ANNA UNIVERSITY - REGULATIONS 2013 - Engineering Mathematics - I Notes . Given by Prathyusha Institute of Technology And Management [PITAM] & www.rejinpaul.com . Website is useful for all En…Full description
Includes Solutions
100 Integral problems for the Extension 2 Mathematics Course. Written by James Coroneos.Full description
mathematics reviewerFull description
Civil EngFull description
tugas isbdDeskripsi lengkap
Uploaded from Google Docs
fitz
Agricultural Extension Book
math
Full description
Notes on Vortex Based Mathematics PDF , pdf version , universe vortex , the vortexFull description
Content covering the C.A.P.E Unit 2 Pure Mathematics syllabus. Links to video explanations are provided. Probability and Counting are not covered in this book.Full description
Maths
2017 dlpFull description
lot of examples are given in this book
march-2016Full description
Notes on Vortex Based Mathematics PDF , pdf version , universe vortex , the vortexFull description
6.2: Fundamental Trigonometric Identities sin²θ + cos²θ = 1 - Substitute sinθ / cosθ into unit circle equation - Dividing through by sin²θ sin²θ cos²θ 1 ------- + ------- = ------sin²θ sin²θ sin²θ
1 + cot²θ = cosec²θ
1 + tan²θ = sec²θ
When solving trigonometric proofs, always work from one side to the other until it equals the other side
- Dividing through by cos²θ sin²θ cos²θ 1 ------- + ------- = ------cos²θ cos²θ cos²θ 6.3: The Cosine Rule b² + c² - a² cos A = -------------2bc a² = b² + c² - (2bc.cos A)
Given 3 sides, asked for an angle Given 2 sides / 1 angle, asked for a side
? b
c b a
? A c
6.4: The Sine Rule
6.5: Sum and Difference of Angles (Extension 1) ~ sin (A + B) = sinA . cosB + cosA . sinB ~ sin (A – B) = sinA . cosB – cosA . sinB e.g: find the exact value of sin75º sin75º
~ tan (A + B) = tanA + tanB ------------------1 – tanA . tanB ~ tan (A - B) = tanA - tanB ------------------1 + tanA . tanB e.g: expand and simplify tan (θ + 45) – 1 tan (θ + 45) – 1
6.6: Ratios of Double Angles (Extension 1) Using the sum and difference of angles:
sin (A + B) = sinA . cosB + sinB . cosA - now, let B = A :. sin (A + A) = sinA . cosA + cosA . sinA sin2A = 2 (sinA . cosA)
cos (A + B) = cosA . cosB - sinA . sinB - now, let B = A :. cos (A + A) = cosA . cosA - sinA . sinA cos2A = cos²A - sin²A also, by substituting (1 - sin²A) for cos²A :. cos2A = 1 - sin²A - sin²A = 1 – 2sin²A Also, by substituting (1 - cos²A) for sin²A :. cos2A = cos²A – (1 - cos²A) = cos²A + cos²A – 1 = 2cos²A – 1
tan (A + B) = tanA + tanB ------------------1 – tanA . tanB
tanA ≠ ± 1
- now, let B = A :. tan (A + A) =
tanA + tanA -----------------1 – tanA . tanA
tan2A = 2tanA ----------1 - tan²A
X
6.7: The t = tan —(2 Let
X
t = tan —-( 2
) formula (Half-Angle Formula) )
Using the Double Angle Formula
sin2θ = 2 (sinθ . cosθ) Divide through by 2 θ :. sinθ = 2 (sin—2
6.9: Products as Sums and Differences (Extension 1)
b tan = --a
1 = --√3
=
Using the addition theorems: 1. sin (A + B) = (sinA . cosB) + (sinB . cosA) 2. sin (A – B) = (sinA . cosB) – (sinB . cosA) 3. cos (A + B) = (cosA . cosB) – (sinA . sinB) 4. cos (A – B) = (cosA . cosB) + (sinA . sinB) ~ Add 1 + 2 :. 2 (sinA . cosB) = sin (A + B) + sin (A – B)
5.
= sin (sum) + sin (difference) ~ Subtract 2 – 1 :. 2 (cosA . sinB) = sin (A + B) – sin (A – B)
6
= sin (sum) – sin (difference) ~ Add 3 + 4 :. 2 (cosA . cosB) = cos (A + B) + cos (A – B) = cos (sum) + cos (difference)
7.
~ Subtract 4 – 3 :. 2 (sinA . sinB) = cos (A – B) – cos (A + B) = cos (difference) – cos (sum)
6.10: Sums or Differences as Products (Extension 2)
8.
5.
.
Using the product theorems: 5. 2 (sinA . cosB) = sin (A + B) + sin (A – B) 6. 2 (cosA . sinB) = sin (A + B) – sin (A – B) 7. 2 (cosA . cosB) = cos (A + B) + cos (A – B) 8. 2 (sinA . sinB) = cos (A – B) – cos (A + B) ~ let U = (A + B);V = (A – B) U+V :. A = -------2
U-V B = -------2
Substitute values of U and V into 5 8 U+V U-V 9. sinU + sinV = 2sin -------- cos -------2 2 U–V U+V 10. sinU – sinV = 2sin -------- cos -------2 2 U+V U-V 11. cosU + cosV = 2cos -------- cos -------2 2