__________
__________
1. EVALAUTION OF MONORAIL BEAM
kPa kPa := 1000 1000Pa Pa
WEIGHT OF OF EQUIPMENT (6P-5031, 6P-5032 & 6P-5033) Wpump := ( 216kg 216kg + 970kg 970kg + 56kg) g
Weight of pump,
Wpump g
Wpump
= 12.18 12.18 kN
= 1.242 tonne
Therefore use a 1.5-tonne monorail MRc := 1.5tonne 1.5tonne g
Monorail capacity,
Weight of trolley +chain
TCwt := 89lbf
Maximum load,
:= MRc + TCwt
Pmax1
MRc
= 14.71 14.71 kN
TCwt
= 0.396 0.396 kN
Pmax1
= 15.106 15.106 kN
Impact factor for monorails,
IMF := 1.25
Transverse load factor
LFtrans := 0.2
Transverse load,
Hmax := LFtrans Pmax
Longitudinal load factor,
LFlong := 0.1
Longitudinal load,
Lmax := LFlong Pmax
φ := 0.9 Length,
Fy := 350MPa Ls
Fu := 420MPa
say
Hmax
= 3.04kN
Lmax
= 1.52kN
E := 2000 200000 00MP MPaa
:= 4.5m
1.1 PRELIMINARY SECTION SELECTION CRITERIA
∆ allow :=
Ix_reqd :=
Ls 500
∆allow = 9 mm
IMFPmax Ls 48E∆ allow
Maximum moment,
3
Ix_reqd
Mmax :=
7
= 2.00 2.004 4 × 10 mm
IMF1.5 IMF1.5 Pmax Ls 4
4
Mmax
P max := 15.2kN
= 32.06 32.063 3 kN m
Pmax
= 3.417 3.417 kip
Hmax
= 0.683 0.683 kip
Lmax
= 0.342 0.342 kip
Gs := 77000MPa
__________
__________
Material & Section Property S250x38 d := 254mm
Depth of section,
tw := 7.9mm
Thickness of web, Thickness of flange, 3
Js := 250 × 10 mm
tf := 12.5mm
4
6
4
3
3
Sy := 47.5 × 10 mm
3
3
Zy := 81.3 × 10 mm
Ix := 51.4 × 10 mm
9
Cw := 40.9 × 10 mm
6
Sx := 405 × 10 mm Zx := 465 × 10 mm
As := 4810mm
2
>Ix_reqd
rx := 103mm
Mr := 72.95kN m
ry := 24.1mm Ls
> Mmax
ry
Using a C200x17 on the top flange to limit weak axis deflection. As_C := 2170mm
2
Iy_SC
:= Iy + Ix_C
ry_SC
:=
Ls ry_SC
6
Ix_C := 13.5 × 10 mm
Iy_SC
Iy_SC As
+ As_C
= 93.121
6
Iy := 2.8 × 10 mm
4
7
= 1.63 × 10 mm
ry_SC
= 48.324 mm
< 200
1.2 CHECKING TENSION IN THE WEB
4
= 186.722
4
3
3
3
3
__________
f t
=
P
2 A
=
__________
P
P
=
(2t w )(3.5k ) (7k )t w
(Ref Q&A MSC Steel Interchange)
k := 37mm
Intersection of web and fillet,
1.5(IMF) f t :=
Tensile stress in the web,
From Steel tables
Pmax 2
tw3.5k
σ allow := min(0.9Fy , 0.85 × 0.9Fu)
Allowable stress,
(
Check_web_ten := if f t
f t
= 13.929 MPa σ allow = 315MPa
< σ allow , "Web OKAY" , "Web failure" )
= "Web OKAY"
Check_web_ten
1.3 CHECKING BENDING OF THE BOTTOM FLANGE
f b
=
M S
=
(eP / 4)
( )
2
e t f / 3
=
0.75 × P
(t )
2
f
(Ref Q&A MSC Steel Interchange) Bending stress in the flange,
f b :=
f b
(
Check_flg_bend := if f b Check_flg_bend
1.5(IMF) 0.75P max 2
tf
= 136.8 MPa
< σ allow , "Flange OKAY" , "Flange failure" )
= "Flange OKAY"
1.4 CHECKING SECTION FOR COMBINED BENDING AND TORSION
__________
f bt
=
M x S x
__________
+
M y
+
S y
M fl S y
2
Mx := 33.2kN m
My := 6.4kN m i := 3.35in
Dimension,
d
Distance, d1 :=
2
i
− tf −
f bt :=
d1 = 71.955mm
2
1.5( IMF) Hmax d1 d − tf
Mfl :=
(Ref Harrington Trolley Specs)
Ls Mfl
4 Mx Sx
+
My Sy
+
Mfl
(
Check_bend_tor := if f bt Check_bend_tor
f bt
Sy0.5
= 1.911 kNm
= 297.159MPa
< σ allow , "Section OKAY in bending and torsion" , "Section NOT OKAY in bending and torsion"
= "Section OKAY in bending and torsion"
1.5 DESIGN OF CRANE STOP Fy_angle
:= 300MPa
Allowable stress, Crane stop force, Moment,
σ allow_angle := 0.9F y_angle
CStop := max 2( IMF) Lmax , 0.1(IMF) Pmax
CStopM := 1.5
CStop 2
65mm
f bCStop
:=
CStopM Sleg :=
Section modulus of projecting leg,
Bending stress,
σ allow_angle = 270MPa
CStopM Sleg
CStop
= 3.8 kN
= 0.185 kNm
8mm ( 65mm) 6 f bCStop
2
Sleg
= 5633.333mm
= 32.885 MPa
Check_CStop_bend
:= if (f bCStop < σ allow_angle , "Angle OKAY" , "Angle failure" )
Check_CStop_bend
= "Angle OKAY"
3
)
__________
__________
1.6 CHECKING BOLTS IN TENSION Tensile capacity of M-20 bolts,
Tensile load on bolts,
Tbolt_cap
Wbolt_ten
:=
:= 141kN
1.5IMFP max 4
Wbolt_ten
= 7.125 kN
Check_ten_bolt
:= if ( Wbolt_ten < Tbolt_cap , "Bolts OKAY" , "Bolts fail in Tension" )
Check_ten_bolt
= "Bolts OKAY"
__________
__________
1.7 CHECKING BOLTS IN SHEAR Shear capacity of M-20 bolts,
Shear load on bolts,
Vbolt_shear
(
Check_shear_bolt := if V bolt_shear Check_shear_bolt
Vbolt_cap
= "Bolts OKAY"
:=
:= 113kN
1.5( IMF)
Lmax 4
2
2
+ Hmax
Vbolt_shear
= 1.593 kN
< Vbolt_cap , "Bolts OKAY" , "Bolts fail in Tension" )