM-1 signals or STM-4 signals. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports sixteen channels of ECC communication. Port 1 to port 8 support the ECC communication by using bytes D1–D12. Port 9 to port 16 support the ECC communication by using bytes D4–D12. l Supports HWECC (default), IP, or OSI protocol stacks.
Alarms and performance events
Issue 03 (2013-05-16)
Reports various alarms and performance events, which facilitates the management and maintenance of the equipment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2679
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Protection schemes
l Supports the linear MSP. l Supports the two-fiber ring MSP in the case of STM-4 interfaces. l Supports the SNCP. l Supports the SNCTP.
Maintenance features
l Supports inloops and outloops at optical/electrical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2680
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.9.4 Working Principle and Signal Flow The SLH41 board consists of the O/E converting module, CDR module, SDH overhead processing module, logic and control module, DC/DC converter, and other modules. This topic describes the working principle and signal flow of the SLH41 board by describing how to process STM-1/STM-4 signals. Figure 28-30 shows the function modules and signal flow of the SLH41 board. Figure 28-30 Function modules and signal flow of the SLH41 board 155MHz PLL
STM-1/ STM-4
O/E E/O
S P I
CDR
O/E E/O
. . . .
. . . .
STM-1/ STM-4
S P I
CDR
Reference Backplane clock Clock unit
K1 and K2 insertion/ extraction
K1 and K2
RST MST MSA HPT
Highspeed bus
Highspeed bus
DCC SDH overhead processing module
O/E converting module IIC LOS Laser shutdown
Logic and control module +3.3V Power module
Power module
Frame header Communication Fuse
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48V/-60V -48V/-60V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination IIC: inter-integrated circuit
SDH: synchronous digital hierarchy
CDR: clock and data recovery
The function modules of the STM-1/STM-4 units are described as follows:
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
CDR Module This module restores the data signal and the clock signal.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2681
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH.
l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2682
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.9.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SLH41 board.
Appearance of the Front Panel Figure 28-31 shows the front panel of the SLH41 board. Figure 28-31 Front panel of the SLH41 board (considering optical interfaces as an example)
SM SFP WORK WITH G.657B FIBER ONLY 单模光模块仅配合使用 G.657B 光纤
SLH41
SM SFP WORK WITH G.657B FIBER ONLY 单模光模块仅配合使用 G.657B 光纤
STAT ACT PROG SRV RX 1
2 TX
TX 15
16 RX
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2683
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are 16 optical/electrical interfaces on the front panel of the SLH41 board, and "16 SFP" is silkscreened under the silkscreening for the indicator on the front panel. Figure 28-32 Silk-screen
Table 28-87 lists the type and function of each optical interface. Table 28-87 Types and functions of the interfaces on the SLH41 board Interface
Type
Function
RX1–RX16
LC/SAA-75J4Y
Receives optical/electrical signals.
TX1–TX16
LC/SAA-75J4Y
Transmits optical/electrical signals.
NOTE
The G.657A2 fiber jumper rather than the G.652D fiber jumper is used if an optical attenuator is inserted into the transmit port. Otherwise, the cabinet door cannot be closed. Figure 28-33 shows the G.657A2 fiber jumper and G.652D fiber jumper.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2684
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-33 G.657A2 fiber jumper and G.652D fiber jumper
G.652D fiber jumper
58.25 50.75
G.657A2 fiber jumper
42.5
28.9.6 Jumpers and DIP Switches The SLH41 board does not have any jumpers or DIP switches that are used for board settings.
28.9.7 Valid Slots The SLH41 board occupies one slot and must be installed in the valid slot on a subrack. Otherwise, the board cannot work normally. Table 28-88 shows the valid slots for the SLH41 board. Table 28-88 Valid slots for the SLH41 board
Issue 03 (2013-05-16)
Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2685
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.9.8 Characteristic Code for the SLH41 The characteristic code of a board is the code after the board name in the bar code on the board. The characteristic code of the SLH41 board indicates the optical interface type of the board. Table 28-89 provides the relationship between the characteristic code and optical interface type of the SLH41 board. Table 28-89 Relationship between the characteristic code and optical interface type of the SLH41 board Board
Characteristic Code
Optical Interface Type
N3SLH4102
02
8×S-1.1, 8×S-4.1
N3SLH4103
03
16×S-1.1
N3SLH4105
05
16×S-4.1
The G.657A2 fiber jumper is required because the single-mode optical module is used over the interface.
28.9.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-90. Table 28-90 Serial numbers of the interfaces of the SLH41 board displayed on the NM
Issue 03 (2013-05-16)
Interface on the Panel
Interface on the NM
TX1/RX1
1
TX2/RX2
2
TX3/RX3
3
TX4/RX4
4
TX5/RX5
5
TX6/RX6
6
TX7/RX7
7
TX8/RX8
8
TX9/RX9
9
TX10/RX10
10 Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2686
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Interface on the Panel
Interface on the NM
TX11/RX11
11
TX12/RX12
12
TX13/RX13
13
TX14/RX14
14
TX15/RX15
15
TX16/RX16
16
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.9.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SLH41 board. Table 28-91 lists all the parameters of the SLH41 board. Table 28-91 Parameters of the SLH41 board Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Laser Switch
Off, On
Specifies the laser state of the line board. In general, the parameter is set to On.
Default: On Laser Transmission Distance (m)
Issue 03 (2013-05-16)
/
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
2687
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.9.11 SLH41 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-92 lists the optical specifications of the SLH41 board when the STM-1 optical module is used. Table 28-92 Optical specifications of the SLH41 board when the STM-1 optical module is used
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
155520 kbit/s
Line code pattern
NRZ
Application code
S-1.1
Transmission distance (km)
0 to 15
Type of fiber
Single-mode LC
Operating wavelength range (nm)
1261 to 1360
Launched optical power range (dBm)
–15 to –8
Receiver sensitivity (dBm)
–28
Overload optical power (dBm)
–8
Minimum extinction ratio (dB)
8.2
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2688
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-93 lists the optical specifications of the SLH41 board when the STM-4 optical module is used. Table 28-93 Optical specifications of the SLH41 board when the STM-4 optical module is used Item
Value
Nominal bit rate
622080 kbit/s
Line code pattern
NRZ
Application code
S-4.1
Transmission distance (km)
0 to 15
Operating wavelength range (nm)
1274 to 1356
Type of fiber
Single-mode LC
Launched optical power range (dBm)
–15 to –8
Receiver sensitivity (dBm)
–28
Minimum overload (dBm)
–8
Minimum extinction ratio (dB)
8.2
Electrical Specifications Table 28-94 lists the electrical specifications of the SLH41 board when the STM-1 electrical module is used. Table 28-94 Electrical specifications of the SLH41 board when the STM-1 electrical module is used Item
Value
Type of interface
139264 kbit/s, 155520 kbit/s
Code pattern
CMI
Bit rate of the output signal
Compliant with G.703
Permitted frequency deviation on the input interface Permitted attenuation on the input interface
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2689
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Mechanical Specifications The mechanical specifications of the SLH41 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.0 kg (2.2 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 46.2 W Maximum power consumption at 55°C (131°F): 48.5 W
28.10 SLO16 SLO16: 8xSTM-16 optical interface board
28.10.1 Version Description Only one functional version of the SLO16 board is available, that is, N4.
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S LO1 6
Y
Y
Y
N
N
N
28.10.2 Application The SLO16 optical interface board is an OCS line board. It can be used in the OptiX OSN 8800 to receive and transmit STM-16 optical signals. The SLO16 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SLO16 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-34 shows the application of the SLO16 board. The board supports the ring and chain networking modes.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2690
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-34 Networking and application of the SLO16 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.10.3 Functions and Features The SLO16 board receives and transmits 8xSTM-16 optical signals, processes overhead bytes, and performs the MSP protection. For detailed functions and features, refer to Table 28-95. Table 28-95 Functions and features of the SLO16 board
Issue 03 (2013-05-16)
Function and Feature
Description
Basic functions
Transmits and receives 8xSTM-16 optical signals.
Specificatio ns of the optical interface
Supports different types of standard optical interfaces, namely, the I-16, S-16.1, L-16.1, and L-16.2. The characteristics of the optical interfaces comply with ITU-T G.957.
Specificatio ns of the optical module
l Supports SFP pluggable optical module.
Service processing
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, and VC-4-16c concatenation services.
Clock synchroniz ation
SDH Clock Synchronization
Supported.
IEEE 1588v2
Support the IEEE 1588 V2 time synchronization feature.
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2691
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Function and Feature
Description
Overhead processing
l Processes the section overheads of the STM-16 signals. l Supports the configuration of the D1–D12, E1, F1, and X1 bytes as transparent transmission bytes or into other unused overheads bytes. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports eight channels of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performanc e events
Reports various alarms and performance events, which facilitates the management and maintenance of the equipment.
Protection schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP l Supports the fiber-shared virtual trail protection NOTE One SLO16 board supports a maximum of eight MSP protection rings.
Maintenanc e features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards compliance
Issue 03 (2013-05-16)
Protocols or standards for transparent transmission (nonperformance monitoring)
ITU-T G.774.7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2692
OptiX OSN 8800/6800/3800 Hardware Description
Function and Feature
28 OCS System Unit
Description
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.10.4 Working Principle and Signal Flow The SLO16 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, DC/DC converter, and other modules. Figure 28-35 shows the function modules and signal flow of the SLO16 board by describing how to process 1xSTM-16 signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2693
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-35 Function modules and signal flow of the SLO16 board 155MHz O/E 2.488 Gbit/s
E/O
S P I
DEMUX
2.488 Gbit/s
MUX
16x155 Mbit/s
K1 and K2 insertion/ extraction
2.488 Gbit/s
O/E E/O
S P I
16x155 Mbit/s
RST MST MSA HPT
O/E converting module
Backplane
K1 and K2 Highspeed bus
. . . .
2.488 Gbit/s
155MHzPLL
Reference clock
Highspeed bus DCC
MUX/ DEMUX module
SDH overhead processing module Frame header
IIC LOS Laser shutdown
Logic and control module +3.3V Power module
Power module
Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48V/-60V -48V/-60V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination IIC: inter-integrated circuit
SDH: synchronous digital hierarchy
-
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2694
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
– In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.10.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SLO16 board.
Appearance of the Front Panel Figure 28-36 shows the front panel of the SLO16 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2695
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-36 Front panel of the SLO16 board
SLO16
CLASS 1
STAT ACT PROG SRV
LASER
CLASS 1 LASER PRODUCT
PRODUCT TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4 TX5 RX5 TX6 RX6 TX7 RX7 TX8 RX8
SLO16
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are eight optical interfaces on the front panel of the SLO16 board. Table 28-96 lists the type and function of each optical interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2696
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-96 Types and functions of the interfaces on the SLO16 board Interface
Type
Function
RX1–RX8
LC
Receives optical signals.
TX1–TX8
LC
Transmits optical signals.
28.10.6 Jumpers and DIP Switches The SLO16 board does not have any jumpers or DIP switches that are used for board settings.
28.10.7 Valid Slots The SLO16 board must be installed in a valid slot on a subrack. Otherwise, the board cannot work normally. Table 28-97 shows the valid slots for the SLO16 board. Table 28-97 Valid slots for the SLO16 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.10.8 Characteristic Code for the SLO16 The characteristic code of a board is the code after the board name in the bar code on the board. The characteristic code of the SLO16 board indicates the optical interface type of the board. Table 28-98 provides the relationship between the characteristic code and optical interface type of the SLO16 board. Table 28-98 Relationship between the characteristic code and optical interface type of the SLO16 board
Issue 03 (2013-05-16)
Board
Characteristic Code
Optical Interface Type
N4SLO1601
01
I-16
N4SLO1602
02
S-16.1
N4SLO1603
03
L-16.1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2697
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Board
Characteristic Code
Optical Interface Type
N4SLO1604
04
L-16.2
28.10.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-99. Table 28-99 Serial numbers of the interfaces of the SLO16 board displayed on the NM Interface on the Panel
Interface on the NM
RX1/TX1
1
RX2/TX2
2
RX3/TX3
3
RX4/TX4
4
RX5/TX5
5
RX6/TX6
6
RX7/TX7
7
RX8/TX8
8
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.10.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SLO16 board. Table 28-100 lists all the parameters of the SLO16 board. Table 28-100 Parameters of the SLO16 board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the line board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2698
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Laser Switch
Off, On
Specifies the laser state of the line board. In general, the parameter is set to On.
Default: On Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.10.11 SLO16 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-101 lists the optical specifications of the SLO16 board. Table 28-101 Optical specifications of the SLO16 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
2488320 kbit/s
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2699
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Line code pattern
NRZ
Application code
I-16
S-16.1
L-16.1
L-16.2
Transmission distance (km)
0 to 2
2 to 15
25 to 40
50 to 80
Type of fiber
Single-mode LC
Single-mode LC
Single-mode LC
Single-mode LC
Operating wavelength range (nm)
1266 to 1360
1260 to 1360 1280 to 1335
1500 to 1580
Launched optical power range (dBm)
–10 to –3
–5 to 0
–2 to +3
–2 to +3
Receiver sensitivity (dBm)
–18
–18
–27
–28
Minimum overload (dBm)
–3
0
–9
–9
Minimum extinction ratio (dB)
8.2
8.2
8.2
8.2
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SLO16 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 0.8 kg (1.8 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 20.5 W Maximum power consumption at 55°C (131°F): 21.5 W
28.11 SLQ16 SLQ16: 4xSTM-16 optical interface board
28.11.1 Version Description Only one functional version of the SLQ16 board is available, that is, N4. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2700
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S LQ1 6
Y
Y
Y
N
N
N
28.11.2 Application The SLQ16 optical interface board is an OCS line board. It can be used in the OptiX OSN 8800 to receive and transmit STM-16 optical signals. The SLQ16 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SLQ16 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-37 shows the application of the SLQ16 board. The SLQ16 boards can form a ring network or a chain network in the system. Figure 28-37 Networking and application of the SLQ16 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.11.3 Functions and Features The SLQ16 board receives and transmits 4xSTM-16 optical signals, processes overhead bytes, and performs the MSP. For detailed functions and features, refer to Table 28-102. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2701
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-102 Functions and features of the SLQ16 board Functio n and Feature
Description
Basic functions
Transmits and receives 4xSTM-16 optical signals.
Specifica tions of the optical interface
Supports different types of standard optical interfaces, namely, the I-16, S-16.1, L-16.1, and L-16.2. The characteristics of the optical interfaces comply with ITUT G.957.
Specifica tions of the optical module
l Supports SFP pluggable optical module.
Service processin g
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, and VC-4-16c concatenation services.
Clock synchroni zation
SDH Clock Synchronization
Supported.
IEEE 1588v2
Supports the IEEE 1588 V2 time synchronization feature.
Overhead processin g
l Processes the section overheads of the STM-16 signals.
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
l Supports the configuration of the D1–D12, E1, F1, and X1 bytes as transparent transmission bytes or into other unused overheads bytes. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports four channels of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performa nce events
Issue 03 (2013-05-16)
Reports various alarms and performance events, which facilitates the management and maintenance of the equipment.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2702
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Functio n and Feature
Description
Protectio n schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP. l Supports the SNCTP. l Supports the fiber-shared virtual trail protection NOTE One SLQ16 board supports a maximum of four MSP protection rings.
Maintena nce features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards complian ce
Protocols or standards for transparent transmission (non-performance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Issue 03 (2013-05-16)
Supported
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2703
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
28.11.4 Working Principle and Signal Flow The SLQ16 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, and power module. Figure 28-38 shows the function modules and signal flow of the SLQ16 board by describing how to process 1xSTM-16 signals. Figure 28-38 Function modules and signal flow of the SLQ16 board Backplane 155 MHz
2.488 Gbit/s
O/E SP E/O I
2.488 Gbit/s
DEMU 16x155 X Mbit/s
. . . . 2.488 O/E SP Gbit/s E/O I
2.488 Gbit/s
16x155 Mbit/s
MUX
Reference clock
K1 and K2 insertion/extraction
K1 and K2 High-speed bus
RST MST MSA HPT
High-speed bus DCC
SDH overhead processing module
MUX/ DEMUX
O/E converting module
155 MHz PLL
IIC LOS Laser shutdown
Logic and control module +3.3 V Power module
Power module
Frame header Communication Fuse
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit SCC unit -48 V/-60 V -48 V/-60 V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination -
SDH: synchronous digital hierarchy
-
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
Detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
Issue 03 (2013-05-16)
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2704
OptiX OSN 8800/6800/3800 Hardware Description
l
28 OCS System Unit
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH.
l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2705
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.11.5 Front Panel There are indicators, interfaces, a bar code, and a laser safety class label on the front panel of the SLQ16 board.
Appearance of the Front Panel Figure 28-39 shows the front panel of the N4SLQ16 board. Figure 28-39 Front panel of the N4SLQ16 board SLQ16 STAT ACT PROG SRV
CLASS 1 LASER
CLASS 1 LASER PRODUCT
PRODUCT TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4
SLQ16
Indicators The following indicators are present on the panel of the board: Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2706
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are four optical interfaces on the front panel of the SLQ16 board. Table 28-103 lists the type and function of each optical interface. Table 28-103 Types and functions of the interfaces on the SLQ16 board Interface
Type
Function
RX1–RX4
LC
Receives optical signals.
TX1–TX4
LC
Transmits optical signals.
28.11.6 Jumpers and DIP Switches The SLQ16 board does not have any jumpers or DIP switches that are used for board settings.
28.11.7 Valid Slots The slots valid for the SLQ16 board vary with the cross-connect capacity of the subrack. Table 28-104 shows the valid slots for the SLQ16 board. Table 28-104 Valid slots for the SLQ16 board Product
Valid Slots
OptiX OSN 8800 T64 subrack
IU1–IU8, IU11–IU42, and IU45–IU68
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.11.8 Characteristic Code for the SLQ16 The number code that follows the board name in the bar code is the characteristic code for the board. The characteristic code for the SLQ16 board indicates the type of optical interface. Table 28-105 provides the relationship between the characteristic code for the SLQ16 board and the type of optical interface. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2707
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-105 Relationship between the characteristic code for the SLQ16 board and the type of optical interface Board
Characteristic Code
Type of Optical Interface
N4SLQ1601
01
I-16
N4SLQ1602
02
S-16.1
N4SLQ1603
03
L-16.1
N4SLQ1604
04
L-16.2
28.11.9 Optical Interfaces This topic describes the interface information on the U2000.
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-106. Table 28-106 Serial numbers of the interfaces of the SLQ16 board displayed on the NM Interface on the Panel
Interface on the NM
RX1/TX1
1
RX2/TX2
2
RX3/TX3
3
RX4/TX4
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.11.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SLQ16 board. Table 28-107 lists all the parameters of the SLQ16 board. Table 28-107 Parameters of the SLQ16 board
Issue 03 (2013-05-16)
Field
Value
Description
Port
-
Displays all ports available on the line board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2708
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
Laser Switch
Off, On
Specifies the laser state of the line board. In general, the parameter is set to On.
Default: On Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.11.11 SLQ16 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-108 lists the optical specifications of the SLQ16 board. Table 28-108 Optical specifications of the SLQ16 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
2488320 kbit/s
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2709
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Application code
I-16
S-16.1
L-16.1
L-16.2
Transmission distance (km)
0 to 2
2 to 15
25 to 40
50 to 80
Type of fiber
Single-mode LC
Single-mode LC
Single-mode LC
Single-mode LC
Operating wavelength range (nm)
1266 to 1360
1260 to 1360 1280 to 1335
1500 to 1580
Launched optical power range (dBm)
-10 to -3
-5 to 0
-2 to +3
-2 to +3
Receiver sensitivity (dBm)
-18
-18
-27
-28
Minimum overload (dBm)
-3
0
-9
-9
Minimum extinction ratio (dB)
8.2
8.2
8.2
8.2
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SLQ16 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 0.7 kg (2.0 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 12.2 W Maximum power consumption at 55°C (131°F): 12.8 W
28.12 SLQ64 SLQ64: 4xSTM-64 line interface board
28.12.1 Version Description Only one functional version of the SLQ64 board is available, that is, N4. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2710
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Mappings Between the Board and Equipment This manual describes all boards supported by the product. However, the availability of the boards is subject to the PCNs. For the availability of the boards, contact the product manager of your Huawei local office. Boa rd
8800 T64 Subrack
8800 T32 Subrack
8800 T16 Subrack
8800 Platform Subrack
6800 Subrack
3800 Chassis
N4S LQ6 4
N
Y
Y
N
N
N
28.12.2 Application The SLQ64 optical interface board is an OCS line board. It can be used in the OptiX OSN 8800 to receive and transmit STM-64 optical signals. The SLQ64 board converts the received optical signals into electrical signals and sends the electrical signals to the cross-connect side. In addition, the SLQ64 board converts the electrical signals sent from the cross-connect side into optical signals and transmits the optical signals. Figure 28-40 shows the application of the SLQ64 board. The board supports the ring and chain networking modes. Figure 28-40 Networking and application of the SLQ64 board
NE1 NE2
MSP ring
NE4
NE3
Service flow OCS line board Cross-connect board
28.12.3 Functions and Features The SLQ64 board receives and transmits 4xSTM-64 optical signals, processes overhead bytes, and performs the MSP protection. For detailed functions and features, refer to Table 28-109. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2711
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-109 Functions and features of the SLQ64 board Functio n and Feature
Description
Basic functions
Transmits and receives 4xSTM-64 optical signals.
Specificat ions of the optical interface
Supports different types of standard optical interfaces, namely, the I-64.1 and S-64.2b. The characteristics of the optical interfaces comply with ITU-T G.691.
Specificat ions of the optical module
l Supports XFP pluggable optical module.
Service processin g
Supports the VC-12 services, VC-3 services, VC-4 services, VC-4-4c concatenation services, VC-4-16c concatenation services, and VC-4-64c concatenation services.
Clock synchroni zation
SDH Clock Synchronization
Supported.
IEEE 1588v2
Supports the IEEE 1588 V2 time synchronization feature.
Overhead processin g
l Supports the detection and query of information about the optical module. l Provides the ALS function. The optical interface supports the setting of the on/off state of a laser.
l Processes the section overheads of the STM-64 signals. l Supports the transparent transmission and termination of the path overheads. l Supports the setting and query of the J0, J1, and C2 bytes. l Supports four channels of ECC communication. l Supports HWECC (default), IP, or OSI protocol stacks. l Supports the 1.5 Mbit/s DCN.
Alarms and performa nce events
Reports various alarms and performance events to facilitate the management and maintenance.
Protectio n schemes
l Supports the two-fiber ring MSP. l Supports the four-fiber ring MSP. l Supports the linear MSP. l Supports the SNCP l Supports the SNCTP. l Supports the fiber-shared virtual trail protection l Supports the optical-path-shared MSP. NOTE A single optical interface supports processes two sets of K bytes. One SLQ64 board supports a maximum of eight MSP protection rings.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2712
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Functio n and Feature
Description
Maintena nce features
l Supports inloops and outloops at optical interfaces. l Supports inloops and outloops on VC-4 paths. l Supports the function of automatically releasing service loopbacks after the specified time expires. l Supports warm resets and cold resets. The warm reset does not affect services. l Supports the query of the manufacturing information of the board. l Supports the in-service loading of the FPGA. l Supports the upgrade of the board software without affecting services. l Supports the PRBS function. l Supports the press-to-collect function in fault data collection.
Protocols or standards complian ce
Protocols or standards for transparent transmission (non-performance monitoring)
ITU-T G.774.7
Protocols or standards for service processing (performance monitoring)
ITU-T G.707 ITU-T G.709 ITU-T G.783 ITU-T G.774.1 ITU-T G.774.2 ITU-T G.774.3 ITU-T G.774.4 ITU-T G.774.5 ITU-T G.774.6 ITU-T G.774.9 ITU-T G.774.10 ITU-T G.841 ITU-T G.825 ITU-T G.829
SDH ASON
Supported
28.12.4 Working Principle and Signal Flow The SLQ64 board consists of the O/E converting module, MUX/DEMUX module, SDH overhead processing module, logic and control module, DC/DC converter, and other modules. Figure 28-41 shows the function modules and signal flow of the SLQ64 board.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2713
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-41 Function modules and signal flow of the SLQ64 board 622MHz
9.953 Gbit/s
9.953 Gbit/s
O/E
E/O
S P I
9.953 Gbit/s
DEMUX
9.953 Gbit/s
MUX
O/E converting module
622MHzPLL
Reference clock
16x622 Mbit/s
K1 and K2 insertion/ extraction
16x622 Mbit/s
RST MST MSA HPT
Backplane
K1 and K2 Highspeed bus Highspeed bus DCC
MUX/ DEMUX module
SDH overhead processing module Frame header
IIC LOS Laser shutdown
Logic and control module +3.3V Power module
Power module
Clock unit
SCC unit Cross-connect unit A Cross-connect unit B SCC unit
Clock unit
Communication SCC unit Fuse
-48V/-60V -48V/-60V
PLL: phase-locked loop
SPI: SDH physical interface
RST: regenerator section termination
MST: multiplex section termination MSA: multiplex section adaptation
HPT: higher order path termination IIC: inter-integrated circuit
SDH: synchronous digital hierarchy
-
The function modules are described as follows:
O/E Converting Module l
In the receive direction, the module converts the received optical signals into electrical signals.
l
In the transmit direction, the module converts the electrical signals into SDH optical signals and sends the SDH optical signals to fibers for transmission.
l
The SPI detects the R_LOS alarm and provides the function of shutting down the laser.
MUX/DEMUX Module l
In the receive direction, the DEMUX part demultiplexes the high-rate electrical signals into multiple parallel electrical signals and restores the clock signal at the same time.
l
In the transmit direction, the MUX part multiplexes the parallel electrical signals received from the SDH overhead processing module into high-rate electrical signals.
SDH Overhead Processing Module This module includes the RST, MST, MSA, and HPT sub-modules. This module provides the inloop and outloop functions. l
RST sub-module – In the receive direction, the RST sub-module terminates the RSOH. That is, the RST sub-module detects the frame alignment bytes (A1 and A2), descrambles all the bytes
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2714
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
except the first line of the RSOH, restores and checks the J0 byte, and checks the B1 byte. – In the transmit direction, the RST sub-module generates the RSOH. That is, the RST sub-module writes bytes such as A1, A2, and J0, calculates and writes the B1 byte, and scrambles all the bytes except the first line of the RSOH. l
MST sub-module – In the receive direction, the MST sub-module terminates the MSOH. That is, the MST sub-module generates the MS_AIS alarm and detects the MS_RDI alarm after detecting the K2 byte, and detects the MS_REI alarm and generates the B2_EXC alarm after checking the B2 byte. – In the transmit direction, the MST sub-module generates the MSOH. That is, the MST sub-module writes bytes such as E2, D4-D12, K1, K2, S1, and M1, and calculates and writes the B2 byte.
l
MSA sub-module – In the receive direction, the MSA sub-module de-interleaves the AUG, divides an AUG into N AU-4s, detects the AU_LOP alarm and the AU_AIS alarm, and performs pointer justifications. – In the transmit direction, the MSA sub-module assembles the AUG and generates the AU-4. N AU-4s are multiplexed into an AUG through byte interleaving.
l
HPT sub-module – In the receive direction, the HPT sub-module terminates the POH. That is, the HPT submodule detects the HP_REI alarm after checking the B3 byte, generates the HP_TIM alarm and the HP_SLM alarm and detects the HP_RDI alarm after detecting the J1 and C2 bytes, and generates the HP_UNEQ alarm after detecting the C2 byte. – In the transmit direction, the HPT sub-module generates the POH. That is, the HPT submodule writes bytes such as J1 and C2, and calculates and writes the B3 byte.
Logic and Control Module l
Manages and configures the other modules of the board.
l
Performs inter-board communication through the internal Ethernet interface.
l
Traces the clock signal from the active and standby clock units.
l
Controls the laser.
l
Selects the clock signal and frame header signal from the active and standby clock units.
l
Controls the indicators on the board.
Power Module It converts the –48 V/–60 V power supply into the DC voltages that the modules of the board require.
28.12.5 Front Panel There are indicators, interfaces, the bar code, and the laser safety class label on the front panel of the SLQ64 board.
Appearance of the Front Panel Figure 28-42 shows the front panel of the SLQ64 board. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2715
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Figure 28-42 Front panel of the SLQ64 board
SLQ64 STAT ACT PROG SRV
CLASS 1 LASER
CLASS 1 LASER PRODUCT
PRODUCT
TX1 RX1 TX2 RX2 TX3 RX3 TX4 RX4
SLQ64
Indicators The following indicators are present on the panel of the board: l
Board hardware status indicator (STAT) – two colors (red and green)
l
Service activation status indicator (ACT) – one color (green)
l
Board software status indicator (PROG) – two colors (red and green)
l
Service alarm indicator (SRV) – three colors (red, green, and yellow)
For details about indicators on the board, see A.4 Board Indicators.
Interfaces There are four optical interfaces on the front panel of the SLQ64 board. Table 28-110 lists the type and function of each optical interface.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2716
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Table 28-110 Types and functions of the interfaces on the SLQ64 board Interface
Type
Function
RX1–RX4
LC
Receives optical signals.
TX1–TX4
LC
Transmits optical signals.
28.12.6 Jumpers and DIP Switches The SLQ64 board does not have any jumpers or DIP switches that are used for board settings.
28.12.7 Valid Slots The SLQ64 board must be installed in a valid slot on a subrack. Otherwise, the board cannot work normally. Table 28-111 shows the valid slots for the SLQ64 board. Table 28-111 Valid slots for the SLQ64 board Product
Valid Slots
OptiX OSN 8800 T32 subrack
IU1–IU8, IU12–IU27, and IU29–IU36
OptiX OSN 8800 T16 subrack
IU1–IU8, and IU11–IU18
28.12.8 Characteristic Code for the SLQ64 The characteristic code of a board is the code after the board name in the bar code on the board. The characteristic code of the SLQ64 board indicates the optical interface type of the board. Table 28-112 provides the relationship between the characteristic code and optical interface type of the SLQ64 board. Table 28-112 Relationship between the characteristic code and optical interface type of the SLQ64 board Board
Characteristic Code
Optical Interface Type
N4SLQ6401
01
I-64.1
N4SLQ6402
02
S-64.2b
28.12.9 Optical Interfaces This topic describes the interface information on the U2000. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2717
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Display of Optical Interfaces The serial numbers of the optical interfaces on the front panel of the board displayed on the NM are listed in Table 28-113. Table 28-113 Serial numbers of the interfaces of the SLQ64 board displayed on the NM Interface on the Panel
Interface on the NM
RX1/TX1
1
RX2/TX2
2
RX3/TX3
3
RX4/TX4
4
NOTE
The port number displayed on the U2000 indicates a pair of physical optical ports. One transmits signals and the other receives signals.
28.12.10 Parameters Can Be Set or Queried by NMS This topic describes all the parameters, including the read-only parameters, of the SLQ64 board. Table 28-114 lists all the parameters of the SLQ64 board. Table 28-114 Parameters of the SLQ64 board Field
Value
Description
Port
-
Displays all ports available on the line board.
VC3 Path
-
Displays all available VC3 paths.
Optical Interface Name
For example, SDH-1
Specifies the name of an optical interface.
MSP Sharing
Enabled, Disabled
The MSP Sharing parameter determines whether multiple multiplex section (MS) protection groups can be configured at the same optical interface.
Default: Disabled
Laser Switch
Off, On Default: On
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Specifies the laser state of the line board. In general, the parameter is set to On.
2718
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Field
Value
Description
Laser Transmission Distance (m)
/
The Laser Transmission Distance (m) parameter indicates the valid distance over which the laser sends a signal. A line board uses pluggable optical module and the transmission distance is determined by the type of the pluggable optical module.
Optical (Electrical) Interface Loopback
Non-Loopback, Inloop, Outloop
Specifies the loopback state of an SDH interface. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC4 Path
-
Displays all available VC4 paths.
VC4 Loopback
Non-Loopback, Inloop, Outloop
Specifies the VC4 loopback state on the line board. In general, this parameter is set to Non-Loopback.
Default: Non-Loopback VC12 Channel
-
Displays all available VC12 channels.
28.12.11 SLQ64 Specifications Specifications include optical specifications, laser safety class, mechanical specifications, and power consumption.
Optical Specifications Table 28-115 lists the optical specifications of the SLQ64 board. Table 28-115 Optical specifications of the SLQ64 board
Issue 03 (2013-05-16)
Item
Value
Nominal bit rate
9953280 kbit/s
Application code
I-64.1
S-64.2b
Transmission distance (km)
0 to 10
10 to 40
Type of fiber
Single-mode LC
Single-mode LC
Operating wavelength range (nm)
1290 to 1330
1530 to 1565
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2719
OptiX OSN 8800/6800/3800 Hardware Description
28 OCS System Unit
Item
Value
Launched optical power range (dBm)
–6 to –1
–1 to +2
Receiver sensitivity (dBm)
–11
–14
Minimum overload (dBm)
–1
–1
Minimum extinction ratio (dB)
6
8.2
Laser Safety Class The laser safety class of the optical interface is CLASS 1, indicating that the maximum output optical power of each optical interface is less than 10 dBm (10 mW).
Mechanical Specifications The mechanical specifications of the SLQ64 board are as follows: l
Dimensions: 25.4 mm (W) x 220 mm (D) x 266.7 mm (H)
l
Weight: 1.4 kg (3.1 lb.)
Power Consumption Typical power consumption at 25°C (77°F): 35.4 W Maximum power consumption at 55°C (131°F): 37.2 W
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2720
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
29
Cables
About This Chapter 29.1 PGND Cables The equipment has cabinet PGND cables, subrack PGND cables, PDU PGND cables, cabinet door PGND cables. 29.2 Power Cables The equipment has cabinet -48 V/BGND cables and subrack power cables. 29.3 Optical Fibers Optical fibers can be classified into the following types: LSH/APC-SC/APC, LC/PC-LC/PC, LC/PC-FC/PC and LC/PC-SC/PC. 29.4 Alarm Cables Alarm cables for the equipment include the cabinet indicator alarm cable, alarm concatenating/ inter-subrack concatenating cable, and alarm interface cable. 29.5 Management Cables Management cables for the equipment include: OAM serial port cables, AUX signal cables and straight-through network cables. 29.6 Clock/Time Cable Clock/Time Cable includes cables for other equipment connections, cables for internal connections, cables for testing equipment connections.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2721
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
29.1 PGND Cables The equipment has cabinet PGND cables, subrack PGND cables, PDU PGND cables, cabinet door PGND cables.
29.1.1 Cabinet PGND Power Cables One end of the cabinet PGND power cables is connected to ground bar in the equipment room. The other end is connected to the protection ground screw on the top of the cabinet.
Structure Figure 29-1 shows the structure of the cabinet PGND ground cable. Figure 29-1 Structure of the cabinet PGND ground cable 3 2
5
4
1
L
1. OT single-hole naked crimping connector
2. Cable clip 3. JG two-hole naked crimping connector
4. Heat shrink tube
5. Cable
Pin Assignment None
Technical Parameters Table 29-1 Technical parameters of the cabinet PGND power cables Item
Description
Cabinet PGND ground cable
Issue 03 (2013-05-16)
Connector
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
OT naked crimping connector-35 mm2-M8 2722
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description Type of the cable
Electric power cable-750V/ 450V-227 IEC 02(RV)-35 mm2-Yellow and green-135 A
29.1.2 Subrack PGND Cables One end of subrack PGND cables to the ground screw on the side column near the subrack. The other end is connected to the ground screw on the subrack
Structure Figure 29-2 shows the structure of the subrack PGND cable. Figure 29-2 Structure of the subrack PGND cables 1
2
X1
X2
1. OT naked crimping connector
2. Heat-shrink tube
Pin Assignment None
Technical Parameters The technical parameters of subrack PGND cables are listed in Table 29-2. Table 29-2 Technical parameters of the subrack PGND cables
Issue 03 (2013-05-16)
Item
Description
Connector X1/X2
Naked crimping terminal-OT-10-6
Type of the cable
Electric power cable-450/750V-227IEC02 (RV)-10 mm2 (0.02 in.2)-Yellow/Green-62 A
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2723
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
29.1.3 PDU PGND Cables One end of the PDU PGND Cables is connected to a protection ground screw of the power distribution box. The other end is connected to the protection ground screw on the top of the cabinet. The PDU PGND Cables is correctly connected before delivery.
Structure Figure 29-3 shows the structure of the PDU PGND Cables. Figure 29-3 Structure of the PDU PGND Cables 1
2
X1
X2
1. OT naked crimping connector
2. Heat-shrink tube
Pin Assignment None
Technical Parameters The technical parameters of the PDU PGND Cables are listed in Table 29-3. Table 29-3 Technical parameters of the PDU PGND Cables Item
Description
Connector X1/X2
Naked crimping terminal-OT-10-6
Type of the cable
Electric power cable-450/750V-227IEC02 (RV)-10 mm2 (0.02 in.2)-Yellow/Green-62 A
29.1.4 Cabinet Door Ground Cables The cabinet door ground cables ground the front door, rear door, and side doors. The cabinet door ground cables are correctly connected before delivery.
Structure Figure 29-4 shows the structure of the cabinet door ground cables. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2724
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-4 Structure of the cabinet door ground cable 1
X1
X2 L
1. OT naked crimping connector
Pin Assignment None
Technical Parameters The technical parameters of the cabinet door ground cables are listed in Table 29-4. Table 29-4 Technical parameters of the cabinet door ground cables Item
Description
Connector X1/X2
Naked crimping terminal-OT-6 mm2 (0.01 in. 2)-M6-Tin plating-Insulated ring terminal-12-10AWG
Type of the cable
Electric power cable-600V-UL1015-0 mm2-10AWG-Yellow/Green-50 A-105 core strand
29.2 Power Cables The equipment has cabinet -48 V/BGND cables and subrack power cables.
29.2.1 Cabinet -48 V/BGND Power Cables The -48 V/BGND power cables supply power to devices inside the cabinet. One end of the power cable is connected to the power distribution cabinet. The other end is connected to the DC power distribution box at the cabinet top.
Structure And Technical Parameters When the cabinet houses only the OptiX OSN 8800: Figure 29-5 shows the structure of the cabinet -48 V power cable and the cabinet BGND ground cable. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2725
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-5 Structure of the cabinet -48 V power cable and cabinet BGND ground cable (when the cabinet houses only the OptiX OSN 8800) 1 2
W1
W1
W
X1
W2 W2 X2
1m
0.8m L
1. JG two-hole naked crimping connector
2. Heat-shrink tube
Table 29-5 Technical parameters of the PGND cables and the -48V/BGND power cables (when the cabinet houses only the OptiX OSN 8800) Cable Cabin et power cable
-48 V power cable
Usage
Wire Used
Accesses -48 V DC to the cabinet.
-48 V DC power cable (blue) l If the required length of the power cable is less than 20 m, use the Ø16 mm2 cable. l If the required length of the power cable ranges from 20 m to 35 m, use the Ø25 mm2 cable.
Connector If copper fittings have been installed on the PDU, power cables must be shorter than 25 m and have a crosssectional area of 35 mm2
JG two-hole naked crimping connector
NOTE
l If the required length of the power cable ranges from 35 m to 50 m, use the Ø35 mm2 cable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2726
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Cable BGND cable
Usage
Wire Used
Accesses the BGND to a cabinet.
Battery ground cable (black) l If the required length of the power cable is less than 20 m, use the Ø16 mm2 cable.
Connector If copper fittings have been installed on the PDU, power cables must be shorter than 25 m and have a crosssectional area of 35 mm2
JG two-hole naked crimping connector
l If the required length of the power cable ranges from 20 m to 35 m, use the Ø 25mm2 cable. l If the required length of the power cable ranges from 35 m to 50 m, use the Ø 35 mm2 cable.
When the cabinet houses only the OptiX OSN 6800: Figure 29-6 shows the structure of the cabinet -48 V power cable and the cabinet BGND ground cable. Figure 29-6 Structure of the cabinet -48 V power cable and cabinet BGND ground cable (when the cabinet houses only the OptiX OSN 6800) 1
2
3
1. Cord end terminal
Issue 03 (2013-05-16)
2. OT single-hole naked crimping connector
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
3. Cable clip
2727
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Table 29-6 Technical parameters of the cabinet -48 V/BGND power cables (when the cabinet houses only the OptiX OSN 6800) Item
Description
Cabinet -48 V power cable (16 mm2)
Cabinet BGND ground cable (16 mm2)
Cabinet -48 V power cable (25 mm2)
Cabinet BGND ground cable (25 mm2)
Cabinet -48 V power cable (35 mm2)
Issue 03 (2013-05-16)
Connector 1
Cord end terminal-16 mm2-0.024 mm-80 AInsertion depth 16 mm-Green
Connector 2
OT naked crimping connector-16 mm2-M8
Type of the cable
Electric power cable-450 V/ 750 V-227 IEC 02(RV)-16 mm2-Blue-85 A
Connector 1
Cord end terminal-16 mm2-0.024 mm-80AInsertion depth 16 mm-Green
Connector 2
OT naked crimping connector-16 mm2-M8
Type of the cable
Electric power cable-450 V/ 750 V-227 IEC 02(RV)-16 mm2-Black-85 A
Connector 1
Cord end terminal-25 mm2-30 mm-75 A-Insertion depth 16 mm-Brown
Connector 2
OT naked crimping connector-25 mm2-M8
Type of the cable
Electric power cable-450 V/ 750 V-25 mm2-Blue-110 A
Connector 1
Cord end terminal-25 mm2-30 mm-75 A-Insertion depth 16 mm-Brown
Connector 2
Naked crimping connectorOT type-25 mm2-M8
Type of the cable
Electric power cable-450 V/ 750 V-25 mm2-Black-110 A
Connector 1
Cord end terminal-35 mm2-0.03 m-105 A-Insertion depth 16 mm-Cream-colored
Connector 2
OT naked crimping connector-35 mm2-M8
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2728
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Cabinet BGND ground cable (35 mm2)
Type of the cable
Electric power cable-750V/ 450V-227 IEC 02(RV)-35 mm2-Blue-135 A
Connector 1
Cord end terminal-35 mm2-0.03 m-105 A-Insertion depth 16 mm-Cream-colored
Connector 2
OT naked crimping connector-35 mm2-M8
Type of the cable
Electric power cable-750V/ 450V-227 IEC 02(RV)-35 mm2-Black-135 A
29.2.2 Subrack Power Cables The subrack power cables connect the DC power distribution box at the cabinet top and the power interface in the subrack interface area, and lead the -48 V power supply from the top of the cabinet to the subracks. The subrack power cables are correctly connected before delivery.
OptiX OSN 8800 Figure 29-7 shows the subrack power cable. Figure 29-7 Structure of the subrack power cable on the OptiX OSN 8800 1
1 A
X2
X1 1
2
3 B
X4
X3 1. JG two-hole naked crimping connector
2. Cord end terminal
3. Cable
NOTE
When the DPD63-8-8 PDU is used, the B cable in Figure 29-7 must be configured. When any other PDU is used, the A cable in Figure 29-7 must be configured.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2729
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
OptiX OSN 8800 platform subrack/6800/3800 Figure 29-8 shows the subrack power cable. Figure 29-8 Structure of the subrack power cable on the OptiX OSN 8800 platform subrack/ 6800/3800 1
3
X1
A A3 A2 A1
2
A
W1
X3
W2
X2
500
L
1. Cable connector
2. Cable clip
3. Cord end terminal
For the pin assignment of subrack power cables, refer to Table 29-7. Table 29-7 Pin assignment of the subrack power cables Cable
Cable Connector
Cord End Terminal
Mapping
Core Color
W2
X1 connects to A1
X2
A1 corresponds to X2.
Blue (-48 V power)
W1
X1 connects to A3
X3
A3 corresponds to X3.
Black (power ground)
The technical parameters of subrack power cables are listed in Table 29-8. Table 29-8 Technical parameters of subrack power cables
Issue 03 (2013-05-16)
Item
Description
Cable connector X1
Cable connector-D type-3PIN-FemaleSolder injection molding type-No middle contact
Cord end terminals X2, X3
Common terminal-Conductor Cross Section-6 mm2-Length 20 mm-30 AInsertion depth 12 mm-Black
Type of the cable W2
Power cable-450 V/750 V-H07Z-K-6 mm2Blue-Low Smoke Zero Halogen Cable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2730
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Type of the cable W1
Power cable-450 V/750 V-H07Z-K-6 mm2Black-Low Smoke Zero Halogen Cable
29.3 Optical Fibers Optical fibers can be classified into the following types: LSH/APC-SC/APC, LC/PC-LC/PC, LC/PC-FC/PC and LC/PC-SC/PC.
29.3.1 Classification The connectors and the length of the fibers are determined according to the site survey that is conducted before installation. The optical fibers used by the equipment are classified as shown in Table 29-9. Table 29-9 Classification of optical fibers Type of Connectors at Both Ends
Optical Cable Type
Fiber Type
LC/PC-LC/PC
2.0 mm (0.08 in.) singlemode simplex optical cable
G.657A2
2.0 mm (0.08 in.) multi-mode simplex optical cable
A1b
2.0 mm (0.08 in.) singlemode simplex optical cable
G.657A2
2.0 mm (0.08 in.) multi-mode simplex optical cable
A1b
2.0 mm (0.08 in.) singlemode simplex optical cable
G.657A2
2.0 mm (0.08 in.) multi-mode simplex optical cable
A1b
LSH/APC-FC/UPC
3.0 mm (0.12 in.) singlemode simplex optical cable
G.652D
LSH/APC-LSH/APC
3.0 mm (0.12 in.) singlemode simplex optical cable
G.652D
LSH/APC-LSH/APC
0.9mm (0.035 in.) singlemode tight buffer
G.652D
LSH/APC-LSH/APC
3.0 mm (0.12 in.) singlemode simplex optical cable
G.652D
LSH/APC-LC/UPC
2.0 mm (0.08 in.) singlemode simplex optical cable
G.652D
LC/PC-FC/PC
LC/PC-SC/PC
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2731
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Type of Connectors at Both Ends
Optical Cable Type
Fiber Type
LSH/APC-FC/UPC
3.0 mm (0.12 in.) singlemode simplex optical cable
G.652D
LSH/APC-SC/UPC
3.0 mm (0.12 in.) singlemode simplex optical cable
G.652D
NOTE
The G.657 optical fibers provided by Huawei are named G.657B optical fibers and G.657A2 optical fibers. The G.657B optical fibers are short-jacket optical fibers defined in ITU-T G.657 (12/2006). According to ITU-T G. 657 (11/2009), these fibers are classified into G.657A1, G.657A2, G.657B2, and G.657B3 optical fibers. The G.657B optical fibers provided by Huawei and the G.657A2 optical fibers are fully compatible and can be interconnected. In addition, the G.657B and G.657A2 optical fibers are fully compatible with G.652D optical fibers. However, the compatibility between customer-purchased G.657B optical fibers and G.657A2 and G. 652D optical fibers needs to be verified.
29.3.2 Connectors Connectors of all optical interfaces on the front panel of the boards are of the LC/PC type. LC/ PC fiber connectors are used with these boards. The optical interfaces on the ODF in the equipment room are generally of the FC/PC or SC/PC type. FC/PC or SC/PC fiber connectors are used with them. The optical interfaces on the ODF in the equipment room are generally of the FC/PC or SC/PC type. FC/PC or SC/PC fiber connectors are used with them. Table 29-10 lists details on classification of fiber connectors. Table 29-10 Classification of fiber connectors Type of Fiber Connectors
Description
LC/PC
Plug-in square fiber connector/protruding polished
FC/PC
Round fiber connector/protruding polished
SC/PC
Square fiber connector/protruding polished
LSH/APC
Fiber connector with a cap that provides automatic protection against dust/eightdegree radian surface/protruding polished
The appearances of the fiber connectors are shown in Figure 29-9, Figure 29-10, Figure 29-11 and Figure 29-12.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2732
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-9 LC/PC fiber connector
Figure 29-10 FC/PC fiber connector
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2733
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-11 SC/PC fiber connector
Figure 29-12 LSH/APC fiber connector
Cover the optical interfaces of the replaced boards with protective caps in time. Store them in proper packages to keep the optical interfaces clean. The protective caps recommended are shown in Figure 29-13, and the protective caps not recommended are shown in Figure 29-14.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2734
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-13 Protective caps recommended
Figure 29-14 Protective caps not recommended
NOTE
The air filter caps made of soft rubber are not recommended, which tends to collect dust and sundries. This type of caps provides poor dustproof function.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2735
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
29.4 Alarm Cables Alarm cables for the equipment include the cabinet indicator alarm cable, alarm concatenating/ inter-subrack concatenating cable, and alarm interface cable.
29.4.1 Cabinet Indicator Cable One end of a cabinet alarm indicator cable is connected to the LAMP interface on an EFI board, and the other end of the cable has four connectors, each of which is connected to the alarm indicator interface at the top of a cabinet. When multiple subracks are cascaded, straight-through network cables are used to connect the subracks through their LAMP1 or LAMP2 interfaces.
Structure Figure 29-15 shows a cabinet alarm indicator cable together with the appearance of the EFI front panel. Figure 29-15 Structure of the cabinet alarm indicator cable 1
3
View A 8
4 B
2
1
View B 1 2
X2 X3 X1 A
X4 X5
L
1. Network interface connector
2. Heat-shrink tubing
3. Common plug
4. Ordinary connector
Pin Assignment For the pin assignment of the cabinet indicator alarm cable, refer to Table 29-11. Table 29-11 Pin assignment of the cabinet indicator alarm cable
Issue 03 (2013-05-16)
Connector X1
Connectors X2, X3, X4, X5
Color
Relationship
X1.4
X2.2
White
Pair
X1.5
X2.1
Green
X1.1
X3.2
White
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Pair 2736
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Connector X1
Connectors X2, X3, X4, X5
Color
X1.2
X3.1
Blue
X1.3
X4.2
White
X1.6
X4.1
Brown
X1.7
X5.2
White
X1.8
X5.1
Orange
Relationship
Pair
Pair
Technical Parameters The technical parameters of the cabinet indicator alarm cable are listed in Table 29-12. Table 29-12 Technical parameters of the cabinet indicator alarm cable Item
Description
Connector X1
Network interface connector-8PIN-single row-single port-8bit-shielded-crystal model connector
Connector X2/X3/X4/X5
Common plug-2PIN-single row/2.5 mm (0.1 in.)
Type of the cable
Twisted pair cable -100 Ω-SEYPVPV-0.48 mm (0.02 in.)-26 AWG-4 pairs-black
Number of cores
8
Core diameter
0.5 mm (0.02 in.)
29.4.2 Alarm Output Interface Cable An alarm output interface cable is used to output and concatenate alarm signals. There are RJ45 connectors at both ends of the cable. During alarm signal output concatenation, both ends of the cable are connected to the ALMO alarm interfaces in different subracks. During alarm signal output, one end of the cable is connected to the ALMO alarm interface, and the other end of the cable is connected to a power distribution cabinet or another set of equipment. In this case, alarms are displayed in a centralized manner.
Structure Figure 29-16 shows the structure of the alarm interface cable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2737
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-16 Alarm output interface cable 1 View A 8 6 3 1
A
X2
X1 L 1. Network interface connector
Pin Assignment For the pin assignment of the alarm output interface cable, refer to Table 29-13. Table 29-13 Pin assignment of X1/X2 Connector X1
Connector X2
Color
Relationship
X1.2
X2.2
Orange
Pair
X1.1
X2.1
White-orange
X1.6
X2.6
Green
X1.3
X2.3
White-green
X1.4
X2.4
Blue
X1.5
X2.5
White-blue
X1.8
X2.8
Brown
X1.7
X2.7
White-brown
Pair
Pair
Pair
Technical Parameters The technical parameters of the alarm interface cable are listed in Table 29-14. Table 29-14 Technical parameters of the alarm output interface cable
Issue 03 (2013-05-16)
Item
Description
Connector X1/X2
Network interface connector-8PIN-8bitunshielded-RJ45 connector-uniconductor flat cable
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2738
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Type of the cable W1
Symmetrical twisted pair cable-100 ΩUTPCAT5E-0.5 mm (0.02 in.)-24 AWG-4 pairs-PANTONE 430U-low-smoke and halogen-free cable
Number of cores
8
Core diameter
0.5 mm (0.02 in.)
29.4.3 Alarm Input Interface Cable An alarm input interface cable is used to input alarms of external equipment. One end of the cable is connected to the ALMI interface in a subrack and the other end is connected to the external equipment under monitoring.
Structure Figure 29-17 shows the structure of the cable. Figure 29-17 Structure of the alarm concatenating/inter-subrack concatenating cable 8
8
1
1 1
X1
X2
1. Network interface connector-RJ45
Pin Assignment For the pin assignment of the alarm concatenating/inter-subrack concatenating cable, refer to Table 29-15. Table 29-15 Pin assignment of the alarm concatenating/inter-subrack concatenating cable
Issue 03 (2013-05-16)
Connector X1
Connector X2
Color
Relationship
X1.2
X2.2
Orange
Pair
X1.1
X2.1
White-orange
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2739
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Connector X1
Connector X2
Color
Relationship
X1.6
X2.6
Green
Pair
X1.3
X2.3
White-green
X1.4
X2.4
Blue
X1.5
X2.5
White-blue
X1.8
X2.8
Brown
X1.7
X2.7
White-brown
Pair
Pair
Technical Parameters For the technical parameters of the alarm concatenating/inter-subrack concatenating cable, refer to Table 29-16. Table 29-16 Technical parameters of the alarm concatenating/inter-subrack concatenating cable Item
Description
Connector X1/X2
Network interface connector-8PIN-8bitcrystal model connector
Type of the cable
Communication cable-8 cores category-5 twisted pair-24AWG
Number of cores
8
Core diameter
0.5 mm (0.02 in.)
29.5 Management Cables Management cables for the equipment include: OAM serial port cables, AUX signal cables and straight-through network cables.
29.5.1 OAM Serial Port Cable The OAM serial port cable is used to connect to the OAM interface in OptiX OSN 6800/8800.
Structure Figure 29-18 shows the structure of the OAM serial port cable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2740
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-18 Structure of the OAM serial port cable
1. DB9 connector
Pin Assignment For the pin assignment of the OAM serial port cable, refer to Table 29-17. Table 29-17 Pin assignment of the OAM serial port Connector X1
Connector X2
Relationship
X1.1
X2.1
Pair
X1.5
X2.5
X1.2
X2.2
X1.3
X2.3
X1.6
X2.6
X1.7
X2.7
X1.8
X2.8
X1.9
X2.9
Pair
Pair
Pair
Technical Parameters The technical parameters of the OAM serial port cable are listed in Table 29-18. Table 29-18 Technical parameters of the OAM serial port cable
Issue 03 (2013-05-16)
Item
Description
Connector X1, X2
Cable connector-D type-9 PIN-Male-Cable welding type
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2741
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Type
Symmetrical twisted-pair cable-100 ohmSEYVP-0.48 mm (0.02 in.)-26AWG-4 pairsBlack
Number of cores
4 pairs
Length
10.0 m (393.7 in.), 20.0 m (787.4 in.)
29.5.2 AUX Signal Cable The AUX signal cable accesses external signals through the serial port used for NM communications and the management port. The AUX signal cable does not process external signals in the OptiX OSN 3800.
Structure Figure 29-19 shows the structure of the AUX signal cable. Figure 29-19 Structure of the AUX signal cable 2
1
B
Pos.64 View A
W8 W7
Pos.1
A
View B
X8
1
X7
8
X6
W6 Delander
W5 W1
X5
W4
X1
L1
X4
W3
X3
View C
3
Pos.9
W2
C X2
L2 L3
Pos.1
L4 L5
1. DB64 cable connector
2. Network interface connector
3. DB9 cable connector
For the relationship between the connectors X2 to X8 and interface types, refer to Table 29-19.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2742
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Table 29-19 Relationship between connectors and interface types Connector
Interface Type
X2
Serial
X3
ALMI1
X4
ALMI2
X5
ALMO
X6
LAMP1
X7
LAMP2
X8
ETH
Pin Assignment For the pin assignment of the W2 to W8, refer to Table 29-20, Table 29-21, Table 29-22, Table 29-23, Table 29-24, Table 29-25 and Table 29-26. Table 29-20 Pin assignment of the W2 Connector X1
Connector X2
Relationship
X1.3
X2.2
Pair
X1.7
X2.3
X1.4
X2.4
X1.1
X2.5
X1.6
X2.6
X1.8
X2.7
X1.5
X2.8
X1.2
X2.9
Pair
Pair
Pair
Table 29-21 Pin assignment of the W3
Issue 03 (2013-05-16)
Connector X1
Connector X3
Relationship
X1.9
X3.1
Pair
X1.11
X3.2
X1.13
X3.3
X1.15
X3.6
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Pair
2743
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Connector X1
Connector X3
Relationship
X1.17
X3.4
Pair
X1.19
X3.5
X1.10
X3.7
X1.12
X3.8
Pair
Table 29-22 Pin assignment of the W4 Connector X1
Connector X4
Relationship
X1.14
X4.1
Pair
X1.16
X4.2
X1.18
X4.3
X1.20
X4.6
-
X4.4
-
X4.5
-
X4.7
-
X4.8
Pair
-
-
Table 29-23 Pin assignment of the W5
Issue 03 (2013-05-16)
Connector X1
Connector X5
Relationship
X1.21
X5.1
Pair
X1.23
X5.2
X1.25
X5.3
X1.27
X5.6
X1.22
X5.4
X1.24
X5.5
X1.26
X5.7
X1.28
X5.8
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Pair
Pair
Pair
2744
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Table 29-24 Pin assignment of the W6 Connector X1
Connector X6
Relationship
X1.33
X6.1
Pair
X1.35
X6.2
X1.41
X6.3
X1.43
X6.6
X1.37
X6.4
X1.39
X6.5
X1.45
X6.7
X1.47
X6.8
Pair
Pair
Pair
Table 29-25 Pin assignment of the W7 Connector X1
Connector X7
Relationship
X1.34
X7.1
Pair
X1.36
X7.2
X1.42
X7.3
X1.44
X7.6
X1.38
X7.4
X1.40
X7.5
X1.46
X7.7
X1.48
X7.8
Pair
Pair
Pair
Table 29-26 Pin assignment of the W8
Issue 03 (2013-05-16)
Connector X1
Connector X8
Relationship
X1.61
X8.1
Pair
X1.57
X8.2
X1.53
X8.3
X1.49
X8.6
-
X8.4
-
X8.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Pair
-
2745
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Connector X1
Connector X8
Relationship
-
X8.7
-
-
X8.8
Technical Parameters The technical parameters of the AUX signal cable are listed in Table 29-27. Table 29-27 Technical parameters of the AUX signal cable Item
Description
Connector X1
Cable connector-D type-64 PIN-8 bit-straight through connector
Connector X2
Cable connector-D type-9PIN
Connectors X3-X8
Network interface connector-8 bit-8PINShielded
Type of the cable
W1
Communication cable-26AWGPANTONE430U-Sheilded
W2-W8
Communication cable-24AWG-8 coresPANTONE445U
Number of cores
8
29.5.3 Straight-Through Network Cable The straight-through network cable connects the equipment and the network management computer. RJ45 connectors are used at both ends of the straight-through network cable, connected to the equipment at two ends.
Structure Figure 29-20 shows the structure of the straight-through network cable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2746
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-20 Structure of the straight-through network cable 8
8
1
1 RJ-45
X1
X2
Pin Assignment For the pin assignment of the straight-through network cable, refer to Table 29-28. Table 29-28 Pin assignment of the straight-through network cable Connector X1
Connector X2
Color
Relationship
X1.2
X2.2
Orange
Pair
X1.1
X2.1
White-orange
X1.6
X2.6
Green
X1.3
X2.3
White-green
X1.4
X2.4
Blue
X1.5
X2.5
White-blue
X1.8
X2.8
Brown
X1.7
X2.7
White-brown
Pair
Pair
Pair
Technical Parameters The technical parameters of the straight-through network cable are listed in Table 29-29. Table 29-29 Technical parameters of the straight-through network cable
Issue 03 (2013-05-16)
Item
Description
Connector X1/X2
Network interface connector-8 PIN-8 bitCrystal model connector
Type of the cable
Communication cable-8-core category-5 twisted pair-24AWG
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2747
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Number of cores
8
Core diameter
0.5 mm (0.02 in.)
29.6 Clock/Time Cable Clock/Time Cable includes cables for other equipment connections, cables for internal connections, cables for testing equipment connections.
29.6.1 Cables for other equipment Connections The cables for other equipment connections are used to connect to BITS/PTN or OptiX OSN devices. The cables applicable to these ports are available in four types, as listed in Table 29-30. Table 29-30 Cables for connecting BITS/PTN device to OptiX OSN devices External interface of board
Port Type of OptiX OSN Device
Port Type of BITS or other Device
Cable Type
Description
TOD(time)
RJ45(time)
RJ45(time)
Straight through network cables
For details, see 29.6.1.1 Straight-Through Network Cable.
CLK/IN / OUT(clock)
RJ45 (clock)
SMB (clock)
Special cables
Single Conversion Cable to connect RJ45 port and SMB port and coaxial cables use SMB connectors at both ends.For details, see 29.6.1.2 Special Cables and 29.6.1.3 SMB-SMB Coaxial Cables. Cables made using coaxial cables and straight-through network cables together with 120ohm,75ohm Converter Box. For details, see 29.6.1.2 Special Cables.
SMB (clock)
Issue 03 (2013-05-16)
SMB (clock)
SMBSMB Coaxial cables
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Coaxial cables use SMB connectors at both ends. For details, see 29.6.1.3 SMB-SMB Coaxial Cables.
2748
OptiX OSN 8800/6800/3800 Hardware Description
External interface of board
29 Cables
Port Type of OptiX OSN Device
Port Type of BITS or other Device
Cable Type
Description
RJ45 (clock)
RJ45 (clock)
Cascadi ng network cable
For details, see 29.6.2.1 Cascading Network Cables .
NOTE
The TN52STI board of an OptiX OSN 8800 device has four 120-ohm RJ45 ports: CLK1, CLK2, TOD1, and TOD2. The CLK1 and CLK2 ports are used to receive or output clock signals. The TOD1 and TOD2 ports are used to receive or output time signals. NOTE
The TN11STG board of an OptiX OSN 6800 device has two 120-ohm RJ45 (CLK and OUT) and two 75ohm SMB ports (IN and OUT). Users can use the CLK port or the IN and OUT ports to receive and transmit clock signals. The CLK port can also be used to output clock signals.
29.6.1.1 Straight-Through Network Cable The straight-through network cable connects the OptiX OSN equipment and the network management computer. RJ45 connectors are used at both ends of the straight-through network cable, connected to the equipment at two ends. For details, see 29.5.3 Straight-Through Network Cable.
29.6.1.2 Special Cables Special cables are used to connect BITS devices to OptiX OSN devices or OptiX PTN devices. Each special cable has one SMB connector at one end and an RJ45 connector at the other end.
Structure Single Cable, Conversion Cable The single cable uses one RJ45 port at one end and an SMB port at the other end. The length of such a cable is only 3 meters. Figure 29-21 shows the structure of a Single Cable, Conversion Cable. Figure 29-21 Structure of a Single Cable, Conversion Cable
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2749
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
1: Coaxial Connector,SMB Socket 2: 75 ohm<->120 ohm PCB 3: Network Interface Connector X1: RJ45 port X2: SMB port X3: SMB port Single Cable,120ohm,75ohm Converter Box Cables can be made using coaxial cables and straight-through network cables together with 120ohm to 75ohm Converter Box. A convertor box is usually used in three scenarios: l
When an OptiX OSN device needs to connect to a BITS device for clock synchronization, users need to connect the SMB connectors to the BITS device using two coaxial cables and the RJ45 connector to the OptiX OSN device using a straight-through network cable.
l
When the OptiX OSN device needs to connect to a OptiX PTN device, users need to connect the SMB connectors to the OptiX OSN device using two coaxial cables and the RJ45 connector to the OptiX PTN device using a straight-through cable.
l
If the OptiX OSN device needs to connect to an clock tester, users need to make two cables at the field, each with one SMB connector at one end and a BNC connector at the other end. Then connect the SMB connectors to the OptiX OSN device and the BNC connector to the clock tester.
Figure 29-22 shows a converter box, which provides two SMB ports (IN and OUT) on one side and an RJ45 port on the other side.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2750
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-22 Structure of Single Cable,120ohm,75ohm Converter Box
1: Standard Parts-Cross Recess Head Screw,Flat Washer 2: A8010 Refiner,AS21TCTA,A8010 Refiner Twisted Pair Cable,Coaxial Cable Impedance Transforming Board 3: Box Body,Twisted Pair,Coaxial Cable Conversion Box
Pin Assignment Table 29-31 provides the pin assignment of the 120ohm to 75ohm converter box.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2751
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Table 29-31 Pin assignment when the 120ohm to 75ohm converter box is used Cable
Converter Box
Port on OptiX OSN Device
Straight-through network cable
RJ45
RJ45
Coaxial cable
SMB
SMB
NOTE
The connectors on the converter box and on the OptiX OSN device are male and the connectors at the two ends of the coaxial cable are female.
Technical Parameters Table 29-32 provides the parameters of an Special Cables. Table 29-32 Parameters of an Special Cables Cable
Description
Single Cable, Conversion Cable
Single Cable, Conversion Cable, 3m, 2*SMB75SM-IV, 120CC2P0.4P430U(S) +2*SYFVZ75-1/0.25, MP8-II, Expert 2.0 (BOM:04040582)
Single Cable,120ohm,75ohm Converter Box
1. Coaxial Connector, SMB Socket, 75ohm/ Angle/Male, PCB Welding Type, Installation Hole D1.3mm, Installation Holes Spacing 5.1mm 2. A8010 Refiner, AS21TCTA, A8010 Refiner Twisted Pair Cable, Coaxial Cable Impedance Transforming Board, 3*3 Assembled Board 3. Box Body, Twisted Pair, Coaxial Cable Conversion Box (SMB Angle Male) 4. For more information of the parameters of SMB-BNC coaxial cable, see 29.6.1.3 SMB-SMB Coaxial Cables. 5. For more information of the parameters of Straight-through network cable, see 29.6.1.1 Straight-Through Network Cable.
29.6.1.3 SMB-SMB Coaxial Cables The SMB-SMB Coaxial cables connect to SMB ports on BITS devices at one end and to SMB ports on OptiX OSN devices at the other end. Each coaxial cable uses an SMB connector at each end. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2752
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Structure Figure 29-23 shows the structure of an SMB-SMB coaxial cable. Figure 29-23 Structure of an SMB-SMB coaxial cable
Pin Assignment Table 29-33 provides the pin assignment of an SMB-SMB coaxial cable. Table 29-33 Pin assignment of an SMB-SMB coaxial cable One End
Other End
SMB-core
SMB-core
SMB-ground
SMB-ground
Technical Parameters Table 29-34 provides the parameters of an SMB-SMB coaxial cable. Table 29-34 Parameters of an SMB-SMB coaxial cable Cable
Description
Cable type
l Trunk Cable, 10.00 m, 75 ohm, 2.2 mm, SMB75SF-V, SYFVZ75-1.2/0.25, SMB75SF-V, HONET, DL4368 l Trunk Cable, 2.00 m, 75 ohm, 2.2 mm, SMB75SF-V, SYFVZ75-1.2/0.25, SMB75SF-V, HONET, DL4362 l Trunk Cable, 20.00 m, 75 ohm, 2.2 mm, SMB75SF-V, SYFVZ75-1.2/0.25, SMB75SF-V, HONET, DL4370
Cable length
Issue 03 (2013-05-16)
2 m, 10 m, 20 m
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2753
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
29.6.2 Cables for Internal Connections The type of cables for internal connections of OptiX OSN devices are mainly two scenarios: connecting NEs on an OptiX OSN network and cascading master and slave subracks on an OptiX OSN NE. Table 29-35lists the type of cables for internal connections of OptiX OSN devices. Table 29-35 Type of cables for internal connections Connection type
signal Type
Cables Type
Description
connecting NEs
clock
Cascading network cable
Cascading network cables must be used when OptiX OSN NEs that use RJ45 clock ports need to be connected or when master and slave subracks on an OptiX OSN NE need to be cascaded for clock synchronization. For more information, see 29.6.2.1 Cascading Network Cables .
time
Straightthrough network cable
Straight-through network cables must be used when OptiX OSN NEs that use RJ45 time ports need to be connected for time synchronization. For more information,see 29.6.1.1 StraightThrough Network Cable.
clock
Cascading network cable
ascading networks must be used when master and slave subracks on an OptiX OSN NE needs to be cascaded for clock synchronization. For more information, see 29.6.2.1 Cascading Network Cables .
time
Cascading network cable
Cascading networks must be used when master and slave subracks on an OptiX OSN NE needs to be cascaded for time synchronization. For more information, see 29.6.2.1 Cascading Network Cables .
cascading master and slave subracks
29.6.2.1 Cascading Network Cables Cascading network cables must be used when OptiX OSN NEs that use RJ45 clock ports need to be connected or when master and slave subracks on an OptiX OSN NE need to be cascaded for clock synchronization. Cascading networks must be used when master and slave subracks on an OptiX OSN NE needs to be cascaded for time synchronization.
Structure Figure 29-24 shows the structure of a cascading network cable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2754
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Figure 29-24 Structure of a clock/time cascading network cable with RJ45 connectors at both ends
Pin Assignment Table 29-36 provides the pin assignment of a cascading network cable. Table 29-36 Pin assignment of a cascading network cable Connector X1
Connector X2
Relationship
X1.1 (White-orange)
X2.4 (Blue)
Twisted
X1.2 (Orange)
X2.5 (White-blue)
X1.3 (White-green)
X2.7 (White-brown)
X1.4 (Blue)
X2.1 (White-orange)
X1.5 (White-blue)
X2.2 (Orange)
X1.6 (Green)
X2.8 (Brown)
X1.7 (White-brown)
X2.3 (White-green)
X1.8 (Brown)
X2.6 (Green)
Twisted
Twisted
Twisted
Technical Parameters Table 29-37 provides the parameters of cascading network cables. Table 29-37 Parameters of cascading network cables Item
Description
Connector X1/X2
l Network Interface Connector, 8-Bit 8PIN,Shielded,Crystal Model Connector, 24-26AWG,Leads Single Solid Cable, For OEM Matching 25050057 l Network Interface Connector,8Bit 8Pin,Crystal Plug,Matching 25050014
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2755
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Item
Description
Cable type
Communication cable-8-core class 5 twisted pair-24 AWG
Number of wires
8
29.6.3 Cables for Testing equipment Connections Clock signal testing cables are used to connect test instruments to OptiX OSN devices. Table 29-38 lists the main clock signal testing cables. Table 29-38 Cables for Testing equipment Connections Connecti on relationsh ip
Port Type of Test Instrument
Port Type of OptiX OSN Device
Cable Type
Description
Connection to Clock test instrument
BNC(clock)
SMB(clock)
SMBBNCCoaxia l cables
The coaxial cables use a BNC port at one end and an SMB port at the other end. For more information, see 29.6.3.1 SMB-BNC Coaxial Cables.
BNC (clock)
RJ45 (clock)
Clock signal testing cables
These testing cables can be made using coaxial cables and straight-through network cables are together with 120ohm to 75ohm Converter Box. For more information, see 29.6.1.2 Special Cables, 29.6.1.1 Straight-Through Network Cable, 29.6.3.1 SMB-BNC Coaxial Cables.
BNC(time)
RJ45(time)
Time signal testing cables
For more information, see 29.6.3.2 Time Signal Testing Cables.
Connection to Time test instrument
29.6.3.1 SMB-BNC Coaxial Cables The SMB-BNC Coaxial cables connect to SMB ports on clock test instrument at one end and to BNC ports on OptiX OSN devices at the other end.The SMB-BNC coaxial cable use a BNC port at one end and an SMB port at the other end. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2756
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Structure Figure 29-25 shows the structure of an SMB-BNC coaxial cable. Figure 29-25 Structure of an SMB-BNC coaxial cable
Pin Assignment Table 29-39 provides the pin assignment of an SMB-BNC coaxial cable. Table 29-39 Pin assignment of an SMB-BNC coaxial cable One End
Other End
SMB-core
BNC-core
SMB-ground
BNC-ground
Technical Parameters Table 29-40 provides the parameters of an SMB-BNC coaxial cable. Table 29-40 Parameters of an SMB-BNC coaxial cable Cable
Description
Cable type
Trunk Cable,10.00 m, 75 ohm, 2.2 mm, SMB75SF-V, SYFVZ75-1.2/0.25, BNC75AM-II, C, DL2521
Cable length
10 m
29.6.3.2 Time Signal Testing Cables The time signal testing cables connect to BNC ports on clock test instrument at one end and to RJ45 ports on OptiX OSN devices at the other end. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2757
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Structure Figure 29-26 shows the structure of a time signal testing cables. Figure 29-26 Structures of the BNC coaxial cable and cable connector
Pin Assignment Table 29-41 provides the pin assignment of the time signal testing cables. Table 29-41 Pin assignment of a time signal testing cable Connector X1 (BNC)
Connector X2 (RJ45)
Description
Core
6(green)
Pin 6 on the RJ45 connector on the OptiX OSN device must be connected to the BNC port on the time test instrument.
Ground(Metal shielding)
1(blue)
Pin 1 on the RJ45 connector on the OptiX OSN device must be connected to the ground of the BNC connector on the time test instrument.
Technical Parameters Table 29-42provides the parameters of time signal testing cables.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2758
OptiX OSN 8800/6800/3800 Hardware Description
29 Cables
Table 29-42 Parameters of time signal testing cables Cable
Description
RJ45
l Network Interface Connector, 8-Bit 8PIN,Shielded,Crystal Model Connector, 24-26AWG,Leads Single Solide Cable, For OEM Matching 25050057 l Network Interface Connector,8Bit 8Pin,Crystal Plug,Matching 25050014
Issue 03 (2013-05-16)
BNC
Coaxial Connector,BNC,75ohm,Straight Plug, Male, Matching SYFVZ-75-1-1, With Heat Shrink Tube With Itself-For Agintrust
Trunk Cable
Trunk Cable,RSP0/PV4 Plate To DDF, 30m, 75ohm, 2E1, 2.2mm, DIN4X8, 4*SYFVZ75-1.2/0.25
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2759
OptiX OSN 8800/6800/3800 Hardware Description
30 Optical Attenuator
30
Optical Attenuator
About This Chapter Optical attenuators are classified into fixed optical attenuators and mechanical variable optical attenuators (VOAs). 30.1 Fixed Optical Attenuator A fixed optical attenuator can reduce the optical power on an optical path by a fixed value. The common attenuation specifications of fixed optical attenuators are 2 dB, 3 dB, 5 dB, 7 dB, 10 dB, and 15 dB. 30.2 Mechanical Variable Optical Attenuator A mechanical variable optical attenuator (MVOA) can adjust the optical power on an optical path within a permitted range. The attenuation adjustment range of an MVOA is 2 dB to 30 dB.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2760
OptiX OSN 8800/6800/3800 Hardware Description
30 Optical Attenuator
30.1 Fixed Optical Attenuator A fixed optical attenuator can reduce the optical power on an optical path by a fixed value. The common attenuation specifications of fixed optical attenuators are 2 dB, 3 dB, 5 dB, 7 dB, 10 dB, and 15 dB. Figure 30-1 shows the appearance of a fixed optical attenuator. Figure 30-1 Fixed optical attenuator
30.2 Mechanical Variable Optical Attenuator A mechanical variable optical attenuator (MVOA) can adjust the optical power on an optical path within a permitted range. The attenuation adjustment range of an MVOA is 2 dB to 30 dB. Figure 30-2 shows the appearance of a common MVOA. Figure 30-2 Appearance of an MVOA
NOTE
The attenuation increases when the VOA is adjusted clockwise while decreases when adjusted counterclockwise. When adjusting the VOA counterclockwise, observe the optical power closely. When the attenuation stops decreasing, stop the adjustment immediately to avoid damages to the VOA.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2761
OptiX OSN 8800/6800/3800 Hardware Description
31 Pluggable Optical Modules
31
Pluggable Optical Modules
The eSFP/SFP+/XFP/CFP is a hot-swappable, protocol-independent optical transceiver used in optical communications for both telecommunication and data communications applications. Figure 31-1 eSFP/SFP+ optical module
Figure 31-2 XFP optical module
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2762
OptiX OSN 8800/6800/3800 Hardware Description
31 Pluggable Optical Modules
Figure 31-3 CFP optical module (40 Gbit/s)
Figure 31-4 CFP optical module (100 Gbit/s)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2763
OptiX OSN 8800/6800/3800 Hardware Description
32 Filler Panels
32
Filler Panels
About This Chapter A filler panel is used to fill in a vacant slot. 32.1 Functions and Features This chapter describes the functions and features of a filler panel. 32.2 Front Panel There are no indicators and interfaces on the filler panel. 32.3 Valid Slots This section describes the valid slots for a filler panel. 32.4 Technical Specifications This section describes the technical specifications of a filler panel.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2764
OptiX OSN 8800/6800/3800 Hardware Description
32 Filler Panels
32.1 Functions and Features This chapter describes the functions and features of a filler panel. A filler panel has the following functions: l
Prevents exposure of people to hazardous voltage and current in the subrack.
l
Prevents foreign matter from entering the subrack.
l
Maintains electromagnetic interference (EMI) compliance.
l
Maintains proper air flow through the subrack.
32.2 Front Panel There are no indicators and interfaces on the filler panel. Figure 32-1 shows the appearance of a filler panel. Figure 32-1 Appearance of a filler panel 21136047 21135823 21136389 21132664 21136680 21134882 21135716 21135491 21135492
21135493
21136046
PUSH
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2765
OptiX OSN 8800/6800/3800 Hardware Description
32 Filler Panels
32.3 Valid Slots This section describes the valid slots for a filler panel. Table 32-1 lists the valid slots for a filler panel. Table 32-1 Valid slots for a filler panel Part Number
Product
Valid Slots
21132664, 21136680
OptiX OSN 8800 T64
IU1-IU8, IU11-IU42, IU45-IU68
21132664, 21136680
OptiX OSN 8800 T32
IU1-IU8, IU11-IU36
21132664, 21136680
OptiX OSN 8800 T16
IU1-IU8, IU11-IU18
21132664, 21136680
OptiX OSN 8800 platform subrack
IU1-IU18
21132664, 21136680
OptiX OSN 6800
IU1-IU18
21132664, 21136680
OptiX OSN 3800
IU11, IU2-IU5
21134882
OptiX OSN 3800
IU1, IU6-IU11
21135491
OptiX OSN 8800 T32
IU42, IU44
21135492
OptiX OSN 8800 T64
IU76, IU77
21135492
OptiX OSN 8800 T32
IU38
21135492, 21135493
OptiX OSN 8800 T16
IU22
21135493
OptiX OSN 8800 T64
IU69-IU71, IU78-IU82, IU87-IU89
21135493
OptiX OSN 8800 T32
IU37, IU39, IU40, IU45-IU48
21135716
OptiX OSN 8800 T32
IU41, IU43
21135716
OptiX OSN 8800 T64
IU72, IU73, IU83, IU84, IU75, IU86
NOTE Slot IU22 must be filled by two filler panels.
NOTE Either slot IU75 or IU86 must be filled by two filler panels.
Issue 03 (2013-05-16)
21135823
OptiX OSN 8800 T32
IU9, IU10
21136046
OptiX OSN 8800 T64
IU74, IU85
21136047
OptiX OSN 8800 T64
IU9, IU10, IU43, IU44
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2766
OptiX OSN 8800/6800/3800 Hardware Description
32 Filler Panels
Part Number
Product
Valid Slots
21136389
OptiX OSN 8800 T16
IU9, IU10 NOTE l When slot IU9 or IU10 is used to house a board except the TN16XCH board, this filler panel must be inserted before the board is inserted. l When slot IU9 or IU10 is empty, it must be covered with this filler panel and then with a filler panel identified as 21132664.
32.4 Technical Specifications This section describes the technical specifications of a filler panel. Table 32-2 lists the technical specifications of a filler panel. Table 32-2 Technical specifications of a filler panel
Issue 03 (2013-05-16)
Part Number
Mechanical Specifications
21132664, 21136680
25.4 mm (W) x 264.6 mm (H) (1.0 in. (W) x 10.4 in. (H))
21134882
25.4 mm (W) x 118.9 mm (H) (1.0 in. (W) x 3.9 in. (H))
21135491
28.8 mm (W) x 107.5 mm (H) (1.1 in. (W) x 4.2 in. (H))
21135492
25.4 mm (W) x 80 mm (H) (1.0 in. (W) x 3.1 in. (H))
21135493
50.8 mm (W) x 80 mm (H) (2.0 in. (W) x 3.1 in. (H))
21135716
25.4 mm (W) x 107.5 mm (H) (1 in. (W) x 4.2 in. (H))
21135823
27.2 mm (W) x 581.5 mm (H) (1.1 in. (W) x 22.9 in. (H))
21136046
110.0 mm (H) x 76.2 mm (W) (4.4 in. (H) x 3.0 in. (W))
21136047
34.1 mm (W) x 602.5 mm (H) (1.4 in. (W) x 23.7 in. (H))
21136389
37.6 mm (W) x 350.3 mm (H) (1.5 in. (W) x 13.8 in. (H))
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2767
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
A
Indicators
A.1 Cabinet Indicators There are altogether four indicators in different colors on each cabinet: green, red, orange and yellow. A.2 Subrack Indicator There are four subrack indicators for the OptiX OSN 6800 and OptiX OSN 8800. Indicators are in the following colors: red, yellow and green. A.3 Chassis Indicators There are four chassis indicators in the following colors: green, yellow, orange and red. A.4 Board Indicators On the front panel of each board, there are indicators, indicating the alarm status and running status of the board. A.5 Fan Indicator There is one indicator on the FAN, indicating the status of the FAN. A.6 PIU Indicator There is one indicator on the PIU, indicating power access status.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2768
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
A.1 Cabinet Indicators There are altogether four indicators in different colors on each cabinet: green, red, orange and yellow. The corresponding messages of each indicator are listed in Table A-1. Table A-1 Meanings of cabinet indicators Indicator
Name
Status
Meaning
power
Power indicator
On (green)
The cabinet is powered on.
Off
The cabinet is not powered on.
Critical alarm indicator
On (red)
There is a critical alarm.
Off
There is no critical alarm.
Major alarm indicator
On (Orange)
There is a major alarm.
Off
There is no major alarm.
Minor alarm indicator
On (Yellow)
There is a minor alarm.
Off
There is no minor alarm.
critical
major
minor
A.2 Subrack Indicator There are four subrack indicators for the OptiX OSN 6800 and OptiX OSN 8800. Indicators are in the following colors: red, yellow and green. The corresponding messages of each indicator are listed in Table A-2. NOTE
The OptiX OSN 8800 subrack indicators are on the panel of the fan tray assembly.
Table A-2 Meanings of subrack indicators Indicator
Name
Status
Meaning
PWR
Power indicator
On (Green)
The subrack works normally.
Off
The subrack does not work.
On (Red)
There is a critical alarm.
OptiX OSN 6800: CRI Issue 03 (2013-05-16)
Critical alarm indicator
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2769
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
Indicator
Name
Status
Meaning
Off
There is no critical alarm.
Major alarm indicator
On (Red)
There is a major alarm.
Off
There is no major alarm.
Minor alarm indicator
On (Yellow)
There is a minor alarm.
Blinking slowly (Yellow)
The MIN indicator is in the maintenance blinking mode.
Off
There is no minor alarm.
OptiX OSN 8800: CRIT MAJ
MIN
A.3 Chassis Indicators There are four chassis indicators in the following colors: green, yellow, orange and red. The corresponding messages of each indicator are listed in Table A-3. Table A-3 Meanings of chassis indicators Indicator
Name
Status
Meaning
PWR
Chassis power supply indicator
On (green)
The chassis is powered on.
Off
The chassis is not powered on.
On (yellow)
There is a minor alarm.
Off
There is no minor alarm.
On (orange)
There is a major alarm.
Off
There is no major alarm.
On (red)
There is a critical alarm.
Off
There is no critical alarm.
MIN
Minor alarm indicator
MAJ
Major alarm indicator
CRI
Critical alarm indicator
A.4 Board Indicators On the front panel of each board, there are indicators, indicating the alarm status and running status of the board. The meanings of the board indicators are listed in Table A-4, Table A-5, and Table A-6. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2770
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
Table A-4 Meanings of board indicators Indicato r
Name
Status
Meaning
STAT
Board hardware indicator
On (green)
The board works normally.
Blinking slowly (green)a
The STAT indicator is in the maintenance blinking mode.
On (red)
A critical/major alarm occurs on the board.
On (yellow)
A minor alarm occurs on the board.
Off
The board is not powered on.
On (red)
The memory check fails.
PROG
Board software indicator
Loading the board software fails. The FPGA file is lost. The board software is lost.
SRV
ACTb
Service alarm indicator
Service activation indicator
Blinking quickly (red)
On for 100 ms and off for 100 ms: The BOOTROM check fails.
Blinking quickly (green)
On for 100 ms and off for 100 ms: Writing the flash memory is in progress.
Blinking slowly (green)
On for 300 ms and off for 300 ms: The BIOS booting is in progress.
On (green)
The board software or FPGA is uploaded successfully, or the board software is initialized successfully.
On (green)
The service is normal with any service alarm.
On (red)
A critical or major service alarm occurs.
On (yellow)
A minor or remote service alarm occurs.
Off
No service is configured.
On (green)
The board is in the working mode. The board is in the active mode.
Off
The board is not in the working mode. The board is in the standby mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2771
OptiX OSN 8800/6800/3800 Hardware Description
Indicato r
LINK/ ACTn
LAS
A Indicators
Name
Data port connection/data transceive indicator
Laser emission status indicator
Status
Meaning
Blinking quickly (green)
On for 100 ms and off for 100 ms: Backing up the system database in batches is in progress.
On (green)
The data port connection is normal.
Off
The data port connection is abnormal.
Blinking quickly (yellow)
On for 100 ms and off for 100 ms: Data ports are receiving and transmitting data.
On (green)
The Raman laser is in the working mode.
Off
The Raman laser is ont in the working mode.
NOTE a: When the STAT indicator on a board is in maintenance blinking mode, the board can be removed. Most of the boards support this function except the following boards: ACS, APIU, ATE, BMD4, BMD8, CMR1, CMR2, CMR4, CRPC, DCM, DCU, DMR1, DFIU, EFI, FAN, TN21FIU, TN13FIU, GFU, TN11ITL, TN11L4G, MB2, MR2, MR4, MR8, PIU, SBM2, TN21SCC, TN22SCC, TN23SCC, SCS, SFIU, STI, TBE, TN11XCS. b: During the testing of the indicators on the TN51AUX board, the ACT indicator is lit orange.
Table A-5 Meanings of the indicators on the PQ2 sub-board
Issue 03 (2013-05-16)
Indicato r
Name
Status
Meaning
STAT
Board hardware indicator
On (green)
The PQ2 sub-board works normally.
On (red)
The PQ2 sub-board is abnormal.
On (yellow)
Logical sub-board is not configured.
Off
The PQ2 sub-board is not powered on.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2772
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
Table A-6 Meanings of the indicators on the SCC board Indicato r
Name
Status
Meaning
STAT
Board hardware indicator
On (green)
The board is working normally.
Blinking slowly (green)a
The STAT indicator is in the maintenance blinking mode.
On (red)
A critical alarm occurs on the board.
On (yellow)
A minor alarm occurs on the board.
Off
The board is not powered on.
On (red)
The memory check fails.
PROG
Board software indicator
Loading the board software fails. The FPGA file is lost. The NE software is lost.
SRV
ACT
Service alarm indicator
Service activation indicator
Blinking quickly (red)
On for 100 ms and off for 100 ms: The BOOTROM check fails.
Blinking quickly (green)
On for 100 ms and off for 100 ms: Writing the flash memory is in progress.
Blinking slowly (green)
On for 300 ms and off for 300 ms: The BIOS booting is in progress.
On (green)
The board software or FPGA is uploaded successfully, or the board software is initialized successfully.
On (green)
The service is normal with any service alarm.
On (red)
A critical or major service alarm occurs.
On (yellow)
A minor alarm occurs.
On (green)
The board is in the working mode. The board is in the active mode.
Off
The board is not in the working mode. The board is in the standby mode.
Blinking quickly (green)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
On for 100 ms and off for 100 ms: Backing up the system database in batches is in progress.
2773
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
Indicato r
Name
Status
Meaning
PWRA
Indicator for system power supply
On (green)
-48 V power supply A is normal.
On (red)
-48 V power supply A is faulty (lost or failed).
Off
No power is input.
On (green)
-48 V power supply B is normal.
On (red)
-48 V power supply B is faulty (lost or failed).
Off
No power is input.
Indicator for protection power supply
On (green)
The +3.3 V protection power is normal.
On (red)
The +3.3 V protection power is lost.
Alarm cut-off indicator
On (yellow)
There is no audible or visual warning in case of an alarm.
Off
Audible warning is generated in case of an alarm.
PWRB
PWRC
ALMC
Indicator for system power supply
NOTE a: When the STAT indicator on a board is in maintenance blinking mode, the board can be removed. The boards that support this function include: TN11SCC, TN16SCC, TN51SCC, TN52SCC, and TNK2SCC.
A.5 Fan Indicator There is one indicator on the FAN, indicating the status of the FAN. The corresponding meanings of the Fan indicator are listed in Table A-7. Table A-7 Meanings of the FAN indicator
Issue 03 (2013-05-16)
Indicator
Name
Status
Meaning
OptiX OSN 6800/OptiX OSN 3800: STAT OptiX OSN 8800: FAN
Fan indicator
On (green)
The fan is normal.
On (red)
A major alarm occurs or two or more fans are faulty.
On (yellow)
A minor alarm occurs or one fan is faulty.
Off
The fan is not powered on, is absent, or the software is not loaded.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2774
OptiX OSN 8800/6800/3800 Hardware Description
A Indicators
A.6 PIU Indicator There is one indicator on the PIU, indicating power access status. The corresponding messages of each indicator are listed in Table A-8. Table A-8 Meanings of the PIU indicator
Issue 03 (2013-05-16)
Indicator
Name
Status
Meaning
OptiX OSN 6800/OptiX OSN 3800: RUN OptiX OSN 8800: PWR
Running status indicator
On (green)
Indicates that the power is accessed normally.
Off
Indicates that the power is not accessed.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2775
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B
Bar Code for Boards
There is a bar code on the front panel of each board, from which the basic information about the board can be obtained, such as the BOM code, delivery information, board version, board name, and board characteristic code. B.1 Overview There is a bar code on the front panel of each board, from which the basic information about the board can be obtained, such as the BOM code, delivery information, board version, board name, and board model number. The bar code of some of such boards also include a characteristic code. The board characteristic code comprises information about frequency of signals, type of the optical module, wavelength, and so on. B.2 Characteristic Code for OTUs The characteristic code for OTUs indicates the frequency, type and wavelength of the optical modules in DWDM OTUs, DWDM wavelength-tunable OTUs and CWDM OTUs. B.3 Characteristic Code of a Line Unit The characteristic code of a line unit indicates the frequency, type, and wavelength of the DWDM optical modules and DWDM wavelength-tunable optical modules. B.4 Characteristic Code of an FOADM The characteristic code of an FOADM indicates the wavelength or frequency of the optical signals processed by the board. B.5 Characteristic Code of an MCA The characteristic code of an MCA indicates the band of the optical signals processed by the board. B.6 Characteristic Code of an OAU The characteristic code of an OAU indicates the gain, gain range, and the maximum nominal input optical power of the optical signals processed by the board. B.7 Characteristic Code of an Optical MUX/DMUX Unit The characteristic code of an optical MUX/DMUX unit indicates the band of the optical signals processed by the board, whether the wavelengths with signals are odd or even wavelengths, and the multiplexing solution adopted by the board. B.8 Characteristic Code of a Protection Unit The characteristic code of an optical protection board indicates the maximum protection switching time. B.9 Characteristic Code of a VOA Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2776
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
The characteristic code of a VOA indicates the maximum attenuation of the optical signals processed by the board. B.10 Characteristic Code of a PDE Unit The characteristic code of a PDE unit indicates the type of the fiber that the board works with, the dispersion compensation distance, and the gradient of optical signals.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2777
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B.1 Overview There is a bar code on the front panel of each board, from which the basic information about the board can be obtained, such as the BOM code, delivery information, board version, board name, and board model number. The bar code of some of such boards also include a characteristic code. The board characteristic code comprises information about frequency of signals, type of the optical module, wavelength, and so on. NOTE
Such information as frequency of signals queried on the U2000 is a commissioning value, different from that on the bar code.
Figure B-1 and Figure B-2 show the bar codes of boards installed with optical modules. Figure B-3 and Figure B-4 show the bar codes of boards not installed with optical modules. Figure B-1 Description of the bar code (example 1) Delivery information
Board version (TN12)
Board model number
2102314840107A000090 Y TN1M2 LSX 01 19210AG Serial number
Manufacture month Manufacture year Vendor
BOM
Environmental Board friendliness flag name (Y: Environmentally friendly)
Characteristic code
Figure B-2 Description of the bar code (example 2) Delivery information
Board version (TN12)
Board model number
2102315653108A000199 Y TN1M2 LSX T01 TPT Serial number
Issue 03 (2013-05-16)
Manufacture month Manufacture year Vendor
BOM
Environmental friendliness flag
Board Tunable name
Characteristic code
(Y: Environmentally friendly)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2778
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Figure B-3 Description of the bar code (example 3)
Delivery information
Board version (TN12)
Board name
2103070768107A000090 Y TN1M2 LSX 01 Serial number
Manufacture month Manufacture year Vendor
BOM
Environmental Board model number friendliness flag (Y: Environmentally friendly)
Figure B-4 Description of the bar code (example 4) Third and fourth numbers of the BOM
Delivery information
Board version (TN12)
Board name
030HFY 108A000199 Y TN12 LSX T01 Serial number
Manufacture month Manufacture year Vendor
The complete BOM should be 0303OHFY. "03" are taken out in the BOM above.
Environmental friendliness flag (Y: Environmentally friendly)
Board model number
The first four numbers in the board BOM indicate whether the board is installed with an optical module. Table B-1 provides the meanings of the first four numbers in the board BOM.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2779
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-1 Meanings of the first four numbers in the BOMs for OTN boards Board Configuration
First Four Numbers in the board BOM
Description
First Four Numbers in the BOM of the Required Optical Module
Board not installed with optical modules
0303
The board is installed with a wavelength tunable optical module on its WDM side. Client-side optical modules need to be selected as required for the board.
3406 or 0303 (client side)
0303
The board is not installed with any optical module. WDMand client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side and WDM side)
0307
The board is installed with a fixed optical module on its WDM side. Client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side)
0302
The board is not installed with any optical module. WDMand client-side optical modules need to be selected for the board as required.
3406 or 0303 (client side and WDM side)
0231
Optical modules are installed on the client and WDM sides of the board.
N/A
Board installed with optical modules
Of the OCS boards, the SSN1SF64A and SSN3SLH41 boards are delivered as follows: l
For the SSN1SF64A board, the first four numbers in the BOM are 0303, indicating that the board is delivered with optical modules installed.
l
For the SSN3SLH41 board,
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2780
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
– The first four numbers are 0303 when the board is delivered with optical modules not installed. The first four numbers in the BOMs of the optical modules required by the board are 3406. – When the board is delivered with optical modules installed, the first four numbers in the BOM are 0305. Table B-2 provides the meanings of the first four numbers in the BOMs for of other OCS boards. Table B-2 Meanings of the first four numbers in the BOM for an OCS board (excluding SSN1SF64A and SSN3SLH41) Board Configuration
First Four Numbers in the board BOM
Description
First Four Numbers in the BOM of the Required Optical Module
Board not installed with optical modules
0302
The board is not installed with any optical module. Optical modules need to be selected for the board as required.
3406
Board installed with optical modules
0305
The board is installed optical modules.
N/A
Table B-3 provides the description of the delivery information. Table B-3 Description of the delivery information of a board Item
Description
Vendor
Indicates the vendor of a board. "10" indicates Huawei.
Manufacture Year
Indicates the last digit of the year when a board is manufactured. For example, "4" indicates 2004. From 2010 onwards, a letter is used to indicate the manufacture year. For example, the letter A indicates 2010, the letter B indicates 2011, and so on.
Manufacture Month
Indicates the month when a board is manufactured. The value is expressed in hexadecimal format. For example, the letter B indicates November.
Serial Number
Indicates the production serial number of a board. The value ranges from 000001 to 999999.
B.2 Characteristic Code for OTUs The characteristic code for OTUs indicates the frequency, type and wavelength of the optical modules in DWDM OTUs, DWDM wavelength-tunable OTUs and CWDM OTUs. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2781
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B.2.1 Characteristic Code for DWDM OTUs The characteristic code for a DWDM OTU consists of digits and characters, indicating the frequency and type of the optical module in the OTU. Detailed information about the characteristic code is listed in Table B-4. Table B-4 Characteristic code for a DWDM OTU Code
Meaning
Description
The first five digit
The frequency of the DWDM-side optical transmitter module
Indicate the frequency of the DWDM-side optical transmitter module.
The sixth character
The type of the DWDM-side receiving optical module
The value can be A or P. A represents APD. P represents PIN.
The seventh character
The type of the DWDM-side optical transmitter module
The detailed meaning of the character is shown in Table B-5.
NOTE
In the case of the OTU boards with dual fed optical interfaces, such as the LQMD board, the characteristic code consists of eight digits. The frequency values of the two channels of optical signals on the WDM side are indicated.
The types of DWDM-side transmitting optical modules are listed in Table B-5. Table B-5 Types of DWDM-side transmitting optical modules Character
Dispersion (1550 nm)
Distance
Rate
A
1600ps/nm
80km
2.5G
3200ps/nm
170km
2.5G
800ps/nm
40km
10.66G
3200ps/nm
160km
2.5G
1500ps/nm
80km
10.66G
1600ps/nm
80km
10.66G
3200ps/nm
170km
2.5G
800ps/nm
40km
10.66G
12800ps/nm
640km
2.5G
6500ps/nm
320km
2.5G
B
C
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2782
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Character
Dispersion (1550 nm)
Distance
Rate
D
12800ps/nm
640km
2.5G
E
6500ps/nm
320km
2.5G
G
800ps/nm
40km
10.71G
H
>600ps/nm
>30km
10.71G
>600ps/nm
>30km
10.66G
800ps/nm
40km
10.66G
1800ps/nm
90km
2.66G
12800ps/nm
640km
2.66G
12800ps/nm
640km
2.5G
1500ps/nm
80km
10.66G
>600ps/nm
>30km
10.66G
>600ps/nm
>30km
10.71G
6400ps/nm
320km
4.9-5.4G
6400ps/nm
320km
10.66G
1500ps/nm
80km
10.71G
3400ps/nm
170km
4.9-5.4G
Z
800ps/nm
40km
10.71G
U
>600ps/nm
>30km
10.71G
K
L
M
For example, the characteristic code for the TN12LSX is 19210AG. This code indicates the following features: The frequency of the DWDM-side optical transmitter module is 192.10 THz; APD is adopted by the DWDM-side receiving optical module; the code of the DWDM-side optical transmitter module is G. For details, refer to Table B-5.
B.2.2 Characteristic Code for DWDM Wavelength-Tunable OTUs The characteristic code for a DWDM wavelength-tunable OTU consists of characters, indicating the frequency and type of the optical module in the OTU. Detailed information about the characteristic code is listed in Table B-6.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2783
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-6 Characteristic code for a DWDM wavelength-tunable OTU Code
Meaning
Description
The first character
Wavelength-tunable
T is the abbreviation for Tunable, indicating that the wavelength is tunable.
The second character
The type of the DWDM-side receiving optical module
The value can be A or P. A represents APD. P represents PIN.
The third character
The type of the DWDM-side optical transmitter module
The detailed meaning of the character is shown in Table B-7.
The types of DWDM-side optical transmitter modules are listed in Table B-7. Table B-7 Types of DWDM-side optical transmitter modules Character
Dispersion (1550 nm)
Distance
Rate
T
1200ps/nm
60km
10.71G
12800ps/nm
640km
2.66G
12800ps/nm
640km
2.67G
3400ps/nm
170km
5.33G
-1000 to 1100ps/nm
60km
10.71G
4800ps/nm
240km
11.3G
For example, the characteristic code for the TN12LSX is TPT. This code indicates the following features: This board is a wavelength-tunable OTU; PIN is adopted by the DWDM-side receiving optical module; the code of the DWDM-side optical transmitter module is T. For details, refer to Table B-7.
B.2.3 Characteristic Code for CWDM OTUs The characteristic code for a CWDM OTU consists of characters, indicating the wavelength and type of the optical module in the OTU. Detailed information about the characteristic code is listed in Table B-8.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2784
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-8 Characteristic code for a CWDM OTU Code
Meaning
Description
The first four digits
The wavelength of the CWDM-side transmitting optical module
Indicate the wavelength of the CWDM-side transmitting optical module.
The fifth character
The type of the CWDM-side receiving optical module
The value can be A or P. A represents APD. P represents PIN.
The sixth character
The type of the CWDM-side transmitting optical module
The value can be L or S. L represents long haul. S represents short haul.
NOTE
As for the LWX2 board, only information about the first wavelength is indicated.
For example, the characteristic code for the TN13LQM is 1531AS. This code indicates the following features: The wavelength is 1531 nm; APD is adopted by the CWDM-side receiving optical module; the CWDM-side transmitting optical module is used for short-haul transmission (80 km).
B.3 Characteristic Code of a Line Unit The characteristic code of a line unit indicates the frequency, type, and wavelength of the DWDM optical modules and DWDM wavelength-tunable optical modules. The line unit shares the same characteristic code with the WDM-side DWDM optical module of the wavelength tunable unit. For details, refer to B.2.1 Characteristic Code for DWDM OTUs and B.2.2 Characteristic Code for DWDM Wavelength-Tunable OTUs.
B.4 Characteristic Code of an FOADM The characteristic code of an FOADM indicates the wavelength or frequency of the optical signals processed by the board.
B.4.1 Characteristic Code for the CMR1 The characteristic code for the CMR1 board contains four digits, indicating the wavelength that carries the signals processed by the board. Table B-9 lists details on the characteristic code for the CMR1.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2785
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-9 Characteristic code for the CMR1 Code
Meaning
Description
First four digits
Wavelength that carries optical signals
Indicates the wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN21CMR1 is 1471, indicating that the wavelength that carries the signals is 1471 nm.
B.4.2 Characteristic Code for the CMR2 The characteristic code for the CMR2 board contains eight digits, indicating the two wavelengths that carry the signals processed by the board. The detailed information about the characteristic code is given in Table B-10. Table B-10 Characteristic code for the CMR2 board Code
Meaning
Description
First four digits
First wavelength that carries optical signals
Indicates the first wavelength that carries the optical signals processed by the board.
Last four digits
Second wavelength that carries optical signals
Indicates the second wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN11CMR2 is 14711571. l
"1471" indicates that the first wavelength is 1471 nm.
l
"1571" indicates that the second wavelength is 1571 nm.
B.4.3 Characteristic Code for the CMR4 The characteristic code for the CMR4 board contains eight digits, indicating the four wavelengths that carry the signals processed by the board. Detailed information about the characteristic code is given in Table B-11. Table B-11 Characteristic code for the CMR4 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First and second digits
First wavelength that carries optical signals
Indicates the middle two digits of the first wavelength that carries the optical signals processed by the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2786
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Third and fourth digits
Second wavelength that carries optical signals
Indicates the middle two digits of the second wavelength that carries the optical signals processed by the board.
Fifth and sixth digits
Third wavelength that carries optical signals
Indicates the middle two digits of the third wavelength that carries the optical signals processed by the board.
Seventh and eighth digits
Fourth wavelength that carries optical signals
Indicates the middle two digits of the fourth wavelength that carries the optical signals processed by the board.
For example, the characteristic code for the TN11CMR4 board is 47495961. l
"47" indicates that the first wavelength is 1471 nm.
l
"49" indicates that the second wavelength is 1491 nm.
l
"59" indicates that the third wavelength is 1591 nm.
l
"61" indicates that the fourth wavelength is 1611 nm.
B.4.4 Characteristic Code for the DMR1 The characteristics code for the DMR1 board contains four digits, identifying the frequency of the optical signals processed by the board. Table B-12 provides the details on the characteristics code. Table B-12 Characteristic code for the DMR1 board Barcode
Meaning
Description
First to fourth digits
Optical signal frequency
Frequency of the optical signals processed by the board
For example, the characteristics code of the TN11DMR1 board is 9210. The code indicates that the frequency of the optical signals is 192.1 THz.
B.4.5 Characteristic Code for the MR2 The characteristic code for the MR2 board contains eight digits that indicate the frequencies of the two signals processed by the board. The detailed information about the characteristic code is given in Table B-13. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2787
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-13 Characteristic code for the MR2 board Code
Meaning
Description
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal.
Last four digits
Frequency of the second optical signal
Indicates the last four digits of the frequency that carries the second optical signal.
For example, the characteristic code for the TN11MR2 board is 93609370. l
"9360" indicates that the frequency of the first optical signal is 193.60 THz.
l
"9370" indicates that the frequency of the second optical signal is 193.70 THz.
B.4.6 Characteristic Code for of MR4 The characteristic code for the MR4 board contains eight digits. Each digit indicates the frequencies of the first and the fourth signals processed by the board. Detailed information about the characteristic code is given in Table B-14. Table B-14 Characteristic code for the MR4 board Code
Meaning
Description
First four digits
Frequency of first optical signal
Indicates the last four digits of the frequency that carries the first optical signal processed by the board.
Last four digits
Frequency of forth optical signal
Indicates the last four digits of the frequency that carries the fourth optical signal processed by the board.
For example, the characteristic code for the MR4 board is 92109240. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9240" indicates that the frequency of the fourth optical signal is 192.40 THz.
Since the four channels of optical signals processed by the MR4 board are in sequence, it can be inferred that: l
The frequency of the second channel of optical signals is 192.20 THz.
l
The frequency of the third channel of optical signals is 192.30 THz.
For the mapping between the characteristic codes of the MR4 boards and signal frequencies, see Table 18-50 in 18.7.10 MR4 Specifications. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2788
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B.4.7 Characteristic Code for the MR8 The characteristic code for the MR8 board contains eight digits that indicate the frequencies of the first and the eighth signals processed by the board. The detailed information about the characteristic code is given in Table B-15. Table B-15 Characteristic code for the MR8 board Code
Meaning
Description
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal processed by the board.
Last four digits
Frequency of the eighth optical signal
Indicates the last four digits of the frequency that carries the eighth optical signal processed by the board.
For example, the characteristic code for the MR8 board is 92109280. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9280" indicates that the frequency of the eighth optical signal is 192.80 THz.
Since the eight channels of optical signals processed by the MR8 board are consecutive, it can be inferred that: l
The frequency of the second optical signal is 192.20 THz.
l
The frequency of the third optical signal is 192.30 THz.
l
The frequency of the seventh signal is 192.70 THz.
For the mapping between the characteristic codes of the MR8 boards and signal frequencies, see Table 18-58 in 18.8.10 MR8 Specifications.
B.4.8 Characteristic Code for the MR8V The characteristic code for the MR8V board contains of eight digits that indicate the frequencies of the first and the eighth signals processed by the board. The detailed information about the characteristic code is given in Table B-16. Table B-16 Characteristic code for the MR8V board
Issue 03 (2013-05-16)
Code
Meaning
First four digits
Frequency of the first optical Indicates the last four digits signal of the frequency that carries the first optical signal processed by the board.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
Description
2789
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Last four digits
Frequency of the eighth optical signal
Indicates the last four digits of the frequency that carries the eighth optical signal processed by the board.
"V"
Adjustment of the input optical power of each channel
Indicates that the board adjusts the input optical power of each channel.
For example, the characteristic code for the TN11MR8V board is 92109280V. l
"9210" indicates that the frequency of the first optical signal is 192.10 THz.
l
"9280" indicates that the frequency of the eighth optical signal is 192.80 THz.
l
"V" indicates that adjusts the input optical power of each channel.
Since the eight channels of optical signals processed by the MR8V board are consecutive, it can be inferred that: l
The frequency of the second optical signal is 192.20 THz.
l
The frequency of the third optical signal is 192.30 THz.
l
The frequency of the seventh signal is 192.70 THz.
B.5 Characteristic Code of an MCA The characteristic code of an MCA indicates the band of the optical signals processed by the board.
B.5.1 Characteristic Code for the MCA4 The characteristic code for the MCA4 board contains one character, indicating the band of the optical signals processed by the board. The detailed information about the characteristic code is given in Table B-17. Table B-17 Characteristic code for the MCA4 board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band.
For example, the characteristic code for the TN11MCA4 board is C, indicating C band.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2790
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B.5.2 Characteristic Code for the MCA8 The characteristic code for the MCA8 board consists of one character, indicating the band of the optical signals processed by the board. Detailed information about the characteristic code is given in Table B-18. Table B-18 Characteristic code for the MCA8 board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band.
For example, the characteristic code for the TN11MCA8 board is C, indicating that the card processes optical signals in the C band.
B.6 Characteristic Code of an OAU The characteristic code of an OAU indicates the gain, gain range, and the maximum nominal input optical power of the optical signals processed by the board.
B.6.1 Characteristic Code for the HBA The characteristic code for the HBA board contains seven characters and digits, indicating the band, the gain range and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table B-19. Table B-19 Characteristic code for the HBA board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
-
The second character is always G.
Third to the fourth digits
Gain
The third to the fourth digits indicate the gain value.
Fifth character
-
The fifth character is always I.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2791
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Sixth and seventh digits
Maximum nominal input optical power
Indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11HBA board is CG29I-8. The code indicates that the HBA board is used in C band, the gain is 29 dB, and the maximum nominal input optical power is -8 dBm.
B.6.2 Characteristic Code for the OAU1 The characteristic code for the OAU1 board contains eight characters and digits, indicating the gain range and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table B-20. Table B-20 Characteristic code for the OAU1 board Code
Meaning
Description
First character
-
Is always G.
Second to fifth digits
Gain range
Indicates the range within which the gain can be continuously adjusted.
Sixth character
-
Is always I.
Seventh and eighth digits
Maximum nominal input optical power
Indicates the maximum nominal input optical power.
For example, the characteristic code for the TN11OAU1 board is G2031I0. The code indicates that the gain can be continuously adjusted from 20 dB to 31 dB and the maximum nominal input optical power is 0 dBm.
B.6.3 Characteristic Code for the OBU1 The characteristic code for the OBU1 board contains six characters and digits, indicating the gain and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table B-21. Table B-21 Characteristic code for the OBU1 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
-
The first character is always G.
Second and third digits
Gain
The second and the third digits indicate the gain value.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2792
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Fourth character
-
The fourth character is always I.
Fifth and sixth digits
Maximum nominal input optical power
The fifth and the sixth digits indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11OBU1 board is G23I-3. This code indicates that the gain is 23 dB and the maximum nominal input optical power is -3 dBm.
B.6.4 Characteristic Code for the OBU2 The characteristic code for the OBU2 board contains six characters and digits, indicating the gain range and the maximum nominal input optical power of the signals processed by the board. The detailed information about the characteristic code is given in Table B-22. Table B-22 Characteristic code for the OBU2 board Code
Meaning
Description
First character
-
The first character is always G.
Second and third digits
Gain
The second and the third digits indicate the gain value.
Fourth character
-
The fourth character is always I.
Fifth and sixth digits
Maximum nominal input optical power
The fifth and the sixth digits indicate the maximum nominal input optical power.
For example, the characteristic code for the TN11OBU2 board is G23I00. The code indicates that the gain is 23 dB and the maximum nominal input optical power is 0 dBm.
B.6.5 Characteristic Code for of CRPC The characteristic code for the CRPC board contains one character and two digits, indicating the gain of the optical signals processed by the board. The detailed information about the characteristic code is given in Table B-23. Table B-23 Characteristic code for the CRPC board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
-
Is always G.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2793
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Two digits
Gain
Indicate the gain value.
For example, the characteristic code for the TN11CRPC board is G10, indicating 10 dB gain.
B.7 Characteristic Code of an Optical MUX/DMUX Unit The characteristic code of an optical MUX/DMUX unit indicates the band of the optical signals processed by the board, whether the wavelengths with signals are odd or even wavelengths, and the multiplexing solution adopted by the board.
B.7.1 Characteristic Code for the D40 The characteristic code for the D40 consists of two characters. One indicates the band. The other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even wavelengths. The detailed information about the characteristic code is given in Table B-24. Table B-24 Characteristic code for the D40 Code
Meaning
Description
The first character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
The second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
For example, the characteristic code for the TN11D40 is CE, indicating C band and even wavelengths.
B.7.2 Characteristic Code for the D40V The characteristic code for the D40V board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table B-25. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2794
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-25 Characteristic code for the D40V board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
For example, the characteristic code for the TN11D40V board is CE, indicating C band and even wavelengths.
B.7.3 Characteristic Code for the DFIU The characteristic code for the DFIU board contains one character, indicating the band adopted by the board. The detailed information about the characteristic code is given in Table B-26. Table B-26 Characteristic code for the DFIU board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band; the value L represents L band.
For example, the characteristic code for the TN21DFIU board is C, indicating that the optical signals are in C band.
B.7.4 Characteristic Code for the FIU The characteristic code for the FIU board consists of one character. The character indicates the band adopted by the board. Detailed information about the characteristic code is given in Table B-27.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2795
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-27 Characteristic code for the FIU board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band; the value L represents L band.
For example, the characteristic code for the board is C, indicating that the optical signals are in C band.
B.7.5 Characteristic Code for the ITL The characteristic code for the ITL board contains one character, indicating the band adopted by the board. The detailed information about the characteristic code is given in Table B-28. Table B-28 Characteristic code for the ITL board Code
Meaning
Description
First character
Band
Indicates the multiplexing solution adopted by the board. The value C represents C band.
For example, the characteristic code for the ITL board is C, indicating that the optical signals are in C band.
B.7.6 Characteristic Code for the M40 The characteristic code for the M40 board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table B-29. Table B-29 Characteristic code for the M40 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2796
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Code
Meaning
Description
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
For example, the characteristic code for the TN11M40 board is CE, indicating C band and even wavelengths.
B.7.7 Characteristic Code for the M40V The characteristic code for the M40V board contains two characters. One indicates the band and the other indicates whether the wavelengths that carry the optical signals processed by the board are odd or even. The detailed information about the characteristic code is given in Table B-30. Table B-30 Characteristic code for the M40V board Code
Meaning
Description
First character
Band
Indicates the band of the optical signals processed by the board. The value C represents C band; the value L represents L band.
Second character
Odd/even wavelengths
Indicates whether the wavelengths that carry signals are odd or even wavelengths. The value E represents even wavelengths; the value O represents odd wavelengths.
For example, the characteristic code for the TN11M40V board is CE, indicating C band and even wavelengths.
B.8 Characteristic Code of a Protection Unit The characteristic code of an optical protection board indicates the maximum protection switching time.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2797
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
B.8.1 Characteristic Code for the DCP The characteristic code for the DCP board contains one character and two digits, indicating the maximum protection switching time. Detailed information about the characteristic code is given in Table B-31. Table B-31 Characteristic code for the DCP board Code
Meaning
Description
First character
-
The first character is always P.
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN12DCP board is P50. This code indicates that the maximum protection switching time is 50ms.
B.8.2 Characteristic Code for the OLP The characteristic code for the OLP board contains one character and two digits, indicating the maximum protection switching time. Detailed information about the characteristic code is given in Table B-32. Table B-32 Characteristic code for the OLP board Code
Meaning
Description
First character
-
The first character is always P.
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN12OLP board is P50. This code indicates that the maximum protection switching time is 50ms.
B.8.3 Characteristic Code for the SCS The characteristic code for the SCS board contains one character and two digits, indicating the maximum protection switching time. The detailed information about the characteristic code is given in Table B-33.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2798
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
Table B-33 Characteristic code for the SCS board Code
Meaning
Description
First character
-
The first character is always P.
Second and third digits
Maximum protection switching time
Indicate the maximum protection switching time.
For example, the characteristic code for the TN11SCS board is P50. This code indicates that the maximum protection switching time is 50 ms.
B.9 Characteristic Code of a VOA The characteristic code of a VOA indicates the maximum attenuation of the optical signals processed by the board.
B.9.1 Characteristic Code for the VA1 The characteristic code for the VA1 board contains three digits, indicating the maximum attenuation of the optical signals processed by the board. Detailed information about the characteristic code is given in Table B-34. Table B-34 Characteristic code for the VA1 board Code
Meaning
Description
Digits 1 through 3
Attenuation value
Indicate the maximum attenuation.
For example, the characteristic code for the TN11VA1 board is 21.5, indicating that the maximum allowable attenuation value is 21.5 dB.
B.9.2 Characteristic Code for the VA4 The characteristic code for the VA4 board contains three digits, indicating the maximum attenuation of the optical signals processed by the board. Detailed information about the characteristic code is given in Table B-35. Table B-35 Characteristic code for the VA4 board
Issue 03 (2013-05-16)
Code
Meaning
Description
First to third digits
Attenuation value
Indicate the maximum attenuation.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2799
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
For example, the characteristic code for the TN11VA4 board is 21.5, indicating that the maximum attenuation value is 21.5 dB.
B.10 Characteristic Code of a PDE Unit The characteristic code of a PDE unit indicates the type of the fiber that the board works with, the dispersion compensation distance, and the gradient of optical signals.
B.10.1 Characteristic Code for the DCU The characteristic code for the DCU board contains characters, indicating the type of the fiber that the board works with and the dispersion compensation distance. The detailed information about the characteristic code is given in Table B-36. Table B-36 Characteristic code for the DCU board Code
Meaning
Description
Character before hyphen (-)
Fiber type
Type of the fiber that the DCU board works with
Character after hyphen (-)
Dispersion compensation distance
The transmission distance achieved through dispersion compensation
For example, the characteristic code for the TN11DCU board is G.655LEAF-40. It indicates that the DCU board works with G.655LEAF fibers, and the dispersion compensation distance is 40 km. NOTE
If the characteristic code contains various dispersion compensation distances, the symbol "&" is used to separate each distance.
B.10.2 Characteristic Code for the GFU The characteristic code for the GFU board contains two characters and two digits, indicating the gradient of optical signals processed by the board. The detailed information about the characteristic code is given in Table B-37. Table B-37 Characteristic code for the GFU board
Issue 03 (2013-05-16)
Code
Meaning
Description
First and second characters
-
The first and second characters are always GF.
Third and fourth digits
Gradient
Indicate the gradient of optical signals.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2800
OptiX OSN 8800/6800/3800 Hardware Description
B Bar Code for Boards
For example, the characteristic code for the TN11GFU board is GF10. This code indicates that the gradient of optical signals processed by the board is 10.
B.10.3 Characteristic Code for the TDC The characteristic code for the TDC board contains characters, indicating the type of the fiber that the board works with and the dispersion compensation distance. Detailed information about the characteristic code is given in Table B-38. Table B-38 Characteristic code for the TDC board Code
Meaning
Description
Character before hyphen (-)
Fiber type
Fiber type that the TDC board is compatible with
Character after hyphen (-)
Dispersion compensation distance
The transmission distance achieved through dispersion compensation
For example, the characteristic code for the TN11TDC board is G.655LEAF_T. It indicates that the TDC board works with G.655LEAF fibers, and the dispersion compensation distance is tunable.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2801
OptiX OSN 8800/6800/3800 Hardware Description
C
C Quick Reference Table of the Units
Quick Reference Table of the Units
Quick reference tables include those for specifications of optical transponder units, optical amplifier units and other boards, and also the functions of OTUs, tributary boards and line boards. C.1 Specification of OTUs, Tributary Boards, Line Boards and Packet Service Boards The main specifications of the optical transponder units (OTUs), tributary boards, line boards, and packet service boards include the access service type, optical module specifications and optical module type. C.2 Specification of Optical Amplifying Unit The main specifications of the optical amplifier unit include the operating wavelength range, channel gain, nominal input power range, nominal output power range and maximum output power of a single wavelength. C.3 Insertion Loss Specifications of Boards This section provides the insertion loss specifications of boards. C.4 MON Interface Optical Split Ratio Certain boards of WDM equipment provide MON interfaces. A small number of supervisory signals are split from the main-path signals and are output through MON for in-service performance monitoring of the optical signals. C.5 Basic Functions of OTUs, Tributary Boards, Line Boards and Packet Service Boards The main functions and features supported by OTUs, Tributary Boards, Line Boards, and Packet Service Boards are wavelength conversion, cross-connection at the electrical layer, OTN interfaces and ESC. C.6 Loopback Function of OTUs, Tributary Boards, Line Boards and Packet Service Boards The OTUs, Tributary Boards, Line Boards, and Packet Service Boards support different types of loopback.The OTUs, Tributary Boards, and Line Boards support different types of loopback. C.7 Protection mode of OTUs, Tributary Boards and Line Boards The OTUs, tributary boards, and line boards support protection function. C.8 Electrical cross-connection of OTUs, Tributary Boards and Line Boards The OTUs, tributary boards, and line boards support electrical cross-connection. C.9 Common Parameters Specified for Optical Interfaces of OCS Boards This topic describes common parameters specified for optical interfaces of OCS boards. C.10 Quick Reference of OCS Board Functions This section describes the functions supported by different types of boards. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2802
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
C.11 Loopback Capabilities of OCS Boards The SDH boards and Ethernet boards on the OptiX OSN 9560 support various types of loopbacks.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2803
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
C.1 Specification of OTUs, Tributary Boards, Line Boards and Packet Service Boards The main specifications of the optical transponder units (OTUs), tributary boards, line boards, and packet service boards include the access service type, optical module specifications and optical module type.
C.1.1 OTUs, Tributary Boards and Packet Service Boards Specification on the Client Side The main client-side specifications of the optical transponder unit (OTU), tributary boards, and packet service boards include the access service type, optical module specifications and optical module type. Table C-1 Quick reference table for client-side specifications of OTUs, tributary boards and packet service boards Board Name
TN11ECOM
TN54EG16
Access Service Type
FE
GE
Issue 03 (2013-05-16)
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
100 BASEFX-10 km
-3
-11.5
-19
-3
100 BASEFX-40 km
0
-4.5
-20
-3
100 BASEFX-80 km
5
-2
-22
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP CWDM
eSFP
2804
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN54EX2
TN11L4G
TN11LDGD
Access Service Type
10GE LAN
GE
GE
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
10 Gbit/s Multirate-0.3 km
-1
-7.3
-11.1
-1
10 Gbit/s Multirate-10 km
0.5
-8.2
-12.6
0.5
10 Gbit/s Multirate-40 km
4
-4.7
-14.1
-1
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-9.5
-17
0
-2.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
SFP+
eSFP
eSFP CWDM
eSFP
2805
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LDGS
TN12LDM
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-9
-20
-3
0
-5
-20
-3
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
GE
Issue 03 (2013-05-16)
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
1000 BASELX-10 km
-3
1000 BASELX-40 km 1000 BASEZX-80 km
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
eSFP CWDM
eSFP
2806
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-2
-23
-3
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
1000 BASEZX-80 km
5
I-16-2 km
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP DWDM
2807
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LDMD
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP CWDM
2808
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LDMS
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2809
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LDX
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
OC-192/ STM-64/ 10GE LAN/ 10GE WAN/ OTU2/ OTU2e
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
XFP
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP
2
-3
–16
0
XFP DWDM
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
XFP
10GE LAN
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2810
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LEM24
Access Service Type
TN11LOA
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-9.5
-17
0
-3
-9.5
-20
-3
10G BASESR-0.3 km (SFP +)
-1
-7.3
-11.1
-1
10G BASELR-10 km (SFP +)
0.5
-8.2
-12.6
0.5
10G BASESR-0.3 km (SFP +)
-1
-7.3
-11.1
-1
10G BASELR-10 km (SFP +)
0.5
-8.2
-12.6
0.5
FC200/GE/ FC100/FDDI/ FICON/ FICON Express/FE
2.125Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
FC400/ FICON4G
4.25Gbit/s Multirate-0.3 km
-1.1
-9
-15
0
eSFP
4.25Gbit/s Multirate-10 km
-1
-8.4
-18
0
10G BASE-LR (SFP+)
-1
-6
-14.4
0.5
10G BASE-ER (SFP+)
3
-2
-14 (11.1G)
-1
FE/GE
10GE WAN/ 10GE LAN
TN11LEX4
C Quick Reference Table of the Units
10GE WAN/ 10GE LAN
10GE LAN/ FC800/ FICON8G/ FC1200/ FCCON10G
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
1000 BASESX-0.5 km (I-850-LC)
-2.5
1000 BASELX-10 km (I-1310-LC)
eSFP
SFP+
SFP+
SFP+
-15.8 (10.3125 G)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2811
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
10GE LAN
GE/FC100/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ FDDI/FICON/ FE/DVB-ASI OTU1/ STM-16/ OC-48/FC200/ FC100/FDDI/ FICON/ FICON Express/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI OTU1/ STM-16/ OC-48/FC200/ FC100/FDDI/ FICON/ FICON Express/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI/FE
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
10GBASESR-0.3km (SFP +)
-1
-7.3
-11.1 (OMA)
-1
10GBASELR-10km (SFP +)
0.5
-8.2
-12.6 (OMA)
0.5
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
S-16.1-15 km
0
-5
-18
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SFP+
eSFP
eSFP
2812
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
SDI/HD-SDI/ 3G-SDI
270 Mbit/s - 3 0 Gbit/s Multirate (Video eSFP)-10 km
-7
-16
0
eSFP
GE/FC100/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ FDDI/FICON/ FE/DVB-ASI
5 1.25Gbit/s Multirate (eSFP CWDM)-40 km
0
-19
-3
eSFP CWDM
OTU1/ STM-16/ OC-48/FC200/ FC100/FDDI/ FICON/ FICON Express/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI/FE
5 2.67Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ OC-48/FC200/ FC100/FDDI/ FICON/ FICON Express/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI/FE
4 2.67Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC800/ FICON8G
1600-M5E-SNI(SFP+)-0.3 km
-1
-7.3
-11.1
-3
SFP+
1600-SM-LC-L (SFP+)-10 km
-0.5
-8.2
-12.6
0.5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2813
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
GE
TN11LOG
TN12LOG
GE
GE
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
1000BASEBX10-U
-3
-9
-19.5
-3
1000BASEBX10-D
-3
-9
-19.5
-3
1000BASEBX-U
3
-2
-23
-3
1000BASEBX-D
3
-2
-23
-3
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP
eSFP CWDM
eSFP
2814
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LOM
Access Service Type
GE
FC 100/FC 200/FC 400/ FICON/ FICON Express
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
1000 BASEBX10-U
-3
-9
-19.5
-3
1000 BASEBX10-D
-3
-9
-19.5
-3
1000 BASEBX-U
3
-2
-23
-3
1000 BASEBX-D
3
-2
-23
-3
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
FC400/ FICON4G Module-0.3 km (Multimode)
-1
-9
-14
0
FC400/ FICON4G Module-10 km (Single mode)
-2
-8
-18
0
FC100/FC200/ FICON/FICON Express Module-0.5 km (Multimode)
-2.5
-9.5
-17
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
eSFP
2815
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
GE/ FC 100/ FC 200
TN12LOM
GE
FC 100/FC 200/FC 400/ FICON/ FICON Express
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
FC100/FC200/ FICON/FICON Express Module-2 km (Single mode)
-3
-10
-18
0
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
FC400/ FICON4G Module-0.3 km (Multimode)
-1
-9
-14
0
FC400/ FICON4G Module-10 km (Single mode)
-2
-8
-18
0
FC100/FC200/ FICON/FICON Express Module-0.5 km (Multimode)
-2.5
-9.5
-17
0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
2816
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
GE/FC 100/FC 200
GE
TN11LQG
GE
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
FC100/FC200/ FICON/FICON Express Module-2 km (Single mode)
-3
-10
-18
0
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
1000 BASEBX10-U
-3
-9
-19.5
-3
1000 BASEBX10-D
-3
-9
-19.5
-3
1000 BASEBX-U
3
-2
-23
-3
1000 BASEBX-D
3
-2
-23
-3
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
eSFP
eSFP CWDM
2817
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN13LQM
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
FC200/GE/ FC100/FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/FC100/ GE/ STM-4/ ESCON/ STM-1/DVBASI/FE
S-16.1-15 km
0
-5
-18
0
GE/FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/FC100/ GE/ STM-4/ ESCON/ STM-1/DVBASI/FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/FC100/ GE/ STM-4/ ESCON/ STM-1/DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP CWDM
2818
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LQMD
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI/FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC200/GE/ FC100/FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
GE/FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1b/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI/FE
S-16.1-15 km
0
-5
-18
0
FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1b/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2819
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LQMD
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/FC100/ GE/ STM-4/ ESCON/ STM-1/DVBASI/FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
FC200/GE/ FC100/FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1b/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP CWDM
2820
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LQMS
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2821
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LQMS
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
2822
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-5
-18
0
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
TN11LSQ
STM-256/ OC-768/ OTU3
40G Transponder
3
0
-6
3
-
TN11LSX
OC-192/ STM-64/ 10GE LAN/ 10GE WAN/ OTU2/ FC1200a
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
XFP
TN12LSX
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2823
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN13LSX
TN14LSX
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
10GE LAN/ FC1200a
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
OC-192/ STM-64/ 10GE LAN/ 10GE WAN/ OTU2/ OTU2e/ FC1200
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
800 ps/nm-C Band (Odd & Even Wavelengths)Fixed WavelengthNRZ-PIN-XFP
2
-3
–16
0
XFP DWDM
10GE LAN/ FC1200
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
XFP
OC-192/ STM-64/ 10GE LAN/ 10GE WAN/ OTU2/
10Gbit/s Multirate -10km
-1
-6
-14.4
-1 (STM64 )/0.5 (10GE LAN)
XFP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
XFP
2824
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
10Gbit/s Multirate -40km
2
-4.7
-15.8
-1 (STM64 )/-1 (10GE LAN)
10Gbit/s Multirate -80km
4
0
-24
-7 (STM64 )/-7 (10GE LAN)
10GE LAN/ FC1200
10Gbit/s Single Rate -0.3km
-1.3
-7.3
-7.5
-1 (STM64 )/-1 (10GE LAN)
TN11LSXL
STM-256/ OC-768
40G Transponder
3
0
-6
3
-
TN12LSXL/ TN15LSXL
STM-256/ OC-768/ OTU3
40G Transponder
3
0
-6
3
-
TN11LTX
10GE LAN/ 10GE WAN/ STM-64/ OC-192
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
XFP
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
OTU2e/ FC1200
TN11LWX2
FC200/GE/ FC100/ FE
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
2825
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
I-16-2 km
-3
-10
-18
-3
L-16.2-80 km
3
-2
-28
-9
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
STM-16/ FC200/ FC100/GE/ STM-4/
I-16-2 km
-3
-10
-18
-3
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI
TN11LWXD
C Quick Reference Table of the Units
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2826
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LWXS TN12LWXS
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
ESCON/ STM-1/ DVBASI
L-16.2-80 km
3
-2
-28
-9
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
ETR/ CLOc/ STM-16/ FC200/ FC100/GE/ STM-4/
I-16-2 km
-3
-10
-18
-3
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2827
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11TMX TN12TMX
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
ESCON/ STM-1/ DVBASI
L-16.2-80 km
3
-2
-28
-9
ETR/ CLOc/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
ETR/ CLO/ GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
ETR/ CLO/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
ETR/ CLO/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
STM-16/ OC-48/ OTU1 (without FEC)
I-16-2 km
-3
-10
-18
-3
eSFP
S-16.1-15 km
0
-5
-18
0
L-16.1-40 km
3
-2
-27
-9
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2828
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11TBE
Access Service Type
FE
GE/ 10GE LAN/ 10GE WAN
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
L-16.2-80 km
3
-2
-28
-9
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
eSFP CWDM
2.67 Gbit/s 4 Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
100 BASEFX-10 km
-3
-11.5
-19
-3
eSFP
100 BASEFX-80 km
5
-2
-22
-3
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
10 Gbit/s Multirate-80 km
4
0
-24
-7
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
XFP
2829
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
FE/ GE/ 10GE LAN/ 10GE WAN
TN11TDG
TN11TDX TN12TDX TN52TDX
GE
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/ OTU2ed
10GE LAN
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
eSFP CWDM
XFP
2830
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN53TDX
TN54TEM28
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/ OTU2e/ FC800/ FC1200
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (Multirat e)/0.5 (10GE LAN)
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/ OTU2e/ FC1200
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24
-7
10GE LAN/ FC1200
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
XFP
10GE LAN
10G BASESR-0.3 km (SFP +)
-1
-7.3
-11.1
-1
SFP+
10G BASELR-10 km (SFP +)
0.5
-8.2
-12.6
0.5
1000 BASESX-0.5 km (I-850-LC)
-2.5
-9.5
-17
0
1000 BASELX-10 km (I-1310-LC)
-3
-9.5
-20
-3
GE
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
XFP
SFP+
2831
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN54THA
TN54TOA
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
OTU1/ STM-16/ OC-48/FC200/ FC100/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI/FE
S-16.1-15 km
0
GE/FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1000 BASELX-10km (I-1310-LC)
GE
FC400/ FICON4G
OTU1/ STM-16/ OC-48/FC200/ FC100/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI
Issue 03 (2013-05-16)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-5
-18
0
-3
-9.5
-20
-3
1000 BASEBX10-U
-3
-9
-19.5
-3
1000 BASEBX10-D
-3
-9
-19.5
-3
1000 BASEBX-U
3
-2
-23
-3
1000 BASEBX-D
3
-2
-23
-3
4.25 Gbit/s Multirate-0.3 km
-1.1
-9
-15
0
4.25 Gbit/s Multirate-10 km
-1
-8.4
-18
0
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP
2832
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
OTU1/ STM-16/ OC-48/FC200/ FC100/GE/ STM-4/ OC-12/ ESCON/ STM-1/OC-3/ DVB-ASI/FE
S-16.1-15 km
0
-5
-18
0
FC200/FC100/ FE/GE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
GE/FC100/ STM-4/ ESCON/ STM-1/FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI/FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/FC100/ GE/STM-4/ ESCON/ STM-1/DVBASI/FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP DWDM
2833
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN52TOG
TN11TOM
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
SDI/HD-SDI
270 Mbit/s to 3 Gbit/s multirate (Video eSFP)-10 km
0
-7
-16
0
Video eSFP
GE
1000 BASEBX10-U
-3
-9
-19.5
-3
eSFP
1000 BASEBX10-D
-3
-9
-19.5
-3
1000 BASEBX-U
3
-2
-23
-3
1000 BASEBX-D
3
-2
-23
-3
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
GE
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
eSFP CWDM
eSFP
2834
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
-2
-23
-3
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
1000 BASEZX-80 km
5
I-16-2 km
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP DWDM
2835
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN52TOM
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
SDI
1.5 Gbit/s Multirate (Video eSFP)-20 km
0
-7
-22
0
eSFP
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
eSFP
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
S-16.1-15 km
0
-5
-18
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2836
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN55TOX
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
SDI
1.5 Gbit/s Multirate (Video eSFP)-20 km
0
-7
-22
0
eSFP
GE
1000 BASEBX10-U
-3
-9
-19.5
-3
eSFP
1000 BASEBX10-D
-3
-9
-19.5
-3
1000 BASEBX-U
3
-2
-23
-3
1000 BASEBX-D
3
-2
-23
-3
10Gbit/s Multirate-10km (SFP+)
-1
-6
-14.4
0.5
OC-192/ STM-64/ 10GE WAN/ 10GE LAN/ OTU2/ OTU2e/ FC800/ FC1200
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
SFP+
2837
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
Optical Module
Note Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
0
-24
-7
10G BASE-ER/ 4 EW-40km (SFP +)
-4.7
-14.1 (OMA)
-1
10G BASESR-0.3km (SFP +)
-1
-7.3
-11.1 (OMA)
-1
10G BASELR-10km (SFP +)
0.5
-8.2
-12.6 (OMA)
0.5
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
S-16.1-15 km
0
-5
-18
0
10GE WAN/ 10GE LAN
TN11TQM
C Quick Reference Table of the Units
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
Issue 03 (2013-05-16)
Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
10G BASEZR-80km (SFP +)
4
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP
2838
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12TQM
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
FC200/GE/ FC100/ FE
2.125 Gbit/s Multirate-0.5 km
-2.5
-9.5
-17
0
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1000 BASELX-10 km
-3
-9
-20
-3
1000 BASELX-40 km
0
-5
-20
-3
1000 BASEZX-80 km
5
-2
-23
-3
I-16-2 km
-3
-10
-18
-3
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
S-16.1-15 km
0
-5
-18
0
OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI OTU1b/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
eSFP
2839
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11TQS
TN11TQX TN52TQX
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Note Mean Launched Optical Power Maximu m (dBm)
Minim um (dBm)
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
GE/ FC100/ STM-4/ ESCON/ STM-1/ FE/ DVB-ASI
1.25 Gbit/s 5 Multirate (eSFP CWDM)-40 km
0
-19
-3
OTU1/ STM-16/ FC200/ FC100/GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
5 2.67 Gbit/s Multirate (eSFP CWDM)-80 km
0
-28
-9
OTU1/ STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
4 2.67 Gbit/s Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
STM-16/ OC-48/ OTU1
I-16-2 km
-3
-10
-18
-3
eSFP
S-16.1-15 km
0
-5
-18
0
L-16.1-40 km
3
-2
-27
-9
L-16.2-80 km
3
-2
-28
-9
2.67 Gbit/s 5 Multirate (eSFP CWDM)-80 km
0
-28
-9
eSFP CWDM
2.67 Gbit/s 4 Multirate (eSFP DWDM)-120 km
0
-28
-9
eSFP DWDM
10 Gbit/s Multirate-10 km
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
XFP
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/ OTU2ee
Issue 03 (2013-05-16)
-1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
eSFP CWDM
2840
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN53TQX
TN55TQX
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24.0
-7
10GE LAN
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/OTU2e
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/OTU2e
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
10 Gbit/s Multirate-80 km
4
0
-24
-7
10GE LAN
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
10GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/ OTU2e/ FC800/ FC1200
10 Gbit/s Multirate-10 km
-1
-6
-11 (multirate )/-12.6 (10GE LAN)
-1 (STM64 )/0.5 (10GE LAN)
0GE LAN/ 10GE WAN/ STM-64/ OC-192/ OTU2/
10 Gbit/s Multirate-40 km
2
-4.7
-14 (multirate )/-15.8 (10GE LAN)
-1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
XFP
XFP
2841
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module
Note
Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minim um Overloa d Point (dBm)
Maximu m (dBm)
Minim um (dBm)
OTU2e/ FC1200
10 Gbit/s Multirate-80 km
4
0
-24
-7
10GE LAN /FC1200
10 Gbit/s Single Rate -0.3 km
-1.3
-7.3
-7.5
-1
TN11TSXL
STM-256/ OC-768
40G Transponder
3
0
-6
3
-
TN53TSXL
STM-256/ OC-768/ OTU3
40G Transponder
3
0
-6
3
-
TN54TTX
OC-192/ STM-64/10GE WAN/10GE LAN/OTU2/ OTU2e
10G BASE-LR (SFP+)
-1
-6
-14.4
0.5
SFP+
10G BASE-ER (SFP+)
3
-2
-14 (11.1G)
-1
-15.8 (10.3125 G) 10GE WAN/ 10GE LAN
10G BASEZR-80km (SFP +)
4
0
-24
-7
10G BASE-ER/ 4 EW-40km (SFP +)
-4.7
-14.1 (OMA)
-1
10G BASESR-0.3km(SFP +)
-1
-7.3
-11.1 (OMA)
-1
10G BASELR-10km(SFP +)
0.5
-8.2
-12.6 (OMA)
0.5
a: Only TN12LSX/TN13LSX supports FC1200 service. b: Only TN12LQMD/TN12LQMS/TN12TQM support OTU1 service. c: Only TN12LWXS supports ETR/CLO services. d: Only TN52TDX supports OTU2/OTU2e services. e: Only TN52TQX supports OTU2/OTU2e services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2842
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-2 Quick reference table for client-side specifications of TN12LSC/TN54TSXL Board Name
TN12LSC
TN54TSC
TN54TSXL
Access Service Type
Optical Module Optical Interfac e Type Suppor ted
Tra nsm it OM A per Lan e (Mi n)
Tra ns mit OM A per Lan e (Ma x)
Rev eive r Sen siti vity (O MA ) per Lan e
Min imu m recei ver over load (OM A) per Lan e
Ave rag e Lau nch Po wer per Lan e (Mi n)
Ave rag e Lau nch Po wer per Lan e (Ma x)
Ave rag e Rev eive r Po wer per Lan e (Mi n)
Ave rag e Rev eive r Po wer per Lan e (Ma x)
Tot al Ave rag e Lau nch Po wer (Ma x)
100GE
100G BASELR4-10 km
-1.3
4.5
-8.6
4.5
-4.3
4.5
-10. 6
4.5
10.5
100G BASE-1 0×10 G-10 km
-2.8
3.5
-8.8
3.5
-5.8
3.5
-10. 8
3.5
13.5
100GB ASELR4-10 km (CFP)
-1.3
4.5
-8.6
4.5
-4.3
4.5
-10. 6
4.5
10.5
100GB ASE-10 ×10G-1 0 km (CFP)
-2.8
3.5
-8.8
3.5
-5.8
3.5
-10. 8
3.5
13.5
40GBA SELR4-10 km
-4
3.5
-11. 5
3.5
-7
2.3
-13. 7
2.3
8.3
100GE
40GE
Opt ical Mo dul e Typ e
CFP
C.1.2 OTUs, Line Boards and Packet Service Boards Specification on the WDM Side The main WDM-side specifications of the optical transponder units (OTUs), line boards, and packet service boards include the access service type, optical module specifications and optical module type.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2843
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-3 Quick reference table for DWDM-side specifications of OTU boards, line boards and packet service boards Board Name
TN11L4 G
TN11LD GD
TN11LD GS
Access Service Type
OTU 5G
STM-16/ OTU1
STM-16/ OTU1
Issue 03 (2013-05-16)
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
3400 ps/nm-C Band-Fixed Wavelength-NRZ-APD
2
-2
-25
-9
-
3400 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-25
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZPIN
-4
-8
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-4
-8
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
0
-5
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
0
-5
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
0
-5
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
0
-5
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZPIN
-1
-5
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-1
-5
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
3
-2
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
3
-2
-28
-9
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2844
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
12800 ps/nm-C BandTunable WavelengthNRZ-APD
3
-2
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
TN12LD M
OTU1
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
3
0
-28
-9
eSFP DWD M
TN11LD MD
OTU1
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-4
-8
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
0
-5
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
0
-5
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-1
-5
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
3
-2
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
TN11LD MS
TN12LD X
OTU1
OTU2/ OTU2e
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2845
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LE M24
TN11LE X4
TN11LO A
TN11LO G
Access Service Type
OTU2
OTU2
OTU2
OTU2
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2846
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LO G
TN11LO M
TN12LO M
Access Service Type
OTU2
OTU2
OTU2
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2847
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11LQ G
Access Service Type
FEC 5G/ OTU5G
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
3400 ps/nm-C Band-Fixed Wavelength-NRZ-APD
2
-2
-25
-9
-
3400 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-25
-9
-
TN13LQ M
OTU1
2.67 Gbit/s Multirate (eSFP DWDM)-120 km
3
0
-28
-9
eSFP DWD M
TN11LQ MD
OTU1
12800 ps/nm-C BandFixed Wavelength-NRZPIN
-4
-8
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-4
-8
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
0
-5
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
0
-5
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
0
-5
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
0
-5
-28
-9
-
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2848
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LQ MD
TN11LQ MS
TN12LQ MS
Access Service Type
OTU1
OTU1
OTU1
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-4
-8
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
0
-5
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
0
-5
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZPIN
-1
-5
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-1
-5
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
3
-2
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
3
-2
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
3
-2
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZAPD
-1
-5
-28
-9
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
3
-2
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2849
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LS C
TN11LS Q
TN11LS X TN12LS X
TN13LS X
Access Service Type
OTU4
OTU3
OTU2/ OTU2e
OTU2
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
40000ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
0
-5
-16
0
-
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
0
-5
-16
0
-
800 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2850
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN14LS X
TN11LS XL
TN12LS XL
Access Service Type
OTU2/ OTU2e
OTU3
OTU3
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800ps/nm-C BandTunable Wavelength-(D) RZ-PIN
2
-3
-16
0
800ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
400 ps/nm-C BandTunable WavelengthDRZ-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
TN15LS XL
OTU3
60000 ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
0
-5
-16
0
-
TN11LS XLR
OTU3
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
400 ps/nm-C BandTunable WavelengthDRZ-PIN
0
-5
-16
0
-
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2851
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN12LS XLR
TN11LS XR
TN11LT X
TN11L WX2
Access Service Type
OTU3/ OTU3e
OTU2/ OTU2e
OTU4
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
40000ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
0
-5
-16
0
-
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
0
-5
-16
0
-
12800 ps/nm-C BandFixed Wavelength-NRZPINa
-1
-5
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPDa
-1
-5
-28
9
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2852
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
DVBASI/ FE
TN11L WXD
TN11L WXS TN12L WXSb
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ DVBASI/ FE/ ETR/ CLO
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
3
-2
-18
0
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
3
-2
-26
-10
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZPINa
-4
-8
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPDa
-4
-8
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
0
-5
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
0
-5
-26
-10
-
12800 ps/nm-C BandTunable WavelengthNRZ-APD
0
-5
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
0
-5
-28
-9
-
12800 ps/nm-C BandFixed Wavelength-NRZPINa
-1
-5
-18
0
-
12800 ps/nm-C BandFixed Wavelength-NRZAPDa
-1
-5
-28
-9
-
6500 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
3
-2
-18
0
-
3200 ps/nm-C Band-Fixed Wavelength-NRZ-APD
3
-2
-26
-10
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2853
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11T MX
TN12T MX
Access Service Type
OTU2
OTU2
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
12800 ps/nm-C BandTunable WavelengthNRZ-APD
3
-2
-28
-9
-
6400 ps/nm-C BandTunable WavelengthNRZ-APD (Four Channels-Tunable)
3
-2
-28
-9
-
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2854
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11N D2
TN12N D2
TN52N D2
TN53N D2
TN55N O2
Access Service Type
OTU2/ OTU2e
OTU2/ OTU2e
OTU2/ OTU2e
OTU2/ OTU2e
OTU2/ OTU2e
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2855
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
TN51N Q2/ TN52N Q2/ TN53N Q2/ TN54N Q2
OTU2/ OTU2e
TN11NS 2
OTU2
TN12NS 2
OTU2/ OTU2e
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (odd & even wavelengths)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
1200 ps/nm-C BandTunable WavelengthNRZ-APD
2
-3
-26
-9
-
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2856
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN52NS 2
TN53NS 2
TN54PN D2
Access Service Type
OTU2/ OTU2e
OTU2/ OTU2e
OTU2
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
4800 ps/nm-C BandTunable WavelengthODB-APD
2
-3
-26
-9
-
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthDRZ-PIN
2
-3
-16
0
-
800 ps/nm-C BandTunable WavelengthNRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelength)-Fixed Wavelength-NRZ-PIN
2
-3
-16
0
-
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C Band (Odd & Even Wavelengths)-Fixed Wavelength-NRZ-PINXFP
2
-3
-16
0
XFP DWD M
800 ps/nm-C BandTunable WavelengthNRZ-PIN-XFP
2
-3
-16
0
XFP DWD M
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2857
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11NS 3
TN52NS 3
TN54NS 3
Access Service Type
OTU3/ OTU3e
OTU3/ OTU3e
OTU3/ OTU3e
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Receiver Overloa d (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
500 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
800 ps/nm-C BandTunable WavelengthODB-PIN
0
-5
-16
0
-
800 ps/nm-C BandTunable WavelengthDQPSK-PIN
0
-5
-16
0
-
TN55NS 3
OTU3/ OTU3e
60000ps/nm-C BandTunable WavelengthePDM-BPSK-PIN
0
-5
-16
0
-
TN54NS 4
OTU4
40000ps/nm-C BandTunable WavelengthePDM-QPSK(HFEC, RZ)-PIN
0
-5
-16
0
-
55000ps/nm-C BandTunable WavelengthePDM-QPSK(SDFEC, RZ)-PIN
0
-5
-16
0
-
a: The 12800 ps/nm-PIN and 12800ps/nm-APD modules do not support pilot tone modulation mode. b: Only TN12LWXS supports ETR/CLO services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2858
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-4 Quick reference table for CWDM-side specifications of OTU boards Board Name
TN11E COM
Access Service Type
GE
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Overload Point (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
1.25 Gbit/s Multirate (eSFP CWDM)-40 km
5
0
-19
-3
eSFP CWD M
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
5
0
-28
-9
eSFP CWD M
TN11L DGD
STM-16/ OTU1
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
2
-0.5
-28
-9
-
TN11L DGS
STM-16/ OTU1
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
5
2.5
-28
-9
-
TN12L DM
OTU1
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
5
0
-28
-9
eSFP CWD M
TN11L QG
FEC 5G/ OTU5G
5 Gbit/s Multirate (eSFP CWDM)-50 km
5
2
-18
0
eSFP CWD M
5 Gbit/s Multirate (eSFP CWDM)-70 km
5
2
-28
-9
eSFP CWD M
TN13L QM
OTU1
2.67 Gbit/s Multirate (eSFP CWDM)-80 km
5
0
-28
-9
eSFP CWD M
TN11L QMD
OTU1
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
2
-0.5
-28
-9
-
TN11L QMS
OTU1
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
5
2.5
-28
-9
-
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2859
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minimu m (dBm)
Receiver Sensitivi ty (dBm)
Minimu m Overload Point (dBm)
Note
TN11L WX2
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ SDI/ FE
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
5
2.5
-28
-9
-
TN11L WXD
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ SDI/ FE
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
2
-0.5
-28
-9
-
TN11L WXS
STM-16/ FC200/ FC100/ GE/ STM-4/ ESCON/ STM-1/ SDI/ FE/ ETR/ CLO
1600 ps/nm-CWDM Band-Fixed WavelengthNRZ-APD
5
2.5
-28
-9
-
TN12L WXSa
a: Only TN12LWXS supports ETR/CLO services.
Table C-5 Quick reference table for specifications of WDM-side gray optical modules on OTU boards and line boards Board Name
TN11L EM24
Access Service Type
Optical Module Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minimu m (dBm)
Receiver Sensitivi ty (dBm)
Minimu m Overloa d Point (dBm)
Note
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2860
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power
Receiver Sensitivi ty (dBm)
Minimu m Overloa d Point (dBm)
Note
Maximu m (dBm)
Minimu m (dBm)
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
TN11L OA
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN12L OG
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
TN53N D2
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN55N O2
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN51N Q2
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
10 Gbit/s Multirate-80 km
4
0
-24
-7
XFP
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
TN11L EX4
TN12T MX
TN12N D2
TN52N Q2/ TN53N Q2/
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2861
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
Access Service Type
C Quick Reference Table of the Units
Optical Module Optical Interface Type Supported
Mean Launched Optical Power Maximu m (dBm)
Minimu m (dBm)
Receiver Sensitivi ty (dBm)
Minimu m Overloa d Point (dBm)
Note
TN54N Q2
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN53N S2
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
OTU2/ OTU2e
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN54P ND2
OTU2
10 Gbit/s Multirate-10 km
-1
-6
-11
-1
XFP
10 Gbit/s Multirate-40 km
2
-1
-14
-1
XFP
TN54N S3
OTU3/ OTU3e
40G Transponder
3
0
-6
3
-
C.2 Specification of Optical Amplifying Unit The main specifications of the optical amplifier unit include the operating wavelength range, channel gain, nominal input power range, nominal output power range and maximum output power of a single wavelength. Table C-6 Quick reference table for optical amplifier unit Board Name
OAU100
DAS1/ OAU101
OAU102
Channel Gain (dB)
16 to 25.5
20 to 31
20 to 31
Issue 03 (2013-05-16)
Nomin al Chann el Gain (dB)
Input Power Range per Channel (dBm)
Nominal singlewavelength input optical power (dBm)
40 channels
80 channels
40 channels
80 channels
16
-32 to -14
-32 to -17
-14
-17
22
-32 to -20
-32 to -23
-20
-23
25.5
-32 to -23.5
-32 to -27.5
-23.5
-26.5
20
-32 to -16
-32 to -19
-16
-19
26
-32 to -22
-32 to -25
-22
-25
31
-32 to -27
-32 to -30
-27
-30
20
-32 to -19
-32 to -22
-19
-22
26
-32 to -25
-32 to -28
-25
-28
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2862
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
OAU103
OAU105
OAU106
Channel Gain (dB)
24 to 36
23 to 34
16 to 23
C Quick Reference Table of the Units
Nomin al Chann el Gain (dB)
Input Power Range per Channel (dBm)
Nominal singlewavelength input optical power (dBm)
40 channels
80 channels
40 channels
80 channels
31
-32 to -30
-32
-30
-32
24
-32 to -20
-32 to -23
-20
-23
29
-32 to -25
-32 to -28
-25
-28
36
-32
-32
-32
-32
23
-32 to -16
-32 to -19
-16
-19
30
-32 to -23
-32 to -26
-23
-26
34
-32 to -27
-32 to -30
-27
-30
16
-24 to -12
-24 to -15
-12
-15
19
-24 to -15
-24 to -18
-15
-18
23
-24 to -19
-24 to -22
-19
-22
OBU101
20±1.5
20
-32 to -20
-32 to -23
-20
-23
OBU103
23±1.5
23
-32 to -19
-32 to -22
-19
-22
OBU104
17±1.5
17
-32 to -17
-32 to -20
-17
-20
OBU205
23±1.5
23
-24 to -16
-24 to -19
-16
-19
Table C-7 Quick reference table for TN12OBU1P1 Board Name
Total input power range at the VI optical port(dBm)
Maximum total output optical power(dBm)
TN12OBU1P1
-30 to 7
9
Table C-8 Quick reference table for CRPC Board Name
Channel Gain (dB)
Maximum Pump Power (dBm)
G.652 fiber
LEAF fiber
CRPC01
≥10
≥12
29
CRPC03
>10
N/A
29.5
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2863
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-9 Quick reference table for HBA Board Name
HBA
Channel Gain (dB)
29±1
Typical Input Power of a Single Wavelength (dBm) 80 channels
40 channels
10 channels
Nominal Input Power Range (dBm)
-22
-19
-13
-25 to -3
Channel Allocation (nm)
1529 to 1561
Table C-10 Quick reference table for RAU1/RAU2 Board Name
Gain range (dB)
Max. OUT port optical power (dBm)
G.652/G. 654A fiber
LEAF/G.653/ TWRS/TWC/TWPLUS/ SMFLS/G. 656/ TERA_LIGH T fiber
G.654B fiber
RAU1
19 to 33
19 to 35
19 to 29
20
RAU2
30 to 41
32 to 43
27 to 37
20
C.3 Insertion Loss Specifications of Boards This section provides the insertion loss specifications of boards. Table C-11 Quick reference table for board insertion loss specifications Board Name
Insertion Loss (dB)
TN11MR2/TN21MR2
IN-MO
≤1.0
MI-OUT
TN11MR4/TN21MR4
Add/drop channel
≤1.5
IN-MO
≤1.5
MI-OUT
TN11MR8
Add/drop channel
≤2.2
IN-MO
≤3.5
MI-OUT Add/drop channel
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
≤4
2864
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Insertion Loss (dB)
TN11MR8V
IN-MO
≤3
MI-OUT
TN21CMR1
TN11CMR2/TN21CMR2
Add/drop channel
≤4.5
IN-MO MI-OUT
≤0.8
Add/drop channel
≤1
IN-MO
≤1.0
MI-OUT
TN11CMR4/TN21CMR4
Add/drop channel
≤1.5
IN-MO
≤1.0
MI-OUT
TN11DMR1/ TN21DMR1
Add/drop channel
≤2
EIN-EMO
≤0.8
EMI-EOUT WIN-WMO WMI-WOUT Add/drop channel
≤1
TN11SBM2
Add/drop channel
≤3
TN11D40/TN12D40
≤6.5
TN11D40V
≤8a
TN21DFIU
EIN-ETM
≤1.5
ERM-EOUT WIN-WTM WRM-WOUT EIN-ETC
≤1
ERC-EOUT WIN-WTC WRC-WOUT TN11FIU/TN12FIU/ TN13FIU/TN14FIU/ TN21FIU
IN-TM
≤1.5
RM-OUT IN-TC
≤1
RC-OUT TN11SFIU
Issue 03 (2013-05-16)
LINE1-SYS1
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
≤1.0
2865
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Insertion Loss (dB) LINE2-SYS2 LINE1-OSC1
≤1.5
LINE1-OSC2 TN11ITL01
RE-OUT
<4.5
RO-OUT IN-TE
<2.5
IN-TO TN11ITL04
RE-OUT
<3
RO-OUT IN-TE
<3
IN-TO TN12ITL
RE-OUT
<4.5
RO-OUT IN-TE
<3.5
IN-TO TN11M40/TN12M40
≤6.5
TN11M40V/TN12M40V
≤8a
TN11DCP
Transmit-end insertion loss
Single mode ≤4
Receive-end insertion loss
Single mode ≤1.5
Multimode ≤4.5
Multimode ≤2 TN12DCP
TN11OLP
Transmit-end insertion loss
Single mode ≤4
Receive-end insertion loss
Single mode ≤1.5
Transmit-end insertion loss
Single mode ≤4
Receive-end insertion loss
Single mode ≤1.5
Multimode ≤4.5
Multimode ≤2 TN12OLP
TN11SCS
Issue 03 (2013-05-16)
Transmit-end insertion loss
Single mode
≤4
Receive-end insertion loss
Multimode
≤1.5
Wavelength dropping insertion loss
Single mode
≤4
Multimode
≤4.5
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2866
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Insertion Loss (dB) Wavelength adding insertion loss
TN11RDU9
Single mode
≤4
Multimode
≤4.5
IN-Drop(DM1-DM8)
≤12.5
ROA-Drop(DM1-DM8)
≤11.5
IN-EXPO
≤12.5
IN-TOA
≤1
EXPI-OUT
≤8.5
AMxb-TOA
≤12.5a
ROA-OUT
≤1.5
Mxc-OUT
≤9a
IN-DM
≤7
EXPI-OUT
≤14a
IN-EXPO
≤3
TN12TD20
insertion loss difference IN-DMxe
≤3
TN11TM20
AMxf-OUT
≤8a
TN11WSD9/ TN12WSD9/TN13WSD9
IN-DMxd
≤8a
TN11WSM9/ TN12WSM9/ TN13WSM9
AMxb-OUT
TN11WSMD2
AMxb-OUT
≤8a
IN-DMxd
≤4.5
TN11WSMD4/ TN12WSMD4
AMxb-OUT
≤8a
TN11WSMD9
AMxb/EXPI-OUT
≤8a
IN-DMxd/EXPO
≤12
TN11RMU9
TN11ROAM
IN-EXPO ≤8a
EXPI-OUT
IN-DMxd
a: The value tested when the VOA attenuation is set to 0 dB. b: AMx denotes AM1-AM8. c: Mx denotes M1-M40. d: DMx denotes DM1-DM8. e: DMx denotes DM1-DM20. f: AMx denotes AM1-AM20.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2867
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
C.4 MON Interface Optical Split Ratio Certain boards of WDM equipment provide MON interfaces. A small number of supervisory signals are split from the main-path signals and are output through MON for in-service performance monitoring of the optical signals. Table C-12 lists the ratio of the optical power of signals at MON to that of the main-path signals of each type of board. Table C-12 Ratio of the optical power of signals at MON to that of the main-path signals of each type of board Board Name
Ratio of MON Interface to Received Signal in Main Path
Ratio of MON Interface to Transmitting Signal in Main Path
CRPC
-
"MON"/"SYS" = 1/99 (20 dB)
D40
"MON"/"IN" = 10/90 (10 dB)
-
D40V
"MON"/"IN" = 10/90 (10 dB)
-
DAS1
"MONR"/"SOUT" = 1/99 (20 dB)
"MONT"/"LOUT"=1/99 (20 dB)
FIU
-
l TN11FIU/TN12FIU/TN13FIU01/ TN14FIU/TN21FIU: "MONT"/"LOUT" = 1/99 (20 dB) l TN13FIU02: "MONT"/"LOUT" = 0.1/99.9 (30 dB)
HBA
-
"MON"/"OUT" = 1/999 (30 dB)
ITL
-
"MON"/"OUT" = 10/90 (10 dB)
M40
-
"MON"/"OUT" = 10/90 (10 dB)
M40V
-
"MON"/"OUT" = 10/90 (10 dB)
OAU1
-
"MON"/"OUT" = 1/99 (20 dB)
OBU1
-
"MON"/"OUT" = 1/99 (20 dB)
OBU2
-
"MON"/"OUT" = 1/99 (20 dB)
RDU9
"MONI"/"EXPI" = 3/97 (15 dB)
"MONO"/"EXPO" = 3/97 (15 dB)
RMU9
"MONI"/"EXPI" = 3/97 (15 dB)
"MONO"/"TOA" = 3/97 (15 dB)
WSD9
"MONI"/"IN" = 3/97 (15 dB)
"MONO"/"EXPO" = 3/97 (15 dB)
WSM9
"MONI"/"EXPI" = 3/97 (15 dB)
"MONO"/"OUT" = 3/97 (15 dB)
WSMD2
"MONI"/"IN" = 3/97 (15 dB)
"MONO"/"OUT" = 3/97 (15 dB)
WSMD4
"MONI"/"IN" = 3/97 (15 dB)
"MONO"/"OUT" = 3/97 (15 dB)
WSMD9
"MONI"/"IN" = 3/97 (15 dB)
"MONO"/"OUT" = 3/97 (15 dB)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2868
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Ratio of MON Interface to Received Signal in Main Path
Ratio of MON Interface to Transmitting Signal in Main Path
TD20
-
"MON"/"OUT"=1/99(20dB)
TM20
-
"MONO"/"OUT"=3/97(15dB)
RAU1
-
"MONO"/"OUT"=1/99(20dB) "MONS"/"SYS"=1/99(20dB)
RAU2
-
"MONO"/"OUT"=1/99(20dB) "MONS"/"SYS"=1/99(20dB)
C.5 Basic Functions of OTUs, Tributary Boards, Line Boards and Packet Service Boards The main functions and features supported by OTUs, Tributary Boards, Line Boards, and Packet Service Boards are wavelength conversion, cross-connection at the electrical layer, OTN interfaces and ESC. For detailed functions and features, refer to Table C-13. Table C-13 Basic functions of OTUs, Tributary Boards, Line Boards and Packet Service Boards Board Name
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN11E COM
N
N
N
N
N
N
N
N
N
N
TN54E G16
N
N
N
N
N
N
N
N
N
TN54E X2
N
N
N
N
N
N
N
N
TN11L4 G
Y
Y
Y
Y
Y
N
N
TN11L DGD
Y
Y
Y
Y
Y
N
TN11L DGS
Y
Y
Y
Y
Y
N
Issue 03 (2013-05-16)
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
Y
eSF P
N
N
N
N
eSF P
N
-
N
N
N
SFP +
N
-
N
N
Y
N
eSF P
N
N
N
N
N
Y
Y
eSF P
N
N
N
N
N
Y
Y
eSF P
N
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2869
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN11L DM
N
Y
Y
Y
Y
N
N
N
N
Y
Y
eSF P
Y
Y
TN11L DMD
Y
Y
Y
Y
Y
N
N
N
N
Y
N
eSF P
Y
Y
TN11L DMS
Y
Y
Y
Y
Y
N
N
N
N
Y
N
eSF P
Y
Y
TN12L DX
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
XFP
Y
Y
TN11L EM24
N
Y
Y
Y
Y
N
N
N
N
Y
N
XFP /SFP +
N
Y
TN11L EX4
N
Y
Y
Y
Y
N
N
N
N
Y
N
XFP /SFP +
N
Y
TN11L OA
Y
Y
Y
Y
Y
N
Y
N
N
Y
Y
eSF P/ SFP +
Y
Y
TN11L OG
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
eSF P
N
Y
TN12L OG
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
eSF P
N
Y
TN11L OM
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
eSF P
N
Y
TN12L OM
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
eSF P
N
Y
TN11L QG
Y
Y
Y
Y
Y
N
N
N
N
Y
N
eSF P
N
Y
TN13L QM
N
Y
Y
Y
Y
N
N
N
N
Y
Y
eSF P
Y
Y
TN11L QMD
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
eSF P
N
Y
Issue 03 (2013-05-16)
WDM Specificati on
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2870
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN12L QMD
Y
Y
Y
Y
Y
N
N
N
N
Y
N
eSF P
Y
Y
TN11L QMS
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
eSF P
N
Y
TN12L QMS
Y
Y
Y
Y
Y
N
N
N
N
Y
N
eSF P
Y
Y
TN12L SC
Y
Y
Y
Y
N
N
N
Y
Y
Y
N
CFP
N
Y
TN11L SQ
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
N
Y
N
TN11L SX
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
XFP
Y
Y
TN13L SX
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
XFP
Y
Y
TN14L SX
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
XFP
Y
Y
TN11L SXL
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
N
N
N
TN12L SXL
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
N
Y
N
TN15L SXL
Y
Y
Y
Y
N
N
N
Y
N
Y
N
N
Y
Y
TN11L SXLR
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
N
N
N
TN11L SXR
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
XFP
N
N
TN11L TX
Y
Y
Y
Y
N
N
N
Y
Y
Y
N
XFP
Y
Y
TN12L SX
TN12L SXLR
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2871
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN11L WX2
Y
Y
Y
N
N
N
N
N
N
Y
Y
eSF P
N
N
TN11L WXD
Y
Y
Y
N
N
N
N
N
N
Y
Y
eSF P
N
N
TN11L WXS
Y
Y
Y
N
N
N
N
N
N
Y
Y
eSF P
N
N
TN11T MX
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
eSF P
Y
Y
TN12T MX
Y
Y
Y
Y
Y
N
Y
N
N
Y
N
eSF P
Y
Y
TN11N D2
Y
Y
N
Y
Y
Y
N
N
N
Y
N
N
-
Y
TN12N D2
Y
Y
N
Y
Y
Y
Y
N
N
Y
N
XFP
-
Y
TN52N D2
Y
Y
N
Y
Y
Y
Y
N
N
Y
N
N
-
Y
TN53N D2
Y
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN55N O2
N
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN51N Q2
N
Y
N
Y
Y
N
N
N
N
Y
N
XFP
-
Y
TN52N Q2
N
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN53N Q2
Y
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN54N Q2
N
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN12L WXS
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2872
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
TN11N S2
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
Y
Y
N
Y
Y
Y
N
N
N
Y
N
N
-
Y
Y
Y
N
Y
Y
N
Y
N
N
Y
N
N
-
Y
Y
Y
N
Y
Y
Y
N
N
N
Y
N
N
-
Y
Y
Y
N
Y
Y
N
Y
N
N
Y
N
N
-
Y
TN12N S201M0 2 TN12N S201M0 3 TN12N S2T02 TN12N S2T03 TN12N S2T04 TN12N S2T05 TN12N S2A TN12N S2B TN52N S2T05 TN52N S2T06 TN52N S201M0 1 TN52N S201M0 2 TN52N S2T02 TN52N S2T03 TN52N S2T04 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2873
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN53N S2
Y
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN11N S3
Y
Y
N
Y
Y
Y
N
N
N
Y
N
N
-
Y
TN54N S3
Y
Y
N
Y
Y
N
Y
N
N
Y
N
N
-
Y
TN55N S3
Y
Y
N
Y
N
N
N
Y
N
Y
N
N
-
Y
TN54N S4
Y
Y
N
Y
N
N
N
Y
Y
Y
N
N
-
Y
TN54P ND2
Y
Y
N
Y
Y
N
Y
N
N
Y
N
XFP
-
Y
TN11T BE
N
N
Y
N
N
N
N
N
N
N
N
eSF P XFP
N
-
TN11T DG
N
N
Y
Y
N
N
N
N
N
N
N
eSF P
N
-
TN11T DX
N
N
Y
Y
N
N
N
N
N
N
N
XFP
Y
-
TN52T DX
N
Y
Y
Y
Y
N
N
N
N
N
N
XFP
Y
-
TN53T DX
N
Y
Y
Y
Y
N
N
N
N
N
N
XFP
Y
-
TN54T EM28
N
N
Y
Y
N
N
N
N
N
N
N
eSF P/ SFP +
N
N
TN52N S3
TN12T DX
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2874
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN54T HA
N
Y
Y
Y
Y
N
N
N
N
N
N
eSF P
Y
-
TN54T OA
N
Y
Y
Y
Y
N
N
N
N
N
N
eSF P
Y
-
TN11T OM
N
Y
Y
Y
Y
N
N
N
N
Y
Y
eSF P
Y
Y
TN55T OX
N
Y
Y
Y
Y
N
N
N
N
N
N
SFP +
Y
-
TN11T QM
N
N
Y
Y
N
N
N
N
N
N
N
eSF P
N
-
TN12T QM
N
N
Y
Y
N
N
N
N
N
N
N
eSF P
Y
-
TN11T QS
N
Y
Y
Y
Y
N
N
N
N
N
N
eSF P
N
-
TN11T QX
N
N
Y
Y
N
N
N
N
N
N
N
XFP
Y
-
TN52T QX
N
Y
Y
Y
Y
N
N
N
N
N
N
XFP
Y
-
TN53T QX
N
Y
Y
Y
Y
N
N
N
N
N
N
XFP
Y
-
TN55T QX
N
Y
Y
Y
Y
N
N
N
N
N
N
XFP
Y
-
TN54T SC
N
N
Y
Y
Y
N
N
N
N
N
N
CFP
Y
-
TN11T SXL
N
N
Y
Y
N
N
N
N
N
N
N
N
N
-
TN53T SXL
N
N
Y
Y
N
N
N
N
N
N
N
N
Y
-
TN52T OM
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2875
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Tu nab le Wa vel eng th Fu ncti on
ESC Fun ctio n
AL S Fun ctio n
OT N Fun ctio n
FEC Encoding
WDM Specificati on
Opt ical Mo dul e
PR BS on the Clie nt Sid e
PR BS on the WD M Sid e
FEC
AF EC
AF EC2
HF EC
SD FEC
DW DM
CW DM
TN54T SXL
N
N
Y
Y
N
N
N
N
N
N
N
CFP
N
-
TN54T TX
N
Y
Y
Y
N
N
N
N
N
N
N
SFP +
Y
-
TN52T OG
N
N
Y
Y
N
N
N
N
N
N
N
eSF P
N
-
NOTE l "Y" indicates that the OTU supports the function. "N" indicates that the OTU does not support the function l The SCC board can automatically detect that the eSFP and XFP modules are installed and online. The following information about the modules can be obtained through a query on the U2000: VendorName, BarCode, and type of optical interface. l The boards using different FEC codes cannot interconnect with each other.
C.6 Loopback Function of OTUs, Tributary Boards, Line Boards and Packet Service Boards The OTUs, Tributary Boards, Line Boards, and Packet Service Boards support different types of loopback.The OTUs, Tributary Boards, and Line Boards support different types of loopback. Table C-14 Loopback function of OTUs, Tributary Boards, Line Boards and Packet Service Boards Board Name
Client-Side Inloop
Client-Side Outloop
WDM-Side Inloop
WDM-Side Outloop
Channel loopback
ECOM
Y
Y
Y
N
N
LDGD
Y
Y
Y
Y
N
LDGS
Y
Y
Y
Y
N
LDM
Y
Y
Y
Y
N
LDMD
Y
Y
Y
Y
N
LDMS
Y
Y
Y
Y
N
LDX
Y
Y
Y
Y
N
LOA
Y
Y
N
Y
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2876
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Client-Side Inloop
Client-Side Outloop
WDM-Side Inloop
WDM-Side Outloop
Channel loopback
LOG
Y
Y
Y
Y
N
LOM
Y
Y
Y
Y
N
LQG
Y
Y
Y
Y
N
LQM
Y
Y
Y
Y
N
LQMD
Y
Y
Y
Y
N
LQMS
Y
Y
Y
Y
N
LSQ
Y
Y
Y
Y
N
LSC
Y
Y
Y
Y
N
LSX
Y
Y
Y
Y
N
TN11LSXL
N
N
Y
Y
N
TN12LSXL/ TN15LSXL
Y
Y
Y
Y
N
LSXLR
N
N
N
N
N
LSXR
N
N
N
N
N
LTX
Y
Y
Y
Y
N
LWX2
Y
Y
Y
Y
N
LWXD
Y
Y
Y
Y
N
LWXS
Y
Y
Y
Y
N
TMX
Y
Y
Y
Y
N
ND2
N
N
Y
Y
Y
NO2
N
N
Y
Y
Y
NQ2
N
N
Y
Y
Y
NS2
N
N
Y
Y
Y
PND2
N
N
Y
Y
N
NS3
N
N
Y
Y
Y
NS4
N
N
Y
Y
Y
TDG
Y
Y
N
N
N
TDX
Y
Y
N
N
N
TEM28
Y
Y
N
N
N
THA
Y
Y
N
N
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2877
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Client-Side Inloop
Client-Side Outloop
WDM-Side Inloop
WDM-Side Outloop
Channel loopback
TOA
Y
Y
N
N
Y
TOG
Y
Y
N
N
N
TN11TOM
Y
Y
Y
Y
N
TN52TOM
Y
Y
Y
Y
Y
TOX
Y
Y
N
N
N
TQM
Y
Y
N
N
N
TQS
Y
Y
N
N
N
TQX
Y
Y
N
N
N
TSC
Y
Y
N
N
N
TSXL
Y
Y
N
N
N
TTX
Y
Y
N
N
N
NOTE "Y" indicates that the OTU supports the function. "N" indicates that the OTU does not support the function.
Table C-15 Loop function of the Ethernet boards Board Name
Interface
Loop Mode
L4G
Client side
MAC inloop PHY outloop
WDM side
Inloop Outloop
TBE
10GE optical interface
MAC inloop MAC outloop PHY inloop PHY outloop
GE optical interface
MAC inloop PHY inloop
GE electric interface
MAC inloop PHY inloop PHY outloop
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2878
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Interface
Loop Mode
FE optical interface
MAC inloop PHY inloop
FE electric interface
MAC inloop PHY inloop PHY outloop
TEM28
10GE optical interface
MAC inloop MAC outloop PHY inloop PHY outloop
GE optical interface
MAC inloop PHY inloop
GE electric interface
PHY inloop PHY outloop MAC inloop
FE electric interface
PHY inloop PHY outloop MAC inloop
LEM24
10GE optical interface
MAC inloop MAC outloop PHY inloop PHY outloop
GE optical interface
MAC inloop PHY inloop
GE electric interface
MAC inloop PHY inloop PHY outloop
FE optical interface
MAC inloop PHY inloop
FE electric interface
MAC inloop PHY inloop
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2879
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Interface
Loop Mode PHY outloop
WDM side
Inloop Outloop
LEX4
10GE optical interface
MAC inloop MAC outloop PHY inloop PHY outloop
WDM side optical interface
Inloop Outloop
EG16
FE/GE optical interface
MAC inloop PHY inloop
GE electric interface
MAC inloop PHY outloop
EX2
10GE optical interface
MAC inloop MAC outloop PHY inloop PHY outloop
C.7 Protection mode of OTUs, Tributary Boards and Line Boards The OTUs, tributary boards, and line boards support protection function. For detailed protection mode, refer to Table C-16.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2880
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-16 Protection mode of OTUs, tributary boards and line boards Board Name
Protection Mode SW SNC P
VLA N SNC P
OD Uk SNC P
Clie ntSide 1+1 Prote ction
IntraBoard 1+1 Protec tion
OWS P Prote ction
OD Uk SPRi ng Prot ectio n
Bo ard Le vel Pro tect ion
DB PS
DL AG
MS SNCP
Tribut ary SNCP
ECOM
N
N
N
N
N
N
N
N
N
N
N
N
L4G
Y
Y
N
Y
Y
Y
N
N
N
N
Y
N
LDGD
Y
N
N
Y
Y
N
N
N
N
N
N
N
LDGS
Y
N
N
Y
N
Y
N
N
N
N
N
N
LDM
N
N
N
Y
Y
Y
N
N
N
N
N
N
LDMD
N
N
N
Y
Y
N
N
N
N
N
N
N
LDMS
N
N
N
Y
N
Y
N
N
N
N
N
N
LDX
N
N
N
Y
Y
Y
N
N
N
N
N
N
LEM24
N
Y
N
Y
Y
N
N
N
Y
N
N
N
LEX4
N
Y
N
Y
Y
N
N
N
Y
N
N
N
LOA
N
N
N
Y
Y
Y
N
N
N
N
N
N
LOG
Y
N
N
Y
Y
Y
N
N
N
N
Y
N
LOM
N
N
N
Y
Y
Y
N
N
N
N
N
N
LQG
Y
N
N
Y
Y
Y
N
N
N
N
Y
N
LQM
Y
N
N
Y
Y
Y
N
N
N
N
Y
N
LQMD
Y
N
N
Y
Y
N
N
N
N
N
Y
N
LQMS
Y
N
Y
Y
N
Y
N
N
N
N
Y
Y
LSC
N
N
N
Y
Y
N
N
N
N
N
N
N
LSQ
N
N
N
Y
Y
Y
N
N
N
N
N
N
LSX
N
N
N
Y
Y
Y
N
N
N
N
N
N
LSXL
N
N
N
Y
Ya
Yb
N
N
N
N
N
N
LSXLR
N
N
N
N
N
N
N
N
N
N
N
N
LSXR
N
N
N
N
N
N
N
N
N
N
N
N
LTX
N
N
N
Y
Y
N
N
N
N
N
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2881
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Protection Mode SW SNC P
VLA N SNC P
OD Uk SNC P
Clie ntSide 1+1 Prote ction
IntraBoard 1+1 Protec tion
OWS P Prote ction
OD Uk SPRi ng Prot ectio n
Bo ard Le vel Pro tect ion
DB PS
DL AG
MS SNCP
Tribut ary SNCP
LWX2
N
N
N
Y
N
Y
N
N
N
N
N
N
LWXD
N
N
N
Y
Y
N
N
N
N
N
N
N
LWXS
N
N
N
Y
N
Y
N
N
N
N
N
N
TMX
N
N
N
Y
Y
Y
N
N
N
N
N
N
ND2
N
N
Y
N
Y
Y
Y
N
N
N
N
Y
NO2
N
N
Y
N
Y
Y
N
N
N
N
N
Y
NQ2
N
N
Y
N
Y
Y
Y
N
N
N
N
Y
NS2
N
N
Y
N
Y
Y
Y
N
N
N
N
Y
NS3
N
N
Y
N
Y
N
Y
N
N
N
N
Y
NS4
N
N
Y
N
Y
N
N
N
N
N
N
Y
TBE
Y
Y
N
Y
N
N
N
Y
Y
Y
Y
N
TDG
Y
N
Y
Y
N
N
N
N
N
N
Y
N
TDX
N
N
Y
Y
N
N
N
N
N
N
N
Y
TEM28
N
N
Y
N
N
N
N
N
N
Y
Y
N
THA
N
N
Y
Y
N
N
N
N
N
N
N
Y
TOA
N
N
Y
Y
N
N
N
N
N
N
N
Y
TOG
N
N
Y
Y
N
N
N
N
N
N
N
N
TOM
Y
N
Y
Y
Y
Y
N
N
N
N
Y
Y
TOX
N
N
Y
Y
N
N
N
N
N
N
N
Y
TQM
Y
N
Y
Y
N
N
N
N
N
N
Y
Y
TQS
N
N
Y
Y
N
N
N
N
N
N
N
Y
TQX
N
N
Y
Y
N
N
N
N
N
N
N
Y
TSC
N
N
Y
Y
N
N
N
N
N
N
N
N
TSXL
N
N
Y
Y
N
N
N
N
N
N
N
Y
TTX
N
N
Y
Y
N
N
N
N
N
N
N
Y
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2882
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Protection Mode SW SNC P
VLA N SNC P
OD Uk SNC P
Clie ntSide 1+1 Prote ction
IntraBoard 1+1 Protec tion
OWS P Prote ction
OD Uk SPRi ng Prot ectio n
Bo ard Le vel Pro tect ion
DB PS
DL AG
MS SNCP
Tribut ary SNCP
NOTE a: The TN11LSXL does not support intra-board 1+1 protection. b: TN54TSXL only supports client-side 1+1 protection and ODUk SNCP protection. NOTE "Y" indicates that the OTU supports the function. "N" indicates that the OTU does not support the function.
C.8 Electrical cross-connection of OTUs, Tributary Boards and Line Boards The OTUs, tributary boards, and line boards support electrical cross-connection. For detailed electrical cross-connection functions, refer to Table C-17, Table C-18 and Table C-19. Table C-17 Electrical cross-connection of OTUs, tributary boards and line boards in OptiX OSN 8800 Board Name
Electrical Cross-Connection
LDM
N
LDMD
N
LDMS
N
LDX
N
LEM24
N
LEX4
N
LOA
N
LOG
N
LOM
N
LQM
N
LQMD
N
LQMS
N
LSC
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2883
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Electrical Cross-Connection
LSQ
N
LSX
N
LSXL
N
LSXLR
N
LSXR
N
LTX
N
LWXS
N
TMX
N
ND2
16 x ODU0/8 x ODU1/4 x ODUflex/2 x ODU2/2 x ODU2e NOTE Only the TN53ND2 supports ODUflex.
NO2
64 x ODU0/32 x ODU1/8 x ODU2/8 x ODU2e
NQ2
32 x ODU0/16 x ODU1/8 x ODUflex//4 x ODU2/4 x ODU2e NOTE Only the TN53NQ2 supports ODUflex.
NS2
8 x ODU0/4 x ODU1/2 x ODUflex/1 x ODU2/1 x ODU2e NOTE Only the TN52NS2T04/TN52NS2T05/TN52NS2T06/TN52NS201M01/ TN52NS201M02/TN53NS2 support ODUflex.
NS3
32 x ODU0/16 x ODU1/4 x ODU2/4 x ODU2e/1 x ODU3 NOTE Only the TN54NS3/TN55NS3 supports ODU3.
NS4
80 x ODU0/40 x ODU1/10 x ODU2/10 x ODU2e/2 x ODU3/1 x ODU4/80 x ODUflex
TDX
2 x ODU2/2 x ODU2e/2x ODUflex NOTE Only the TN53TDX supports ODUflex.
TEM28
16 x ODU0/8 x ODU1/2 x ODU2/8 x ODUflex
THA
32 x ODU0/16 x ODU1
TOA
16 x ODU0/8 x ODU1/5 x ODUflex
TOM
8 x ODU0/4 x ODU1
TOX
8 x ODU2/8 x ODU2e
TQX
4 x ODU2/4 x ODU2e/4 x ODUflex NOTE Only the TN55TQX supports ODUflex.
TOG
Issue 03 (2013-05-16)
8 x ODU0
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2884
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Electrical Cross-Connection
TSC
1 x ODU4
TSXL
1 x ODU3 NOTE Only the TN53TSXL/TN54TSXL supports ODU3
TTX
10 x ODU2/10 x ODU2e
"N" indicates that the OTU does not support the function.
Table C-18 Electrical cross-connection of OTUs, tributary boards and line boards in OptiX OSN 6800 Board Name
Electrical Cross-Connection Integrated Cross-Connection
Distributed Cross-Connection
ECOM
1 x GE
1 x GE
L4G
4 x GE
4 x GE
LDGD
2 x GE
2 x GE
LDGS
2 x GE
2 x GE
LDM
N
N
LDMD
N
N
LDMS
N
N
LDX
N
N
LEM24
2 x 10GE
N
LEX4
2 x 10GE
N
LOA
N
N
LOG
8 x GE
8 x GE
LOM
N
N
LQG
4 x GE
4 x GE
LQM
4 x GE
4 x Any/ 4 x GE/1 x OTU1
LQMD
4 x GE
4 x Any/ 4 x GE/1 x OTU1
LQMS
4 x GE/1 x ODU1
4 x Any/ 4 x GE/1 x OTU1
LSC
N
N
LSQ
N
N
LSX
N
N
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2885
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
C Quick Reference Table of the Units
Electrical Cross-Connection Integrated Cross-Connection
Distributed Cross-Connection
LSXL
N
N
LSXLR
N
N
LSXR
N
N
LTX
N
N
LWX2
N
N
LWXD
N
x
LWXS
N
N
TMX
N
N
ND2
8 x ODU1/2 x ODU2/2 x ODU2e
N
NQ2
16 x ODU1/4 x ODU2/4 x ODU2e
N
NS2
4 x ODU1/1 x ODU2/1 x ODU2e
4 x ODU1 NOTE It is supported by TN11NS2.
NS3
4 x ODU2/4 x ODU2e
N
TBE
16 x GE
N
TDG
2 x GE/1 x ODU1
2 x GE/1 x ODU1
TDX
8 x ODU1/2 x ODU2/2 x ODU2e
8 x ODU1
TOG
4 x ODU1
4 x ODU1/
TN11TOM
8 x GE/4 x ODU1
8 x GE/1 x OTU1/8 x Any/4 x ODU1
TN52TOM
4 x ODU1
8 x GE/1 x OTU1/8 x Any
TQM
4 x GE/1 x ODU1
4 x GE/4 x Any/1 x ODU1/1 x OTU1
TQS
4 x ODU1
4 x ODU1
TQX
4 x ODU2/4 x ODU2e
N
TSXL
4 x ODU2/4 x ODU2e
N
NOTE Only the TN11TSXL supports ODU2/ ODU2e
"N" indicates that the OTU does not support the function.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2886
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-19 Electrical cross-connection of OTUs, tributary boards and line boards in OptiX OSN 3800 Board Name
Electrical Cross-Connection
ECOM
1 x GE
L4G
4 x GE
LDGD
2 x GE
LDGS
2 x GE
LDM
N
LDMD
N
LDMS
N
LDX
N
LOA
N
LOG
8 x GE
LOM
N
LQG
4 x GE
LQM
4 x Any/4 x GE
LQMD
4 x Any/4 x GE
LQMS
4 x Any/4 x GE
LSX
N
LSXR
N
LWX2
N
LWXD
N
LWXS
N
TMX
N
NS2
4 x ODU1
TBE
16 x GE
TDG
2 x GE/1 x ODU1
TDX
8 x ODU1
TOG
4 x ODU1
TOM
8 x GE/8 x Any/4 x ODU1
TQM
4 x Any/1 x ODU1
TQS
4 x ODU1
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2887
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Board Name
Electrical Cross-Connection
"N" indicates that the OTU does not support the function.
C.9 Common Parameters Specified for Optical Interfaces of OCS Boards This topic describes common parameters specified for optical interfaces of OCS boards. Table C-20 lists the common parameters specified for the white optical interfaces of the SDH boards. Table C-20 Common parameters specified for the white optical interfaces of the SDH boards Board Name
SLQ16
SLO16
Issue 03 (2013-05-16)
Optical Module Type of Support ed Optical Interfac e
Mean Launched Optical Power Minimu m (dBm)
Maximu m (dBm)
I-16
-10
S-16.1
Type of Fiber
Receiver Sensitivit y (dBm)
Minimu m Overloa d (dBm)
-3
-18
-3
Singlemode LC
-5
0
-18
0
Singlemode LC
L-16.1
-2
3
-27
-9
Singlemode LC
L-16.2
-2
3
-28
-9
Singlemode LC
I-16
-10
-3
-18
-3
Singlemode LC
S-16.1
-5
0
-18
0
Singlemode LC
L-16.1
-2
3
-27
-9
Singlemode LC
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2888
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
SL64
SLD64
SLH41
Issue 03 (2013-05-16)
C Quick Reference Table of the Units
Optical Module Type of Support ed Optical Interfac e
Mean Launched Optical Power Minimu m (dBm)
Maximu m (dBm)
L-16.2
-2
I-64.1
Type of Fiber
Receiver Sensitivit y (dBm)
Minimu m Overloa d (dBm)
3
-28
-9
Singlemode LC
-6
-1
-11
-1
Singlemode LC
S-64.2b
-1
2
-14
-1
Singlemode LC
P1L1-2D 2
0
4
-24
-7
Singlemode LC
Le-64.2
2
4
-21
-8
Singlemode LC
V-64.2b (OBU10 1+ OBU101 + DCU + MR2)
-1 (without the OBU, DCU, or MR2)
2 (without the OBU, DCU, or MR2)
-17 (without the OBU, DCU, or MR2)
-1
Singlemode LC
I-64.1
-6
-1
-11
-1
Singlemode LC
S-64.2b
-1
2
-14
-1
Singlemode LC
S-1.1
-15
-8
-28
-8
Singlemode LC
S-4.1
-15
-8
-28
-8
Singlemode LC
16 (with the OBU, DCU, or MR2)
16 (with the OBU, DCU, or MR2)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
-26 (with the OBU, DCU, or MR2)
2889
OptiX OSN 8800/6800/3800 Hardware Description
Board Name
SF64
SF64A
SLQ64
SFD64
C Quick Reference Table of the Units
Optical Module Type of Support ed Optical Interfac e
Mean Launched Optical Power Minimu m (dBm)
Maximu m (dBm)
Ue-64.2c
–1
Ue-64.2d
Type of Fiber
Receiver Sensitivit y (dBm)
Minimu m Overloa d (dBm)
2
-19
0
Singlemode LC
–1
2
-19
0
Singlemode LC
Ue-64.2e
–1
2
-19
0
Singlemode LC
Ue-64.2c
–1
2
-19
0
Singlemode LC
Ue-64.2d
–1
2
-19
0
Singlemode LC
Ue-64.2e
–1
2
-19
0
Singlemode LC
I-64.1
-6
-1
-11
-1
Singlemode LC
S-64.2b
-1
2
–14
-1
Singlemode LC
Ue-64.2c
–1
2
-19
0
Singlemode LC
Ue-64.2d
–1
2
-19
0
Singlemode LC
Ue-64.2e
–1
2
-19
0
Singlemode LC
Table C-21 lists the common parameters specified for the optical interfaces of the data boards. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2890
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-21 Common parameters specified for the optical interfaces of the data boards Board Name
Optical Module
N1EGSH
N3EAS2
Type of Supp orted Optic al Interf ace
Mean Launched Optical Power Minim um (dBm)
Maxim um (dBm)
1000B ase-LX (10km)
–9
1000B ase-SX (0.5km ) 10GB ASELR/ LW
Type of Fiber
Receiv er Sensiti vity (dBm)
Mini mum Overl oad (dBm)
–3
–20
–3
Singl emode LC
-9.5
–3.5
–18
0
Singl emode LC
-8.2
0.5
-12.6
-12.6
Singl emode LC
C.10 Quick Reference of OCS Board Functions This section describes the functions supported by different types of boards. Table C-22 lists the functions supported by SDH boards. Table C-22 Basic functions supported by SDH boards
Issue 03 (2013-05-16)
Fun ctio n
ALS
RE G Spe cific atio ns
PRB S
AU3
TC M
FEC
Enh anc ed FEC
IEE E 1588 v2
Fixe d Wa vele ngt h
Col ore d Wa vele ngt h
Tun able Wa vele ngt h
N4S L64
Y
N
Y
N
N
N
N
Y
Y
Y
N
N4S F64
Y
N
Y
N
N
Y
Y
Y
Y
Y
Y
N1S F64 A
Y
N
N
N
N
Y
N
N
Y
Y
Y
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2891
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Fun ctio n
ALS
RE G Spe cific atio ns
PRB S
AU3
TC M
FEC
Enh anc ed FEC
IEE E 1588 v2
Fixe d Wa vele ngt h
Col ore d Wa vele ngt h
Tun able Wa vele ngt h
N4S FD6 4
Y
N
Y
N
N
Y
Y
Y
Y
Y
Y
N4S LD6 4
Y
N
Y
N
N
N
N
Y
N
N
N
N4S LQ6 4
Y
N
Y
N
N
N
N
Y
N
N
N
N4S LQ1 6
Y
N
Y
N
N
N
N
Y
N
N
N
N4S LO1 6
Y
N
Y
N
N
N
N
Y
N
N
N
N3S LH4 1
Y
N
Y
N
N
N
N
Y
N
N
N
Table C-23 lists the functions supported by Ethernet boards. Table C-23 Basic functions supported by Ethernet boards
Issue 03 (2013-05-16)
Fu nc tio n
EP L
E V PL
EP L A N
E V PL A N
M PL S
L A G
D L A G
Q oS
ET HO A M (8 02. 1a g)
ET HO A M (80 2.3 ah )
Te st Fr a m e
Qi n Q
R M O N
IG M P Sn oo pi ng
IE EE 15 88 v2
N1 E GS H
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2892
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Fu nc tio n
EP L
E V PL
EP L A N
E V PL A N
M PL S
L A G
D L A G
Q oS
ET HO A M (8 02. 1a g)
ET HO A M (80 2.3 ah )
Te st Fr a m e
Qi n Q
R M O N
IG M P Sn oo pi ng
IE EE 15 88 v2
N3 E AS 2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
C.11 Loopback Capabilities of OCS Boards The SDH boards and Ethernet boards on the OptiX OSN 9560 support various types of loopbacks. Table C-24 lists the loopback capabilities of the SDH boards on the OptiX OSN 9560. Table C-24 Loopback capabilities of the SDH boards Board
Port Inloop
Port Outloop
VC-4 Inloop
VC-4 Outloop
VC-3/VC-12 Outloop
N4SL64
Y
Y
Y
Y
N
N4SF64
Y
Y
Y
Y
N
N1SF64A
Y
Y
Y
Y
N
N4SFD64
Y
Y
Y
Y
N
N4SLD64
Y
Y
Y
Y
N
N4SLQ64
Y
Y
Y
Y
N
N4SLQ16
Y
Y
Y
Y
N
N4SLO16
Y
Y
Y
Y
N
N3SLH41
Y
Y
Y
Y
N
Table C-25 provides the loopback capabilities of the Ethernet boards on the OptiX OSN 9560.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2893
OptiX OSN 8800/6800/3800 Hardware Description
C Quick Reference Table of the Units
Table C-25 Loopback capabilities of Ethernet boards
Issue 03 (2013-05-16)
Board
MAClayer Outloo p
MAClayer Outloo p
PHYlayer Outloo p
PHYlayer Inloop
VC-4 Inloop/ Outloop
VC-3 Inloop/ Outloop
N1EGSH
N
Y
N
Y
N
N
N3EAS2
N
Y
N
Y
N
N
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2894
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D
Parameter Reference
D.1 Autonegotiation Flow Control Mode D.2 Board Mode (WDM Interface) D.3 Broadcast Packet Suppression Threshold D.4 Channel Use Status (WDM Interface) D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) D.6 Enabling Broadcast Packet Suppression D.7 Ethernet Working Mode (WDM Interface) D.8 FC Distance Extension (WDM Interface) D.9 FEC Mode (WDM Interface) D.10 FEC Working State (WDM Interface) D.11 Flow Monitor (Ethernet Interface Attributes) D.12 Fixed Pump Optical Power (dBm) (WDM Interface) D.13 Gain (dB) (WDM Interface) D.14 Initial Variance Value Between Primary and Secondary Input Power (dB) (WDM Interface) D.15 Laser Status (WDM Interface) D.16 Line Rate D.17 MAC Loopback D.18 Maxmun Fixed Pump Optical Power (dBm) (WDM Interface) D.19 Minmun Fixed Pump Optical Power (dBm) (WDM Interface) D.20 Max. Packet Length (WDM Interface) D.21 Maximum Frame Length D.22 Nominal Gain (dB) (WDM Interface) D.23 Non-Autonegotiation Flow Control Mode Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2895
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) D.25 PHY Loopback D.26 Planned Band Type (WDM Interface) D.27 Planned Wavelength No./Wavelength (nm)/Frequency (THz) (WDM Interface) D.28 Port Mapping (WDM Interface) D.29 PRBS Test Status (WDM Interface) D.30 Rated Optical Power (dBm) (WDM Interface) D.31 SD Trigger Condition (WDM Interface) D.32 Service Mode (WDM Interface) D.33 Input Power Loss Threshold (dBm) (WDM Interface) D.34 Variance Threshold Between Primary and Secondary Input Power (dB) (WDM Interface)
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2896
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.1 Autonegotiation Flow Control Mode Description Autonegotiation Flow Control Mode is selected when a port works in auto-negotiation mode.
Impact on the System Auto-negotiation flow control cannot take effect if this parameter is set incorrectly.
Values Board Name
Value Range
Default Value
TN11LEM24
l Disabled
Disabled
TN11LEX4
l Enable Dissymmetric Flow Control
TN54TEM28
l Enable Symmetric Flow Control l Enable Symmetric/ Dissymmetric Flow
The following table lists the description of each value. Value
Description
Disabled
Disables port flow control at both the transmit and receive ends. (None)
Enable Dissymmetric Flow Control
Enables dissymmetric flow control. (Asymmetric > Link Partner)
Enable Symmetric Flow Control
Enables symmetric flow control. (Symmetric)
Enable Symmetric/ Dissymmetric Flow
Enables either symmetric or dissymmetric flow control, which is determined in the autonegotiation process. (Asymmetric->Local Device)
Configuration Guidelines Set this parameter properly based on actual service configurations.
Relationship with Other Parameters This parameter is available only when the working mode of an Ethernet port is Autonegotiation mode. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2897
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.2 Board Mode (WDM Interface) Description Board Mode: Specifies the board mode depending on the service application scenario.
Impact on the System The board mode determines how a signal is transmitted inside the board, what functions the board provides, and how the board works. Therefore, switching between different board modes interrupts the running services on the board.
Values The following table provides the parameter values of the ECOM board. Value Range
Default Value
Service Mode, HUB Mode
HUB Mode
The following table describes the parameter values of the ECOM board. Parameter Value
Description
Service Mode
In this mode, the ECOM board can aggregate eight FE services into one GE service.
HUB Mode
In this mode, the ECOM board can aggregate eight FE services into one FE service.
The following table provides the parameter values of the TN12LQMS board. Value Range
Default Value
NS1 Mode, LQM Mode
LQM Mode
The following table describes the parameter values of the TN12LQMS board.
Issue 03 (2013-05-16)
Parameter Value
Description
NS1 Mode
In this mode, the TN12LQMS board serves as a line board and adds/drops OTU1 signals in conjunction with a tributary board. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2898
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Parameter Value
Description
LQM Mode
In this mode, the TN12LQMS board serves as an OTU board and can aggregate four Any-rate signals into one OTU1 signal.
NOTE
The NS1 Mode value is valid only when the TN12LQMS board is deployed in an OptiX OSN 6800 subrack or OptiX OSN 3800 subrack.
The following table provides the parameter values of the TN11TOM board. Value Range
Default Value
Cascading Mode, Non-cascading Mode
Non-cascading Mode
The following table describes the parameter values of the TN11TOM board. Parameter Value
Description
Cascading Mode
In this mode, only the RX7/TX7 and RX8/TX8 port pairs on the board can be used as WDM side optical port pairs. The board can multiplex up to six Any-rate signals into one OTU1 signal.
Non-cascading Mode
In this mode, the RX1/TX1-RX8/TX8 port pairs on the board can be used as WDM-side optical port pairs. The board can multiplex up to four Any-rate signals into two OTU1 signals.
The following table provides the parameter values of the TN11LSXR/TN11LSXLR/ TN12LSXLR board. Value Range
Default Value
Electrical Relay Mode, Optical Relay Mode
Electrical Relay Mode
The following table describes the parameter values of the TN11LSXR/TN11LSXLR/ TN12LSXLR board.
Issue 03 (2013-05-16)
Parameter Value
Description
Electrical Relay Mode
When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2899
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Parameter Value
Description
Optical Relay Mode
board in a non-ASON system; otherwise, end-to-end management of ASON services is not available.
The following table provides the parameter values of the TN12ND2/TN52ND2/TN55NO2/ TN53ND2/TN53NQ2/TN54NQ2/TN54NS3/TN55NS3/TN54NS4 board. Value Range
Default Value
Line Mode, Electrical Relay Mode, Optical Relay Mode
Line Mode
The following table describes the parameter values of the TN12ND2/TN52ND2/TN55NO2/ TN53ND2/TN53NQ2/TN54NQ2/TN54NS3/TN55NS3/TN54NS4 board. Parameter Value
Description
Line Mode
The board serves as a line board.
Electrical Relay Mode
The board serves as a regeneration unit. When optical-layer and electrical-layer ASON are enabled, it does not matter whether the Board Mode parameter is set to Optical Relay Mode or Electrical Relay mode. The parameter must be set to Optical Relay Mode for the line board in a non-ASON system; otherwise, end-to-end management of ASON services is not available.
Optical Relay Mode
Configuration Guidelines Set the board mode depending on the actual service application scenario.
Relationship with Other Parameters None.
D.3 Broadcast Packet Suppression Threshold Description The Broadcast Packet Suppression Threshold parameter specifies the percentage of broadcast traffic in the bandwidth of a port. The broadcast packets beyond this percentage will be discarded. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2900
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Impact on the System After suppression of broadcast packets is enabled, the flow of broadcast packets will be limited according to the specified threshold. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded.
Values Value Range
Default Value
10%-100%
30%
Configuration Guidelines
Issue 03 (2013-05-16)
Value
Description
10%
Indicates that the broadcast packets can account for a maximum of 10% of the bandwidth of a port.
20%
Indicates that the broadcast packets can account for a maximum of 20% of the bandwidth of a port.
30%
Indicates that the broadcast packets can account for a maximum of 30% of the bandwidth of a port.
40%
Indicates that the broadcast packets can account for a maximum of 40% of the bandwidth of a port.
50%
Indicates that the broadcast packets can account for a maximum of 50% of the bandwidth of a port.
60%
Indicates that the broadcast packets can account for a maximum of 60% of the bandwidth of a port.
70%
Indicates that the broadcast packets can account for a maximum of 70% of the bandwidth of a port.
80%
Indicates that the broadcast packets can account for a maximum of 80% of the bandwidth of a port.
90%
Indicates that the broadcast packets can account for a maximum of 90% of the bandwidth of a port.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2901
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Value
Description
100%
Indicates that the broadcast packets can account for a maximum of 100% of the bandwidth of a port.
Relationship with Other Parameters This parameter is available only when Enabling Broadcast Packet Suppression is set to Enabled.
D.4 Channel Use Status (WDM Interface) Description The Channel Use Status parameter sets the occupancy status of the current channel of a board. The value can be set. Applicable to the WDM side and client side of the optical transponder board.
Impact on the System When this parameter is set to Unused for a port, service alarms reported for this port will be masked and the function for automatically disabling service-affecting settings is invalid for the port.
Values Value Range
Default Value
Used, Unused
Used
The following table lists the description of each value. Value
Description
Used
Indicates that the current channel is used.
Unused
Indicates that the current channel is not used.
Configuration Guidelines l
This parameter is set to Used by default.
l
Set this parameter to Unused when the current channel is not used for the moment.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2902
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.5 Client Service Bearer Rate (Mbit/s) (WDM Interface) Description The Client Service Bearer Rate (Mbit/s)sets the rate of the accessed service at the optical interface on the client side of a board. This parameter applies to the client side of the optical transponder board.
Impact on the System A SPEED_OVER alarm is reported when the rate of actually accessed services exceeds the set value.
Values Value Range
Default Value
Unit
The specific value range is related to the board.
The specific value is related to the board.
Mbit/s
Configuration Guidelines The bearer rate of client-side services can be set only when the type of the client-side services is set to Any/CBR_10G. The set value should be consistent with the rate of the actually accessed services.
Relationship with Other Parameters None.
D.6 Enabling Broadcast Packet Suppression Description The Enabling Broadcast Packet Suppression parameter determines whether to suppress the traffic of broadcast packets.
Impact on the System After suppression of broadcast packets is enabled, the traffic of broadcast packets will be limited according to the specified threshold. If the traffic of the broadcast packets exceeds the specified threshold, the excess broadcast packets will be discarded.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2903
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Value Range
Default Value
Disabled, Enabled
Disabled
The following table lists the description of each value. Value
Description
Enabled
Indicates that the traffic of broadcast packets is not limited.
Disabled
Indicates that excess broadcast packets will be discarded if the traffic of broadcast packets exceeds the specified threshold.
Configuration Guidelines Set this parameter only when you need to limit the traffic of broadcast services.
Relationship with Other Parameters Suppression of broadcast packets is implemented only when this parameter is set to Enabled.
D.7 Ethernet Working Mode (WDM Interface) Description The Ethernet Working Mode parameter sets and queries the working mode of the Ethernet.
Impact on the System None.
Values Value Range
Default Value
Auto-Negotiation, 1000M Full-Duplex
Vary with different boards
Configuration Guidelines l
This parameter is valid only when the Service Type parameter is set to Ethernet service.
l
The Ethernet working mode must be consistent with the mode set for the upstream services of the customer.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2904
OptiX OSN 8800/6800/3800 Hardware Description
l
D Parameter Reference
If two ports are mutually protected, the Ethernet working mode must be consistent on the active and standby ports.
Relationship with Other Parameters None.
D.8 FC Distance Extension (WDM Interface) Description A flow control mechanism is applied between FC service client-side equipment and between two FCE boards to provide the far-reaching function of FC services, which ensures that the bandwidth does not decrease during long haul transmission of FC services. The FC Distance Extension parameter indicates whether the FC distance extension function is enabled.
Impact on the System None.
Values Value Range
Default Value
Enabled, Disabled
-
The following table lists the description of each value. Parameter Value
Remarks
Enabled
Indicates the FC distance extension function is enabled.
Disabled
Indicates the FC distance extension function is disabled.
Configuration Guidelines If the distance between the transmit and receive ends of FC services exceeds the maximum transmission distance that the FC switch supports, the value of the parameter must be set to Enabled.
Relationship with Other Parameters This parameter is valid only when the Service Type parameter is set to FC services.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2905
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.9 FEC Mode (WDM Interface) Description The FEC Mode parameter sets the FEC mode of the current optical interface.
Impact on the System Different FEC modes have different capabilities of enhancing the SNR of the optical signal at the receive end and support different extended distances of the repeater section.
Values Value Range
Default Value
FEC, AFEC, HFEC, SDFEC
Vary with different boards
The following table lists the description of each value.
Configuration Guidelines FEC Mode of two interconnected boards must be the same. According to the network design, set FEC Mode to a proper value. In the case of expansion of an existing network or proper OSNR, FEC is recommended; in the case of comparatively poor network performance and high OSNR requirement, AFEC is recommended.
Relationship with Other Parameters This parameter is available only when you set FEC Working State to Enabled. For OptiX OSN 8800/6800/3800, this parameter is automatically set to AFEC when you set Service Type to 10GE LAN and Port Mapping to Bit Transparent Mapping(10.7G).
D.10 FEC Working State (WDM Interface) Description FEC Working State: Determines whether to enable or disable the forward error correction (FEC) function for an optical interface.
Impact on the System Disabling the FEC function affects the transmission distance. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2906
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Value Range
Default Value
Enabled, Disabled
Varies according to boards.
The following table describes the parameter values. Value
Description
Enabled
Indicates that the FEC function has been enabled for the board optical interface.
Disabled
Indicates that the FEC function has been disabled for the board optical interface
Configuration Guidelines The FEC Working State parameter at the transmit end must be consistent with that at the receive end. Otherwise, this parameter is invalid.
D.11 Flow Monitor (Ethernet Interface Attributes) Description The Zero-Flow Monitor parameter specifies whether the traffic on a port is monitored.
Impact on the System After the zero traffic monitoring function is enabled, the port can report the zero traffic alarm after the state of zero traffic lasts for a certain period. Hence, the user can check whether the service is interrupted due to the fault on the equipment side.
Values Value Range
Default Value
Enabled, Disabled
Disabled
The following table provides the description of each value.
Issue 03 (2013-05-16)
Value
Description
Enabled
The zero traffic monitoring function is enabled on the port.
Disabled
The zero traffic monitoring function is disabled on the port.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2907
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines Set this parameter according to the actual requirement of the user. Set this parameter to Enabled if the traffic on a port needs to be monitored.
D.12 Fixed Pump Optical Power (dBm) (WDM Interface) Description The Fixed Pump Optical Power (dBm) parameter sets or queries the output optical power of an optical amplifier board. If the fixed pump optical power value is smaller than the minimum value or larger than the maximum value, the board might work abnormally.
Impact on the System Changing the value of Fixed Pump Optical Power (dBm) directly influences the optical power of each wavelength on the line.
Values Value Range
Default Value
5 dBm-30 dBm (continuously tunable)
None.
Configuration Guidelines Normally, the fixed pump optical power of the CRPC and ROP board should be larger than 23 dBm. The value is related to the system specifications.
Relationship with Other Parameters Fixed Pump Optical Power (dBm) must be set within a range between Min. Fixed Pump Optical Power (dBm) and Max. Fixed Pump Optical Power (dBm). If the fixed pump optical power value is beyond the range, the board might work abnormally.
D.13 Gain (dB) (WDM Interface) Description The Gain (dB) parameter queries the gain of an optical amplifier board, namely, the difference of the output power (dBm) to the input power (dBm).
Impact on the System None.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2908
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Value Range
Default Value
Unit
20.0-40.0
None
dB
Configuration Guidelines None.
Relationship with Other Parameters This parameter is different from the Nominal Gain parameter. The Nominal Gain parameter indicates the gain of the signal optical power, excluding the noise power. The Gain parameter, however, is only related to the power and includes the noise power. Therefore, if the noise power occupies a large ratio and the input optical power is low, the gain queried exceeds the nominal gain of the board.
D.14 Initial Variance Value Between Primary and Secondary Input Power (dB) (WDM Interface) Description The Initial Variance Value Between Primary and Secondary Input Power (dB) parameter provides an option to set the reference value of the optical power variance between the primary and secondary input optical interfaces of a board. The value can be set.
Impact on the System During the judgment of switching conditions, if the absolute value of the variance between the primary and secondary input power reaches the SF switching threshold, SF switching occurs. The initial variance value is an important factor in calculating the optical power variance and affects the service switching.
Values Value Range
Default Value
Unit
-10.0 to 10.0
0
dB
Configuration Guidelines After the optical power of the system is commissioned and is normal, set this parameter according to the primary and secondary input optical power and the following formula: Initial variance between primary and secondary input optical power = Initial input optical power of the primary optical interface - Initial input optical power of the secondary optical interface Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2909
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Relationship with Other Parameters l
The setting of the initial variance affects the calculation of the variance between current primary and secondary input optical power. The formula for calculating the variance between current primary and secondary input optical power is as follows:
l
Variance between current primary and secondary input optical power = current input power of the primary optical interface - current input power of the secondary optical interface initial variance between primary and secondary input optical power If the variance between current primary and secondary input optical power exceeds the value of the Variance Threshold Between Primary and Secondary Input Power (dB) parameter, the protection switching occurs.
D.15 Laser Status (WDM Interface) Description The Laser Status parameter sets the laser status of a board.
Impact on the System This parameter directly determines whether the corresponding optical interface outputs optical signals. If this parameter is set to Off, services are interrupted.
Values For OptiX OSN 8800/6800/3800 Value Range
Default Value
On, Off
For OTU boards: l WDM side: On l Client side: Off For amplifier board: On
The following table lists the description of each value. Value
Description
On
Indicates enabling the laser.
Off
Indicates disabling the laser.
Configuration Guidelines l
Optical wavelength conversion unit – The normal service requires that the lasers on both WDM side and client side should be opened.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2910
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
When installing and commissioning OTUs, you must set the Laser Status parameter to Off to protect the downstream boards. – In the case of the OTUs configured with intra-board 1 + 1 optical channel protection or client-side 1 + 1 protection, whether to enable or disable the laser on the board client side is controlled by the NE software automatically. No manual setting is required. l
Optical amplifier board – In the case of the Raman board, you can set optical interface parameters only when the laser is disabled. NOTE
After the commissioning, you must set the Laser Status parameter to On. NOTE
In the case of the inter-board 1+1 protection and client-side protection realized by the SCS board, the lasers on the active and standby OTUs on the client side are open and closed respectively in the case of normal operation. You must not enable the disabled laser manually. Otherwise, services will be interrupted. NOTE
The parameter value of Laser Status is not restored automatically by the U2000. That is, after the board is replaced, the parameter value is set to the default value.
Relationship with Other Parameters To forcibly enable the laser on the U2000 during commissioning, you need to set the Automatic Laser Shutdown parameter to Disabled.
D.16 Line Rate Description The Line Rate parameter provides an option to set the OTN line rate.
Impact on the System If the values of the Line Rate parameter for the transmit and receive boards are different, services are unavailable.
Values Value Range
Default Value
Standard Mode, Speedup Mode
Vary with different boards
The following table lists the description of each value.
Issue 03 (2013-05-16)
Value
Description
Speedup Mode
Corresponds to OTU2e or OTU3e for the WDM side.
Standard Mode
Corresponds to OTU2 or OTU3 for the WDM side.
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2911
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines l
This parameter should be set according to the actual service mapping mode and the optical signal rate on the network.
l
When the WDM-side signal is OTU2e or OTU3e, or when the client-side signal is 10GE LAN and Port Mapping is set to Bit Transparent Mapping (11.1 G) for the client-side port, set this parameter to Speedup Mode. In any other cases, set this parameter to Standard Mode.
l
This parameter must be set to the same value at the transmit and receive ends.
l
The values of the Line Rate parameter for the upstream and downstream boards must be the same.
l
In the case of the LSXLR, LSXR, TN12ND2(Relay Mode), TN52ND2(Relay Mode), TN53ND2(Relay Mode), TN54NQ2(Relay Mode), TN53NQ2(Relay Mode), TN54NS3 (Relay Mode), TN55NS3(Relay Mode) boards, it is recommended that you set Enable Auto-Sensing to Enabled. In this case, the system supports the FEC Type and Line Rate of the received signals in auto-sensing mode, and thus no manual setting is required.
Configuration examples: l
Example 1: As shown in Figure D-1, the 52ND2 works as a regeneration board. – When the 12LSX transmits/receives 10GE LAN services on the client side and Port Mapping for the 12LSX is set to Bit Transparent Mapping (11.1 G). In this case, Line Rate for the 52ND2 must be set to Speedup Mode. – In other cases, Line Rate for the 52ND2 must be set to Standard Mode. Figure D-1 Example 1 M U X
D M U X
D M U X
M U X
12LSX
l
M U X
52ND2 D M U X
D M U X
12LSX
M U X
Example 2: As shown in Figure D-2, the 52ND2(1) and 52ND2(3) work as line boards, and the 52ND2 (2) works as a regeneration board. – When the 52TDX transmits/receives 10GE LAN services on the client side and Port Mapping for the 12LSX is set to Bit Transparent Mapping (11.1 G). In this case, Line Rate for all the 52ND2 must be set to Speedup Mode. – In other cases, Line Rate for all the 52ND2 must be set to Standard Mode.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2912
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Figure D-2 Example 2 M U X
52TDX
l
52ND2 (1)
D M U X
D M U X M U X
M U X
52ND2 (2)
D M U X
D M U X M U X
52ND2 (3)
52TDX
Example 3: As shown in Figure D-3, the 54NS3(1) and 54NS3(3) work as line boards, and the 54NS3 (2) works as a regeneration board. – When the 52TQX transmits/receives 10GE LAN services on the client side and Port Mapping for the 12LSX is set to Bit Transparent Mapping (11.1 G). In this case, Line Rate for all the 54NS3 must be set to Speedup Mode. – In other cases, Line Rate for all the 54NS3 must be set to Standard Mode.
Figure D-3 Example 3 M U X
52TQX
54NS3 (1)
D M U X
D M U X M U X
M U X
54NS3 (2)
D M U X
D M U X M U X
54NS3 (3)
52TQX
Relationship with Other Parameters l
LSXLR and LSXR: This parameter can be set only when Enable Auto-Sensing is set to Enabled.
l
TN12ND2, TN52ND2, TN53ND2(Relay Mode), TN54NQ2(Relay Mode), TN53NQ2 (Relay Mode), TN54NS3(Relay Mode), TN55NS3(Relay Mode): This parameter can be set only when Board Mode is set to Relay Mode and Enable Auto-Sensing is set to Disabled.
D.17 MAC Loopback Description The MAC Loopback parameter specifies the MAC loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the MAC layer and then sending and receiving signals over the path.
Impact on the System A MAC loopback is used for fault locating but can interrupt services. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2913
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Board
Value Range
Default Value
TN11LEM24
Inloop, Outloop, NonLoopback
Non-Loopback
TN11LEX4 TN54TEM28
The following table lists the description of each value. Value
Description
Non-Loopback
Indicates that no loopback is configured.
Inloop
Indicates that an internal loopback is configured for a port. In this case, the port receives packets sent by itself.
Outloop
Indicates that an internal loopback is configured for a port. In this case, the port receives packets sent by itself.
Configuration Guidelines l
For a GE optical port, GE electrical port, FE optical port, and FE electrical port, an MAC loopback can be set to only inloop.
l
For a 10GE optical port, an MAC loopback can be set to either inloop or outloop.
l
An inloop and an outloop cannot be configured at the same time at a port.
l
By default a loopback is released automatically after it is configured at a port for five minutes.
Relationship with Other Parameters This parameter is available only when the Enable Port parameter is set to Enabled.
D.18 Maxmun Fixed Pump Optical Power (dBm) (WDM Interface) Description The Maxmun Fixed Pump Optical Power (dBm) parameter is used to query the maximum pump optical power that an optical amplifier board can fix.
Impact on the System None.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2914
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Value Range
Default Value
5 dBm-30 dBm
l ROP: 28 dBm l CRPC: 26 dBm
Configuration Guidelines None.
Relationship with Other Parameters If the configured value of Fixed Pump Optical Power (dBm) is larger than the value of Max. Fixed Pump Optical Power (dBm), the board might work abnormally.
D.19 Minmun Fixed Pump Optical Power (dBm) (WDM Interface) Description The Minmun Fixed Pump Optical Power (dBm) parameter is used to query the minimum pump optical power that an optical amplifier board can fix.
Impact on the System None.
Values Value Range
Default Value
5 dBm-30 dBm
20 dBm
Configuration Guidelines None.
Relationship with Other Parameters If the configured value of Fixed Pump Optical Power (dBm) is smaller than the value of Min. Fixed Pump Optical Power (dBm), the board might work abnormally.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2915
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.20 Max. Packet Length (WDM Interface) Description The Max. Packet Length parameter sets and queries the maximum packet length supported by a board and is applicable to the boards supporting Ethernet services. Applicable to the client side of the optical transponder board.
Impact on the System For OptiX OSN 8800/6800/3800 l
A board may transparently transmit FE, GE, or 10GE services by encapsulating them in GFP-T format. when the length of a data packet is greater than the preset Max. Packet Length, this data packet will still be transparently transmitted.
l
In case of transmission of GE or 10GE services in the GFP-F format, when the length of a data packet is greater than the preset Max. Packet Length, the data packet is discarded.
Values For OptiX OSN 8800/6800/3800 Value Range
Default Value
1518-9600
9600
Configuration Guidelines None.
Relationship with Other Parameters When Service Type is GE or Port Mapping is MAC Transparent Mapping(10.7G) and the length of a data packet is greater than the preset Max. Packet Length, the data packet is discarded. When Service Type is GE(GFP-T) or Port Mapping is Bit Transparent Mapping(11.1G), and the length of a data packet is greater than the preset Max. Packet Length, this data packet will still be transparently transmitted.
D.21 Maximum Frame Length Description Maximum Frame Length (Ethernet Port Attribute) parameter specifies the maximum transmission unit (MTU). Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2916
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Impact on the System This parameter specifies the maximum length of a frame traversing a port. When the length of a frame exceeds the specified maximum frame length, the frame will be discarded or the service will be interrupted.
Values Board Name
Value Range
Default Value
Unit
TN11LEM24
1518-9600
1522
Byte
TN11LEX4 TN54TEM28
Configuration Guidelines Set this parameter based on the actual service configurations. It is recommended to set this parameter to a value that is equal to or greater than the maximum length of a frame that users want to transmit.
Relationship with Other Parameters This parameter is available only when the Enabled/Disabled parameter is set to Enabled.
D.22 Nominal Gain (dB) (WDM Interface) Description The Nominal Gain (dB) parameter specifies the desired gain of the signal optical power. This parameter is used to indicate the relative value between the optical power of output signals and the optical power of input signals, namely, the amplifying multiple of the signal optical power.
Impact on the System Modifying this parameter directly affects the output power of all wavelengths passing through the amplifier board.
Values l
Issue 03 (2013-05-16)
OptiX OSN 6800, OptiX OSN 3800 and OptiX OSN 8800
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2917
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Value Range
Default Value
HBA: 29dB
The specific value is related to the module.
OAU101: 20dB to 31dB, continuously tunable OAU102: 20dB to 31dB, continuously tunable OAU103: 24dB to 36dB, continuously tunable OAU105: 23dB to 34dB, continuously tunable OBU101: 20dB OBU103: 23dB OBU104: 17dB OBU205: 23dB RAU1: l G.652 fibers: 19dB to 33dB l LEAF fibers: 19dB to 35dB l G.653 fibers: 19dB to 35dB l TWRS fibers: 19dB to 35dB l TW-C fibers: 19dB to 35dB l TWPLUS fibers: 19dB to 35dB l SMFLS fibers: 19dB to 35dB l G.656 fibers: 19dB to 35dB l G.654A fibers: 19dB to 33dB l TERA_LIGHT fibers: 19dB to 35dB l G.654B fibers: 19dB to 29dB RAU2: l G.652 fibers: 30dB to 41dB l LEAF fibers: 32dB to 43dB l G.653 fibers: 32dB to 43dB l TWRS fibers: 32dB to 43dB l TW-C fibers: 32dB to 43dB l TWPLUS fibers: 32dB to 43dB l SMFLS fibers: 32dB to 43dB l G.656 fibers: 32dB to 43dB l G.654A fibers: 30dB to 41dB l TERA_LIGHT fibers: 32dB to 43dB l G.654B fibers: 27dB to 37dB TD20: 23dB
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2918
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines l
Huawei provides many types of OAU boards. The different gain ranges of an OAU board of the same type are applicable to different application scenarios. For example, the gain range of the OAU101/02 is 20 dB to 31 dB. The gain range from 20 dB to 26 dB is applicable to the application scenarios with the dispersion compensation module (DCM). The gain range from 26 dB to 31 dB is applicable to the application scenarios without the DCM.
l
The gain range of the OAU103 is 24 dB to 36 dB and is mainly used in long-span links. The gain range from 24 dB to 30 dB is used when the DCM is accessed. The gain range from 31 dB to 36 dB is not recommended when the DCM is accessed.
l
Nominal gain of a board = Maximum gain of a board - Insertion loss between the TDC and RDC. The range of the nominal gain is related to the input optical power.
l
If the intermediate insertion loss exceeds the maximum intermediate insertion loss of a board, the board gain may not reach the nominal gain. In this case, the board locks the gain according to the intermediate insertion loss.
Relationship with Other Parameters The gain queried on the U2000 namely, the actually amplified signal optical power by the optical amplifier board, or the actual gain measured through a meter may be different from the configured nominal gain, because it is affected by device performance. This is because the optical amplifier board actually locks the per-channel power instead of the total power. Noises are generated when the power is amplified by the EDFA and the noise power is at a certain level. In the case of high input power, the impact from the noise is small and the gain of the total power is close to the per-channel gain. In the case of low input power, however, the impact from the noise cannot be neglected. The total output power equals the sum of the signal optical power and the noise power. The noise power and signal optical power can be assimilated because of an increase in total gain. This is normal. In the case of the OptiX OSN 6800 and OptiX OSN 3800, you can obtain the value range of the Nominal Gain parameter of a board by querying the corresponding Upper Nominal Gain Threshold (dB) and Lower Nominal Gain Threshold (dB) parameters.
D.23 Non-Autonegotiation Flow Control Mode Description Non-Autonegotiation Flow Control Mode is selected when a port works in nonautonegotiation mode.
Impact on the System Non-autonegotiation flow control cannot take effect if this parameter is set incorrectly.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2919
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values Board
Value Range
Default Value
TN11LEM24
Disabled, Enable Symmetric Flow Control, Send Only, Receive Only
Disable
TN11LEX4 TN54TEM28
The following table lists the description of each value. Value
Description
Disabled
Disables port flow control at both the transmit and receive ends.
Enable Symmetric Flow Control
Enables symmetric flow control frames (allows transmission and receiving) in non-autonegotiation mode.
Send Only
Enables only transmission of flow control frames in nonautonegotiation mode.
Receive Only
Enables only receiving of flow control frames in nonautonegotiation mode.
Configuration Guidelines Set this parameter properly according to actual service configurations.
Relationship with Other Parameters This parameter is available only when the working mode of an Ethernet port is Nonautonegotiation mode.
D.24 Optical Interface Attenuation Ratio (dB)(WDM Interface) Description The Optical Interface Attenuation Ratio (dB) parameter sets the optical power attenuation of a board channel so that the optical power of the output signals at the transmit end is within the preset range.
Impact on the System None.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2920
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Values For OptiX OSN 8800/6800/3800 Value Range
Default Value
Unit
Min. Attenuation Ratio Max. Attenuation Ratio
Max. Attenuation Ratio
dB
Configuration Guidelines l
Optical multiplexer unit and optical demultiplexer unit – Before the commissioning, the attenuation ratio of each channel must be preset.
l
Other board – The attenuation adjustment amplitude should not be very large. – It should be controlled within ± 2 dB compared with the original attenuation every time the attenuation is adjusted in a new project. – During the expansion of a project or during maintenance, however, the attenuation adjustment amplitude should be controlled within ± 0.5 dB compared with the original attenuation when the attenuation is adjusted.
Relationship with Other Parameters You can obtain the value range of this parameter of a board by querying the corresponding Max. Attenuation Rate (dB) and Min. Attenuation Rate (dB) parameters.
D.25 PHY Loopback Description The PHY Loopback parameter specifies the PHY loopback state at an Ethernet port. With this parameter, users can test whether equipment runs normally by creating a looped path at the PHY layer and then sending and receiving signals over the path.
Impact on the System A PHY loopback is used for fault locating but interrupts services. When this parameter is set to Inloop, the MAC Loopback parameter is automatically set to Non-Loopback. When the MAC Loopback parameter is set to Inloop, this parameter is automatically set to Non-Loopback.
Values Board
Value Range
Default Value
TN11LEM24
Non-Loopback, Inloop
Non-Loopback
TN11LEX4 TN54TEM28
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2921
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
The following table lists the description of each value. Value
Description
Non-Loopback
Indicates that no loopback is configured.
Inloop
Indicates that an internal loopback is configured for a port. In this case, the port receives packets sent by itself.
Configuration Guidelines l
For a GE optical port, a PHY loopback can be set to only inloop; for a GE electrical port, a PHY loopback can be set to either inloop or outloop.
l
For a 10GE optical port, a PHY loopback can be set to either inloop or outloop.
l
For an FE optical port, a PHY loopback can be set to only inloop; for an FE electrical port, a PHY loopback can be set to either inloop or outloop.
l
An inloop and an outloop cannot be configured at the same time at a port.
l
By default, a loopback is released automatically after it is configured at a port for five minutes.
Relationship with Other Parameters This parameter is available only when the Enable Port parameter is set to Enabled.
D.26 Planned Band Type (WDM Interface) Description The Planned Band Type parameter sets the band type of the current working wavelength.
Impact on the System The configured logical band must be consistent with the actual physical band. Otherwise, a WAVEDATA_MIS alarm is reported.
Values Value Range
Default Value
C, CWDM
-
The following table lists the description of each value.
Issue 03 (2013-05-16)
Value
Description
C
Indicates that the current working band is C band. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2922
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Value
Description
CWDM
Indicates that the current working band is CWDM band.
Configuration Guidelines None.
Relationship with Other Parameters None.
D.27 Planned Wavelength No./Wavelength (nm)/Frequency (THz) (WDM Interface) Description The Planned Wavelength No./Wavelength (nm)/Frequency (THz) parameter sets the wavelength number, wavelength and frequency of the current optical interface on the WDM side of a board.
Impact on the System If the wavelength is incorrectly set, the downstream services may not be normally received.
Values C band Value Range
Default Value
Unit
192.10 to 1196.05 (wavelength spacing: 50 GHz)
-
THz
Value Range
Default Value
Unit
1271 to 1611(wavelength spacing: 20 nm)
-
nm
CWDM band
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2923
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines l
In the case of the OTUs with a fixed wavelength, set the actual wavelength of the wavelength conversion board.
l
In the case of the OTUs with a variable wavelength, set the wavelength according to network wavelength planning.
l
The same wavelength must be used for a service in the receive and the transmit directions.
l
If a service travels through multiple regeneration stations, it is recommended that these regeneration sections use the same wavelength.
l
It is recommended that the active and standby channels use the same wavelength when the inter-board channel protection or client-side path protection is configured.
l
The configured logical wavelength must be consistent with the actual physical wavelength. Otherwise, a WAVEDATA_MIS alarm is reported.
l
In the case of the optical tunable transponders, this parameter directly changes the physical wavelength but cannot change the band.
l
In the case of the optical untunable transponders, this parameter can change the logical wavelength only.
l
For the OptiX OSN 8800, OptiX OSN 6800 and OptiX OSN 3800: Table D-1 lists the wavelengths available for the CWDM system. Table D-1 Nominal central wavelengths of the CWDM system Wavelengt h No.
Wavelength (nm)
Wavelength No.
Wavelength (nm)
11
1471
15
1551
12
1491
16
1571
13
1511
17
1591
14
1531
18
1611
Relationship with Other Parameters None.
D.28 Port Mapping (WDM Interface) Description The Port Mapping parameter sets and queries the mapping mode of a port service.
Impact on the System None.
Values For OptiX OSN 8800/6800/3800 Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2924
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Value Range
Default Value
Bit Transparent Mapping (11.1 G), MAC Transparent Mapping (10.7 G)
Vary with different boards
The following table lists the description of each value. Value
Description
Bit Transparent Mapping (11.1 G)
10GE LAN client signals are mapped into OTU2e signals by increasing the OTU frame frequency. This mapping method guarantees a desired FEC coding gain and correction capability. However, this method generates a line rate of 11.1 Gbit/s, which is higher than the standard rate of OTU2 signals.
MAC Transparent Mapping (10.7 G)
10GE LAN client signals are encapsulated using the GFP-F method and are mapped into OTU2 signals using 10GE MAC frames. This mapping method guarantees a desired FEC coding gain and correction capability and generates a line rate of 10.71 Gbit/s.
Bit Transparent Mapping (10.7 G)
10GE LAN client signals are mapped into OTU2 signals using certain FEC fields of standard OTU frames. In this mapping method, some FEC fields are used to transmit signals. Therefore, the FEC or AFEC coding gain of the signals and FEC correction capability are somewhat reduced. This method generates a line rate of 10.71 Gbit/s.
Configuration Guidelines For OptiX OSN 8800/6800/3800 l
Services other than 10GE LAN do not require configuring the port mapping mode.
l
"Bit Transparent Mapping (11.1 G)" and "Bit Transparent Mapping (10.7 G)" meet customer requirement for transparent bit transport of 10GE LAN signals. If a 10GE LAN signal is directly mapped into an OTU frame by means of bit transparent mapping, the 10GE LAN signal will overflow the OTU frame. Thus, to solve this problem, certain AFEC fields are occupied by the 10GE LAN signal. This is why the AFEC encoding gain is low and AFEC correction capability is comparatively poor for the signals in the AFEC field. In the "Bit Transparent Mapping (11.1 G)" mode, transmission of signals are achieved by increasing the OTU frame frequency. This ensures the encoding gain and correction capability of FEC. In this mode, however, the bit rate is higher than the standard bit rate of OTU2 signals.
l
"MAC Transparent Mapping (10.7G)" is specific to transparent transmission of 10GE MAC frames as required by customers. In this port mapping mode, a 10GE LAN signal is encapsulated in the GFP-F format and then mapped into a standard OTU frame. This mode supports transparent transmission of only client 10GE MAC frames. In this mode, the signals are in standard OTU2 frames. In addition, the FEC/AFEC code pattern is applicable
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2925
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
to 10GE LAN services in this mode. Originally, the FEC/AFEC code pattern is intended for 10G SDH services. l
The port mapping modes of the upstream and downstream board must be the same.
Relationship with Other Parameters For OptiX OSN 8800/6800/3800 l
Relationship with the Line Rate parameter: – Set the parameter to Standard Mode when the value of this parameter is MAC Transparent Mapping (10.7 G), or Bit Transparent Mapping (10.7 G). – Set the Line Rate parameter to Speedup Mode when the value of this parameter is Bit Transparent Mapping (11.1 G).
l
Relationship with the FEC Mode parameter: – When the parameter value is changed from MAC Transparent Mapping (10.7 G) or Bit Transparent Mapping (11.1 G) to Bit Transparent Mapping (10.7 G), FEC Mode automatically changes to AFEC. NOTE
Users can also manually set the FEC Mode parameter based on the actual network requirements.
– When the parameter value is changed from Bit Transparent Mapping (10.7 G) to Bit Transparent Mapping (11.1 G) or MAC Transparent Mapping (10.7 G), FEC Mode remains unchanged.
D.29 PRBS Test Status (WDM Interface) Description The PRBS Test Status parameter sets the pseudo-random binary sequence (PRBS) test status of a board. Applicable to the WDM side and client side of the optical transponder board.
Impact on the System The PRBS test belongs to the fault diagnosis function and affects channel services. After the PRBS test is started, the services on the corresponding port are interrupted.
Values Value Range
Default Value
Enabled, Disabled
Disabled
The following table lists the description of each value.
Issue 03 (2013-05-16)
Value
Description
Enabled
Indicates enabling the PRBS test. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2926
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Value
Description
Disabled
Indicates disabling the PRBS test.
Configuration Guidelines The PRBS test is only used for deployment commissioning. Set this parameter to Enabled during network-wide commissioning and to Disabled after the deployment.
Relationship with Other Parameters Different boards support different optical interface channels. After the command of enabling the PRBS test is issued, an error is returned in case the optical interface channels do not support the PRBS test.
D.30 Rated Optical Power (dBm) (WDM Interface) Description The Rated Optical Power (dBm) parameter provides an option to set and query the per-channel rated optical power. It is a reference value for automatic adjustment of the optical power. When the optical amplifier unit and ROADM unit are used in a network, this parameter is available for the optical amplifier unit. The value can be set or queried.
Impact on the System When the automatic adjustment of the optical power is enabled, this parameter affects the budget of the optical power on the optical channel of the system.
Values Value Range
Default Value
Unit
-30.0-30.0
The specific value is related to the board
dBm
Configuration Guidelines l
The rated input and output optical power should be configured according to the actual configurable input and output range of the optical amplifier unit and should be the same as the input and output values measured when the optical amplifier unit runs normally.
Relationship with Other Parameters None. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2927
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
D.31 SD Trigger Condition (WDM Interface) Description The SD Trigger Condition parameter sets the relevant alarms of certain optical interfaces or channels of a board as SD switching trigger conditions of the protection group in which this OTU board resides. Applicable to the client side of the optical transponder board.
Impact on the System After this parameter is set, set SD Trigger Condition of the protection group in which the board resides to Enabled. When the board receives alarms such as B1_SD, the system regards the received alarms of the board as the switching trigger condition of the protection group. As a result, switching occurs in the protection group.
Values For OptiX OSN 8800/6800/3800 Value Range
Default Value
B1_SD, OTUk_DEG, ODUk_PM_DEG, None
None
The following table lists the description of each value. Parameter Value
Remarks
B1_SD
Regeneration section (B1) signal degrade.
OTUk_DEG
OTUk signal degrade.
ODUk_PM_DEG
ODUk_PM signal degrade.
None
No condition is configured for SD switching.
Configuration Guidelines When SD switching is used against a small number of bit errors, the switching is rapidly performed. Select the proper alarms as the switching trigger conditions depending on the service status. The alarms, which can be selected as switching trigger conditions, at certain optical interfaces and channels of a board vary with the board type. If one optical interface supports various services, all the three alarms can be set as the SD switching conditions. When the service type is changed, the board automatically counts the corresponding bit errors and reports an SD alarm according to the actual service type. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2928
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Relationship with Other Parameters None.
D.32 Service Mode (WDM Interface) Description Service Mode: Specifies the service mode for a board.
Impact on the System None.
Values For the L4G, LDGS, LDGD, and LQG boards: Value Range
Default Value
OTN, SDH
OTN
For the ND2, NQ2, and NS2 boards: Value Range
Default Value
ODU0, ODU1, ODU2, Automatic
Automatic
For the NS3 board: Value Range
Default Value
ODU0, ODU1, ODU2, Mix, Automatic
Automatic
For the LQM, TN12LQMD, TN12LQMS, TOM, THA, TOA, LOA, TTX and TQM boards:
Issue 03 (2013-05-16)
Value Range
Default Value
Client Mode, OTN Mode
Client Mode
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2929
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines l
For the L4G, LDGS, LDGD, and LQG boards: Set the line-side service modes of the local and remote boards to the same value. When the local board is connected to an SDH service board on non-WDM equipment, set the line-side service mode to SDH.
l
For the LQM, LQMD, LQMS, TOM, THA, TOA, LOA, TTX and TQM boards: When the board is enabled to receive an OTN service on the client side, set this parameter to OTN Mode. For any other client service types, set this parameter to Client Mode.
Relationship with Other Parameters None.
D.33 Input Power Loss Threshold (dBm) (WDM Interface) Description The Input Power Loss Threshold (dBm) parameter queries the threshold value of the input optical power, which can trigger a board to generate an optical power loss (MUT_LOS) alarm. When the actual input optical power is lower than this threshold value, the board reports the MUT_LOS alarm. The alarm can be queried.
Impact on the System This parameter is used to determine whether the input optical power is lost for the protection board, optical multiplexer unit and optical demultiplexer unit. If the optical power is lost, the relevant alarm is reported. This facilitates fault diagnosis. When the optical amplifier boards work in the gain locking mode, this parameter triggers the boards to report the MUT_LOS alarm if the optical power is lost.
Values Optical protection unit Value Range
Default Value
Unit
-35.0 to -10.0
-
dBm
Value Range
Default Value
Unit
-46.0 to -23.0
-
dBm
Optical supervisory channel unit
For optical multiplexer unit, optical demultiplexer unit and amplifier board, the value can be queried through the system. Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2930
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
Configuration Guidelines l
Protection board – The default value is usually recommended, namely, -35 dB. – In special cases, you can set this parameter to any value within the allowed range according to the actual situation.
Relationship with Other Parameters None.
D.34 Variance Threshold Between Primary and Secondary Input Power (dB) (WDM Interface) Description The Variance Threshold Between Primary and Secondary Input Optical Power (dB) parameter provides an option to set the optical power variance threshold of the primary and secondary optical interfaces of a board. When the threshold is reached, signal fail (SF) occurs. When the variance between the primary and secondary optical power exceeds the threshold, the optical switch switches services to the channel with better optical power. The configured value can be queried. The value can be set or queried.
Impact on the System l
In the OptiX OSN 8800, OptiX OSN 6800, OptiX OSN 3800, this parameter functions as the SF switching threshold reference value for optical line protection (OLP), OTU + OLP/ DCP intra-board 1+1 protection and OLP/DCP client-side 1+1 protection.
l
During the judgment of switching conditions, if the absolute value of the variance between primary and secondary input power reaches the SF switching threshold, the SF switching occurs. This parameter is used to ensure the service quality and enable services to work in the channels with better signals.
l
If the variance between the primary and secondary optical power exceeds the value of this parameter, the POWER_DIFF_OVER alarm is generated. After the threshold is modified, the corresponding alarm threshold also changes.
Values Value Range
Default Value
Unit
0, 3.0 - 8.0
5
dB
Configuration Guidelines l
Issue 03 (2013-05-16)
When the parameter value is 0, only LOS alarms are used as switching trigger conditions. The input power difference between the working and protection channels does not trigger a switching event. Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2931
OptiX OSN 8800/6800/3800 Hardware Description
D Parameter Reference
l
It is recommended to set the threshold to 5 dB.
l
In special cases, the threshold can be adjusted according to the actual situation.
l
When the variance between the primary and secondary optical power reaches 5 dB, you can properly increase the threshold if the services in the channel with lower optical power are still normal. When the variance between the primary and secondary optical power is far lower than 5 dB, you need to decrease the threshold properly if SF occurs.
Relationship with Other Parameters None.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2932
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
E
Glossary
Numerics 1+1 backup
A backup method in which two components mirror each other. If the active component goes down, the standby component takes over services from the active component to ensure that the system service is not interrupted.
1000BASE-T
An Ethernet specification that uses the twisted pair cable with the transmission speed as 1000 Mbit/s and the transmission distance as 100 meters.
3R
reshaping, retiming, regenerating
A AC
alternating current
ACL
See access control list.
ADM
add/drop multiplexer
ADSL
See asymmetric digital subscriber line.
AGC
automatic gain control
AIS
alarm indication signal
ALC link
A piece of end-to-end configuration information, which exists in the equipment (single station) as an ALC link node. Through the ALC function of each node, it fulfills optical power control on the line that contains the link.
ALS
See automatic laser shutdown.
ANSI
See American National Standards Institute.
APE
See automatic power equilibrium.
APS
automatic protection switching
ASE
amplified spontaneous emission
ASIC
See application-specific integrated circuit.
ATM
asynchronous transfer mode
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2933
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
American National Standards Institute (ANSI)
An organization that defines U.S standards for the information processing industry.
access control list (ACL)
A list of entities, together with their access rights, which are authorized to access a resource.
access layer
A layer that connects the end users (or last mile) to the ISP network. The access layer devices are cost-effective and have high-density interfaces. In an actual network, the access layer includes the devices and cables between the access points and the UPEs.
active/standby switchover
A troubleshooting technology. When an active device becomes faulty, services and control functions are automatically switched over to the standby device to ensure the normal running of the services and functions.
alarm cable
A cable used to transmit visual or audio alarms.
alarm cascading
The method of cascading alarm signals from several subracks or cabinets.
alarm output
Node or other signals that are sent by an alarm controller to peripheral devices when an alarm is reported.
alarm suppression
A method to suppress alarms for the alarm management purpose. Alarms that are suppressed are no longer reported from NEs.
application-specific integrated circuit (ASIC)
A special type of chip that starts out as a nonspecific collection of logic gates. Late in the manufacturing process, a layer is added to connect the gates for a specific function. By changing the pattern of connections, the manufacturer can make the chip suitable for many needs.
asymmetric digital A technology for transmitting digital information at a high bandwidth on existing phone subscriber line (ADSL) lines to homes and businesses. Unlike regular dialup phone service, ADSL provides continuously-available, "always on" connection. ADSL is asymmetric in that it uses most of the channel to transmit downstream to the user and only a small part to receive information from the user. ADSL simultaneously accommodates analog (voice) information on the same line. ADSL is generally offered at downstream data rates from 512 kbit/s to about 6 Mbit/s. attenuation
Reduction of signal magnitude or signal loss, usually expressed in decibels.
attenuator
A device used to increase the attenuation of an Optical Fiber Link. Generally used to ensure that the signal at the receive end is not too strong.
automatic laser shutdown (ALS)
A technique (procedure) to automatically shutdown the output power of laser transmitters and optical amplifiers to avoid exposure to hazardous levels.
automatic power equilibrium (APE)
A function to automatically equalize channel optical power at the transmitter end, ensuring a required optical power flatness and OSNR at the receiver end.
B B/S
browser/server
BBER
background block error ratio
BC
boundary clock
BDI
See backward defect indication.
BGP
Border Gateway Protocol
BIOS
See basic input/output system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2934
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
BIP
See bit interleaved parity.
BIP-8
See bit interleaved parity-8.
BITS
See building integrated timing supply.
BOM
bill of materials
BPDU
See bridge protocol data unit.
BPSK
See binary phase shift keying.
BRAS
See broadband remote access server.
BWS
backbone wavelength division multiplexing system
backbone network
A network that forms the central interconnection for a connected network. The communication backbone for a country is WAN. The backbone network is an important architectural element for building enterprise networks. It provides a path for the exchange of information between different LANs or subnetworks. A backbone can tie together diverse networks in the same building, in different buildings in a campus environment, or over wide areas. Generally, the backbone network's capacity is greater than the networks connected to it.
backplane
An electronic circuit board containing circuits and sockets into which additional electronic devices on other circuit boards or cards can be plugged.
backward defect indication (BDI)
A function that the sink node of a LSP, when detecting a defect, uses to inform the upstream end of the LSP of a downstream defect along the return path.
bandwidth
A range of transmission frequencies a transmission line or channel can carry in a network. In fact, the bandwidth is the difference between the highest and lowest frequencies in the transmission line or channel. The greater the bandwidth, the faster the data transfer rate.
basic input/output system (BIOS)
Firmware stored on the computer motherboard that contains basic input/output control programs, power-on self test (POST) programs, bootstraps, and system setting information. The BIOS provides hardware setting and control functions for the computer.
binary phase shift keying (BPSK)
2-phase modulation for carrier based on binary baseband signal. In this modulation mode, the binary character 0 represents phase 0 of the carrier, and character 1 represents the phase 180. The phase of character 0 is 0, and the phase of character 1 needs to be specified. This is an absolute phase shift mode that uses different phases to represent digital information.
bit
The smallest unit of information handled by a hardware component. One bit expresses a 1 or a 0 in a binary numeral, or a true or a false logical condition, and is represented physically by an element such as a high or low voltage at one point in a circuit or a small spot on a disk magnetized one way or the other. A single bit conveys little information a human would consider meaningful. A group of eight bits, however, makes up a byte, which can be used to represent many types of information, such as a letter of the alphabet, a decimal digit, or other character.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2935
OptiX OSN 8800/6800/3800 Hardware Description
bit interleaved parity (BIP)
E Glossary
A method of error monitoring. With even parity, the transmitting equipment generates an X-bit code over a specified portion of the signal in such a manner that the first bit of the code provides even parity over the first bit of all X-bit sequences in the covered portion of the signal, the second bit provides even parity over the second bit of all X-bit sequences within the specified portion, and so forth. Even parity is generated by setting the BIP-X bits so that an even number of 1s exist in each monitored partition of the signal. A monitored partition comprises all bits in the same bit position within the X-bit sequences in the covered portion of the signal. The covered portion includes the BIP-X.
bit interleaved parity-8 Consists of a parity byte calculated bit-wise across a large number of bytes in a transmission transport frame. Divide a frame is into several blocks with 8 bits (one byte) (BIP-8) in a parity unit and then arrange the blocks in matrix. Compute the number of "1" or "0" over each column. Then fill a 1 in the corresponding bit for the result if the number is odd, otherwise fill a 0. bit/s
See bits per second.
bits per second (bit/s)
A rate at which the individual bits are transmitted through a communication link or circuit. Its unit can be bit/s, kbit/s, and Mbit/s.
bridge
A device that connects two or more networks and forwards packets among them. Bridges operate at the physical network level. Bridges differ from repeaters because bridges store and forward complete packets, while repeaters forward all electrical signals. Bridges differ from routers because bridges use physical addresses, while routers use IP addresses.
bridge protocol data unit (BPDU)
Data messages exchanged across switches within an extended LAN that uses a spanning tree protocol (STP) topology. BPDU packets contain information on ports, addresses, priorities, and costs, and they ensure that the data reaches its intended destination. BPDU messages are exchanged across bridges to detect loops in a network topology. These loops are then removed by shutting down selected bridge interfaces and placing redundant switch ports in a backup, or blocked, state.
broadband remote access server (BRAS)
A new type of access gateway for broadband networks. As a bridge between backbone networks and broadband access networks, BRAS provides methods for fundamental access and manages the broadband access network. It is deployed at the edge of network to provide broadband access services, convergence, and forwarding of multiple services, meeting the demands for transmission capacity and bandwidth utilization of different users. BRAS is a core device for the broadband users' access to a broadband network.
broadcast
A means of delivering information to all members in a network. The broadcast range is determined by the broadcast address.
broadcast address
A network address in computer networking that allows information to be sent to all nodes on a network, rather than to a specific network host.
building integrated timing supply (BITS)
In the situation of multiple synchronous nodes or communication devices, one can use a device to set up a clock system on the hinge of telecom network to connect the synchronous network as a whole, and provide satisfactory synchronous base signals to the building integrated device. This device is called BITS.
bus
A path or channel for signal transmission. The typical case is that, the bus is an electrical connection that connects one or more conductors. All devices that are connected to a bus, can receive all transmission contents simultaneously.
byte
A unit of computer information equal to eight bits.
C Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2936
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
CAR
committed access rate
CBR
See constant bit rate.
CE
See customer edge.
CES
See circuit emulation service.
CPRI
See common public radio interface.
CPU
See central processing unit.
CRC
See cyclic redundancy check.
CSF
Client Signal Fail
CSMA/CD
See carrier sense multiple access with collision detection.
CV
connectivity verification
CWDM
See coarse wavelength division multiplexing.
cabinet
Free-standing and self-supporting enclosure for housing electrical and/or electronic equipment. It is usually fitted with doors and/or side panels which may or may not be removable.
carrier sense multiple access with collision detection (CSMA/CD)
Carrier sense multiple access with collision detection (CSMA/CD) is a computer networking access method in which: l
A carrier sensing scheme is used.
l
A transmitting data station that detects another signal while transmitting a frame, stops transmitting that frame, transmits a jam signal, and then waits for a random time interval before trying to send that frame again.
central processing unit The computational and control unit of a computer. The CPU is the device that interprets and executes instructions. The CPU has the ability to fetch, decode, and execute (CPU) instructions and to transfer information to and from other resources over the computer's main data-transfer path, the bus. chain network
One type of network that all network nodes are connected one after one to be in series.
circuit emulation service (CES)
A function with which the E1/T1 data can be transmitted through ATM networks. At the transmission end, the interface module packs timeslot data into ATM cells. These ATM cells are sent to the reception end through the ATM network. At the reception end, the interface module re-assigns the data in these ATM cells to E1/T1 timeslots. The CES technology guarantees that the data in E1/T1 timeslots can be recovered to the original sequence at the reception end.
client trail
A lower level trail in a structure where trails of different levels have an inclusion relation. For example, a trail of a certain level contains multiple trails of lower levels.
clock source
A device that provides standard time for the NTP configuration.
clock synchronization
A process of synchronizing clocks, in which the signal frequency traces the reference frequency, but the start points do not need to be consistent. This process is (also known as frequency synchronization).
clock tracing
The method of keeping the time on each node synchronized with a clock source in the network.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2937
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
coarse wavelength division multiplexing (CWDM)
A signal transmission technology that multiplexes widely-spaced optical channels into the same fiber. CWDM spaces wavelengths at a distance of several nm. CWDM does not support optical amplifiers and is applied in short-distance chain networking.
collection
A process of prompting a customer to pay outstanding bills.
common public radio interface (CPRI)
A common standard of the key internal interface between the REC and the RE of the wireless base station. This standard was established by Huawei, Ericsson, NEC, Siemens, and Nortel in June 2003. It aims at standardizing the baseband and RF interface. The CPRI has a set of mature standards, which advance the standard and equipment. The major feature of the CPRI is that baseband is separated from RF to reduce the cost of engineering, equipment room, and equipment.
configuration data
A command file defining hardware configurations of an NE. With this file, an NE can collaborate with other NEs in a network. Therefore, configuration data is the key factor that determines the operation of an entire network.
connection point
A reference point where the output of a trail termination source or a connection is bound to the input of another connection, or where the output of a connection is bound to the input of a trail termination sink or another connection. The connection point is characterized by the information which passes across it. A bidirectional connection point is formed by the association of a contradirectional pair.
consistency check
A function that is used to check the consistency of service data and resource data between two softswitches that have the dual homing relation. This ensures the consistency of service data and resource data between the softswitches.
constant bit rate (CBR) A kind of service categories defined by the ATM forum. CBR transfers cells based on the constant bandwidth. It is applicable to service connections that depend on precise clocking to ensure undistorted transmission. control VLAN
A VLAN that transmits only protocol packets.
convergence layer
A "bridge" between the access layer and the core layer. The convergence layer provides the convergence and forwarding functions for the access layer. It processes all the traffic from the access layer devices, and provides the uplinks to the core layer. Compared with the access layer, the convergence layer devices should have higher performance, fewer interfaces and higher switching rate. In the real network, the convergence layer refers to the network between UPEs and PE-AGGs.
cross-connection
The connection of channels between the tributary board and the line board, or between line boards inside the NE. Network services are realized through the cross-connections of NEs.
customer edge (CE)
A part of the BGP/MPLS IP VPN model that provides interfaces for directly connecting to the Service Provider (SP) network. A CE can be a router, switch, or host.
cyclic redundancy check (CRC)
A procedure used to check for errors in data transmission. CRC error checking uses a complex calculation to generate a number based on the data transmitted. The sending device performs the calculation before performing the transmission and includes the generated number in the packet it sends to the receiving device. The receiving device then repeats the same calculation. If both devices obtain the same result, the transmission is considered to be error free. This procedure is known as a redundancy check because each transmission includes not only data but extra (redundant) error-checking values.
D DAPI
Issue 03 (2013-05-16)
destination access point identifier
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2938
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
DBPS
distributed board protect system
DC
direct current
DC-C
See DC-return common (with ground).
DC-I
See DC-return isolate (with ground).
DC-return common (with ground) (DC-C)
A power system, in which the BGND of the DC return conductor is short-circuited with the PGND on the output side of the power supply cabinet and also on the line between the output of the power supply cabinet and the electric equipment.
DC-return isolate (with A power system, in which the BGND of the DC return conductor is short-circuited with ground) (DC-I) the PGND on the output side of the power supply cabinet and is isolated from the PGND on the line between the output of the power supply cabinet and the electric equipment. DCC
See data communications channel.
DCM
See dispersion compensation module.
DCN
See data communication network.
DGD
differential group delay
DLAG
See distributed link aggregation group.
DRDB
dynamic random database
DRZ
differential phase return to zero
DSLAM
See digital subscriber line access multiplexer.
DSP
See digital signal processor.
DVB-ASI
digital video broadcast-asynchronous serial interface
DWDM
See dense wavelength division multiplexing.
data communication network (DCN)
A communication network used in a TMN or between TMNs to support the data communication function.
data communications channel (DCC)
The data channel that uses the D1-D12 bytes in the overhead of an STM-N signal to transmit information on the operation, management, maintenance, and provisioning (OAM&P) between NEs. The DCC channel composed of bytes D1-D3 is referred to as the 192 kbit/s DCC-R channel. The other DCC channel composed of bytes D4-D12 is referred to as the 576 kbit/s DCC-M channel.
dense wavelength division multiplexing (DWDM)
The technology that utilizes the characteristics of broad bandwidth and low attenuation of single mode optical fiber, employs multiple wavelengths with specific frequency spacing as carriers, and allows multiple channels to transmit simultaneously in the same fiber.
digital signal processor A microprocessor designed specifically for digital signal processing, generally in real (DSP) time. digital subscriber line access multiplexer (DSLAM)
A network device, usually situated in the main office of a telephone company, that receives signals from multiple customer Digital Subscriber Line (DSL) connections and uses multiplexing techniques to put these signals on a high-speed backbone line.
discrete service
The cross-connection that exists on an NE but cannot form trails on the network management system.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2939
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
dispersion compensation module (DCM)
A type of module that contains dispersion compensation fibers to compensate for the dispersion of the transmitting fiber.
distributed link aggregation group (DLAG)
A board-level port protection technology that detects unidirectional fiber cuts and negotiates with the opposite port. In the case of a link down failure on a port or hardware failure on a board, services are automatically switched to the slave board, thereby achieving 1+1 protection for the inter-board ports.
dual feed and selective A channel used to transmit monitoring data on an optical transmission network. The receiving monitoring data is transmitted on the data communications channel as part of the overhead of the service signal. dual-ended switching
A protection method in which switching is performed at both ends of a protected entity, such as a connection or path, even if a unidirectional failure occurs.
E E-LAN
See Ethernet local area network.
E-Line
See Ethernet line.
E1
An European standard for high-speed data transmission at 2.048 Mbit/s. It provides thirty-two 64 kbit/s channels. A time division multiplexing frame is divided in to 32 timeslots numbered from 0 to 31. Timeslot 0 is reserved for frame synchronization, and timeslot 16 is reserved for signaling transmission. The rest 30 timeslots are use as speech channels. Each timeslot sends or receives an 8-bit data per second. Each frame sends or receives 256-bit data per second. 8000 frames will be sent or received per second. Therefore the line data rate is 2.048 Mbit/s.
ECC
See embedded control channel.
EDFA
See erbium-doped fiber amplifier.
EEPROM
See electrically erasable programable read-only memory.
EMI
See electromagnetic interference.
EPL
See Ethernet private line.
EPLAN
See Ethernet private LAN service.
EPLD
See erasable programmable logical device.
EPON
See Ethernet passive optical network.
ERPS
Ethernet ring protection switching
ES
edge server
ESC
See electric supervisory channel.
ESCON
See enterprise system connection.
ESD
electrostatic discharge
ESN
See equipment serial number.
ETS
European Telecommunication Standards
ETSI
See European Telecommunications Standards Institute.
EVOA
electrical variable optical attenuator
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2940
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
EVPL
See Ethernet virtual private line.
EVPLAN
See Ethernet virtual private LAN service.
EXP
See experimental bits.
Ethernet
A LAN technology that uses the carrier sense multiple access with collision detection (CSMA/CD) media access control method. The Ethernet network is highly reliable and easy to maintain. The speed of an Ethernet interface can be 10 Mbit/s, 100 Mbit/s, 1000 Mbit/s, or 10,000 Mbit/s.
Ethernet line (E-Line)
A type of Ethernet service that is based on a point-to-point EVC (Ethernet virtual connection).
Ethernet local area network (E-LAN)
A type of Ethernet service that is based on a multipoint-to-multipoint EVC (Ethernet virtual connection).
Ethernet passive optical network (EPON)
A passive optical network based on Ethernet. It is a new generation broadband access technology that uses a point-to-multipoint structure and passive fiber transmission. It supports upstream/downstream symmetrical rates of 1.25 Gbit/s and a reach distance of up to 20 km. In the downstream direction, the bandwidth is shared based on encrypted broadcast transmission for different users. In the upstream direction, the bandwidth is shared based on TDM. EPON meets the requirements for high bandwidth.
Ethernet private LAN service (EPLAN)
A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer networks. This service is carried over dedicated bandwidth between multipoint-tomultipoint connections.
Ethernet private line (EPL)
A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer networks. This service is carried over dedicated bandwidth between point-to-point connections.
Ethernet virtual private LAN service (EVPLAN)
A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer networks. This service is carried over shared bandwidth between multipoint-tomultipoint connections.
Ethernet virtual private line (EVPL)
A type of Ethernet service provided by SDH, PDH, ATM, or MPLS server layer networks. This service is carried over shared bandwidth between point-to-point connections.
European Telecommunications Standards Institute (ETSI)
A standards-setting body in Europe. Also the standards body responsible for GSM.
eDQPSK
enhanced differential quadrature phase shift keying
eSFP
enhanced small form-factor pluggable
egress
The egress LER. The group is transferred along the LSP consisting of a series of LSRs after the group is labeled.
electric supervisory channel (ESC)
A technology that implements communication among all the nodes and transmission of monitoring data in an optical transmission network. The monitoring data of ESC is introduced into DCC service overhead and is transmitted with service signals.
electrically erasable A type of EPROM that can be erased with an electrical signal. It is useful for stable programable read-only storage for long periods without electricity while still allowing reprograming. EEPROMs memory (EEPROM) contain less memory than RAM, take longer to reprogram, and can be reprogramed only a limited number of times before wearing out.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2941
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
electromagnetic interference (EMI)
Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the performance of electronics/electrical equipment.
embedded control channel (ECC)
A logical channel that uses a data communications channel (DCC) as its physical layer to enable the transmission of operation, administration, and maintenance (OAM) information between NEs.
encapsulation
A technology for layered protocols, in which a lower-level protocol accepts a message from a higher-level protocol and places it in the data portion of the lower-level frame. Protocol A's packets have complete header information, and are carried by protocol B as data. Packets that encapsulate protocol A have a B header, an A header, followed by the information that protocol A is carrying. Note that A could equal to B, as in IP inside IP.
encryption
A function used to transform data so as to hide its information content to prevent it's unauthorized use.
enterprise system connection (ESCON)
A path protocol that connects the host to various control units in a storage system. Enterprise system connection is a serial bit stream transmission protocol that operates a rate of 200 Mbit/s.
equalization
A method of avoiding selective fading of frequencies. Equalization can compensate for the changes of amplitude frequency caused by frequency selective fading.
equipment serial number (ESN)
A string of characters that identify a piece of equipment and ensures correct allocation of a license file to the specified equipment. It is also called "equipment fingerprint".
erasable programmable logical device (EPLD)
A logical array device which can be used to implement the required functions by programming the array. In addition, a user can modify and program the array repeatedly until the program meets the requirement.
erbium-doped fiber amplifier (EDFA)
An optical device that amplifies optical signals. This device uses a short optical fiber doped with the rare-earth element, Erbium. The signal to be amplified and a pump laser are multiplexed into the doped fiber, and the signal is amplified by interacting with doping ions. When the amplifier passes an external light source pump, it amplifies the optical signals in a specific wavelength range.
experimental bits (EXP)
A field in the MPLS packet header, three bits long. This field is always used to identify the CoS of the MPLS packet.
extended ID
The number of the subnet to which an NE belongs, used to identify different network segments in a wide area network (WAN). Together, the ID and extended ID form the physical ID of the NE.
eye pattern
An oscilloscope display in which a digital data signal from a receiver is repetitively sampled and applied to the vertical input, while the data rate is used to trigger the horizontal sweep. It is so called because, for several types of coding, the pattern looks like a series of eyes between a pair of rails.
F FC
See fiber channel.
FCS
free cooling system
FDB
See forwarding database.
FDDI
See fiber distributed data interface.
FE
fast Ethernet
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2942
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
FEC
See forward error correction.
FICON
See Fiber Connect.
FOADM
fixed optical add/drop multiplexer
FPGA
See field programmable gate array.
FTP
File Transfer Protocol
Fiber Connect (FICON)
A new generation connection protocol that connects the host to various control units. It carries a single byte command protocol through the physical path of fiber channel, and provides a higher transmission rate and better performance than ESCON.
fault alarm
A type of alarm caused by hardware and/or software faults, for example, board failure, or by the exception that occurs in major functions. After handling, a fault alarm can be cleared, upon which the NE reports a recovery alarm. Fault alarms are of higher severity than event alarms.
fiber channel (FC)
A high-speed transport technology used to build SANs. FC is primarily used for transporting SCSI traffic from servers to disk arrays, but it can also be used on networks carrying ATM and IP traffic. FC supports single-mode and multi-mode fiber connections, and can run on twisted-pair copper wires and coaxial cables. FC provides both connection-oriented and connectionless services.
fiber distributed data interface (FDDI)
A standard developed by the American National Standards Institute (ANSI) for highspeed fiber-optic LANs. FDDI provides specifications for transmission rates of 100 megabits per second on token ring networks.
field programmable gate array (FPGA)
A semi-customized circuit that is used in the Application Specific Integrated Circuit (ASIC) field and developed based on programmable components. FPGA remedies many of the deficiencies of customized circuits, and allows the use of many more gate arrays.
forced switching
The action of switching traffic signals between a working channel and protection channel. The switching occurs even if the channel to which traffic is being switched is faulty or an equal or higher priority switching command is in effect.
forward error correction (FEC)
A bit error correction technology that adds correction information to the payload at the transmit end. Based on the correction information, the bit errors generated during transmission can be corrected at the receive end.
forwarding database (FDB)
A type of database that Includes entries for guiding multicast data forwarding. There are Layer 2 FDB and Layer 3 FDB. The Layer 2 FDB refers to the MAC table, which provides information about the MAC address and outbound interface and guides Layer 2 forwarding. The Layer 3 FDB refers to the ARP table, which provides information about the IP address and outbound interface and guides Layer 3 forwarding.
G GCC
general communication channel
GE
Gigabit Ethernet
GFP
See Generic Framing Procedure.
GMP
Group Map Protocol
GMPLS
generalized multiprotocol label switching
GNE
See gateway network element.
GPON
gigabit-capable passive optical network
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2943
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
GPS
See Global Positioning System.
Generic Framing Procedure (GFP)
A framing and encapsulated method that can be applied to any data type. GFP is defined by ITU-T G.7041.
Global Positioning System (GPS)
A global navigation satellite system that provides reliable positioning, navigation, and timing services to users worldwide.
gain
The difference between the optical power from the input optical interface of the optical amplifier and the optical power from the output optical interface of the jumper fiber, which expressed in dB.
gateway
A device that connects two network segments using different protocols. It is used to translate the data in the two network segments.
gateway network element (GNE)
An NE that serves as a gateway for other NEs to communicate with a network management system.
H HD-SDI
high definition serial digital interface
HSDPA
See High Speed Downlink Packet Access.
High Speed Downlink Packet Access (HSDPA)
A modulating-demodulating algorithm put forward in 3GPP R5 to meet the requirement for asymmetric uplink and downlink transmission of data services. It enables the maximum downlink data service rate to reach 14.4 Mbit/s without changing the WCDMA network topology.
handle
A component of the panel. It is used to insert or remove boards in and out of slots.
hardware loopback
A connection mode in which a fiber jumper is used to connect the input optical interface of a board to the output optical interface of the board to achieve signal loopback.
hop
A network connection between two distant nodes. For Internet operation a hop represents a small step on the route from one main computer to another.
hot patch
A patch that is used to repair a deficiency in the software or add a new feature to a program without restarting the software and interrupting the service. For the equipment using the built-in system, a hot patch can be loaded, activated, confirmed, deactivated, deleted, or queried.
I IANA
See Internet Assigned Numbers Authority.
IC
See integrated circuit.
ICMP
See Internet Control Message Protocol.
ID
See identity.
IEEE
See Institute of Electrical and Electronics Engineers.
IETF
Internet Engineering Task Force
IGMP
See Internet Group Management Protocol.
IMA
See inverse multiplexing over ATM.
IP
Internet Protocol
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2944
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
IP address
A 32-bit (4-byte) binary number that uniquely identifies a host connected to the Internet. An IP address is expressed in dotted decimal notation, consisting of the decimal values of its 4 bytes, separated with periods; for example, 127.0.0.1. The first three bytes of the IP address identify the network to which the host is connected, and the last byte identifies the host itself.
IP subnet
A special submap used to identify an IP network segment. It is displayed as the submap icon in the topological view.
IPA
See intelligent power adjustment.
IPv4
See Internet Protocol version 4.
IPv6
See Internet Protocol version 6.
IS-IS
See Intermediate System to Intermediate System.
ISDN
integrated services digital network
ISO
International Organization for Standardization
ITU-T
International Telecommunication Union-Telecommunication Standardization Sector
Institute of Electrical and Electronics Engineers (IEEE)
A professional association of electrical and electronics engineers based in the United States, but with membership from numerous other countries. The IEEE focuses on electrical, electronics, and computer engineering, and produces many important technology standards.
Intermediate System to A protocol used by network devices (routers) to determine the best way to forward Intermediate System datagram or packets through a packet-based network. (IS-IS) Internet Assigned Numbers Authority (IANA)
A department operated by the IAB. IANA delegates authority for IP address-space allocation and domain-name assignment to the NIC and other organizations. IANA also maintains a database of assigned protocol identifiers used in the TCP/IP suite, including autonomous system numbers.
Internet Control Message Protocol (ICMP)
A network layer protocol that provides message control and error reporting between a host server and an Internet gateway.
Internet Group Management Protocol (IGMP)
One of the TCP/IP protocols for managing the membership of Internet Protocol multicast groups. It is used by IP hosts and adjacent multicast routers to establish and maintain multicast group memberships.
Internet Protocol version 4 (IPv4)
The current version of the Internet Protocol (IP). IPv4 utilizes a 32bit address which is assigned to hosts. An address belongs to one of five classes (A, B, C, D, or E) and is written as 4 octets separated by periods and may range from 0.0.0.0 through to 255.255.255.255. Each IPv4 address consists of a network number, an optional subnetwork number, and a host number. The network and subnetwork numbers together are used for routing, and the host number is used to address an individual host within the network or subnetwork.
Internet Protocol version 6 (IPv6)
An update version of IPv4, which is designed by the Internet Engineering Task Force (IETF) and is also called IP Next Generation (IPng). It is a new version of the Internet Protocol. The difference between IPv6 and IPv4 is that an IPv4 address has 32 bits while an IPv6 address has 128 bits.
identity (ID)
The collective aspect of the set of characteristics by which a thing is definitively recognizable or known.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2945
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
indicator
Description of a performance feature collected from the managed devices by the performance collector.
integrated circuit (IC)
A combination of inseparable associated circuit elements that are formed in place and interconnected on or within a single base material to perform a microcircuit function.
intelligent power adjustment (IPA)
A technology that reduces the optical power of all the amplifiers in an adjacent regeneration section in the upstream to a safe level if the system detects the loss of optical signals on the link. IPA helps ensure that maintenance engineers are not injured by the laser escaping from a broken fiber or a connector that is not plugged in properly.
intersecting ring
More than two public nodes between two ring networks. The network is more complex if there are many intersecting nodes. Most devices support that two rings are intersected at two nodes.
inverse multiplexing over ATM (IMA)
A technique that involves inverse multiplexing and de-multiplexing of ATM cells in a cyclical fashion among links grouped to form a higher bandwidth logical link whose rate is approximately the sum of the link rates.
J jitter
The measure of short waveform variations caused by vibration, voltage fluctuations, and control system instability.
jumper
A connection wire for connecting two pins.
L L2 switching
The switching based on the data link layer.
L2VPN
Layer 2 virtual private network
L3VPN
Layer 3 virtual private network
LACP
See Link Aggregation Control Protocol.
LAG
See link aggregation group.
LAN
See local area network.
LAPD
link access procedure on the D channel
LB
See loopback.
LC
Lucent connector
LCAS
See link capacity adjustment scheme.
LCT
local craft terminal
LDP
Label Distribution Protocol
LED
See light emitting diode.
LMP
link management protocol
LOS
See loss of signal.
LP
logical port
LPT
link-state pass through
LSP
See label switched path.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2946
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
LSR
See label switching router.
LTC
loss of tandem connection
Layer 2 switching
A data forwarding method. In a LAN, a network bridge or 802.3 Ethernet switch transmits and distributes packet data based on the MAC address. Since the MAC address is at the second layer of the OSI model, this data forwarding method is called Layer 2 switching.
Link Aggregation Control Protocol (LACP)
A dynamic link aggregation protocol that improves the transmission speed and reliability. The two ends of the link send LACP packets to inform each other of their parameters and form a logical aggregation link. After the aggregation link is formed, LACP maintains the link status in real time and dynamically adjusts the ports on the aggregation link upon detecting the failure of a physical port.
label
A short identifier that is of fixed length and local significance. It is used to uniquely identify the FEC to which a packet belongs. It does not contain topology information. It is carried in the header of a packet and does not contain topology information.
label switched path (LSP)
A sequence of hops (R0...Rn) in which a packet travels from R0 to Rn through label switching mechanisms. A label-switched path can be chosen dynamically, based on common routing mechanisms or through configuration.
label switching router (LSR)
Basic element of an MPLS network. All LSRs support the MPLS protocol. The LSR is composed of two parts: control unit and forwarding unit. The former is responsible for allocating the label, selecting the route, creating the label forwarding table, creating and removing the label switch path; the latter forwards the labels according to groups received in the label forwarding table.
light emitting diode (LED)
A display and lighting technology used in almost every electrical and electronic product on the market, from a tiny on/off light to digital readouts, flashlights, traffic lights, and perimeter lighting. LEDs are also used as the light source in multimode fibers, optical mice, and laser printers.
line rate
The maximum packet forwarding capacity on a cable. The value of line rate equals the maximum transmission rate capable on a given type of media.
linear MSP
linear multiplex section protection
link aggregation group An aggregation that allows one or more links to be aggregated together to form a link (LAG) aggregation group so that a MAC client can treat the link aggregation group as if it were a single link. link capacity adjustment scheme (LCAS)
LCAS in the virtual concatenation source and sink adaptation functions provides a control mechanism to hitless increase or decrease the capacity of a link to meet the bandwidth needs of the application. It also provides a means of removing member links that have experienced failure. The LCAS assumes that in cases of capacity initiation, increases or decreases, the construction or destruction of the end-to-end path is the responsibility of the network and element management systems.
link group
According to some principles, links are divided into the set in the logical term. A set of links is called the link group. The division makes management more convenient.
link protection
Protection provided by the bypass tunnel for the link on the working tunnel. The link is a downstream link adjacent to the point of local repair (PLR). When the PLR fails to provide node protection, the link protection should be provided.
link status
The running status of a link, which can be Up, Down, backup, or unknown.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2947
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
loading
A process of importing information from the storage device to the memory to facilitate processing (when the information is data) or execution (when the information is program).
local area network (LAN)
A network formed by the computers and workstations within the coverage of a few square kilometers or within a single building, featuring high speed and low error rate. Current LANs are generally based on switched Ethernet or Wi-Fi technology and run at 1,000 Mbit/s (that is, 1 Gbit/s).
loopback (LB)
A troubleshooting technique that returns a transmitted signal to its source so that the signal or message can be analyzed for errors. The loopback can be a inloop or outloop.
loopback test
Self-test of chips, including internal and external loopback. Loopback test is used to test whether interfaces work normally.
loss of signal (LOS)
No transitions occurring in the received signal.
M MAC
mandatory access control
MAC address
A link layer address or physical address. It is six bytes long.
MADM
multiple add/drop multiplexer
MCA
multi-channel spectrum analyzer unit
MD5
See message digest algorithm 5.
MFAS
See multiframe alignment signal.
MIP
maintenance association intermediate point
MPLS
See Multiprotocol Label Switching.
MPLS TE
multiprotocol label switching traffic engineering
MPLS VPN
See multiprotocol label switching virtual private network.
MPLS-TP
See multiprotocol label switching transport profile.
MS
multiplex section
MSOH
multiplex section overhead
MSP
See multiplex section protection.
MSTP
See Multiple Spanning Tree Protocol.
MTU
See maximum transmission unit.
MUX
See multiplexer.
Multiple Spanning Tree Protocol (MSTP)
A protocol that can be used in a loop network. Using an algorithm, the MSTP blocks redundant paths so that the loop network can be trimmed as a tree network. In this case, the proliferation and endless cycling of packets is avoided in the loop network. The protocol that introduces the mapping between VLANs and multiple spanning trees. This solves the problem that data cannot be normally forwarded in a VLAN because in STP/ RSTP, only one spanning tree corresponds to all the VLANs.
Multiprotocol Label Switching (MPLS)
A technology that uses short tags of fixed length to encapsulate packets in different link layers, and provides connection-oriented switching for the network layer on the basis of IP routing and control protocols.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2948
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
main topology
A basic component of a human-machine interface. It is the default client interface of the NMS and intuitively displays the structure of a network, NEs on the network, subnets in the network as well as the NE communication and running status, reflecting the overall network running status.
management node
A management node consists of multiple document security management(DSM) servers (four at most) in an area. Management nodes are created so that the DSM management center can synchronize the department and account information of areas from each node and then deliver all information to all nodes, thus realizing across-system authorization and roaming access of security documents.
maximum transmission The largest packet of data that can be transmitted on a network. MTU size varies, unit (MTU) depending on the network—576 bytes on X.25 networks, for example, 1500 bytes on Ethernet, and 17,914 bytes on 16 Mbit/s token ring. Responsibility for determining the size of the MTU lies with the link layer of the network. When packets are transmitted across networks, the path MTU, or PMTU, represents the smallest packet size (the one that all networks can transmit without breaking up the packet) among the networks involved. member
A basic element for forming a dimension according to the hierarchy of each level. Each member represents a data element in a dimension. For example, January 1997 is a typical member of the time dimension.
mesh group
A group comprised of multiple MSDP peers, helping reducing the number of SA messages transmitted between these MSDP peers.
message digest algorithm 5 (MD5)
A hash function that is used in a variety of security applications to check message integrity. MD5 processes a variable-length message into a fixed-length output of 128 bits. It breaks up an input message into 512-bit blocks (sixteen 32-bit little-endian integers). After a series of processing, the output consists of four 32-bit words, which are then cascaded into a 128-bit hash number.
monitoring
A method that an inspector uses to inspect a service agent. By monitoring a service agent, an inspector can check each detailed operation performed by the service agent during the conversation and operate the GUI used by the service agent. The inspector helps the service agent to provide better service.
mounting ear
A piece of angle plate on a rack. The mounting ear has holes that can be used to fix network elements or components.
multicast
A process of transmitting data packets from one source to many destinations. The destination address of the multicast packet uses Class D address, that is, the IP address ranges from 224.0.0.0 to 239.255.255.255. Each multicast address represents a multicast group rather than a host.
multiframe alignment signal (MFAS)
A distinctive signal inserted into every multiframe or once into every n multiframes, always occupying the same relative position within the multiframe, and used to establish and maintain multiframe alignment.
multiplex section protection (MSP)
A function, which is performed to provide capability for switching a signal between and including two multiplex section termination (MST) functions, from a "working" to a "protection" channel.
multiplexer (MUX)
Equipment that combines a number of tributary channels onto a fewer number of aggregate bearer channels, the relationship between the tributary and aggregate channels being fixed.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2949
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
multiplexing
A procedure by which multiple lower order path layer signals are adapted into a higher order path or the multiple higher order path layer signals are adapted into a multiplex section.
multiprotocol label switching transport profile (MPLS-TP)
An extension to MPLS in terms of forwarding, OAM, reliability, NMS and control plane protocol standardized by IETF to provide sufficient transport functionality.
multiprotocol label switching virtual private network (MPLS VPN)
An Internet Protocol (IP) virtual private network (VPN) based on the multiprotocol label switching (MPLS) technology. It applies the MPLS technology for network routers and switches, simplifies the routing mode of core routers, and combines traditional routing technology and label switching technology. It can be used to construct the broadband Intranet and Extranet to meet various service requirements.
N NE Explorer
The main operation interface of the NMS, which is used to manage the telecommunication equipment. In the NE Explorer, a user can query, manage, and maintain NEs, boards, and ports.
NE ID
An ID that indicates a managed device in the network. In the network, each NE has a unique NE ID.
NE Panel
A graphical user interface, of the network management system, which displays subracks, boards, and ports on an NE. On the NE Panel, the user can complete most of the configuration, management and maintenance functions for an NE.
NNI
network node interface
NRZ
non-return to zero
NSAP
See network service access point.
NTP
Network Time Protocol
network layer
Layer 3 of the seven-layer OSI model of computer networking. The network layer provides routing and addressing so that two terminal systems are interconnected. In addition, the network layer provides congestion control and traffic control. In the TCP/ IP protocol suite, the functions of the network layer are specified and implemented by IP protocols. Therefore, the network layer is also called IP layer.
network segment
Part of a network on which all message traffic is common to all nodes; that is, a message broadcast from one node on the segment is received by all other nodes on the segment.
network service
A service that needs to be enabled at the network layer and maintained as a basic service.
network service access A network address defined by ISO, at which the OSI Network Service is made available point (NSAP) to a Network service user by the Network service provider. network storm
A phenomenon that occurs during data communication. To be specific, mass broadcast packets are transmitted in a short time; the network is congested; transmission quality and availability of the network decrease rapidly. The network storm is caused by network connection or configuration problems.
O O&M
operation and maintenance
OA
optical amplifier
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2950
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
OADM
See optical add/drop multiplexer.
OAM
See operation, administration and maintenance.
OAMS
Optical fiber line Automatic Monitoring System
OAU
See optical amplifier unit.
OC
ordinary clock
OC-3
optical carrier level 3
OCP
optical channel protection
OCS
optical core switching
OD
optical demultiplexing
ODB
optical duobinary
ODF
optical distribution frame
ODUk
optical channel data unit - k
OEQ
optical equalizer
OLA
optical line amplifier
OLP
See optical line protection.
OM
optical multiplexing
OMS
optical multiplexing section
ONT
See optical network terminal.
ONU
See optical network unit.
OPA
optical power adjust
OPU
See optical channel payload unit.
OPUk
optical channel payload unit - k
OSC
See optical supervisory channel.
OSI
open systems interconnection
OSN
optical switch node
OSNR
See optical signal-to-noise ratio.
OSPF
See Open Shortest Path First.
OTM
optical terminal multiplexer
OTN
optical transport network
OTS
See optical transmission section.
OTU
See optical transponder unit.
OTUk
optical channel transport unit - k
OWSP
optical wavelength shared protection
Open Shortest Path First (OSPF)
A link-state, hierarchical interior gateway protocol (IGP) for network routing that uses cost as its routing metric. A link state database is constructed of the network topology, which is identical on all routers in the area.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2951
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
operation, administration and maintenance (OAM)
A set of network management functions that cover fault detection, notification, location, and repair.
optical add/drop multiplexer (OADM)
A device that can be used to add the optical signals of various wavelengths to one channel and drop the optical signals of various wavelengths from one channel.
optical amplifier unit (OAU)
A board that is mainly responsible for amplifying optical signals. The OAU can be used in both the transmitting direction and the receiving direction.
optical channel payload A protection architecture that allows one wavelength to provide protection for multiple unit (OPU) services between different stations, saving wavelength resources and lowering costs. optical interface
A component that connects several transmit or receive units.
optical line protection (OLP)
A mechanism that protects line signals using the dual feeding and selective receiving principle, featuring single-ended switching.
optical network terminal (ONT)
A device that terminates the fiber optical network at the customer premises.
optical network unit (ONU)
A form of Access Node that converts optical signals transmitted via fiber to electrical signals that can be transmitted via coaxial cable or twisted pair copper wiring to individual subscribers.
optical signal-to-noise ratio (OSNR)
The ratio of signal power to noise power in a transmission link. OSNR is the most important index for measuring the performance of a DWDM system.
optical supervisory channel (OSC)
A technology that uses specific optical wavelengths to realize communication among nodes in optical transmission network and transmit the monitoring data in a certain channel.
optical switch
A passive component possessing two or more ports that selectively transmits, redirects, or blocks optical power in an optical fiber transmission line.
optical transmission section (OTS)
A section in the logical structure of an optical transport network (OTN). The OTS allows the network operator to perform monitoring and maintenance tasks between NEs.
optical transponder unit (OTU)
A device or subsystem that converts accessed client signals into a G.694.1/G.694.2compliant WDM wavelength.
orderwire
A channel that provides voice communication between operation engineers or maintenance engineers of different stations.
P P2MP
point-to-multipoint
P2P
See point-to-point service.
PC
personal computer
PCB
See printed circuit board.
PDH
See plesiochronous digital hierarchy.
PDL
See polarization-dependent loss.
PDU
See power distribution unit.
PE
See provider edge.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2952
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
PGND cable
A cable which connects the equipment and the protection grounding bar. Usually, one half of the cable is yellow, whereas the other half is green.
PHB
See per-hop behavior.
PID
photonics integrated device
PIN
See personal identification number.
PM
performance monitoring
PMD
polarization mode dispersion
PMU
power monitoring unit
POS
See packet over SDH/SONET.
POTS
See plain old telephone service.
PPP
Point-to-Point Protocol
PRBS
See pseudo random binary sequence.
PSI
payload structure identifier
PSN
See packet switched network.
PT
payload type
PTN
packet transport network
PTP
Precision Time Protocol
PTP clock
See Precision Time Protocol clock.
PVC
permanent virtual channel
PW
See pseudo wire.
PWE3
See pseudo wire emulation edge-to-edge.
Precision Time Protocol clock (PTP clock)
A type of high-decision clock defined by the IEEE 1588 V2 standard. The IEEE 1588 V2 standard specifies the precision time protocol (PTP) in a measurement and control system. The PTP protocol ensures clock synchronization precise to sub-microseconds.
packet loss
The discarding of data packets in a network when a device is overloaded and cannot accept any incoming data at a given moment.
packet over SDH/ SONET (POS)
A MAN and WAN technology that provides point-to-point data connections. The POS interface uses SDH/SONET as the physical layer protocol, and supports the transport of packet data (such as IP packets) in MAN and WAN.
packet switched network (PSN)
A telecommunications network that works in packet switching mode.
packet switching
A network technology in which information is transmitted by means of exchanging packets and the bandwidth of a channel can be shared by multiple connections.
paired slots
Two slots of which the overheads can be passed through by using the bus on the backplane.
per-hop behavior (PHB)
IETF Diff-Serv workgroup defines forwarding behaviors of network nodes as per-hop behaviors (PHB), such as, traffic scheduling and policing. A device in the network should select the proper PHB behaviors, based on the value of DSCP. At present, the IETF defines four types of PHB. They are class selector (CS), expedited forwarding (EF), assured forwarding (AF), and best-effort (BE).
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2953
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
personal identification A code used by a mobile user in conjunction with a SIM card to complete a call. number (PIN) phase
The relative position in time within a single period of a signal.
physical layer
Layer 1 in the Open System Interconnection (OSI) architecture; the layer that provides services to transmit bits or groups of bits over a transmission link between open systems and which entails electrical, mechanical and handshaking.
physical link
The link between two physical network elements (NEs). When the user creates NEs or refreshes the device status, the system automatically creates the physical link according to the topology structure information on the device. The remark information of a physical link can be modified, but the physical link cannot be deleted.
plain old telephone service (POTS)
The basic telephone service provided through the traditional cabling such as twisted pair cables.
plesiochronous digital hierarchy (PDH)
A multiplexing scheme of bit stuffing and byte interleaving. It multiplexes the minimum rate 64 kit/s into rates of 2 Mbit/s, 34 Mbit/s, 140 Mbit/s, and 565 Mbit/s.
point-to-point service (P2P)
A service between two terminal users. In P2P services, senders and recipients are terminal users.
polarization-dependent A measure of the peak-to-peak insertion loss or gain variation caused by a component loss (PDL) when stimulated by all possible polarization states. PDL is specified in dB. policy
A set of rules that are applied when the conditions for triggering an event are met.
port priority
The priority that is used when a port attaches tags to Layer 2 packets. Packets received on ports with higher priorities are forwarded preferentially.
power box
A direct current power distribution box at the upper part of a cabinet, which supplies power for the subracks in the cabinet.
power distribution unit A unit that performs AC or DC power distribution. (PDU) power module
The module that converts the external power input into the power supply for internal use. Power modules are classified into AC power modules and DC power modules.
power on
To start up a computer; to begin a cold boot procedure; to turn on the power
printed circuit board (PCB)
A board used to mechanically support and electrically connect electronic components using conductive pathways, tracks, or traces, etched from copper sheets laminated onto a non-conductive substrate.
private line
A line, such as a subscriber cable and trunk cable, which are leased by the telecommunication carrier and are used to meet the special user requirements.
protection path
A path in a protection group that transports services when a fault occurs on the working path.
protection service
A specific service that is part of a protection group and is labeled protection.
provider edge (PE)
A device that is located in the backbone network of the MPLS VPN structure. A PE is responsible for managing VPN users, establishing LSPs between PEs, and exchanging routing information between sites of the same VPN. A PE performs the mapping and forwarding of packets between the private network and the public channel. A PE can be a UPE, an SPE, or an NPE.
pseudo random binary A sequence that is random in the sense that the value of each element is independent of sequence (PRBS) the values of any of the other elements, similar to a real random sequence.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2954
OptiX OSN 8800/6800/3800 Hardware Description
pseudo wire (PW)
E Glossary
An emulated connection between two PEs for transmitting frames. The PW is established and maintained by PEs through signaling protocols. The status information of a PW is maintained by the two end PEs of a PW.
pseudo wire emulation An end-to-end Layer 2 transmission technology. It emulates the essential attributes of a edge-to-edge (PWE3) telecommunication service such as ATM, FR or Ethernet in a packet switched network (PSN). PWE3 also emulates the essential attributes of low speed time division multiplexing (TDM) circuit and SONET/SDH. The simulation approximates to the real situation. pulse
A variation above or below a normal level and a given duration in electrical energy.
Q QinQ
A layer 2 tunnel protocol based on IEEE 802.1Q encapsulation. It add a public VLAN tag to a frame with a private VLAN tag to allow the frame with double VLAN tags to be transmitted over the service provider's backbone network based on the public VLAN tag. This provides a layer 2 VPN tunnel for customers and enables transparent transmission of packets over private VLANs.
QoS
See quality of service.
quality of service (QoS) A commonly-used performance indicator of a telecommunication system or channel. Depending on the specific system and service, it may relate to jitter, delay, packet loss ratio, bit error ratio, and signal-to-noise ratio. It functions to measure the quality of the transmission system and the effectiveness of the services, as well as the capability of a service provider to meet the demands of users. R RADIUS
See Remote Authentication Dial In User Service.
RADIUS authentication
An authentication mode in which the BRAS sends the user name and the password to the RADIUS server by using the RADIUS protocol. The RADIUS server authenticates the user, and then returns the result to the BRAS.
RB
See radio bearer.
RDI
remote defect indication
RFC
See Request For Comments.
RJ
registered jack
RMON
See remote monitor.
ROADM
reconfigurable optical add/drop multiplexer
RSTP
See Rapid Spanning Tree Protocol.
RSVP
See Resource Reservation Protocol.
RTN
radio transmission node
RX
receive
RZ
return to zero
Rapid Spanning Tree Protocol (RSTP)
An evolution of the Spanning Tree Protocol (STP) that provides faster spanning tree convergence after a topology change. The RSTP protocol is backward compatible with the STP protocol.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2955
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
Remote Authentication A security service that authenticates and authorizes dial-up users and is a centralized Dial In User Service access control mechanism. RADIUS uses the User Datagram Protocol (UDP) as its (RADIUS) transmission protocol to ensure real-time quality. RADIUS also supports the retransmission and multi-server mechanisms to ensure good reliability. Request For Comments A document in which a standard, a protocol, or other information pertaining to the (RFC) operation of the Internet is published. The RFC is actually issued, under the control of the IAB, after discussion and serves as the standard. RFCs can be obtained from sources such as InterNIC. Resource Reservation Protocol (RSVP)
A protocol that reserves resources on every node along a path. RSVP is designed for an integrated services Internet.
radio bearer (RB)
The service provided by the Layer 2 for the transfer of user data between UE (User Equipment) and UTRAN (UMTS Terrestrial Radio Access Network).
reboot
To start the system again. Programs or data will be reloaded to all boards.
receiver sensitivity
The minimum acceptable value of mean received power at point Rn (a reference point at an input to a receiver optical connector) to achieve a 1x10-12 BER when the FEC is enabled.
regeneration
The process of receiving and reconstructing a digital signal so that the amplitudes, waveforms and timing of its signal elements are constrained within specified limits.
remote monitor (RMON)
A widely used network management standard defined by the IETF, and it enhances the MIB II standard greatly. It is mainly used to monitor the data traffic over a network segment or the entire network. RMON is completely based on the SNMP architecture, including the NMS and the Agent running on each network device.
report
A tool that displays data in a specific format to intuitively present service information.
resistance
The ability to impede (resist) the flow of electric current. With the exception of superconductors, all substances have a greater or lesser degree of resistance. Substances with very low resistance, such as metals, conduct electricity well and are called conductors. Substances with very high resistance, such as glass and rubber, conduct electricity poorly and are called nonconductors or insulators.
response
A message that is returned to the requester to notify the requester of the status of the request packet.
ring network
A network topology in which each node connects to exactly two other nodes, forming a circular pathway for signals.
router
A device on the network layer that selects routes in the network. The router selects the optimal route according to the destination address of the received packet through a network and forwards the packet to the next router. The last router is responsible for sending the packet to the destination host. Can be used to connect a LAN to a LAN, a WAN to a WAN, or a LAN to the Internet.
routing
The determination of a path that a data unit (frame, packet, message) traverses from source to destination.
routing table
A table that stores and updates the locations (addresses) of network devices. Routers regularly share routing table information to be up to date. A router relies on the destination address and on the information in the table that gives the possible routes--in hops or in number of jumps--between itself, intervening routers, and the destination. Routing tables are updated frequently as new information is available.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2956
OptiX OSN 8800/6800/3800 Hardware Description
rule
E Glossary
Rules define automatic management services or applications. Rules include triggering conditions and execution logic. Triggering conditions refer to the conditions for executing a rule and execution logic refers to a set of actions executed based on the rule.
S S-VLAN
service virtual local area network
SAN
storage area network
SAPI
source access point identifier
SD
See signal degrade.
SD-SDI
See standard definition-serial digital interface signal.
SDH
See synchronous digital hierarchy.
SDI
See serial digital interface.
SES
severely errored second
SESR
severely errored second ratio
SETS
SDH equipment timing source
SF
See signal fail.
SFP
small form-factor pluggable
SFTP
See Secure File Transfer Protocol.
SHDSL
See single-pair high-speed digital subscriber line.
SLA
See service level agreement.
SLM
signaling link management
SM
section monitoring
SMF
See single-mode fiber.
SNC
subnetwork connection
SNCP
subnetwork connection protection
SNCTP
subnetwork connection tunnel protection
SNMP
See Simple Network Management Protocol.
SONET
See synchronous optical network.
SPC
soft permanent connection
SRG
See shared risk group.
SRLG
shared risk link group
SSL
See Secure Sockets Layer.
SSM
See Synchronization Status Message.
STI
service trigger information
STM
synchronous transfer mode
STM-1
See Synchronous Transport Module level 1.
STM-16
Synchronous Transport Module level 16
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2957
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
STM-4
Synchronous Transport Module level 4
STM-N
Synchronous Transport Module level N
STP
Spanning Tree Protocol
STS
synchronous transport signal
Secure File Transfer Protocol (SFTP)
A network protocol designed to provide secure file transfer over SSH.
Secure Sockets Layer (SSL)
A security protocol that works at a socket level. This layer exists between the TCP layer and the application layer to encrypt/decode data and authenticate concerned entities.
Simple Network Management Protocol (SNMP)
A network management protocol of TCP/IP. It enables remote users to view and modify the management information of a network element. This protocol ensures the transmission of management information between any two points. The polling mechanism is adopted to provide basic function sets. According to SNMP, agents, which can be hardware as well as software, can monitor the activities of various devices on the network and report these activities to the network console workstation. Control information about each device is maintained by a management information block.
Synchronization Status A message that carries the quality levels of timing signals on a synchronous timing link. SSM messages provide upstream clock information to nodes on an SDH network or Message (SSM) synchronization network. Synchronous Synchronous transfer mode at 155 Mbit/s. Transport Module level 1 (STM-1) security
Protection of a computer system and its data from harm or loss. A major focus of computer security, especially on systems accessed by many people or through communication lines, is preventing system access by unauthorized individuals.
serial digital interface (SDI)
An interface that transmits data in a single channel in sequence.
serial port
An input/output location (channel) that sends and receives data to and from a computer's CPU or a communications device one bit at a time. Serial ports are used for serial data communication and as interfaces with some peripheral devices, such as mice and printers.
service data
The user and/or network information required for the normal functioning of services.
service level
The level of service quality of an evaluated party in a specified period, determined by an evaluating party.
service level agreement A service agreement between a customer and a service provider. SLA specifies the (SLA) service level for a customer. The customer can be a user organization (source domain) or another differentiated services domain (upstream domain). An SLA may include traffic conditioning rules which constitute a traffic conditioning agreement as a whole or partially. service protection
A measure that ensures that services can be received at the receive end.
shared risk group (SRG)
A group of resources that share a common risk component whose failure can cause the failure of all the resources in the group.
signal degrade (SD)
A signal indicating that associated data has degraded in the sense that a degraded defect condition is active.
signal fail (SF)
A signal indicating that associated data has failed in the sense that a near-end defect condition (non-degrade defect) is active.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2958
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
single-ended switching A protection mechanism that takes switching action only at the affected end of the protected entity in the case of a unidirectional failure. single-mode fiber (SMF)
A type of optical fiber through which only one type of optical signal with a fixed wave length can travel at a time. The inner diameter of the single-mode fiber is less than 10 microns. This type of fiber can transmit data over a long distance.
single-pair high-speed digital subscriber line (SHDSL)
A symmetric digital subscriber line technology developed from HDSL, SDSL, and HDSL2, which is defined in ITU-T G.991.2. The SHDSL port is connected to the user terminal through the plain telephone subscriber line and uses trellis coded pulse amplitude modulation (TC-PAM) technology to transmit high-speed data and provide the broadband access service.
smooth upgrade
Process of upgrading the system files without service interruption
span
The physical reach between two pieces of WDM equipment.
standard definitionserial digital interface signal (SD-SDI)
Standard definition video signal transported by serial digital interface.
static route
A route that cannot adapt to the change of network topology. Operators must configure it manually. When a network topology is simple, the network can work in the normal state if only the static route is configured. It can improve network performance and ensure bandwidth for important applications. Its disadvantage is as follows: When a network is faulty or the topology changes, the static route does not change automatically. It must be changed by the operators.
steady on
Pertaining to a state in which an indicator light is always illuminated and no flicker.
subnet
A type of smaller networks that form a larger network according to a rule, for example, according to different districts. This facilitates the management of the large network.
subnet mask
The technique used by the IP protocol to determine which network segment packets are destined for. The subnet mask is a binary pattern that is stored in the device and is matched with the IP address.
synchronous digital hierarchy (SDH)
A transmission scheme that follows ITU-T G.707, G.708, and G.709. SDH defines the transmission features of digital signals, such as frame structure, multiplexing mode, transmission rate level, and interface code. SDH is an important part of ISDN and BISDN.
synchronous optical network (SONET)
A high-speed network that provides a standard interface for communications carriers to connect networks based on fiber optical cable. SONET is designed to handle multiple data types (voice, video, and so on). It transmits at a base rate of 51.84 Mbit/s, but multiples of this base rate go as high as 2.488 Gbit/s.
T TCM
tandem connection monitor
TCP
See Transmission Control Protocol.
TCP/IP
Transmission Control Protocol/Internet Protocol
TD
transmit degrade
TDC
tunable dispersion compensator
TDM
See time division multiplexing.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2959
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
TF
transport format
TFTP
See Trivial File Transfer Protocol.
TIM
trail trace identifier mismatch
TL1
Transaction Language 1
TM
See terminal multiplexer.
TMN
See telecommunications management network.
TPS protection
The equipment level protection that uses one standby tributary board to protect N tributary boards. When a fault occurs on the working board, the SCC issues the switching command, and the payload of the working board can be automatically switched over to the specified protection board and the protection board takes over as the working board. After the fault is rectified, the service is automatically switched to the original board.
TSC
test system controller
TTI
trail trace identifier
TX
transmit
Transmission Control Protocol (TCP)
The protocol within TCP/IP that governs the breakup of data messages into packets to be sent using Internet Protocol (IP), and the reassembly and verification of the complete messages from packets received by IP. A connection-oriented, reliable protocol (reliable in the sense of ensuring error-free delivery), TCP corresponds to the transport layer in the ISO/OSI reference model.
Trivial File Transfer Protocol (TFTP)
A small and simple alternative to FTP for transferring files. TFTP is intended for applications that do not need complex interactions between the client and server. TFTP restricts operations to simple file transfers and does not provide authentication.
tangent ring
A concept borrowed from geometry. Two tangent rings have a common node between them. The common node often leads to single-point failures.
telecommunications management network (TMN)
A protocol model defined by ITU-T for managing open systems in a communications network. TMN manages the planning, provisioning, installation, and OAM of equipment, networks, and services.
terminal multiplexer (TM)
A device used at a network terminal either to multiplex multiple channels of low rate signals into one channel of high rate signals, or to demultiplex one channel of high rate signals into multiple channels of low rate signals.
threshold
A limitation on an amount, scale, or level. Changes will occur when a threshold is reached.
time division multiplexing (TDM)
A multiplexing technology. TDM divides the sampling cycle of a channel into time slots (TSn, n=0, 1, 2, 3…), and the sampling value codes of multiple signals engross time slots in a certain order, forming multiple multiplexing digital signals to be transmitted over one channel.
tolerance
Permissible degree of variation from a pre-set standard.
topology view
A basic component for the man-machine interface. The topology view directly displays the networking of a network as well as the alarm and communication status of each network element and subnet. The topology view reflects the basic running conditions of the network.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2960
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
traffic classification
A function that enables you to classify traffic into different classes with different priorities according to some criteria. Each class of traffic has a specified QoS in the entire network. In this way, different traffic packets can be treated differently.
transmission delay
The period from the time when a site starts to transmit a data frame to the time when the site finishes the data frame transmission. It consists of the transmission latency and the equipment forwarding latency.
transparent transmission
A process during which the signaling protocol or data is not processed in the content but encapsulated in the format for the processing of the next phase.
tunnel
A channel on the packet switching network that transmits service traffic between PEs. In VPN, a tunnel is an information transmission channel between two entities. The tunnel ensures secure and transparent transmission of VPN information. In most cases, a tunnel is an MPLS tunnel.
U UAT
See unavailable time event.
UNI
See user-to-network interface.
UPI
user payload identifier
UPM
uninterruptible power module
unavailable time event An event that is reported when the monitored object generates 10 consecutive severely (UAT) errored seconds. unicast
The process of sending data from a source to a single recipient.
unprotected
Pertaining to the transmission of services that are not protected. Unprotected services cannot be switched to the protection channel if the working channel is faulty or the service is interrupted, because protection is not configured.
user-to-network interface (UNI)
The interface between user equipment and private or public network equipment (for example, ATM switches).
V V-UNI
See virtual user-network interface.
VB
virtual bridge
VBR
See variable bit rate.
VC
See virtual container.
VCTRUNK
A virtual concatenation group applied in data service mapping, also called the internal port of a data service processing board.
VDSL2
See very-high-speed digital subscriber line 2.
VLAN
virtual local area network
VOA
variable optical attenuator
VPLS
See virtual private LAN service.
VPN
virtual private network
VPWS
See virtual private wire service.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2961
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
VRRP
See Virtual Router Redundancy Protocol.
VSI
See virtual switch instance.
Virtual Router Redundancy Protocol (VRRP)
A protocol designed for multicast or broadcast LANs such as an Ethernet. A group of routers (including an active router and several backup routers) in a LAN is regarded as a virtual router, which is called a backup group. The virtual router has its own IP address. The host in the network communicates with other networks through this virtual router. If the active router in the backup group fails, one of the backup routers in this backup group becomes active and provides routing service for the host in the network.
variable bit rate (VBR) One of the traffic classes used by ATM (Asynchronous Transfer Mode). Unlike a permanent CBR (Constant Bit Rate) channel, a VBR data stream varies in bandwidth and is better suited to non real time transfers than to real-time streams such as voice calls. very-high-speed digital An extension of the VDSL technology, which complies with ITU G.993.2, supports subscriber line 2 multiple spectrum profiles and encapsulation modes, and provides short-distance and (VDSL2) high-speed access solutions to the next-generation FTTx access service. view
The topological view that is presented in some rules. Customize the view according to requirements of every product and organize the data in the view displayed by the topology module. By default, the platform provides the physical view. The topology view can be planned according to the domain, maintenance relationship and so on.
virtual container (VC)
An information structure used to support path layer connections in the SDH. A VC consists of a payload and path overhead (POH), which are organized in a block frame structure that repeats every 125 μs or 500 μs.
virtual private LAN service (VPLS)
A type of point-to-multipoint L2VPN service provided over the public network. VPLS enables geographically isolated user sites to communicate with each other through the MAN/WAN as if they are on the same LAN.
virtual private wire service (VPWS)
A technology that bears Layer 2 services. VPWS emulates services such as ATM, FR, Ethernet, low-speed TDM circuit, and SONET/SDH in a PSN.
virtual switch instance An instance through which the physical access links of VPLS can be mapped to the (VSI) virtual links. Each VSI provides independent VPLS service. VSI has Ethernet bridge function and can terminate PW. virtual user-network interface (V-UNI)
A virtual user-network interface, works as an action point to perform service classification and traffic control in HQoS.
W WAN
wide area network
WDM
wavelength division multiplexing
WLAN
See wireless local area network.
WSS
wavelength selective switching
Web LCT
The local maintenance terminal of a transport network, which is located at the NE management layer of the transport network.
wireless local area network (WLAN)
A hybrid of the computer network and the wireless communication technology. It uses wireless multiple address channels as transmission media and carriers out data interaction through electromagnetic wave to implement the functions of the traditional LAN.
working service
A specific service that is part of a protection group and is labeled working.
Issue 03 (2013-05-16)
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2962
OptiX OSN 8800/6800/3800 Hardware Description
E Glossary
X XCS
cross-connect and synchronous timing board
Y Y.1731
Issue 03 (2013-05-16)
The OAM protocol introduced by the ITU-T. Besides the contents defined by IEEE802.1ag, ITU-T Recommendation Y.173 also defines the following combined OAM messages: Alarm Indication Signal (AIS), Remote Defect Indication (RDI), Locked Signal (LCK), Test Signal, Automatic Protection Switching (APS), Maintenance Communication Channel (MCC), Experimental (EXP), and Vendor Specific (VSP) for fault management and performance monitoring, such as frame loss measurement (LM), and delay measurement (DM).
Huawei Proprietary and Confidential Copyright © Huawei Technologies Co., Ltd.
2963