THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
Maximum longitudinal = 600mm
ARUJP
'
L r ,
4.5 Composite Steel and Concrete (6/11)
r ,
L
4.5.5
BENDING STRENGTH (DURING CONSTRUCTION)
•
Conform with requirements in section 4.4 for non-composite sections.
•
Decking perpendicular to beam (secondary) provides restraint to top flange.
•
Decking parallel to beam (primary) does not provide restraint.
4.5.6
STIFFNESS 3
I
L.....
r
~
I
L
Approximate ratio of second moment of area of composite section to that of the steel section.
r , j
L
Be = 5(D8 +Dp)
~
3m
M
4.0
r ,
I~-. 3.6
r ,
ASSUMED SECTION
I
I......
Normal weight concrete U= 1 0
3.2 2.8
L r '
2.4
Lightweight concrete U= 1 5
2.0
r '
20
r.
40
60 Weight of section (kg/m)
i
I-.
r , I I
r ,
L
L r. I
-i
l
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
I ,
ARUJP
'
J
I
J
I
j
I
j
4.5 Composite Steel and Concrete (7/11) 4.5.7
SAFE LOAD TABLES Concrete grade
C35
Modular ratio
15
Overall concrete depth
130 mm
'"""'I
i
J
I
Depth of decking
60mm
Partial interaction
60%
I
J
l
Flange width
as large as possible
Deflection limit
DL: 1/200
Dead Load
4.5.8
'"""'I
LL : 1/350
I
'j
steelwork - self weight decking -0.18 kPa -3.12 kPa slab (dense) slab (lightweight) - 2.34 kPa services + ceiling - 1.00 kPa
I ' J
REFERENCES 1. RICHARD LEES Ltd, Steel Deck Flooring Systems
l.
;
I
J
2. STEEL CONSTRUCTION INSTITUTE, Steel Designers Manual 3. STEEL CONSTRUCTION INSTITUTE, SCI-P-055 Design of Composite Slabs and Beams with Steel Decking 4. BS 5950 Structural use of steelwork in building Part 3: Design in composite construction
' j
1.
I
J
l
' j
I I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
ARUJP
i i
'
)
l
;
4.5 Composite Steel and Concrete (8/11) SAFE LOAD TABLES (1) GRADE 43 • DENSE CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2
Minimum Weight
r '
r,
r '
i
'-
r
'
(
'
I
I
r ,
r '
r '
r ,
Minimum Depth
Bay size (mxm)
No. sec. Beams per grid
Spacing of sec. beams
Secondary Beams
Primary Beams
Weight ( kg/m 2)
Secondary Beams
Primary Beams
Weight (kglm 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x28 356x 127 x 39 356x 127x39 406x 140x39 457 x 152 x52 457x 152x60 533 X 210 X 82 610x229x113" 762x267x147"
406x 140x46 457 X 152 X 52 457 X 152 X 60 457x152x60 457x191 x74 533x210x82 533x210x92 610x229x101 610 X 229 X 125
17.00 20.22 21.00 20.50 25.56 28.20 35.00 44.40 55.94
203 x 203 x46 203 x203 x60 203 x203 x 71 203 x203 x 86 254 x254 x 89 254 X 254 X 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
254 X 254 X 89 254x254x 107 254x254x 107 254 X 254 X 132 254 X 254 X 132 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X 305 X 240
30.17 34.86 37.93 45.17 44.33 52.37 68.83 93.20 126.67
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
305x 102x25 305x 102x33 356x171x45 457 x 152 x67 686 X 254 X 125"
457 X 152 X 60 457x152x67 533 X 210 X 82 610 X 229 X 101 762 X 267 X 147
2D.42 23.06 27.86 36.33 60.25
152 X 152 X 37 203 x203 x 46 203 x203 x 71 254 x 254 x132" 356 X 406 X 287"
254 X 254 X 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 198 356 X 406 X 287
33.25 37.50 48.14 71.50 135.53
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356x127x33 356x171x45 457 X 152 X 67 610 X 229 X 101 686x 254 x 140 •
457 X 152 X 60 533x210x82 533x210x92 610x229x 113 686 X 254 X 125 762 X 267 X 147
20.00 24.13 28.22 36.22 48.73 64.17
203x 203 x46 203x 203 x 52 203 X 203 X 86 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 287"
254x254x 132 254x254x 167 305 X 305 X 158 305 X 305 X 240 305 X 305 X 283 356 X 406 X 340
40.40 43.07 51.96 72.80 98.07 133.69
8.0 X 6.0 8.0 X 8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
305x 102x25 356 X 127 X 39 406x 140x46 457 X 152 X 52 457 X 191 X 74 610 X 229 X 101 686x254x140"
457x152x74 533x210x82 610x229x 101 610 X 229 X 101 610 X 229 X 125 762 X 267 X 147 762 X 267 X 173
21.71 24.88 28.47 29.60 38.17 47.68 62.11
203 x 203 x46 203 x203 x 71 203 X 203 X 86 254 x254 x 89 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 287"
254 X 254 X 132 305x305x 158 305x305x 198 305x305x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 393
39.25 46.38 54.25 53.18 69.50 93.38 129.46
9.0 X 6.0 9.0 X 7.2 9.0x 7.5 9.0 X 8.0 9.0 X 9.0 9.0x 10.0 9.0 X 12.0 9.0 X 15.0 9.0 X 18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x28 356x 127x39 356x 127x39 406 X 140 X 39 457x 152x52 457x 152x60 533 x 210 x82 610x229x113" 762 X 267 X 147"
533 X 210 X 82 610 X 229 X 101 610 X 229 X 101 610 X 229 X 101 610x229x 113 610 X 229 X 125 686 X 254 X 140 762 X 267 X 173 838x 292 x 194
23.00 27.03 26.47 25.63 29.89 32.50 39.00 49.20 59.78
203 x203 x46 203 X 203 X 60 203 x203 x 71 203 x203 x 86 254 X 254 X 89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
254 x 254x 167 305 X 305 X 198 305 X 305 X 198 305x305x 198 305 X 305 X 240 305 X 305 X 240 356 X 406 X 287 356 X 406 X 393 COLCORE x 477
43.17 47.50 50.07 53.42 56.33 59.67 79.58 106.20 139.83
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0 X 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356x 127x39 356x171x45 457 X 152 X 52 457 X 152 X 67 610 X 229 X 101 686x 254 x 140 •
610x229x 101 686 X 254 X 140 762 X 267 X 147 762 X 267 X 147 838 X 292 X 176 914 X 305 X 201 914 X 305 X 253
26.83 33.10 34.33 35.50 41.47 53.80 70.06
203 x203 x46 203 X 203 X 71 203 X 203 X 86 254x 254 x 89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 287"
305 X 305 X 198 356 X 406 X 287 356 X 406 X 287 356 X 406 X 340 356 X 406 X 393 356 X 406 X 551 356 X 406 X 634
51.40 64.28 66.29 69.60 85.55 115.93 150.02
12.0x6.0 12.0x 7.2 12.0 X 7.5 12.0 x8.0 12.0 X 9.0 12.0 X 10.0 12.0 X 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x28 356x 127 x 39 356 X 127 X 39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533 X 210 X 82 610x229x 113" 762x267x147"
686 X 254 X 140 686 X 254 X 170 762 X 267 X 173 762 X 267 X 173 838 X 292 X 194 914 X 305 X 201 914 X 305 X 224 914 X 305 X 289 914x419x388
32.67 36.61 36.07 34.63 38.89 40.10 46.00 56.93 70.56
203 x203 x46 203x203 x 60 203 X 203 X 71 203 x203 x 86 254 x254 x 89 254 X 254 X 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
406 X 406 X 287 356 X 406 X 340 356 X 406 X 393 356 X 406 X 393 COL CORE x 477 356 X 406 X 467 356 X 406 X 551 914x419x343 914x419x388
63.17 67.22 76.07 77.79 82.67 82.37 101.58 102.87 134.89
15.0 X 6.0 15.0x7.5 15.0 x8.0 15. Ox9.0 15.0 X 10.0 15. 0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 28 356x127x39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533x210x82 610x229x113" 762 X 267 X 147"
838 X 292 X 176 914 X 305 X 224 914 X 305 X 224 914 X 305 X 253 914 X 305 X 289 914x419x343"
38.67 42.87 41.00 45.44 48.90 55.92
203x 203 x46 203x203x71 203 X 203 X 86 254 X 254 X 89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
COL CORE x 477"
94.83 97.13 97.54 100.11 64.57 88.00
18.0 x6.0 18.0 X 7.2 18.0 X 7.5 18.0 X 8. 0 18.0x9.0 18.0 X 10.0 18.0 X 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x28 356x127x39 356 X 127 X 39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533x210x82 610x229x113" 762 X 267 X 347"
914 x305 x253 • 914x419x343" 914x419x343" 914 X 419 X 343"
FAIL FAIL
51.50 60.64 58.73 55.88
FAIL FAIL FAIL FAIL FAIL
203 X 203 X 46 203 X 203 X 60 203 X 203 X 71 203 x203 x86 254 x 254 x89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
356 X 406 X 551 356 X 406 X 551 356 X 406 X 634" 914 X 305 X 289" 914 X 419 X 388" FAIL FAIL
356 X 406 X 634" 914 X 419 X 343" 914 X 419 X 343" 914x419x388" FAIL FAIL FAIL FAIL FAIL
(*) Natural frequency of the beam is less then 4.5Hz.
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1/ Oct 00
ARUIP
121.00 67.64 69.40 77.17
4.5 Composite Steel and Concrete (9/11) SAFE LOAD TABLES (2) GRADE 43 • LIGHTWEIGHT CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2 Minimum Weight Bay size (mxm)
No. sec. beams
n"•nrin
'
)
l
)
Minimum Depth '"""'I
Spacing of sec. beams
Secondaoy Beams
Primaoy Beams
Weight 2 (kg/m
)
Secondaoy Beams
Primaoy Beams
Weight (kg/m 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3 00 3.00 3.00 3.00 3.00 3.00 3.00
305x102x25 356x 127x33 305 X 102 X 37 356 X 127 X 39 406 x 140 x46 457x152x52 457x191x74 610x229x101 686 X 254 X 140'
406 X 140 X 46 457 X 152 X 52 457x152x52 457 x 152 x60 457 X 152 X 67 457x 191 x74 533x210x82 610 X 229 X 101 610x229x 113
16.00 18.22 19.27 20.50 22.78 24.73 31.50 40.40 52.94
203 X 203 X 46 203 X 203 X 52 203 X 203 X 60 203 X 203 X 71 203 x203x86 254x254x 107 254 X 254 X 167 305 X 305 X 198' 356 X 406 X 340'
203 x203 x 86 254 x254 x 89 254x254x107 254 X 254 X 107 254 x254 x 132 254x254x 132 254x 254 x 167 305 X 305 X 198 305 X 305 X 240
29.67 29.69 34.27 37.04 43.33 48.87 69.58 79.20 126.67
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254x 102x22 305 X 102 X 28 356x127x39 457 X 152 X 60 610 X 229 X 125'
457 X 152 X 52 457 X 152 X 67 533x210x82 610x229x 101 686 X 254 X 140
17.83 20.97 25.36 33.42 59.86
152x152x37 203 x 203 x46 203 X 203 X 71 254x254x 107 356 X 406 X 287'
254x254x 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 198 305 X 305 X 287
33.25 37.50 48.14 61.08 135.53
7.5 X 6.0 7.5 X 7.5 7.5 x9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 305 X 102 X 33 406 x 140 x39 457x152x60 533x210x92 610x229x125'
457 x 152 x60 457x 191 x74 533x210x82 610 X 229 X 101 610x229x 125 762 X 267 X 147
20.00 23.07 24.71 32.42 45.13 58.17
152x 152x37 203 x 203x46 203 X 203 X 71 254 X 254 X 132 305 X 305 X 198' 356 X 406 X 287'
254 X 254 X 107 254 X 254 X 132 254x254x 167 305x 305 x 198 305 X 305 X 283 356 X 406 X 287
32.63 36.00 46.96 69.30 98.07 130.74
8.0 X 6.0 8.0 X 8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
305 X 102 X 25 356 X 127 X 39 406 X 140 X 39 457 x 152 x52 457 x 152 x67 610 X 229 X 101 686 X 254 X 125'
457 X 152 X 67 533 x210 x 82 533x210x92 610x229x101 610x229x113 686 X 254 X 140 686x254x 170
20.54 24.88 24.85 29.60 34.54 47.21 56.32
152x152x37 203 X 203 X 60 203 X 203 X 86 254 x254x 89 254x 254 x 132 305 X 305 X 198' 356 X 406 X 287'
254 x 254x 132 254 X 254 X 167 305 X 305 X 158 305x305x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 340
35.88 43.38 49.81 53.18 69.50 93.38 126.51
9.0 x6.0 9.0 X 7.2 9.0 X 7.5 9.0 X 8.0 9.0 x9.0 9.0 X 10.0 9.0 X 12.0 9.0 X 15.0 9.0x18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102 x25 356 X 127 X 33 305 X 102 X 37 356x 127x39 406x 140x46 457x152x52 457x191x74 610x229x101 686 X 254 X 140'
533x210x82 533 X 210 X 92 533 x210 x 92 610 x229 x 101 610x229x101 610 X 229 X 125 686 X 254 X 140 686x254x 170 838 X 292 X 176
22.00 23.78 24.60 25.63 26.56 29.83 36.33 45.00 56.44
203 x 203 x46 203x 203 x 52 203 X 203 X 60 203x203x71 203 x203 x 86 254 X 254 X 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
254x254x 167 305x 305 x 158 305 X 305 X 198 305x305x 198 305 x305 x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 340 COL CORE x 477
43.17 39.28 46.40 48.42 50.67 59.67 79.58 88.67 139.83
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0x 10.0 10.0 X 12.0 10.0 X 15.0 10.0x 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356 X 127 X 33 406x 140x39 406 x 140 x46 457 X 152 X 60 533x210x92 610 X 229 X 125'
610 x229 x 101 610x229x 125 686 X 254 X 140 762 X 267 X 147 762 x267 x 173 914 X 305 X 201 914 X 305 X 253
26.83 28.83 31.16 33.10 38.42 50.20 64.06
152x 152x37 203 x 203x 60 203x 203 x 71 203 x203 x86 254x254x 132 305 X 305 X 198' 356 X 406 X 287'
305 X 305 X 198 305 X 305 X 283 356 X 406 X 287 356 X 406 X 287 356 X 406 X 393 356 X 406 X 467 356 X 406 X 634
47.80 59.38 60.29 63.10 85.55 110.33 150.02
12.0 X 6.0 12.0 X 7.2 12.0 X 7.5 12.0 X 8.0 12.0 X 9.0 12. 0 x10.0 12.0x 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 356x 127x33 305x 102 x37 356x127x39 406x 140x46 457x 152x52 457 X 191 X 74 610 x229 x 101 686 X 254 X 140'
686 X 254 X 125 762 X 267 X 147 762 X 267 X 147 762x267x 173 838 x292 x 176 838 X 292 X 194 914 X 305 X 224 914 X 305 X 289 914x419x343
29.17 31.42 31.93 34.63 34.89 36.73 43.33 52.93 65.72
203 x 203x 46 203x 203 x 52 203 X 203 X 60 203 X 203 X 71 203 x203x 86 254 X 254 X 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
305 X 305 X 283 356 X 406 X 287 356 X 406 X 340 356 X 406 X 340 356 X 406 X 393 COL CORE x 477 356 x406 x 511 356 X 406 X 634 914x419x388
62.50 57.19 65.33 66.17 72.33 83.37 98.25 108.27 134.89
15.0 X 6.0 15.0 X 7.5 15.0 X 8.0 15.0x 9.0 15.0 X 10.0 15.0 X 12.0 15.0x 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x 102x37 356 x 127 x39 406 x 140 x46 457 X 152 X 52 457x 191 x74 610x229x101 686 X 254 X 140'
762x267x 173 914 X 305 X 201 934 X 305 X 224 914 x 305 x253 914 X 305 X 289 914x419x343 FAIL FAIL
37.37 39.13 41.00 43.44 46.23 53.25
203 x 203x46 203x 203 x 60 203 X 203 X 71 203 x 203 x86 254x254x 107 254 X 254 X 167 305 X 305 X 198' 356 X 406 X 340'
356 X 406 X 393' 356 X 406 X 551 356 X 406 X 551 356 X 406 X 634' 356 X 406 X 634' 914x419x343 FAIL FAIL
80.83 93.47 92.54 99.11 99.07 84.25
18.0 X 6.0 18.0 X 7.2 18.0 X 7.5 18.0x8.0 18.0 X 9.0 18.0x 10.0 18.0x 12.0 18.0 X 15.0 18.0x 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 356x 127x33 305 X 102 X 37 356 X 127 X 39 406x 140x46 457x152x52 457x191 x74 610x229x 101 686 x 254 x140'
914x305x253' 914 x305 x289 • 914x419x343' 914x419x343' 914x419x388' FAIL FAIL FAIL FAIL
50.50 51.14 58.07 55.88 58.44
203 x203 x46 203x 203 x 52 203 x203 x 60 203 x203 x 71 203x 203 x 86 254x254x 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
356 X 406 X 634' 914 X 305 X 289' 914x419x343' 914x419x34' 914x419x388' FAIL FAIL FAIL FAIL
121.00 57.47 65.73 66.54 71.78
'
J
'"""'I
' J
' j '"""'I
'
)
'
j
'
J
l
j
'"""'
' i
J'
i
'"""' '
J
'
j
'
J
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I August 00
'"""'I
ARUIP
'
' J
.....,
4.5 Composite Steel and Concrete (10/11)
SAFE LOAD TABLES (3) GRADE 50 - DENSE CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2
L '
{
Minimum Weight Bay size (mxm)
L r , I
L
'
r '
r '
..... '
:
;
(
;
:
;
No. sec. beams per grid
Spacing of sec. beams
Secondary Beams
Minimum Depth
Primary Beams
Weight 2 (kg/m
)
Secondary Beams
Primary Beams
Weight 2 (kg/m )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x102x33 305x102x33 356x127x33 406 X 140 X 39 457 X 152 X 52 457x191 x67 533x210x92 686 X 254 X 125
406x 140x39 406 x 140 x46 457 X 152 X 52 457 X 152 X 52 457x152x60 457x152x67 533x 210 x 82 533x 210 x 92 610x229 x 101
14.83 17.39 17.93 17.50 19.67 24.03 29.17 36.80 47.28
152 X 152 X 37 203 X 203 X 46 203 x 203 x52 203 x 203 x60 203 x 203 x86 254 x 254x 89 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 340"
203 X 203 X 86 254 x254x 89 254 x254 x 89 254 X 254 X 89 254 X 254 X 107 254 X 254 X 132 254x254x 167 305 X 305 X 158 305x305x 198
26.67 27.69 29.20 31 .13 40.56 42.87 57.92 76.53 124.33
7.2 7.2 7.2 7.2 7.2
6.0 7.2 9.0 X 12.0 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254 X 102 X 22 305 X 102 X 25 305x127x37 457 X 152 X 52 610 x229x 101
457 X 152 X 52 457 X 152 X 60 457 X 152 X 74 533x210x92 610x229x125
17.83 18.75 23.64 29.33 49.03
152x 152x30 203 x 203 x46 203 X 203 X 60 254 X 254 X 107" 356 X 406 X 287"
254 x 254x 89 254 X 254 X 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 283
27.33 34.03 39.67 58.50 135.31
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
254x102x22 305x102x28 356 X 127 X 39 457 x 152 x52 533 X 210 X 82 610x229x 113"
457x152x52 457 x 152 x67 457 X 152 X 74 533x210x92 610x229x113 686 X 254 X 125
17.47 20.13 23.82 28.47 40.33 52.14
152x152x30 203x 203 x46 203 X 203 X 60 254x 254 x 107" 305 X 305 X 198" 356 X 406 X 287"
254 X 254 X 89 254x254x 132 254x254x 167 305 X 305 X 198 305 X 305 X 240 305 X 305 X 283
26.83 36.00 42.56 59.30 95.20 130.52
8.0 X 6.0 8.0 x8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
254 x 102 x22 305 X 102 X 33 356 X 127 X 39 406 x 140 x46 457 X 152 X 60 533x210x82 610x229x125"
457 X 152 X 60 457 X 152 X 74 533x210x82 533x210x92 610x229x101 610x229x 125 762 X 267 X 147
18.25 21.63 23.74 26.45 30.92 39.08 55.04
152 X 152 X 37 203 X 203 X 52 203 X 203 X 71 203 x 203 x86 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 287"
254x254x 107 254 X 254 X 167 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X 305 X 240 356 X 406 X 287
31.71 40.38 45.18 48.05 66.00 90.25 123.57
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x102x33 305x102x33 356x127x33 406 x 140 x39 457 X 152 X 52 457 X 152 X 67 533x210x92 686 X 254 X 125"
457x191x74 533 X 210 X 82 533x210x82 533x210x92 610x229x101 610x229x101 610x229x125 762 X 267 X 147 762 X 267 X 173
20.67 22.39 21.93 22.50 24.22 27.43 32.75 40.47 51.28
152x 152x37 203 X 203 X 46 203 x 203 x52 203 x 203x60 203 x 203 x86 254 x 254 x89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 340"
254 X 254 X 132 254 X 254 X 167 254 X 254 X 167" 305 X 305 X 158 305 X 305 X 198 305 X 305 X 198 305 X 305 X 240" 356 X 406 X 287" 356 X 406 X 340"
34.33 38.53 39.60 39.75 50.67 49.47 64.00 85.13 132.22
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0 X 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
254 x 102 x22 305 X 102 X 33 356x127x39 406 X 140 X 39 457 x 152 x52 533 X 210 X 82 610x229x 113
533x210x92 610x229x113 610 x229 x 125 686 X 254 X 140 762 X 267 X 147 838 x292 x 176 914 X 305 X 201
24.13 27.33 29.49 29.60 33.05 44.53 56.37
152x 152x30 203 X 203 X 52 203x 203 x 60 203x 203 x 86 254 X 254 X 107" 305 X 305 X 198" 356 X 406 X 287"
305 X 305 X 158" 305 X 305 X 240" 305 X 305 X 240" 305 X 305 X 283" 356 X 406 X 393" COLCORE x 4 77"
38.33 50.80 50.67 62.70 71.13 1 05.40 141.30
12.0 X 6.0 12.0 X 7.2 12.0 X 7.5 12.0 X 8.0 12.0 X 9.0 12.0 X 10.0 12.0 X 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 25 305 X 102 X 33 305 x 102 x33 356x 127x33 406x 140x39 457x152x52 457x152x67 533 X 210 X 92 686 X 254 X 125
610 x229 x 125 686 X 254 X 140 686 X 254 X 140 762 X 267 X 147 686 X 254 X 170 762 X 267 X 173 838 x292 x 194 914 X 305 X 253 914 X 305 X 289
29.17 30.44 29.67 29.38 31.89 34.63 38.50 47.53 57.72
152x 152x37 203 x 203 x46 203 X 203 X 52 203 X 203 X 60 203 X 203 X 86 254 x254x 89 254 X 254 X 332" 305 x 305 x198" 356 X 406 X 340"
305 X 305 X 240" 305 X 305 X 283" 305 X 305 X 283 356 X 406 X 287" 356 X 406 X 340" 356 X 406 X 340" COLCORE x 4 77" 356 X 406 X 551 914 X 419 X 343
52.33 54.64 55.07 55.88 66.44 63.67 83.75 102.73 132.39
15.0 X 6.0 15.0 X 7.5 15.0 X 8.0 15.0 X 9.0 15.0 X 10.0 15.0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 25 305 X 102 X 33 356. X 127 X 33 406 X 140 X 39 457 X 152 X 52 457 X 152 X 67 533x210x92 686 X 254 X 125
762x267x147" 838 x292 x 176 • 838 x292 x 194 • 914x305x201" 914x305x224" 914x305x289" 914x419x343" FAIL
32.83 34.47 35.25 35.33 39.73 46.42 53.53
152x 152 x37 203 x 203 x52 203 x 203 x60 203 x 203 x86 254 x 254 x89 254 x 254 x132" 305 x 305 x198" 356 X 406 X 340"
356 X 406 X 393" COL CORE x 477" 356 X 406 X 467" 356 X 406 X 551 356 X 406 X 634" 914 X 305 X 289" 914x419x343" FAIL
77.83 80.93 78.38 89.89 93.07 68.08 88.87
18.0x6.0 18.0 X 7.2 18.0 X 7.5 18.0 x8.0 18.0 X 9.0 18.0 X 10.0 18.0 X 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 305x102x33 305x102x33 356 X 127 X 33 406x140x39 457x152x52 457x 152x67 533 x210 x 92 686 X 254 X 125
914x305x201" 914x305x253" 914x305x253" 914 x 305 x289 • 914x419x343" 914x419x343" FAIL FAIL FAIL
41.83 46.14 44.73 47.13 51.11 51.63
152 X 152 X 37 203 X 203 X 46 203 x 203x 52 203 X 203 X 60 203 x 203x 86 254 x 254x 89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 340"
356 X 406 X 634 • 914 X 305 X 253" 914 X 305 X 253" 914 X 305 X 289" 914 x 419 x343" 914 X 419 X 343" FAIL FAIL FAIL
118.00 50.47 51.07 56.13 66.78 63.97
X X X
6.0 7.2 7.5 X 8.0 X 9.0 X 10.0 X 12.0 X 15.0 X 18.0 X X X
3% X 406 X 340*
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. {
;
Ver 3.1 I August 00
ARUJP
4.5 Composite Steel and Concrete (11/11) SAFE LOAD TABLES (4) GRADE 50 - LIGHTWEIGHT CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2 '
Minimum Weight Bay size (mxm)
No. sec. beams per grid
Minimum Depth
Spacing of sec. beams
Secondary Beams
Primary Beams
Weight (kg/m2
)
Secondary Beams
Primary Beams
Weight (kg/m 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 X 102 X 22 305x 102x28 305 X 102 X 28 305x102x33 356x 127x39 406 X 140 X46 457 X 191 X 60 533x210x82 610 X 229 X 125'
356 X 127 X 39 406 x 140 x46 406 X 140 X 46 457 X 152 X 52 457 X 152 X 52 457 x 191 x60 457x 191 x74 533x210x82 610 X 229 X 101
13.83 15.72 15.47 17.50 18.78 21.33 26.17 32.80 47.28
152 X 152 X 37 203 x 203 x46 203 x 203 x46 203 X 203X 52 203x 203 x 71 254x254 x 73 254 x 254 x132' 305 X305 X 198' 356 X 406 X 340'
203 x203 x 71 203 x203 x 86 254 x254 x 73 254x 254 x 89 254x254x 107 254 X254 X 107 254 X254 X 132 254x254x 167 305 X 305 X 198
24.17 27.28 25.07 28.46 35.56 35.03 55.00 77.13 124.33
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254 X 102 X 22 305 X 102 X 25 305x102x33 457x152x52 610x229x 101
406 X 140 X 46 457 X 152 X 52 457 X 152 X 67 533x210x82 610x229x 125
16.83 17.64 21.19 28.50 49.03
152x 152x30 152x 152 x37 203x 203 x 52 254 X254 X 107' 356 X 406 X287'
254x254 x 73 254 X 254 X 107 254x254x 132 254 X254 X 167 305 x305 x240
24.67 30.28 36.33 58.50 132.92
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5x18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
254x 102x22 305 X 102 X 25 356x127x33 457 X 152 X 52 533 X 210 X 82 610 x229 x 101
457 X 152 X 52 457 x 152 x60 457 X 152 X 74 533x 210 x 92 610 X 229 X 101 610x229x 125
17.47 18.00 21.42 28.47 39.53 47.34
152 X 152 X 30 203 x 203 x46 203 x203 x60 254 x 254 x132' 305 X 305 X 198' 356 X 406 X28]'
254 x254x 89 254 X254 X 107 254 X254 X 132 305 X 305 X 158 305 X 305 X 198 305 X 305 X 283
26.83 32.67 38.67 65.97 92.40 130.52
8.0 X 6.0 8.0 x8.0 8.0 X 9.0 8.0x10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
254 X 102 X 22 305 X 102 X 33 356x127x33 406 X 140 X 39 457 X 152 X 52' 533 X 210 X 82' 610 X 229 X 101'
457 X 152 X 52 457 X 152 X 74 533x210x82 533 x210 x 82 610 X 229 X 101 610 X 229 X 125 686 X254 X 140
16.92 21.63 21.49 22.83 27.92 39.08 45.65
152 X 152 X 30 203 x 203 x46 203 X 203 X 60 203 x203 x86 254 x 254 x132' 305 x 305 x198' 356 X406 X287'
254 X 254 X 107 254x254x 132 254 X254 X 167 254x254x 167 305 X 305 X 198 305 X 305 X240 305 X 305 X283
29.08 33.75 41.06 48.95 66.00 90.25 123.35
9.0 X 6.0 9.0 X 7.2 9.0 X 7.5 9.0 x8.0 9.0 X 9.0 9.0 X 10.0 9.0 X 12.0 9.0 X 15.0 9.0 X 18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 X 102 X 22 305 X 102 X 28 305x 102x28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533x210x82 610x229x 125
457x 191 x67 533x 210 x 82 533 x210 x 82 533x210x82 533x210x92 610x229x 101 610x229x 113 686 X254 X 140 686x254x 170
18.50 20.72 20.27 21.25 23.22 25.43 29.42 36.67 51.11
152x 152x37 203x203 x46 203 x 203 x46 203 x 203 x52 203 X 203 X 71 254x 254 x 73 254 x 254 x132' 305 x 305 x198' 356 X 406 X 340'
254 X 254 X 132 254x254x 167 254 X254 X 167 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X305 X240 305 X 305 X283 356 X406 X 340
34.33 38.53 37.60 38.21 41.22 44.13 '64.00 84.87 1 32.22
10.0 x6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0x 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
254 X 102 X 22 305 X 102 X 28 356x 127x33 356x 127x39 457 x 152x 52 533x210x82 610x229x 101
533 x210 x 82 610 X 229 X 101 610 X 229 X 125 686x254x 125 762 X267 X 147 762 X 267 X 173 838 X 292 X 194
22.47 23.83 27.09 28.10 33.05 44.33 51.18
152x 152x30 203 x203 x46 203 X 203 X 60 203 x203 x 86 254 X254 X107' 305 X 305 X 198' 356 X 406 X287'
254 X254 X 167' 305 X 305 X 198' 305 X 305 X 240 305 X305 X283 356 X 406 X287' 356 X406 X 393 COL CORE x 477'
39.83 43.15 50.67 62.70 66.72 105.40 141.30
12.0x6.0 12.0 X 7.2 12.0 X 7.5 12.0 x8.0 12.0x 9.0 12.0 X 10.0 12.0x 12.0 12.0x 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 x 102 x22 305x 102x28 305 X 102 X 28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533x210x92 610x229x 125
610 X229 X 101 686 X 254 X 125 686 X254 X 125 686 X254 X 140 762 X 267 X 147 686 x254 x 170 838x292x 176 914 X 305 X224 914 x 305 x289
24.17 26.69 26.00 28.50 29.33 32.33 34.67 45.60 57.72
152x152x37 203 x 203 x46 203 x203 x46 203 x203 x 52 203 X 203 X 71 254 x254 x 73 254 x 254 x132' 305 x 305 x198' 356 X406 X340'
305 X 305 X 240' 305 X 305 X283' 305 X 305 X283' 356 X406 X 287" 356 X406 X287 356 X 406 X340' 356 X406 X 393' 356 X406 X 551 356 X 406 X 634'
52.33 54.64 53.07 53.21 55.56 58.33 76.75 102.73 148.56
15.0x6.0 15.0 X 7.5 15.0 X 8.0 15.0x 9.0 15.0 X 10.0 15.0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254x 102x22 305x 102x28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533 X210 X 82' 610 X 229 X 125'
762 X 267 X 147' 762 X267 X 173' 838 X292 X 176' 838x 292 x 194' 914 X 305 X224' 914 X305 X 253' 914x419x343' 914x419x388'
31.83 32.40 33.00 34.56 37.73 41.08 50.20 63.22
152 X 152 X 37 203x203x46 203 X203 X 52 203 X 203 X 71 254 x254 x 73 254 X 254 X 132' 305 X 305 X 198' 356 X406 X340'
356 X406 X 393' COLCORE x 477' 356 X406 X467' 356 X406 X 551 356 X 406 X 634' 914 X 305 X 289 914x419x343' 914x419x388'
77.83 78.93 75.71 84.89 87.73 68.08 88.87 134.89
18.0 X6.0 18.0 X 7.2 18.0 X 7.5 18.0x 8.0 18.0 X 9.0 18.0 X 10.0 18.0x 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254x 102x22 305 X 102 X 28 305x 102x28 305x 102x33 356 X 127 X 39 406 x 340 x46 457 X 152 X 60 533 X 210 X 82 610 X229 X 125
838 x292 x 194' 914 X 305 X 224' 914 X 305 X253' 914 X 305 X253' 914 X 305 X 289' 914x419x343' 914x419x388' FAIL FAIL
39.67 40.44 43.07 42.63 45.11 49.63 52.33
152 X 152 X 37 203 x203x 46 203x203 x46 203 X 203 X 52 203x203x71 254x254 x 73 254 x 254 x132' 305 X 305 X 198' 356 X406 X 340'
356 X406 X 634' 914 X 305 X 224' 914 X 305 X 253' 914 X305 X253' 914 X 305 X 289' 914x419x343' 914x419x388' FAIL FAIL
118.00 46.44 49.07 48.96 55.78 58.63 76. 33
)
-
'
J
,
I
'
J
'
J
'
)
'
)
-
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I August 00
ARUIP
-
'
(
r ,
4.6 Timber (1/9)
4.6 '
(
TIMBER ALL THE INFORMATION IN THIS SECTION APPLIES TO SOFTWOOD IN DRY LOCATIONS. For temperate or tropical hardwoods, or timber in external locations, Refer to BS 5268 Pt 2.
4.6.1
RULES OF THUMB Span/depth ratios:
principal members load-sharing systems rectangular trusses triangular trusses
r '
15 20 10 8
(e.g. floor/roof joists)
Individual members of assemblies such as trusses should be set at only half capacity on initial sizing, otherwise the connections (eg bolts) will be overloaded. Trussed rafters, with pressed metal plate fasteners, are an exception to this rule.
r '
rI
-up to -up to -up to -up to
4.6.2
'
MATERIALS SUPPLY
I I
Sizes of solid timber (based on table NA. 2 of BS EN 336)
"r
'
'
Width in mm
'
Thickness
100
125
150
175
200
225
300
(97)
(120)
(145)
(170)
(195)
(220)
(295)
38 (35)
./
./
./
./
./
./
./
-
47 (44)
./
./
./
./
./
./
./
./
(:;;100mm)
-1,3
63 (60)
./
./
./
./
./
./
-
(>100mm)
-2,4
75 (72)
-
./
./
./
./
./
./
0
Planed
100 (97)
-
0
-
0
-
0
0
0
(:;;100mm)
±1.0
150 (145)
-
-
-
0
-
0
-
0
(> 100mm)
±1.5
r'
r '
I
I
'
./
0
-
i
Tolerances (mm)
75 (72)
(mm)
Sawn
Readily available (lengths up to 5.7m) Can be obtained in limited species (check with suppliers) Can be cut from larger sections
Douglas Fir- available up to 400 x 400 x 15m
I.....
NOTES
'
(
1.
Planed and regularised sizes shown in brackets. Regularised refers to members planed 2 sides only.
2.
When calculating A, Z or I for plane members use the appropriate reduced sizes (e.g.: Values of 'I' are reduced by about 20% by planning all round).
Glued laminated timber (Giulam) Laminates
- normal finished depth: 45mm (reduce when curved - ensure r/t :2: Emean/70) - normal max. width: 250mm Length/depth - limited only by the question of transport
'
(
i I
There is a limited range of straight stock sizes. Most members (straight/curved} are specially fabricated. Fabricators have generally standardised on grade C24 Whitewood. Most glulam is fabricated abroad, to standards similar to BS EN 386, the UK standard for fabrication. Fasteners (
'
r .
Nails: to BS 1202: Part 1 Black Bolts: to BS EN 20898-1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I
'-
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
1
I
'
Screws: to BS 1210 Washers: to BS 4320
'
ARUJP
'
J
'
j
'
)
'
J
4.6 Timber (2/9)
4.6.3
GRADE STRESSES Solid timber Timber should be specified either by species and visual grade in accordance with BS 4978 (eg: whitewood/SS) or by strength class in accordance with BS 5268. Grade stresses and moduli of elasticity: dry exposure condition (extracted from table 2, 7 & 8 of BS 5268 Pt 2) Compression
parallel to
parallel to
parallel to
perpendicular
parallel
grain
grain
grain
2 (N/mm )
(N/mm 2)
(N/mm 2)
to grain (N/mm 2)*
to grain (N/mm2)
Strength
Bending
Grade to
class to
BS 4978
BS 5268
(Redwood/
Compression
Modulus of elasticity
Tension
Visual
Shear
Average density
Mean (N/mm 2)
Minimum (N/mm 2)
~ I
(kg/m 3 )
I
'
)
whitewood/ sprucepine-fir/ • J
Douglas Fir/Larch) GS
5.3
C16
3.2
6.8
2.2
1.7
0.67
8800
5800
370
I I
)
*
ss
C24
7.5
4.5
7.9
2.4
1.9
0.71
10800
7200
420
+
C27
10.0
6.0
8.2
2.5
2.0
1.10
12300
8200
450 • J
When the specification specifically prohibits reductions at bearing areas, the higher values may be used.
+Grades better than C24 can only be justified by machine grading to BS EN 519. •
j
Glulam • J
For C24 timber, the grade stresses above are modified by the following factors:
Modification factors K1s, K,e, K17, K18 , K,g, K2o for single grade glued laminated members and horizontally glued laminated beams (extracted from table 21 of BS 5268) Pt 2.
.
Number of
Bending
Tension
Compression
Compression
Shear
Modulus
!
laminations
parallel to
parallel to
parallel to
perpendicular
parallel to
of
the grain
the grain
the grain
to the grain K18
the grain
elasticity
K,e
K11
K,g
K2o
K,s 4
1.26
1.26
5
1.34
1.34
7
1.39
1.39
10
1.43
1.43
15
1.48
1.48
~20
1.52
1.52
}
'
' j
• J
1.04
1.55
2.34
1.07
\
j
.
\ )
Thereafter design members as in the method given in 4.6.5-8. Refer to BS 5268 Pt.2 for radial stresses in curved beams.
• J THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
' l
' J
I
....... 4.6 Timber (3/9)
4.6.4
SIZING OF ELEMENTS IN DOMESTIC CONSTRUCTION Information taken from BS 8103 Pt 3 Tables 7, 26, 27, 32, 33, 64. Loading in kN/m 2 .
JOISTS FLOORS C24 Size of joists f
DL = 0.5
DL = 1.25
LL 0.75 DL = 0.75
Spacing of joists (mm)
(mm)
'
FLAT ROOFS
LL 1.5 (inc. partitions)
DL = 1.00 Purlln supported by
Spacing of joists (mm)
(planed on 2
450
faces)
'
'
'
.
(
(
600
450
600
600
450
450
600
47x 97
1.92
1.68
1.71
1.50
1.91
1.83
1.83
1.74
47
X
122
2.55
2.29
2.27
2.01
2.55
2.43
2.43
2.30
47
X
147
3.06
2.78
2.75
2.50
3.21
3.04
3.04
2.87
47
X
170
3.54
3.21
3.18
2.88
3.81
3.54
3.61
3.36
47
X
195
4.05
3.68
3.64
3.30
4.44
4.05
4.22
3.85
47 x220
4.55
4.14
4.10
3.72
5.00
4.56
4.76
4.33
75
X
122
2.97
2.71
2.68
2.43
3.08
2.93
2.93
2.77
75
X
147
3.57
3.25
3.22
2.93
3.84
3.57
3.64
3.40
75
X
170
4.11
3.75
3.71
3.38
4.50
4.11
4.29
3.92
75
X
195
4.69
4.29
4.25
3.86
5.14
4.70
4.90
4.48
75 x220
5.11
4.78
4.74
4.35
5.77
5.28
5.50
5.04
Take the clear span for the purlin as the clear dimension between support struts and/or walls
1
PURLINS r ,
\......
(roof pitch between 22.5"- 30") DL = 0.75
Size of
DL= 0.75
DL = 1.00
sawn
LL = 0.75
sawn
LL = 0.75
LL = 0.75
rafters
Spacing of purlins (mm)
(mm)
'
1500
1800
2100
2400
2700
(mm)
(
I
I
I
(
'
.
X
175
2.08
1.95
1.84
47
X
200
2.38
2.23
2.10
1.97
1.85
47
X
225
2.68
2.50
2.36
2.20
2.07
63
X
150
1.97
1.86
63
X
175
2.32
2.17
2.05
1.95
1.87
63 x200
2.64
2.48
2.34
2.23
2.13
2.04
63 x225
2.97
2.78
2.63
2.51
2.40
2.28
1.96
C24
450
600
38
X
100
1.96
1.82
1.82
1.68
38
X
125
2.66
2.44
2.46
2.25
38
X
150
3.21
2.92
3.04
2.72
47
X
100
2.28
2.10
2.12
1.95
47
X
125
2.88
2.62
2.73
2.48
47
X
150
3.44
3.13
3.27
2.97
C24
150
1.87
47x175
2.18
2.04
1.93
1.83
38
X
100
2.24
2.03
2.12
1.93
47
X
200
2.49
2.33
2.20
2.10
2.00
1.92
38
X
125
2.79
2.53
2.65
2.40
47
X
225
2.80
2.62
2.47
2.35
2.25
2.16
38
X
150
3.34
3.04
3.17
2.88
63
X
150
2.08
1.95
1.84
63
X
175
2.42
2.27
2.15
2.04
1.96
1.88
47
X
100
2.40
2.18
2.27
2.07
63 x200
2.76
2.59
2.45
2.33
2.24
2.15
47
X
125
2.99
2.72
2.84
2.58
63
3.10
2.91
2.75
2.62
2.51
2.42
47
X
150
3.58
3.26
3.40
3.09
X
\
'
600
C16
47
47
Spacing of rafters (mm) 450
3000
C16
(
(pitch between 22.5" & 30")
Size of purlins
(
RAFTERS
X
225
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
'
)
' j
4.6 Timber (4/9)
4.6.5
OUTLINE OF DESIGN RULES FOR TIMBER MEMBERS
'
)
',
)
The Code (UK) BS 5268: Part 2. This is a permissible stress code- all analysis is carried out under 'working' loads. No y factors are used.
,....,
i
Notation '
SUBSCRIPTS
SYMBOLS
a Stress
Compression
c
T
Shear Stress
m Bending
i
Rad. of Gyration
I
Direction
a
Applied
II
Parallel
adm
Permissible
j_
Perpendicular
a
Angle to the grain
Tension
compressive stress
eg: crc,adm II
~
Significance
Types of Force
permissible
J
parallel to the grain
I '
)
I
'
'
I
J
Design procedure
4.6.6
1.
Determine GRADE stresses cro,grade relevant to applied stress conditions (see 4.6.3).
2.
Modify GRADE stresses by relevant factors (K(n)) (see 4.6.6) to obtain PERMISSIBLE stresses cr*,adm {> o*,a ).
SELECTED TIMBER MODIFICATION FACTORS K3
' J
Duration of Load Loading
K3
(e.g. dead + permanent imposed )
1.00
'
Long term Medium term
(e.g. dead +snow)
)
1.25
Short term (e.g. dead+ snow+ wind, when largest diagonal dim. of loaded area > 50m)
1.50
Very short term (e.g. dead+ imposed+ wind, when largest diagonal dim. of loaded area:<> 50m)
1.75
2
Note: 1.5 kN/m imposed load for domestic buildings should be treated as long term. I
j
'
J
'
j
0
)
'
)
'
' )
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
(
I
r ,
4.6 Timber (5/9)
K7
Depth in bending Width (greatest dimension) for axial tension only
K14 (
1
1.175 1.150 (
1
L\
\
1.125
1\
1.100
.
I
\
1.075
i
'
olj
1.050
:0:
1.025
\.
""
f!
. 0
u
1.000
LL
c
0.975
:g
0.950
K1
0
,~
"""
K1
I~
'\.
J
0.900
r ',
K, •
~ ~
0.925
0
:;;
K,.
~
1'---~
0.875
......._
0.850 I
--- -
r- r--
~
t:::::::.......
0.825
'
0.800 0
100
200
300
400
500
600
700
800
900
1000
Depth or Width, h (mm) (
1
I
'
Ks
Load Sharing systems 1.1 (eg: 4 or more floor joists, rafters, wall studs)
K12
Slenderness For slenderness ratio A (=le I i) < 5 A;:::5
=1 K12 is a function of A and E I
K12
For solid members, including load sharing systems For horizontally laminated C24 members The value of Oc, 11 is the grade stress multiplied by K3 (
E E
aG,II
= Emin = E mean
l
0.9 (
l
0.8
i"' '
(
'""'
"'
0.7
..: 0.6
.s
".
I C241ong term (i.e E/cr=1370)
~
~
~ ~24 ~ ~~
medium term (i.e E/cr=1140)
LL
c 0.5 .!2
'1ii
( '
"""
:0
0.4
C24 short term (i.e E/cr-910)
~~~
0
:;;
0.3
Limit A=180 for long & medium term loading
/
~ ~ t::::--.~*"'
0.2
~
0.1
-...::::::-
t:===:---~ r---= t------.::::::__-::-
-
0 (
'
'
0
50
100
150
200
250
·,
I
Slenderness Ration, A
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
i
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
i..,_:
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Updated July 2002 r ,
ARUJP
J
'
II I
J 4.6 Timber (6/9)
4.6.7
~
MODIFICATION FACTOR COMBINATIONS (Examples)
j
For solid timber: Bending
II
Om,grade eg:
X
K3
X
K7
C24
Medium
200mm
7.5
1.25
1.05
X
(Ks)
=
O'm,adm
9.8 N/mm•
J
'
"'"""" J
I
Tension
Ot,grade
X
~
X
K14
X
(Ks)
=
Ot,adm
j
eg:
C16
Short
150mm
3.2
1.5
1.08
5.2 N/mm 2 ~
'
\
Com(2ressionac ,grade eg:
Shear
X
K3
X
K12
C24
Long
{A.=100)
7.9
1.0
0.40
Tgrade
X
K3
X
(Ks)
=
Oc,adm,ll
3.2 N/mm•
X
(Ks)
=
Tadm
)
)
'
eg:
C24
Long
0.71
1.0
0.7 N/mm 2
For rectangular sections, a parabolic stress distribution is assumed i.e. max shear stress = 3F/2ht
I
'
4.6.8
DEFLECTION Generally, BS 5268 Pt. 2, Cl 2.1 0. 7 recommends that total deflection under dead and imposed load:
Notes:
<= 0.003 L <= 14 mm
to limit vibration of floors
J
' )
'J
1.
Deflection must include bending and shear components. For a central point load, shear deflection= 3 WU8Ght (where G = E/16).
2.
For glulams, dead load component can be reduced by precambering.
3.
E = Em;n (individual members on which integrity of structure depends) \ J
= Emean {load-sharing systems)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
'
J
\
'
\
J
i
....... I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
• J
'
J
(
'
r
'
4.6 Timber (7/9)
4.6.9
FASTENERS This section deals only with lateral loads on nails, screws and bolts in timber of strength class C16 (capacity of fixings in C24 and C27 timber are up to 20% higher- see BS 5268 Pt. 2). Design procedure 1.
Determine
2.
Determine BASIC fastener capacity below).
3.
Modify BASIC capacity by relevant factors
4.
Check that
• • •
APPLIED fastener shear loads (Fa) (for bolts) angle of loads to grain (a) member thicknesses/nail or screw penetrations Fb
(for bolts, this is a function of a- see diagram
(K(nJ)
to obtain PERMISSIBLE loads
Fadm
Fa::; Fadm
Selected modification factors
Load Duration
'
(
r '
Nails K.s /Screws
Long Term
1.00
Medium Term
1.12
Short Term
1.25
Number of Fasteners in Line
Bolts
Effect of load duration is included in table of capacities below.
Nails Kso/Screws K54
Bolts Ks1
n < 10
1.0
1 - 0.03 (n- 1)
n >= 10
0.9
0.7
Timber fixed to steel plate
r '
Ks2
Nails/Screws K.s
Bolts K.s
Where lp1ate;, 1.2mm & 0.3 dia
When tprare ;, 2.5mm & 0.3 dia 1.25 (a= 0')
1.25
r ,
1.00 (a= 90')
Fastener spacing Key: N N/St NPr Sc t
-nails - nails through steel plates -nails in pre-drilled holes -screws -timber thickness
NAILS AND SCREWS ( '
(
IIll
N
20d
N
20d
NISI
14d
NISI
14d
NPr/Sc
10d
NPr/Sc
10d
I ....
I
•·
'" I
N NISI NPrfSc
1
~~~~~7d(loadedend) ..
1 5d
10d 7d 3d
(edgadiStanee)
(
'
(
'
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
r ,
ARUIP
'
J
\
J
Nails - lateral strength
'
)
Fadm = Fb x ~s x K5o (x ~ 6 ) (x 1.15 if pre-drilled holes)
,--1
4.6 Timber (8/9) '
Basic single shear lateral loads for round wire nails driven at right angles to the grain (from table 61 BS 5268 Pt. 2)
Diameter of Nail
Standard penetration
Basic lateral load per nail
(mm)
(mm) headside and
in C16 timber
Stock Sizes of Nails
\
j
pointside
2.7
32
258
65 60 50 45 40
3.0
36
306
65 60 50
3.4
41
377
75 65 60
3.8
46
453
75
4.2
50
534
100 90 75
4.6
55
620
100
5.0
60
712
125115 100
5.5
66
833
125
6.0
72
962
150
I
J
~
J
'
)
-
Screws - lateral strength
Basic single shear lateral loads for wood screws inserted into pre-drilled holes at right angles to the grain (from table 66 in BS 5268 Pt. 2)
Screw shank diameter (mm)
Standard penetration
Basic lateral load per screw in C16 timber
Headside (mm)
Pointside (mm)
3
11
21
205
4
14
28
361
5
18
35
550
' J
6
21
42
765
7
25
49
1011
8
28
56
1286
10
35
70
1608
I
I
J
'
)
,-, I
)
'
)
Non-standard penetrations Where the penetrations are less than the standard values above, the basic load should be multiplied by the smaller of: (a) actual to standard headside penetration, or (b) actual to standard pointside penetration For nails, neither ratio should be < 0.66 For screws, minimum headside member thickness = 2 x shank diameter
! ' J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
'
)
'
'-' r '
4.6 Timber (9/9)
r ,
Basic single shear loads for one bolt in a two-member joint (from table 70 in BS 5268 Pt. 2)
Basic shear load for one bolt in C16 timber as a function of
Actual Thickness of
Nominal bolt size
load duration
thinner member* Parallel to grain
47
( '
60
r,
C
I
72
'
97
(
Perpendicular to Grain
LT
MT
ST
LT
MT
ST
M8
1.22
1.44
1.59
1.13
1.33
1.47
M10
1.54
1.95
2.20
1.36
1.72
1.96
M12
1.80
2.29
2.61
1.56
1.98
2.26
M16
2.30
2.91
3.32
1.91
2.42
2.76
M20
2.73
3.47
3.95
2.19
2.78
3.17
M24
3.12
3.95
4.51
2.41
3.06
3.49
M12
2.30
2.91
3.19
1.99
2.53
2.88
M16
2.93
3.72
4.24
2.44
3.09
3.53
M20
3.49
4.43
5.05
2.80
3.55
4.05
M24
3.98
5.05
5.75
3.68
3.90
4.45
M16
3.52
4.46
5.09
2.93
3.71
4.23
M20
4.19
5.31
6.06
3.36
4.26
4.85
M24
4.77
6.06
6.90
3.69
4.68
5.34
M16
4.63
5.46
6.03
3.94
4.77
5.25
M20
5.64
7.16
8.16
4.52
5.74
6.54
M24
6.43
8.16
9.30
4.97
6.31
7.19
M24
9.74
11.46
12.64
7.54
9.52
10.45
I
147
*The loads for intermediate thicknesses may be obtained by linear interpolation.
Bolts - lateral strength
i....,
(
\
! ~
Basic load for bolts at an angle to the grain a
(
\
I
L-
F;; '
~
Grain direction
I
I
F a
!
=
F;;Fj_
r1711
• 2 sm a+ F j_ cos 2 a
i..... (
I
F.L
L
r
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
r ,
ARUJP
4.7 Masonry (1/9)
4.7
MASONRY
I
)
4.7.1 RULES OF THUMB Ultimate resistances in compression Wall sizing: e < 0.05 t ; grade (iii) mortar (Note: For cavity walls load is applied to inner leaf only.) BS 5628 : Pt 1 Cl 28.1. limits slenderness ratio to 27
' )
BOO
'E1so -..
'
J
I
J
~ 700
-6so ~ 600 r::::
/215 brick wall (35N brick)
.fl II)
550 "iii 500 (J) .... 450 ~ 400 -~ 350
~
r---
(J)
a. 300
/
E 250 0
(.) 200 (J) (ij 150 E 100 :;:::; 5 50 0 1.0
- --........
100 brick+ 140 block {10N block ~
Jl..
2.0
2.5
-:I
~ ...........
/1100 brick + 100 block (3.5N block)l
...
3.0
3.5
4.0
4.5
5.0
5.5
J
I
-- --- --- -- -----... .....
;/
1.5
~
j
I
6.0
Effective wall height (m) Pier sizing: e < 0.05 t; 20N brick; grade (iii) mortar BS 5628 : Pt 1 Cl 28.1. limits slenderness ratio to 27
,...._ I
300
-z
\ J
275
~250
/L440x327 ier
(J)
g 225
co ti
-
"
200
'iii ~ 175 (J)
j
I
r-- r--.._
.2:: 150 II)
'
......
--......
J
I
II)
215x 327 pier
~ 125
c..
,.. /
§ 100
215x215pier
(.)
$ 75 co ~ 50
5
Ji
---
/
25
0 1.0
' J
,..., :,
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Effective pier height (m)
J
I
,., I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUJP
/
I I
I
J
I
j
I
:
[
4.7 Masonry (2/9)
Initial sizing rules Trial wall thicknesses: For compressive loading only:
(
\
Supported top and bottom
Supported at base only
Solid
H/16
H/8
Cavity*
H/11
H/5.5
H is wall height
Min. leaf thickness 100mm
• Wall thickness is sum of leaf thickness ( '
For lateral loading: solid walls, Height = 1/40 distance between supports cavity walls, Height= 1/30 distance between supports
4.7.2 LOAD FACTORS (From BS 5628 Part 1 Clause 22)
Load Combination
Load Type
(Including Earth
Dead, G,
Imposed,
a,
and Water Loading
Earth and
Wind,
Water, E,
w,
Adverse
Beneficial
Adverse
1.4
0.9
1.6
0
1.4
-
2. Dead and Wind
1.4
0.9
-
-
1.4
1.4*t
3. Dead, Imposed
1.2
1.2
1.2
1.2
1.2
1.2t
Where Present) 1. Dead and
Beneficial
Imposed
and Wind t Use 0.015G, if greater than factored W,.
'
(
• A partial factor of 1.2 may be used for freestanding walls and laterally loaded walls panel, whose
......
removal would in no way affect the stability of the remaining structure .
'
4.7.3 MATERIAL FACTORS (From BS 5628 Part 1 Table 4) (
\
Partial safety factors for material strength Construction Control
Manufacturing (
Control
\
Special
Normal
Special
2.5
3.1
Normal
2.8
3.5*
• Use for initial sizing Note particular requirements for use of 'Special' category
( '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
I
'
I
r-
ARUP
)
\
4.7 Masonry (3/9)
4.7.4 MODULAR DIMENSIONS (Brickwork) 102.5, 215, 327.5, 440 ~~=-~--~~--~~~~~
0
' J
' i
Mortar Thickness
= 1Omm
(n x225)- 10
-
4.7.5 TYPICAL UNIT STRENGTHS Material and BS
Class
Typical unit compressive strength (N/mm2 ) '
Fired-clay bricks (BS 3921)
Calcium silicate bricks (BS187)
Engineering At
> 70
Engineering Bt
>50
Facing brickst
10-50
Common bricks
10-30
Class 7
48.5
Class 6
41.5
Class 5
34.5
Class 4
27.5
Class 3
20.5
Reconstructed stonet (BS 6457)
'
I
'
J'
7-20
Concrete bricks (BS 6073: Part 1) Concrete blocks (BS 6073: Part 1)
j
Dense solidt
7,10-35
Dense hollowt
3.5, 7, 10
Lightweightt
2.8, 3.5, 4, 7 (10)
Dense solid
As dense solid concrete blocks
Natural stonet (BS 5390 and BS
Structural quality
15-100
I
•
8298)
J
{dependent on stone type, bed, location, etc.)
t These are often selected by client or architect for appearance or thermal performancecheck this, and establish strength, before starting to size members. ~ '
j
,..., c
J
~ '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
J
......,
'
J
'I
4.7 Masonry (4/9)
4.7.6 MASONRY COMPRESSIVE STRENGTH (BS 5628, Pt. 1, Table 2) (
Characteristic compressive strength of masonry' f.k• in N/mm2
1
(a) Constructed with standard format bricks Mortar
NOTE TO TABLE OF fk
Compressive strength of unit (N/mm')
1. For piers, columns, and short
desig-
walls with plan area A (in m') ~ 5
10
15
20
27.5
35
50
70
100
(i)
2.5
4.4
6.0
7.4
9.2
11.4
15.0
19.2
24.0
(ii)
2.5
4.2
5.3
6.4
7.9
9.4
12.2
15.1
18.2
(iii)
2.5
4.1
5.0
5.8
7.1
8.5
10.6
13.1
15.5
(iv)
2.2
3.5
4.4
5.2
6.2
7.3
9.0
10.8
12.7
nation
'
(
0.2m', multiply fk by (0.7 + 1.5A). 2. For 'half-brick thick' brick walls, multiply Table (a) values by 1.15. 3.
For 90
modular
X
90mm section
bricks,
multiply the
Table (a) values by: (b) Constructed with blocks having a ratio of height to least horizontal dimension f
of0.6
1
Mortar nation
2.8
3.5
5.0
7.0
10
15
20
35 or greater
(i)
1.4
1.7
2.5
3.4
4.4
6.0
7.4
11.4
(ii)
1.4
1.7
2.5
3.2
4.2
5.3
6.4
9.4
i '
4. For unfilled hollow blocks, interpolate between Tables (b) and (c) as necessary.
I I
i,...,.
5. For solid and concrete-filled
r ,
r '
(iii)
1.4
1.7
2.5
3.2
4.1
5.0
5.8
8.5
(iv)
1.4
1.7
2.2
2.8
3.5
4.4
5.2
7.3
(c) Constructed from hollow blocks having a ratio of height to least horizontal
\
Mortar
0.6 and 2.0, interpolate between Tables (b) and (d) as necessary. 6. For squared natural stone and between Tables (b) and (d) as
Compressive strength of unit (N/mm')
necessary.
designation
2.8
3.5
5.0
7.0
10
15
20
35 or greater
(i)
2.8
3.5
5.0
5.7
6.1
6.8
7.5
11.4
(ii)
2.8
3.5
5.0
5.5
5.7
6.1
6.5
9.4
7. For random rubble natural
'
I'"-
hollow blocks, with height:least horizontal dimension between
reconstructed stone, interpolate
dimension of between 2.0 and 4.0
.......
(
= brick
Compressive strength of unit (N/mm')
desig-
I
1.25 if wall thickness width, 1.1 otherwise
stone, take 75% of squared natural stone values. If using lime mortar, take 50% of strength for grade (iv) mortar.
(iii)
2.8
3.5
5.0
5.4
5.5
5.7
5.9
8.5
(iv)
2.8
3.5
4.4
4.8
4.9
5.1
5.3
7.3
1
IL.... r ,
L
MORTAR STRENGTHS
(d) Constructed from solid concrete blocks having a ratio of height to least
Desig-
horizontal dimension of between 2.0 and 4.0
nation
Mortar
Compressive strength of unit (N/mm 2 )
(i)
designation
2.8
(i)
2.8
3.5 3.5
5.0 5.0
7.0 6.8
10 8.8
15 12.0
20
35 or greater
14.8
22.8
Cement:Lime:Sand
1:0-)1.,:3
(ii)
1 : Y:z: 4 -4Y:z
(iii)
1:1:5-6
(iv)
1:2:8-9
Pure lime 0 : 1 : 3
r , I
(
(ii)
2.8
3.5
5.0
6.4
8.4
10.6
12.8
18.8
(iii)
2.8
3.5
5.0
6.4
8.2
10.0
11.6
17.0
(iv)
2.8
3.5
4.4
5.6
7.0
8.8
10.4
14.6
See also Section 4.7.12, and BS 5628, Pt1, Table 1.
1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
'
J
4.7 Masonry (5/9)
Wp
t1
~..
t2
te = t max
Sp
or 2/3 (t1 + t2)
te = t
tP ''
'
te = t x k
[whichever greater]
Values of K for the design of piers (From BS 5628, Pt. 1, Table 5) Ratio of pier spacing
' j
Ratio of pier thickness to actual thickness of wall or leaf (t, I t)
(centre-to-centre) to 1
2
3 and thicker
1
1.4
2
10
1
1.2
1.4
20 (or more)
1
1
1
pier width (s, I w,) 6 (or less)
Reduction factor 13 (From BS 5628, Pt. 1, Table 7) Capacity reduction factor, Slenderness
:/ /
t
~ /
Eccentricity at top of wall, e
L
Up to
0
:;;
~
Pt
ratio: l.ft.
i
0.11
0.21
0.31
/
1.00
0.88
0.66
0.44
1/~
6
1.00
0.88
0.66
0.44
1.00
0.88
0.66
0.44
10
0.97
0.88
0.66
0.44
12
0.93
0.87
0.66
0.44
14
0.89
0.83
0.66
0.44
16
0.83
0.77
0.64
0.44 0.44
18
0.77
0.70
0.57
20
0.70
0.64
0.51
0.37
22
0.62
0.56
0.43
0.30
24
0.53
0.47
0.34
26
0.45
0.38
27
0.40
0.33
'i
l I
'
)
L
/
0.051
8
'
'
Le= 0.75L
Le=2L
'
j
'
J
L DPC Le= 1.0L
\ J
Linear interpolation between eccentricities and
slenderness ratios is permitted
Vertical load resistance of wall or column per unit length: 13tfk
P=--
Ym where
', J
13 = capacity reduction factor from above table t =actual wall, column, or leaf thickness fk = characteristic compressive strength from table Ym =partial safety factor for material from Table 4.7.3- use 3.5 for sizing.
'
''
' J THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
' J
'
l
4. 7 Masonry (6/9)
4.7.7
SIZING EXTERNAL WALL PANELS •
• r '
•
(
;
• •
(
1
•
Walls in buildings up to four storeys high and subject only to lateral loads may be sized as below. Gravity stresses generally improve capacity to resist wind, and so thickness may be guesstimated for higher load bearing walls. Applicable only in areas with many windbreaks (cities, towns, woodland etc.) within the defined wind zones. Thickness of wall should be at least: For solid wall: 1/40th of distance between supports total thickness 1/30th of distance between supports; each leaf For cavity wall: min. 1OOmm thick; cavity width 1OOmm max; wall ties 900 x 450mm spacing; mortar grade (i), (ii) or (iii) Treat pitched gable walls as rectangular panels with height taken at mid-height of roof slope. Openings (windows, doors, etc.) only if either: -Openings are entirely framed by lateral restraints (floors, roof, crosswalls, etc.) or -(a) the total area of openings is less than the lesser of 10% of the maximum tabulated area 25% of the actual wall area and -(b) no opening is less than half its maximum dimension from any edge of the wall panel (other than its base) and from any adjacent opening. If above conditions not satisfied, calculate wind forces and use Table in 4.7.8 or design to BS 5628: Part 1.
r ,
Maximum permitted areas of certain walls
'
(
Wind Height
------
zone
c
B
A
D
Cavity 190mm Cavity 90mm Cavity 90mm Cavity wall (
wall
1
2
3 ;
4 (
wall
solid
wall
solid
wall
wall
wall
F 90mm Cavity 190mm
solid
solid
wall
wall
wall
wall
solid
I
H
G
90mm Cavity
;
I
(
solid
E
avity 90mm Cavity 90mm Cavity 90mr solid wall solid wall solid
wall
wall
wall
wall
wall
m
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
5.4
11.0
13.5
17.5
19.0
26.5
28.5
20.5
29.0
32.0
41.0
32.0
41.0
8.5
10.0
14.0
19.0
19.5
30.5
10.8
9.0
11.5
13.0
15.5
17.5
21.5
15.5
23.5
24.0
32.5
32.0
41.0
7.0
8.0
10.0
14.5
15.5
21.5
5.4
9.5
12.0
14.0
17.0
21.0
24.0
17.5
25.5
27.0
35.5
32.0
41.0
7.5
8.5
10.5
16.5
17.0
24.5
10.8
8.0
9.5
11.5
14.0
13.5
17.5
13.0
20.5
19.0
28.5
28.0
36.5
6.0
7.0
9.0
11.0
13.0
17.5
5.4
8.5
10.5
12.5
15.0
15.5
20.0
14.5
22.5
22.0
31.0
30.5
40.5
6.5
7.5
9.5
13.5
14.5
20.0
10.8
7.0
8.5
10.0
12.0
11.5
15.5
11.0
17.5
14.5
24.5
24.5
31.5
5.0
6.0
7.5
9.0
11.5
15.0
5.4
8.0
9.5
11.0
13.5
13.0
17.0
12.5
19.5
18.0
27.5
27.0
35.0
6.0
6.5
8.5
10.5
12.5
17.0
10.8
6.5
7.5
9.0
11.0
10.5
13.5
9.5
14.5
12.5
21.0
21.5
27.5
4.0
5.5
6.5
7.5
10.0
12.5
;
Notes:
1. Cavity wall:
100mm outer leaf (any bricks or blocks not less than 14.0 N/mm') 1OOmm inner leaf (any bricks or blocks not less than 3.5 N/mm'). If either leaf is increased to 140mm, increase the areas by 20%
I
,
2. Solid walls:
Single leaf, collar-jointed, grouted cavity. Any bricks or blocks not less than 3.5 N/mm'
3. Wind zones:
As BS 5628 Part 3 Figure 1.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
)
\
'"""'
!
'
J
4.7 Masonry (7/9)
4.7.8
'"""'l
FLEXURAL STRENGTH OF MASONRY
' J
Characteristic Flexural Strength of Masonry, f"", in N/mm'
Mortar designation
Plane of failure parallel to bed
Plane of failure perpendicular to
joints (spanning vertically)
bed joints (spanning horizontally)
(i)
(i)
(ii) and
(iv)
(ii) and
(iii)
' J
(iv)
(iii)
'
!
'
J
l
j
'
j
'
j
Clay bricks having a water absorption: less than 7%
0.7
0.5
0.4
2.0
1.5
1.2
between 7% and 12%
0.5
0.4
0.35
1.5
1.1
1.0
over 12%
0.4
0.3
0.25
1.1
0.9
0.8
Calcium silicate bricks
0.3
0.2
0.9
0.6
Concrete bricks
0.3
0.2
0.9
0.6
Concrete blocks (solid or hollow) of compressive strength in N/mm': 2.8
used in wall
3.5
thickness* up
7.0
to 100mm
2.8
used in wall
3.5
thickness* of
7.0
0.25
0.15
0.2
0.4
0.45
0.4
0.60
0.5
0.25
0.2
0.25
0.2
250mm
0.35
0.3
10.5
used in walls of
0.75
0.6
14.0
any thickness*
0.90t
0.7t
0.25
0.1
0.40
0.2
and
',
' '
over • The thickness should be taken to be the thickness of the wall, for a single leaf wall, or the thickness of the leaf, for a cavity wall. For concrete blocks 100-250mm thick, interpolate. t When used with flexural strength in parallel direction, assume the orthogonal ratio ~=0.3
'
'
I
'
I J
Note: Mortar designation as in Table 4.7.6
4.7.9
INTERNAL NON-LOADBEARING MASONRY WALLS For single-leaf wall of length Land height H, with adequate lateral restraint. calculate the minimum thickness required from the graph:
' j
Extract from BS5628: Part 3, figure 6.
Note: This graph only applies where significant internal wind pressures cannot occur.
20
40 60 80 100 Length I thickness ratio
120
'
j
'
J
•
J
•
J
'
J'
140 I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
'!
-.
r '
I
4. 7 Masonry (9/9)
For cavity wall with wall ties, sum of leaf thicknesses to be not less than 1Y2t where t is calculated as above. Note that the presence of openings, chases, and movement joints may demand greater thickness and/or additional intermediate restraints. r
4.7.10 FREESTANDING MASONRY WALLS
'
Thickness of freestanding walls (Single leaf, unstiffened by piers) (
1
Wind zone
Max. ratio of height (above
Max. ratio of height {above
lateral restraint): actual
d.p.c.t): actual thickness
thickness '
( I
I
'
1
8.5
6.4
2
7.5
5.6
3
6.5
4.9
4
6.0
4.5
t Assume d.p.c. cannot res1st flexure. Notes:
1. Unit compressive strength
2
3.5 N/mm 2, density
2
1400 kg/m 3•
2. Applicable only in areas with many windbreaks (cities, towns, woodland, etc.)- elsewhere calculate wind
r .
forces and design as gravity wall or to BS 5628: Part 1.
i
3. Wind zones as BS 5628 Part 3 Figure 1
4.7.11 JOINTS r ' '
Recommended Vertical Joints in Masonry
'-"
Material
r
Max. joint spacing (m)t
Joint width (mm)
Max. aspect ratio*
1.3 x spacing in
3:1 (suggested)
1
Fired-clay bricks
15 12 (preferable)
r ,
Calcium silicate (sand-
i
lime) bricks
w
Concrete blocks and
r
metres (minimum)
7.5-9
10 (typical)
3:1
6
10 (suggested)
2:1
6
10
3:1 (suggested}
bricks
1
i
l.,..
Natural stone cladding in cement-based mortar
'
( I
t Use max of half these values for joint nearest corner (Internal or External) * Ratio of panellength:panel height for solid panel; if openings, check each sub-panel separately and consider
L
reinforcement for ratios beyond max. value.
Horizontal joints in non-loadbearing masonryt (BS 5628 Part 1 Cl 29.2.2)
r
'
Uninterrupted wall height
Joint spacing (m)
Joint width (m)
Multi-storey
9m or every third storey (whichever
Allow 1mm per metre between
is less), but can omit if building is
masonry support and top of
less than 12m with four or fewer
masonry below; minimum 10mm
storeys
r
1
Storey-high t
At head of wall
Allow 1mm per metre
Consider also other requirements for joint (acoustic and thermal insulation, weathertightness, fire separation, etc) when selecting joint filler.
f
I
i ~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98 ( '
ARUIP
'
)
4. 7 Masonry (9/9) I
4.7.12 OTHER ISSUES
' J
Non-structural issues influencing decisions on material strength, wall thickness, and mortar grade: Issue
Influence on
Weathertightness
Wall thickness
Recommendation Use cavity construction (min. 90mm thick outer leaf), or assume min. solid wall thickness for Sheltered/Moderate exposure (Table 11, BS 5628: Part 3): Rendered Clay/calcium silicate/dense concrete/reconstructed stone- 190mm; ',
Lightweight concrete- 140mm.
,...,
Unrendered 440mm Durability
)
' j
Material, strength,
See Table 13 BS 5628: Part 3.
mortar grade.
For unrendered external walls with high [and low] risk of saturation:
Conservatively, for
Fired-clay units - FL,FN [ML,MN] in (i), (ii),[iii] grade mortar;
sizing, choose lowest
Calcium silicate units- classes 2-7 in (iii),[iv] mortar*;
unit strength and mortar
Concrete bricks
grade to satisfy
Concrete blocks (any strength) in (iii), [iv] mortar*.
durability
For internal walls and inner leaves of cavity walls:
2
'
~ J
15 [7] N/mm' in (iii) mortar;
~ I,
Fired-clay units - any in (i)-(iv) mortar;
l I
Calcium silicate units- classes 2-7 in (iii) or (iv) mortar; Concrete bricks -
2
7N/mm' in (iv) mortar;
)
,...,
Concrete blocks (any strength) in (iii) or (iv) mortar.
I
• See remarks on table 13C for mortar grade (iv). Fire resistance
Material and whether
See Table 16, BS 5628: Part 3.
solid/perforated/hollow;
A 1OOmm unplastered wall or leaf of a cavity wall will give 2 hour fire resistance
thickness
I
J
I
)
I
)
in all materials and loading conditions (sometimes conservatively) except: Fired-clay bricks/blocks with voids or perforations (75-1 00% solid - use min. 170mm thickness); Hollow concrete blocks with gravel or natural stone aggregate (limestone OK)min. 200mm thickness with vermiculite-gypsum plaster. Pay attention to joints around panels.
Thermal
Material, strength,
This often dictates use of cavity wall with lightweight/hollow- hence WEAK-
insulation (and
thickness of external
concrete blocks, typically 2.8-7 N/mm 2 and 100-150mm min. thickness; this
avoidance of
walls
may be a problem on multi-storey loadbearing wall construction. Applied insulation in cavity or on inner [or outer] face may be used. This must be
condensation)
resolved with architect/service engineer EARLY in design.
I I
'
}
,..., I
Sound absorption
Material, strength,
See Building Regulations Approved Document E1
and noise
thickness
Airborne sound resistance where necessary (e.g. between dwellings) is typically
reduction
'i
'
J
l
)
achieved by: Single leaf walls- 215mm plastered brickwork (min. density 1610kg/m 3 ) or dense blockwork (min. density 1840kg/m 3 ), or 190mm unplastered concrete (min. density 2200kg/m
3
I
);
Cavity walls -two 102mm leaves of plastered brickwork (min.density 1970kg/m 3 ), two 100mm leaves (50mm cavity) of plastered dense blockwork (min. density 1990kg/m 3 ), or two 1OOmm leaves (75mm cavity) of plastered drylined lightweight blockwork (max. density 1600 kg/m 3 ). Pay attention to joints aroud panels.
' J
,..., I
Appearance
Material, strength
Architect's choice- must be resolved EARLY as it profoundly influences structural design.
Health and safety
Thickness of unit
Units weighing more than 20kg should not be used if one-man laying is intended (which is normal). E.g. max. thickness dense blockwork at 2000kg/m
3
thicker wall required ( tcheck strength with manufacturer).
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
'
J
,...,
is 105mm
(standard 440x215 block). Consider collar-jointed wall or blocks laid on side t if
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
I
ARUP
i l
)
,...,
I
i
J
4.8 Aluminium (1/2)
'
(
I I
4.8
ALUMINIUM
4.8.1 MAIN STRUCTURAL ALLOYS Typical uses:
r ,
Curtain walling Rainscreen cladding Glazing arms/rails
Alloy
Condition
Product
Range of
Dura-
thickness
bility.
(mm) Heat-
6063
T4
Extruded
0-150
treatable
(H9)
T6
Extruded
0-150
\__.
6082
T4
Extruded
0-150
(H30)
T6
Extruded
20-150
5083
0
Sheet, plate
0.2-80
(N8)
H22
Sheet, plate
0.2-6
Limiting stress (N/mm 2 ) Po
B
B
Pa
Pv
65 (65]
85 (85]
40 [40]
160 [80]
175 [87]
95 [47]
115 [115]
145 [145]
70 [70]
270 [135]
290 [145]
160 (80]
(
NonI-<
heattreatable
(
A
105 [105]
150 [150]
65 [65]
235 [105]
270 [121]
140 [63]
' where:
\__.
Po is the limiting unfactored stress for bending and overall yielding Pa is the limiting unfactored stress for local capacity of the section in tension or compression Pv is the limiting unfactored stress in shear
r
Note :
A material factor up to 1.3 must be used with these numbers
I-<
Figures in square brackets [] apply to all material within 25mm of a weld zone. • For durability see corrosion protection table below.
r '--'
r
4.8.2 DURABILITY (General corrosion protection of aluminium structures)
1
I
I-<
r
P = Protection is required (see BS 8118 · Part 2) Alloy
Material
durability
thickness
rating
(mm)
Protection needed according to environment
Rural
\__.
Industrial/urban Moderate
Severe
'
(
'--' (
\
Immersed
Atmospheric
1
Marine Non-
Moderate
Severe
Fresh
Sea
water
water
industrial A
All
None
None
p
None
None
p
None
None
B
<3
None
p
p
p
p
p
p
p
~3
None
None
p
None
None
p
p
p
I...
4.8.3 TYPICAL PHYSICAL PROPERTIES
(
'
Density Young's modulus Thermal coefficient
2710 kg/m 3 70 kN/mm 2 23 X 10·6 °C
r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
I
r ' I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
'
I
4.8 Aluminium (2/2)
4.8.4 DESIGN Design in accordance with BS 8118: 1991 BS 8118 : 1991 uses the limit state for design.
I '
Aluminium comes in the following forms: -extrusion -cast -plate -sheet
I
I ' j
Usually buckling in compression is critical.
I
'
)
'
j
'
'
I
.......I '
J
' j
't
)
'
)
'
)
'
J
'
I
'
,...., I
•
j
'
J
I
)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP --
r ,
r ,
4.9 Stainless Steel (1/3)
4.9
STAINLESS STEEL As described in Notes on Materials: 190 the system of designation for stainless steel has been changed by the introduction of BS EN 10088. The mechanical properties given below are for the grades in BS EN 10088. The nearest equivalent old designation is also given.
r '
4.9.1
MATERIAL GRADES For structural use with high resistance to corrosion· use austenitic or duplex stainless steels Suggested grades for atmospheric applications
r '
Location Steel I
grade
•
Rural
Urban
Industrial
Marine
L
M
H
L
M
H
L
M
304L
,/
,/
,/
,/
,/
( ,/)
( ,/)
316L
0
0
0
0
,/
,/
duplex
0
0
0
0
0
0
H
L
M
H
( ,/)
X
,/
( ,/)
X
,/
,/
( ,/)
,/
,/
( ,/)
0
0
,/
0
0
,/
2205 I
'
I
L - Least corrosive conditions within that category.
WARNING: Consult Arup Swimming Pool Design Guide
M -Typical of that category.
where appropriate.
H - Corrosion higher than typical. I
1
0 - Potentially over-specified for corrosion . ./-The optimum choice for corrosion resistance. X- Likely to suffer excess corrosion. ( ./ ) - Can be considered if precautions are taken.
r '
L
4.9.2 MECHANICAL PROPERTIES '
(
I
'
Old
Material Name
designation
Material
0.2% proof stress
UTS
number
(N/mm')
(N/mm 2 )
r, L
Hot
Bars,
Hot
Bars,
Hot
Rolled
rods
Rolled
rods
Rolled
rods
Plate
+sectio
Plate
+secti
Plate
+secli
ons
ns (
Elongation(%)
Bars,
ons
' 304L
X2CrNi19-11
1.4306
200
180
304 S11 316L
X2CrNiMo17-12-2
1.4404
220
200
316S11 316L
X2CrNiMo18-14-3
1.4435
220
200
316S13 Duplex
X2CrNiMoN22-5-3
1.4462
460
450
2205 r
I
500 to
460to
650
680
520 to
500 to
670
700
520 to
500 to
670
700
640to
650 to
840
880
45
45
45
40
45
40
25
25
'
I
L r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
r 1
'r
ARUJP
'
I
4.9 Stainless Steel (2/3)
4.9.3 PHYSICAL PROPERTIES Old
Material
Density
Thermal expansion
Thermal
Heat capacity
designation
Number
(kg/m 3 )
20-100'C (1o·•t C)
conductivity
(J/kg'C)
(W/mC)
304L
1.4306
7900
16
15
500
316L
1.4404
8000
16
15
500
duplex 2205
1.4462
7800
13
15
500
4.9.4 DESIGN STRENGTH
.)
I '·)
The basic design strength, Py, may generally be taken as the 0.2% proof stress given in 4.9.2 as those are minimum values. The exception is Duplex 2205 where a maximum of 450N/mm 2 should be used and this should be verified by mill certificates. For duplex 2205 with thickness 1O
4.9.5 ELASTIC PROPERTIES Design values of elastic properties
'
)
'
)
I
Values of constants to be used for determining secant modulus (see
l
)
'
J
'
J
over) Grade
Young's modulus, E (N/mm 2 )
Shear
Transverse
Longitudinal
direction
direction
modulus, G (N/mm
2
I
)
Transverse
Longitudinal
direction
direction
304L
200 000
200 000
76 900
316L
195 000
190 000
74 000
duplex 2205
205 000
200 000
77 900
m
k
2.22
7.50
2.22
5.50
2.05
8.00
2.00
6.00
0.91
4.00
0.89
4.00
k
m
1 ' )
Deflection calculations For estimating deflections, use the secant modulus:
'
)
'
J
'
I
E
P1 and Pc are the values of pin the tension and compression flange respectively. k and m are constants obtained from the previous table.
'
\
)
'
)
' j THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
'
I
....., '
'
( I
'
(
4.9 Stainless Steel (3/3)
4.9.6 AVAILABILITY Sheet, plate, bar and tubes widely available for 304L and 316L. Similar for duplex 2205 but not as widely stocked. Certain rolled sections available for 304L and 316L. None for duplex 2205. UTS
fv High tensile rod (
'
i_,
Weldable
Sizes (mm)
1350
N
4- 11 !jl
1100
N
950
N
12-19$ 19-25 !jl
Reinforcing bar and
300
500
N
6-50 !jl plain
plain rod
460
625
6 - 32 !jl deformed
180
N y
180+
y
l,c,L 250-300 100 !jl 0
Structural sections
6-50 !jl
0
400 !jl
4.9.7 REFERENCES r ,
1. SCI, Concise guide to the structural design of stainless steel. 2. BS EN 10088: 1995, Stainless steels, Parts 1-3
L (
'
(
\
r '
I
(
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLy WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUIP
I
' I
5. Foundations (1/7)
5.
FOUNDATIONS
5.1
GENERAL PRINCIPLES
'
'
All foundations should be taken down to an adequate bearing stratum, which ensures the settlement under load will be acceptable to the structure. Settlement under loads should always be considered. This may be done by calculation and/or by reference to successful use of similar foundations in similar materials, preferably in the local neighbourhood of the site. Advice from Building Control Engineers is helpful in this respect. '
In assessing settlement the interaction between foundations needs to be considered plus the overall load of the complete structure as well as the loading of an individual foundation. Settlement arises from the following: Undrained elastic settlement which occurs on loading and hence during construction Consolidation settlement of clays as porewater pressures dissipate (time dependant) secondary consolidation of soft clays and peat (time dependant) creep of fill (time dependant) settlement induced by construction vibration, seismic loading or inondation creep of natural granular deposits (time dependant but usually small) Foundations should be taken to a depth at which they will not be affected by seasonal changes, including both frost and action and swelling and shrinkage due to changes of water content. Frost action is particularly important in silty soils, including chalk, and shrinkage is important in many clays, especially if there are trees nearby. BRE Digests and NHBC guidelines provide advice on foundations in clay deposits which have become desiccated due to vegetation. It is important that all foundation designs are reviewed by a geotechnical engineerpreferably in advance of any design decisions. In addition advice may be required to determine the geological character of the founding strata and whether any unusual features may be present.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUJP
J
' I
' I
'
)
..--, !
'
J
'
)
5. Foundations (2/7)
5.2
APPROPRIATE FOUNDATION SOLUTIONS APPROPRIATE FOUNDATION TYPE SOIL CONDITIONS
AND LOCATION
1.
DESIGN COMMENTS
-It· Lbti., boOW,.Udop~" ·r< . . .•. '
. ··oence nrui1Ugreatdepth '·.· ..
r ,
. . . ···.··
Spread footings most appropriate for conventional foundation needs. A deep foundation such as piles could be required if uplift forces were to act.
where erosion might occur
r , Spread footings most appropriate
2.
solution in many cases, depending on settlement considerations
--- C:aonbolow~tdop:or±8-----
ground turface Firm clay or firm tilt - and clay to great depth
-
r .
-
bolowmno whore ohrinkago and
'I.....
expansion due to change In water
canbtnt could ocCI.I'
'
(
Spread footings would be appropriate for low to medium
3. '
{
range of loads if not installed too close to soft clay. Take care to not
o.. ~_
_ a..
...... '
(
'
·Finn clay -
_ -
_ 3m-
~-
Soft clay to great depth
'
(
_ -
.
e .
-
:men! as for 2 above
4.
· ·
-
overstress the soft clay. If settlements become excessive deep foundation might be required. Cyclic loading may cause larger settlements.
Spread footings may settle excessively or require use of very low bearing pressures. Any later disturbance to the sand by vibration, groundwater changes or seismic loading for example, may cause large settlements. Consider mat (raft) foundations or consider compacting sand by vibroflotation or other method then use spread footings. Driven piles could be used and would density the sand.
r ,
Also consider continuous flight
L
auger piles.
r .
·~..... r
,
-
!
r .
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUJP
I
J
I
}
5. Foundations (3/7) APPROPRIATE FOUNDATION TYPE SOIL CONDITIONS
AND LOCATION
DESIGN COMMENTS
5.
Spread footings probably not Om·~----~g_ro_un_ds~
Soft
Om
Bm.~______b_u_ts_tr_e_n_g_th_________
Bm
increasing with depth to very great depth
Soft firm _16m
appropriate. Friction piles or piers would be satisfactory if some
Softclay
settlement could be tolerated. Long piles would reduce
16m
firm
settlement problems. Also
I
I
'
)
consider mat or floating foundation.
6.
Om
____9!P~-~-~~-~a_c_~ -
Softclay -
Dftl
Deep foundations - piles, piers, caissons- bearing directly on or in
_
-
_
the rock. Downdrag (negative skin 2D_ra
friction) may add to the loads on
1
the piles. The weathering, infill etc. Rock
design of the socket
7.
J
of the rock may be critical in the
..-,
For heavy loads, spread footings in upper sand layer would probably experience large settlement because of underlying soft clay layer. Consider straight shafted
-
Softtn firm clay-
~ Stiff clay to great depth
piles or piles with bells in the stiff clay layer. Bells may be difficult to form in some clay strata. If time is available preloading might make
tt
possible to use shallow foundations.
Deep foundations best, continuous flight auger piles suitable.
8.
Expanded base piles into sand layer not common. Bored piles
water table - - - - - - - -
bentonite (if not) to balance water
· · ·· . Medium i:lense sand.: · to great depth '
pressures.
· 0 ·<:
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
'
I J
require water (if cased) or
ARUP
,-,
r ,
f
5. Foundations (4/7)
'
.....
·
SOIL CONDITIONS
r •
APPROPRIATE FOUNDATION TYPE DESIGN COMMENTS
AND LOCATION
'
L..
Deep foundation types extending
9.
~
r •
L
miscellaneo.usmade aro 1.1nd 1 ~ 1~01 1, non-101) Sm loose sand, soft clay
r '
1m medium dense sand
I
into medium dense sand, or preferably into compact glacial till. Strong possibility for drilled pile bored under bentontte. Also consider cast-in-place and driven concrete pile, steel piles,CFA
-
...
stiff/dense glacial till
r ,
piles. (Cannot underream in till.)
·.
Negative skin frcition should be considered
r r r R~ck r r
f '
I
L...
I. L
10.
~ Miscellaneous loose Made Ground
~ : :' ..• ~.: ·.
~ _:.-·.~·:.<: :/··.>-.··
.;·-·'· · ... _~·. : >/
·;.·., ·,: ,.
:':,··. . />"
ldeilii.mdenseeli~::·> ,.
'.·.··.. :
'
( I
.
"<.,·-~:·
. .. . .
<-·· .. <-··:._:-.
:. ·.. : .. ..
:. -~~-: .:,...
~
Dm
2.5rrr· .·
···.··-~-
Deep foundations penetrating through fill are appropriate. With ..
piles or piers consider stopping in
-, .• / :~N~~r~tiii~~~'iriem<)"': ··· :,-:: .. ·.·., 'fill well comp.acted
. ' ' . :·-·::··:<:,• .->· '. ··,·
;·.
_, ..
~- .,. ::. ..;- .:
12.:n,.··-•·'::_ >·L······_.-··:_~·· ·---~·- -::
..... I
,...
j:.·
upper zone of sand layer to limtt consolidation of clay layer. Also consider replacing poor fill wtth new imported, compacted, fill, then use spread footings in the new fill. Calculate settlements due to consolidation of clay under complete load of new structure.
r .
i
Firm Clay
L... r •
Rock Rock
r .
r • ~~
r.
r. 1.
L...
r ,
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
...., I I
j
'
j
5. Foundations (5/7) SOIL CONDITIONS
APPROPRIATE FOUNDATION TYPE
DESIGN COMMENTS
AND LOCATION
...., If foundation loads are not too
11.
I
;
heavy, consider using piles or Om
piers bearing in the upper zone of
Ground Surface
- ·- -·--------------~--------- - -
~oft
sand layer and check for settlement. If foundation loads are
Cley - - - - -
heavy, consider driven piles (steel)
12m-
or caissons to rock. Also consider
~:
floating foundation. Nature of rock is very important. Driving can
J
I
induce positive pore presures and negative skin friction. - :::sottS:Iay
M!rlr
' j
Rock For light to medium heavy loading
' J For heavy loading
....,
I I
I
'
J
I
J
12. Foundations should bear directly
Om
ground sn1:• __ _
on the rock which is relatively close to the ground surface. If no basement areas are needed for the building consider piers. If
5m
Loose sand and soft clay
basement areas are useful,
...., '
I J
I
J
consider full excavation to rock Rock
and construction of two basement levels.
I
I
J
I
'J
..,
I
I
' J
I
i
' J
I I
' J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVEARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
l '
J
'
J
'
I '-'
;
i L.. 5. Foundations (6/7)
!
......
5.3
'
PRESUMED ALLOWABLE BEARING VALUES UNDER STATIC, NONECCENTRIC STATIC LOADING
'
f I 'I
Bearing values relate to characteristic loads. Further values are given in BS8004. This information is given for preliminary assessment purposes only.
i-
L
Foundations in non-cohesive soils at a minimum depth of 0.75m below ground level
r , Description of soil
L
N-value in standard
Presumed bearing value
penetration test
(kN/m' or kgf/cm' x 100) for foundation of width
r , 1m
2m
4m
>50
600
500
400
Dense sands and gravals
30-50
350-600
300-500
250-400
Medium-dense sands and gravels
10-30
150-350
100-300
100-250
Loose sands and gravals
5-10
50-150
50-100
50-100
L Very dense sands and gravels f
'
!
Ir
'
r
The allowable bearing pressure is defined as that causing 25mm settlement under the foundation width.
l
r ,
f
'
If the water table is within a depth equal to the width of the foundation and the depth of the foundation is small in relation to its width, the settlements will be doubled. If settlements must not exceed 25mm, the allowable bearing values should be halved. Foundations in conhesive soils at a minimum depth of 1m below ground level
I
I
i-
Description
r,
Presumed bearing value (kN/m2 or kgf/cm2 x
(kN/m' or kgf/cm'
100) for foundation of width
X
Hard boulder clays, hard fissured clays ('
Cohesive strength 100)
1m
2m
4m
>300
800
600
400
150-300
400-800
300-500
150-250
75-150
200-400
150-250
75-125
40-75
100-200
75-100
50-75
20-40
50-100
25-50
Negligible
(e.g. deeper London and Gault clays) Very stiff boulder clay, very stiff 'blue' London Clay
r ,
.....
Stiff fissured clays (e.g. stiff 'blue' and
I
brown London clay), stiff weathered boulder clay
r , Firm normally consolidated clays (at depth), fluvio-glacial and lake clays, upper weathered 'brown' London clay
I '
Soft normally consolidated alluvial clays (e.g. marine, river and estuarine clays)
r ,
r! '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
r .
L
ARUP
\ j
.., : '
J
'
J
5. Foundations (7/7) Chart for estimating allowable bearing pressure for foundations in sands
I
SPT 'N' values are shown as belows per 300mm
'
' J
If the water table is within a depth equal to the width of the foundation and the depth of the foundation is small in relation to its width, the settlements will be doubled.
'
J
l
If settlements must not exceed 25mm, the allowable bearing values should be halved.
'I ' J 0
5.4
'"l
1 2 3 4 5 6 Width offoundation B (m)
I
' J
SHALLOW FOUNDATIONS Area offoundation • _ __:C:.:..h:.::a::...:ra::.:c:..:.te::.:fi.:..:is:..::tJ:..:..c:.:..lo:..:a::.:d:___ Allowable bearing pressure
5.5
l_
J
l
J
'
J
\_
_j
l
J
'
J
'
J
PILED FOUNDATIONS Working load on pile< 0.25fcu (0.1fcu for continuous flight auger)
I
I
Warning: The following relationships apply only to bored cast in place concrete piles in London clay. For all other piles check with Geotechnics (which should always be done anyway).
Working bearing capacity of straight shafted piles • (
0.5c x perimeter u
Working bearing capacity of large undero reamed piles • (
3
x base area
9c )• (
u,base
0.35c x perimeter u
·,
x base area
9c )• (
)
3
u,base
f1
)
f2
For straight sided piles higher capacities may be available by following the guidelines for Site Investigations and pile tests in the London District Surveyors Association Publication, Guide Notes for the Design of Straight Shafted Piles in London Clay (1996)
!
Cu = undrained shear strength of London Clay Typically diameter of under-ream = 3 x diameter of shaft Factor of safety:
f1 = f2 = 2.5 or f 1 = 1
f2 = 3
'"""I I
whichever gives the lower capacity
' J
Minimum spacing of pile shafts= 3 x diameter (ensure under-reams do not encroach)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
'
J
'
J
I
f
'
6. Water Resistant Basements (1/6)
i...... r ,
6.
WATER RESISTANT BASEMENTS
6.1
RULES OF THUMB Minimum thickness
L f
Preferred minimum thickness of walls and slabs: 300mm Where thicker consider surface zones of 200mm each face for reinforcement to control shrinkage/thermal cracking.
1
i
I !.....
Reinforcement
r '
Typically for water resistant walls: T16 @ 200 c/c in both faces and in both directions or T12@ 150 c/c in both faces and in both directions Standard cover
L r ,
Assumed concrete grade 35 (This should be a minimum) Put the horizontal reinforcement furthest from earth face. r'
Face
Cover (mm)
'
I.-
Earth face of walls where shuttered
50
r ,
Earth face of walls (cast against
75
i
earth)
I.-
f
1
L
External exposed faces of walls
40
Bottom and sides to base
75
Internal faces
Greater of 25 or bar diameter
r ' !
Waterstops I waterbars
r
• • • • •
1
'
I.-
r,
Required by BS 8102 for grade 1 basements with concrete design to BS 8110 Give extra "comfort" at construction joints, otherwise total reliance on workmanship Not essential but often desirable Use external waterstop for basements (preferred) Can use centrestop in vertical construction if necessary (e.g. swimming pool), must be carefully supported/kept in place.
L r,
L :
6.2
ESTABLISH CLIENT'S REQUIREMENTS I EXPECTATIONS These can vary even for the same type of space. Tables 6.1 and 6.2 (from CIRIA Report 139) will help.
1
I i
r
1
1
Establish {for example}: a). Does small amount of leaking {liquid) matter (for people and contents)? b). Do stains matter? (aesthetics) c). What level of (vapour) ingress is acceptable/tolerable (for people and contents)? Note. Some of the requirements for a particular performance will not be within our control {heating, ventilation etc).
L r , I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
L ! I
1
Ver 3.1 I January 99
ARUJP
I
j
I
j
I
J
I
J
I
.J
6. Water Resistant Basements (2/6)
6.3
CONSTRUCTION OPTIONS Structural concrete can prevent ingress of liquid water, except at joints and cracks. It will not, generally, prevent the passage of moisture vapour. Steel sheet piling can prevent ingress of liquid water, except at joints. It will also reduce the passage of moisture vapour. Consider welded sheet piling- low carbon type. Construction option Cut & cover
Sheet piling Post and panel
Diaphragm wall & Secant piles
Contiguous piles
Disadvantages
Advantages
. ... . .. . ...
..
Allows easy inclusion of membrane to the structure
external
.
Deep basements not easy
•
Not always sufficient room (e.g.
Enhanced quality of concrete elements
I
inner city sites)
'
J
~ I
Continuous construction I
j
'
J
Good finish Straightness of line of walls Provides restraint to the ground Provides restraint to water flow (both short
and long term)
Can be used as a shutter for the concrete
Provides restraint to the ground Provides some restraint to water flow Can build deep basements
Provides restraint to the ground Cost
. . . .
. .. .. .. .
Provides restraint to concrete increased risk of cracking Difficult to install a membrane on external face of structure
'\ j
I
Difficult to install a membrane on external face of structure Allows water through the joints (use drained cavity?)
j
I
Difficult to get an effective connection with the slab
'\ I
Poor appearance Expensive
I
J
I
j
Little restraint to water flow Difficult to get an effective connection with the slab Difficult to install a membrane Poor appearance Expensive
Table 6.2 (from CIRIA report 139) gives examples of types of basement.
6.4
WATERPROOFING OPTIONS (Combined with options of structure) Tanking (Type A) • • • •
Preformed membranes or liquid applied Can prevent liquid and vapour passage Best installed by open cut construction Best installed external to construction (outside face of structural wall)
....., : '
J
Structurally Integral Protection (Type B) • • •
Reinforced concrete with calculated crack widths to BS8110 Part 2 possible for Type 1 Concrete design to BS8007 required for type 2 and 3 If used, particularly for type 2 and 3 basements, there must be careful consideration of mix design and the workmanship required as well as a strategy for dealing with leaks.
'\
'
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUIP
J
,....., ' I
I
(
;
I '
6. Water Resistant Basements (3/6) Drained cavity (Type C)
r , I
• • • • • • r
'
6.5
1
i
'-"'
(
CRITICAL POINTS • • • • • •
'I
r '
6.6
'
L
Re-entrant corners- keep plan form simple Penetrations e.g. pipe services (group together), earthing pits Wall/slab junctions- particularly in non-open excavation Changes in section/depth e.g. lift pits Pile/slab junctions "One column per pile" junctions, e.g. steel columns into top of pile.
CONSTRUCTION JOINTS • • • •
I '
Provide channels to allow drainage of water Ventilate cavity externally to reduce vapour and build up of other gases Ventilate basement to reduce vapour Automatic pump may be required in sump Design inner leaf as free-standing or restrained at top by slab Beware vermin
Need to control the effects of temperature and shrinkage The fewer, the better Arrange the sequence of castings to reduce restraint from adjacent pours Recommended spacing of joints (principally to control workmanship, not cracking):
r ' Construction
Max. area (m? )
Max. dimension (m)
Watertight walls
25
5
Watertight slabs
100
10
May be reviewed for particular cases '
(
!
6.7
MOVEMENT JOINTS • •
Rarely necessary below ground level Potential weak points. Only consider providing them if essential to control movements e.g. between tower and podium blocks above.
r, I,_.
r.
6.8
REFERENCES CIRIA Report 139 Water- resisting basements 1995 CIRIA, Guide 5, Guide to the design of waterproof basements BS 8007: 1987: Design of concrete structures for retaining aqueous liquids BS8102: 1990: Protection of structures against water from the ground
'
(
I ~
BS8110: Part 1: 1997: Structural use of concrete: Code of Practice for design and construction BS8110: Part 2: 1985: Structural use of concrete: Code of Practice for special circumstances OVE ARUP PARTNERSHIP: Structural Typical details for use in buildings
r
~
OVE ARUP & PARTNERS, Reinforcement detailing manual Notes on Materials 86, 138, 145 Notes on Structures 4, 24, 29
(
;
w
r: i
'' - '
(
;
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
I
j
\
j
6. Water Resistant Basements (4/6) Table 6.1
Guide to level of protection to suit basement use from table 2.1 of CIRIA 139 (The first four columns are from table 1 of BS81 02)
""'"'\
i Grade of
Basement
basement Grade 1 (basic utility)
usage Car parking; plant rooms (excluding electrical equipment); workshops
J
Performance level
Form of protection•
Commentary on Table 1 of 858102: 1990
I
Some seepage and damp patches tolerable
Type B. Reinforced concrete design in accordance with BS8110
Unless there is good ventilation, or local drainage, visible water may not be acceptable even for the suggested uses.
l
Calculated crack widths less than 0.3 mm to BS8110 Part 2
,..,
BS8110: Part 1 contains only limited guidance on crack control and lacks consideration of early thermal movement. Using Part 1 may result in the formation of cracks with widths unacceptable in permeable ground. There is no guidance on control of thermal cracking in BS8110.
J
I
i I
'
""'"'\ I I I
J
I
j
l
J
Groundwater should be checked for chemicals, which may have a deleterious effect on the structure or internal finishes.
Grade 2 (better utility)
Grade3 (habitable)
Grade 4 (special)
Workshops and Plantrooms requiring drier environment ; retail storage areas
Ventilated residential and working areas including offices, restaurants etc., leisure centres Archives and stores requiring controlled environment
No water penetration but moisture vapour tolerable
Type A Type B. Reinforced concrete design in accordance with BS8007
The performance level defined in BS8102 for workshops is unlikely to meet the requirements of the Building Regulations, approved Document C for workshops, which are more likely to require a Grade 3 (habitable) environment. Membranes may be applied in multiple layers with well-lapped joints.
I
The performance level assumes no serious defects in workmanship, although these may be masked in dry conditions or impermeable ground. Groundwater should be checked as for Grade 1.
Dry environment
Totally dry environment
Type A. Type B. With reinforced concrete design to BS8007. Type C. with wall and floor cavity and DPM
Type A. Type B. With reinforced concrete design to BS8007 plus a vapour-proof membrane. Type C. With ventilated wall cavity and vapour barrier to inner skin and floor cavity with DPM
A high level of supervision of all stages of construction is necessary. As Grade 2 In highly permeable ground multi-element systems (possibly including active precautions) will probably be necessary.
i
I
I
I
j
I
)
I
j
I
I J
I
J
As Grade 3
i
' j
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUIP
.
'
'
'
l
j
I
'
6. Water Resistant Basements (5/6)
Table 6.2
I
'
I
•
Guidance on the functional environments requirements for basement usage (Table 2.2 of CIRIA 139)
Performance level Grade of
Relative
basement
humidity
Grade 1 (basic utility)
>65% normal UK external range
'
(
Grade 2 (better utility)
i \
'
(
Grade 3 (habitable)
35-50%
40-60%
I
55-60% for a restaurant in summer
Wetness
Car parks: atmospheric
Visible damp patches may be acceptable
Minor seepage may be acceptable
None acceptable
Electrical plantrooms 42°C max
No visible damp patches, construction materials to contain less than the air-dry moisture content
Offices: 21-25°C
None acceptable
Residential: 18-22°C
Active measures to control internal humidity may be necessary
Workshops: 15- 29°C. Mechanical plantrooms: 32°C max, at ceilina level Retail storage: 15°C max
Restaurants: 18-25°C
Kitchens 29°C max
r • Grade 4 (special)
50% for art storage
Art storage: 18-22°C
>40% for microfilms and tapes
i '
L
35% for books I
Dampness
Leisure centres: 18°C for spectators 1ooc for squash courts 22°C for changing rooms 24-29°C for swimming pools
r ,
!
Temperature
Active measures to control internal humidity probably essential
Book archives: 13-18°C
'
!
(
(N.B. The limits for a particular basement application should be agreed with the client and defined at the design approval staae).
)
L r , I
....... r .
I1.(
'
I '
i I
1.-
( ' I
I .._
I
'
1.
L,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
I
j
\
I
I
J
•
I
•
I
6. Water Resistant Basements (6/6) Table 6.3
Construction methods and examples of passive precautions available to achieve the required Grade of internal environment in deep or shall basements. (Table 3.1 of CIRIA 139)
Basement depth and construction materials
Shallow (assumed no hydrostatic pressure, i.e. groundwater level below basement floor or drainage provided) likely to be residential
Target internal environment I examples of construction methods andpassive_m-ecautions Grade 3* Grade 4* Grade2 Grade 1 (special) (better utility) (habitable\ (basic utiliM Complete Limited environment control environment control normally required possibly adequate (Low cost, low reliability) Some water penetration Acceptable Grade not usually acceptable for residential basements
Masonry, reinforced masonry, plain or reinforced (pre-cast or insitu) concrete or steel sheet piling Shallow (with permanent hydrostatic pressure) Masonry, reinforced masonry, plain or reinforced (pre-cast or insitu) concrete or steel sheet piling
Deep (with permanent hydrostatic pressure) Reinforced concrete including piled or in-site perimeter wall.
Water penetration Unacceptable Masonry or plain concrete plus tanking (Type A) or drained cavity (Type C) protection
Reinforced concrete box (Type B) protection
Masonry, plain or reinforced concrete box construction plus tanking (Type A) or drained (Type C) protection
Reinforced concrete box (Type B) protection
Steel sheet piling in conjunction plus drained (Type C) protection Reinforced concrete box (Type B) protection
Concrete piled wall possibly requiring drained cavity (type C) protection
Masonry, plain or reinforced concrete box construction plus tanking (Type A) or drained (type C) protection
(Hiqh cost, hiqh reliability) Increasing requirements for vapour control Masonry or plain concrete plus tanking (Type A) protection and/or Type C protection
Reinforced concrete box (type B) plus tanking vapour barrier (Type A) or drained (type C) protection Masonry or plain concrete plus tanking (vapour barrier, Type A) and drained (Type C) protection
If grade required the methods and precautions for shallow basements with permanent hydrostatic pressure should be followed
Reinforced concrete box (type B) with tanking (vapour barrier, Type A), plus drained (Type C) protection
I
)
1"""'"1 I
\
Reinforced concrete box (Type B) protection
Reinforced concrete box (Type B) protection
Concrete piled wall or reinforced concrete box (Type B) plus drained (Type C) protection
Reinforced concrete box (Type B) plus tanking (vapour barrier, Type A) or drained (Type C) protection
Passive precautions alone are not likely to be sufficient
Concrete piling or reinforced concrete box (Type B) plus an internal vapour barrier (Type A) or drained (Type C) protection
Concrete piling or reinforced concrete box (Type B) plus tanking (vapour barrier, Type A) and drained (Type C) protection
Passive precautions alone are not likely to be sufficient
Achieved only at high cost
I
• J
Passive precautions alone are not likely to be sufficient Notes: When tanking is required, external or sandwich tanking systems are recommended for both new and existing basements where it is possible to use them. Such systems become feasible either by virtue of an existing permanent external surface (including faced sheet piling) or where working space is created through open excavation. The choice of tanking system also requires an assessment of the external hydrostatic pressure and its effect on the basement wall design and construction. For deeper basements, or where excavation is impracticable, internal protection by cavity construction with internal or reverse tanking may be used. This implies a reduction in usable volume or increased excavation volume. Integral protection must not be damaged by wall fixings. The costs of available options and associated risks will need to be evaluated. Where significant quantities of water are likely to accrue in sumps on a regular basis the drainage authority should be approached at an early stage to request acceptance of the discharge. *
I
• J
1"""'"1
~
I
J
I
The design for Grade 3 or Grade 4 should take account of the contribution of active precautions (heating and ventilation, etc.) in achieving the required internal environment.
'"'""I
I
'"'""I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
. I
)
J
'
(
i i_,
I
-
7. Fire (1 /3)
I
(
7.
FIRE
7.1
MINIMUM PERIODS OF FIRE RESISTANCE. (UK Practice only)
'
Table A2 from the approved document 8 to Building Regulations (1991). Other British Standards or Local Acts may set higher standards.
r ·,
Purpose group of building I
;
Minimum periods (hours) for elements of structure in a: Basement storey( •)
Ground or upper storey
including floor over
'
(
Depth (m) of a lowest
Height (m) oftop floor above ground, in building or
basement
separating part of building.
more than
not more
not more
not more
not more
more than
10
than 10
than 5
than 20
than 30
30
r ,
1. Residential (domestic): (a) flats and maisonettes
1Y.
1
X*
1**
1%**
2**
(b) & (c) dwelling houses
not
%*
Ya*
1
not relevant
not relevant
relevant 2. Residential:
c '
(a) Institutional(-)
1Y.
1
%*
1
1Y.
2#
(b) other residential
1Y.
1
%*
1
1Y.
2#
- not sprinklered
1Y.
1
%*
1
1Y.
permitted
- sprinklered (2)
1
1
%*
%*
1
2#
- not sprinklered
1Y.
1
1
1
1Y.
permitted
- sprinklered (2)
1
1
%*
1
1
2#
- not sprinklered
1Y.
1
1
1
1Y.
permitted
- sprinklered (2)
1
1
Ya*
1
1
2#
- not sprinklered
2
1Y.
1
1Y.
2
permitted
- sprinklered(2)
1
1
%*
1
1Y.
2#
- not sprinklered
2
1Y.
1
1Y.
2
permitted
- sprinklered (2)
1Y.
1
%*
1
1Y.
2#
3. Office:
not
4. Shop and commercial:
w
'
f -,
not
not
5. Assembly and recreation:
(
1
not
6. Industrial:
1
\,...I
I
'
7. Storage & other non-residential: not
a. building or part not described above:
b. Car park for light vehicles:
not
not
i) open sided park (3)
applicable
applicable
%*+
%*+
%*+
1
ii) any other park
1Y.
1
Ya*
1
1Y.
2#
•
The floor over a basement (or if there is more than 1 basement, the floor over the topmost basement) should meet the provisions for the ground and upper storeys if that period is higher.
I
1
* Increased to a minimum of 1 hour for compartment walls separating buildings Reduced to Y, hour for any floor within a maisonette. but not if the floor contributes to the support of the building # Reduced to 1Y. hours for elements not forming part of the structural frame
+ Increased to Y, hour for elements protecting the means of escape I
'
(
'
-
Multi-storey hospitals designed in accordance with the NHS Firecode documents should have a minimum 1 hour standard
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
'
J
'
J
7. Fire (2/3)
7.2
FIRE PROTECTION TO STEEL ELEMENTS (UK Practice only) Fire resistance period
Section Hp/A
240
2 hr
220 200 180
'
J
160 1.5 hr
' j 25\l~bo\---
/:/
140 120
'
I
'
J
'
J
Board systems
1 hr
Note: some systems require framing elements: allow upto 20mm on each face Blanket systems: use board thicknessX 1.5
100 90
80
I
70 60 Unprotected beam directly supporting concrete slab
0.5 hr
50
' j
40
-
Unprotected column in simple construction
'
I
'
J
30 Approximate thickness (mm) of protection for fully loaded steel members based on a range of manufacturers' test data (Fire protection for structural steel in buildings, ASFPCM, (1988), also see revised 2nd edition (1992)) For the example line given:
HP/ A= 130 Fire resistance period = 1Y:z hours
Line intersects zones:
Board 20 and 25
'
Spray 20 and 25 Solution:
' J
Spray 20mm to 25mm depending on system used Board 25mm to 30mm depending on system used
J
r'-1
i
' j
Blanket 38mm to 45mm depending on system used
7.3
FIRE PROTECTION FOR REINFORCED CONCRETE
'
J
:,
J
For cover details, see Section 4.2 Reinforced Concrete
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
' !
'
)
r, I
'-"'
7. Fire (3/3)
r •
7.4
r .
See Table 16, BS 5628: Part 3. A 1OOmm unplastered wall or leaf of a cavity wall will give 2 hour fire resistance in all materials and loading conditions (sometimes conservatively) except: • Fired-clay bricks/blocks with voids or perforations (75-100% solid- use min. 170mm thickness); • Hollow concrete blocks with gravel or natural stone aggregate (limestone OK) - min. 200mm thickness with vermiculite-gypsum plaster.
I '-' r ' I
L r,
7.5
I ...... (
• •
'
i..-
I I
L.. rI '
f \ I
Period of fire resistance The Regulations also define specific periods of fire resistance for elements of structure (although generally no period is required for roofs). This requirement is often satisfied for walls and floors by applying protective materials to the frame, and these are described in BS 5268: Part 4; Section 4.2.
1....1 '
L
Alternatively, the fire resistance of the members themselves may be calculated by the method given in BS 5268: Part 4; Section 4.1, based on charring rates. Timber will ignite when subjected to temperatures of around 270°C, if a pilot flame is present to ignite the gases given off during the 'cooking' process. The insulation value of the outer charred layer, however, means that timber which is just a few millimetres inside the burning zone is only warm. Thus timber burns at a predictable speed, known as the 'charring rate', which, for common softwoods with a density of about 450kg/m' is defined in section 4.1 as 20mm (or 25mm for columns), in 30 minutes.
r , I
!.... \
I
I..-
r,
The reduced section (ie. the full section minus the charred zone) is checked for strength and deflection. Increased stresses are allowed (of the order x2 to x2.25), together with more generous deflection limits (1/30 span). The charring rates quoted for solid timber may be applied without modification to glulams made with the conventional adhesives.
i I .......
r,
In addition, it is necessary to look at the overall stability of the charred structure, and to protect any metal (including bolts) which forms part of the structural system, either by ensuring that the component lies with the residual section, or that it is suitably protected by a fire resistant cladding or sacrificial timber.
r . I
7.6 I
(82) Spread of flame (83- (1)) Period of fire resistance
Spread of flame The Regulations define spread of flame classes for walls and ceilings for various building purpose groups and sizes. Spread of flame is determined by tests described in BS 476: Parts 6 & 7 which allocate materials into classes, related to the extent of travel of a flame front under standard conditions in a given time. Most timber (>400kg/m') falls into Class 3. A lower class rating can be achieved by impregnation, or by surface treatment. Structural elements, because of their size, are generally given surface coatings. Many are moisture sensitive, and can discolour if they get wet.
r .,
(
FIRE REQUIREMENTS FOR TIMBER (UK Practice only) The requirement of the Building Regulations with respect to timber fall under two headings:
I
(
FIRE PROTECTION FOR MASONRY (UK Practice only)
FURTHER INFORMATION
'
The requirements above relate to standard furnace tests, and assume the member is fully stressed. If the fire load is small and/or the member is lightly stressed, significant improvements may be obtained. Contact Arup Fire for more information. (
1
I
I
w r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 (
I
'
I
.._. (
\
ARUIP
I I
)
I
I
Appendix A- Mathematical formulae (1/5) I I
APPENDIX A- MATHEMATICAL FORMULAE Version 3.1. Jan 99. A.5. corrected equation for trapezium inertia. Version 3.2. May 2000. A.5. corrected equation for trapezium inertia. Version 3.3 March 2004. A.5. corrected equation for triangle section modulus.
' J
A.l Trigonometric functions eix- e-ix sinx=---
2i sin(A±B)= sinAcosB ± cosAsinB tanA ± tanB tan (A ±B) = 1 +tan A tanB . A
sm
. A+B
.
A-B
+smB= 2 sm--cos-2 2 A+B A-B cos A+ cos B = 2 cos-- cos-2 2 sin A sin B = ![cos(A- B)- cos(A+ B)]
COS X
=
2 cos(A ±B)= cos A cosB +sin A sinE
. A . B A+B . A-B sm -sm = 2 cos--sm-2 2 . A+B . A-B cos A - cosB =- 2sm-- sm-2 2
2
sin 2 x = ![1- cos2x] 2
I
I
,..., i
' J
'"""': I I
cos A cosB = ![cos(A +B)+ cos(A- B)]
'
J
2
2
sin A cos B = ![sin(A +B)+ sin(A- B)]
l
cos 2 x = ![1 + cos2x] 2 1
I
4
' J
cos 3 x =-[3 cosx + cos3x]
sin 3 x =..!_[3 sinx- sin3x]
I
4
' j A.2 Hyperbolic functions I
ex +e-x
coshx=--2
cosh ix = cos x sinhix = isinx 2
I
ex- ex smhx=--2 cos ix = cosh x
J
0
I
sin ix = i sinh x
2
cosh x- sinh x = 1 cosh(x ± y) = coshx cosby± sinhx sinhy sinh (x ± y) = sinh x cosh y ± cosh x sinh y cosh(x ± iy) = coshx cosy± isinhx siny sinh (x ± iy) = sinhx cosy± icoshx siny
'
J
1
I
'
J
I
J
' ) THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.3 I Mar 04
ARUJP
'
J
I
)
'
(
Appendix A - Mathematical formulae (2/5)
A.3 Standard indefinite integral
I
'
I ,
Integrand
Integral
Integrand
Integral
sin x
-cos x
sinh x
cosh x
COS X
sin x
cosh x
sinh x
tan x
-In (cosx)
tanhx
In (coshx)
cosecx
In(tan xI 2)
cosechx
secx
In (tanx + secx)
sechx
In (tanhx I 2) 2 tan- 1(ex)
cotx
In (sinx)
cothx
In (sinhx)
2
'
(
I
.
(
2
sec x
tanx
sech x
tanhx
tanx secx
secx
tanhx sechx
-sechx
cotx cosecx
-cosecx
coth x cosech x
-cosechx
sin- 1 (~)
~a2 -x2
or
X) -cos -1( ~
\
!,_.,
~x2 + a2
'
(
~x2- a2
· h-1( -X) sm a
or
2 ln(x + ~ x + a 2 )
cosh-1 (~)
or
1n(x+~x 2 -a 2)
r . 1
~tan
x 2 +a 2 '
'!
-1(~ X)
A.4 Standard substitutions for integration If the integrand is a function of : Substitute:
!
(a2 -x2)
or
~a2 -x2
x=asinO
or
x =a cosO
(a2 + x2)
or
~a2 +x2
x=atanO
or
x= a sinh(;}
(x2 - a2)
or
~x2 -a2
x=asecO
or
x =a cosh(;}
or of the form:
{(ax+b}~t (
I
'
px+q=u 2
{(ax+b)~px 2 +qx+rr
1
ax+b=u
or a rational function of:
r .
X
sin x and I or cos x
[
. 2t whence sm x = - 1 + !2
t =tan2 1- !2 cosx=--2 1+ t
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. ( '
Ver 3.3 I Mar 04
ARUJP
,_, I
'
J
Appendix A- Mathematical formulae (3/5)
A.5 Geometric properties of plane sections section
Area
'"'"i !
Position of centroid
Moments of inertia
)..
"r~:-, ~ I
Xt·-.· I
~
X
3
zxx
3
=hb /48
base= bh 2 112
3
apex= bh 2 /24
/xx=bh /36 h e =x 3
A= bh 2
lyy
/aa=bh /4
f--b-JTLI
b
Section Moduli
3
=bh 112
/bb
:1...
= hb 2 124
zyy
' J
\ J
~ 1.
'
J
~
I
'
j
'
J
3
/xx=bd /12 h
A=bd
I yy =db !12
2
x
2
Zxx =bd /6
3
e =-
Zyy
3
2
=db /6
=bd 13
/bb
d--'
x~x :a~ j,..
oxls
A=bd
z,, =
T
6J
b2d2 b2 + d2
On di0!/0110/
.
I,,=
A=bd
bsin(} + d cos(} 2
bd(b 2 sin 2 (} + d 2 cos 2 (}) 12 6(bsin (} + d cos(})
fxx =fyy
• J
=s 4 /12
Ihh
=s4 /3
Ivv
= s 4 112 ' 3
1
A= d(a+b) 2
XX
d(2a+b) e, 1 = 3(a+b)
2
=d (a +4ab+b 36(a+b) 2
bd 3 I=xx 48
d e =-
2
e,
= 0.866s d 2
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.3 I Mar 04
I,,
z =~ dXX
3
)
eX
.
''
I
;
2/
z
-~v
z
3
XX
= ---'2:.. b '
J
'
J
'
j
bd 2 =24 2
db 48
I=-
zyy =db24-
= Iv_v = Ivv
z,, = 0.1203d3 zxv = zvv
J:v
A= 0.866d 2
)
(two values) 2
d(a +a b+ab +b 48
x
2
I YY = 3
A= bd 2
I )
= 0.060Id 4
= 0.1042d 3
ARUIP
.
)
(
1
I
Appendix A - Mathematical formulae (4/5)
Geometric properties of plane sections (cont.)
r ,
Section
r
§ ~
t)
r' i
0
Moments of inertia
v~ '~ev
l
I
Position of centroid
Area
T'
A= 0.8284d 2
I
~·
X-'tl
1 :'.
~
X
s
= 0.4142d
d
ex
=l
zxx = zyy
I"'= IYY =Ivy = 0.0547d
ev = 0.541d
Section Moduli
= 0.1095d3
4
Zvv = 0.10lld
;.s.o~\
3
:... v
l....J
'1.
n sirle:s
~
r '
A= ns' cotB
e =ror R
/1 =I,
A=nr tanB
depending on
=
A(6R' -s 2 )
A= nR'sin2B
the axis and =
A(12r + s
4 2
2
\ ''t.
24
value of n
2
Regultlf' liguf'e
@
L
A= ;rr 2 A= 0.7854d
2
2
)
48
7r d4 1=-64
d e =r=2
7r d3 Z=-32 Z = 0.7854r 3
I= 0.7854r 4
r, !
z"
(1)
u .!:=
'-
u
L
A= 1.5708r
I
2
ex= 0.424r
·~
r'(Jt8°
Z180o -sine
)
(1) l
crown= O.I907r 3
I·" = ~(Jteo -sinze) 16 90°
A=
8 b.()
(
I yy = 0.3927r 4
Zw = 0.3927r 3
11
l....i
base= 0.2587r 3
if.)
r . I
e
ex =eo- rcos2
if.)
zxx base= Ixx I e1
20r 4 (1- cos B)' Jt8°-180°sin8 I,. =
.
crown=~
t_r~~:J 48 8sinB+sin2B
b-e1
z = 2Ivy vv
'
eo 2 A=--7rr 360°
e =-rx 3 a
r 2c e =x 3A
'
{
2 c
I l....
I .u
360° B 4r =l ---sin 2 - 8°7t 2 9 0
=.C(" r'("(}
8
I yy
o
8 180°
2
A= 7rr 4
!
1 x:r: e,
crown=~ r-e.t
J
! 0 = - -+sin() 8 180°
I xx =IYY = 0.0549r r '
centre=
-sineJ
0
c
z,,,
4
(
=
!XX = 0.1098r 4
ex= 0.424r
ev = 0.6r e, = 0.707r
Ihh
= 0.1963r
4
Minimum Values
zxx = zyy = 0.0953r
4
Z,, = 0.1 009r
I,, = 0.0714r 4
3
3
Zw = 0.064r 3
Ivy = 0.0384r 4
r ' A= 0.2146r 2
r , :1.. I (
Y'tJ
ex= 0.777r ev = l.098r e, = 0.707r e" = 0.316r eh = 0.391r
!,, = 0.012r 4 Ivy= 0.003Ir 4
4
Minimum Values Zxx
= z,. = 0.0097r 3
Z,, =0.017r 3
Zw = 0.0079r 3
1
....... r
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ·,
Ver 3.3 I Mar 04
!
\
I xx =IYJ' = 0.0076r
ARUIP
< z )>Q-i zi
co
..., ~
w -..
s::
., o -""
Dl
cn-
1 kg 1 tonne
= 0.4536 kg = 1.016 tonne
lib 1 ton
= 2.205lb = 0.9842 ton
Length lmm lm lm Area 1 mm2 1m2 1m2 Volume
c;:g;t;
~-uG) c-ui -u)>-i o::U)> z-iz CJ!fio -<;u(ii )>cn-u z~c -<-uCJ -i:....C I-icn ;;J(iiffi 0 zo -uo,., )>-iO ;u_;u
= 25.40 mm = 0.3048 m = 0.9144 m
1 in 1 ft 1 yd
= 0.03937 in = 3.281 ft = 1.094 yd
= 645.2 mm2 = 0.09290m2 = 0.8361 m 2
1 in2 1 ft 2 1 yd2
= 0.00155 in2 = 10.76 ~ 2 = 1.196 yd
= 16390mm3 = 0.02832 m3 = 0.7646m 3
1 in3 1 ft 3 1 yd3
w
Density 3
1 kg/m 1 tonne/m3
3
= 0.06242 lb/ft = 0.7524 ton/yd3
3
1 lb/ft 1 ton/yd3
3
= 16.02 kg/m = 1.329 tonne/m3
>
1 N/mnl 1 N/m2 1 kgf/m2 1 N/m2 2 1 kN/m 1 N/mm2
1 N/m 1 kgf/m 1 kN/m 1 kN/m
2
llbf/in 1 kgf/m2 1 lbf/ft2 1 lbf/ft2 1 tonf/ft2 1 tonf/in2
== <
2
= 0.006895 N/mm = 9.807N/m2 = 4.882 kgf/m2 =47.88 N/m 2 2 = 107.3 kN/m 2 = 15.44 N/mm
Q ~ '"I ~ .... '"I
"CC
-....
= 0.102 kgf = 0.2248lbf = 0.1004 tonf
1 kgf llbf 1 tonf
••
"'Q
~ ..... '"I
f)
~
~=~ f) f)
= < Q
1 kgf/m 1 lbf/ft 1 lbf/ft 1 tonf/ft
= 0.102 kgf/m = 0.6720 lbf/ft = 68.53 lbf/ft = 0.03059 tonf/ft
...."' '"I
Q
=
;' f) ..... Q
'"I
"'
lNm 1 kgf.m lNm lNm lkNm
1 kgf.m llbf.in llbf.in 1 lbf.in 1 tonf.in
= 0.102 kgf.m = 86.80 lbf.in = 8.85llbf.in = 0.7376lbf.ft = 3.951 tonf.in
=9.807Nm = 0.01152 kgf.m = 0.1130Nm = 1.356 Nm = 0.2531 kNm
~
"C "C
(I)
:s a.
Modulus of Elasticity
1 mm
)("
= 145.00 lbf/in
2
llbf/in
2
= 6.895
X
3
10- N/mm
~
2
I
s: Ill
3
:T (I)
= 61.01
X
6
10- in
3
1 in
3
= 16390 mm
3
3
Ill
(;"
~
!!!..
Second Moment of Area 1 mm4
= 2.403
X
1m . 4
10-6 in4
0' ..,
=416200mm4
3
s:::
iii (I)
-~
~
J
~
_]
=-~J
Q '"I "'
~
= 9.807N/m = 1.488 kgf/m = 0.0146 kN/m = 32.69 kN/m
Section Modulus
= 9.807N =4.448 N = 9.964 kN
~
.........
Moment
1 N/mm2
Force IN IN 1 kN
'"'"t""l
= 145.0 lbf/in2 = 0.102 kgf!d = 0.2048lbf/ff = 0.02089 lbf/ft2 = 0.009324 tonf/ft2 = 0.06475 tonf/in2
Strip Loading
= 0.000061 in3 = 35.32 = 1.308 yd3
1 mm3 1m3 1m3
.~~0 mzen o-i m;:Q oCJ ,.,c o::! ;uO z
?>
0\
Stress
Mass
Or-(j)
-9
J
- _]
---- J
=--
~}
_]
J
J
:_J
___ ]
J
J
J
-J
J
J
J
J
r , I'
!....<
r , Appendix B- Analysis formulae (1/8)
(
APPENDIX B-ANALYSIS FORMULAE
'
I
B.1 Elastic bending formulae I
'
Bending about a principle axis:
I 1..,.1
a
M
y
I
-=-=EK
1 R
1 R0
K=---
In general, bending moment is section modulus Z times maximum bending stress. Longitudinal shear force S on material of area A, , due to transverse shear force F on the beam.
r , I
I
1I
curvature-change
'
L
S = F f dA = F As y I JA/ I
per unit length of beam.
I ,
L B.2 Elastic torsion formulae
r , I i
'-'
Round shafts:
r
r ,
i I
T __ Gd. 'f/
J
where ~ is the angle of twist per unit length and J
I.....
7r
'
I
T __ -
= Jr 2 dA
R4
Circular area, radius R: J = - -
2
'-'
Thin circular tube, radius R thickness t: (
is the polar moment of area.
J = 2 1r R 3 t
'
Thin walled tube of arbitrary cross-section: r '\ \
l_;
where Ae is the enclosed area to mid thickness, t is the wall thickness. and s is the distance round the permiter.
(
'
r ,
I
I
'
!....<
I I
'
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUlP
' '
'
I
'
)
Appendix 8- Analysis formulae (2/8)
B.3 Taut wires, cables or chains Uniformly loaded cables with horizontal chords
s = span length f= cable sag n = f/s = sag ratio L = length of cable curve Ms = cable elongation due to axial stress M, = cable elongation due to temperature change, t A = area of cable E = modulus of elasticity of cable e= thermal coefficient of linear expansion t = temperature change in °F p = load per unit length a. y = : { (sx- x
Uniformly loaded cables with inclined chords
2
Hs(3sec e. ,1Ls = ..t
f.&,
2
:n
sec(} )
AE +
d. L=s(l+%n'-
2
32 4 n + ... ) 5
e. L\L,
~ ;;(l+~n')
f. L\L,
=EIL~Ets(l+%n')
a.y=.f
(
I
~
~&t{1+-3s-8e:-:-(}}ecB
'
'
J
'·
I
'
)
'
J
I
I-s;,') 2
b.H = ps /24/
V•~illi.I.!:...:;:=--D!II[WWIWiv·~Tmo~·Tm~ =(JI+I836n'
HTrs;:
1 2 1 1 -3s-ec2-(} sec·(}
' j
c. Tmax =HJI+16n
•-....~ ....n!II!II!!!!P
)
L~s( 1+~
~ (sx-x')
s-
b.H=S.f
/Tmax
Triangular loading on cables with horizontal chords
1+(~+ 4nr
4
ps2
ff[!Jr
)
'
•
x
b.H= ps 1~8f_ _ _.,.
d:
2
'!iiliiiiii"milii""iiii"""m"m"l'v-¥ I
2
c.Tmax =H
a. y=
=
) E7i~~H d.L=s 1+-(S n -18n) +... e. L\L, ~ ; ; I+ 3: n' s .f.L\L, ~&IS(!+ 158n') /
•
!
Hh ps g.VR =--_;-+]
2
4
1""'1
I I
J
'
J
I
)
'
}
i
* Exact expression for L: B.4 Vibration !
Typically
f
=
~
for most structures
JY
• E
z
~
•
~
Where: f is in cycles per second y is the static deflection in mm
Simply supported Mass concentrated in centre
f
Simply Supported Mass and stiffness distributed
!=~
Cantilever Mass concentrated at end
Cantilever Mass and stiffness distributed
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP.IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
= 15.8
' j
JY
JY
f-
'
J
l I
)
I
)
15.8
-JY
f-
19.7
-JY
"'i
ARUJP
i
\ J
I
I
r ,
Appendix B- Analysis formulae (3/8)
B.5 Design formulae for beams- cantilever !
'
CANTILEVER
UNIFORM LOAD ON PART OF SPAN
w
A~·
a
a,~0 b •C e :
t::::::.:~~~:=:·.~~
I
'
R ~r:
'
Span
=
L
Uniform Load
=
W
Uniform Load
W
RA
RA
j
lllllllililllllll'tl!nnnnn..
•c = 10 = 6~1 13a'+3ab+b'l 6o = .: !S.'+18a 1 b+12ab1 +3b3 +4c:(3a'+3ab+b1ll 2 1 I
~
L
=
•
= -w(a+~)
MA
I
SPECIAL CASE: UNIFORM LOAD ON FULL SPAN b
0
c
w w
= =-!!!h 2
MA
WL'
io
iET
6o
iEf
WL'
'
-
CANTILEVER
TRIANGULAR LOAD ON PART OF SPAN
A~:a ...----·- ___ ____ _..
Span
b _..,.:c
L
Soln
TFtangular Load
'
1
"A r·---.· I.._.W!!!!l.!.!:!!!!!IIIWIIIIIIII------i '
= w
a
L
b
........ ·-····-·--·-·-·-·--
I
L
SPECIAL CASE: TRIANGULAR LOAD ON FULL SPAN
=
Triaf111ular Load =
0
w w
RA
w
RA
MA
=-~a
MA
=-~L
&c:
=15EI wa• {L•!!) 4
6c
=
I
' r I I
'
-
•a
I
=
'C
Wa'
WL'
ic
= 12EI
WL'
i5Ei ffii
! '
I
I
r
POINT LOAD AT ANY POSITION
CANTILEVER
'
i
!_.
w A
~;-----·--.:.····-·--·.., a I,
,
B•
b
;
r-·-·--·-·-·-···-·--·-···--;
AA
I
=L
Span
C 1
=w
Po1nt Load
r-·~mmmm1mmm1mmnm1 I
SPECIAL CASE: POINT LOAD AT FREE END
b
=
Point Load
=
0
w w
=w
=
=-Wa
=-WL
i
3
WL =m
i
r '
8
Span•L=a
18
..
ic
Wa~
=m
ic
WL~
=rer
r '
...... i
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
\' \
ARUJP
_, l
' J
Appendix B- Analysis formulae (4/8)
_, I
B.6 Design formulae for beams - fixed both ends UNIFORM LOAD ON FULL SPAN
BEAM FIXED AT BOTH ENOS
Span " Total Uniform Load =
~#1&Af?u1¥f1!uia
A
1
I
---,
\.
J
~ WL'
3iiEi
,_t
E"'4UIJII
J
WL
- - .. ~---:~Me
r·:
'
W
=-~~
==
A.(-~c : 'liC ~_,Ao .... ... M•·L .Ill" 1111llP'o
)
w 2
r-------------•
\
L
•Me
at X from A
=-
J'!..{L'-6LX+6X'I 12L
=
2iffill-XI
wx•
•
i
' J
....!!!...tL'-3LX+2X 11 12EIL
at 0·211l from eother end Mo = Me = 0
~
POINT LOAD AT MID-SPAN
=
Span Poon1 Load
=
RA
' J
L
w w = 2
Rg
MA
I i
BEAM FIXED AT BOTH ENDS
=- ~L
Me
A.
WL
= 8
at mod·SPan (Me 6rna•
r·
=
:
-: l'CIIIill!lli!i!!iilllllllll ~ :A 8
~
~.-·---~·-r ,,.,. ' ;Me M ~- ~0 . E'""ij. M
i
:
~f4X -Ll
8 WX' 4iEJf3L-4XI
A.
t. -
- .l
B
l
' )
wx = ffifl-2Xl
'X
r-il!lllll!!lll!llllllllll\
J
I.----
WL' = i92ei ':
at X from A between llx A&C
'
at 0· 25L from en her end Mo
= Me = 0 I
' j
BEAM FIXED AT BOTH ENOS
POINT LOAD AT ANY POSITION Span Poont Load R _ Wb'IL • 2al At:
,.. --X
I
M. 1
•
-lllillliJii""
t.~
:Ra
_ Wa'IL•2bl 8L
Wa'b Mg=-7
at C. under load. Me ::.
• .1
~-·J'M
between AlrC
When a :> b the muimum deflectoon os at X =
W.a,' Wb 1L •2aiX =-v· I?
llx
=
2 La l+ 2a
•x
=
(
&....,.=
' j
~
Mx 111 X from A
8
'I
2Wa'b'
2
~--···•t 1 ~ Me
_j
L
w R
Wab' MA=-Ll
-, ,
=
Wb1 X'(3La-ll• 2a1XI 6EJL' Wb 1 X(2La-IL •2a1XI 2EJL' 2Wa'b' 3EICL+2al 1
j
l
' j
1i '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
)
I I
'
)
'
J
I I.... I
'
!
Appendix B- Analysis formulae (5/8)
(
B.7 Design formulae for beams- simply supported
'
SIMPLY SUPPORTED BEAM
r , ~
:--- ..!. A'
--r.. w
= l.
Span Point Load
~
L-.,
•
POINT I.OAD AT MID-SPAN
=W w
.
=2
18
·------------·
.
r ,
l
'
o
R• [
Wt.
I
~ Jillllllllllllllllllllll~ :
X
:
=4
:_
_111111111111111111111111_
1 wt.' = 4i'il
j RB
~---------~-~
'A
·~UIUIIII!IIIIniiii~·M"u o • .1
I
=
Mx
=¥
ox
= 4~;J IlL' -4X'I
ix
= ,;: 1 IL'-4X'I
at X from A
bet-en A Be centre
WL'
•a
(
1iii
rI '
! 1..-1
POINT LOAD AT ANY POSITION
r .
Span Point Load
=L
=w
RA:~
Ra
L
r ,
SIMPLY SUPPORTED BEAM
A ...
=~ L
+ L C +B -----------....
=~
I
L Wa'b'
at C under load
'
I
r
Wab 'A"' &Eit(L+bl; 1
! \.._,
I
....
I
1
I
'-
i
X
a
W b W a r-----r---T---~
A!
-
._ ___ --~I
I
r ,
• .J
IS 81
SIMPLY SUPPORTED BEAM
1
'"I
--X -·
-~.--f Mtt~ax
a ('"'ax
Wh6en > b max X fro"' A
(
I
A• [_ -.~l!ili!ll!ii!l!ii!i!i!li!i!i!i!·-,
= 'Jei"L
I ,_.
a W b ------r--~
Ra[JilDJI
I
-
---- _.,iB I
TWO EQUAL SYMMETRICAl. POINT lOADS
Two Point Loads. each R~~o = Rg Mmaa owr length II b..,8 • at mrd•SDan A under tl!ther load
I
I....
r .
=L =W
=W
= Wa a ~= 1 13L'-4a'J 2 Wa' = iii 13L-4al
'A
=
Wa = ffiiL-al
If a ,. b
=j. 6ma,.
_ 23 WL3
- iiiii'Er
I
1..-1
r ,
L
L r , I
I....
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
""""
1
I
J
l
Appendix B- Analysis formulae (6/8)
I
i
'
J
[B.7 Design formulae for beams- simply supported (cont..)]
Span Total Uniform Load
w
I
UNIFORM LOAD ON FULL SPAN
SIMPLY SUPPORTED BEAM
=
L
I
l
J
'
J
=W :!!
i
2
M,ax = ~l at m•d-span
:.... ~-
(
'
S
....,
Wl>
&max
= 384·e.
•a
Wl = 24ii
Mx
=~!L-XI
~x
= 24EIL .J!lL IX'-2X'L+L'I
•x
=
i
1
'A
.L
at X from A
{
j
l
2L
...1L.t4X'-6X'L+L'l 24EIL
-, I I
' SIMPlY SUPPORTED BEAM
UNIFORM LOAO ON PART OF SPAN :: L
Total Unotorm Load Let r
... ~---- _b- • I
=W =-
A
-r--
Q-Sb+c
)
I
c
I
0 $ ,. - - - - - -1.- - - - - - .,
AA.r·~· ~
= Wrla+O·Srbl
'A.: :e•l IL -c'-Lbrl; 1
I
I
&
...., i
•·X-•
Ra = WU-rl at X=- aorb Mmax
W
I
i ••c ......
Wff:ff1/!J4
I
..
.)
'
.
I
••
.... --- -... 1
•a "W~~~riiL'-•'-Lbll-rll
J
I
"44llDddlliill. ] As
a ... rb
'I I '
I
Equauon to elasttc 1tn11 betWGI!n C and D ••. e. a"' X.;; a tb
6 :.. ...!!.. {x' -41a+rblX' +6a 1 X1 •41rb{L'-c'-cb- ~) " 24Eib 2
-~ J X +a' J ' J
l
' J
TRIANGULAR LOAD ON FULL SPAN
SIMPLY SUPPORTED BEAM
~
~
,..--·--·--·--·--.., W ' I
Al~ia .. --··--L·····-'
AA l . t -
I
JJDnnrrrn,., '
X
~---·
Span Total Load
RA
I
Ra
=~
Mmax
=~L
'A
=
WL3
( 6max
= 66Ei
•a
SWl' =-96EI
Mx
= ~ 13L' -4X'I
at X from A betWIIIIn &x A & centr11 (
ix
Ver 3.2 I Dec 04
J
l
J
lJ I
_!!L ft6X' -40X't:' +25L'I
480EIL 2
=96EIL: _!!__ 116X' -24X' C s.: I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
i
l
6L""
z
...., I
=W
atm•d-span
I
'"'4UIIIUliiDII".aRe 1
=L
t
ARUJP
I
I
I
)
'
)
'""''
I
\J
I . Appendix B- Analysis formulae (7/8)
i
B .8 Design formulae for beams - propped cantilever
r .
PROPPED CANTILEVER
UNIFORM LOAD ON FULL SPAN Span Total Uniform Load
r ,
r '
L
w
RA=Iw
Ra
at A
Mmax
at
I
1w 8 WL =-8
~L. from A
9 i2ijWL
I
iiSEi
at 8
4iEI
WL'
'8
'
(
WL'
at 0·5785L. from A 6ma><
=- ~IL'-5LX+4X'I 8L
at X
WX' (3L'-5LX+2X'I 48EIL
from A
~16L'-15LX+8X 2 1
at tL from A, Me= o
r ,
48EIL.
I
\_,
'
(
!
POINT LOAD AT MID·SPAN
L
Span
Point Load (
RA=
I
llw 16
at A
Fla
= = =
PROPPED CANTILEVER
L
w 5
i6w
3 Mmax =- i6WL.
s
32WL
at m!CI·span under load
3
7WL
768EI WL.3
at 0·5528L from A. ~>mao
iOffi
at B
ffii
'
(
WL 1
'8
at
~ l from A. M = 0
'
(
1
I
"-' POINT LOAD AT ANY POSITION
PROPPED CANTILEVER I I
'
\__,
Span
L
Point Load
w
Wbl3L 1 -b 1 1
RA::. r '
M
2L'
__ WabCL+bl
2L'
A-
Wa'I2L.+bl 2L' _ Wa'bi2L+bl Mc2L'
Rs
=
Wa'b
'B "' (
!
'
4ii'L
AbSolute max deflection is under the load
when a~
b../2 = 0·5858L When a>b../2
I
\__,
max defler;toon is between AandC
I '
'
iL.
at n
L+b = eLlL'-bl from A,
M
=0
When a
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r :
Ver 3.2 I Dec 04
WL'
lomax max ::.
i02Ei'
Wa'b
Cl+bl'
hmax
= 3Ef'I3L'-b'l'
6ma"
=
Wa'b ~ 6EI
11/n+b
ARUJP
Appendix 8- Analysis formulae (8/8}
J
I
[B.8 Design formulae for beams- propped cantilever (cont..)] MOMENT APPLIED AT ANY POINT
PROPPED CANTILEVER a ................
b
Span
t. ..... /!~... ;8 ~-----·-
A • R.
f ~ v:::•:::~: ::!mm:mln!lltii!''"'
I
I
,
'
~
::
M2
=
.
~
.@ a:o·42265 t · • • • • .. .. .. .. : • -m a ,• -- ... - - -b - - -· . ., . . r
-
•a =4;~L 12b-al
=m
{
"""'
-!!!.(a• .. la'b+b') L' 2
M,
!!:!!!2/b+
M,
= -0·42265 m
M,
=
1.'
f!t?::::::,.... .....
-
Applied Moment
)
m+MA FIA = -Ra =- 31L'-b'l -n'"" m = - - L -
R. ,
(
~M,
L
L'-3b'
""'2C'm
M,
M A' 0 :
I I
\1
I
I
j
I
!) =m+M ' 2
!
\ j
0·57735 m
'! I l
)
;'l UNIFORM LOAO ON LENGTH BEYOND PROP Span
=L
Uniform Load
=- W
Ra
~
:;
Full Length
=
= ~(s-!)
Ra
.£1. 3
Slape at C
........
I
"'"'"! I
'
M"f: l£:>,
WL'a
6 neg
=- 54EI
'C
=
I
l
Span
=L Pornt Load W
A~~-----L----·a~lP, . --.. . --s· -.. --:---.~fC . -:
=
~
,. ................................... .. X : ~-JDDI!I""' ' .R, : ~ :~rrnm@ii!U:i!ltil!i@liii!!!:.:::;.... 1 I
~~
Full Length =
MAf::prr.r.,.: . . . , }..
at X
,M 8
~----·
= ~ from
A, M
=0
rMs
'! I I
j
I
)
S
RA=-~ 2L
Wa
= -wa
2
Oeflectron at C
= ~fs.!)
MaK. Negative Oeflectron } at X :. ~ L hneg
= -2ffi
SlOPe at C
=
4EI \'
'
: ~ :~IIIIIIW¥-fUV
.....
:,.. } . .;~.--1 at X .. ~from A. M =0 I
POINT LOAD AT FREE END
w
'
)
\.
PROPPED CANTILEVER
..
J
I
-·---·--·------X
BET
Max. Negative Oeflectron}
A4
I
Wa'S
Dellectron at C
•
L
s
=-T
4
1
~c=J B a :C
~·---·--------·
Wa
Wa
at X=
w
S A;."l
-~ 4L
I ' J
PROPPED CANTILEVER
3
•c
I
)
l
J
I
J
3
WL'a
Wa IS+el
ffi
l ~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
J
lJ l
\. .J
I '
'
(
i
Appendix C- Useful Design Data (1/12)
I
~
APPENDIX C- USEFUL DESIGN DATA
r . !
L r
C.l Road transport limitations (simplified) (in the UK) '
I I
'-'
Upto 2.9m
Upto 18.3m
r· L
Movements ofloads within these parameters do not require Police notification etc.
Up to 4.975m
rI ' i
I... r ,
L r!
1
r
I
L 2.9m to5.0m
18.3m to 27.4m
L
r.
Movements ofloads within these parameters require notification of all Police forces at least 2 clear days in advance.
I
'--'
00 r , I
L r )
L r
Greater than 27.4m
Greater than5.0m
Movements ofloads exceeding these parameters requires special pennits from the DoT, normally needing 8 weeks prior notice; additional plans and drawings of routing may be requested
1
I
00
I....
I '
0
L r
1
L THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r '
r
i
1
Ver 3.0 I Aug 98
ARUJP
I I
J
c
Appendix C- Useful Design Data (2/12)
>-i I
I
;
i
J
C.2 Craneage data - double girder
....,, j
I
8
Double gifr/erpend11111 conllOJied cranes tor kNiding class 021o BS
446-
I
)
I
)
I
BS 2573: PBII 11 11
I I
c
Capacity tonnes
10
25
1.
2. 3. 4. 5. 6.
Span
A
B
c
D
E
F
H
w
s
mm
mm
mm
mm
mm
mm
mm
mm
920 920 920 920 920 920 950 950 950 950
1250 1250 1278 1280 1375 1375 1535 1715 1715 1865 1650 1650 1650 1800 1800 1950 1950 2100 2100 2125
1225 1225 1255 1255 1325 1325 1485 1665 1665 1815 1540 1540 1540 1690 1690 1840 1840 1990 1990 2035
metres 8 10 12 14 16 18 20 22 24 26 8 10 12 14 16 18 20 22 24 26
1650
Crab wt. tonnes
~ 2500
'25oo 970
1150
200
220 220 220 220 220 220 220 220 235 235
430
500 500 500 500 500 500 500 520 600 600
9700
~ ~ 3700
1.70
: 3700 I 3700 4300 4300 4300
8000
~ 4300 43oO 43oO 4300
~ ~ 4900
49oo
4.00
Crane wt. tonnes 5.18 5.84 7.98 8.82 10.68 11.60 11.11 12.67 13.65 15.17 11.40 11.97 13.14 14.36 15.22 18.83 20.03 22.54 24.53 27.78
Wheel load tonnes 6.19 6.47 6.98 7.26 7.77 8.04 7.91 8.30 8.61 8.99 14.90 15.04 15.62 16.13 16.49 17.52 17.92 18.64 19.20 20.08
Dimension B is based upon construction where end carriages are built into bridges member for maximum rigidity and compact headroom dimension. Alternative end constructions can be provided to either increase or reduce dimension B to suit existing building condition The height oflift, H or hook path dimension, is based upon a standard crab unit. Alternative crabs are available in ail capacities for extended heights oflift. Crane weights include the crab. Weights of crane and crab are with unloaded hooks. Wheel loads are for static conditions with maximum working load and minimum crab approach. Above information is approximate only and is intended for guidance. Exact information should be obtained from manufactures' publication.
)
I ' J
I
J
I
'I
I
I
j
...., THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
!
'
J
I I!
J
r , I
I....
rI '
Appendix C- Useful Design Data (3/12)
L.. C.3 Craneage data- double hoist
r,
L
,. I
r ,
CD
c.
t.:l
>-
I L...
CD
~
Cl
CD
1
"'
'tJ ~
0
I
N
.J
rI ' i
1....
M
r , i I
I.,...
<
r ,
c:
ru
L
C/J
r ,
..
CD
!
C>
r '
L r ,
...... '
'
r '
L '
(
Capacity tonnes
A m
B mm
c
10 12.5 16 20 25 32
330 330 330 340 340 340
2.6 2.6 2.6 2.7 2.7 2.7
m
D m
E m
F m
G m
H m
K m
L m
0.6
0.8 1.0 1.1 1.3 1.4 1.6
4.3 4.6 4.7 4.9 5.0 5.2
5.5 5.8 5.9 6.1 6.2 6.4
M M
'
'L 50/10
1. 2. 3. ''
'
4.
1.5
2.0
16
1.1
Crab
Crane
wt.
wt.
tonnes
tonnes
Wheel load tonnes
21.0 35.0 30.0 35.0 41.0 50.0
30.0 32.0 34.2 37.0 40.0 43.0
20
Wheels in end carriage
2
Crane weights include the weight of the crab. Weights of crane and crab are with unloaded hooks. Wheel loads are for static conditions with maximum working load and minimum crab approach. Above information is approximate only and is intended for guidance. Exact information should be obtained from manufactures' publication.
' .
' '
L
! :
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
I ' J Appendix C- Useful Design Data (4/12)
~
i
i
' J
C.4 Standard rail sections
i Dimension mm Head Base Height Section width width c B A 13 bridge 13.31 36.0 92 47.5 108 54.0 44.5 16 bridge 15.97 19.86 50.0 127 55.5 20 bridge 28 bridg_e 28.62 50.0 152 67.0 76.0 35 bridge 35.38 58.0 160 50.18 58.5 165 76.0 50 bridge 56 bridge 55.91 76.0 171 102.0 89 crane 88.93 102.0 178 114.0 100.38 100.0 101 crane 165 155.0 164 crane 165.92 140.0 230 150.0 For A, Band C see figure below Mass/ unit length Kg/m
Area cm
2
y
Iyy
Ixx 4
mm
cm
21.5 24.3 25.8 28.9 34.4 29.3 43.8 53.3 73.9 67.7
39.01 64.01 82.10 167.45 265.67 325.83 794.38 1493.04 3410.78 4776.95
4
Zxx
Zyy
3
cm 3
cm
cm
74.38 116.34 192.76 371.37 505.23 719.67 685.90 1415.91 1266.34 5121.70
14.70 21.55 27.66 44.05 63.79 69.81 141.24 245.91 420.47 580.59
16.17 21.54 30.36 48.86 63.15 87.23 80.67 159.09 153.50 445.37
Maximum lengths for individual Bridge and crane rail sections Section Length (m) 13 bridge 9.144 16 bridge 9.144 20 bridge 9.144 28 bridge 15.000 35 bridge 15.000 50 bridge 15.000 56 bridge 15.000 89 crane 15.000 101 crane 12.192 164 crane 9.144
Rail dimensions
AJRL.Jnl~~J"L 56 kg/m Crane rail
89 kg/m Crane rail
20 kg/m Bridge rail
101 kg/m Crane rail
'
J
I
'j ' J
....,
y B
16 kg/m Bridge rail
)
:
16.95 20.34 25.30 36.46 45.06 63.92 71.22 113.29 127.88 211.37
A
13 kg/m Bridge rail
!
l
28 kg/m Bridge rail
35 kg/m Bridge rail
50 kg/m Bridge rail
164 kgtm Crane rail
Profiles of bridge and crane rails
i i
'
J
'
I J
I
j
•
J
I
i
j
l
...., I
;
'
j
'
l '
j
l
J
_, I I
'J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
r ' I
I
I.....
r , I
Appendix C- Useful Design Data (5/12)
' ,_.
r ,
C.5 Typical bend radii- rolled sections
L
Typical recommended bend radii Typical possible bend radii X-X Axis Y-Y Axis (metres) (meters)
Serial size
r •
L 533 X 210 X 122 UB 406x 178x74UB 305 X 165 X 54 UB 254 X 146 X 43 UB 203 X 133 X 30 UB 178x 102x 19UB 152x89x16UB 127 X 76 X 13 UB
25 18 7 5 4 4 2.5 2
2.5 2.25 2 1.75 1.5 1.25 1 1
254 X 203 X 81.85 RSJ 203 X 152 X 52.09 RSJ 152 X 127 X 37.20 RSJ
4 2.5 1.5
2.25 1.75 1.5
305 X 305 X 283 UC 254 X 254 X 167 UC 203 X 203 X 86 UC 152 X 127 X 37 UC
6 4.5 3 2
3.5 3 2.25 1.75
250 X 250 X 16 SHS 200 X 200 X 12.5 SHS 200 X 100 X 10 RHS 150 X 100 X 10 RHS 120 X 80 X 10 RHS
10 7 4 2.5 2
10 7 6 4 3
219.1 X 12.5 CHS 168.3 x 10 CHS 114.3 x 6.3 CHS 60.3 x 5 CHS
3 1.5 1.25 0.75
3 1.5 1.25 0.75
r,
L f
'
i
r,
r.
L
L
. .
r , I......
C.6 Safe load for 25 tonne capacity mobile crane Main boom capacities (tonncs)- through full360° circle slew- with outriggers fully
L
extended
,,' '
load curve tor each
/ ~
~~CII;----- •
1 '
I 1000
copocily (lonnos)
L
Boom length
1
r ' ! I.....
..
The examples shown are not the mm1mum radu possible
given jib lenqth
/
\
'' '' '
t I I
'' ''
15.00m
17.50m
20.00m
to 15.00m
to 17.50m
to 20.00m
22.50m
to
20.70
20.10
20.10
22.00
20.00
19.00
18.80
16.00
''
4.0m
19.50
18.00
17.80
17.60
15.50
4.5m
17.00
16.80
16.70
16.50
14.90
12.70
5.0m
15.30
15.30
15.30
15.00
13.90
12.30
10.40
6.0m
13.00
12.80
12.40
12.40
12.20
11.60
9.80
7.0m
10.50
10.50
10.50
10.50
10.50
10.50
9.40
8.0m
8.30
8.30
8.30
8.30
8.30
8.30
lO.Om
5.35
5.35
5.35
5.35
5.35
5,35
3.85
3.85
3.85
3.85
3.85
2.80
2.80
2.80
2.80
2.15
2.15
2.15
18.0m
1.70
1.70
20.0m
1.30
I I I I I
_., ..-"",;
1' I
.I
12.0m 14.0m
mon
max.
rod ius
rod ius
16.0m
22.0m
r ,
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
1.30 0.90
' '
L
22.50m to 24.57m
25.40
overload
outriggers extended &. wheels off ground
12.50m
3.5m
... ~ ......
............... ,
10.07m to 12.50m
3.0m
I I I .........
10.07m fully retracted
I I I
''
Radius in meters
ARUJP
j
l
Appendix C- Useful Design Data (6/12)
...., I I
j
I
)
C. 7 Standard durbar plate sections Standard Sizes Thickness range on plain Width mm mm 8.0 10.0 4.5 6.0 1000 10.0 4.5 6.0 8.0 1250 6.0 8.0 10.0 1500 4.5 8.0 10.0 4.5 6.0 1750 6.0 8.0 10.0 1830
Mass per square metre of durbar plates Thickness on plain Kg/m2 mm* 4.5 37.97 6.0 49.74 8.0 65.44 10.0 81.14 12.5 100.77
12.5 12.5 12.5 12.5 12.5
Consideration will be given to reqmrements other than standard sizes where they represent a reasonable tonnage per size, i.e. in one length and one width. Lengths up to I 0 meters can be supplied for plate 6mm & over
Depth of pattern rangmg from 1.9 mm to 2.4 mm. *Thickness as measured through body of the plate
I
' j
~' i
' J
""'i '
i '
2 (kN/m )
J
Ultimate load capacity for plates simply supported on two sides , stressed to 275 N/mm2 Thickness on plain mm 4.5 6.0 8.0 10.0 12.5
Span (mm) 600 20.48 36.77 65.40 102.03 159.70
800 11.62 20.68 36.87 57.42 89.85
1000 7.45 13.28 23.48 36.67 57.40
1200
1400
1600
1800
2000
5.17 9.20 16.38 25.55 39.98
3.80 6.73 11.97 !8.70 29.27
2.95 5.20 9.23 14.45 22.62
2.28 4.07 7.23 11.30 17.68
1.87 3.30 5.93 9.25 14.50
I 'J
....,
Stiffeners should be used for spans m excess of II OOmm to avmd excessive deflectiOns
i '
J
...., !
C.8 RHS sections - standard lengths Length ranges and tolerances for rectangular hollow sections (RHS) Size Square mm
Rectangular
mm
Welded Standard Special mill mill lengths lengths m m
20 X 20
6.4
25
6.4& 7.5
X
25 & 30 X 30
Seamless Standard lengths m
Maximum exact lengths m
Length tolerance
mm
' j
""'i I J
I
5.4- 7.5
50 x25
7.5
40 x 40 up to 100x100xS
50 x 30 up to 120 X SO X S
7.5, 10 & 12
5.4- 13.7
100 x 100 x 10 up to 150x 150x 12.5
120 x SOx 10 up to 200 X J00 X 12.5
7.5, 10 & 12
6.1-14.6
l50x l50x 16
200x100xl6
ISO x ISO up to 400 X 400 X 16
250 x !50 up to 500 X 300 X J6
10& 12
400 X 400 X 20
500 X 300 X 20
S.5-9.0 random
+150-0
""'i
' J 10- 11.2
9-14.S
5.6- 11.2
+300- 0 +300- 0
' J
'
)
-
!
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
I
J
I
I J
ARUJP
r. I
L... '
(
Appendix C- Useful Design Data (7/12)
i
!...,.
C.9 CHS sections- standard lengths Length ranges and tolerances for circular hollow section (CHS) Size (mm)
Welded
r •
'
(
'
(
Seamless
Thickness
Standard mill lengthsm
Special mill lengths m
21.3 & 26.9
All
6.0 & 6.4
5.4- 7.5
+150- 0
33.7-48.3
All
6.0, 6.4 & 7.5
5.4-7.5
+150- 0
60.3- 114.3
All
6.0, 6.4, 7.5 & 10
5.4- 12
+150- 0
139.7- 168.3
All
7.5, 10 & 12
6.1- 14.6
+150- 0
Up to 12.5
7.5, 10, & 12
6.1- 14.6
+150- 0
193.7
16.0 Up to 12.5
r •
219.1
r . 244.5
10 & 12
16.0 20.0 6.3- 16 8- 12.5
10 & 12
'
6.3- 16 273
r '
9- 14.8
'
(
r ,
+300- 0
8, 10 6, 8 & 10
+300- 0
8, 10 & 12 10, 12 & 14
+300- 0
9- 14.8
10 & 12
10 & 12
10 & 12
6, 8 & 10 4, 6&8
+300- 0
6, 8 & 10 4, 6&8
+300- 0
6, 8 & 10 4, 6&8
+300- 0
8, 10 & 12 4,6&8 2,4&6
+300- 0
9- 14.8
9- 14.8
20.0 25.0 10.0- 16.0
406.4
10 & 12
20.0 25.0 8.0- 16.0
355.6
8, 10 & 12
6, 8 & 10
20.0 25.0 6.3- 16.0
323.9
Standard mill lengths m
9- 14.8
20.0 (
Length tolerance mm
O.D.
9- 14.8
20.0 25.0 32.0
:
:
10.0- 16.0
:....
r. (
:
457
508 r ,
9- 14.8 8,10&12 6, 8 & 10 4, 6 &8 2,4&6
20.0 25.0 32.0 40.0 10.0- 16.0
'
10 & 12
10 & 12
+300- 0
9- 14.8
20 &25 32 40 50
6, 8 & 10 4, 6&8 2,4&6 3,4&5
+300- 0
r .
L... r ' I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
, I
'
j
l
Appendix C- Useful Design Data (8/12)
'
J
C.l 0 Carbon steel plate sections - British Steel standard sizes Typical size range of carbon steel plates (maximum length in m) Width 1220· 1250· 1300. 1500· 1600. 1750· 1800. 2000. 2100- 2250- 2500- 2750- 3000- 3050- 3250- 3460- 3500- 37501250 1300 1500 1600 1750 1800 2000 2100 2250 2500 2750 3000 3050 3250 3460 3500 3750 3960 (rum) Thickness
: 1:
5
12
12
12
12
12
12
12
6
13.5
13.5
13.5
13.5
13.5
13.5
13.5
7
13.5
13.5
13.5
13.5
13.5
13.5
13.5
12
12
-
13.5
13.5
13.5
12.5
12.5
-
13.5
13.5
13.5
13.5
13.5
13.5
12
-
-
-
-
-
-
8
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
II
9
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
10
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
10
-
-
19
19
19 19
12.5
19
19
19
19
19
19
19
19
19
19
19
19
19
19
15
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
20
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
25
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
30
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
' '
,....,
I
35
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
40
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
45
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
50
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
16.3
15.4
60
15.3
17
17
17
17
17
17
17
17
17
17
16.9
15.6
15.6
14.6
14.6
13.6
12.8
65
13.1
17
17
17
17
17
17
17
17
17
15.9
14.6
13.4
13.4
12.5
12.5
11.6
11
70
13.1
17
17
17
17
17
17
17
17
17
15.9
14.6
13.4
13.4
12.5
12.5
11.6
II
75
8.4
17
17
16.8
16.8
17
17
17
17
15.3
13.9
12.7
11.6
11.6
10.9
10.9
10.2
9.7
80
7.9
17
17
16.8
16.8
17
17
17
17
15.3
13.9
12.7
11.6
11.6
10.9
10.9
10.2
9.7
90
-
17
17
15
15
17
17
15.1
15.1
13.6
12.4
11.3
10.5
10.5
9.7
9.7
9.1
8.6
15.7
15.7
13.5
15.3
15.3
13.6
13.6
12.2
11.1
10.2
9.4
9.4
8.7
8.7
8.7
8.2
7.7
-
13.1
13.1
11.2
11.2
12.7
12.7
11.3
11.3
10.2
9.3
8.5
7.8
7.8
7.3
7.3
6.8
6.4
140
11.2
11.2
9.6
9.6
10.9
10.9
9.7
9.7
8.7
7.9
7.3
6.7
6.7
6.2
6.2
5.8
160
9.8
9.8
8.4
9.6
9.6
8.5
8.5
8.5
7.6
6.9
6.4
5.9
5.9
5.5
5.5
5.1
100 120
180
8.7
8.7
7.5
7.5
8.5
8.5
7.5
7.5
6.8
6.2
5.7
5.2
5.2
4.9
4.9
4.5
200
7.9
7.9
6.7
6.7
7.6
7.6
6.8
6.8
6.1
5.6
5.1
4.7
4.7
4.4
4.4
4.1
250
4
4
4
4
4
4
4
4
3.9
3.5
3.2
-
-
4
4
4
4
4
4
3.6
3.6
3.2
-
4
4
4
4
3.5
3.5
3.1
3.1
-
-
-
300 350
-
-
I
. I
• J
I
'
J
'
J
'
)
'
J
'
J
I
)
'
)
-
-
indicates size not available
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
,...., I I
J
[
L r '
'
r '
Appendix C- Useful Design Data (9/12)
I
I......
C.ll Carbon and carbon manganese wide flats- British Steel standard sizes
r, !
Typical size range of carbon and carbon-manganese wide flats (max length in m)
\._,
r ,
(mm)
10
12
15
20
25
30
35
40
45
50
55
60
65
70
75
80
90
100
L [
;
L...
r . '·,
r, '
L l
L... r ,
'
(
D (
l
Not available
D
Development range- please consult
May be available with dimensions and material properties by arrangement
i
L...
•
Not normally available except by special arrangement on straightness and flatness tolerances
'
'L...
(
'
(
1
r,
r ,
r , THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ,
Ver 3.0 I Aug 98
ARUJP
Appendix C- Useful Design Data (10/12)
....., i
\
)
C.12 Fasteners- mechanical properties and dimensions of ordinary bolts 1"""1
Ml2 1.74 84.3
Ml6 2.00 157
M20 2.50 245
M24 3.00 353
M30 3.50 561
M36 4.00 817
10.863
14.701
18.376
22.051
27.727
33.402
33.1 18.7 66.2 48.1
61.6 34.8 123 89.6
96.1 54.3 192 140
138 78.2 277 201
220 124 439 321
321 181 641 466
30 36 49
-
38 44 57 24
46 52 65 30
54 60 73 36
66 72 85
78 84 97
19.0 21.9 8.0 10.0
24.0 27.7 10.0 13.0
30.0 34.6 13.0 16.0
36.0 41.6 15.0 19.0
46.0 53.1 19.0 24.0
55.0 63.5 23.0 29.0
Metric coarse threads Pitch (mm) Tensile stress area Basic effective diameter (pitch diameter) (mm) Grade4.6 Grade 8.8
Ultimate load kN Proofload Ultimate load kN Proof load
Length of threads = 125mm > 125mm and= 200mm >200mm = 125mm (short thread length)
-
i
\ j
....., I I
\ J
I
I
• J
-
'l
Dimensions (mm) Maximum width across flats Maximum width across comers Nominal head depth of bolts Nominal depth of nuts
j
1"""1 I
'
j
l
j
C.13 Fasteners - clearance for tightening Up to and including M20 diameter, tightening is usually best done by hand
3.2. bolt
.....,
aiameter
I \ J
I Hand Spanner
tor Ordinary Bolts
Size ofbolt
a
b
c
d- power
Ml2 Ml6 M20 M24 M30 M36
23 30 30 36 49 49
27 46 46 65 78 97
30 60 60 60 70 100
500 500 600 600 700 700
'
J
l
)
I
I' J
Impact wrench for HSFG bolts
Size of bolt
v
w*
X
M24
65
250 500 270 600 300 600
60
M30
78
M36
97
65 65
min.y to max.y 82 210 89 260 89 260
Note that the clearances given are the minimum values for convenient working. Lesser values than these may be used where necessary, after consultation with the equipment manufacturer.
..., I
'
\
J
\ J
Torque multiplier for HSFG bolts
!
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
\
)
'
j
!
\ J
r
1
I
'-'
[
1
Appendix C- Useful Design Data (11/12)
1...,.,
C.14 Fasteners- high strength friction grip bolts Dimensions for high strength friction grip bolts and nuts to BS 4395 parts 1 and 2 (
Nominal diameter
1
L
Diameter of unthreaded shank
r, mm (Ml2) Ml6 M20 M22 M24 M27 M30 M33 M36
r , ~ 1
(
\
Max
Min
mm
mm
12.70 16.70 20.84 22.84 24.84 27.84 30.84 34.00 37.00
I 1.30 15.30 19.16 21.16 23.16 26.16 29.16 32.00 35.00
A
c
mm 1.75 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0
Max
Min
mm
mm
22 27 32 36 41 46 50 55 60
21.16 26.16 31.00 35.00 40.00 45.00 49.00 53.80 58.80
mm 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5
Thickness of *Dia hexagon head ofCsk. Head
F
Diameter of washer face
*Dept h of Csk. Flash
G
H
J
Max.
Min.
mm
mm
8.45 10.45 13.90 14.90 15.90 17.90 20.05 22.05 24.05
7.55 9.55 12.10 13.10 14.10 16.10 17.95 19.95 21.95
mm 24 32 40 44 48 54 60 66 72
Max.
Min.
mm
mm
22 27 32 36 41 46 50 55 60
19.91 24.91 29.75 33.75 38.75 43.75 47.75 52.55 57.75
mm 2.0 2.0 3.0 3.0 4.0 4.0 4.5 5.0 5.0
Thickness of nuts Addition to grip length to give length of bolt required** E Max.
Min.
mm
mm
11.55 15.55 18.55 19.65 22.65 24.65 26.65 29.65 31.80
10.45 14.45 17.45 18.35 21.35 23.35 25.35 28.35 30.20
mm 22 26 30 34 36 39 42 45 48
HEXAGON HEAD
'
i
Depth of washer face
See figures below for the dimensiOns used m the table Size shown in brackets is non-preferred * Countersunk head ** Allows for nut, one flat round washer and sufficient thread protrusion beyond nut.
L (
Width across flats
B
L
r
Pitch (coarse pitch series)
i
L
Po 0
General grade
r ,
,
I
'
(
....
A
II '
Length
0
r.
'
(
i
Higher grade Pt 2
L (
{~ c-EJ
1
L... (
COUNTERSUNK HEAD
'
E
r •
L r ,
Grip length Length
General grade Pt 1 countersunk head
@
@
([)
General grade Pt 1
Higher grade Pt 2
Higher grade Pt 2 countersunk head
I !
....... (
'
!
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ,
Ver 3.0 I Aug 98
L... r '
ARUJP
'
Appendix C- Useful Design Data (12/12)
j
~ I,
'
J
C.15 Staircase dimensions ~
Go Tread
I
/ Rise
dr
I
•.._Riser, .~~:;== where / applicable
~
I
' J Rise of stair
-=
·'
Pitch line- -"""'==
)
I
-ll-overlap
' J
or rake
I I '
J
Stairway terms \
)
I
j
Single rung 90° ladders
Companion,step i
75° or ship type ladders
~
II
\
)
'
)
50° Exceptional cases only
45°
STAIRS
1 ' j
' j
1co Limited use ramos
...., i
'
200
250
300
)
'
350
Tread 'Go' in millimetres
I
c I
'
J
I i '
J
~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
i ' J
' J
I
w
r
'
I I
I
1,....1
r ,
Appendix D- Proprietary Components (1/9)
!
1,....1
APPENDIX D
r ,
D .1 Macalloy Bars Bar dia.
mm
Stressing ties
Stainless steel stressing ties
18 20
Stainless steel architectural ties
High strength precision ties
43
50
17m
79
80
36
49
58
52
71
83
82
114
132
144
198
229
219
303
351
147
22
r '
24 r ,
Tie rods grades
92
153
27
112
187
30
138
230
195
322
25
241
26.5
270
232
I
u I
'
I
L '
32
394
'--'
36
500
r
~
40
618
L.
45
(
I
379
591
I
(
1
I
50
959
L
60
398
525
636
r ,
72
574
758
918
L
75
2056
r , I
90
709
1022
i......
100
892
1286
I
'
I
Approximate safe working loads (kN)
'--'
I I
'
L r
! L
'
r ,
r '
I .
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
r '
ARlUIP
Appendix D - Proprietary Components (2/9)
Super Holorib Z28
D.2 Composite decking [Richard Lees ltd.] .h Load ::SJan !able- Normal Weig SUPPORT CONDITION
A
SLAB DEPTH mm
0.9mmGAUGE IMPOSED LOAD (kN/m')
.
Permanent -+Temporary
100 120 130 150 175 200 100 120 130 150 175 200 100 120 130 150 175 200
SINGLE
A
1.\
MULTIPLE
A
IS
1.\
PROPPED
A
+
1.\
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.25 4.60 5.30 5.04 4.82
I.OMMGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.25 4.60 5.18 5.04 4.82
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.16 4.33 4.63 4.96
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.17 3.50 3.65 3.92 4.23
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.60 5.30 5.44
I~ ~
1.2mmGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.60 5.30 5.44
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.53 4.83 5.17
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.34 3.68 3.83 4.11 4.42
_5.2~ ~.20
~0
~
. 3.09 2.92 2.85 2.71 2.57 2.45 3.51 3.35 3.28 3.14 2.99 2.84 3.55 4.25 4.60 5.30 5.95 5.69
5.0
6.7
10.0
3,09 3.09 2.92 2.92 2.85 2.85 2.71 2.71 2.57 2.57 2.45 2.45 3.51 3.51 3.35 3.35 3.28 3.28 3.14 3.14 2.99 2.99 2.84 2.84 3.55 3.44 4.25 4.01 4.60 4.18 5.22 4.47 4.79 5.56 5.~ __J.69_ ~08
3.09 2.92 2.85 2.71 2.57 2.45 3.51 3.35 3.28 3.14 2.99 2.84 3.55 4.25 4.60 5.30 5.95
I
Notes (On tables to left) I. *depicts maximum spans when deck used as permanent shuttering only. 2. The spans indicated assume clear span+ IOOmm to the centreline of supports. 3. A span to depth ratio of35:1 for normal weight and 30:1 for lightweight concrete is imposed in deriving the above spans. 4. For calculating deflections an additional loading of0.5 kN/m2 is included by RLSD Ltd to allow for non-recoverable deflection due to construction personnel. Maximum deflections are limited to span/130 after taking account ofponding. 5. All other construction stage design checks include an allowance of 1.5 kN/IW for construction loading. 6. Tables are based on grade C30 concrete of wet density 2,400 kglml and 1900 kg/m2 for lightweight. 7. The dead weight of the slab has been included in the development of the spans shown. However, consideration should be given to finishes, partition walls, etc when reading from these tables. 8. Composite slabs are designed as simply supported irrespective of the deck support configuration. A nominal crack control mesh is required over the supports in accordance with clause 6.7, 6.8 and 6.9 ofBS 5950:Part 4. 9. Decking is manufactured from material meeting the following specification: BS EN 10147 designated in accordance with BS EN 10025
S280 GD + Z275 NA-C.
s·---FIRE RATING hrs
_____ --o---·· . htC- - - - - - - - Ligh --o--LoadS oan Tab! ----1.0 SUPPORT CONDITION
A
SLAB DEPTH mm
0.9mmGAUGE IMPOSED LOAD (kN/m')
.
Permanent -+Temporary
SINGLE
A
1.\
MULTIPLE
A
IS
1.\
PROPPED
A
+
1.\
-
100 120 130 150 175 200 100 120 130 150 175 200 100 120 130 150 175 200
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.30 5.21
l.OMMGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.30 5.21
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.12 5.21
2.74 2.60 2.53 2.42 2.30 2.19 3.D4 3.05 2.97 2.83 2.69 2.56 3.04 3.55 3.71 4.55 4.32 4.61
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.00 5.30 5.62
1.2mmGAUGE
IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.55 5.30 5.62
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.55 5.30 5.62
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.64 3.89 4.19 4.52 4.82
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
5.0
6.7
10.0
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 4.89 5.20
1.5
2.0
SLAB DEPTH mm
100 120 130 150 175 200 105 110 130 150 175 200 130 140 150 175 200
lified ---
Fire -. D
MethodC -·
-o--
A142 6.7 2.50 3.00 3.07 3.19
2.77 2.50 2.14 3.30 3.00 2.59 3.42 3.12 2.71
A252 6.7 2.50 3.00 3.64 3.78 3.94 4.08
A193 6.7 2.50 3.00 3.64 3.78 3.94 4.08
10.0 2.14 2.58 3.14 3.28 3.44 3.58
5.0 2.78 3.31 4.01 4.10 4.10 4.10
2.77 2.50 3.30 3.00 4.06 3.71 4.10 3.86 4.10 4.00
2.14 2.59 3.22 3.38 3.52
2.77 2.50 3.30 3.00 4.06 3.71 4.10 3.86 4.10 4.00
3.30 3.35 3.48 3.50
2.59 3.30 2.65 3.98 2.79 4.10 2.90 4.10
10.0 5.0 2.14 2.78 2.58 3.31 2.64 4.01 2.76 4.10 4.10 4.10
3.00 3.06 3.19 3.30
10.0 2.14 2.58 3.14 3.28 3.44 3.58
5.0 2.79 3.43 3.50 3.50
3.00 2.59 3.63 3.15 3.79 3.31 3.93 3.45
~--)
=-·--]
~--J
::___)
~---)
:_ ___ j
J
=-J
~----J
-
..
10.0 2.12 2.63 2.70 2.84
5.0 2.79 3.60 3.90 4.10 4.10 4.10 2.79 2.83 3.90 4.10 4.10 4.10 3.33 3.40 3.46 3.50 3.50
A193 6.7 2.50 3.60 3.69 3.85 4.02 4.02 2.50 2.54 3.64 3.80 3.98 4.10 3.00 3.07 3.13 3.28 3.41
10.0 2.12 3.07 3.15 3.31 3.48 3.63 2.12 2.16 3.12 3.27 3.44 3.59 2.57 2.63 2.69 2.84 2.96
5.0 2.79 3.60 3.90 4.10 4.10 4.10 2.79 2.83 3.90 4.10 4.10 4.10 3.90 4.08 4.10 4.10 4.10
A252 6.7 2.50 3.60 3.69 3.85 4.02 4.10 2.50 2.54 3.64 3.80 3.98 4.10 3.60 3.68 3.76 3.93 4.09
10.0 2.12 3.07 3.15 3.31 3.48 3.63 2.12 2.16 3.12 3.27 3.44 3.59 3.08 3.16 3.23
I
3.40 3.56
Notes (on table above) I. The simplified fire design method is based on fire tests on composite slabs incorporating steel meshes with 15-45mm top cover. This method is applicable for any construction where the mesh may act in tension over a supporting beam or wall (negative bending). This includes all end bay conditions. 2. All figures in the table are derived strictly in accordance with guidance given in SCI publication 056-'The fire resistance of composite floors with steel decking' (2nd edition), 1991. 3. Loads shown here are unfactored working loads and should include all imposed dead and live loads, excluding only the self weight of the slab. An ultimate load factor of 1.0 is assumed throughout.) 4. The mesh should satisfy the minimum elongation requirement given in BS4449 : 1998. 5. For conditions outside the scope of these tables, including all isolated spans, consult the appropriate fire engineering chart.
ARUIP
Ver 3.0 I Aug 98
=·_j
A142 6.7 2.50 3.08 3.16 3.30
2.79 2.50 2.12 2.14 2.83 2.54 2.16 2.59 3.41 3.07 2.63 3.22 3.50 3.20 2.76 3.38 3.52
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
)
--
LIGHTWEIGHT CONCRETE SPAN (m) FOR GIVEN IMPOSED LOAD (kN/m')
NORMAL WEIGHT CONCRETE SPAN (m) FOR GIVEN INPOSED LOAD (kN/m2)
5.0 2.78 3.31 3.38 3.49
~---
~--.J
~--·-]
.J
J
_j
)
_j
:_._J
·--J
(
r-
r-
[
[
r-
r-
[
r
[
[
(
f
-
r-
r-
r----: r
--
[
-
Appendix D - Proprietary Components (2/9)
Composite Decking cont. [Ward Multideck 60- Normal weight concrete] Lo~._.
...
........ ""' .......... "-' ...............~ .....
Span Type (Support Condition)
X
X
X
X
X
---------
Slab Depth
Min Mesh
(mm)
Size
120 130 140 150 160 175 200 250 120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252 A98 A142 A142 A142 A142 A193 A193 A252
...,.,.._.,.._.,,a:.&...,.A.O.&,..A.JU'-'.O.~"-'""
t-0.9
4.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.88 2.78 2.68 2.60 2.52 2.42 2.28 2,06_
t-0.9
Slab Depth
Min Mesh Size
120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252
4.0 4.19 4.42 4.61 4.78 4.94 4.79 4.56 4.12
200
A193
250
A252
X
oc
X X
4'
X+ X
+ +X
10.0 3.01 2.90 2.80 2.71 2.63 2.53 2.37 2.14 3.15 3.22 3.13 3.05 2.96 2.84 2.67 2.40
12.0 2.81 2.90 2.80 2.71 2.63 2.53 2.37 2.14 2.80 3.03 3.13 3.05 2.96 2.84 2.67 2.40
14.0 2.54 2.73 2.80 2.71 2.63 2.53 2.37 2.14 2.53 2.72 2.92 3.05 2.96 2.84 2.67 2.40
4.0 3.36 3.26 3.17 3.09 3.01 2.89 2.71 2.44 3.66 3.55 3.45 3.36 3.28 3.16 3.00 2.69
10.0 3.31 3.26 3.17 3.09 3.01 2.89 2.71 2.44 3.31 3.51 3.45 3.36 3.28 3.16 3.00 2.69
12.0 2.93 3.16 3.17 3.09 3.01 2.89 2.71 2.44 2.93 3.16 3.38 3.36 3.28 3.16 3.00 2.69
Total Applied Load (kN/m 1)
14.0 2.65 2.86 3.05 3.09 3.01 2.89 2.71 2.44 2.65 2.86 3.05 3.23 3.28 3.16 3.00 2.69
4.0 3.50 3.40 3.31 3.22 3.14 3.03 2.85 2.56 3.82 3.71 3.60 3.51 3.42 3.30 3.13 2.83
6.0 3.50 3.40 3.31 3.22 3.14 3.03 2.85 2.56 3.82 3.71 3.60 3.51 3.42 3.30 3.13 2.83
t=l.l
t-1.0 Total Applied Load (kN/m 2)
Total Applied Load (kN/m1)
. . . .. .. ... .
6.0 3.54 3.78 4.00 4.18 4.33 4.53 4.56 4.12
-(See note 6) 8.0 10.0 3.03 3.23 3.43 3.62 3.20 3.79 3.36 4.04 3.59 4.40 3.94 4.12 4.12
2.89 3.04 3.25 3.57 4.12
2.98 3.27 3.81
(See note6) 6.0 4.0 4.20 3.75 3.99 4.55 4.90 4.21 5.09 4.40 4.61 5.25 4.82 5.47 5.14 5.34 4.80 4.80
5.45
4.83
4.40
3.93
3.55
3.27
5.79
5.91
5.30
4.87
4.52
. .
or
X+ P++X
8.0 3.01 2.90 2.80 2.71 2.63 2.53 2.37 2.14 3.31 3.22 3.13 3.05 2.96 2.84 2.67 2.40
(See note 6) 6.0 8.0 3.36 3.36 3.26 3.26 3.17 3.17 3.09 3.09 3.01 3.01 2.89 2.89 2.71 2.71 2.44 2.44 3.66 3.63 3.55 3.55 3.45 3.45 3.36 3.36 3.28 3.28 3.16 3.16 3.00 3.00 2.69 2.69
-(see note 6) 8.0 10.0 3.50 3.32 3.40 3.40 3.31 3.31 3.22 3.22 3.14 3.14 3.03 3.03 2.85 2.85 2.56 2.56 3.77 3.32 3.71 3.57 3.60 3.60 3.51 3.51 3.42 3.42 3.30 3.30 3.13 3.13 2.83 2.83
12.0 2.94 3.15 3.31 3.22 3.14 3.03 2.85 2.56 2.94 3.15 3.38 3.51 3.42 3.30 3.13 2.83
14.0 2.65 2.85 3.05 3.22 3.14 3.03 2.85 2.56 2.65 2.85 3.05 3.24 3.42 3.30 3.13 2.83
....................................................................
(mm)
+
14.0 2.39 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.39 2.58 2.68 2.60 2.52 2.42 2.28 2.06
(See note6) 6.0 4.0 3.01 3.01 2.90 2.90 2.80 2.80 2.71 2.71 2.63 2.63 2.53 2.53 2.37 2.37 2.14 2.14 3.31 3.31 3.22 3.22 3.13 3.13 3.05 3.05 2.96 2.96 2.84 2.84 2.67 2.67 2.40 2.40
t-1.2
Total Applied Load (kN/m 2)
Total Applied Load (kN/m 1)
12.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.65 2.78 2.68 2.60 2.52 2.42 2.28 2.06
au,..,.o.&AJ&.I
Condition)
X
6.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.88 2.78 2.68 2.60 2.52 2.42 2.28 2.06
-(See note 6) 8.0 10.0 2.48 2.48 2.40 2.40 2.32 2.32 2.25 2.25 2.19 2.19 2.10 2.10 1.98 1.98 1.79 1.79 2.88 2.85 2.78 2.78 2.68 2.68 2.60 2.60 2.52 2.52 2.42 2.42 2.28 228 2.06 2.06
t-1.1
t-1.0
Total Applied Load (kN/m 1)
(Support
Span Type
. ...
&u•&'-'<'&&.-..A"-'TA&._,.,_, • ._.._..LI._..&
12.0
14.0
6.27
. .. .. .. .. .. . 8.0
10.0
3.42 3.62 3.80 3.98 4.23 4.61 4.80
3.20 3.37 3.53 3.76 4.11 4.73
12.0
3.19 3.41 3.37 4.31
14.0
3.13 343 3.97
. . . . . . . . 5.63
5.15
t-1.2
Total Applied Load (kN/m 1) See note 6)
4.0 4.20 4.55 4.90 5.25 5.53 5.76 6.00 5.38 6.07
6.58
6.0 3.91 4.15 4.37 4.50 4.78 5.06 5.40 5.38
. .. .. .. .. .. 8.0
10.0
12.0
3.56 3.76 3.95 4.13 4.39 4.77 5.38
3.33 3.57 3.67 3.90 4.26 4.88
3.32 3.54 3.87 4.45
14.0
.. . . . . . . . . 5.92
3.56 4.11
5.42
Total Applied Load (kN/m 1)
4.0 4.20 4.55 4.90 5.25 5.60 5.98 6.26 5.66 6.32
6.86
6.0 3.91 4.15 4.37 4.58 4.78 5.06 5.47 5.66
-(see note 6) 8.0 10.0
12.0
14.0
3.76 3.95 4.13 4.38 4.77 5.42
3.54 3.87 4.45
3.25 3.56 4.11
.. .. .. .. .. ... ... 3.67 3.90 4.26 4.88
. . . . . . . . . 6.16
-
Notes:
1 2
All tabulated figures include the self weight of the slab. All tabulated figures include a construction allowance of 1.5kN/m1 for spans of 3m and over, or 4.5/span kN/m1 for spans less than 3m in accordance with the recommendations ofBS 5950: Part4l994. The suggested maximum ratios of slab span to slab depth are 30 for LWC and 35 for NWC to control deflections. Deflection under construction loading (wet concrete etc.)
has been limited to that stipulated in BS 5950: Part 4 1994. For the purpose of calculating the span/depth ratio, the distance between the centre-lines of the supports of an end span may be used. 4 Minimum reinforcement mesh sizes provide 0.1% of the gross cross-sectional areas of the concrete at the support. The composite slabs should meet the requirements ofBS 5950; Part 4 1994 with regard to their composite behaviour under normal imposed loads. Total applied load referred to in the above table is a working
Load based on factored combinations of live loads, finishes, ceilings, services and partitions, divided by a load factor of 1.60 (excluding slab self weight). Temporary supports should remain in place until the concrete 7 has achieved its 28 day cub strength. • The addition of props gives no further benefit in these cases. Propped loads assume props are equally spaced.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
10
Deck must lie flat on all support beams. Point only contact will affect design loading.
ARUJP
r---~
[
--
Appendix D - Proprietary Components (3/9)
Composite Decking cont. [Ward Multideck 60- Lightweight concrete] JYJ..n.."l....1U I,.JJU C &:,n.JUA.::>O:JJ.D.Lo.l!< .:OJ: n.l'l
&..O.&'U".&.&AOTL<.U.... .&.&&'-''U'H"-'.I'U:.<.&.A'<
Span Type (Support Condition)
K
K
K
K
K
a....a"Ur.a.aan.ao..a'-".&.1.& '-''-""'-'
Span Type
120 130 140 150 160 175 200 250 120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252 A98 Al42 A142 Al42 A142 Al93 A193 A252
'.&L<
..
4.0 2.67 2.58 2.50 2.43 2.37 2.28 2.15 1.79 3.08 3.00 2.91 2.82 2.74 2.63 2.48 2.25
Total Applied Load (kN/m1) See note_!}_ 10.0 12.0 6.0 8.0 2.67 2.65 2.67 2.39 2.58 2.58 2.58 2.58 2.50 2.50 2.50 2.50 2.43 2.43 2.43 2.43 2.37 2.37 2.37 2.37 2.28 2.28 2.28 2.28 2.15 2.15 2.15 2.15 1.96 1.96 1.96 1.96 3.08 3.08 2.39 2.65 3.00 2.58 2.85 3.00 2.9 2.91 2.77 2.91 2.82 2.82 2.82 2.82 2.74 2.74 2.74 2.74 2.63 2.63 2.63 2.63 2.48 2.48 2.48 2.48 2.25 2.25 2.25 2.25
n.vraa:...-
IU~IUUIU
120 130 140 150 160 175 200 250
A98 A142 Al42 A142 Al42 Al93 A193 A252
4.0 3.66 3.92 4.20 4.50 4.94 5.25 4.95 4.50
3.89 4.13 4.32 4.80 4.71 4.95 4.50
... K
200
A193
5.76
5.05
P+Of'K
250
A252
6.30
5.59
...
K
or
X+ X+ X ...
3.55 3.76 4.48 4.23 4.55 4.50
--
3.30 3.95 3.72 4.11 4.50
3.48 3.35 3.70 4.20
14.0
.
3.38 3.71
. . . . . . 5.06
t~1.1
Total Applied Load (kN/m1)
C.l!.n..LVII.3.:;u_oa.,£, ,;,crt..n
. .. .. .. .. . .. .. . 4.68
t~I.2
t~1.0
Total Applied Load (kN/m:) (See note 6) 4.0 6.0 8.0 10.0 3.19 3.19 3.19 3.17 3.10 3.10 3.10 3.10 3.03 3.03 3.03 3.03 2.95 2.95 2.95 2.95 2.86 2.86 2.86 2.86 2.75 2.75 2.75 2.75 2.59 2.59 2.59 2.59 2.35 2.35 2.35 2.35 3.51 3.51 3.51 3.17 3.42 3.40 3.42 3.42 3.33 3.33 3.33 3.33 3.25 3.25 3.25 3.25 3.18 3.18 3.18 3.18 3.08 3.08 3.08 3.08 2.92 2.92 2.92 2.92 2.63 2.63 2.63 2.63
12.0 2.81 3.03 3.03 2.95 2.86 2.75 2.59 2.35 2.81 3.03 3.24 3.25 3.18 3.08 2.92 2.63
14.0 2.54 2.73 2.92 2.95 2.86 2.75 2.59 2.35 2.54 2.72 2.92 3.11 3.18 3.08 2.92 2.63
4.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.87 3.77 3.68 3.59 3.51 3.40 3.23 2.96
8.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.60 3.77 3.68 3.59 3.51 3.40 3.23 2.96
6.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.60 3.77 3.68 3.59 3.51 3.40 3.23 2.96
10.0 3.32 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.30 3.57 3.68 3.59 3.51 3.40 3.23 2.96
12.0 2.94 3.16 3.38 3.30 3.22 3.12 2.97 2.72 2.94 3.16 3.68 3.59 3.51 3.40 3.23 2.96
14.0 2.66 2.86 3.05 3.24 3.22 3.12 2.97 2.72 2.66 2.86 3.05 3.24 3.43 3.40 3.23 2.96
14.0 2.65 2.86 3.05 3.24 3.36 3.26 3.10 2.82 2.65 2.86 3.05 3.24 3.43 3.55 3.38 3.10
4.0 3.95 4.21 4.47 4.73 4.98 5.35 6.00 6.20
t=1.2 Total Applied Load (kN/m1) _(See note~_ 8.0 10.0 12.0 6.0
14.0
3.90 4.20 4.50 4.80 5.24 5.82 6.20
3.67 4.11
7.32
6.50
4.0 3.71 3.61 3.52 3.44 3.36 3.26 3.10 2.82 3.97 3.94 3.84 3.75 3.67 3.55 3.38 2.96
Ill
t~l.l
Total Applied Load (kN/m1 ) (See note 6) 6.0 8.0 10.0 4.0 3.79 3.60 4.05 3.53 3.90 4.31 3.74 3.33 4.20 4.56 4.47 3.95 3.47 3.65 4.81 4.77 4.14 3.90 5.25 5.01 4.42 5.31 4.82 4.29 5.84
3.29 3.51 3.87
3.21 3.54
6.00
5.36
4.83
4.28
3.87
3.54
6.00
6.51
5.93
5.38
4.97
4.37
3.87
7.02
. .. .. .. .. ... 12.0
14.0
4.0 3.90 4.15 4.41 4.67 4.92 5.28 5.98 5.92
Total Applied Load (kN/m1 ) See note 61_ 10.0 12.0 8.0 14.0
. .. .. .. .. . . .. .. .. . .. .. .. .. .. . .. . . . . . . . . . . . . . . . . . . . . 6.0
3.90 4.20 4.50 4.80 5.25 5.63 5.92
3.66 3.88 4.10 4.30 4.58 5.01 5.66
6.23
5.65
3.43 3.61 3.79 4.04 4.44 5.14
3.65 4.01 4.52
3.34 3.67 4.00
4.10 4.30 4.57 5.01 5.76
...
-
NOTES I All tabulated figures include the self weight of the slab. 2 All tabulated figures include a construction allowance of 1.5kN/rrt for spans of 3m and over, or 4.5kN/m2 for spans less than 3m in accordance with the recommendations of 855950: Part 4 1994. The suggested maximum ratios of slab span to slab depth are 30 for
Total Applied Load (kN/m1) • isee note 6l 10.0 6.0 8.0 12.0 3.60 3.60 3.32 2.94 3.61 3.57 3.16 3.61 3.52 3.38 3.52 3.52 3.44 3.44 3.44 3.44 3.36 3.36 3.36 3.36 3.26 3.26 3.26 3.26 3.10 3.10 3.10 3.10 2.82 2.82 2.82 2.82 3.60 3.60 3.32 2.94 3.94 3.94 3.57 3.16 3.84 3.84 3.38 3.84 3.75 3.75 3.75 3.75 3.67 3.67 3.67 3.67 3.55 3.55 3.55 3.55 3.38 3.38 3.38 3.38 3.10 3.10 3.10 3.10
See not~(;)
t~I.O
Total Applied Load (kN/m1) -(See note 6) 6.0 8.0 10.0 12.0
or
K...
14.0 2.39 2.58 2.50 2.43 2.37 2.28 2.15 1.96 2.39 2.58 2.77 2.82 2.74 2.63 2.48 2.25
t~0.9
Min Mesb Size
K
IU
t~0.9
Slab Depth fmml
(Support Condition)
K
(mm)
Min Mesh Size
Slab Depth
L WC and 35 for NWC to control deflection. Deflection under construction loading (wet concrete etc. ) has been limited to that stipulated inBS5950: Part 4 1994. For purpose of calculating the span /depth ratio, the distance between the centre-lines of the supports of an end span may be used.
Minimum reinforcement mesh sizes provide 0.1% of the gross cross -sectional area of the concrete at the support. The composite slabs should meet the requirements ofBS 5950: Part 4 1994 with regard to their composite behaviour under normal imposed loads. Total applied load referred to in the above table is a working load based on factored combinations oflive loads, ceilings, finished, services and partitions, divided by a load factor of 1.60 (excluding slab self weight).
]
J
J
J
J
-J
__ ]
__j
~---J
J
~--
_j
L__
Temporary supports should remain in place until the concrete has achieved its 28 day cube strength. *The addition of props gives no further benefit in these cases. Propped loads assume props are equally spaced. Deck must lie flat on all support beams. Point only contact will affect design loading.
9 10
ARUJP
Ver 3.0 I Aug 98
_]
3.63 4.01 4.65
-
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
J
3.79 4.03 4.43 5.12
:_____ __
]
J
__ j
=---J
~--~J
J
__ j
[
~
[
r~~~
~-~-=
r
r-
--~
c--~
c
r
r~-~
l
r-
r
r-
r
r-
r--= r ----=
r---~
Appendix D -Proprietary Components (4/9)
Composite Decking cont. [Ward Multideck 60- Fire resistance] ,,....,
........
Slab Depth (mm)
H~Jl\.JUJl.O.
Min
Mesh
.._VI''-'"'-'"'-"-"'
Fire ratine: 1.0 hour s Total Applied Load (kN/m 2) See note 6 (page 8)
...
UUUIU... AJ.O.'UU._>Jo.;:r'-LIO ... &O>"'Jln.i\
Ill
Fire ratin2: 1.5 hour s Total Applied Load (kN/m 2) See note 6 (page 8)
Fire ratine: 2.0 hour s - end span Total Applied Load (kN/m 2) See note 6 (page 8)
Fire rating: 2.0 hour(s internal span Total Applied Load (kN/m 2) See note 6 (page 8)
Size
4.00 130 3.85 142 130 193 4.18 130 252 4.51 140 142 4.01 140 193 4.36 140 252 4.71 !50 142 4.06 !50 193 4.44 !50 252 4.80 160 142 4.13 !60 193 4.49 !60 252 4.86 175 142 4.19 175 193 4.55 175 252 4.93 *142 200 4.29 200 193 4.65 5,03 200 252 *142 250 4.44 250 *193 4.81 250 252 5.19 ciGHTWEIGHT CONCRETE Fire Slab Min Depth Mesh (mm) Size
6.00 3.43 3.74 4.03 3.60 3.91 4.23 3.67 3.99 4.32 3.73 4.05 4.39 3.80 4.13 4.47 3.92 4.25 4.59 4.10 4.43 4.79
4.00 8.00 10.00 12.00 6.00 2.73 2.96 3.20 3.63 2.98 2.77 2.87 3.25 3.02 3.12 3.95 3.54 3.25 4.28 3.84 3.51 3.26 3.37 3.13 2.91 2.95 3.78 3.40 4.13 3.72 3.41 3.17 3.20 4.02 3.69 3.43 4.47 3.46 3.23 3.00 3.89 3.52 3.01 4.26 3.85 3.54 3.29 3.26 4.62 4.17 3.83 3.57 3.53 3.31 3.08 3.95 3.58 3.09 4.33 3.62 3.38 3.35 3.92 4.69 3.92 3.65 3.62 4.25 3.42 3.21 4.04 3.69 3.21 4.03 3.74 3.50 4.42 3.48 4.05 3.80 4.79 3.76 4.38 3.60 3.42 4.18 3.86 3.39 4.56 3.93 3.70 3.70 4.21 4.01 4.26 3.99 4.95 4.56 MAXIMUM PERMISSIBLE SPAN m ratine: 1.0 houris Fire ratine: l.S hour s Total Applied Load (kN/m2) Total Applied Load (kN/m2) See note 6 (page 8) See note 6 (page 8)
4.00 120 142 3.60 120 193 3.60 120 252 3.60 130 142 3.90 130 193 3.90 130 252 3.90 140 142 4.20 140 193 4.20 140 252 4.20 !50 142 4.31 !50 193 4.50 !50 252 4.50 160 142 4.37 160 193 4.76 160 252 4.80 175 *142 4.45 175 193 4.84 175 252 5.19 *142 200 4.57 200 193 4.97 200 252 5.38 *142 250 4.76 250 *193 5.16 250 252 5.58 Spans of3.5m and over are based on
6.00 10.00 8.00 12.00 3.43 2.87 2.68 3.11 3.60 3.12 3.39 2.91 3.37 3.14 3.60 3.60 3.63 3.04 3.30 2.84 3.32 3.10 3.90 3.60 3.59 3.90 3.89 3.35 3.77 3.17 3.43 2.97 4.12 3.46 3.75 3.24 3.76 3.51 4.20 4.07 3.84 3.24 3.50 3.04 4.19 3.82 3.54 3.31 4.50 3.83 4.14 3.59 3.91 3.57 3.31 3.10 4.26 3.89 3.60 3.38 3.91 4.62 4.22 3.66 3.40 3.19 3.99 3.66 4.35 3.98 3.70 3.47 4.01 4.71 4.31 3.76 4.13 3.54 3.80 3.33 4.49 3.85 4.13 3.61 4.16 4.86 4.47 3.91 3.77 4.34 3.56 4.03 4.09 4.71 4.37 3.86 5.10 4.72 4.42 4.17 12mm deck only. For single span conditions use the
8.00 3.15 3.41 3.68 3.30 3.58 3.87 3.37 3.66 3.97 3.43 3.72 4.03 3.51 3.81 4.12 3.63 3.94 4.25 3.83 4.14 4.47
10.00 2.92 3.16 3.41 3.06 3.32 3.59 3.14 3.41 3.69 3.20 3.47 3.75 3.27 3.55 3.84 3.40 3.69 3.98 3.60 3.90 4.21
4.00
6.00
8.00
3.63 3.22 2.92 3.90 3.54 3.22 3.52 3.90 3.87 3.83 3.40 3.10 4.20 3.42 3.75 3.74 4.20 4.11 3.93 3.19 3.50 4.35 3.88 3.53 4.50 3.88 4.25 3.97 3.56 3.25 4.40 3.93 3.59 3.94 4.80 4.31 4.04 3.62 3.32 4.45 4.00 3.67 4.02 4.89 4.39 4.13 3.44 3.73 4.56 3.79 4.12 5.00 4.52 4.15 4.28 3.62 3.91 4.72 3.99 4.31 5.17 4.72 4.37 Ward Multideck Software (see page 6)
10.00
12.00
4.00
6.00
8.00
10.00
12.00
4.00
6.00
8.00
2.60 2.83 3.06 2.73 2.98 3.22 2.83 3.10 3.36 2.91 3.18 3.45 3.03 3.31 3.58 3.22 3.51 3.80
3.13 3.48 3.85 3.26 3.65 4.03 3.38 3.78 4.19 3.45 3.86 4.28 3.53 3.96 4.39
2.82 3.14 3.47 2.95 3.30 3.64 3.07 3.43 3.80 3.15 3.53 3.90 3.26 3.66 4.05
2.59 2.88 3.18 3.72 3.03 3.35 2.83 3.17 3.50 2.92 3.27 3.62 3.05 3.41 3.78
2.41 2.68 2.96 2.53 2.83 3.12 2.65 2.96 3.27 2.74 3.06 3.39 2.87 3.22 3.56
2.27 2.52 2.78 2.38 2.66 2.93 2.49 2.79 3.08 2.59 2.89 3.20 2.73 3.05 3.38
3.73 4.16 4.60 3.95 4.42 4.87 4.15 4.66 5.15 4.31 4.86 5.40 4.55 5.15 5.74
3.36 3.75 4.14 3.56 3.99 4.40 3.76 4.22 4.67 3.94 4.44 4.93 4.20 4.75 5.30
3.09 3.44 3.80 3.28 3.67 4.04 3.47 3.90 4.31 3.65 4.11 4.56 3.92 4.44 4.94
Fire rating: 2.0 houris -end soan
4.00
2.70 2.52 2.97 2.77 3.03 3.25 2.86 2.68 3.39 3.80 3.16 2.96 3.23 3.46 4.20 2.96 2.77 3.56 3.06 4.00 3.27 3.36 4.43 3.59 2.82 3.63 3.01 3.33 3.12 4.09 3.42 4.53 3.65 3.08 2.89 3.67 3.41 3.20 4.14 3.50 4.59 3.74 3.20 3.01 3.74 3.32 4.21 3.53 3.64 3.87 4.67 3.21 3.85 3.39 3.53 4.33 3.74 4.09 3.86 4.80 or contact Ward Technical Services.
6.00
8.00
10.00
3.01 3.38 3.73 3.17 3.56 3.95 3.25 3.66 40.5 3.30 3.72 4.12 3.39 3.81 4.22 3.52 3.95 4.38
2.74 3.07 3.40 2.90 3.25 3.60 2.97 3.34 3.70 3.03 3.41 3.77 3.12 3.50 3.88 3.26 3.66 4.06
2.54 2.84 3.14 2.68 3.01 3.34 2.76 3.10 3.43 2.81 3.16 3.50 2.91 3.27 3.62 3.06 3.43 3.80
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
2.87 3.20 3.53 3.06 3.42 3.75 3.24 3.64 4.02 3.42 3.85 4.27 3.70 4.18 4.65
12.00
2.70 3.01 3.31 2.87 3.21 3.54 3.05 3.43 3.78 3.23 3.64 4.03 3.50 3.96 4.41
Fire rating: 2.0 hour s internal span Total Apptied Load (kN/m 2) Sec note 6 (page 8)
Total Applied Load (kN/m 2) See note 6 (page 8)
12.00
10.00
12.00
2.38 2.66 2.94 2.51 2.82 3.12 2.58 2.90 3.21 2.64 2.97 3.29 2.73 3.07 3.40 2.89 3.24 3.59
4.00
6.00
8.00
4.09 4.20 4.20 4.35 4.50 4.50 4.48 4.80 4.80 4.59 5.17 5.25 4.76 5.40 5.00 5.02 5.70 6.37
3.63 4.08 4.20 3.87 4.37 4.50 4.01 4.53 4.80 4.12 4.67 5.17 4.30 4.87 5.43 4.58 5.21 5.81
3.31 3.72 4.11 3.53 3.98 4.42 3.66 4.14 4.59 3.77 4.27 4.75 3.96 4.48 4.99 4.24 4.82 5.38
10.00
3.06 3.43 3.80 3.27 3.68 4.09 3.39 3.83 4.25 3.51 3.97 4.40 3.68 4.17 4.64 3.97 4.51 5.04
12.00
2.86 3.21 3.55 3.06 3.45 3.82 3.18 3.59 3.96 3.29 3.72 4.13 3.46 3.92 4.36 3.75 4.26 4.75
I
ARUJP
r~--:
r----
...., i
!
~ J
Appendix D- Proprietary Components (6/9) '
I j
l
I
D.3 Purlin Systems- Zed purlin sleeved system [Metsec] SECTION REFEREN CE
1000
1200
1500
6.14 8.29 9.29
1.02 1.3!1
0.85
1.55
172.Z.I6 202.2.15 202.Z.I6 202.Z.I!I 202.Z.20 232.Z.I6
9.97 11.02 12.20 14.47 16.62 14.68
1.66 1.84 2.03 2.41 2.77 2.45
1.29 1.39 !.53
0.68 0.92 1.03
1.69 2.01 2.31 2.04
1.36 1.61 !.liS 1.63
172.Z.IS 172.Z.I6 202.Z.IS 202.Z.I6 202.Z.I8 202.Z.20 232.Z.l6 232.Z.I8
3.85 4.ll 4.21 4.49 5.03 5.57 5.11 5.37
8.01 8.52 10.13 11.23 13.32 15.20 13.51 16.39
1.23 1.31 1.56 1.73 2.05 2.34 2.08 2.52
1.03 1.09 1.30 1.44 1.71 1.95 1.73 2.10
0.82 0.87 1.04 1.15 1.37 1.56 !.39 1.68
202.Z.IS 202.Z.16 202.Z.I8 232.Z.I6 232.Z.18 232.Z.20 262.Z.I!I
4.21 4.49 5.03 5.11 5.73 6.34 6.25
9.37 10.39 11.!19 12.51 15.17 17.75 17.45
1.34 1.4!1 1.70 1.79 2.17 2.54 2.49
1.12 1.24 1.41 1.49 !.HI 2.11 2.08
0.89 0.99 1.13 1.19 1.45 1.69 !.66
262.Z.18 262.Z.20
4.49 5.03 5.11 5.73 6.34 7.26 6.25 6.92
9.26 10.37 11.63 14.12 16.51 19.62 16.24 19.18
1.23 1.38 1.55 1.811 2.20 2.62 2.17 2.56
!.03 1.15 1.29 !.57 ).83 2.18 1.80 2.13
0.82 0.92 1.03 1.25 1.47 1.74 1.44 1.70
202.2.20 202.Z.23 232.Z.I6 232.Z.III 262.Z.18 262.Z.20 262.Z.23 262.Z.25
5.57 6.35 5.11 5.73 6.25 6.92 7.92 8.59
IO.o? 11.50 111.611 13.19 15.17 17.92 21.83 24.32
1.26 1.44 1.36 ).65 1.90 2.24 2.73 3.04
!.OS 1.20 1.13 1.37 l.S8 1.87 2.27 2.53
0.84 0.96 0.91 1.10 1.26 1.49 1.82 2.03
232.Z.I!I 232.Z.20 262.Z.I8 262.Z.20 262.Z.23 262.Z.25
5.73 6.34 6.25 6.92 7.92 8.59
12.11 13.40 14.23 16.81 2CJ.48 22.55
1.42 1.58 1.67 1.98 2.41 2.65
1.19 1.31 1.39 1.65 2.01 2.21
0.95 !.OS 1.12 1.32 1.61 1.77
232.Z.l8 232.Z.20 262.Z.18 262.Z.20 262.Z.23 262.Z.25 302.Z.23 302.Z.25
5.73 6.34 6.25 6.92 7.92 8.59
10.79 11.94 13.38 1582 18.59 20.13 23.84 26.86
1.20 !.33 1.49 1.76 2.07 2.24 2.65 2.98
1.00 1.11 1.24 1.46 1.72 1.86 2.21 2.49
0.80 0.88 0.99 1.17 1.38 1.49 1.77 1.99
262.2.111 262.Z.20 262.2.23 262.Z.25 302.Z.23 302.Z.25
6.25 6.92 7.92 8.59 9.80
12.63 14.59 16.68 18.06 22.51 25.36
1.33 ).54 !.76 1.90 'l.37 2.67
1.11 1.211 1.46 1.58 1.97 2.22
0.89 1.02 1.17 1.27 1.58 1.7!1
262.Z.I8 262.Z.20 262.Z.23 262.Z.25 302.Z.23 302.Z.25
6.25 6.92 7.92 8.59 9.114 9.80
11.88 13.15 15.03 16.27 21.31 "4.01
1.19 1.31 !.50 1.63 2.13 2.40
11.99 1.10 1.25 1.36 1.78 2.00
0.79 0.88 1.00 1.08 1.42 1.60
7.92 8.59
13.60 14.72 20.22 22.20 27.24
1.29 1.40 !.93 2.11 2.59
1.08 1.17 1.60 1.76 2.16
0.86 0.93 1.28 1.41 1.73
13.36 18.64 20.20 25.91 32.02
1.21 1.69 1.84 2.36 2.91
1.01 1.41 1.53 1.96 2.43
0.81 1.13 1.22 1.57 1.94
172.Z.14 172.Z.IS
f ~
~
§ ] il
~
.§ "'§
,;;
]
:~
-5
g. ~
·~
~
~
£
l{
]
'll
~
~
~
·f
·g ] ] ~ ""] ] ] .;' "li 1 1 "" ~ l .§"' .... ~
"' "'
]
.§
li
g .9
"li
.9
] .g
~ ~
j
j ·cl Q
WORKING LOAD TOTAL ALLOWABLE LOADNG in kN/m' PURLIN CENTRES In millimetre! U.D.L kN
3.60 3.60 3.85 4.11 4.21 4.49 5.03 5.57 5.11
142.2.16
]
WEIG liT kglm
• 202.Z.I6 202.Z.IR
9.04 9.80
9.04
9.04 1302.Z.25 342.Z.25 262.Z.25 302.Z.23 302.Z.25 342.Z.25 342.Z.29
9.80 10.98 8.59
9.04 9.80 10.98 12.68
LIS
I.ll 1.22
SPAN
180
360
1800
2400 0.43 0.5!1 0.64 0.69 0.76 0.85 1.00 1.15 1.02
6.35 8.98 9.60 10.22 13.72 14.60 16.35 18.08 21.61
3.18
4.!10 S.ll 6.86 7.30 8.17 9.04 10.81
0.51 0.55 0.65 0.72 0.85 0.97 0.87 1.05
8.25 8.78 11.80 12.56 14.06 15.55 18.61 20.85
0.56 0.62 0.71 0.74 0.90 1.06
1000 SPAN6.0m 0.51 0.69 0.77 0.92 O.!B 1.02 0.92 1.13 1.02 1.34 1.21 1.54 1.38 1.36 1.22 SPAN 6.5m 0.68 0.62 0.73 0.66 0.87 0.78 0.96 0.86 1.02 1.14 1.30 1.17 1.15 1.04 1.40 1.26 SPAN7.0m 0.74 0.67 0.!12 0.74 0.94 0.!15 0.99 0.89 1.20 1.08 1.41 1.27 1.39 1.25 SPAN7.5m 0.69 0.62 0.77 0.69 0.116 0.78 1.05 0.94 1.10 1.1"' 1.45 1.31 1.20 !.OR 1.42 1.28 SPANB.Om 0.70 0.63 0.80 0.72 0.75 11.68 0.92 0.82 1.05 0.95 1.24 1.12 1.52 1.36 1.69 1.52 SPAN8.5m 0.79 0.71 0.88 11.79 0.93 0.84 1.10 0.99 1.34 1.211 1.47 1.33 SPAN9.0m 0.67 0.60 0.74 0.66 11.!13 0.74 0.98 0.8!1 1.15 1.03 1.24 1.12 1.47 1.32 1.66 1.49 SPAN9.5m 11.74 0.66 O.KS 0.77 0.98 0.88 1.06 0.95 1.32 1.18 1.48 1.33 SPANlO.Om 0.66 0.59 0.73 0.66 0.84 0.75 0.90 0.81 1.18 1.07 1.33 1.20 SPANlO.Sm 0.72 0.65 0.78 0.70 1.07 0.96 1.17 1.06 1.30 1.44 SPANll.Om 0.67 0.61 0.94 0.85 1.02 0.92 1.31 1.18 1.62 1.46
ULTIMATE U.D.L.INkN/SPAN DOWN Uplift- Metal Cladding LOAD
SPAN
0.57 0.77 0.86
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
DEFLECTION
Number of Anti Sags
0
I
2
831
13.09 !3.56 !6.17
16.73
19.89 23.57 27.04 23.92
9.45 8.78 9.46 10.74 11.92 13.66
13.09 13.56 15.17 16.73
17.97 19.89 23.57 27.04 23.92
17.97 19.89 23.57 27.04 23.92
....,
4.13 4.39 5.90 6.28 7.03 7.78 9.30 10.42
14.01 15.44 16.59 18.36 21.75 24.96 22.08 26.74
7.91 8.51 7.85 8.47 9.62 10.68 12.19 14.311
14.01
14.01 15.44 16.59 18.36 21.75 24.96 22.0!1 26.74
'
15.44 16.59 18.36 21.75 24.96 22.08 26.74
1.04
10.27 10.92 12.23 16.19 18.14 20.07 24.43
5.13 5.46 6.12 8.10 9.07 10.04 12.22
15.40 17.05 20.20 lO.SO 24.83 29.01 28.53
7.11 7.67 8.71 11.02 13.02 15.00 13.90
15.40 17.05 20.20 20.50 24.113 29.01 28.53
15.40 17.05 20.20 lO.SO 24.83 29.01 28.53
0.51 0.58 0.65 0.78 0.9' 1.09 0.90 1.07
5.59 10.74 14.22 15.94 17.63 20.15 21.47 23.77
4 .. 79 5.37 7.11 7.97 11.82 10.08 lll.74 11.118
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
12.65 14.64
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
0.52 0.60 0.57 0.69 0.79 0.93 1.14 1.27
10.51 12.00 12.60 14.11 19.03 21.06 24.08 26.07
5.25 6.00 6.30 7.06 9.51 10.53 12.04
13.03
20.28 24.110 17.94 21.73 24.96 29.43 35.80 39.85
10.28 24.1111 17.94 21.73 24.96 29.43 35.110 39.85
20.28 24.011 17.94 21.73 24.96 29.43 35.08 39.85
11.59 0.66 0.70 0.82 1.00 1.11
12.59 13.93 16.98 1879 21.48 23.26
6.29 6.96 8.49 9.39 10.74 11.63
20.45 23.89 23.49 27.70 33.70 37.51
20.45 23.89 23.49 27.70 33.70 37.51
20.45 23.89 23.49 27.70 33.70 37.51
0.50 0.55 11.62 0.73 0.86 0.93 1.10 1.24
11.30 12.50 15.24 16.87 19.29 20.89 28.63 31.111
5.65 6.25 7.62 8.44 9.64 10.44 14.31 15.51
19.31 22.56 22.19 26.16 31.82 35.42 39.26 44.18
0.55 0.64 0.73 0.79 0.99 1.11
13.76 15.23 17.42 18.K6 25.86 2K.02
6.88 7.62 8.71 9.43 12.93 14.01
21.02 24.79 30.15 33.56 37.19 41.85
0.49 11.55 11.63 0.68 11.89 1.00
12.49 13.83 15.81 17.12 23.4S 25.44
6.25 6.91 7.90 8.56 11.74 12.72
0.54 0.58 11.80 0.88 1.08
14.41 15.61 21.42 23.21 32.69
0.51 0.71 0.77 0.98 1.21
14.29 19.62 21.25 29.65 34.54
4.49
13.Q9 13.56 15.17 16.73
17.97
8.10 !UW
i
39.26 44.18
19.31 22.56 22.19 26.16 31.82 35.42 39.26 44.18
37.19 41.85
21.02 24.79 30.15 33.56 37.19 41.85
19.97 23.55 28.64 31.88 35.33 39.76
35.33 39.76
19.97 23.55 28.64 31.88 35.33 39.76
7.21 7.80 10.71 11.611 16.35
27.28 30.36 33.65 37.87 45.16
33.65 37.87 45.16
27.28 30.36 33.65 37.87 45.16
7.14 9.81 10.63 14.98 17.27
28.98 32.12 36.15 43.11 53.15
32.12 36.15 43.11 5315
28.98 32.12 36.15 43.11 53.15
..
J
:
' :
I""'\ r 'r
I
)
I
j'
'
)
'
J
~
j
I
...., I
)
'
j
I
)
ARUJP ....,
I I
l.....i I ,
Appendix D - Proprietary Components (7/9)
Zed purlin butt system [Metsec] '
( j
l.....
J"' 0
0 0
r . !
1'!
~
0
N
~
1'!
0
N
q
]
\....,
:;;
~
.g .9
fl ~ ~
L L
:E
§-
:fe
"§
1
]
i
lI
~
~
~
-~
]
]
·I]
~
~ .,~
~
B
g B
] ] .g ] ] ] ] !.... ]Cl ...c ]Cl .§ .§~ ~ ~ ~~ = "
'0
r, I
'-'
r ,
L r .
j ~
"' ·c Cl
WEIG HT kglm
WORKING LOAD TOT ALLOWABLE LOADNG In kN/m• AL PURLIN CENTRES In milllmetres U.D.L kN 1000 1200 1500 1800
142.Z.l4 142.Z.IS
3.16 3.38
8.63 9.58
!
l.....i
L r ,
L r '
I
L (
.,
I
2.05 2.28
1.64 1.82
137 1.52
3.16 3.38 3.60 4.03
6.99 7.42 7.94 8.87
1.75 1.85 1.98 222
1.46 1.55 1.65 1.85
!.Hi 1.24 1.32 1.48
0.97 1.03 1.10 1.23
142.2.15 172.2.14 172.2.15 172.2.16
3.38 3.60 3.85 4.11
5.82 8.39 9.40 10.30
1.29 1.86 2.09 2.29
1.08
0.86 1.24 1.39 l.S3
0.72 1.04 1.16 1.27
172.2.14 172.2.15 172.2.16 202.2.15 202.2.16 202.2.18
3.60 3.85 4.11 4.21 4.49 5.03
7.29 7.79 K.29 9.99 11.07 13.13
1.46 1.56 1.66 2.00 2.21 2.63
2.19
0.97 1.04 1.11 1.33 1.48 1.75
0.81 0.87 0.92 1.\1 1.23 1.46
172.2.14 172.2.15 172.2.16 102.2.15 202.2.16 202.2.18
3.60 3.K5 4.11 4.21 4.49 5.03
5.98 6.39 6.80 9.05 9.98 11.17
1.09 1.16 1.24 1.65 1.81 2.03
0.91 0.97 1.03 1.37 1.51 \.69
0.72 0.77 0.82 1.10 1.21 1.35
0.60 0.65 0.69 0.91 1.01 1.13
202.2.15 202.2.16 202.2.18 232.2.16 232.2.18 232.2.20
4.21 4.49 5.03 5.11 5.73 6.34
7.82 8.32 9.32 11.D2 13.37 15.64
1.30 1.39 1.55 1.114 2.23 2.61
1.09 1.16 1.29 1.53 1.86 2.17
0.87 0.92 1.04 1.22 1.49 1.74
0.72 0.77 0.86 1.02 1.24 1.45
202.2.18 202.2.20 232.2.16 132.2.18 262.2.1K 262.2.20
5.03 5.57 5.11 5.73 6.25 6.92
7.78 8.71 10.13 11.99 14.15 16.71
1.21 1.34 1.56 1.84 2.18 2.57
1.01 1.12 1.30 1.54 1.81 2.14
0.81 0.89 1.04 1.23 1.45 1.71
0.67 0.74 0.87 1.02 1.21 1.43
232.2.16 231.2.18 262.2.18 262.2.20 262.2.23
5.11 5.73 6.25 6.92 7.92
9.16 10.26 13.08 15.46 17.89
1.31 1.47 1.87 2.21 2.56
1.09 1.56 1.84 2.13
0.117 0.9!1 1.25 1.47 1.70
0.73 0.81 1.04 1.23 1.42
I! 262.2.25
5.73 6.25 6.92 7.92 8.59
8.86 12.16 13.54 15.48 16.76
l.l8 1.62 1.81 2.06 2.23
0.98 1.35 1.50 1.72 1.116
0.79 1.08 1.20 138 1.49
0.66 0.90 1.00 1.15 1.24
10.66 11.80 13.49 14.61 20.22
L33 1.48 1.69
1.11 1.23 1.41
302.2.23
6.25 6.92 7.92 S.59 9.04
2.53
2.11
0.89 0.98 1.12 1.22 1.68
0.74 O.H2 0.94 1.01 1.40
262.2.20 262.2.23 262.2.25 302.2.23 302.2.25
6.92 7.92 8.59 9.04 9.80
10.36 11.84 12.K2 18.12 19.63
1.22 L39 1.51 2.13 2.31
1.02 1.16 1.26 1.78 1.92
0.!11 0.93 1.01 1.42 1.54
0.68 0.77 0.84 1.18 1.211
262.2.25 302.2.23 302.2.25
8.59 9.90 9.04 9.80
11.32 13.03 16.04 17.37
1.26 1.45 1.78 1.93
1.05 1.21 1.48 1.61
0.84 0.97 1.19 1.29
0.70 0.80 0.99 1.07
302.2.23 302.2.25 342.2.25 342.2.29
9.04 9.80 10.98 12.68
14.27 15.46 22.3H 25.80
1.50 1.63 2.36 2.72
1.25 1.36 1.96 2.26
t.no 1.08 1.57 1.81
0.83 0.90 1.31 1.51
302.2.23 302.2.25 342.2.25 342.2.29 342.2.32
9.04 9.80 10.98 12.68 13.94
12.75 13.81 20.04 23.11 25.38
1.28 1.38 2.00 2.31 2.54
1.06 1.15 1.67 1.93 2.11
0.85 0.92 1.34 1.54 1.69
0.71 0.77 1.11 1.28 1.41
302.2.25 342.2.25 342.2.29 342.2.32
9.80 10.98 12.68 13.94
12.39 18.02 20.78 22.82
1.18 1.72 1.98 2.17
0.98 1.43 1.65 1.81
0.79 1.14 1.32 1.45
0.66 0.95 1.10 1.21
342.2.25 342.2.29 342.2.32
10.98 12.6S 13.94
16.27 18.76 20.60
1.48 1.71 1.87
1.23 1.42 1.56
0.99 1.14
1.25
0.82 0.95 1.04
342.2.25 342.2.29 342.2.32
10.98 12.68 13.94
14.73 16.98 18.65
1.28 1.4K 1.62
1.07 1.23 1.35
0.85 0.98 1.08
0.71 0.82 0.90
342.Z.29 342.2.32
12.68 13.94
15.42 16.93
1.28 1.41
1.07 1.18
0.86 0.94
0.71 0.78
262.2.29
r.
2.46 2.74
142.2.14 142.Z.15 142.Z.l6 142.2.18
•
L (
u
SECTION REFEREN CE
un
J.S5 1.74 1.91 1.21 1.30 1.38 1.67
1>5
1.22
J.S1
DEFLECTION SPAN SPAN 180 360
2000
2400
SPAN3.5m 1.23 1.03
1.37
ULTlMATE U.D.L. IN kN/SPAN DOWN !:!J!!ift MetaiCiaddln~ LOAD Number of Anti Sags
1.14
SPAN4.0m 0.87 0.73 0.93 0.77 0.99 O.K3 1.11 0.92 SPAN4.5m 0.65 0.54 0.93 0.78 1.04 0.87 1.)4 0.95 SPANS.Om 0.73 0.61 0.78 0.65 0.83 0.69 1.00 0.83 1.11 0.92 1.31 1.09 SPANS.Sm 0.54 0.45 0.58 OAK 0.62 0.51 0.82 0.69 0.91 0.76 1.02 0.85 SPAN6.0m 0.65 0.54 0.69 0.58 0.78 0.65 0.92 0.77 1.11 0.93 1.30 1.09 SPAN6.5m 0.61 0.50 0.67 0.56 0.78 0.65 0.92 0.77 1.09 0.91 1.29 1.07 SPAN7.0m 0.65 0.55 0.73 0.61 0.93 0.78 1.10 0.92 1.28 1.07 SPAN7.5m 0.59 0.49 0.81 0.68 0.90 0.75 1.03 0.86 1.12 0.93 SPANB.Om 0.67 0.56 0.74 0.61 0.84 0.70 0.91 0.76 1.26 1.05 SPAN8.5m 0.61 0.51 0.70 0.58 0.75 0.63 1.07 0.89 0.96 1.15 SPAN9.0m 0.63 0.52 0.72 0.60 0.89 0.74 o.so 0.97 SPAN9.5m 0.75 0.63 0.81 0.68 1.18 0.98 1.36 1.13 SPAN lO.Om 0.64 0.53 0.69 0.5S 1.00 0.84 1.16 0.96 1.27 1.06 SPANlO.Sm 0.59 0.49 0.86 0.72 0.99 O.K2 1.09 0.91 SPANll.Om 0.74 0.62 0.85 0.71 0.94 0.78 SPANll.Sm 0.64 0.53 0.74 0.62 0.81 0.6S SPAN n.om 0.64 0.54 0.71 0.59
0
I
9.29 9.86
4.64 4.93
13.95 15.49
8.19 9.11
13.95 15.49
7.11
3.56 3.77 4.04 4.52
12.21
K.08 9.03
13.55 14.83 17.25
7.25 8.07 8.84 10.24
12.21 13.55 14.83 16.98
12.21 13.55 14.83 16.98
5.97 9.22 9.85 10.48
2.98 4.61 4.93 5.24
12.05 13.65 15.27 16.84
7.20 7.40 8.32 9.20
12.05 13.65 15.27 16.84
12.05 13.65 15.27 16.84
7.47 7.98 8.49 11.62 12.37 13.85
3.73 3.99 4.25 5.81 6.18 6.92
12.28 13.75 15.15 16.28 18.02 21.35
6.65 7.49 8.28 7.94 8.83 10.49
12.28 13.75 15.15 16.2K Ut02 21.35
12.2K 13.75 15.15 16.28 18.02 21.35
6.17 6.60 7.02 9.61 10.22 11.44
3.09 3.30 3.51 4.80 5.11 5.72
11.17 12.50 13.78 14.80 16.38 19.41
6.02 6.77 7.49 7.18 7.98 9.48
11.17 12.50 13.78 14.80 16.38 19.21
11.17 12.50 13.7K 14.80 16.3K 19.41
8.07 8.59 9.62 12.94 14.50 16.04
4.04 4.29 4.81 6.47 7.25 8.02
13.57 15.02 17.19 18.05 21.87 25.55
6.52 7.25 8.62 8.39 10.22 11.92
13.32 14.11 15.78 18.05 21.87 25.55
13.57 15.02 17.43 18.05 21.87 25.55
lU9 9.06 11.03 12.36 16.90 18.70
4.10 4.53 5.51 6.18 !1.45 9.35
16.42 18.85 16.67 20.19 23.19 27.35
7.87 9.00 7.69 9.37 10.03 11.83
12.89 14.24 16.67 20.19 23.19 27.35
14.91 16.45 16.67 20.19 23.19 27.35
9.51 10.65 14.57 16.13 18.44
4.75 5.33 7.28 8.06 9.22
15.4!1 18.74 21.53 25.39 30.89
7.07 8.63
9.24 10.90 13.14
15.25 17.06 21.40 23.64 26.90
15.48 1!1.74 21.53 25.39 29.92
9.28 12.69 14.05 16.06 17.39
4.64 6.35 7.02 8.03 8.70
17.49 20.10 23.70 28.83 32.09
8.54 10.08 12.15 13.39
14.26 17.97 19.85 22.59 24.43
16.67 20.10 22.94 26.11 28.22
11.15 12.35 14.12 15.28 21.31
5.58 6.17 7.06 7.64 10.65
llt84 22.22 27.03 30.09 33.34
Ut01 19.89 22.62
13.31
15.12 16.72 190.3 20.59 29.73
33.34
10.94 12.50 13.54 18.87 20.45
5.47 6.25 6.77 9.44 10.22
20.91 25.44 28.32 31.38 35.31
14.16 16.13 17.46 25.43 27.38
17.18 19.54 21.11 29.64 31.95
12.08 13.90 16.84 IR.24
6.04 6.95 H.42 9.12
26.74 31.96 29.64 33.35
21.82 23.50
18.24 20.83 26.05 28.06
15.11 16.37 23.40 26.98
7.56 8.18 11.70 13.49
28.08 31.60 37.68 46.45
18.81 20.27 29.95 34.29
22.84 24.60 35.28 40.40
13.64 14.77 24.35 26.74
6.82 7.39 10.56 12.17 13.37
26.67 30.02 35.80 44.13 50.o7
1&.31 17.58 26.07 29.H7 32.H4
10.04 11.57 31.32 35.S5 39.34
13.40 19.16 22.09 24.26
6.70 9.58 11.04 12.13
28.59 34.09 42.03 47.69
15.34 22.80 26.1J 28.74
18.96 27.77 31.77 34.88
17.45 20.12 22.10
8.73 10.06 11.05
32.54 40.12 45.52
20.03 22.96 25.28
24.64 28.19 30.95
15.97 18.41 20.22
7.98 9.21 10.11
31.13 38.38 43.54
17.68 20.28 22.34
21.90 25.06 27.52
16.91 18.57
8.45 9.29
36.78 41.73
18.00 19.83
22.33 24.53
7.55
21.11
L.
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
I
Ver 3.0 I Aug 98
,
I !
l_..,
ARUJP
' 13.95 15.49
24.45
\ j Appendix D - Proprietary Components (8/9)
D.4 Precast hollow composite concrete floors [Bison]
l
LOAD I SPAN TABLE Overall
structural depth mm
Available fire period
Unit depth
SelfWt KN/m' 0.75
200 250 300 375 425 475 525
150 200 250 300 350 400 450
1 Hour or 2 Hours 2 Hours or 4 Hours 2 Hours 2 Hours 2 Hours 2Hours 2 Hours
3.6 4.1 4.5 5.7 6.2 6.6 7.1
8.2 10.5 12.0 14.2 15.7 16.7 18.0
I
Spans indicated below allow for characteristic service load (live load) Plus self weight plus 1.5 kN/m' for finishes Characteristic service loads kN/m1 1.5 2.0 2.5 3.0 10.0 I I 4.0 I 5.0 Effective span in metres 8.2 8.2 8.1 7.9 7.1 7.5 5.8 10.1 9.8 9.6 9.3 8.5 8.9 6.9 11.6 11.3 11.0 10.7 10.1 9.6 7.9 13.7 13.4 13.2 12.9 12.4 12.0 10.3 15.2 14.6 14.9 14.3 13.7 13.3 11.5 16.2 15.9 15.6 15.3 14.7 14.2 12.4 17.4 16.8 17.1 16.5 15.9 15.4 13.4
15.0
I
5.0 6.0 6.8 9.2 10.3 11.1 12.1
' J i I
' j
The above data ts based upon 50 or 75mm structural toppmg ofC30 concrete whtch should be regarded as a mmtmum. Other topping depths may be recommended in some circumstances. Design data for alternative combinations are available from Bison Design Offices. Topping reinforcement, daywork and movement joints should be considered in relation to the overall structural concept of the building.
r-!
Composite Profiles -r-
uooo
Composite depth 200mm 250mm
300mm _________ j __
Composite depth 375 mm 425mm 475 mm 525mm
'
150mm Thick 200111111 250mm
-
75 mm
l
1
300mm Thick 350mm
deplh 50mm at cemre ' of span. Ovemll thickness at bearing
4!Klmm 450mm
1
I
50 or 75 rnm
must tak~ account of
j
!
' J
I
I
[
the camh:r of tl~ slab.
I
___L_ _ _ _ __
1200 mm Nominal width
Simple bearing on top flange of steelwork
Insitu construction
Nominal support reinforcement and/or daywork joints Determined by general layout and site operation
Solid composite floors may be placed on insitu beam downstands or supported on shutters before pouring site concrete
I
j
l
)
I
j
i
~-------------~------------
I ' J 50111111
;\'I in. hearing
Nominal 50 mm hearing ror
'I
!
pn:cast clcmcnls I
J
I
1j l
! I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
)
1I \
J
,-. I
i
I
L r
'L.. Appendix D - Proprietary Components (9/9)
r , I
I
D.S Heavy duty anchors (Hilti HSL) [Hilti- feb 1994] Features:
high loading capacity force controlled expansion reliable pull-down of part fastened suitable for dynamic loading no rotation when tightening bolt
Bolt material:
8.8, ISO 898 Tl Galvanised to min 5 )lm
!.,....
r .
L
r ,
L r ,
L
Versions: Hilti HSLB heavy-duty anchor with inspection control Features: -Automatic torque control Hilti HSLG heavy-duty anchor with threaded rod Feature: -Various threaded rod lengths Settine; Details
I
M 8/20
Anchor Setting details d" rrnn Drill bit diameter h 1 mm Hole d~Qth hnom mm) Min. d9?th of embedment tnx mm Max. thickness fastened I mm Anchor len~tth hn mm) Head wei ht + washer
I M 8/40
20 95
dh nun Max. clearance hole dw mm Washer diameter
r ,
I.......
Drilling system
M 16/251M 16/50
M 20/30 I M 20/60
M 24/301M 24/60
18 100 80
24 125 105
28 155 130
32 180 155
40 115
20 107
4 13
17
25 120
50 145
25 148
II 80
5
14 20 120 TE-C-12/20 TE-Y-12/34 TEIO, TEI4, TE18-M TE24, TE54
Drill bit
40 127 10 50
HSL HSLB
h mm) Min. base material thickness
M 12/25 I M 12/50
15 90 75
7.5 25
Max. gap mm
Sw (mm) Width across flats
Bolt/rod material HSLG 8.8, ISO 898 Tl, galvanised to min 5 )lm HSLG-R: X5CrNi Mol810, 1,4401, A4-70 DIN 267 Til (stainless steel)
M 10/20 IM 10/40
12 80 65
" torque:~ T;n,1(Nm) T 1g h temng HGSGL-R
L
FatJgueJ
8 19 24 20 30 160 TE-C-18/20 TE-Y-18/34
17 25 140 TE-C-15/25 TE-Y-15/34
50 173
14 200 120 9 24 30 26 40 180 TE-C-24125 TE-Y-24132 TE24, TE54, TE74
TE 14, TE 18-M, TE24 TE54
30 183
60 213
17 380 200 12 30 36 31 45 220 TE-Y-28/37
30 205
60 235 19 500
16 36 41 35 50 270 TE-Y-32137
TE54, TE74 TE54, TE74
r '
I
\..-
Recommended load F,o, in kN, non-cracked Concrete f = N/mm', V= 3 0
" Anchor size
Tensile N
L
Combined Load ShearV
0 30 45 60 90
M8 6.9 7.9 8.4 8.8 9.8
MIO 10.4 12.5 13.6 14.6 16.7
Ml2 15.0 18.2 19.8 21.3 24.5
Ml6 25.7 31.3 34.2 37.0 42.6
M20 34.6 42.6 46.6 50.6 58.6
Recommended load for specific application: F"~ = F30 fa fr fA fR Influence of concrete strength fs Fa= I+ 0.02 (I -a/90) (f"·'"- 30) For (20 ~ f"·"'' ~ 55) Influence of depth embedment fT fT =h!!f!
M24 45.5 55.9 61.1 66.2 76.6
hnom
Limiting depth of embedment hlim = 1.5 hnom h," actual embedment depth
r , I
L Influence of anchor spacing and ed2e distance fA, fR Reduction Factors Anchor ~pacing) fA Tensile/Shear Anchor size s MS MIO M12 M16 M20 M24 (mm)
Spacing
r. L.... r.
L r, i
......
Edge Distance M8
c
Reduction Factors Ed e Distance fR Tensile r RN Shear _!Ry_ Anchor size Anchor size MIO Ml2 M16 M20 M24 M8 MIO M12 M16 M20
65 75 80 105 130 155 175 195 225 240 275 315 350 395 430 470
0.70 0.72 0.73 0.79 0.85 0.90 0.95 1.0
0 0.70 0.71 0.76 0.81 0.86 0.90 0.94 1.0
0 0.70 0.74 0.79 0.84 0.87 0.91 0.97 1.0 1.0
0 0.70 0.73 0.77 0.80 0.82 0.87 0.89 0.94 1.0
0 0.70 0.73 0.77 0.80 0.82 0.87 0.89 0.94 1.0
0 0.70 0.71 0.73 0.76 0.78 0.81 0.85 0.88 0.92 0.96 1.0
65 75 80 105 130 155 162 187 200 225 265 275 300 325 350 390
0.70 0.73 0.75 0.82 0.90 0.97 1.0
0 0.70 0.71 0.78 0.85 0.91 0.93 1.0
0 0.70 0.76 0.83 0.88 0.90 0.96 1.0 1.0
0 0.70 0.74 0.79 0.80 0.85 0.88 0.92 1.0 1.0 1.0
0 0 0.73 0.75 0.78 0.80 0.84 0.91 0.92 0.96 1.0 1.0
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 lI
I-
M24
mml
0.70 0.71 0.74 0.75 0.79 0.84 0.85 0.88 0.92 0.95 1.0
0.30 0.37 0.40 0.59 0.77 0.95 1.0
0 0.30 0.33 0.49 0.64 0.80 0.84 1.0
0 0.30 0.44 0.59 0.74 0.78 0.92 1.0 1.0
0 0.30 0.41 0.52 0.55 0.66 0.72 0.83 1.0 1.0 1.0
0 0.30 0.39 0.41 0.50 0.55 0.64 0.79 0.82 0.91 1.0 1.0
0 0.30 0.32 0.39 0.43 0.51 0.63 0.66 0.73 0.81 0.89 1.0
ARUJP
l
_)
~
I
r
l
j
l
I
'
...., I
, I
...., I ' i
l '
'
I
i
J
L
I
' J
'
J
i
;_
)
'
I
i
I I
l l ,
I
"l
I ' J 1'""'1 f
'
)