TEMA 6 Convertidores continua-alterna Lección 16: Introducción
Lección 17: Inversores
TEMA 6 Convertidores continua-alterna Lección 16: Introducción
16.1 Introducción y clasificación de inversores 16.2 Diagrama de bloques 16.3 Parámetros característicos de un inversor
Lección 16: Introducción 16.1 Introducción a los inversores Definición
CONVERTIDORES CC/CC
INVERSORES
CONTINUA CONTINUA
REGULADORES CA frecuencia constante
RECTIFICADORES •Controlados (tiristores) •No controlados (diodos) •Semicontrolados (mixtos)
CICLOCONVERTIDORES frecuencia variable
INTERRUPTORES INTERRUPTORES ESTÁTICOS •De continua
Lección 16: Introducción 16.1 Introducción a los inversores Generalidades
Convertidor continua-alterna Inversor Dispositivos semiconductores: Fuente de tensión continua
-No controlados (diodos) -Controlados (tiristores, transistores)
Carga de alterna •Motores de alterna •Lámparas
Dispositivos pasivos:
Control:
•Red eléctrica
-Bobinas/transformadores
-analógico
• Antenas Antenas
-Condensadores
-digital
•Etc.
Tipos de Inversores:
Monofásicos
Trifásicos
•De onda cuadrada o senoidales
•Derivados de los monofásicos o inversor trifásico en puente.
Lección 16: Introducción 16.2 Diagrama de bloques iS
Inversor
Filtro
uS
Carga
El filtro suele ser necesario para reducir el contenido armónico de la tensión de salida y entregar una forma de onda senoidal a la carga. En aplicaciones de baja y media potencia, se aceptan las tensiones de salida cuadrada o cuasi-cuadrada. Para aplicaciones de alta potencia, son necesarias las formas de onda senoidales de baja distorsión. También También es posible reducir el contenido armónico entregado a la carga mediante las técnicas de conmutación.
Lección 16: Introducción 16.3 Características de los inversores Cuadrantes uS iS
uS
iS pS Convertidor de 4 cuadrantes
En general, existirán intervalos de tiempo en los cuales el inversor cede energía a la carga. En otros intervalos, la carga devuelve energía a la fuente primaria de energía.
Lección 16: Introducción 16.3 Características de los inversores Inversores senoidales Un inversor se caracteriza por la l a calidad de su forma de onda de salida (que puede ser una tensión o una corriente); Cuanto menor sea el contenido armónico de la forma de onda de salida, más próxima será ésta a una forma de onda senoidal. Sea uS(t) la tensión de salida del inversor
uS ( t )
A 0 2
A n cosn··t Bn ·senn··t
MK M1
Factor de distorsión del armónico K-ésimo FDA K
2
MK A K BK
2
n 1
Distorsión del armónico K-ésimo DA K
Descomponemos en series de Fourier
Distorsión armónica total T HD
M22
M32 ... Mn2 ... M1
·100 10 0
Factor de distorsión armónica total
MK
K 2 ·M1
MK
K
2
2
FTHD
i2
·100 10 0
TEMA 6 Convertidores continua-alterna Lección 16: Introducción
Lección 17: Inversores
TEMA 6 Convertidores continua-alterna Lección 17: Inversores
17.1 Inversores monofásicos 17.1.1 Topologías: opologías : medio puente, push-pull y puente completo 17.1.2 Inversores alimentados en corriente 17.1.3 Filtro de salida 17.2 Regulación de un inversor 17.2.1 Control por medio de la tensión de salida 17.2.2 Control por por deslizamiento de fase 17.2.3 Control por modulación de ancho de pulso (PWM) 17.2.4 Circuitos comerciales comerciales integrados integrados 17.2.5 Circuitos autooscilantes 17.3 Inversores trifásicos 17.3.1 Implementación a partir de de inversores inversores monofásicos 17.3.2 Inversor trifásico en puente
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente
Inversor en puente completo
Inversor en push-pull
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga resistiva) ig iBQ1 iQ1 D 1 u Q1 Q1 uC1 iBQ2 C1 uR
Ug
iQ2 D2 Q2
R uQ2
uR
iR
C2
uC2 iR
Inicialmente, suponemos carga resistiva y forma de onda de salida cuadrada. (si es carga resistiva, podemos prescindir de los diodos)
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga resistiva) ig iBQ1 iQ1 uQ1 Q1 uC1 iBQ2 C1 uR
Ug
iQ2 Q2
R uQ2
uR
iR
C2
uC2 iR
Intervalo 1:
Q1 ON, Q2 OFF
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga resistiva) ig iBQ1 iQ1 uQ1 Q1 uC1 iBQ2 C1 uR
Ug
iQ2 Q2
R uQ2
uR
iR
C2
uC2 iR
Intervalo 2:
Q2 ON, Q1 OFF
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga resistiva) ig iBQ1 iQ1 uQ1 Q1 uC1 iBQ2 C1 uR
Ug
iQ2 Q2
R uQ2
uR
iR
C2
uC2 iR
Forma de onda cuadrada ideal.
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga resistiva) ig iBQ1 iQ1 uQ1 Q1 uC1 iBQ2 C1 uR
iBQ1
iBQ2
Ug
iQ2 Q2
R uQ2
iR
C2
uR
uR
iR
iR
uC2
Conmutación: Peligrosa. Si ambas están conduciendo simultáneamente se tiene un cortocircuito Se añaden tiempos muertos (δ ( δ) mucho menores que T, para evitar
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ
uS Si suponemos carga reactiva (por ejemplo inductiva), hay forzosamente que colocar los diodos. El primer armónico de la tensión está desfasado con respecto a la corriente.
iS
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ
uS En el intervalo de conducción de Q1, la corriente evoluciona de forma senoidal. Si la carga es inductiva, la corriente será mayor que cero cuando los transistores conmuten.
C1
iS
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ
uS Ahora conduce Q2, pero la corriente corriente es positiva durante un subintervalo. Esta corriente se cierra por D2. Se devuelve energía a la entrada.
iS C4
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ
uS Se repite el estado de conducción normal, pero ahora a través de Q2.
iS C3
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ
uS Finalmente, tenemos conducción en el segundo cuadrante (tensión positiva, corriente negativa). Se devuelve también energía a la entrada.
C2
iS
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) ig iBQ1
iQ1 D 1 u Q1 Q1
C1
uZ
Ug
iQ2 D2 Q2
Z uQ2
uC1
iBQ2
uZ
iZ
C2
uC2 iZ φ
Los diodos en antiparalelo son necesarios para permitir la circulación de corriente en los cuadrantes 2º y 4º. En un transistor MOSFET estos diodos son inherentes al dispositivo. En transistores bipolares es necesario poner componentes discretos.
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en medio puente (carga reactiva) Tensión de salida: Ug
uS ( t )
2 Ug 2
0tT 2
Esfuerzo en Q1, QCE U 2 max max Q1
T 2tT
UCEmax max Q 2 Ug
iBQ1 iBQ2
Corriente media por los transistores iS PK 1 cos iQ AVG 2
uZ
Corriente media por los diodos iS PK 1 cos iD AVG 2
iZ φ
Valor medio de la corriente c orriente entregada por cada condensador del medio puente iCMP CMP AVG
iS PK
1 cos cos
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) iBQ1 iBQ2
D1 iR
Q1 Ug
uR
R ig Q2
iR
iQ2
D2 uQ2
Se requiere un transformador de toma media que se considerará ideal (intensidad magnetizante nula, resistencia de los devanados nula, inductancias de dispersión nulas) Para cargas inductivas, los diodos de libre circulación son s on necesarios para permitir la circulación de la corriente en los cuadrantes 2º y 4º (análogamente al caso
uR
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) iBQ1 iBQ2
D1 iR
Q1 Ug
uR
R ig Q2
iR
iQ2
D2 uQ2
Cuando el transistor Q1 conduce, Q2 está cortado. Sobre la carga aparece la tensión de entrada (multiplicada por la relación de transformación).
uR
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) iBQ1 iBQ2
D1 iR
Q1 Ug
uR
R ig Q2
iR
iQ2
D2 uQ2
En el otro subintervalo, los transistores intercambian sus estados. La tensión en la carga es simétrica.
uR
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) iBQ1 iBQ2
D1 iR
Q1 Ug
uR
R ig Q2
iR
iQ2
D2 uQ2
Si la carga tuviese componente inductiva o capacitiva, c apacitiva, sería necesario utilizar los diodos de libre circulación. Nuevamente, el comportamiento reactivo de la carga se caracterizaría por el desfase φ entre el primer armónico de tensión y de corriente.
uR
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en push-pull (carga resistiva) iBQ1 iBQ2
uR
iR
Tensión de la carga: US
NN21 ·Ug
Esfuerzos de tensión en semiconductores UCE max max 2 Ug (configuración no adecuada para tensiones de alimentación altas). La corriente de entrada es perfectamente continua: Ig ( t )
Ug RL
NN21
2
El transformador de toma media tiene un grado de utilización bajo en el primario y empeora bastante en los circuitos prácticos, por lo que no es aconsejable para
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) iBQ1 iBQ2
D1 iR
Q1 Ug
uR
R ig Q2
iR
iQ2
D2 uQ2
En el caso de solapamiento, idealmente la tensión reflejada en la salida es nula (ambos devanados de entrada soportan tensiones opuestas). Los solapamientos no implican cortocircuito. En la realidad, el transformador (no ideal) no será simétrico, y
uR
Lección 17: Inversores 17.1 Inversores monofásicos uQ1
Inversor en push-pull (carga resistiva) D1
Problema de la saturación:
iR
Q1
B
Ug R ig Q2 H
iQ2
D2 uQ2 Si se controla en modo tensión (control Duty), es muy probable que los periodos de encendido de los dos transistores no sean exactamente iguales (o que los devanados
A la larga, el punto medio de funcionamiento se desplaza hasta que el núcleo se satura
uR
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga resistiva) ig i ,i
BQ1 BQ2
iQ1 Q1
iQ4
uQ1 Q 4 uR
Ug iQ3 Q3
R uQ3
uQ4
iR
iBQ3,iBQ 4
uR
iQ2 Q2
uQ2 iR
Se controlan 4 interruptores (en principio dos a dos, en concreto las parejas Q1-Q2 y Q3-Q4) Como en el caso del medio puente, los solapes s olapes producen cortocircuitos Inicialmente, suponemos carga resistiva y forma de onda de salida cuadrada. (si es carga resistiva, podemos prescindir de los diodos)
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga resistiva) ig i ,i
BQ1 BQ2
iQ1 Q1
iQ4
uQ1 Q 4 uR
Ug iQ3 Q3
R uQ3
uQ4
iR
iBQ3,iBQ 4
uR
iQ2 Q2
uQ2 iR
En el primer subintervalo, conducen simultáneamente Q1 y Q2 (los otros permanecen cortados) En la carga aparece la tensión de entrada
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga resistiva) ig i ,i
BQ1 BQ2
iQ1 Q1
iQ4
uQ1 Q 4 uR
Ug iQ3 Q3
R uQ3
uQ4
iBQ3,iBQ 4
iR
uR
iQ2 Q2
uQ2 iR
En el segundo subintervalo, los transistores que conducen son Q3 y Q4. En la carga aparece la tensión de entrada, pero con signo contrario.
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga resistiva) ig i ,i
BQ1 BQ2
iQ1 Q1
iQ4
uQ1 Q 4 uR
Ug iQ3 Q3
R uQ3
uQ4
iBQ3,iBQ 4
iR
uR
iQ2 Q2
uQ2
iR
Hay que evitar los solapes de los pulsos de control (tendríamos cortocircuitada la fuente de entrada a través de ambas ramas)
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga inductiva) ig iBQ1,iBQ2 iQ1 iQ4 iBQ3,iBQ uQ1 Q u Q1 Q4 4 4 uR
Ug iQ3 Q3
R uQ3
iR
uZ
iQ2 Q2
uQ2
iZ φ Los diodos en antiparalelo son necesarios para permitir la circulación de corriente en los cuadrantes 2º y 4º. En un transistor MOSFET estos diodos son inherentes al dispositivo. En transistores bipolares es necesario poner componentes discretos.
Lección 17: Inversores 17.1 Inversores monofásicos Inversor en puente completo (carga inductiva) Tensión de salida: Ug
uS ( t )
Ug
iBQ1,iBQ2
0tT 2
UCEmax max Q1
T 2tT
UCEmax max Q 2 Ug
iBQ3,iBQ 4
Corriente media por los transistores iS PK 1 cos iQ AVG 2
uZ
Corriente media por los diodos iS PK 1 cos iD AVG 2
iZ
Valor medio de la corriente entregada por la fuente iCMP CMP
iS PK
1 cos cos
φ
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente Cargas alternas en corriente Cargas que funcionan con corriente c orriente alterna
• Alimentación Alimentación de motores CA CA mediante una fuente de intensidad de frecuencia controlada que permita variar la velocidad. •Lámparas de descarga •Caldeo por inducción • Algunos Algunos actuadores actuadores industriales industriales Fuente Fuente Inversor de Inductanci de alimentado tensión a corriente en corriente
+
=
Fuente de corriente
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
La corriente de entrada es continua. Siempre debe poder circular, por tanto los solapamientos son, en este caso, obligatorios. Los diodos en serie soportan picos de tensión en las conmutaciones.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
Q1 y Q2 conducen; Q3 y Q4 apagados Inicialmente, la corriente se cierra por la carga.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
Q1 y Q3 conducen; Q2 y Q4 apagados Q1 y Q4 intercambian sus estados; Q2 permanece conduciendo. La corriente se cierra a través de Q2 y Q4. Por la carga no circula corriente.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
Q3 y Q4 conducen; Q1 y Q2 apagados Q2 y Q3 conmutan; la corriente se cierra c ierra a través de Q3 y Q4; por la carga pasa corriente negativa.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
Q1 y Q3 conducen; Q2 y Q4 apagados Nuevo solapamiento; la corriente se cierra a través de Q1 y Q3. LA corriente por la carga es nula.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente iBQ
Puente completo en corriente ig
1
iBQ
L
Ug
Q1 D1 iQ1 Q3 D3 iQ3
uQ1 uZ Z uQ3
Q4 D4 iQ4 iZ Q2 D2 iQ2
2
uQ4
iBQ 3
iBQ 4
uQ2
uR uQ2
La corriente de entrada es continua. Siempre debe poder circular, por tanto los solapamientos son, en este caso, obligatorios. Los diodos en serie soportan picos de tensión en las conmutaciones.
iR
Lección 17: Inversores 17.1 Inversores monofásicos: inversores alimentados en corriente Push-pull alimentado en corriente
La corriente de entrada es continua. Siempre debe poder circular, por tanto los solapamientos son, en este caso, obligatorios. Los diodos en serie soportan picos de tensión en las conmutaciones. Si el control es también en modo corriente, se soluciona el problema de la saturación del núcleo.
uQ1 D1
iQ1
Q1 Ug
L
R
ig D2
Q2 uQ2
iR
iQ2
uR
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD it
La bobina de entrada, L g, es muy grande; (inversor alimentado en corriente): i g es continua El circuito resonante LRES-CRES hace que la corriente de salida sea senoidal (filtro resonante). Además, Además, la frecuencia f recuencia de conmutación se hace igual a la resonante El circuito está pensado para que el ciclo de trabajo sea D=0,5 ¡¡No vale cualquier valor de R!!
iC
iD
uC
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD iQ
Inicialmente, el transistor está encendido (se sincroniza este instante con el que hace iT=0 La corriente por el transistor t ransistor evoluciona como la senoide más la continua de entrada. Al cabo de T/2, el transistor se corta (ciclo de trabajo fijado a 50%)
iC
iD
uC
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD iQ
La corriente que antes circulaba por el transistor pasa a circular por el condensador La evolución de la tensión del condensador es como se representa en la figura (se parte de una tensión inicial nula en el condensador) La carga óptima es aquella que hace que justo tras otros T/2 la tensión en el condensador se haga nula.
iC
iD
uC
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD iQ
Para carga subóptima (R menor que la óptima), la tensión se hace nula en el condensador ANTES de T/2;
iC
iD
uC
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD iQ
Desde que la tensión se hace cero, comienza a conducir el diodo D. La corriente sigue evolucionando a través del diodo (el filtro LRES-CRES obliga a que sea senoidal)
iC
iD
uC
Lección 17: Inversores T
17.1 Inversores monofásicos
T/2
El inversor clase E ig
iR
Lg Ug
Q iQ
D
iC
LRES Cu C
CRES
ig
R
iR
iD iQ
Tanto el encendido como el apagado del transistor se producen a tensión cero. Además, el encendido se produce a corriente cero. Muy buenas conmutaciones, poco ruido EMI Para que todo funcione bien, los márgenes posibles de valores de R son muy estrechos. LRES y CRES soportan esfuerzos grandes.
iC
iD
uC
Lección 17: Inversores 17.1 Inversores monofásicos Filtros resonantes
Forma de onda a la salida de un inversor
Filtro resonante (Inductancias y condensadores)
+ =
Forma de onda necesaria en algunas cargas
Lección 17: Inversores 17.1 Inversores monofásicos ZSER
Filtros resonantes
Inversor
uSI
ZPAR
A G R A C
Z
El filtrado final depende de la carga. Por ello, suele diseñarse el filtro en vacío Interesa que los armónicos superiores sean muy pequeños, es decir:
uCARG A
Lección 17: Inversores 17.1 Inversores monofásicos Filtros resonantes |A| dB
Filtro LC serie
L
Vacío Carga
C uCARG
uSI
A
log(f) |A| dB Vacío
Filtro LC paralelo
Carga L uSI
C uCARG A
Lección 17: Inversores 17.1 Inversores monofásicos Filtros resonantes |A| dB
Filtro LCC serie-paralelo
L
Vacío Carga
CS uCARG
uSI
CP
A
log(f) |A| dB Vacío
Filtro LLC serie-paralelo serie-paralelo
Carga LS uSI
LP
C
uCARG A
Lección 17: Inversores 17.1 Inversores monofásicos Filtros resonantes |A| dB
Filtro LCLC serie-paralelo
LS uSI
CS LP
CP
Vacío Carga
uCARG A
log(f)
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control de la tensión de entrada al inversor mediante etapa intermedia 1.- Desde continua (batería, paneles solares…) 2.- Desde alterna (monofásica o trifásica) Control en tensión del inversor 1.- Deslizamiento de fase (phase shift) 2.- Modulación de ancho de pulso (Pulse Width Modulation, PWM) 2.1.- PWM unipolar 2.2.- PWM bipolar 3.- Circuitos integrados específicos Inversores autooscilantes 1.- Principio de funcionamiento f uncionamiento 2.- Arranque
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control de la tensión de entrada: desde continua (batería, paneles solares…) El inversor trabaja a frecuencia fija y con ancho de pulso constante. Variamos Variamos la tensión de entrada en el inversor actuando en un convertidor CC-CC entre la entrada y el propio inversor (en el ejemplo, un reductor).
Inversor
Driver
Control Así, se tiene un buen comportamiento dinámico (respuesta del sistema ante variaciones en la
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control de la tensión de entrada: desde alterna (monofásica o trifásica) El inversor trabaja a frecuencia fija y con ancho de pulso constante. Variamos Variamos la tensión de entrada en el inversor actuando en un rectificador totalmente controlado (más un filtro LC).
Inversor
Control
Así, se tiene un buen comportamiento dinámico (respuesta del sistema ante variaciones en la
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control por desplazamiento de fase (phase shift; clamped mode) φ ig iBQ1 Q1
Q4 uR
Ug
A Q3
iBQ3
iR
R
iBQ4
B
Q2
iBQ2 u A uB
Al variar el valor del desfase, φ, varía el valor de la amplitud del primer armónico de la tensión de salida (aunque no su frecuencia)
uR
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control por desplazamiento de fase (phase shift; clamped mode) φ ig iBQ1 Q1
Q4 uR
Ug
A Q3
iBQ3
iR
R
iBQ4
iBQ2
B
u A
Q2
uB
uR Valor eficaz de la tensión de
uR RMS
Ug ·
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control PWM bipolar Q1 Ug
A
B Q2
uR
Filtro
iBQ1
R iBQ2 u AB
uRE
Ug 2
F
uTRI Señal de
Ug
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control PWM bipolar Ug
Q1 Ug
A
u AB
2
B Q2
uR
Filtro
R uR La onda de referencia (senoidal), se compara con una onda triangular de alta frecuencia. La tensión media en cada periodo de conmutación de la onda modulada de salida es igual al valor
Ug 2
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control PWM bipolar
t2
t1
UTRI PEAK
uRE F
uTRI
TC Ug
u AB
El valor medio del valor instantáneo de salida u (t) es proporcional a la
2
Ug 2
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control PWM bipolar Factor de modulación de frecuencia: f C = frecuencia de conmutación conmutación de los interruptores. f 1 = frecuencia de la onda de referencia, que coincide con la del primer armónico de la onda de salida. u AB Factor de modulación de amplitud: UREF
= Valor de pico de la onda senoidal de referencia. UTRI = Valor de pico de la onda triangular (Normalmente se
t2
t1
UTRI PEAK
uRE F
uTRI
TC Ug 2
Ug 2
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) Control PWM unipolar Q1 Ug
Q3 A
Q4
B Q2
uR
Filtro
u A iBQ1
R iBQ2
Con un inversor en puente completo, se pueden controlar las dos ramas de forma independiente para generar una onda de salida unipolar. La frecuencia de la onda cuadrada es el
uB
u AB
Ug
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor)
IR2110 Circuitos integrados específicos Tiempo de propagación: 120ns. 14 pines. Aplicación: Inversores en puente Tensión flotante máxima: 600V. completo. Salidas sup. e inf. en fase con la entrada. Salida: 10-20V.
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor)
IR2111 Circuitos integrados específicos 8 pines. Salida: 10-20V. Tiempo muerto: 700ns. Tensión flotante máxima: 600V. 600V. Salidas sup. e inf. en oposición de Aplicación: Inversores en medio fase con la entrada. puente.
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor)
IR2153 Circuitos integrados específicos 8 pines. Tiempo muerto: 1,2 ms. Oscilador interno 20-100 kHz (tipo Tensión flotante máxima: 600V. 600V. Salidas sup. e inf. en oposición de 555). fase con la entrada. Aplicación: Inversores en medio Salida: 10-20V. puente.
Lección 17: Inversores 17.2 Control de inversores Control en modo tensión (control de la tensión de salida del inversor) El problema de la alimentación de los interruptores no referidos a masa (técnica Boot-Strap) ¿Cómo se alimentan los interruptores no referidos a masa? (La fuente / emisor de estos interruptores está referido a una referencia flotante, que puede variar entre masa y unos cientos de voltios)
15V
15V
IR211
IR211
1
1
Lección 17: Inversores 17.2 Control de inversores Inversores autooscilantes •Solución autoexcitada a partir de devanados auxiliares. •Todas las bobinas están acopladas en el mismo núcleo magnético. •Muy económico para aplicaciones de baja potencia (p.e. fluorescentes). •Tensión de salida no regulada.
RB2
B Q2 R VCC
RB1
Q1
H
Lección 17: Inversores 17.2 Control de inversores
RB2
Inversores autooscilantes Principio de funcionamiento
Q2 Ug
B
R T u 1
iB1
RB1 Q1
iC1
H Sea Q1 saturado; Se aplica una tensión continua (Ug) a la inductancia magnetizante (Lµ); Aparece una corriente por la base de Q 1 que crece linealmente, y que asegura la conducción. Ug
i ( t )
Lµ
ZEQ ’
1 t 1 · Ug ·dt i (0) ·Ug ·t L 0 L
El flujo magnético también variará linealmente. (ZEQ’ representa RB1 y Z reducidas al
Z
Lección 17: Inversores 17.2 Control de inversores
iµ
Inversores autooscilantes Principio de funcionamiento
iC1
B
iC1
uC1
H uC1
uTR 1
La corriente por la magnetizante aumenta linealmente (µ = µ L).
iB1 uZ
La corriente por el colector será la suma de una corriente constante más la magnetizante (aumenta linealmente con el tiempo).
U1
Lección 17: Inversores 17.2 Control de inversores
iµ
Inversores autooscilantes Principio de funcionamiento
iC1
B
iC1
uC1
H uC1
uTR 1
Cuando la corriente magnetizante aumenta mucho, el núcleo se satura (la µ efectiva disminuye). La inductancia magnetizante disminuye mucho iµ crece mucho más todavía (entramos
Disminuye el acoplamiento:
iB1 uZ
U1
Lección 17: Inversores 17.2 Control de inversores
iµ
Inversores autooscilantes Principio de funcionamiento
iC1
B
iC1
uC1
H uC1
uTR 1
Cuando uTR1 disminuye mucho, la corriente por la base del transistor es tan pequeña que este se corta La corriente que circulaba por el colector provoca una sobretensión en la inductancia magnetizante magnetizante que pone en conducción el transistor Q2 Se repite el ciclo con polaridad opuesta.
iB1 uZ
U1
Lección 17: Inversores 17.2 Control de inversores Inversores autooscilantes Cálculo de la frecuencia de oscilación El flujo magnético será: Ug
N
d dt
1 N
B
t
(t ) B( t) A e · Ug ·dt (0) 0
H Si partimos desde la saturación negativa (Bsat): B( t )· A e
1 N
·UB ·t Bsat A e
Al cabo de T/2 se alcanza la saturación positiva (+Bsat): 1 T B sat · A e
·Ug · Bsat ·A e N
2
Operando: f
1 T
Ug 4 B
N A
Lección 17: Inversores 17.2 Control de inversores Inversores autooscilantes Se tiene el problema del arranque.
RB2
Q2 R VCC
RB1
Q1
R ARRANQU E
Inicialmente, los dos transistores están cortados y no aparece tensión en los devanados del transformador, con lo que la salida es nula permanentemente. El arranque inicial suele ser problemático. Existen muchas soluciones basadas en hacer conducir ligeramente uno de los transistores (como la mostrada en la figura).
Lección 17: Inversores 17.3 Inversores trifásicos Implementación a partir de inversores monofásicos Lo más sencillo es colocar 3 inversores independientes, independientes, decalarlos 120º y conectarlos según el tipo de carga, en Δ en Δ o o Y. Inversor
Inversor
DC/AC
DC/AC
Inversor
Inversor
DC/AC
DC/AC
Inversor
Inversor
DC/AC
DC/AC
Carga en Y: El terminal de menos tensión de las salidas se conecta a un punto común y los inversores proporcionan proporcionan (UR, US, y UT).
Carga en Δ en Δ:: Las salidas se colocan en serie. Tendríamos U RS, UST, UTR (La conmutación de los interruptores debe coordinarse adecuadamente adecuadamente para evitar cortocircuitar la tensión de entrada, que es
Lección 17: Inversores 17.3 Inversores trifásicos Implementación a partir de inversores monofásicos Inversor puente completo trifásico en serie (carga en Δ en Δ). ).
Hay 6 interruptores redundantes, que se pueden quitar (el circuito funcionaría igual). De hecho este circuito da lugar al inversor t rifásico en puente.
Lección 17: Inversores 17.3 Inversores trifásicos
U
Inversor en puente trifásico Q1
Q3
US
Q5
R U S UT
Q4
Q1 OFF Q2 ON
R
U
Q2
Q1 ON Q2 OFF
Q6
UT UR S
US La conmutación de cada una de las ramas, desfasada 120º permite obtener un sistema trifásico de tensiones. Básicamente para cargas en Δ en Δ.. Pero,
T
UT R
Q3 ON Q4 OFF
Q3 OFF Q4 ON
Q5 ON Q6 OFF
Q5 OFF Q6 ON