ACARA III VISKOSITA VISKOSI TAS S ZAT CAIR A. PELAKS PELAKSANA ANAAN AN PRAK PRAKTIK TIKUM UM 1. Tujuan juan Prak Prakti tiku kum m a. Menentukan Menentukan koefii koefiien en !ikoita !ikoita "kekenta#an "kekenta#an$$ %at &air 'er(aar 'er(aarkan kan )ukum )ukum Stoke. Stoke. '. Mema*ami a(an+a ,eekan +an, (ie'a'kan (ie'a'kan 'en(a 'er,erak (a#am f#ui(a atau %at &air. -. aktu ktu Pra Prakt ktik ikum um Sa'tu/ 0 Mei -12 3. Tem4 m4at at Pra Prakt ktik ikum um Lantai II/ La'oraturium 5iika 6aar/ 5aku#ta Matematika (an I#mu Pen,eta*uan A#am/ Uni!erita Mataram 7. ALA ALAT 6AN 6AN 7A)A 7A)AN N 1. A#at A#at8a 8a#a #att Prakt Praktik ikum um a. 9e#a ukur 1 m# '. 9e#a ukur - m# 'erii %at &air &. :a :an,ka oron, (. Nera& Nera&aa ana#i ana#iti tikk e. Pe Pen,,ari 2 & f. Penje4it ,. Pi4et tete *. Sarin,an i.
Stop Stopwa watc tch h
-. 7a*a 7a*an8' n8'a* a*an an Prak Prakti tiku kum m a. 7o#a b. Tiss Tissue ue
&. Zat &air min+ak (. Zat &air o#i
"1 'ua*$ "- 'ua*$ "1 'ua*$ "1 'ua* 'ua*$$ "1 'ua*$ "1 'ua*$ "3 'ua*$ "- 'ua*$ "1 'ua*$ "1 'ua*$ "1 ro##$ "- m#$ "- m#$
C. LAN6 LAN6AS ASAN AN TEOR TEORII 6. PROSE PROSE6UR 6UR PERCO7 PERCO7AAN AAN 1. 6i&a 6i&ari ri ra4a ra4att ma maa a 'o#a 'o#a a. 6iukur 6iukur (iameter (iameter 'o#a e'an+ak e'an+ak 1 1 ka#i (i tem4at tem4at +an, 'er'e(a 'er'e(a men,,u men,,unakan nakan jan,ka jan,ka oron,. '. 6itim'an, 'o#a e'an+ak 1 ka#i men,,unakan men,,unakan nera&a ana#itik. &. 6i*itun, 6i*itun, ra4at maa maa 'o#a/ 'o#a/ ra4at ra4at maa rata8rata rata8rata 'o#a 'o#a (an ra4at ra4at maa maa jeni 'o#a. -. 6i&a 6i&ari ri ra4 ra4at at ma maaa &air &airan an a. 6itim'an, 6itim'an, ,e#a ,e#a ukur ukur 1 m# e'an+ak e'an+ak 1 ka#i ka#i men,,una men,,unakan kan nera&a nera&a ana#itik. ana#itik. '. 6imaukkan f#ui(a ke (a#am ,e#a ukur 1 m#/ kemu(ian (itim'an, ,e#a ukur +an, 'erii &airan e'an+ak 1 ka#i. &. 6i*i 6i*itu tun, n, ra4at ra4at ma maaa &aira &airann (en, (en,an an men, men,ur uran an,i ,i ma maaa ,e#a ,e#a ukur ukur 'eri 'erii i &aira &airann (en,an maa ,e#a ukur.
1
(. 6i*itun, ra4at maa rata8rata &airan (an maa jeni &airan. e. 6i#akukan kem'a#i 4roe(ur "a am4ai (en,an ($ (i ata untuk %at &air +an, 'er'e(a. 3. 6itentukan koefiien kekenta#an %at &air a. 6iatur jarak ejau* 3 &m men,,unakan 4en,,ari (an (i'uat tan(a 4a(a ,e#a ukur. '. 6ijatu*kan 'o#a ke (a#am f#ui(a (an men&atat ;aktu aat 'o#a men&a4ai jarak 3 &m. &. 6iu#an,i #an,ka* "a am4ai (en,an '$ e'an+ak 1 ka#i. (. 6itentukan koefiien kekenta#an f#ui(a. e. 6i#akukan kem'a#i 4roe(ur "a am4ai (en,an ($ (i ata untuk %at &air +an, 'er'e(a. E. )ASIL PEN9AMATAN 1. Men&ari ra4at maa 'o#a "a$ No 1
6iameter "m$ -/<< × 18-
:ari8jari "m$ 1/-0< × 18-
Maa ",r$ =/<0
-
-/<< × 18-
1/-0< × 18-
=/<2
3
-/<< × 18-
1/-0< × 18-
=/<2
>
-/<< × 18-
1/-0< × 18-
=/20
<
-/<< × 18-
1/-0< × 18-
=/22
2
-/<< × 18-
1/-0< × 18-
=/01
0
-/<< × 18-
1/-0< × 18-
=/0
?
-/<< × 18-
1/-0< × 18-
=/2?
=
-/<< × 18-
1/-0< × 18-
=/0
1
-/<< × 18-
1/-0< × 18-
=/01
-. Men&ari ra4at maa &airan 'o#a " ρ $ a. Min+ak V @ 1 m# No 1 3 > < 2 0 ? = 1
m1 ",r$ >>= >>0 >>0 >2? >2>23 >2 ><0 ><= ><=
m- ",r$ <> <3 <3/< <3/= <3/> <3/?? <3/?0 <3/?2 <3/?? <3/?2
'. O#i V @ 1 m#
2
No 1 3 > < 2 0 ? = 1
m1 ",r$ >>= >>0 >>0 >2? >2>23 >2 ><0 ><= ><=
m- ",r$ <3/= <3/0 <3/2< <3/2<3/2 <3/21 <3/>< <3/<3 <3/<2 <3/<
3. Menentukan koefiien kekenta#an %at &air a. Min+ak @ 3 &m No 1 3 > < 2 0 ? = 1
t "ekon$ 1/ /=3 1/ /=< 1/3 1/= 1/1/> 1/< 1/1
No 1 3 > < 2 0 ? = 1
t "ekon$ 1/= 1/2 1/-2 1/30 1/1? 1/<< 1/33 1/<< 1/3 1/31
'. O#i @ 3 &m
5. ANALISIS 6ATA 1. Per*itun,an ra4at maa 'o#a a. :ari8jari "r$ No
r "m$
ṝ
"m$
r8
ṝ
"m$
"r 8
ṝ
$- "m$3
1/-0< × 18-
1
1/-0< × 18
-
1/-0< × 18-
-
1/-0< × 18 -
1/-0< × 18-
3
1/-0< × 18 -
1/-0< × 18-
>
1/-0< × 18 -
1/-0< × 18-
<
1/-0< × 18 -
1/-0< × 18-
2
1/-0< × 18 -
1/-0< × 18-
0
1/-0< × 18 -
1/-0< × 18-
?
1/-0< × 18 -
1/-0< × 18-
=
1/-0< × 18 -
1/-0< × 18-
1
1/-0< × 18 -
∑
∴
ṝ
@ ∴
r @ 1/-0< ×
181
@
∑r n
1,275 × 1 0 - 1 10
∆
@
√
r@ 0 9
√
∑
"r 8
ṝ
$-
@
@ 1/-0< × 18- m
∑ ( r − ṝ ) 2 n− 1
@ m
4
:a(i jari8jari 'o#a "
ṝ
±
∆
r$
•
"
ṝ
∆ r$ @ 1/-0< × 18- @ 1/-0< × 18- m
•
"
ṝ
8 ∆ r$ @ 1/-0< × 18- 8 @ 1/-0< × 18- m
'. Maa 'o#a "m$ No
m "k,$
1
=/<0 × 183
m B "k,$ =/2<- × 18
m8 m B "k,$
"m8 m B$- "k,$
8?- × 182
20-> × 181-
8=- × 182
?>2> × 181-
8=- × 182
?>2> × 181-
1? × 182
3-> × 181-
? × 182
2> × 181-
× 182
332> × 181-
>? × 182
-3> × 181-
-? × 182
0?> × 181-
>? × 182
-3> × 181-
× 182
332> × 181-
3
-
×
=/<2
183
=/2<- × 18 3
3
×
=/<2
183
=/2<- × 18 3
>
×
=/20
183
=/2<- × 18 3
<
×
=/22
183
=/2<- × 18 3
2
×
=/01
183
=/2<- × 18 3
0
×
=/0
183
=/2<- × 18 3
?
×
=/2?
183
=/2<- × 18 3
=
×
=/0
183
=/2<- × 18 3
1
×
=/01
183
=/2<- × 18 3
∑
m @ =2/<3212 × 181×
∴
m B @
183 ∑m n
5
96,52 × 10-3
@
@ =/2<- × 183 k,
10
∴
∆
√
@
√
m@
∑ ( m−ḿ ) 2 n−1
36160 × 10 -12
@ √ 4017,78 × 10-12
9
:a(i maa 'o#a "m B ± •
•
∆
@ 23/3? × 182 k,
m$
"m B ∆ m$ @ =/2<- × 183 23/3? × 182 @ =013? × 182 k, "m B 8 ∆ m$ @ =/2<- × 183 8 23/3? × 182 @ =?/2- × 182 k,
&. Vo#ume 'o#a ∴
4
! @
3
4
@
π
×
3
ṝ
3
3/1> × "1/-0< × 18-$3
@ ?/2? × 182 m3 ∴
4
∆
!@
4
@
×
3
3
π
∆
r 3
3/1> × "$3
@ m3 :a(i !o#ume 'o#a "! ±
∆
!$
•
" v ∆ !$ @ ?/2? × 182 @ ?/2? × 182 m3
•
" v 8 ∆ !$ @ ?/2? × 182 8 @ ?/2? × 182 m3
(. Maa jeni 'o#a ∴
ρb
@ ∴
@
ḿ
v
9,652 × 10-3 8,68 × 10-6
∆ ρb
@
@ 1/11
×
3
1 @ 111
kg m3
∆m ∆v
6
@
63,38 × 10-6 0
@@
:a(i maa jeni 'o#a " ρb •
•
"
ρb
"
ρb
∆ ρb
8
∆ ρb
±
kg m3 ∆ ρb
$ @ 111 @ 111 $ @ 111 8 @ 111
$ kg m3 kg m3
-. Per*itun,an ra4at maa %at &air a. Maa jeni min+ak " ρ m$ Maa min+ak •
N
m1 "k,$
m- "k,$
m "k,$
o 1
>>= ×
-
183 >>0 ×
<> × 183
?/<1 × 183
?/1>> ×
0/<3 × 183
183 ?/1>> ×
3
183 >>0 ×
?/3 × 183
183 ?/1>> ×
<3/< ×
>
183 >2? ×
183 <3/= ×
?/-- × 183
183 ?/1>> ×
<
183 >2- ×
183 <3/> ×
0/0? × 183
183 ?/1>> ×
2
183 >23 ×
183 <3/?? ×
?/-< × 183
183 ?/1>> ×
0
183 >2 ×
183 <3/?0 ×
?/-0 × 183
183 ?/1>> ×
?
183 ><0 ×
183 <3/?2 ×
?/-= × 183
183 ?/1>> ×
=
183 ><= ×
183 <3/?? ×
?/-= × 183
183 ?/1>> ×
1
183 ><= ×
183 <3/?2 ×
?/-0 × 183
183 ?/1>> ×
<3 × 183
m B "k,$
m8 m B "k,$
"m8 m B$- "k,$
322 ×
133=<2 ×
182 821> × 182 811> × 182
181302==2 × 1811-==2 × 18 1-
02 × 18 <002 × 1812
832> × 182 12 × 182 1-2 × 182 1>2 × 182 1>2 × 182 1-2 × 182
13->=2 × 18111-32 × 18 1-
102 × 18 1-
-1312 × 18 1-
-1312 × 18 1-
102 × 18 1-
7
183
183
183 ∑ ×
∴
m @ ?1/>> 1
×
0>0?> 181-
83
m @ m- 8 m1 "(itu#i +a atu atu &ari mn+a (ari 4er&o'aan 4ertama m4e
1/ tin,,a# (itu#i/ *ai#n+a u(a a(a (i ta'e# (an jan,an #u4a ertakan atuann+a$ ∴
ḿ
@
∑m n
81,44 × 10-3
@
10
∴
∆
m@
√
@
√
@ ?/1>> × 183 k,
∑ ( m−ḿ ) 2 n−1
747840 × 10-12 9
:a(i maa min+ak "m B ± •
•
•
∆
@ -??/-< × 182 k,
m$
"m B ∆ m$ @ ?/1>> × 183 -??/-< × 182 @ ?>3-/-< × 182 k, "m B 8 ∆ m$ @ ?/1>> × 183 -??/-< × 182 @ 0?<0< × 182 k,
Vo#ume min+ak ∴ ! 1 m# @ /1 #iter @ 1 × 182 m3 ∴
∆ 1
@
2
1
!@
2
ka#a terke&i#
. /- @ /1 #iter @ 1 × 182 m3
:a(i !o#ume min+ak "! ±
•
@ √ 83093,33 × 10-12
∆
!$
•
"! ∆ !$ @ /1 /1 @ /11 #iter @ 11 × 182 m3
•
"! 8 ∆ !$ @ /1 8 /1 @ /= #iter @ = × 182 m3
Maa jeni min+ak ∴
ρm
@
ḿ
v
8
8,144 × 10-3
@ ∴
10 × 10-6
∆ ρm
@
@
@ ?1>/>
∆m ∆v
288,25 × 10-6 1 × 10-6
@ -??/-<
:a(i maa jeni min+ak " ρm •
•
"
ρm
"
ρm
∆ ρm
8
∆ ρm
kg m3
±
kg m3 ∆ ρm
$
$ @ ?1>/> -??/-< @ 11-/2< $ @ ?1>/> 8 -??/-< @ <-2/1<
kg m3 kg m3
'. Maa jeni o#i " ρ o$ Maa o#i •
N
m1 "k,$
m- "k,$
o 1
>>=
×
<3/= ×
-
183 >>0 ×
183 <3/0 ×
3
183 >>0 ×
183 <3/2< ×
>
183 >2? ×
183 <3/2- ×
<
183 >2- ×
183 <3/2 ×
2
183 >23 ×
183 <3/21 ×
0
183 >2 ×
183 <3/>< ×
?
183 ><0 ×
183 <3/<3 ×
=
183 ><= ×
183 <3/<2 ×
m "k,$
m B "k,$
?/>1 × 183
?/>1 ×
?/-3 × 183
183 ?/>1 ×
?/1? × 183
183 ?/>1 ×
0/=> × 183
183 ?/>1 ×
0/=? × 183
183 ?/>1 ×
0/=? × 183
183 ?/>1 ×
0/?< × 183
183 ?/>1 ×
0/=2 × 183
183 ?/>1 ×
0/=0 × 183
183 ?/>1 ×
m8 m B "k,$
"m8 m B$- "k,$
32= ×
132121 ×
182 1?= × 182 13= × 182 811 × 182 821 ×
1813<0-1 × 18 1-
1=3-1 × 18 1-
1-1 × 18 1-
30-1 × 181-
182 821 ×
30-1 × 181-
182 81=1 × 182 8?1 ×
32>?1 × 18 1-
2<21 × 181-
182 801 ×
<>1 × 1819
1
183 ><= ×
183 <3/< ×
183
0/=1 × 183
183 ?/>1 ×
183
×
10121 × 18
182
183 ∑
∴
182 8131 ×
1-
-0>= ×
m @ ?/>1
181 183
m @ m- 8 m1 "(itu#i +a atu atu &ari mn+a (ari 4er&o'aan 4ertama m4e
1/ tin,,a# (itu#i/ *ai#n+a u(a a(a (i ta'e# (an jan,an #u4a ertakan atuann+a$ ∴
ḿ
@
∑m n
80,41 × 10-3
@
@ ?/>1 × 183 k,
10
∴
∆
@
√
m@
√
∑ ( m−ḿ ) 2 n−1
274090 × 10-12 9
:a(i maa o#i "m B ± •
•
•
@ 10>/<1 × 182 k,
m$
"m B ∆ m$ @ ?/>1 × 183 10>/<1 × 182 @ ?-1<1 × 182 k, "m B 8 ∆ m$ @ ?/>1 × 183 8 10>/<1 × 182 @ 0?22/>= × 182 k,
Vo#ume o#i ∴ ! 1 m# @ /1 #iter @ 1 × 182 m3 ∴
∆
@
1 2
1
!@
2
ka#a terke&i#
. /- @ /1 #iter @ 1 × 182 m3
:a(i !o#ume o#i "! ±
•
∆
@ √ 30454,44 × 10-12
∆
!$
•
"! ∆ !$ @ /1 /1 @ /11 #iter @ 11 × 182 m3
•
"! 8 ∆ !$ @ /1 8 /1 @ /= #iter @ = × 182 m3
Maa jeni o#i
10
∴
ρo
ḿ
@
v
8,041 × 10-3
@
10 × 10-6
∴
∆ ρo
@
@ ?>/1
∆m ∆v
@
174,51 × 10-6 1 × 10-6
@ 10>/<1
:a(i maa jeni o#i " ρo •
•
"
ρo
"
ρo
kg m3
∆ ρo
8
∆ ρo
±
kg m3
∆ ρo
$
$ @ ?>/1 10>/<1 @ =0?/21 $ @ ?>/1 8 10>/<1 @ 2-2/<=
kg m3 kg m3
3. Per*itun,an koefiien kekentakan %at &air a. Min+ak :arak tem4u* "$ ∴
@ 3 &m @ /3 m
∴
∆
1
@
2
ka#a terke&i#
1
@
2
. /- @ /1 m
:a(i jarak " ±
∆s
$
•
" ∆ $ @ /3 /1 @ /> m
•
" 8 ∆ $ @ /3 8 /1 @ /- m
aktu tem4u* 'o#a "t$ No 1 3 > < 2 0 ?
t "$ 1/ /=3 1/ /=< 1/3 1/= 1/1/>
"$ 1/3= 1/3= 1/3= 1/3= 1/3= 1/3= 1/3= 1/3= ṯ
t 8 ṯ "$ 8 /3= 8 /1= 8 /3= 8 /?= 8 /= /<1 /121 /1
"t 8 ṯ $- "$/1<-1 /11??1 /1<-1 /0=-1 /?1 /-21 /-<=-1 /1
11
= 1
1/< 1/1 ∑ t @ 1/3=
1/3= 1/3=
/11 /21
/1-1 /30-1 ∑ "t 8 ṯ $- @ /<<-=
∴
ṯ
∑ t n
@
10,39
@
@ 1/3=
10
∴
∆
@
√
t@
√
0,05529 9
∑ ( t − ṯ ) 2 n− 1
@ √ 0,0061433333 @ /0?30=>1?=
≈
/0?
:a(i ;aktu " ṯ ∆ t $ •
"t ∆ t$ @ 1/3= /0? @ 1/110
•
"t 8 ∆ t$ @ 1/3= 8 /0? @ /=21
Koefiien kekenta#an " η $ ∴
@
η
@
2 ṝ 2 g ṯ ( ρb− ρm ) 9s
2 ( 1,275 × 10-2) 2 × 9,8 × 1,039 ( 1110 −1102,65 ) 9 × 0,3
@ =/11?? × 18>
≈
=/1- × 18>
@ =/1- × 183 Nm8- @ =/1- × 183 Pa @ =/1- × 18- 4oie '. O#i :arak tem4u* "$ ∴
@ 3 &m @ /3 m
12
∴
1
∆
@
2
ka#a terke&i#
1
@
. /- @ /1 m
2
:a(i jarak " ±
∆s
$
•
" ∆ $ @ /3 /1 @ /> m
•
" 8 ∆ $ @ /3 8 /1 @ /- m
aktu tem4u* 'o#a "t$ No 1 3 > < 2 0 ? = 1
t "$ 1/= 1/2 1/-2 1/30 1/1? 1/<< 1/33 1/<< 1/3 1/31 ∑ t @ 1>/3<
"$ 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< 1/>3< ṯ
t 8 ṯ "$ />2< /12< 8 /10< 8 /2< 8 /-<< /11< 8 /1< /11< 8 /13< 8 /1-<
"t 8 ṯ $- "$/-12--< /-0--< /32-< />--< /2<-< /13--< /11-< /13--< /1?--< /1<2-< ∑ "t 8 ṯ $- @ />1>2<
∴
ṯ
∑ t n
@
14,35
@ ∴
∆
@
@ 1/>3<
10
√
t@
√
0,41465 9
∑ ( t − ṯ ) 2 n− 1
@ √ 0,0460722222 @ /-1>2>>>?0
≈
/-1<
:a(i ;aktu " ṯ ∆ t $ •
"t ∆ t$ @ 1/>3< /-1< @ 1/2<
•
"t 8 ∆ t$ @ 1/>3< 8 /-1< @ 1/--
13
Koefiien kekenta#an " η $ ∴
@
η
@
2 ṝ 2 g ṯ ( ρb− ρo ) 9s
2 ( 1,275 × 10-2) 2 × 9,8 × 1,435 ( 1110− 978,61 )
@ --->/=? × 18>
9 × 0,3
≈
---< × 18>
@ ---/< × 183 Nm8- @ ---/< × 183 Pa @ ---/< × 18- 4oie
9. PEM7A)ASAN ). PENUTUP 6A5TAR PUSTAKA
14