Física Cuántica Compilación de diferentes artículos encontrados en Internet. Incluye además enlaces de vídeos en Youtuve.com sobre el tema de la mecánica cuántica. Xalapa, 18 de abril de 2010 Compilador: Javier H Garcés Martínez
1
2009/02/20
Física cuántica fácil (I) Lo continuo y lo discreto Ciertas magnitudes varían de forma continua, mientras otras lo hacen de forma discreta o discontinua. Al pesar grandes cantidades de granos de arroz, se pueden considerar sus masas como continuas, aunque es evidente su composición granular. Sin embargo, si analizamos pequeñas cantidades de arroz, usando una balanza de gran precisión, tenemos que tener en cuenta el hecho de que la masa varía a saltos; la magnitud mínima de cada salto es el peso de un grano de arroz, aproximadamente 0,025 gramos. Cada uno de estos pasos mínimos indivisibles es lo que denominamos cuantos elementales de la magnitud en cuestión. En este ejemplo, el peso de un grano de arroz sería el cuanto elemental.
A principios del siglo XX, Max Planck sugirió que la radiación electromagnética estaba formada por pequeños paquetes, o cuantos de energía indivisibles, que, posteriormente, se denominaron fotones. Su valor sería igual a una constante llamada h (mínima acción de Planck) multiplicada por la frecuencia de la radiación. Algunos años más tarde Einstein, basándose en esta idea, proporcionó una explicación satisfactoria de la extracción de electrones de un metal por la luz que incide sobre el mismo, en lo que se llama efecto el efecto fotoeléctrico. Principio de complementariedad En general, el comportamiento de las partículas subatómicas no se puede explicar con los conceptos clásicos de partículas y ondas del mundo macroscópico. Bohr expresó esta idea básica nueva con su principio de complementariedad. La concepción corpuscular y la descripción ondulatoria, que siempre se habían creído excluyentes, son complementarias. Se necesitan los dos conceptos para tener una descripción completa sobre las partículas subatómicas, tales como protones o electrones, pues se comportan, según las circunstancias, como ondas o como partículas. Pueden difractarse por una red cristalina, lo que constituye un fenómeno típicamente ondulatorio. De acuerdo con la hipótesis de De Broglie, toda partícula tiene asociada una onda, cuya longitud característica es inversamente proporcional a su 2
momento lineal (masa x velocidad). Principio de incertidumbre Las magnitudes asociadas a las partículas subatómicas no están siempre bien definidas. Por ejemplo, si conocemos la posición de un electrón o un fotón, su momento lineal no está bien definido. Podemos realizar un experimento para encontrar la posición y otro para medir su momento, pero estas dos medidas se excluyen mutuamente; esto es, no se pueden determinar simultáneamente la posición y el momento de una partícula cuántica. Este hecho tan asombroso constituye el llamado principio de incertidumbre de Heisenberg.
Para entender las razones de esta incertidumbre, consideremos que deseamos hallar la posición de un electrón. Para saber dónde se encuentra necesitamos observarlo enviando, por ejemplo, un fotón que se refleje en el electrón. Pero el electrón tiene una masa muy pequeña, por lo que el fotón tiene suficiente energía para hacerlo retroceder en una dirección impredecible. Por tanto, no importa lo cuidadoso que seamos al tratar de medir la posición exacta del electrón, siempre introduciremos una indeterminación en la velocidad y momento del electrón. Una forma de establecer este principio es afirmar que las cantidades medibles están sometidas a fluctuaciones impredecibles que hacen que sus valores no estén bien determinados. Las magnitudes aparecen reunidas en parejas incompatibles tales como posición y momento, energía y tiempo, etc. La incertidumbre en la medida de una de estas magnitudes multiplicada por la incertidumbre de la correspondiente en la pareja no puede ser nunca menor que h. Puesto que h tiene un valor muy pequeño, el grado de indeterminación es sólo importante en el mundo subatómico, aunque, en principio, se aplica a todos los sistemas. Para la física clásica la constante h no tiene ningún sentido, por lo que la incertidumbre puede ser, perfectamente, cero (como cero es la mínima acción considerada para la física clásica de Newton). Principio de incertidumbre para la energía. Pares de partículas virtuales De este principio se deriva que cuanto menor es el tamaño de la región que queremos explorar, mayor es el momento y, en consecuencia, la energía para poder hacerlo. Por esta razón, para estudiar regiones muy pequeñas se necesitan partículas con una gran energía; de 3
ahí, la necesidad de contar con grandes aceleradores de partículas.
Análogamente, existe una incertidumbre relacionada con la energía y el tiempo. No podemos conocer con toda precisión la energía que tiene un sistema mecanocuántico en un instante determinado. La incertidumbre en el valor de la energía del sistema multiplicado por la incertidumbre del valor del instante de tiempo en que se realiza la medida tiene que ser nuevamente mayor que la constante de Planck. Si tenemos en cuenta la famosa ecuación de equivalencia entre masa y energía E = mc2, la incertidumbre en la medida de la energía se traduce en incertidumbre en el valor de la masa del sistema. En un instante muy corto de tiempo, no podemos estar seguros de cuál es la masa de nuestro sistema. La materia puede aparecer y desaparecer espontáneamente en el vacío. Puesto que siempre que aparece una partícula de materia se debe crear otra de antimateria, el tiempo durante el cual puede existir el par partícula-antipartícula es extraordinariamente corto; tanto menor cuanto mayor es la masa de las partículas. Aplicando la expresión del principio de incertidumbre para un par electrón-positrón se obtiene que este intervalo es de 6.5x10-22 seg. Este proceso puede ocurrir en cualquier sitio y en cualquier instante de tiempo, pero sólo durante un intervalo de tiempo extraordinariamente corto. Por ello es imposible una observación directa de estas partículas, aunque se pueden detectar sus efectos. Esta es la razón por lo que a estos pares de partícula-antipartícula se les da el nombre de virtuales. Del libro "Física para jusristas, economistas... y demás gente curiosa", de Roberto González Amado (Catedrático de física aplicada en la Universidad Carlos III de Madrid). Ed. Critica. Barcelona 1996.
4
El físico Stephen Hawking, a pesar de su incapacidad, postrado en una silla de ruedas y comunicándose a través de un sistema electrónico, es uno de los mayores conocedores de la Cuántica…
“La física cuántica explica los fenómenos físicos existentes en el universo, que se producen a nivel atómico.” Teoría Cuántica La física cuántica, también conocida como mecánica ondulatoria, es la rama de la física que estudia el comportamiento de la materia cuando las dimensiones de ésta son tan pequeñas, en torno a 1.000 átomos, que empiezan a notarse efectos como la imposibilidad de conocer con exactitud la posición de una partícula, o su energía, o conocer simultáneamente su posición y velocidad, sin afectar a la propia partícula (descrito según el principio de incertidumbre de Heisenberg). Surgió a lo largo de la primera mitad del siglo XX en respuesta a los problemas que no podían ser resueltos por medio de la física clásica. Los dos pilares de esta teoría son: • Las partículas intercambian energía en múltiplos enteros de una cantidad mínima posible, denominado quantum (cuanto) de energía. • La posición de las partículas viene definida por una función que describe la probabilidad de que dicha partícula se halle en tal posición en ese instante Ratificación Experimental El hecho de que la energía se intercambie de forma discreta se puso de relieve por hechos experimentales, inexplicables con las herramientas de la mecánica clásica, como los siguientes:
5
Según la Física Clásica, la energía radiada por un cuerpo negro, objeto que absorbe toda la energía que incide sobre él, era infinita, lo que era un desastre. Esto lo resolvió Max Plank mediante la cuantización de la energía, es decir, el cuerpo negro tomaba valores discretos de energía cuyos paquetes mínimos denominó “quantum”. Este cálculo era, además, consistente con la ley de Wien (que es un resultado de la termodinámica, y por ello independiente de los detalles del modelo empleado). Según esta última ley, todo cuerpo negro irradia con una longitud de onda (energía) que depende de su temperatura. La dualidad onda corpúsculo, también llamada onda partícula, resolvió una aparente paradoja, demostrando que la luz y la materia pueden, a la vez, poseer propiedades de partícula y propiedades ondulatorias. Actualmente se considera que la dualidad onda partícula es un "concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa".
El tamaño medio de un átomo es de una diez millonésima de milímetro, es decir, un millón de átomos situados en fila constituirían el grosor de un cabello humano …
Aplicaciones de la Teoría Cuántica El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. Un nuevo concepto de información, basado en la naturaleza cuántica de las partículas elementales, abre posibilidades inéditas al procesamiento de datos. La nueva unidad de información es el qubit (quantum bit), que representa la superposición de 1 y 0, una cualidad imposible en el universo clásico que impulsa una criptografía indescifrable, detectando, a su vez, sin esfuerzo, la presencia de terceros que intentaran adentrarse en el sistema de transmisión. La otra gran aplicación de este nuevo tipo de información se concreta en la posibilidad de construir un ordenador cuántico, que necesita de una tecnología más avanzada que la criptografía, en la que ya se trabaja, por lo que su desarrollo se prevé para un futuro más lejano.
La teleportación de hombres, aunque en un futuro lejano, es una de las aplicaciones más atractivas de la
En la medicina, la teoría cuántica es utilizada en campos tan diversos como la cirugía láser, o la exploración radiológica. En el primero, son utilizados los sistemas láser, que aprovechan la cuantificanción energética de los orbitales nucleares para producir luz monocromática, entre otras característcias. En el segundo, la resonancia magnética nuclear permite visualizar la forma de de algunos tejidos al ser dirigidos los electrones de algunas sustancias corporales hacia la fuente del campo magnético en la que se ha introducido al paciente.
6
mecánica cuántica…
Otra de las aplicaciones de la mecánica cuántica es la que tiene que ver con su propiedad inherente de la probabilidad. La Teoría Cuántica nos habla de la probabilidad de que un suceso dado acontezca en un momento determinado, no de cuándo ocurrirá ciertamente el suceso en cuestión.
Cualquier suceso, por muy irreal que parezca, posee una probabilidad de que suceda, como el hecho de que al lanzar una pelota contra una pared ésta pueda traspasarla. Aunque la probabilidad de que esto sucediese sería infinitamente pequeña, podría ocurrir perfectamente. La teleportación de los estados cuánticos (qubits) es una de las aplicaciones más innovadoras de la probabilidad cuántica, si bien parecen existir limitaciones importantes a lo que se puede conseguir en principio con dichas técnicas. En 2001, un equipo suizo logró teleportar un fotón una distancia de 2 km, posteriormente, uno austriaco logró hacerlo con un rayo de luz (conjunto de fotones) a una distancia de 600 m., y lo último ha sido teleportar un átomo, que ya posee masa, a 5 micras de distancia... Referencias http://www.geocities.com/fisica_que/ http://www.tendencias21.net/La-realidad-cuantica-revoluciona-el-mundo-de-lainformacion_a133.html
7
Mecánica cuántica De Wikipedia, la enciclopedia libre
Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. En física, la mecánica cuántica (conocida originalmente como mecánica ondulatoria)[1] [2] es una de las ramas principales de la física que explica el comportamiento de la materia y de la energía. Su campo de aplicación pretende ser universal, pero es en el mundo de lo pequeño donde sus predicciones divergen radicalmente de la llamada física clásica. De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la relatividad en su formalismo, tan sólo como añadido mediante teoría de perturbaciones.[3] La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar)[4] y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria. La mecánica cuántica es la base de los estudios del átomo, los núcleos y las partículas elementales (siendo ya necesario el tratamiento relativista) pero también en teoría de la información, criptografía y química.
Introducción [editar] La mecánica cuántica es la última de las grandes ramas de la física. Comienza a principios del siglo XX, en el momento en que dos de las teorías que intentaban explicar lo que nos rodea, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para explicar ciertos fenómenos. La teoría electromagnética generaba un problema cuando intentaba explicar la emisión de radiación de cualquier objeto en equilibrio, llamada radiación térmica, que es la que proviene de la vibración microscópica de las 8
partículas que lo componen. Pues bien, usando las ecuaciones de la electrodinámica clásica, la energía que emitía esta radiación térmica daba infinito si se suman todas las frecuencias que emitía el objeto, con ilógico resultado para los físicos. Es en el seno de la mecánica estadística donde nacen las ideas cuánticas en 1900. Al físico Max Planck se le ocurrió un truco matemático: que si en el proceso aritmético se sustituía la integral de esas frecuencias por una suma no continua se dejaba de obtener un infinito como resultado, con lo que eliminaba el problema y, además, el resultado obtenido concordaba con lo que después era medido. Fue Max Planck quien entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de cuantos de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín por el científico alemán Max Planck.[5] La idea de Planck hubiera quedado muchos años sólo como hipótesis si Albert Einstein no la hubiera retomado, proponiendo que la luz, en ciertas circunstancias, se comporta como partículas de energía independientes (los cuantos de luz o fotones). Fue Albert Einstein quién completó en 1905 las correspondientes leyes de movimiento con lo que se conoce como teoría especial de la relatividad, demostrando que el electromagnetismo era una teoría esencialmente no mecánica. Culminaba así lo que se ha dado en llamar física clásica, es decir, la física no-cuántica. Usó este punto de vista llamado por él “heurístico”, para desarrollar su teoría del efecto fotoeléctrico, publicando esta hipótesis en 1905, lo que le valió el Premio Nobel de 1921. Esta hipótesis fue aplicada también para proponer una teoría sobre el calor específico, es decir, la que resuelve cuál es la cantidad de calor necesaria para aumentar en una unidad la temperatura de la unidad de masa de un cuerpo. El siguiente paso importante se dio hacia 1925, cuando Louis de Broglie propuso que cada partícula material tiene una longitud de onda asociada, inversamente proporcional a su masa, (a la que llamó momentum), y dada por su velocidad. Poco tiempo después Erwin Schrödinger formuló una ecuación de movimiento para las "ondas de materia", cuya existencia había propuesto de Broglie y varios experimentos sugerían eran reales. La mecánica cuántica introduce una serie de hechos contraintuitivos que no aparecían en los paradigmas físicos anteriores; con ella se descubre que el mundo atómico no se comporta como esperaríamos. Los conceptos de incertidumbre, indeterminación o cuantización son introducidos por primera vez aquí. Además la mecánica cuántica es la teoría científica que ha proporcionado las predicciones experimentales más exactas hasta el momento, a pesar de estar sujeta a las probabilidades. Las velocidades de las partículas constituyentes no deben ser muy altas, o próximas a la velocidad de la luz.
Desarrollo histórico [editar] Artículo principal: Historia de la mecánica cuántica
La teoría cuántica fue desarrollada en su forma básica a lo largo de la primera mitad del siglo XX. El hecho de que la energía se intercambie de forma discreta se puso de relieve por 9
hechos experimentales como los siguientes, inexplicables con las herramientas teóricas "anteriores" de la mecánica clásica o la electrodinámica:
Fig. 1: La función de onda de un electrón de un átomo de hidrógeno posee niveles de energía definidos y discretos denotados por un número cuántico n=1, 2, 3,... y valores definidos de momento angular caracterizados por la notación: s, p, d,... Las áreas brillantes en la figura corresponden a densidades de probabilidad elevadas de encontrar el electrón en dicha posición. •
Espectro de la radiación del cuerpo negro, resuelto por Max Planck con la cuantización de la energía. La energía total del cuerpo negro resultó que tomaba valores discretos más que continuos. Este fenómeno se llamó cuantización, y los intervalos posibles más pequeños entre los valores discretos son llamados quanta (singular: quantum, de la palabra latina para "cantidad", de ahí el nombre de mecánica cuántica). El tamaño de un cuanto es un valor fijo llamado constante de Planck, y que vale: 6.626 ×10‐34 julios por segundo.
•
Bajo ciertas condiciones experimentales, los objetos microscópicos como los átomos o los electrones exhiben un comportamiento ondulatorio, como en la interferencia. Bajo otras condiciones, las mismas especies de objetos exhiben un comportamiento corpuscular, de partícula, ("partícula" quiere decir un objeto que puede ser localizado en una región concreta del Espacio), como en la dispersión de partículas. Este fenómeno se conoce como dualidad onda‐partícula. Las propiedades físicas de objetos con historias relacionadas pueden ser correlacionadas en una amplitud prohibida por cualquier teoría clásica, en una amplitud tal que sólo pueden ser descritos con precisión si nos referimos a ambos a la vez. Este fenómeno es llamado entrelazamiento cuántico y la desigualdad de Bell describe su diferencia con la correlación ordinaria. Las medidas de las violaciones de la desigualdad de Bell fueron de las mayores comprobaciones de la mecánica cuántica. Explicación del efecto fotoeléctrico, dada por Albert Einstein, en que volvió a aparecer esa "misteriosa" necesidad de cuantizar la energía. Efecto Compton.
•
• •
10
El desarrollo formal de la teoría fue obra de los esfuerzos conjuntos de varios físicos y matemáticos de la época como Schrödinger, Heisenberg, Einstein, Dirac, Bohr y Von Neumann entre otros (la lista es larga). Algunos de los aspectos fundamentales de la teoría están siendo aún estudiados activamente. La mecánica cuántica ha sido también adoptada como la teoría subyacente a muchos campos de la física y la química, incluyendo la física de la materia condensada, la química cuántica y la física de partículas. La región de origen de la mecánica cuántica puede localizarse en la Europa central, en Alemania y Austria, y en el contexto histórico del primer tercio del siglo XX.
Suposiciones más importantes [editar] Artículo principal: Interpretaciones de la Mecánica cuántica
Las suposiciones más importantes de esta teoría son las siguientes: •
•
• •
Al ser imposible fijar a la vez la posición y el momento de una partícula, se renuncia al concepto de trayectoria, vital en mecánica clásica. En vez de eso, el movimiento de una partícula queda regido por una función matemática que asigna, a cada punto del espacio y a cada instante, la probabilidad de que la partícula descrita se halle en tal posición en ese instante (al menos, en la interpretación de la Mecánica cuántica más usual, la probabilística o interpretación de Copenhague). A partir de esa función, o función de ondas, se extraen teóricamente todas las magnitudes del movimiento necesarias. Existen dos tipos de evolución temporal, si no ocurre ninguna medida el estado del sistema o función de onda evolucionan de acuerdo con la ecuación de Schrödinger, sin embargo, si se realiza una medida sobre el sistema este sufre un "salto cuántico" hacia un estado compatible con los valores de la medida obtenida (formalmente el nuevo estado será una proyección ortogonal del estado original). Existen diferencias perceptibles entre los estados ligados y los que no lo están. La energía no se intercambia de forma continua en un estado ligado, sino en forma discreta lo cual implica la existencia de paquetes mínimos de energía llamados cuantos, mientras en los estados no ligados la energía se comporta como un continuo.
Aunque la estructura formal de la teoría está bien desarrollada, y sus resultados son coherentes con los experimentos, no sucede lo mismo con su interpretación, que sigue siendo objeto de controversias.
Descripción de la teoría bajo la interpretación de Copenhague [editar] Para describir la teoría de forma general es necesario un tratamiento matemático riguroso, pero aceptando una de las tres interpretaciones de la mecánica cuántica (a partir de ahora la Interpretación de Copenhague), el marco se relaja. La Mecánica cuántica describe el estado instantáneo de un sistema (estado cuántico) con una función de onda que codifica la distribución de probabilidad de todas las propiedades medibles, u observables. Algunos observables posibles sobre un sistema dado son la energía, posición, momento y momento angular. La mecánica cuántica no asigna valores definidos a los observables, sino que hace predicciones sobre sus distribuciones de probabilidad. Las propiedades ondulatorias de la materia son explicadas por la interferencia de las funciones de onda. 11
Estas funciones de onda pueden variar con el transcurso del tiempo. Esta evolución es determinista si sobre el sistema no se realiza ninguna medida aunque esta evolución es estocástica y se produce mediante colapso de la función de onda cuando se realiza una medida sobre el sistema (Postulado IV de la MC). Por ejemplo, una partícula moviéndose sin interferencia en el espacio vacío puede ser descrita mediante una función de onda que es un paquete de ondas centrado alrededor de alguna posición media. Según pasa el tiempo, el centro del paquete puede trasladarse, cambiar, de modo que la partícula parece estar localizada más precisamente en otro lugar. La evolución temporal determinista de las funciones de onda es descrita por la Ecuación de Schrödinger. Algunas funciones de onda describen estados físicos con distribuciones de probabilidad que son constantes en el tiempo, estos estados se llaman estacionarios, son estados propios del operador hamiltoniano y tienen energía bien definida. Muchos sistemas que eran tratados dinámicamente en mecánica clásica son descritos mediante tales funciones de onda estáticas. Por ejemplo, un electrón en un átomo sin excitar se dibuja clásicamente como una partícula que rodea el núcleo, mientras que en mecánica cuántica es descrito por una nube de probabilidad estática que rodea al núcleo. Cuando se realiza una medición en un observable del sistema, la función de ondas se convierte en una del conjunto de las funciones llamadas funciones propias o estados propios del observable en cuestión. Este proceso es conocido como colapso de la función de onda. Las probabilidades relativas de ese colapso sobre alguno de los estados propios posibles son descritas por la función de onda instantánea justo antes de la reducción. Considerando el ejemplo anterior sobre la partícula en el vacío, si se mide la posición de la misma, se obtendrá un valor impredecible x. En general, es imposible predecir con precisión qué valor de x se obtendrá, aunque es probable que se obtenga uno cercano al centro del paquete de ondas, donde la amplitud de la función de onda es grande. Después de que se ha hecho la medida, la función de onda de la partícula colapsa y se reduce a una que esté muy concentrada en torno a la posición observada x. La ecuación de Schrödinger es en parte determinista en el sentido de que, dada una función de onda a un tiempo inicial dado, la ecuación suministra una predicción concreta de qué función tendremos en cualquier tiempo posterior. Durante una medida, el eigen-estado al cual colapsa la función es probabilista y en este aspecto es no determinista. Así que la naturaleza probabilista de la mecánica cuántica nace del acto de la medida.
Formulación matemática [editar] Artículos principales: Formulación matemática de la mecánica cuántica y Notación braket
En la formulación matemática rigurosa, desarrollada por Dirac y von Neumann, los estados posibles de un sistema cuántico están representados por vectores unitarios (llamados estados) que pertenecen a un Espacio de Hilbert complejo separable (llamado el espacio de estados). Qué tipo de espacio de Hilbert es necesario en cada caso depende del sistema; por ejemplo, el espacio de estados para los estados de posición y momento es el espacio de funciones de cuadrado integrable , mientras que la descripción de un sistema sin traslación pero con . La evolución temporal de un estado cuántico queda descrita un espín es el espacio por la ecuación de Schrödinger, en la que el Hamiltoniano, el operador correspondiente a la energía total del sistema, tiene un papel central. 12
Cada magnitud observable queda representada por un operador lineal hermítico definido sobre un dominio denso del espacio de estados. Cada estado propio de un observable corresponde a un eigenvector del operador, y el valor propio o eigenvalor asociado corresponde al valor del observable en aquel estado propio. El espectro de un operador puede ser continuo o discreto. La medida de un observable representado por un operador con espectro discreto sólo puede tomar un conjunto numerable de posibles valores, mientras que los operadores con espectro continuo presentan medidas posibles en intervalos reales completos. Durante una medida, la probabilidad de que un sistema colapse a uno de los eigenestados viene dada por el cuadrado del valor absoluto del producto interior entre el estado propio o auto-estado (que podemos conocer teóricamente antes de medir) y el vector estado del sistema antes de la medida. Podemos así encontrar la distribución de probabilidad de un observable en un estado dado computando la descomposición espectral del operador correspondiente. El principio de incertidumbre de Heisenberg se representa por la aseveración de que los operadores correspondientes a ciertos observables no conmutan.
Relatividad y la mecánica cuántica [editar] El mundo moderno de la física se funda notablemente en dos teorías principales, la relatividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de Einstein y la teoría del quántum están incuestionablemente apoyados por rigurosa y repetida evidencia empírica. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente. El mismo Einstein es conocido por haber rechazado algunas de las demandas de la mecánica cuántica. A pesar de ser claramente inventivo en su campo, Einstein no aceptó la interpretación ortodoxa de la mecánica cuántica tales como la aserción de que una sola partícula subatómica puede ocupar numerosos espacios al mismo tiempo. Einstein tampoco aceptó las consecuencias de entrelazamiento cuántico aún más exóticas de la paradoja de Einstein-Podolsky-Rosen (o EPR), la cual demuestra que medir el estado de una partícula puede instantáneamente cambiar el estado de su socio enlazado, aunque las dos partículas pueden estar a una distancia arbitraria. Sin embargo, este efecto no viola la causalidad, puesto que no hay transferencia posible de información. De hecho, existen teorías cuánticas que incorporan a la relatividad especial -por ejemplo, la electrodinámica cuántica, la cual es actualmente la teoría física menos comprobada- y éstas se encuentran en el mismo corazón de la física moderna de partículas.
Véase también [editar] • • • • • • • • • • •
Interpretaciones de la Mecánica cuántica Computación cuántica Cuanto Ecuación de Schrödinger Efecto túnel Energía del punto cero Entrelazamiento cuántico Espuma cuántica Fotón Gravedad cuántica Movimiento ondulatorio 13
• • • • • • • •
Onda Principio de exclusión Principio de incertidumbre Química cuántica Relación de indeterminación de Heisenberg Segunda cuantización Síntesis granular Teoría de la relatividad
Personalidades • • • • • • • •
Niels Bohr Max Born Louis de Broglie George Gamow Werner Heisenberg Wolfgang Pauli Max Planck Erwin Schrödinger
Referencias [editar] Notas 1. ↑ De Broglie (1926): Ondes et mouvements, París, Gauthier‐Villars 2. ↑ Schrödinger, [Quantisierung als Eigenwertproblem (Erste Mitteilung.)], Ann. Phys., 79, p. 361‐376, (1926)1924 & 1926 3. ↑ Cohen‐Tannoudji, Claude; Bernard Diu, Franck Laloë (1977). Quantum Mechanics, vol.1, 3ª edición, París, Francia: Hermann, pp. 898. ISBN 0‐471‐16432‐1. 4. ↑ Halzen, Francis; D.Martin, Alan (1984). Universidad de Wisconsin (ed.). Quarks and Lepons: An Introducory Course in Modern Particle Physics, Universidad de Durham, 1ª edición, Canadá: Wiley, pp. 396. ISBN QC793.5.Q2522H34. 5. ↑ Vitaliĭ Isaakovich Rydnik (1987). Qué es la mecánica cuántica. Ediciones Quinto Sol. ISBN 37693524. Bibliografía • • •
Otero Carvajal, Luis Enrique: "Einstein y la revolución científica del siglo XX", Cuadernos de Historia Contemporánea, nº 27, 2005, INSS 0214‐400‐X Otero Carvajal, Luis Enrique: "La teoría cuántica y la discontinuidad en la física", Umbral, Facultad de Estudios Generales de la Universidad de Puerto Rico, recinto de Río Piedras Andrade e Silva, J.; Lochak, Georges (1969). Los cuantos. Ediciones Guadarrama. ISBN 978‐ 84‐250‐3040‐6.
Enlaces externos [editar] • • •
Portal:Física. Contenido relacionado con Física. Wikimedia Commons alberga contenido multimedia sobre Mecánica cuántica. Commons Wikiversidad alberga proyectos de aprendizaje sobre Mecánica cuántica.Wikiversidad 14
•
Wikiquote alberga frases célebres de o sobre Mecánica cuántica. Wikiquote
Wikilibros •
Wikilibros alberga un libro o manual sobre Mecánica cuántica.
Wikcionario • • • • • • •
Wikcionario tiene definiciones para Mecánica cuántica. Introducción a la mecánica cuántica Mecánica de Ondas (pwg.gsfc.nasa.gov) Experimentos sobre Interferencia de Ondas(Para estudiantes jóvenes) El Nacimiento de la Mecánica Cuántica Breve Historia de la Física Teórica Frecuencias Cuánticas
15
Ciencia y Espiritualidad [20/5/2008] Misticismo y Física Cuántica La esperada unión entre ciencia y espiritualidad ya está aquí para cambiar la manera en la que definimos la realidad de la existencia.
16
NOTA ORIGINAL PUBLICADA EN LA REVISTA EL PLANETA URBANO, SECCION PLANETA-X Durante centurias las religiones y la ciencia ortodoxa tomaron el control del conocimiento para dividirlo, en una feroz competencia, entre la religiosidad de la Iglesia y el materialismo de la ciencia. Así fue como toda la dinámica universal se consideró un inmenso mecanismo predecible y en el que el hombre no tenía incidencia. Todo estaba en manos de Dios, arbitrando una puja eterna en su creación: entre el bien y el mal, el caos y el orden. Mucho se habla en estos días sobre la Física Cuántica, pero en definitiva, ¿qué es la Física Cuántica? Si comparamos a la Física Cuántica con un sistema monetario basado en el peso, la unidad mínima de dicho sistema es el centavo. La llamada Física Clásica se encargaría entonces de estudiar el sistema a partir de la unidad peso (átomo) mientras que la Física Cuántica lo haría a partir del centavo (cuanto). Entonces esto puede llevarnos a definirla como una ciencia subatómica. La Física Cuántica comienza a abrir un nuevo camino al conocimiento verdadero reconociendo la divinidad en nosotros mismos y el poder de co-creación que todos poseemos. El hombre dejó de ser un “astronauta” del destino para darse cuenta de que puede elegir y crear de forma consciente cómo quiere interrelacionarse con la realidad. TODO ES LUZ El término cuántico proviene de quantum, que es la unidad más pequeña que constituye la luz. Los experimentos llevados a cabo en los más avanzados laboratorios que estudian la física de partículas han demostrado que, en el nivel más pequeño de la materia, el nivel de las partículas elementales, todo es energía. Para comprenderlo mejor digamos que la materia es luz condensada. En los laboratorios se descubrió que las partículas y antipartículas se aniquilan entre sí, dando lugar a la aparición de la energía radiante y de la pura energía. En el mundo cuántico surgen procesos de creación y destrucción, demostración científica de que energía y materia no son más que dos polos de la misma esencia, de una única sustancia universal. El hombre mismo está formado de esta misma sustancia universal: luz pura y radiante. Cada uno de nosotros es un sistema de energías en vibración continua. Es decir que las moléculas de que se compone cualquier clase de materia, inclusive nuestros cuerpos, están en constante vibración. Nuestros cuerpos crean, entonces, bandas de energía electromagnética con una determinada amplitud de onda que les permite, al mismo tiempo, emitir y absorber información. Así estamos en continua comunicación con una matriz cuántica universal de carácter holográfico. CURACION CUANTICA Este descubrimiento está abriendo las puertas a una nueva terapia de curación que no es física, sino de carácter energético. Durante la segunda mitad del siglo XX, Herbert Fröhlich y Fritz Popp estudiaron este patrón energético de los seres vivos. Se descubrió por entonces que las moléculas vibran al unísono y se comportan como una sola supermolécula, estableciendo un patrón energético coherente y único. Así se pudo detectar una emisión lumínica por parte de los átomos similar a la de un láser. La misma fue conocida con el nombre de “radiación mitogenética de láser” y constituye la clave para asegurar que el ser humano es un complejo cuántico que posee la capacidad de conexión e interacción con el universo; y que su equilibrio, bienestar y salud dependen -como en el caso de una conexión a internet-, de la 17
calidad de recepción y emisión de dicha señal. Para favorecer esta coherencia se puede interaccionar con estos campos sutiles de energía mediante terapias que utilizan luz, escalas cromáticas y frecuencias de sonido que ayudan a reestablecer la comunicación con la matrix. LAS PROPIEDADES HOLOGRAFICAS El campo energético biofotónico es holográfico, por lo que posee la propiedad de que la parte (individuo) contiene la información del Holograma completo (Todo). Existe una conectividad instantánea entre la parte y el resto de las otras partes, y entre las partes con el Holograma entero. Aquello que promulga el misticismo que reza “descubrí la verdad dentro tuyo” es una verdad irrefutable en la teoría del Holograma Cuántico. Esta propiedad de no-localidad de información es un principio postulado por la dinámica cuántica en el Teorema de Bell y demostrada en el primer experimento realizado al respecto en el espacio por el astronauta Edgar Mitchell en su misión del Apolo XIV. Nuestro Universo sería un gigantesco almacén de información al que puede accederse desde cualquier otro lugar del universo en cualquier momento que se desee. Al igual que un ordenador central de una red informática, toda la información queda almacenada en un disco rígido al que puede accederse desde cualquier computadora del sistema cuando el operario lo considere oportuno. UNA PROPIEDAD FUNDAMENTAL: LA CONCIENCIA Puede afirmarse que nuestro cuerpo contiene, entonces, un patrón holográfico de energía que trasciende el marco conceptual de la energía física, ya que sería energía consciente. A niveles cuánticos, la conciencia es parte integrante, esto significa que la realidad cuántica no es objetiva; entonces el observador forma parte de la realidad y tiene incidencia sobre la misma. Esto puede comprenderse bajo un principio clásico de la dinámica cuántica, el de la dualidad onda-partícula: el observador, con el simple acto de observar, determina el estado de la función en onda o en partícula. La visión es una propiedad de la conciencia, entonces la conciencia co-crea lo que observamos. Somos partícipes de un mundo cuántico que cambia de estado de acuerdo a los observadores-participantes de la realidad. La dinámica cuántica es un pilar clave en la unión entre la materia y la conciencia, estableciendo una nueva concepción de nosotros mismos. La dualidad de la existencia onda-partícula (o bien energíamateria) está entonces determinada por nuestra observación. A esto habría que agregarle que el perceptor (sujeto) y la fuente de emisión (objeto) están en una interrelación de resonancia conocida con las siglas PCAR, que permite que la información sea adecuadamente recibida. Esto puede simplificarse asegurando que cada individuo recibe la información que merece o puede entender de acuerdo con su nivel de comprensión y asimilación consciente de recepción. Este proceso calificado de información y regido por ciclos resonantes de retroalimentación es conocido como Bio-Feed Back. UNIVERSO VIVIENTE Si evaluamos la conciencia como un campo matriz podemos especular que el Universo se comporta como un ser vivo. James E. Lovelock fue quien postuló el concepto de la Tierra como un ser vivo, con esencia vital y conciencia. La naturaleza geométrica de la naturaleza, la cual se expande fractalmente, puede aplicarse a nuestro universo y a las leyes que lo rigen. El universo completo podría imaginarse como un gigantesco fractal expandiéndose permanentemente dentro de una matriz energética consciente. Uno de los aspectos cruciales de la comprensión filosófica de la dinámica cuántica es responder a la siguiente pregunta: 18
¿Qué es lo que mantiene a la luz “condensada” en materia? Queda claro que los procesos cuánticos no son, por sí solos, capaces de mantener la continuidad de la luz en materia. Una de las explicaciones la dio uno de los padres de la física cuántica, Max Planck, al declarar que detrás de la realidad física debe existir una mente consciente que le permita existir. Entonces, detrás de este gigantesco universo debe existir también una gigantesca mente consciente que le da vida y le permite existir materialmente. Como decía el genial escritor Jorge Luis Borges: “Somos pensamientos en la mente de un gigante”. Por Brad Hunter
FÍSICA CUÁNTICA por Lic. Roberto Ávila
Materia y movimiento: x=y y=x; qué sabemos realmente. El mundo está dentro de nosotros o fuera de nosotros; lo que esta fuera de nosotros se conforma de nuestro cerebro o el cerebro conforma arquetípicamente lo que vemos afuera. ¿Cuál es la diferencia de lo real y la realidad? ¿Cuál es el límite? ¿HAY LÍMITES? Bien, vamos a desarrollar conceptos que nos van a aproximar a una idea de mundo y del hombre según lo que hoy opina la física cuántica. La cuestión primaria es aceptar que lo que vemos es el resultado de datos preestablecidos a priori por la cultura emergente de un país o de un tiempo cíclico evolutivo. No es lo mismo la meditación como la veían y la practicaban lo Tibetanos, que la meditación practicada hoy. Existe una ciencia cuántica conocida como Geocronia que dice que es una ciencia que estudia el movimiento de la Energía histórica de los ciclos culturales en una edad cósmica sobre un planeta determinado. Es como si la historia del mundo que conocemos fuera un organismo vivo que nace y muere como nosotros. Esta explicación es fundamental para entender por qué las Técnicas milenarias de la meditación el mantra y otras herramientas conocidas como espirituales están menos activadas energéticamente para el hombre occidental y europeo. ¿Y por qué sucede esto? Las técnicas son siempre las mismas, sólo que el organismo vivo del hombre ha evolucionado y el organismo tibetano de miles de años no era el mismo, estaba en otra octava evolutiva. 19
No vamos a tratar si eran mejores o peores que nosotros. Desde la física cuántica nos vamos a introducir en otros caminos de investigación y ver de qué forma la física cuántica nos va a ayudar a dar un salto cuántico a otra concepción del mundo microcósmico y macrocósmico. Nosotros también somos un mundo y no hombres. Desde la Física Cuántica, el hombre es un micro-universo. La cultura emergente actual no permite discernir quiénes somos correctamente, habrá que esperar un tiempo que está cercano para despertar a esta nueva concepción. Si fuera posible sería muy bueno no tener datos en nuestra mente y entonces poder hacer pruebas e investigación del universo y de nuestro mundo pero esto no es posible. Ya tenemos información, datos culturales que condicionan nuestros juicios a la hora de definir quiénes somos, de dónde venimos y hacia dónde vamos. Desde la física cuántica todo puede ser estudiado y modificar nuestros comportamientos emocionales y mentales de una manera rápida y segura. Por ejemplo: cambiamos el paradigma, el orden de ver la realidad, porque la realidad que notamos es la que condiciona nuestro karma-destino. La Biblia dice: "...y Dios creó al hombre a imagen y semejanza de Él". En algún momento como investigador de estas ciencias se me ocurrió pensar al revés: Y el hombre creó a Dios a imagen y semejanza de él. Es decir que tenemos una idea de Dios que podría ser contraria a la esperada por todos nosotros. Hubo en el siglo XIX la tendencia positivista en la cual creían en la materia y luego una tendencia o filosofía de la Energía. El problema que yo veo a la luz de la física cuántica es que una se define a la otra y de a.C. no se sale se forma un círculo vicioso. Por lo tanto, veamos que actualmente se habla en la espiritualidad de la energía y esto es retardatario y extemporáneo es como hablar como si estuviéramos en el siglo XIX pero actualizados en siglo 21. Es decir, actualmente hay que salir del concepto de Energía para pasar a otro concepto cuántico que es Energía = Información. Por ejemplo, el aura contiene información, no energía. Los chakras contienen información. El cerebro tiene información, las hormonas son información en la sangre. Por ello me animo a decir que el hombre actual, tiene 2 tipos de información: Una biológica o terrenal, éteres reflectores de vida orgánica, que mantienen el orden material de información de la especie humana. La segunda es Cósmica cuántica totalidad. Esto quiere decir que desde la física cuántica esta segunda concepción estaría indicando que tenemos un linaje que contiene información de la totalidad infinita. ¿Qué sucedería si despertáramos a esta concepción? Los que están leyendo esta información, sabrían que un salto cuántico habría inmediatamente. Hacia allá vamos. La física científica cuántica sospecha según mi visión, que estamos cerca de algo desconocido para descifrar ahora. Es bueno aceptar que no podemos tomar la cosa tal cual la describimos actualmente, y que no podemos describir una incógnita por otra incógnita es decir x=y y= x. Kant, un investigador de estas ciencias, estableció el hecho de que todo lo que los sentidos perciben es percibido en el espacio-tiempo que conocemos. Pero, yo digo, puede haber otros espacios-tiempos desconocidos para la ciencia evolutiva de 20
estos momentos y estableció Kant que el hecho de que la extensión en el espacio y la existencia en el tiempo no son propiedades de las cosas inherentes a ellas sino meramente propiedades de nuestra propiedad de los sentidos. Hasta aquí, lo que Kant decía; ahora bien, el tiempo y el espacio serían una prolongación de la razón. Digo: la razón y lo racional no son lo mismo. La razón sería una pequeña parte de lo racional, como lo es una rueda a un vehículo. Es muy difícil saber del vehículo si solo creemos en la rueda. Es decir: la razón nos ayuda a conformar el mundo que queremos ver. El problema no es lo que vemos... Lo grave actualmente en la Humanidad es que estamos creyendo ciegamente en lo que vemos, en lo que oyen nuestros oídos, por los cuales escuchamos y asi sucesivamente. Siendo así hay muy pocas posibilidades de conocer mundos tetradimensionales o multidimensionales que pueden existir. Otro concepto que se utiliza en la espiritualidad y lleva confusión a la hora de penetrar en los secretos... no hay misterios... hay secretos. Por ejemplo, el de las dimensiones. Todo es materia, solo que en varios órdenes desde lo más sutil hasta lo más denso. La energía desde la física cuántica también es materia solo que más sutil. El vapor de agua es materia y el hielo también. Bajo esta concepción de cuántica Dios es materia; pero primordial y atemporal no fraccionable e inmutable. Lo que marca la diferencia es el orden de materialidad con que están construidas las cosas. El origen de la Materia es desconocido... Uno ve el metal, por ejemplo, dice "materia" pero en realidad no vemos la naturaleza de la materia, su origen. El hombre actual y la física cuántica sospecha bien... que el hombre manipula materia o energía... pero no la naturaleza de las mismas. Por eso las materias que vemos pueden según la cuántica estar en varios planos simultáneamente. Ejemplo: La Muerte es un plano simultáneo a nosotros... si entráramos a él moriríamos.... ahora que estamos leyendo... estamos en otro plano material donde la vida que tú consideras es posible... FISICA CUAN
21
Ciencia Cuántica ¿Cómo es el mundo real? ¿Qué es la realidad? ¿Qué es y cómo es? Por ejemplo: un árbol es real. Efectivamente, ocupa un lugar en el tiempo y el espacio, podemos verlo, percibirlo a través del tacto y aspirar el aroma de sus hojas, sentir su consistencia su disposición vertical desde sus raíces hacia su copa ya en contacto con el cielo. Es real. Pero, ¿cómo es ese mismo árbol a la luz de la física cuántica por ejemplo? Definitivamente es otra cosa. Visto desde esa óptica que se sumerge en lo ínfimo, el árbol es un conjunto prácticamente inasible de “paquetes de energía”, de “quantum”, de fotones, de haces luminosos de trayectorias inciertas …todo articulado según la lógica radicalmente diferente a la que percibimos prima-facie con nuestros cinco sentidos, un “espacio” microfísico en el que el espacio es otra cosa y en el que el tiempo es diferente y en el que entonces, la realidad que conocemos ya no es la realidad sino otra cosa. Entonces, ¿qué es al fin y al cabo la realidad? Hace una semana exactamente, en el Congreso Iberoamericano de Ciberperiodismo que se desarrolló en Santiago de Compostela, en la brumosa Galicia, alguien en una noche cerrada, en una casa antigua y bella en el mismo epicentro del campo gallego, comenzó a hablar de tele transportación. No fantaseaba ni jugaba a los fantasmas y a los aparecidos galaicos. Hablaba de física. Los presentes, ocho expertos en las nuevas tendencias ciberespaciales, escucharon con atención y aportaron además sus puntos de vista. La tele transportación es posible, coincidieron. ¿Pero que es la tele transportación? En términos simplistas, la tele transportación es la posibilidad de trasladar materia de un sitio a otro del espacio sin que medie un tiempo para la concreción del traslado mismo. Tele transportar sería, tal como la ciencia ficción hasta ahora imagina, deconstruir un objeto en un sitio y hacerlo aparecer ipso facto en otro sitio. Una molécula que está aquí puede ser tele transportada allí sin que transcurra un solo instante entre una situación espacio temporal y la otra. Con mayor precisión (complejidad) tele transportar es comunicar el estado estructural, (su organización física), de un objeto a otro sin que exista entre ellos una conexión material aparente. En la Universidad de Ginebra, un grupo de científicos, logró transferir las propiedades de un fotón hacia a otro fotón a una distancia de dos kilómetros. Dicho de otro modo: una partícula que denominaremos B, es afectada en un instante, precisamente cuando recibe las características de la partícula A, y entonces se transforma y se altera, pareciéndose internamente a A, hasta ser idéntica a ella en su intimidad física. Pero la partícula B está a dos kilómetros de la partícula A, y de pronto y sin que se toquen la una asume las características de la otra. Esas características, esa estructura física elemental, fue ya tele transportada. 22
Hace días “Clarín.com” reprodujo un fragmento muy interesante aparecido en la Revista “Nature” relativo a la aparición de un nuevo tipo de Internet, el “Internet cuántico”. Habría, hacia el 2020 aproximadamente, computadoras cuánticas, según una estructura ya experimentada por científicos daneses. La memoria y la rapidez del Internet cuántico serían superlativas. Las posibilidades de la red llegarían hasta el umbral hoy casi inconcebible de la tele transportación. Sería factible tele transportar características microfísicas desde una partícula hacia la otra a través de la red. Sería una suerte de “e.teletransportación”. Mientras tanto, y según diversos informes, el Pentágono ya está considerando las posibilidades militares de la tele transportación. Pero la historia comenzó hace tiempo. Exactamente el 14 de diciembre de l900 (dentro de siete días se cumplirán 104 años del hecho), el profesor Max Planck de la sociedad de física de Berlín habló por primera vez en una conferencia pública de la física cuántica. Habló entonces de la luz y de la energía y de cómo el color de la luz varía según la temperatura del cuerpo que la emite. Quien coloque una barra de hierro al fuego podrá observar esas variaciones asombrosas. Internet es luz. Quien lee en Internet lee luz, en un sentido amplio del concepto. El internauta se contacta sensorialmente e intelectualmente con rayos que son grafos, trazos, letras, o imágenes, que decodifica cerebralmente a través las ondas que circulan por el cortex y constituyen nuestra inteligencia. Esa luz nos traslada a un universo distinto, de hecho nos traslada o nos tele transporta (en un sentido metafórico ) al ciberespacio. Y en el ciberespacio la realidad es otra cosa. Los interrogantes allí, aquí, se multiplican y las posibilidades experimentales se disparan ad infinitum. La revolución ciberespacial recién empieza. Y no sabemos hacia que lejanas y fascinantes galaxias digitales nos permitirá llegar. No lo sabemos Fuente Clarín - 1204 - Miguel Wiñazki
¿Porqué cuántica? Einstein dio una buena explicación y analogía con la vida real acerca del significado de la palabra cuántica y cuantos. En su libro “La física, aventura del pensamiento” dice que por ejemplo en una mina de carbón la producción puede variar en un modo continuo, si aceptamos cualquier unidad de medida por mas pequeña que sea. Es decir podríamos decir que se produjo 1 granito mas de carbón que ayer. Lo que no podemos hacer es expresar la variación de personal en forma continua, no tiene sentido hablar de que se aumento el personal en 1,80 personas, es decir la medida de la cantidad de personal es discreta y no continua. Otro ejemplo, una suma de dinero solo puede variar de a saltos, discontinuamente. La unidad mínima para el dinero es el centavo. Decimos entonces que ciertas magnitudes cambian de una manera continua y otras de una manera discontinua o discreta, o sea por cantidades elementales o pasos que no pueden reducirse indefinidamente. A estos pasos mínimos e indivisibles, se los llama cuantos elementales de la magnitud en cuestión. Es 23
evidente que al aumentar la precisión de cómo se realizan las medidas de cualquier tipo de magnitud, unidades que se consideraban indivisibles dejen de serlo y adoptan un valor aun menor. O sea ciertas magnitudes que se consideran continuas pueden tener una naturaleza discreta. En física, ciertas magnitudes consideradas por muchos años como continuas, en realidad están compuestas de cuantos elementales. La energía es una de estas magnitudes que al estudiar los fenómenos del mundo de los átomos, se detecto que su naturaleza no era continua sino discreta y que existe una unidad mínima o cuanto elemental de energía. Este fue el descubrimiento de Max Planck con el que se inicia la teoría cuántica. Cuanto o quantum utilizado como un sustantivo se refiere a la cantidad más pequeña de algo que es posible tener. En el mundo de la física clásica existe el concepto de que todos los parámetros físicos como por ejemplo la energía, la velocidad, la distancia recorrida por un objeto, son continuos. Para entender que es esto de continuos, pensemos en el termómetro que mide la temperatura, cuando vemos que la misma aumenta en un grado en realidad aumento primero en una décima de grado y así siguiendo antes en una millonésima de grado etc., etc. Es decir el proceso de aumento de temperatura que medimos con el termómetro decimos que es continuo. Bien en el mundo de la física cuántica esto no es así, en concreto cuando Max Planck estudió como se producía la radiación desde un cuerpo incandescente, su explicación fue que los átomos que componen el cuerpo incandescente, cuando liberaban energía en forma de radiación, lo hacían no en forma continua, sino en pequeños bloques a los que él denominó cuantos de energía. Lo extraño de todo este proceso o de la explicación de Planck es que no existen posiciones intermedias, es decir no existen medios cuantos o un cuarto de cuanto. Es como si en el caso del termómetro no existiera la fracción de grado, simplemente la temperatura que está en 20º pasa de golpe a 21º. Decimos extraño porque lo que el sentido común indica es que la temperatura de un objeto aumenta cuando este recibe calor/energía; si el cuerpo está en 20º y le doy calor en una pequeña cantidad, no será suficiente para que aumente en un grado a 21º pero si para que algo aumente. En el mundo cuántico es como si esas pequeñas cantidades se van almacenando en algún lugar sin manifestarse de ninguna forma (sin aumento de temperatura del cuerpo), para que de repente cuando la cantidad de calor transmitida alcanzó un valor tal que el termómetro muestra ahora sí un aumento de 1º, marcando 21º. ¿qué pasó en el medio?. Bueno esto que si bien no ocurre en el caso de la temperatura sino que es solo una analogía para entender, es lo que efectivamente ocurre en el mundo cuántico. Todas las partículas que componen el universo físico se deben mover en saltos cuánticos. Un cuerpo no puede absorber o emitir energía luminosa en cualquier cantidad arbitraria sino solo como múltiplos enteros de una cantidad básica o cuanto. Volviendo a la extrañeza de estos fenómenos, imaginemos por un momento otra analogía: estamos arrojando piedras en un estanque de agua tranquilo. El sentido común dado por la experiencia que acumulamos en el tiempo nos dice que al 24
hacer esto se producirán ondas en el estanque que son producto de la energía que la piedra transmitió al caer al agua. Un estanque cuántico, se comportaría de diferente forma, al arrojar una o varias piedras nada ocurrirá, y de repente sin que medie ninguna conexión entre la causa (arrojar piedras) y el efecto (se generan ondas en la superficie), el estanque comenzará a vibrar con ondas, hasta que de repente se tranquilizará nuevamente por mas que en ese momento estemos lanzando piedras. Si todas las piedras son del mismo tamaño, y arrojadas desde la misma altura, entregarán al caer la misma cantidad de energía al agua. Si dicha cantidad de energía resulta ser inferior al cuanto de energía, entonces debemos rrojar mas de una piedra para iniciar el movimiento. Quiero recalcar la extrañeza de este fenómeno, llamando la atención sobre el hecho de que el cuanto no es una cantidad que pueda subdividirse, es decir, el concepto de continuidad pierde significación, entre 0 y el cuanto no existe nada. Son estados que la naturaleza no permite. Esta es la aracterística esencial del descubrimiento de Planck al estudiar los fenómenos llamado radiación del cuerpo negro (tema que se desarrollara mas adelante): existe un límite inferior al cambio de energía (absorción o emisión de energía en forma de luz) que un átomo puede experimentar. Por: Eduardo Yvorra Eduardo Yvorra www.buenasiembra.com.ar
La física cuántica confirma que creamos nuestra realidad
La física moderna dice “tú si puedes”
Durante décadas, los poderes de la mente han sido cuestiones asociadas al mundo “esotérico”, cosas de locos. La mayor parte de la gente desconoce que la mecánica cuántica, es decir, el modelo teórico y práctico dominante hoy día en el ámbito de la ciencia, ha demostrado la interrelación entre el pensamiento y la realidad. Que cuando creemos que podemos, en realidad, podemos. Sorprendentes experimentos en los laboratorios más adelantados del mundo corroboran esta creencia. El estudio sobre el cerebro ha avanzado mucho en las últimas décadas mediante las “tomografías”. Conectando electrodos a este órgano, se determina donde se produce cada una de las actividades de la mente. La fórmula es bien sencilla: se mide la actividad eléctrica mientras se produce una actividad mental, ya sea racional, como emocional, espiritual o sentimental y así se sabe a qué área corresponde esa facultad. Estos experimentos en neurología han comprobado algo aparentemente descabellado: cuando vemos un determinado objeto aparece actividad en ciertas partes de nuestro cerebro… pero cuando se exhorta al sujeto a que cierre los ojos y lo imagine, la actividad cerebral es ¡idéntica! Entonces, si el cerebro refleja la misma actividad cuando “ve” que cuando “siente”, llega la gran pregunta: ¿cuál es 25
la Realidad? “La solución es que el cerebro no hace diferencias entre lo que ve y lo que imagina porque las mismas redes neuronales están implicadas; para el cerebro, es tan real lo que ve como lo que siente”, afirma el bioquímico y doctor en medicina quiropráctica, Joe Dispenza en el libro “¿y tú qué sabes?”. En otras palabras, que fabricamos nuestra realidad desde la forma en que procesamos nuestras experiencias, es decir, mediante nuestras emociones. La farmacia del cerebro En un pequeño órgano llamado hipotálamo se fabrican las respuestas emocionales. Allí, en nuestro cerebro, se encuentra la mayor farmacia que existe, donde se crean unas partículas llamadas “péptidos”, pequeñas secuencias de aminoácidos que, combinadas, crean las neurohormonas o neuropéptidos. Ellas son las responsables de las emociones que sentimos diariamente. Según John Hagelin, profesor de física y director del Instituto para la ciencia, la tecnología y la política pública de la Universidad Maharishi, dedicado al desarrollo de teorías del campo unificado cuántico: “hay química para la rabia, para la felicidad, para el sufrimiento, la envidia…” En el momento en que sentimos una determinada emoción, el hipotálamo descarga esos péptidos, liberándolos a través de la glándula pituitaria hasta la sangre, que conectará con las células que tienen esos receptores en el exterior. El cerebro actúa como una tormenta que descarga los pensamientos a través de la fisura sináptica. Nadie ha visto nunca un pensamiento, ni siquiera en los más avanzados laboratorios, pero lo que sí se ve es la tormenta eléctrica que provoca cada mentalismo, conectando las neuronas a través de las “fisuras sinápticas”. Cada célula tiene miles de receptores rodeando su superficie, como abriéndose a esas experiencias emocionales. Candance Pert, poseedora de patentes sobre péptidos modificados y profesora en la universidad de medicina de Georgetown, lo explica así: “Cada célula es un pequeño hogar de conciencia. Una entrada de un neuropéptido en una célula equivale a una descarga de bioquímicos que pueden llegar a modificar el núcleo de la célula”. Nuestro cerebro crea estos neuropéptidos y nuestras células son las que se acostumbran a “recibir” cada una de las emociones: ira, angustia, alegría, envidia, generosidad, pesimismo, optimismo… Al acostumbrarse a ellas, se crean hábitos de pensamiento. A través de los millones de terminaciones sinápticas, nuestro cerebro está continuamente recreándose; un pensamiento o emoción crea una nueva conexión, que se refuerza cuando pensamos o sentimos “algo” en repetidas ocasiones. Así es como una persona asocia una determinada situación con una emoción: una mala experiencia en un ascensor, como quedarse encerrado, puede hacer que el objeto “ascensor” se asocie al temor a quedarse encerrado. Si no se interrumpe esa asociación, nuestro cerebro podría relacionar ese pensamiento26
objeto con esa emoción y reforzar esa conexión, conocida en el ámbito de la psicología como “fobia” o “miedo”. Todos los hábitos y adicciones operan con la misma mecánica. Un miedo (a no dormir, a hablar en público, a enamorarse) puede hacer que recurramos a una pastilla, una droga o un tipo de pensamiento nocivo. El objetivo inconsciente es “engañar” a nuestras células con otra emoción diferente, generalmente, algo que nos excite, “distrayéndonos” del miedo. De esta manera, cada vez que volvamos a esa situación, el miedo nos conectará, inevitablemente, con la “solución”, es decir, con la adicción. Detrás de cada adicción (drogas, personas, bebida, juego, sexo, televisión) hay pues un miedo insertado en la memoria celular. La buena noticia es que, en cuanto rompemos ese círculo vicioso, en cuanto quebramos esa conexión, el cerebro crea otro puente entre neuronas que es el “pasaje a la liberación”. Porque, como ha demostrado el Instituto Tecnológico de Massachussets en sus investigaciones con lamas budistas en estado de meditación, nuestro cerebro está permanentemente rehaciéndose, incluso, en la ancianidad. Por ello, se puede desaprender y reaprender nuevas formas de vivir las emociones. Mente creadora Los experimentos en el campo de las partículas elementales han llevado a los científicos a reconocer que la mente es capaz de crear. En palabras de Amit Goswani, profesor de física en la universidad de Oregón, el comportamiento de las micropartículas cambia dependiendo de lo que hace el observador: “cuando el observador mira, se comporta como una onda, cuando no lo hace, como una partícula”. Ello quiere decir que las expectativas del observador influyen en la Realidad de los laboratorios… y cada uno de nosotros está compuestos de millones de átomos. Traducido al ámbito de la vida diaria, esto nos llevaría a que nuestra Realidad es, hasta cierto punto, producto de nuestras propias expectativas. Si una partícula (la mínima parte de materia que nos compone) puede comportarse como materia o como onda… Nosotros podemos hacer lo mismo. La realidad molecular Los sorprendentes experimentos del científico japonés Masaru Emoto con las moléculas de agua han abierto una increíble puerta a la posibilidad de que nuestra mente sea capaz de crear la Realidad. “Armado” de un potente microscopio electrónico con una diminuta cámara, Emoto fotografió las moléculas procedentes de aguas contaminadas y de manantial. Las metió en una cámara frigorífica para que se helaran y así, consiguió fotografiarlas. Lo que encontró fue que las aguas puras creaban cristales de una belleza inconmensurable, mientras que las sucias, 27
sólo provocaban caos. Más tarde, procedió a colocar palabras como “Amor” o “Te odio”, encontrando un efecto similar: el amor provocaba formas moleculares bellas mientras que el odio, generaba caos. Por último, probó a colocar música relajante, música folk y música thrash metal, con el resultado del caos que se pudieron ver en las fotografías. La explicación biológica a este fenómeno es que los átomos que componen las moléculas (en este caso, los dos pequeños de Hidrógeno y uno grande de Oxígeno) se pueden ordenar de diferentes maneras: armoniosa o caóticamente. Si tenemos en cuenta que el 80% de nuestro cuerpo es agua, entenderemos cómo nuestras emociones, nuestras palabras y hasta la música que escuchamos, influyen en que nuestra realidad sea más o menos armoniosa. Nuestra estructura interna está reaccionando a todos los estímulos exteriores, reorganizando los átomos de las moléculas. El valioso vacío atómico Aunque ya los filósofos griegos especularon con su existencia, el átomo es una realidad científica desde principios de siglo XX. La física atómica dio paso a la teoría de la relatividad y de ahí, a la física cuántica. En las escuelas de todo el mundo se enseña hoy día que el átomo está compuesto de partículas de signo positivo (protones) y neutras (neutrones) en su núcleo y de signo negativo (electrones) girando a su alrededor. Su organización recuerda extraordinariamente a la del Universo, unos electrones (planetas) girando alrededor de un sol o núcleo (protones y neutrones). Lo que la mayoría desconocíamos es que la materia de la que se componen los átomos es prácticamente inexistente. En palabras de William Tyler, profesor emérito de ingeniería y ciencia de la materia en la universidad de Stanford, “la materia no es estática y predecible. Dentro de los átomos y moléculas, las partículas ocupan un lugar insignificante: el resto es vacío”. En otras palabras, que el átomo no es una realidad terminada sino mucho más maleable de lo que pensábamos. El físico Amit Goswani es rotundo: “Heinsenberg, el codescubridor de la mecánica cuántica, fue muy claro al respecto; los átomos no son cosas, son TENDENCIAS. Así que, en lugar de pensar en átomos como cosas, tienes que pensar en posibilidades, posibilidades de la consciencia. La física cuántica solo calcula posibilidades, así que la pregunta viene rápidamente a nuestras mentes, ¿quién elige de entre esas posibilidades para que se produzca mi experiencia actual? La respuesta de la física cuántica es rotunda: La conciencia está envuelta, el observador no puede ser ignorado”. ¿Qué realidad prefieres? El ya famoso experimento con la molécula de fullerano del doctor Anton 28
Zeillinger, en la Universidad de Viena, testificó que los átomos de la molécula de fullerano (estructura atómica que tiene 60 átomos de cárbón) eran capaces de pasar por dos agujeros simultáneamente. Este experimento “de ciencia ficción” se realiza hoy día con normalidad en laboratorios de todo el mundo con partículas que han llegado a ser fotografiadas. La realidad de la bilocación, es decir, que “algo” pueda estar en dos lugares al mismo tiempo, es algo ya de dominio público, al menos en el ámbito de la ciencia más innovadora. Jeffrey Satinover, ex presidente de la fundación Jung de la universidad de Harvard y autor de libros como “El cerebro cuántico” y “El ser vacío”, lo explica así: “ahora mismo, puedes ver en numerosos laboratorios de Estados Unidos, objetos suficientemente grandes para el ojo humano, que están en dos lugares al mismo tiempo, e incluso se les puede sacar fotografías. Yo creo que mucha gente pensará que los científicos nos hemos vuelto locos, pero la realidad es así, y es algo que todavía no podemos explicar”. Quizás porque algunos piensen que la gente “de a pie” no va a comprender estos experimentos, los científicos todavía no han conseguido alertar a la población de las magníficas implicaciones que eso conlleva para nuestras vidas, aunque las teorías anejas sí forman parte ya del dominio de la ciencia divulgativa. Seguramente la teoría de los universos paralelos, origen de la de la “superposición cuántica”, es la que ha conseguido llegar mejor al gran público. Lo que viene a decir es que la Realidad es un número “n” de ondas que conviven en el espaciotiempo como posibilidades, hasta que UNA se convierte en Real: eso será lo que vivimos. Somos nosotros quienes nos ocupamos, con nuestras elecciones y, sobre todo, con nuestros pensamientos (“yo sí puedo”, “yo no puedo”) de encerrarnos en una realidad limitada y negativa o en la consecución de aquellas cosas que soñamos. En otras palabras, la física moderna nos dice que podemos alcanzar todo aquello que ansiamos (dentro de ese abanico de posibilidades-ondas, claro). En realidad, los descubrimientos de la física cuántica vienen siendo experimentados por seres humanos desde hace milenios, concretamente, en el ámbito de la espiritualidad. Según el investigador de los manuscritos del Mar Muerto, Greg Braden, los antiguos esenios (la comunidad espiritual a la que, dicen, perteneció Jesucristo) tenían una manera de orar muy diferente a la actual. En su libro “El efecto Isaías: descodificando la perdida ciencia de al oración y la plegaria”, Braden asegura que su manera de rezar era muy diferente a la que los cristianos adoptarían. En lugar de pedir a Dios “algo”, los esenios visualizaban que aquello que pedían ya se había cumplido, una técnica calcada de la que hoy se utiliza en el deporte de alta competición, sin ir más lejos. Seguramente, muchos han visto en los campeonatos de atletismo cómo los saltadores de altura o pértiga realizan ejercicios de simulación del salto: interiormente se visualizan a sí mismos, ni más ni menos que realizando la proeza. Esta técnica procede del ámbito de la psicología deportiva, que ha desarrollado técnicas a su vez recogidas 29
del acervo de las filosofías orientales. La moderna Programación Neurolingüística, usada en el ámbito de la publicidad, las relaciones públicas y de la empresa en general, coincide en recurrir al tiempo presente y a la afirmación como vehículo para la consecución de los logros. La palabra sería un paso más adelante en la creación de la Realidad, por lo que tenemos que tener cuidado con aquello que decimos pues, de alguna manera, estamos atrayendo esa realidad. La búsqueda científica del alma En las últimas décadas, los experimentos en el campo de la neurología han ido encaminados a encontrar donde reside la conciencia. Fred Alan Wolf, doctor en física por la universidad UCLA, filósofo, conferenciante y escritor lo explica así en “¿Y tú qué sabes?” de la que se espera la segunda parte en pocos meses: “Los científicos hemos tratado de encontrar al observador, de encontrar la respuesta a quién está al mando del cerebro: sí, hemos ido a cada uno de los escondrijos del cerebro a encontrar el observador y no lo hemos hallado; no hemos encontrado a nadie dentro del cerebro, nadie en las regiones corticales del cerebro pero todos tenemos esa sensacion de ser el observador”. En palabras de este científico, las puertas para la existencia del alma están abiertas de par en par: “Sabemos lo que el observador hace pero no sabemos quién o qué cosa es el observador”. Hoy recuperadas por la física cuántica, muchas de estas afirmaciones eran conocidas en la Antigüedad, como en el caso del “Catecismo de la química superior”, de Karl von Eckartshausen. —————————————————————————————
Cuadro 1 Nuestro cerebro: un ordenador que procesa información A cada segundo, en una vida como la moderna llena de estímulos: nos bombardean enormes cantidades de información. El cerebro solo procesa una mínima cantidad de ella: 400 mil millones de bits de información por segundo. Los estudios científicos han demostrado que sólo somos conscientes de 2.000 mil de esos bits, referidos al medio ambiente, el tiempo y nuestro cuerpo. Así pues, lo que consideramos la Realidad, es decir, aquello que vivimos, es sólo una mínima parte de lo que en realidad está ocurriendo. ¿Cómo se filtra toda esa información? A través de nuestras creencias: El modelo de lo que creemos acerca del mundo, se construye desde lo que sentimos en nuestro interior y de nuestras ideas. Cada información que recibimos del exterior se procesa desde las experiencias que hemos tenido y nuestra respuesta emocional procede de estas memorias. Por eso, los malos recuerdos nos impulsan a caer en los mismos errores. 30
Cuadro 2: Cómo romper con esos malos hábitos del pensamiento El cerebro crea esas redes a partir de la memoria: ideas, sentimientos, emociones. Cada asociación de ideas o hechos, incuba un pensamiento o recuerdo en forma de conexión neuronal, que desemboca en recuerdos por medio de la memoria asociativa. A una sensación o emoción similar, reaparecerá ese recuerdo en forma de idea o pensamiento. Hay gente que conecta “amor” con “decepción” o “engaño”, así que cuando vaya a sentir amor, la red neuronal conectará con la emoción correspondiente a cómo se sintió la última vez que lo sintió: ira, dolor, rabia, etc. Según Joe Dispenza “si practicamos una determinada respuesta emocional, esa conexión sináptica se refuerza y se refuerza. Cuando aprendemos a “observar” nuestras reacciones y no actuamos de manera automática, ese modelo se rompe”. Así pues, aprender a “ver” esas asociaciones es la mejor manera de evitar que se repitan: la llave es la consciencia. Cuadro 3: La mecánica de la erección La mejor metáfora del pensamiento creador es el miembro masculino. Una sola fantasía sexual, es decir, un pensamiento erótico, es capaz de producir una erección, con toda la variedad de glándulas endocrinas y hormonas que participan en ello. Nada hay fuera de la mente del hombre pero, sin embargo, se produce un torbellino hormonal que desemboca en un hecho físico palpable. En el lado femenino, también el poder del pensamiento asociado al erotismo se convierte a menudo en hechos físicos, demostrando la capacidad del pensamiento para crear situaciones placenteras… o adictivas. Los más firmes defensores del poder de la visualización llegan a proponer que se puede obtener a través de ella casi todo lo que deseamos.
La Teoría Cuántica, una aproximación al universo probable
Es un conjunto de nuevas ideas que explican procesos incomprensibles para la física de los objetos
La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. Su marco de aplicación se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica, en la física de nuevos materiales, en la física de altas 31
energías, en el diseño de instrumentación médica, en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. La Teoría Cuántica es una teoría netamente probabilista: describe la probabilidad de que un suceso dado acontezca en un momento determinado, sin especificar cuándo ocurrirá. A diferencia de lo que ocurre en la Física Clásica, en la Teoría Cuántica la probabilidad posee un valor objetivo esencial, y no se halla supeditada al estado de conocimiento del sujeto, sino que, en cierto modo, lo determina. Por Mario Toboso.
La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Se trata de una teoría que reúne un formalismo matemático y conceptual, y recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX, para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. Las ideas que sustentan la Teoría Cuántica surgieron, pues, como alternativa al tratar de explicar el comportamiento de sistemas en los que el aparato conceptual de la Física Clásica se mostraba insuficiente. Es decir, una serie de observaciones empíricas cuya explicación no era abordable a través de los métodos existentes, propició la aparición de las nuevas ideas. Hay que destacar el fuerte enfrentamiento que surgió entre las ideas de la Física Cuántica, y aquéllas válidas hasta entonces, digamos de la Física Clásica. Lo cual se agudiza aún más si se tiene en cuenta el notable éxito experimental que éstas habían mostrado a lo largo del siglo XIX, apoyándose básicamente en la mecánica de Newton y la teoría electromagnética de Maxwell (1865). “Dos nubecillas” Era tal el grado de satisfacción de la comunidad científica que algunos físicos, entre ellos uno de los 32
más ilustres del siglo XIX, William Thompson (Lord Kelvin), llegó a afirmar: Hoy día la Física forma, esencialmente, un conjunto perfectamente armonioso, ¡un conjunto prácticamente acabado! ... Aun quedan “dos nubecillas” que oscurecen el esplendor de este conjunto. La primera es el resultado negativo del experimento de Michelson‐Morley. La segunda, las profundas discrepancias entre la experiencia y la Ley de Rayleigh‐Jeans. La disipación de la primera de esas “dos nubecillas” condujo a la creación de la Teoría Especial de la Relatividad por Einstein (1905), es decir, al hundimiento de los conceptos absolutos de espacio y tiempo, propios de la mecánica de Newton, y a la introducción del “relativismo” en la descripción física de la realidad. La segunda “nubecilla” descargó la tormenta de las primeras ideas cuánticas, debidas al físico alemán Max Planck (1900). El origen de la Teoría Cuántica ¿Qué pretendía explicar, de manera tan poco afortunada, la Ley de Rayleigh‐Jeans (1899)? Un fenómeno físico denominado radiación del cuerpo negro, es decir, el proceso que describe la interacción entre la materia y la radiación, el modo en que la materia intercambia energía, emitiéndola o absorbiéndola, con una fuente de radiación. Pero además de la Ley de Rayleigh‐Jeans había otra ley, la Ley de Wien (1893), que pretendía también explicar el mismo fenómeno. La Ley de Wien daba una explicación experimental correcta si la frecuencia de la radiación es alta, pero fallaba para frecuencias bajas. Por su parte, la Ley de Rayleigh‐Jeans daba una explicación experimental correcta si la frecuencia de la radiación es baja, pero fallaba para frecuencias altas. La frecuencia es una de las características que definen la radiación, y en general cualquier fenómeno en el que intervengan ondas. Puede interpretarse la frecuencia como el número de oscilaciones por unidad de tiempo. Toda la gama de posibles frecuencias para una radiación en la Naturaleza se hallan contenidas en el espectro electromagnético, el cual, según el valor de la frecuencia elegida determina un tipo u otro de radiación. En 1900, Max Planck puso la primera piedra del edificio de la Teoría Cuántica. Postuló una ley (la Ley de Planck que explicaba de manera unificada la radiación del cuerpo negro, a través de todo el espectro de frecuencias. La hipótesis de Planck ¿Qué aportaba la ley de Planck que no se hallase ya implícito en las leyes de Wien y de Rayleigh‐ Jeans? Un ingrediente tan importante como novedoso. Tanto que es el responsable de la primera gran crisis provocada por la Teoría Cuántica sobre el marco conceptual de la Física Clásica. Ésta suponía que el intercambio de energía entre la radiación y la materia ocurría a través de un proceso continuo, es decir, una radiación de frecuencia f podía ceder cualquier cantidad de energía al ser absorbida por la materia. 33
Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación. La cantidad de energía E propia de un quantum de radiación de frecuencia f se obtiene mediante la relación de Planck: E = h x f, siendo h la constante universal de Planck = 6’62 x 10 (expo‐34) (unidades de “acción”). Puede entenderse la relación de Planck diciendo que cualquier radiación de frecuencia f se comporta como una corriente de partículas, los quantums, cada una de ellas transportando una energía E = h x f, que pueden ser emitidas o absorbidas por la materia. La hipótesis de Planck otorga un carácter corpuscular, material, a un fenómeno tradicionalmente ondulatorio, como la radiación. Pero lo que será más importante, supone el paso de una concepción continuista de la Naturaleza a una discontinuista, que se pone especialmente de manifiesto en el estudio de la estructura de los átomos, en los que los electrones sólo pueden tener un conjunto discreto y discontinuo de valores de energía. La hipótesis de Planck quedó confirmada experimentalmente, no sólo en el proceso de radiación del cuerpo negro, a raíz de cuya explicación surgió, sino también en las explicaciones del efecto fotoeléctrico, debida a Einstein (1905), y del efecto Compton, debida a Arthur Compton (1923). Marco de aplicación de la Teoría Cuántica El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. De manera que la Teoría Cuántica se extiende con éxito a contextos muy diferentes, lo que refuerza su validez. Pero, ¿por qué falla la teoría clásica en su intento de explicar los fenómenos del micromundo? ¿No se trata al fin y al cabo de una simple diferencia de escalas entre lo grande y lo pequeño, relativa al tamaño de los sistemas? La respuesta es negativa. Pensemos que no siempre resulta posible modelar un mismo sistema a diferentes escalas para estudiar sus propiedades. Para ver que la variación de escalas es un proceso con ciertas limitaciones intrínsecas, supongamos que queremos realizar estudios hidrodinámicos relativos al movimiento de corrientes marinas. En determinadas condiciones, podríamos realizar un modelo a escala lo suficientemente completo, que no dejase fuera factores esenciales del fenómeno. A efectos prácticos una reducción de escala puede resultar lo suficientemente descriptiva. 34
Pero si reducimos la escala de manera reiterada pasaremos sucesivamente por situaciones que se corresponderán en menor medida con el caso real. Hasta llegar finalmente a la propia esencia de la materia sometida a estudio, la molécula de agua, que obviamente no admite un tratamiento hidrodinámico, y habremos de acudir a otro tipo de teoría, una teoría de tipo molecular. Es decir, en las sucesivas reducciones de escala se han ido perdiendo efectos y procesos generados por el aglutinamiento de las moléculas. De manera similar, puede pensarse que una de las razones por las que la Física Clásica no es aplicable a los fenómenos atómicos, es que hemos reducido la escala hasta llegar a un ámbito de la realidad “demasiado esencial” y se hace necesario, al igual que en el ejemplo anterior, un cambio de teoría. Y de hecho, así sucede: la Teoría Cuántica estudia los aspectos últimos de la substancia, los constituyentes más esenciales de la materia (las denominadas “partículas elementales”) y la propia naturaleza de la radiación.
Cuándo entra en juego la Teoría Cuántica Debemos asumir, pues, el carácter absoluto de la pequeñez de los sistemas a los que se aplica la Teoría Cuántica. Es decir, la cualidad “pequeño” o “cuántico” deja de ser relativa al tamaño del sistema, y adquiere un carácter absoluto. Y ¿qué nos indica si un sistema debe ser considerado “pequeño”, y estudiado por medio de la Teoría Cuántica? Hay una “regla”, un “patrón de medida” que se encarga de esto, pero no se trata de una regla calibrada en unidades de longitud, sino en unidades de otra magnitud física importante denominada “acción”. La acción es una magnitud física, al igual que lo son la longitud, el tiempo, la velocidad, la energía, la temperatura, la potencia, la corriente eléctrica, la fuerza, etc., aunque menos conocida. Y al igual que la temperatura indica la cualidad de frío o caliente del sistema, y la velocidad su cualidad de reposo o movimiento, la acción indica la cualidad de pequeño (cuántico) o grande (clásico) del sistema. Como la energía, o una longitud, todo sistema posee también una acción que lo caracteriza. Esta acción característica, A, se obtiene de la siguiente multiplicación de magnitudes: A = P x L, donde P representa la cantidad de movimiento característica del sistema (el producto de su masa 35
por su velocidad) y L su “longitud” característica. La unidad de esa “regla” que mencionábamos, con la que medimos la acción de los sistemas, es la constante de Planck, h. Si el valor de la acción característica del sistema es del orden de la constante de Planck deberemos utilizar necesariamente la Teoría Cuántica a la hora de estudiarlo. Al contrario, si h es muy pequeña comparada con la acción típica del sistema podremos estudiarlo a través de los métodos de la teoría clásica. Es decir: Si A es del orden de h debemos estudiar el sistema según la Teoría Cuántica. Si A es mucho mayor que h, podemos estudiarlo por medio de la Física Clásica. Dos ejemplos: partículas y planetas Veamos dos ejemplos de acción característica en dos sistemas diferentes, aunque análogos: 1. El electrón orbitando en torno al núcleo en el nivel más bajo de energía del átomo de hidrógeno. Vamos a calcular el orden de magnitud del producto P x L. P representa el producto de la masa del electrón por su velocidad orbital, esto es P = 10 (exp‐31) (masa) x 10 (exp 6) (velocidad) = 10 (exp‐ 25) (cantidad de movimiento). El valor característico de L corresponde al radio de la órbita, esto es, L = 10 (expo‐10) (longitud). Realizamos ahora el producto P x L para hallar la magnitud de la “acción” característica asociada a este proceso: A1 = Px L = 10 (expo‐25) x 10 (expo‐10) = 10 (expo‐ 35) (acción). 2. El planeta Júpiter orbitando en torno al Sol (consideramos la órbita circular, para simplificar). Para este segundo ejemplo, realizamos cálculos análogos a los anteriores. Primeramente la cantidad de movimiento P, multiplicando la masa de Júpiter por su velocidad orbital: P = 10 (expo 26) (masa) x 10 (expo 4) (velocidad) = 10 (expo 30) (cantidad de movimiento). Igualmente, la longitud característica será la distancia orbital media: L = 10 (expo 11) (longitud). La magnitud de la acción característica en este segundo caso será: A2 = 10 (expo 30) x 10 (expo 11) = 10 (expo 41) (acción). Si comparamos estos dos resultados con el orden de magnitud de la constante de Planck tenemos: h = 10 (expo‐34) A1 = 10 (expo ‐35) A2 = 10 (expo 41) Vemos que para el caso 1 (electrón orbitando en un átomo de hidrógeno) la proximidad en los órdenes de magnitud sugiere un tratamiento cuántico del sistema, que debe estimarse como “pequeño” en el sentido que indicábamos anteriormente, en términos de la constante de Planck, considerada como “patrón” de medida. Al contrario, entre el caso 2 (Júpiter en órbita en torno al Sol) y la constante de Planck hay una diferencia de 75 órdenes de magnitud, lo que indica que el sistema es manifiestamente “grande”, medido en unidades de h, y no requiere un estudio basado en la Teoría Cuántica. 36
La constante de Planck tiene un valor muy, muy pequeño. Veámoslo explícitamente: h = 0’ 000000000000000000000000000000000662 (unidades de acción) El primer dígito diferente de cero aparece en la trigésimo cuarta cifra decimal. La pequeñez extrema de h provoca que no resulte fácil descubrir los aspectos cuánticos de la realidad, que permanecieron ocultos a la Física hasta el siglo XX. Allá donde no sea necesaria la Teoría Cuántica, la teoría clásica ofrece descripciones suficientemente exactas de los procesos, como en el caso del movimiento de los planetas, según acabamos de ver. Breve cronología de la Teoría Cuántica 1900. “Hipótesis cuántica de Planck” (Premio Nobel de Física, 1918). Carácter corpuscular de la radiación. 1905. Einstein (Premio Nobel de Física, 1921) explica el “efecto fotoeléctrico” aplicando la hipótesis de Planck. 1911. Experimentos de Rutherford, que establecen el modelo planetario átomo, con núcleo (protones) y órbitas externas (electrones). 1913. Modelo atómico de Niels Bohr (Premio Nobel de Física, 1922). Tiene en cuenta los resultados de Rutherford, pero añade además la hipótesis cuántica de Planck. Una característica esencial del modelo de Bohr es que los electrones pueden ocupar sólo un conjunto discontinuo de órbitas y niveles de energía. 1923. Arthrur Comptom (Premio Nobel de Física, 1927) presenta una nueva verificación de la hipótesis de Planck, a través de la explicación del efecto que lleva su nombre. 1924. Hipótesis de De Broglie (Premio Nobel de Física, 1929). Asocia a cada partícula material una onda, de manera complementaria a cómo la hipótesis de Planck dota de propiedades corpusculares a la radiación. 1925. Werner Heisenberg (Premio Nobel de Física, 1932) plantea un formalismo matemático que permite calcular las magnitudes experimentales asociadas a los estados cuánticos. 1926. Erwin Schrödinger (Premio Nobel de Física, 1933) plantea la ecuación ondulatoria cuyas soluciones son las ondas postuladas teóricamente por De Broglie en 1924. 1927. V Congreso Solvay de Física, dedicado al tema “Electrones y fotones”. En él se produce el debate entre Einstein y Bohr, como defensores de posturas antagónicas, sobre los problemas interpretativos que plantea la Teoría Cuántica. 37
1928. Experimentos de difracción de partículas (electrones) que confirman la hipótesis de de Broglie, referente a las propiedades ondulatorias asociadas a las partículas. El fenómeno de difracción es propio de las ondas. 1932. Aparición del trabajo de fundamentación de la Teoría Cuántica elaborado por el matemático Jon von Neumann. Aspectos esencialmente novedosos de la Teoría Cuántica Los aspectos esencialmente novedosos (no clásicos) que se derivan de la Teoría Cuántica son: a) Carácter corpuscular de la radiación (Hipótesis de Planck). b) Aspecto ondulatorio de las partículas (Hipótesis de Broglie). c) Existencia de magnitudes físicas cuyo espectro de valores es discontinuo. Por ejemplo los niveles de energía del átomo de hidrógeno (Modelo atómico de Bohr). Implicaciones de a): carácter corpuscular de la radiación. Tradicionalmente se había venido considerando la radiación como un fenómeno ondulatorio. Pero la hipótesis de Planck la considera como una corriente de partículas, “quantums”. ¿Qué naturaleza tiene, entonces, la radiación: ondulatoria o corpuscular? Las dos. Manifiesta un carácter marcadamente “dual”. Se trata de aspectos que dentro del formalismo cuántico no se excluyen, y se integran en el concepto de “quantum”. El quantum de radiación puede manifestar propiedades tanto corpusculares como ondulatorias, según el valor de la frecuencia de la radiación. Para valores altos de la frecuencia (en la región gamma del espectro) predomina el carácter corpuscular. En tanto que para frecuencias bajas (en la región del espectro que describe las ondas de radio) predomina el aspecto ondulatorio. Implicaciones de b): carácter ondulatorio de las partículas. Se comprobó en experimentos de difracción de electrones y neutrones. Lo que ponen de manifiesto estos experimentos es que una clase de onda acompaña el movimiento de las partículas como responsable del fenómeno de difracción. De manera que nuevamente tenemos un ejemplo de dualidad entre las propiedades corpusculares y ondulatorias, asociadas en este caso a las partículas. Pero la aparición del fenómeno ondulatorio no se produce únicamente a nivel microscópico, también se manifiesta para objetos macroscópicos, aunque en este caso la onda asociada tiene una longitud de onda tan pequeña que en la práctica es inapreciable y resulta imposible la realización de un experimento de difracción que la ponga de manifiesto. 38
Implicaciones de c): existencia de magnitudes físicas discontinuas. Pone de manifiesto el carácter intrínsecamente discontinuo de la Naturaleza, lo que se evidencia, como ejemplo más notable, en el espectro de energía de los átomos. A partir de la existencia de estas discontinuidades energéticas se explica la estabilidad de la materia.
Un ejemplo concreto Analicemos para el caso del átomo de hidrógeno, según el modelo de Bohr, cómo se conjugan estos tres supuestos cuánticos anteriores, a), b) y c). El átomo de hidrógeno se entiende como un sistema estable formado por un electrón y un protón. El electrón puede hallarse en un conjunto infinito, pero discontinuo de niveles de energía [supuesto c)]. Para pasar de un nivel a otro, el electrón debe absorber o emitir un quantum discreto de radiación [supuesto a)] cuya energía sea igual a la diferencia de energía entre esos niveles. Los niveles posibles de energía de los electrones se representan matemáticamente por funciones ondulatorias [supuesto b)], denominadas “funciones de estado”, que caracterizan el estado físico del electrón en el nivel de energía correspondiente. Para conocer el valor experimental de cualquier propiedad referente a la partícula debe “preguntarse” a su función de estado asociada. Es decir, dicha función constituye un tipo de representación del estado físico, tal que el estado del electrón en el n‐ésimo nivel de energía es descrito por la n‐ésima función de estado. La función de onda 39
La descripción más general del estado del electrón del átomo de hidrógeno viene dada por la “superposición” de diferentes funciones de estado. Tal superposición es conocida como “función de onda”. La superposición de estados posibles es típica de la Teoría Cuántica, y no se presenta en las descripciones basadas en la Física Clásica. En esta última, los estados posibles nunca se superponen, sino que se muestran directamente como propiedades reales atribuibles al estado del sistema. Al contrario, especificar el estado del sistema en la Teoría Cuántica implica tomar en consideración la superposición de todos sus estados posibles. Las funciones de onda no son ondas asociadas a la propagación de ningún campo físico (eléctrico, magnético, etc.), sino representaciones que permiten caracterizar matemáticamente los estados de las partículas a que se asocian. El físico alemán Max Born ofreció la primera interpretación física de las funciones de onda, según la cual el cuadrado de su amplitud es una medida de la probabilidad de hallar la partícula asociada en un determinado punto del espacio en un cierto instante. Aquí se manifiesta un hecho que se repetirá a lo largo del desarrollo de la Teoría Cuántica, y es la aparición de la probabilidad como componente esencial de la gran mayoría de los análisis. La probabilidad en la Teoría Cuántica La Teoría Cuántica es una teoría netamente probabilista. Nos habla de la probabilidad de que un suceso dado acontezca en un momento determinado, no de cuándo ocurrirá ciertamente el suceso en cuestión. La importancia de la probabilidad dentro de su formalismo supuso el punto principal de conflicto entre Einstein y Bohr en el V Congreso Solvay de Física de 1927. Einstein argumentaba que la fuerte presencia de la probabilidad en la Teoría Cuántica hacía de ella una teoría incompleta reemplazable por una hipotética teoría mejor, carente de predicciones probabilistas, y por lo tanto determinista. Acuñó esta opinión en su ya famosa frase, “Dios no juega a los dados con el Universo”. La postura de Einstein se basa en que el papel asignado a la probabilidad en la Teoría Cuántica es muy distinto del que desempeña en la Física Clásica. En ésta, la probabilidad se considera como una medida de la ignorancia del sujeto, por falta de información, sobre algunas propiedades del sistema sometido a estudio. Podríamos hablar, entonces, de un valor subjetivo de la probabilidad. Pero en la Teoría Cuántica la probabilidad posee un valor objetivo esencial, y no se halla supeditada al estado de conocimiento del sujeto, sino que, en cierto modo, lo determina. En opinión de Einstein, habría que completar la Teoría Cuántica introduciendo en su formalismo un conjunto adicional de elementos de realidad (a los que se denominó “variables ocultas”), supuestamente obviados por la teoría, que al ser tenidos en cuenta aportarían la información faltante que convertiría sus predicciones probabilistas en predicciones deterministas. 40
Mario Toboso es Doctor en Ciencias Físicas por la Universidad de Salamanca y miembro de la Cátedra Ciencia, Tecnología y Religión de la Universidad Pontificia Comillas. Editor del Blog Tempus de Tendencias21 y miembro del Consejo Editorial de nuestra revista. Este artículo es la primera entrega de una serie de dos sobre Teoría Cuántica. Ver el siguiente: La Teoría Cuántica cuestiona la naturaleza de la realidad.
41
Vídeos sobre Cuántica. http://www.dailymotion.com/video/x19vw8_fisica-cuantica_school http://www.youtube.com/watch?v=FcnNMGUvE84 http://www.youtube.com/results?search_query=fisica+cuantica
42