f
>
'
I i... '
'
I
._
I
i
'
(
'
Structural Scheme Design Guide
l
i...
L December 2006 Version
I
(
L f
'
I , I I
! '
L L
I
,
r
L r . I
ARUP r .-
L.
l' J
l l '
'
..., j
Structural Scheme Design Guide December 2006 Version
I
n ,..,I '
J
l ' J
I J
'
j
,.., '
I
,
I
I
'
l -,I ' J
"ll i
'
J
l,; ' J
Ove Arup & Partners Ltd 13 Fitzroy Street, London W1T 48Q Tel +44 (0)20 7636 1531 Fax +44 (0)20 775 www.arup.com
. j ~ . J I
Index (1/2)
i
......
THE ARUP STRUCTURAL SCHEME DESIGN GUIDE CONTENTS VER 3.0 I Aug 1998
1. Building Geometry & Anatomy 1.1 1.2 1.3 1.4 1.5
Typical grid dimensions Typical sections Typical service zone requirements Car parks References
4.5.5 4.5.6 4.5.7 4.5.8
4.6Timber 4.6.1 4.6.2 4.6.3 4.6.4
2. Guide toCosts 2.1
''
L
2.2
3.Loads
'
(
'
Comparative European costs for material supply Relative costs of steel subgrades
3.1 3.2 3.3 3.4 3.5
r ,
Density of materials Dead loading Typical imposed loading Imposed loads on barriers References
4.1 Properties of Structural Materials 4.2 Reinforced Concrete
f
'
(
1
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9
Rules of thumb Load factors Beams Slabs Stiffness Columns Creep and Shrinkage Bar and mesh areas and weights References
4.3 Prestressed Concrete '
(
'
(
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8
Rules of thumb Common strands Common tendons Equivalent loads Allowable stresses at service loads Ultimate bending strength Shear References
4.4 Steel (Non-Composite)
(
:
'
i
~
r ,
4.1.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 4.4.1 0 4.4.11
Rules of thumb Load factors Design strength Beam design Columns (and beam columns) Portal Frame sizing Element stiffness Connections Corrosion protection Section properties References
4.5 Composite Steel and Concrete r . i
(
4.5.1 4.5.2 4.5.3 4.5.4
Rules of thumb Load factors Bending resistance Shear connectors
Bending strength (during construction) Stiffness Safe load tables References
4.6.5 4.6.6 4.6.7 4.6.8 4.6.9
Rules of thumb Materials supply Grade stresses Sizing of elements in.domestic construction Outline of design rules for timber members Selected timber modification factors Modification factor combinations Deflection Fasteners
4.7 Masonry 4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.7.6 4.7.7 4.7.8 4. 7.9 4. 7.10 4.7.11 4. 7.12
Rules of thumb Load factors Material factors Modular dimensions Typical unit strengths Masonry compressive strength Sizing external wall panels Flexural strength of masonry Internal non-loadbearing masonry walls Freestanding masonry walls Joints Other issues
4.8 Aluminium 4.8.1 4.8.2 4.8.3 4.8.4
Main structural alloys Durability Typical physical properties Design
4.9 Stainless Steel 4.9.1 4.9.2 4.9.3 4.9.4 4.9.6 4.9.7
Material grades Mechanical properties Physical properties Design strength Availability References
5. Foundations 5. 1 5.2 5.3 5.4 5.5
General Principles Appropriate foundation solutions Presumed allowable bearing values under vertical, non-eccentric static loading Shallow foundations Piled foundations
6. Water Resistant Basements 6.1 6.2 6.3 6.4 6.5 6.6 6.7
Rules of thumb Establish client's requirements/expectations Construction options Waterproofing options Critical points Construction joints Movementjoints
' THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
l
J
I
Index (2/2)
...., J
I
6.8
References
7. Fire 7.1 7.2 7.3 7.4 7.5
Minimum periods of fire resistance Fire protection to steel elements Fire protection for reinforced concrete Fire protection for masonry Fire requirements for timber
APPENDIX A Mathematical Formulae A.1 A.2 A.3 A.4 A.5 A.6
Trigonometric functions Hyperbolic functions Standard indefinite integrals Standard substitutions for integration Geometrical properties of plane sections Conversion factors
1
I
I
)
APPENDIX B Analysis Formulae 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8
Elastic bending formulae Elastic torsion formulae Taut wires, cables or chains Vibration Design formulae for beamscantilever Design formulae for beams -fixed both ends Design formulae for beams- simply supported Design formulae for beams - propped cantilever
...., I I
j
I
I
...., i
• J
APPENDIX C Useful Design Data C.1 C.2 C.3 C.4 C.5 C.6 C.? C.8 C.9 C.10
C.11 C.12 C.13 C.14 C.15
Road transportation limitations Craneage data - double girder Craneage data - double hoist Standard rail sections Typical bend radii- rolled sections Safe loads for 25 tonne capacity mobile crane Standard durbar plate sections RHS sections - standard lengths CHS Sections - standard lengths Carbon steel plate sections - standard sizes Carbon and carbon manganese wide flats - standard sizes Fasteners - mechanical properties and dimensions of typical bolts Fasteners - clearance for tightening Fasteners - high strength friction grip bolts Staircase dimensions
...., I
J
l
...., II I
)
...., I I
J
I
l I
j
APPENDIX D Proprietary Components
....,
D.1 D.2
l
D.3 D.4 D.5
I
Macalloy bars Composite decking [Richard Lees Ltd] [Ward Multideck 60] Purlin systems [Metsec] Precast hollow composite concrete floors [Bison] Heavy duty anchors [Hilti-Feb 1994]
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP.IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
'I
l I
ARUJP
J
)
1. Building Geometry and Anatomy (1/4)
1.
BUILDING GEOMETRY AND ANATOMY
1.1
TYPICAL GRID DIMENSIONS 1
r '
Preferred dimensions:
Offices & retail Some retail outlets Car parks
6.0, 7.2, 9.0, 10.5, 12, 15m grids 5.5m or 11m grids (to suit shop units) (7.5 or 7.2) x (15- 16m) grids (to span full bay)
Modular sizes for horizontal coordinating dimensions of spaces
(
I
Range of space (mm)
Multiples of size (mm)
A. Zones for columns and load bearing walls
200 to 1800
300 or 100
B. Centres of columns and wall zones
from 1200
300 or 100
C. Spaces between column and wall zones
from 1200
300 or 100
from 600
300 or 100
Dimension/space
I
'
L.
D. Openings in walls (e.g. for windows and doorsteps)
'
(
Note: The first preference for the multiple of size in each case is 300
r ,
1.2
TYPICAL SECTIONS 1 Modular sizes for vertical coordinating dimensions of spaces
'
(
Dimension/space A. Floor to ceiling, floor to floor (and roof)
(
1
I
B. Zones for floors and roofs
I.... '
(
C. Changes of floor and roof levels
I
~
D. Openings in walls (e.g. for windows)
(
Range of space (mm)
Multiples of size (mm)
up to 3600
100
from 3600 to 4800
300
above 4800
600
100 to 600
100
above 600
300
300 to 2400
300
above 2400
600
300 to 3000
300 or 100
'
!
L I
1.....
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
...., i '
1. Building Geometry and Anatomy (2/4)
1.3
TYPICAL SERVICE ZONE REQUIREMENTS
MIN
J
...., i
' J
2
DEALERS NORM SPACE
-
STRUCTURAL ZONE
SERVICES ZONE
I
' I
'
j
'
J
850/1000
...., ' J HEADROOM
...., '
' J
RAISED FLOOR
'
)
....,
...., DUCT LEAVING RISER/CORE CONSIDER UNIVERSAL COLUMNS AS BEAMS
' I
....,
VAV TERMINAL BOX
i
A B C D E F G H
Specified by structural engineer 50mm deflection and tolerance Approx. 500mm HVAC duct or terminal device 50mm support and tolerance 50 - 150mm sprinkler zone 150mm lighting and ceiling zone Specified by Client I Architect Raised floor- data, telecoms., small power. (Specified by M&E : allow for tolerence & precamber)
l
'
...., MAIN DUCT RUN.QUTS BELOW NORMAL MAX BEAM SIZE
,...., i I
G
' J
...., FFL
y
1
I
I rTT2?
...., ' j
..., I'
'
J
...., '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
L
J
j
I ' J
I
L...
L... r ,
1. Building Geometry and Anatomy (3/4)
I
L..,
1.4 r '
CARPARKS Bay sizes (UK) 3
r
Car type
1
r ,
L r ~
Bay length
Bay width
Turning circle diameter (m)
Long stay
General
Short stay
Between kerbs
Between walls
Standard car
4.75
2.30
2.40
2.50
13.0
14.0
-
Large car
5.65
2.60
2.75
2.90
15.0
Disabled persons
4.75
-
3.20 min.
-
-
Coaches
12.00
-
4.00
-
Approx. 13.5m
I
:.....
Car geometry - area swept for standard large car3
r 1 I
L I
'
i
L r,
r
1
Angled parking 3 r ,
Parking angle
Stall width parallel to aisle (m)
r ' !
...... r
~
i
....
I r I
Aisle width (one way)
Bin width
Minimum (m)
Minimum (m)
Preferred (m)
STALL WIDTH PARALLEL TO AISLE
~ Preferred (m)
90
2.40
6.00
6.00
15.50
15.50
80
2.45
5.25
5.25
15.4
15.4
70
2.60
4.50
4.70
15.1
15.3
60
2.80
3.75
4.20
14.4
14.8
50
3.2
3.50
3.80
13.9
14.2
45
3.4
3.50
3.60
13.6
13.7
'
'
L Ramp gradients: recommended maxima r
i
3
'
L r ,
Straight ramps: Helical ramps:
rise rise rise rise
1.500m > 1.500m 3.000m > 3.000m
1 in 1 in 1 in 1 in
7 10
10 12
!
......
r.
If at the top of a ramp steeper than 1 in 10 the floor or roof is laid to a fall of 1 in 60 or steeper away from the ramp, a transition length should be provided. The transition length length should be at least 3m and its gradient half that of the ramp.
I
I.... r ' I I
L... r
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
1. Building Geometry and Anatomy (4/4) 3
Headroom
Recommended minimum height: 2.050m through the building. If motorcaravans are to be used, allow approx. 2.300m. Check if there are any specific access requirements e.g. emergency vehicles.
1.5
'l
,,
' )
l' J
REFERENCES 1. BS 6750 : 1986 Modular coordination in building 2. OVE ARUP & PARTNERS, Building Services Concept Design Guide 3. INSTITUTION OF STRUCTURAL ENGINEERS & INSTITUTION OF HIGHWAYS AND TRANSPORTATION, Design Recommendations for Multi-Storey and Underground Car Parks (1984)
l
'J
l
' J
'
J
l
J
' J
I
I
' J
l
')
I ' J
I
i
' J
...., '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
J
' j
...., I
' '
r-\' \
I
........
r ,
L r ,
I
2. Guide to Costs (1/3)
.
I
........
2.
This section has been intentionally removed from the Structural Scheme Design Guide.
I
...... f
GUIDE TO COSTS
1
I
I..... '
(
l
L I , I
L
(
1
r '
L (
1
L r ' !
\.,;
r ,
L r
·~
L r '
I
L
r
1
L
r
1
L r,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
L
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR Dec 06 Version
r '
i
I'.....i
ARUIP
3. Loads (1/4)
3.
LOADS
3.1
DENSITY OF MATERIALS 1·2
l '
..., i
'
Density
Material
(kN/m
3
l
)
25.5-27.8
Aluminium
27.2
Marble
Asphalt, paving
22.6
Mastic
Lightweight
12.6
Mortar, cement
18.9-20.4
Standard
21.2
Mud
16.5- 18.8
22.8
Oils
Brickwork Concrete Facing
19.7 14.1
Cement Chalk, in lumps
11.0-12.6
Clay (in lumps)
11.0
11.0
In bulk
8.8
In barrels
5.7
In drums Plaster
7.1 13.3
Plasterboard
18.8- 22.0
Dry
15.7- 18.8
Clay (moist)
20.4-25.1
Moist
18.1 -19.6
Clay (wet)
20.4-25.1
Wet
18.1 -20.4
Concrete
Normal
24.0
Lightweight Crushed brick Crushed stone
18-20
14.1 - 18.8
17.3-20.4
Snow
13.0 27.4
Glass Iron
12.6- 18.8
Shale Slate, Welsh
Foamed blocks Gravel, clean
Sandstones
12.6 -15.7
14.1 - 17.3 Cast
70.7 111.1
Limestone
Floor finish (screed) 75mm Ceiling boards False ceiling Services: nominal HVAC Demountable lightweight partitions Blockwork partitions External walling: curtain walling and glazing cavity walls {lightweight block/brick)
~I '
78.5 C24
-4.2
C30 Water
1 .2 kN/m 2 on 0.4 kN/m 2 on 0.25kN/m2 0.25kN/m 2 0.4kN/m2 1.0 kN/m 2 on 2.5 kN/m2 on
-
j
'i
I
' J
-4.6 9.8
25.1
In the absence of specific details, use the following:
j
0.9
(Softwoods)
•
I
'
3.1
-3.8
General 1·3
'!
Fresh C18
3.2.1
I
' J
Wet compact
Steel
DEAD LOADING
1.
,
Timber
3.2
' J
28.2
75.4
Wrought Lead, cast or rolled
"'"""!
8.6
Clay (dry)
Sand
)
-
Density
Material
(kN/m 3 }
Blockwork
J
plan plan
J
l
plan plan
l '
0.5 kN/m 2 on elevation 3.5 kN/m 2 on elevation
I j
'"""1
'
I
' J
' J
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
....,,
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
J
ARUIP
I
'J
...,
r ,
3. Loads (2/4)
-
3.2.2
Specific dead loading
•
Composite construction 4
i
Layer
'
(
I
Screed
1-..i
Typical
Typical Dead Load
Thickness (mm)
on plan kNim 2
Normal
50
1.2
Lightweight Slab
i
......
0.9
Normal
130
Lightweight
2.8-3.3. 2.3-2.6 •
The lower value is for a trapezoidal deck (Ribdeck AL), the higher value is for a re-entrant profile (Holorib).
r '
•
Cladding Arrangement
'
(
Cladding 1
Load on Elevation (kNim
2
)
Cladding sheeting and fixings
'
(
0.5
Steel wall framing only
i
I...<
0.25-0.4
Framing + brick panels and windows
2.4
Framing + steel sheeting
0.75
Windows, industrial type Patent glazing:
-
0.3
double
0.55
Doors- industrial wood
0.4
Lath + plaster+ studding
0.5
Plate glass I 25mm thick
0.65
Lead plywood
i
r ,
0.25 single
•
Walls
I
L..
Wall type
Composition
r ,
Concrete walls
225wall
5.4
12mm plaster each face
0.2
-
I I
Masonry wall (280 cavity)
'
(
Party wall
Dead load on elevation (kNim
102.5 brick
2.25
100 lightweight block and plaster
1.15
Cavity wall two 102.5 brick leaves plastered
5.0
2
)
both sides I
•,
I
Internal wall
( I
r
I
'
1.4 2.75
102.5mm brick plastered both sides
4.4
225mm thick plastered both sides
r . !.......
1OOmm lightweight block plastered both sides
Curtain wall
Glazing + spandrel
1.0
Acoustic wall
265 brick and block
2.5
Partition
Demountable Stud with lath & plaster
'
1 on plan 0.76
L THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
I '
I
!
ARUJP
I
' J
3. Loads (3/4) Roofs 1·5
....... I
Dead load on plan (kN/m 2 ) (Assuming flat)
Description
Bituman roofing felts (3 layers including chipping)
0.29
Ceiling tray/panels
0.25
Asphalt (19mm, 25mm)
0.41, 0.58
Tiles (clay laid to 100mm gauge)
0.62-0.70
Concrete tiles interlocking
0.48-0.55
I
J
l
j
' ' J
'
1'""'1 i
3.3
TYPICAL IMPOSED LOADING2
• • •
Be generous at scheme design stage Allow for change of use and flexibility of building. Make no allowance for imposed load reductions during the scheme design except when assessing the load on foundations. Intensity of distributed
Use of structure
loading (kNim
2
I
J
I
j
'
'
)
5.0
3.6
Banking hall
3.0
2.7
Book stores
' J
Concentrated load
Assembly areas Bedrooms (hotels, hospitals)
'
I J
'
2.0
1.8
2.4 for each metre of
7.0
I
storage height (min 6.5) Churches
3.0
2.7
Classrooms
3.0
2.7
Communal kitchens
3.0
4.5
Corridors
4.0
4.5
Domestic, floor
1.5
1.4
Factories (general industrial)
5.0
4.5
File rooms in offices
5.0
4.5
- compactus
t
7.5
I
I
' J
I
' i j I
Garages (cars and light vans)
2.5
9.0
Grandstands (fixed seats)
5.0
3.6
Gymnasia
5.0
3.6
1'""'1
i ' J
Libraries - reading rooms
4.0
4.5
- mobile racking
4.8 for each metre of
7.0
storage height (min 9.6) Plant I motor rooms etc.
7.5
4.5
Museum floors
4.0
4.5
3.5 2.5.
2.7
4.0
3.6
Rooms with mainframe computers Offices, general Shops (not stock rooms)
4.5
i I
'
Th1s may increase up to 5.0 kN/m' depending on the clients requirements, add 1.0 kNim' for lightweight demountable partitions.
t
'"i
Compact filing system (usually over a small proportion of the floor area e.g. adjacent to cores).
j
\
i
' j
1 ' j THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
I
j
1
i
r '
I I
i...,i
'
3. Loads (4/4)
1
3.4
IMPOSED LOADS ON BARRIERS
I
'-'
3.4.1
The horizontal force F (in kN), normal to and uniformly distributed over any length of 1.5m of a
'
(
r '
barrier for a car park, required to withstand the impact of a vehicle is given by: r '
I
where
i
i...,i
'
(
m v 80 8b
Is the gross mass of the vehicle (in kg); is the velocity of the vehicle (in m/s) normal to the barrier; is the ceformation of the vehicle (in mm); is the deflection of the barrier (in mm).
!,
'-' r , !
i ' ..... 'I
(
:
1
I
\,..-
Variables
Mass of vehicles <2500 kg
Mass of vehicles >2500 kg
m
1500
mass of vehicles
v
4.5
4.5
Oc
10
100
r ' Note : where 8o
r: I ~.
3.5
=0 use F =150 N for mass of vehicle =2500 kg.
REFERENCES
\.-I
r
:
r ,
1. SCI, Steelwork Design Guide to BS 5950 (Vol. 4) (1991) 2. OVE ARUP & PARTNERS, Metric Handbook (1970) 3. IStructE & ICE, Manual for the design of reinforced concrete building structures ("Green Book") (1985) 4. RICHARD LEES Ltd, Steel Deck Flooring Systems 5. BS 6399 - Parts 1 & 2
I
(
'
I
L r '
I I
I
1I '
Ii...,i THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION I I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I.,_,
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
r ,
ARUJP
'
)
4.1 Properties (1 /1)
4.1
' J
PROPERTIES OF STRUCTURAL MATERIALS Modulus of elasticity, E (kN/mm2 or GPa)
Shear modulus (units of E)
Poisson's ratio
Thermal expansion (X 10-6 K- 1)
Density
Concrete, fcu=35
21 to 33 (at 28 days)
0.42 E
0.20
7-12
24
Concrete, f,.=40 (e.g. prestressed)
22 to 34 (at 28 days)
0.42 E
0.20
7-12
24
205
0.38 E
0.30
12
70
0.37 E
0.33
23
Material
Steel Aluminium alloy Stainless steel
'
I'
78.5
'
J
27.2
'! I
See section 4.9 105
0.42 E
0.30
16-19
65-95
0.4 E
0.25
11 - 13
70.7
Wrought iron
150-220
0.4 E
0.25
11 - 12
75.4
Timber C18 (softwoods) C24 C30
6.0 (min) 7.2 (min) 8.2 (min)
0.06 E 0.06 E 0.06 E
-
-
-
-3.8 -4.2 -4.6
900 X fk (f• in kN/mm 2 or GPa)
-
-
4-8 (clay) 11-15 (CaSi)
-
-
-
60
Aluminium bronze Cast iron
Masonry Water
Note:
I
9.8
'
J
'
J
I ' J
,...., ' i
The values given for concrete above are typical and vary with age, shrinkage and creep
'
\
"' )'
\ J
i I
\ J
......, ' I
J
l
......, I '
j
1 '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
I
)
'
\
i)
1.,
)
r-- -=
r-
r~-~
r-= (--" c--::
['
c--=
r
c-:--~
c-·-~
c
(~=
r---=
f
r
(
---~
r--- r
4.2 Reinforced Concrete (1/14)
4.2
REINFORCED CONCRETE
4.2.1
RULES OF THUMB Span/depth ratios for slabs
17 '
Slabs requiring support from beams 600
600
550
550
One-way solid
I
Two-way solid
I
500
500
I 1
E45o
-
Live load kN/rrf
5400 .s:::
~ 6::::::: ~
ro
en 25o
......., ~ ~ ~ ~
200
~
8::::: ~
r-.... ::;;;..--~ iG;:: ~ :::::::
.5
~ 300
........
~
..) ~ ~ ~
-~
L5..
g-350
j!.!!....
E45o 110
5400 .s::: g-350
~ 300
v .......
-~
ro
en 25o 1.,:::::::
150
150
ii=='
100
4
---
15.0
"
~
200
~~ ........ k::::: ~ ~ ~~~
17.5
Live load kN/rrf
~
100 5
6
7
8
9
10
11
12
--
5
4
6
7
8
10
9
11
12
Multiple span (m)
Multiple span (m) Slabs requiring support from columns only 600
800
I
Flat slabs
550 700
./
~500
I I
E .§.450
E6oo .s .s::: g.5oo
.s::: g-400
"'C
"'C
..c
~350
c\5 400
en
250
200
200 4
5
6
7
8
9
10
11
12
Live load kN/rrf
~
17!;
~
-
~
~
4
5
-
.......-::
[..,...---" ~
c:;::. ~ ~ ~
1-- ~ 6
V':: ~
... ~ ::::--:v / v
5.0
300
300
10
~
l..-::::: ~ /
vv v v
~ ~ .......... ~
~
7
8
9
10
11
12
Multiple span (m) Multiple span (m) 2 Design assumptions : 3 spans. Loads: 1.5kN/m has been allowed in addition to self-weight for finishes and services. Exposure: mild exposure conditions and 2 2 one hour fire resistance. Materials in-situ: C35 concrete, main steel, fy = 460N/mm , mild steel links, fy = 250 N/mm THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. fT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARUP
r
4.2 Reinforced Concrete (2/14) Span/depth ratios for
•:: ~~~---"_~~~~;~~~-~~] E'
g
11 1
800
c. 600 ())
I I I I
,.--
_.',''
..-"' rI ,
,,
""0
E 500 ro ())
!D 400
/
/
5~~~.!!!.
/
..--r--- /
I I I
700
.s::.
200 kN/m
~
__., . ,..,...-
--
--
~----I
I I
..,......Jr--
..,...-"
I I I
--
..-"
-------
--..----
--
II ---1
£c.
I I
ro
I
----..L.;125 kN/ITJ ____
Q)
E
_____________!---· 4
7
6
5
30
10
9
,,
,..,.,
E' E
800
~ 700
= a.
Cl> "'0
E ro a>
Jll
1400 kN/m
/
/
1"---l',:<'
I
,' ,........:.t ' ,. . . ',_.../
: ,,.......
500
400 300 200
20JI_!(~.L'!l.
/
;
/;\
.,.,.,... ,,~_,..-; ./.,..,. ;"" V' / .J..-"' I ..,.,. , ,. ', .,,....-- ,"' L ..,....... ......
I
! I 600 i
;
V
~~
~
__ ...........
,"_...........
,*"' _,'
1
,..,
,,____
,.,. .,.,,.
///
,-----
~~-
.,.. .....;
/
/ ......... ..................
,
J
\ ../ I
...
...
5
6
7
...
r-----
1---
---------·---·------·-
4
5
6
7
I
I
9
8
10
'
two layers of reinforcement
12
11
/
())
I
I
~400
I I
ro
/
>>('-',..,.
,. ,...........-
___ / /.......
15
14
13
16
I
200 kN/m
,----·
,. ,-"'
.,.../
/
/
_, I
/
I
// ,/
.,.."..._.../
;~
I I
j
/
./"
/'
~~~
/
i
,....-.
I
_.l
~-/ _.../" ...~1 / ,." ,/...-" ......, _..../' II _,.'
/
-- \
___ .,...,. - _...... - r )<___ _..',_!~~~~!!'
I
! i ~--------. . -~--:~. . ~ . . -. . . ~ 1 ___ .... __ ....... - - _ ....... - - r-------------------------1l
,. ,. . ." ,.,..,':----:=-----
300 ~------
_..,..... _...---
I --I ---
~----:::::._____
12
,
\ \ '"'" /// ,. ./.,.
0.
~500 E
/
-----""""" ,,,
£600
.,., I
11
\
~~~~-~~;G~;~f~~f~~;:~-----l
1___ .
400 kN/m
I
'-2~~~~
J
one layer of reinforcement two layers of reinforcement
------·--·--·--·--·--·--·--·--"--------------------------
200
10
'
------
-------------------------;r---
_s
two layers of reinforcement
8 9 Multiple span (m)
;
I
E700
,~--1
................
,.
'L 25 kN/m
'T' beams, 2400mm wide web II
~
I
).
.,.,.!!!--
_,......
.,.,... _....... ,.,..,..... _____ ....,.... .,..,. ....... .........
~ -:~_,.,. ~,. -~
..,.)1 ,.,
------·--·-----·------------·--1.=.:----------------------~
800
I
.,..
,
"
1
,;"'
,,*"' ,......_.,-"" _,.. ""t
,,
......
,,
1 1
K ;" ;
,;" ....
,;
000
-----I I~,............. _.,...,.................. .. ......... -------------------~----------1 1--- one layer ofremforcement ~,.,..,.
...............
-----
;-' -; " _........... 50 kN/m
/-
,,
r i
,,
,......-
tf"
,
,,
Multiple span (m)
1::: [~~~~-~~~-5~-~~~~~-~i~:-~~~] ---~~------~~~~;l ;
,..,
.,,"
;
......
Multiple span (m)
I
_../
,," "
1
4
12
11
_,..,..,. ,....
..... "'
_..;:;e
JJI__
~
;"
,,
° Cc:::~~::::. .;......
200
__
,.-\ 6-..., \./ kN/ .. ...:!..!!ll. __
~~ ,,
,.,....,
. two layers of remforcement
8
\
()) 400 Ill
r~~~~-:n~I;~;of~ci:r~~;;e~~----1 I
/
2_DJI_~/m...----,-r-_: _
500
""0
I
300 200
:: .-[_-,~---,_-b_-~-~-~--s-~--1-_2--~-~---~-~---~---i~--e---~-~-~--~J---~~~~----=-~~~~;~1
~700 E E ~600
II
-----
...---·---
---
----
I
----'~ 1
100 kN/m
/
--
,... .....-
l
17 beam •
4
5
6
7
8
9
10
11
12
13
14
15
16
Multiple span (m)
For the depth of a single span look up size at span +2% Design assumptions : Beam self weight (extra over an assumed 200mm depth of slab) allowed for and included. Exposure: mild exposure conditions and one 2 hour fire resistance. Materials in-situ: C35 concrete, main steel, fy = 460N/mm . T beam width= Beam span I 3.5. Loads are Ultimate.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. fT IS NOT INlENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
ARUIP
Ver 3.2/ August 00
j~
r
__
j
-
_j
~--]
J
::____ __ ]
~---)
]
~--J
J
J
_]
:__j
J
__j
J
~--J
:_ __ _j
~
_]
_]
,..._. r '
4.2 Reinforced Concrete (3/14)
Concrete Floor Slabs: Typical Econmic Span Ranger
'
(
(
I
I I I I I I I I
I
I I I I
RC beams witl1 ribbed or 5olid one-way RC ,slabs
'\
RC flat slabs
r , 1--
I I I I I
1
'-'
RC troughed slabs
'
( I
l
I
RC band beams. with solid or ribbed one-way RC slabs
I
r
I I
TTTT -1 I I -~ rT -1 I T
IITlfTIII
( ',
Two-way RC slabs with RC beams
I I I
r
I I I l
I T I
I I I
I
Precast: hollow care slabs with precast or (RC) beams f-- f-I I I I I I I PT band beams and PTslabs
( '
4
'.
(
I I I I I I I I I
5
6
7
8
9
10
I I
I I I I I 11
12
13
I
I I
I I
14
15
16
Kay •
r ,
•
Square panels, aspect ratio 1.0 Rectangular panels, aspect ratio 1.25 Rectangular panels, aspect ratio 1.5
Note all subject to market conditions and project specific requirements
r '
RC=Reinforced concrete
L
PT=Post-tensioned concrete
2
Typical column size - also see section 4.2.6
r \ Minimum column dimensions for 'stocky', braced column= clear height I 17.7
!
'-' 2
'
2
Column area where feu = 35 N/mm and fy = 460 N/mm is as follows (N is axial force in Newtons):-
''
(
1% steel : Area = N/15 2% steel : Area = N/18 3% steel: Area= N/21 Approximate method for allowing for moments: multiply the axial load from the floor immediately above the column being considered) by: 1.25-interior columns 1.50-edge columns 2.00-corner columns
(
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
I
(
'
but keep the columns to constant size for the top two storeys.
'
\
Ver 3.2/ August 00
ARUIP
'
J
1
j
l
4.2 Reinforced Concrete (4/14)
-
i
\
)
l
)
'
)
Typical wall thickness At least 200mm thick (usually 300mm) for normal loads- if less than 1000mm high then 150mm thick is usually allowable. Internal walls:
Thickness> Height/15 (unrestrained at top) Thickness> Height/30 (restrained at top)
l
i
2
Minimum size of elements 6 Where different, values for Hong Kong are in brackets. Minimum dimension, mm width Columns fully exposed Cover to fire width Beams cover thickness Slabs with plain soffit cover thickness Slabs with ribbed open width of ribs soffit and no stirrups cover .... Cover to !llill!l reinforcement Member
4h 450 25 (35) 240 (280) 70 (80) 170 45 (55) 150 150 55
: Fire Rating 2h 300 25 (35) 200 50 125 35 115 110 35
I
' J
1h 200 20 (25) 200 45 100 35 90 90 35
l
'
J
'
I J
'
)
I
I
'
I
I
)
l
Nominal cover Conditions of exposure Mild - protected from adverse conditions 25 20 20* 20* 35 30 Moderate -condensation, soil 25 Severe - severe rain, occasional freezing 40 30 Very severe - sea water spray, severe freezing, salts 50t 40t Extreme - abrasive action, acidic water, vehicles 60t Maximum free water/cement ratio 0.65 0.60 0.55 0.50 3 Minimum cement content (kg/m ) 275 300 325 350 Lowest grade of concrete C30 C35 C40 C45 Cover to .!ill. reinforcement *These covers may be reduced to 15mm provided that the nominal maximum size of aggregate does not exceed 15mm. t Where concrete is subject to freezing whilst wet, air-entrainment should be used. NOTE : This table relates to normal-weight aggregate of 20mm nominal size.
-
-
-
20* 20 25 30 50 0.45 400 C50
2
Reinforcement weights
_.....,
These values are approximate and should be used only as a check on the total estimated quantity: Pile caps Rafts Beams Slabs Columns Walls
3
110- 150 kg/m 3 60- 70 kg/m 3 125- 160 kg/m 3 130-220 kg/m 3 220- 300 kg/m 3 40 - 100 kg/m
'i I
J
\
;
'
)
Reinforcement availability Standard sizes (mm): 6, 8, 10, 12, 16, 20, 25, 32, 40 Standard lengths:
> 12mm diameter: 12 metres < 12mm diameter: from a coil
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2/ August 00
ARUlP
,"'-~ l
\ J
4.2 Reinforced Concrete (5/14)
4.2.2 LOAD FACTORS 3 [!
1
'
"
Partial safety factors for loads (Values in brackets are for H.K.) Load combination (including earth and water loading where present)
Earth and Wind Wk adverse beneficial adverse beneficial water, En 1. Dead and imposed 1.0 1.6 (1.7) 1.4* 1.4 (1.5) 0 2. Dead and wind 1.4 1.0 1.4* 1.4 3. Dead, wind and imposed 1.2 1.2 1.2 1.2 1.2 1.2 .. * For pressures ansmg from accidental head of water at ground level, a part1al factor of 1.2 may be used. Note : The HK dead & imposed factors can be reduced to 1.4 & 1.6 provided the procedure outlined in- PNAP 18F is followed.
i. ll.....i i
{I
Load type Imposed,~
Dead,~
( I
<....... ( '
L
The 'adverse' and 'beneficial' factors should be used so as to produce the most onerous condition.
4.2.3 BEAMS 3 For high-tensile reinforcement: For mild steel:
2
fy = 460 N/mm 2 fy = 250 N/mm
Bending 2 Mu = 0.156 fcubd
d
---+ no compression steel M A,=---0.95fy0.8d
If: M < Mu !'
\
''
cl 1)
\
If: M > Mu
M -0.15fcubd 2 As - 0.95fy{d-d') 1
"
;
\
I!
L
---+ compression steel required
_
_ Mu +A o A,- 0.95fy0.8d s
~_. t:>\L_i
where b equals:
I'
<.:._.
Cantilever Continuous Simply supported bw + L/7.14 bw bw+ L/5 T-Beam bw + L /14.29 bw+ L/10 L-Beam bw (ii) beam spacing and < (i) actual flanQe width, NOTE: If M > 0.4 fcubrht(d-0.5hr) for flanged beams, then the neutral axis is in the web and the above formulae are not correct.
J \
THIS DOCUMENT IS COPYRIGKT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARUIP
4.2 Reinforced Concrete (6/14) 2
Maximum and minimum areas of longitudinal reinforcement for beams Minimum tension reinforcement (fy = 460 N/mm2 )
Flanged beams (web in tension):
)
\
)
0.0018 bwh 0.0013 bwh
bw/b < 0.4 bw/b ~ 0.4 T- beam L- beam
Flanged beams (flange in tension over a continuous support): Transverse reinforcement in flanges of flanged beams (may be slab reinforcement)
-
0.0026 bwh 0.0020 bwh 0.0015 ht per metre width
Rectangular beam Flanged beam web in compression:
Minimum compression reinforcement:
i
0.002 bh
Rectangular beams with overall dimensions b and h
' J
0.002 bh 0.002 bwh
I i '
Maximum reinforcement (tension and compression): Normally main bars in beams should be not less than 16mm diameter.
j
0.04 bwh
Shea,-3 Minimum provision of links in beams Value of v (N/mmL) Area of shear reinforcement Grade 250 (mild steel) links equal to 0.18% of the Less than 0.5vc horizontal section throughout the beam, except in members of minor structural importance such as lintels 0.5Vc
0.4bwsv 0.95fyv
I
(vc+0.4)
Sv(V-Vc)
i
0.95fyv
'
Links only provided
Asv
> bw
' J
, \
For beams 2.0 N/mm" typical maximum 2 For ribs 0.6 N/mm typical maximum
v< 0.8 './feu and < 5 N/mmL
)
)
~,
,
,
2
NOTE: Asv is the total cross-section of the link(s) in mm (2 legs for a single closed link, 4 legs
I
,_,
for double closed). sv is the link spacing along the member.
i
' J
If
1.2 1.1 C' 1.0 E E 0.9 ....... 6 0.8 >Q 0.7 0.6 0,5 0.4 0.3
I
' J ~
~~~·
v
v /'
vvv :..-
I/
....... ~
v v v
'-""
.,j
f.-
f.-
-;:;;
f.-
-
d < 400
·~
-
i
400
' J
300
I/
i
'\
1".......
200
/"
r;
.....
:%
I
' J
100
0
0,5
1,0
2,0
2.5
3,0
1..0
1.1
1.2
1.3
1.4
Shear re1istance faeh.lr
r""1
i
MODFJ:ATJ)N FACTOR FOR BEAMS AND SLABS
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2/ August 00
I
', J
\
)
l
J
,
ARUP
,
\ j
r: I
L fI
'I
4.2 Reinforced Concrete (7/14)
4.2.4 SLABS {
1
I
Bending
i
~
I
3
Simply supported on all sides:
1
i
I
l...--
ly > 1.51x then one-way spanning, else M = wlx ly kNm/m 24 Design for bending as for beams (in 2 directions) Continuous one-way spanning:
II
Bending moments and shear forces for one-way slabs End support End span Penultimate support Moment 0 0.086 Fl -0.086 Fl Shear 0.4 F 0.6 F -
'.,
I
G
:
(
Interior spans 0.063 Fl
Interior supports -0.063 Fl 0.5 F
-
Shear (
Ultimate shear check at column face Column (inc. head) 300 x 300
1
I,
L..
Note: ( 1 ',
For column sizes other than 300 x 300 the slab depth should be multiplied by the factor= (column perimeter/1200)
15
I 1
11
\
1
10 I
1
'
'
Total
9
Imposed
8
Load
\
:_,
(I
7
~"' \\\ \ 1\\ 1\~ \ 1\~ ·"'-\ 0_\ .~ \
h (mm)=2~
5
i,
~~ ~4' ~~ Li \ __1\ 1\\ 1\\
~ ~ ~~
6
r,
4 (
3 2
1
I._;
h = minimum slab thickness to resist punching shear
\ \\ l\ \ 7~0 \ \ .\\ l~o\ \ \ \ \ 1\\ Ol\
13 12
(
\ \' _\ \ _\
\
14
\.'\\ l\.\ \. "~"'- ~"\ 0 ~
"'"'
1
~ ~ ~'\ [\. ~ ~~ ........... ~~
""'
~
( 1
0
\
....... '
\ I
I._.,
r \
20 Notes: 1. 2. 3. 4. 5.
30 40
50
60
70
80
'
i l._,i
Ver 3.2/ August 00
~
100 110 120 130 140 150 160
Area {m~)
feu = 35 N/mm 2 , Dead load factor= 1.4, Live load factor= 1.6, The value of d/h is assumed to be 0.85, The ratio of VenN is assumed to be 1.15,
THIS DOCUMENT IS COPYRIGI-fT AND IS PUBLISHED FOR DISTRIBLJTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. f
90
~
ARUIP
4.2 Reinforced Concrete (8/14)
'"'"; i
Column 300 x 300 Punching shear check at first perimeter for preliminary design (vc
15
14 13
12 11 10 Total Imposed Load 2 (kN/m )
9
8 7
6
5 4 3 2
1 \ J \ l\ \ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ 1\ \ \ \ ~ _\ \ \ ' \ ~ \ \ 1\ ~ po _\ 1\ \ \ r\. \ 5\;o \ \ \ \ \ ~o\ \ 1\ \ \ \ \ ),In\ ~\ \ 1\ \ ~ r\ f\\ ~ ~ \ \ r\ \ \~ ~ ~ 1'\ \ \ \ [\. \ 1'\ \ 3'li r~ ~\ '\. \ '\. r--..'\
I\ \ \
\
'
'\ ~
1 0
h(mm)=_~
20
30
40
"" "" """
""
1'\'\
"'
' I
=0.6)
h = minimum slab thickness ta resist punching shear I I
,......,
60
70
80
90
Area (m
I
'
)
\ J
'1
I'\.
~ ~' ["-,""' ~ ~ ~"' !"-,.
50
)
' )
100 110 120 130 140 150 160
2
)
Column 500 x 500 Punching shear check at first perimeter for preliminary design (vc 0.6) 15 h =minimum slab thickness 14 to resist punching shear 1\ \ 13 \ I 1\ \ 1\ \
.
)
=
12 11 10
Total Imposed Load (kN/m
2
)
9
8 7
\ \\ \ \ 1 \ \ \ 1\ ' \ 1\ \ \ \ 1\00 \ 1\ \ \ \ \ \ 1\ ~ ru\ \ I\ ' \ 1\ \ ~ l~ ~ \ 1\ \ \ 1\ \ \ r\ ~ JU\ \ '\ ~0 \ \ } \ \ \ ~ ~ _i
', )
.
)
~,
\ r\ \ ~- 1\ 4 Ru\ ~ _i \ \ \ 1\ \ ~0 ~ \. ~ \ \ \ \ \ \~ 5(>\ \ \ '\ \ ' '\ \ 1\ ~ 10\ '\ '\ 1'\ '\ '\. "\.. \ :\ '\ [\. \ \ '\. '\. 1\. :--.,. "\ ........
6 5 4
3
~~
2
h (mm)
1
= 20~
0 20
30
40
50
)
'
I )
\
J
'\ '\_ ~ ~ ~ ~'\ ~ ~ ~ I~ ~ ~" ~~ ~ ~ """' ~ [',."1'..'~""-""' ."""-. ~ l'--" ~
"
60
70
80
90
"""
100 110 120 130 140 150 160
Area (m") Notes: 1. feu = 35 N/mm2 , 2. Dead load factor= 1.4, 3. Live load factor = 1.6, 4. The value of d/h is assumed to be 0.85, 5. The ratio ofVettN is assumed to be 1.15, THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
'
ARUP
-. i )
r '
!
4.2 Reinforced Concrete (9/14)
4.2.5 STIFFNESS 3
1
i
Typically require :
y
'
(
v
< span/250 < span/350 <20mm
Criterion satisfied if span I effective depth < (Basic
X c1 X c2 X
Typical multiplers (C1): C1 = 0.8 for flanged beams with bJb < 0.3 C1 = 10/span(m) for spans beyond 10m C1 = 0.9 for flat slabs (use longer span)
r ' ',
I
v ',
(
Total deflection Live Load + creep and
(
'
(
'
Basic span/effective depth ratios for rectangular beams Support Rectangular conditions sections Cantilever 7 Simple supported 20 Continuous 26
NOTE: For two-way slabs on continuous support, use shorter span.
L
Tension reinforcement modification factor (C2) f5 = service stress in reinforcement
C3)
4
2
1.8
.s...CJ 1.6
r ,
J!! §1.4
..
co CJ !E 1.2
' '
I
"0
;
0
::!:
r '
.......fs..;;. 25.Q.MP..,.......
·+·. .. ~· . . . . .i. .
..:::::::::::::::::::::::::::::::1::::::::::t::::::::::t:::::.. .::~:: :.............:...~..--~...:::...:::...~.. =r.,.....:.=::;;j;::;:3 = 300 MRa . . . . . . . . . . . . . . . . . . 1;. . . . . .ifs............. t. . . . . . . i...........................t;.............1. . . . . . . . . . . . . . t. . . . . . .
0.8
0.6 2
0
3
M/bd
5
4
6
2
Compression reinforcement modification factor (C3) (
!
1
u
(
1.48 51.36
\
t5 ~1.24
'
' w
(
1.6
:
1.12 1
[7 0
(
.V 0.5
~
......
1.5
_... ~
2
-
2.5
3
3.5
100 A's,prov/bd
\
r
'
(
'
I
1
THIS DOCUMENT IS COPYRIGKT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARUJP
:
'
4.2 Reinforced Concrete (10/14)
)
r'"i I
' l
4.2.6 COLUMNS
---: I I
3
Typical design of columns
For braced stocky columns use: Neap
= characteristic strength of concrete (N/mm 2 ) Ac = area of concrete (mm 2 ) fy = yield strength of reinforcement (N/mm 2 )
= area of rebars (mm
2
< 5294
< 6176
250 x360 300 X 300 200x450 300 X 350 200x 525 250 x420 350 X 350 300 X 410 200 X 615 250 X 490 350 x400 300 X 470 200 X 700 250 X 560 350 x460 250 X 640 300 x540 200x 800 300 X 600 350 X 520 250 X 720 200x 900 350 X 575 300 X 670 200 x1000 250 X 800 300x 800 350 X 690 200 x1200 250 X 960 * Note . Scheme des1gn based on 4% rebar should
=35)
Area of section (mm 2 x < 7059 103 ) 90 105 122.5 140 400 x400 160 400 x450 180 400 X 500 200 400 X 600 240 be avOided If possible.
Column size & braced, clear storey height limit (mm) < 4411
'
J
)
Ultimate resistance of braced stocky columns (feu
< 3530
)
= 0.35 fcuAc + 0.67 fyAsc
where: feu
Asc
\
'
' J p=1% (kN) 1369 1597 1863 2129 2433 2737 3041 3650
p=2% (kN) 1635 1908 2225 2543 2907 3270 3633 4360
p=3% (kN) 1901 2218 2588 2958 3380 3803 4225 5070
p=4%* (kN) 2168 2529 2950 3372 3854 4335 4817 5781
'c
)
'
J
'
)
'
'
'
' J
I
I
' J
"""·
i
'
J
~
)
'
~
\
\
)
'
)
I
I
.._, I
i '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
!
ARUJP I
c __ ,
r- -, (-~--= c
r~- -~
r---~
r--~
c--=
r
r--~
[
r
(
(
r-~
r~-=
~--~
[
r~-~
4.2 Reinforced Concrete (11/14) 2
Column interaction diagrams
1.6
ol
1.6
. ... . , r--.... "f . 1"1
bhfcu
" I'..' 7'
1.0
•J.. • f
~
r<.;,u
~6,
.. J.... '-Q.• 1"..0.2'I~1\.
I
0.4
( I,I
J
/
0.0
I~
0
c
~
'' """
a
Sii!rs: excluded in
p~..&....
N h2f cu
bh
"\
\
\
\
)
0.2
\
\
I)
\
""'
' "
'," ""
D~!J' D.
r~·
J
f
0 ..2
0.4
0.3
'\
'\.
)
to\.
\.
II
J
\. 1\
1.4 1.2
N
0,7
0.6
bhfcu
0
........
N-..
........
I
{'.._
........... ~
0
"::fL- 1 4
...........
..... .;!..-"' ........... ........... 1'-..1. o"' ~""'--. -tr.. ......... ...... ......... ....... "' ......... -:--.... "J ...... """liit" ......... l ........... ............
•
1.
~
..I
1
~,...
.
1.0
,... •
~~
~
0.0
"toQ
1.4 = 0.95 1.2
~- -~·~'" culeLJI~tln~
d
0.1
0.2
0.6 0.4 0.2
. ' ,o ,, . ' ·;....
~
2 .....
J
Inn
/
0,0
~
...........
.........
...........
...........
'
I'..
o
Ber91 exl!':llJded
1.0
I~
..-.:aiL.:ul.e.ti11~A
0
-+-
c
~.fuo...
N 2 h fcu
~~
......
.........
'
"""""'
0.4 ...........
........
'
.......
0.2
!".. /
~ ~ In this region deaign as a beam, &es clause 4.4.5
0.1
0.2
0.3
0.4
0.5
011
0.5
·~bl
..
1!:
~ ~
" r\.' . ""' ~' '
I
....~1\."\ ~
.... ~
h
"\. 1'\.
.. Jtf.. '\.
rX:2 .. ."{ ;., 1\~ \
It-
=o.7
~' "w•·~• • h
I
pfy
•
'"'
reiri'I'.OI'CI"'l'mel"'t
fr...a.._ - ~h'
i
.........·
~1A
""
~'jll:l''
\. r\\. \ \. \. i~·(J \ 1\\ 1\\ \ ) l 1 ) ) } 1 1 [
)~ l.:h.
1n !his region design il$ a boeam, see dause 4.4.5
0.6
0.7
0.0
0.1
0.2
0.3
M
M
bh2fcu
h3fcu
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2/ August 00
0.8
0.6
"' "v
/
0.4
0.3
f
.. . '
AM>
~
0.8
I
h3fcu
-:I
~
'l
I
M
[<3{
.. ..
,..,.
In thill region deaign .as a beam, &!Ia clause 4.4.5 _
0.5
bh 2 f ou
1.6
raln'br~L:emAill
1\ ' \
M
1.8
"'"
=0 .9
'\.
'' '' "
j'\ 0.2'\._
.1
h
d.
~~""
1'\ ' "-o· ~ " "\. "'0.4, '\.
this region design as a beam, see clause 4.4.5
0.1
""'
El =
llh. --~· p-~
•
h '
J
~ ""
~I
h
:'t
' .. fgi 1"-...
.. •.,.... f!t"'
0.4
'\.
~'
·~ "-...
0.6
1'\. "\
...
7
.. ..
0.8
vx--··
f
....
1.0
~lrulm.lng A
~
I'\.
\ \\
\
0
"1 •
1.4
., "1'-' ' ' """"'~ ' ''
0.6
0,2
... ~
I'..
0.8
• ~I "~~·-· d
1.2
0
nf.
1.2
.
1.4
I
•I
calcula1ing A!:Z".
) ~
~
1.4 N
!'.i
~
~ = 0.75
I~
~~
0.4
0.5
ARUJP
--:~
f - ·~
[
-·
I
)
,..., I
' J 4.2 Reinforced Concrete (12/14) I
I
'
'
4.2.7 CREEP & SHRINKAGE
,--, Shrinkage
I
l
)
For normal situations, assume long term shrinkage strain of 300 x 10 -e ~
'
Creep
I
'
I
}
For normal situations, assume creep coefficient of ~ = 2 Hence long term E value:
' J
I
4.2.8 BAR AND MESH AREAS AND WEIGHTS
)
5 ~ I
~
= diameter (mm); p = pitch (mm)
~
6
8
\
Sectional area (mm 2 ) per m. width 16 20 10 12
,...I 25
32
40 ' J
p 566 376 283 226 189 162 142 113 94
50 75 100 125 150 175 200 250 300
)
1006 669 503 402 335 287 252 201 168
1570 1044 785 628 523 449 393 314 262
2262 1504 1131 905 754 646 566 452 377
4022 2675 2011 1609 1341 1149 1006 804 670
6284 4179 3142 2514 2095 1795 1571 1258 1047
9818 6529 4909 3927 3273 2805 2455 1964 1636
16084 10696 8042 6434 5361 4595 4021 3217 2681
25132 16713 12566 10053 8377 7180 6283 5026 4189
I
)
--11 j
' J
~
6
8
10
4.44 2.96 2.22 1.78 1.48 1.27 1.11 0.89 0.74
7.90 5.27 3.95 3.16 2.63 2.26 1.98 1.58 1.32
12.32 8.21 6.16 4.93 4.11 3.52 3.08 2.46 2.05
Weight (kg/m 2 ) 12 16
20
25
32
40
49.32 32.88 24.66 19.73 16.44 14.09 12.33 9.86 8.22
77.08 51.39 38.54 30.83 25.69 22.02 19.27 15.42 12.85
126.26 84.17 63.13 50.50 42.09 36.07 31.57 25.25 21.04
197.28 131.52 98.64 78.91 65.76 56.36 49.32 39.46 32.88
p 50 75 100 125 150 175 200 250 300
17.76 11.84 8.88 7.10 5.92 5.07 4.44 3.55 2.96
31.58 21.05 15.79 12.63 10.53 9.02 7.90 6.32 5.26
,...., I
'~ )
~
I
I
J
I
)
'I I
' J
~""'] I I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARUJP
j
, '
I j
I
l...J
(
1
i ~
r ,
i
4.2 Reinforced Concrete (13/14)
(.....
(
1
!
~
n 1 2 3 4 5 6 7 8 9 10 11 12
f \
L (
:
(
1
~
\.-1
(
8
10
28 57 85 113 142 170 198 226 255 283 311 340 6
50 101 151 201 252 302 352 402 453 503 553 604 8
79 157 236 314 393 471 550 628 707 785 864 942 10
113 226 339 452 566 679 791 905 1018 1131 1244 1357 12
25.1
31.4
0.395
0.616
Perim. 18.8 (mm 2/mm) Weight 0.222 (kg/m) n - number of bars
1
\
I
Sectional Area (mm"') 12 16
6
20
25
32
40
201 402 603 804 1006 1207 1408 1609 1810 2011 2212 2413 16
314 628 943 1257 1571 1885 2199 2514 2828 3142 3456 3770 20
491 982 1473 1964 2455 2945 3436 3927 4418 4909 5400 5891 25
804 1608 2413 3217 4021 4825 5629 6434 7238 8042 8846 9650 32
1257 2513 3770 5026 6283 7540 8796 10053 11309 12566 13823 15079 40
37.7
50.2
62.8
78.5
100.5
125.6
0.888
1.579
2.466
3.854
6.313
9.864
\.-1
r, BS Fabric reference (
\
r '
i
\....;
(
~
i
r,
(
',
(
\
(
\
A393 A252 Square A 193 mesh A 142 A 98 B 1131 B 785 Structural B 503 mesh B 385 B 283 B 196 c 785 c 636 Long c 503 mesh c 385 C283 Wrapping D 98 mesh D49 Stock sheet size
Longitudinal wires Cross wires Nominal mass per Nominal Nominal Pitch Area Pitch Area square wire size (mm) (mm 2 ) wire size (mm) (mm 2 ) metre (kg) (mm) (mm) 10 200 393 10 200 393 6.16 8 200 252 8 200 252 3.95 193 193 7 200 7 200 3.02 142 142 2.22 6 200 6 200 200 1.54 5 200 98 5 98 1131 200 252 10.9 12 100 8 252 8.14 10 100 785 8 200 200 252 5.93 8 100 503 8 200 193 4.53 7 100 385 7 200 193 3.73 100 283 7 6 200 193 3.05 100 196 7 5 400 70.8 6.72 100 785 6 10 70.8 5.55 100 636 6 400 9 49 4.34 5 100 503 400 8 49 3.41 400 7 100 385 5 400 49 2.61 100 283 5 6 1.54 200 98 5 200 98 5 100 49 0.77 2.5 100 49 2.5 Sheet area 11.52m 2 Length 4.8m Width 2.4m
I i....J (
\
I I
:_ (
1
\ :..,_, (
I
~:
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARlUIP
\
)
4.2 Reinforced Concrete (14/14)
i
' J
Shear reinforcement Asv I Sv values for links
1"""'1
No. of
Legs
Bar Dia.---Area 10
8
12
101 2
157 226 151 236
3
339 201 314
4
452 302 6
471 679
Link Spacing 100
125
1.005 1.571 2.262 1.508 2.356 3.393 2.011 3.142 4.524 3.016 4.712 6.786
0.804 1.257 1.810 1.206 1.885 2.714 1.608 2.513 3.619 2.413
150
0.670 1.047 1.508 1.005 1.571 2.262 1.340 2.094 3.016 2.011 3.770 3.142 5.429 4.524
175
200
225
250
0.574 0.503 0.447 0.402 0.898 0.785 0.698 0.628 1.293 1.131 1.005 0.905 0.862 0.754 0.670 0.603 1.346 1.178 1.047 0.942 1.939 1.149 1.795 2.585 1.723 2.693 3.878
1.696 1.005 1.571 2.262 1.508 2.356 3.393
1.508 0.894 1.396 2.011 1.340 2.094 3.016
1.357 0.804 1.257 1.810 1.206 1.885 2.714
Sv
i
275
300
325
350
375
400
0.366 0.571 0.823 0.548 0.857 1.234 0.731 1.142 1.645 1.097 1.714 2.468
0.335 0.524 0.754 0.503 0.785
0.309 0.483 0.696 0.464 0.725 1.044 0.619 0.967 1.392 0.928 1.450 2.088
0.287 0.449 0.646 0.431 0.673 0.969 0.574 0.898 1.293 0.862 1.346 1.939
0.268 0.419 0.603 0.402 0.628 0.905 0.536 0.838 1.206 0.804 1.257 1.810
0.251 0.393 0.565 0.377 0.589 0.848 0.503 0.785 1.131 0.754 1.178 1.696
1.131 0.670 1.047 1.508 1.005 1.571 2.262
' J
'
;
'
)
'
)
i
' J
4.2.9 REFERENCES
J
i
1. REINFORCED CONCRETE COUNCIL, Reinforcing Links Issue IlA, June 1997. 2. IStructE & ICE, Manual for the design of reinforced concrete building structures ("Green book") (1985) 3. BS 8110, Structural use of concrete, Part 1: 1985 Code of practice for design and construction 4. PALLADIAN PUBLICATIONS, Handbook to BS 8110 (1987) 5. OVE ARUP & PARTNERS, Reinforcement detailing manual (1990) 6. Code of Practice for Fire Resisting Construction, HK, 1996. 7. Goodchild C.H, Economic Concrete Frame Elements (1997),
' J
' J
' J
\
)
I ' J
I
I '
J
~
i
' J
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I August 00
ARUIP
'
I
l )
I
,
i '--' f
4.3 Prestressed Concrete (1/6)
\
4.3
PRESTRESSED CONCRETE
r ' I I
4.3.1 RULES OF THUMB
~
Advantages of using prestressed concrete
'
(
(
• • • • • • •
\
Increased clear spans Thinner slabs Lighter structures Reduced cracking and deflections Reduced storey height Rapid construction Water tightness
Note: (
use of prestressed concrete does not significantly affect the ultimate limit state (except by virtue of the use of a higher grade of steel).
\
Maximum length of slab ' 1...,;
50m, bonded or unbonded, stressed from both ends. 25m, bonded, stressed from one end only.
r :
Mean prestress (
Typically: P/A"' 1 to 2 N/mm2
'
Cover
:
(
Take minimum cover to be 25mm. Allow sufficient cover for (at least) nominal bending reinforcement over the columns, in both directions (typically T16 bars in each direction).
Effect of restraint to floor shortening Post-tensioned floors must be able to shorten to enable the prestress to be applied to the floor.
Typical span/total depth ratios for a variety of section types of multi-span prestressed floors 2 r '
Sectlon type
Total Imposed loading kpa
r ,
:
l
(
'
Additional raqulrament
8m~43AI
1. Solid flat slab
II
II 3 Span/3
I
-
~~-----: I I
':I
I
I I I
~-----1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
2.5
40
5.0
38
10.0
30
2.5
44
5.0
40
10.0
34
A
rl
f . -.. . .I
r '
Span/
~
A
ARUJP
I
}
I
I )
I
)
I
j
l
)
4.3 Prestressed Concrete (2/6) (Typical span/total depth ratios for multi-span prestressed floors (cont.)]
Section
type
Total Imposed loading kpa
3. Coffered flat slab
rc
(not meeting the requirement of types 4 or 5)
~,
II
I I
II
II II
I I I I
II II
--~r-----1 r - - 1r ~~--
-r r--
j~
1 r - - T r - - 1r II II I I II II _,.__ ...I I -~r-- 1 r- -lr
__
" 4. Coffered flat slab with solid panels
1r
3
-1/
II
Span/3
II ---------- w - - - -- II II II II ...JI IL r1 -. lr II 11 II II 11 _ It.. ___ - __ -' L
II
-~r--
I
c==\[
II ... ,
II II ..........
I I
__
-- ..
II 1r II ..II._
r1
-.
1r - - 1 r - - 1r II II I I It may be possible tha~reatressed tendons will on,% be ~red In the· banded section and that unten oned reinforcement will su ce In nos. or vice versa Note:
I·
l!:Span/6
6. Ribbed slab
II II II
II II II
~1rc
23
10.0
20
2.5
28
5.0
26
10.0
23
2.5
28
5.0
26
10.0
B
I
B
I
I
J
23
I
I
2.5
30
I
)
5.0
27
10.0
24
'
J
2.5
SLAB BEAM 45 25
I
j
II II
B
II
r1
-.
1r-- -lr-II II
7. one way slab with broad beam
11:.. 1..
I I I I I I I I I
r1
-.
B
-~r
II
II
\
'I
---- -·--- -·II II
Note: The values of span/depth ratio can vary according to the width of the beam
... 1
5.0
-~r
I r-I I ._
- ----, -~r-
jc=J
25
II
-~r--
5. Coffered flat slab with band beams
2.5
Additional requirement
"
II
-~r
\r
Span/ depth ret1o 6mSIS13m
I I I I I I I I I
5.0
40
22
10.0
35
18
A
~
8. One way slab with narrow beam
~ ...I I•
Span/15
I I I I
I I I I
2.5
SLAB BEAM 42 18
rt r1
5.0
38
16
I I I I I I
10.0
34
13
I
I
j
I
j
I
I
I
I
A
"Additional requirements if no vibration check to be carried out for normal office conditions I
A :2:4 panels and :l:250mm thick slab or :2:8 panels and :l:200mm thick slab B :2:4 panels and MOOmm thick overall or :2:8 panels and
ARUIP
..-, I
I
j
'
' )
.....,
I
w (
'
(
1
4.3 Prestressed Concrete (3/6)
4.3.2 COMMON STRANDS 4 r ,
Nominal
Steel area
Mass
Nominal tensile
Characteristic
diameter
(mm 2 )
(kg/m)
strength
breaking load
elasticity
(N/mm')
(kN)
(kN/mm 2 or GPa)
(mm) (
1
Standard
:
Modulus of
15.2
139
1.090
1670
232
195 ± 10
12.5
93
0.730
1770
164
195 ± 10
11.0
71
0.557
1770
125
195 ± 10
9.3
52
0.408
1770
92
195 ± 10
15.7
150
1.180
1770
265*
195 ± 10
12.9
100
0.785
1860
186
195 ± 10
11.3
75
0.590
1860
139
195 ± 10
9.6
55
0.432
1860
102
195 ± 10
8.0
38
0.298
1860
70
195 ± 10
Compact/
18.0
223
1.750
1700
380
195 ± 10
Dyform
15.2
165
1.295
1820
300
195 ± 10
12.7
112
0.890
1860
209
195 ± 10
L.. r \
I
Super
;
(
(
)
• 279 also available, details not yet published
4.3.3 COMMON TENDONS 1
I 1
(
No. strands per
70%
Internal
duct for 15.7mm
UTS
sheath
"super" strand
{kN)
(mm)
Anchor sizes
Jack
a
b
c
Length (mm)
tj> (mm)
Stroke (mm)
1
186
25
7
1299
65
175
210
270
630
350
150
12
2226
75
200
245
300
750
390
250
15
2783
85
750
390
250
19
3525
95
250
315
375
900
510
250
27
5009
110
300
365
450
950
610
250
37
6864
130
375
450
525
1000
720
250
\
{
1
I
;
(
r
b
1 I
.......... (
\
(
1
(
;
c
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I'
1....1
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
'
I
'
L r •
ARUJP
'
\ J ~
i )
\
4.3 Prestressed Concrete (4/6)
I'
4.3.4 EQUIVALENT LOADS 6
' J
Pe
WU&MV~r~P
Centroid of section
p
Anchorage
p
,....,
' J
Psine
p
'
'~
' )
8PA
---r
Parabolic drape
1""""1
p
.....,_~allow section ~
I ' J
Pe
_ _ _ _............
Centroid of dee section
' J
em)
p
m \ j
1
4.3.5 ALLOWABLE STRESSES AT SERVICE LOADS
Compression
beams:
0.33f,,
(0.4f'" at supports for indeterminate beams)
Class 1:
No tension
1.0 N/mm
Class 2:
2N/mm2 post-tensioned
0.45 v'(f,,)
'
J
2
3N/mm 2 pre-tensioned Class 3:
)
bending: 0.5fcl compression: 0.4fd
columns: 0.25f'" Tension
' At transfer
In service
!
i I )
\
SeeBS8110
0.36 v'(fcl)
!
4.3.6 ULTIMATE BENDING STRENGTH 6
I
',
I
'
J
For rectangular beams or T beams with neutral axis in flange: 0.25: -~~ -~~ ---~--r---r--~--~~--i-~+1 1
0.20
1
'
•
M, f,.bd'
--r , '
0.10;
I
! !
toy
0 05
~
' , :o.7 ' '. 1~'=--r-I IOBA·~-
'
I
1
•
I
1"-o.4
I
!0.37!/
"i I
---"Y'---+---·-1---+--+--~-+---+--+---+--~-f
I;'
0.05
l
J
i 0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
fpu
/~
"l(f
0
I 6 ood=O.BI ~---o. f c:c- "-0.5 ~
!
'
i
0.15
i
i
'
-,
0.50
ARUJP
l
\
)
\
)
,....,
' ' ' ' J
\
' J
(
1
(I
'
4.3 Prestressed Concrete (5/6)
4.3.7 SHEAR ;
(
Require that
I I
I
Except that inclined tendons may contribute to a reduced effective shear force on the concrete provided the shear zone is not cracked in bending at N\.,11 •
1
Ultimate shear check at column face Column (inc. head) 300 x 300 (
1
i
Note:
'-' (
For column sizes other than 300 x 300, the slab depth should be multiplied by the factor (column perimeter/1200)
1
I
,
(
Explanation
15 14 13 ::_::\ 1\ \ \\ \ 12 1--i\ i\ \l5~o\ 11 \~ \ \~ ~\ 10
I
I.... ( '
Total 9 Imposed 8 Load (kN/m2) 7 6
1
(
1-----\
I
~
:~ ~
).~
J
i\\1~
(mm)
5 4
l
~
2
I
1
(
0
)
--
\\ \
-------------
c--------
....
------
--'-------
....
\\\~\
\ i\\\\\ \ \ \ i\\~ !!~
~
-------
------ ----------
~\\ ~\\\ \\
+---------
:----- ------- i ---- :-----------
---- ---------
------
-----
s
--
I
........
--
\
r··--
1
---- 1-----
i
.....
:------
~~\''\ \ ~\ i~"~ ~ !~"' ~ ~~
3 (
i
l\W ,6~~
I ',
(
----r-·-r·
n \ \\ \ \ ~~~
i
---
·----
~
-------
~
~~
.l
------
~
.i
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Area (m2) (
I
Ir
'
~·
(
l
Information to be used in conjunction with the graph: 1. feu = 40 N/mm2 2. Dead load factor= 1.4 3. Live load factor= 1.6 4. The value of d/h is assumed to be 0.85 5. The ratio of V.JV is assumed to be 1.15 6. These curves do not take account of elastic distribution effects 7. The maximum shear stress for feu= 40 N/mm2 and more is 5 N/mm 2 . For feu< 40 N/mm2 the maximum shear stress is 0.8 vfeu For feu = 35 N/mm 2 increase slab depth by a factor of 1.06 For feu = 30 N/mm2 increase slab depth by a factor of 1.14
I ~ ( I
1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r, I
L
Ver 3.0 I Aug 98
ARUJP
~ i
J
I
4.3 Prestressed Concrete (6/6)
~
i I
Column 300 x 300 Punching shear check for preliminary design (vc = 0.75 N/mm•)
J
l
~ I i
15 14
I
)
l
)
l
)
5 4
-~
)
3 2
!"""'\
1
' J
13 12 11
I
10 9 Total Imposed 8 Load 7
(kN/m
2
)
I,
6
i
0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Area (m
2
)
i
J
l
Column 500 x 500 Punching shear check for preliminary design (vc
,..,
=0.75 N/mm•)
I
)
\
-
-·-
15 14 13 12 11 10 9 Total Imposed 8 Load 7 2 (kN/m ) 6 5 4 3 2
--
-·r----r---~
-1-.._J ______ j I
i
_j _____J____ J i :
i
' )
I
·-+-····"!"-----] ---~-- -i---·· --1-----{
···---~-\
----~-
i
!
:,
I
-r--·r---~
. --i- -+---+···---1
\ J
--1---·r---1
,..,
-+---!----.___J I
i
i
l J
"1 l )
0
"1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
i
Area (m 2 )
l
J
I
)
4.3.8 REFERENCES 1. PSC FREYSSINET, The 'K' Range 2. ARUP, Notes on Structures 29, June 1991
-
3. BRIDON ROPES, Ropes and Lifting Gear 4. BS 5896 : 1980, High tensile steel wire and strand for the prestressing of concrete
I
5. ARUP, Notes on Structures 18, June 1989 6. PALLADIAN PUBLICATIONS, Handbook to BS 8110 (1987)
! I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
j
[ '
r ,
4.4 Steel (Non-composite) (1/21)
!
._.
4.4
'
STEEL (NON-COMPOSITE)
r '
4.4.1 RULES OF THUMB
1.
(_,
• r
Choice of beam system
l
I Element
15-18
up to 12m
(including floor slab)
:
'
(
Typical Span (m)
Floor Beams (US's)
r ,
(
Typical Span/depth
Plate girder
10-12
Slimfloor (steel only)
25-28
6-9m
Castellated UB's*
14-17
12-20m
Lattice girders (RSA's)+
12-15
up to 35m
Lattice girders (Tubular)
15-18
up to 100m
Roof trusses (pitch>20°)
14-15
up to 17m
Space Frames
20-24
up to 60m
* Avo1d 1f h1gh pomt loads; Increase lreq by 1.3 + Precamber by L/250
•
Initial scheming chart
~\
'
I,_,
One-or-two spans: Read depth directly from chart
'
(
(
Multiple spans: Deduct 50mm from depth estimated by chart
\
I
I
~~ ~
Residential
...
Offices
2
\
~
'
Shops
~
~
C\ __....
"C
CD
~ c. E
~
:::J
en
1"\.
~
\
8 "[
...
\
"\
~
10 F
200
\~ ~ ~
l\\ ~ ~
"""' ,\l \\ ~ ~ \\1\ !'..
!\\\
)
'
-
1\ \
'
'·'
~
f"'... !'..... ...........
[
~
~\ \ \ 1\."" " ~
.......
\
~~
'\
~
.....
.........
~ \"57"'\ ~ -..,r-- ~
rI '
300
r--~- '1}""..5l
~ ~"\ '"\, ' .......
(
6 -'
1
l
(
~
>.
~
1\
~
I_,
:
~
_'I
II '
<::
0 "C
~
'\
~
\
..0
4 .!!! en
'\ %"'a·
~ ~
~
1\
~ z
c.
"\1"'1.
' 1\
\ ...\.
...
~
0
20
~ r-..
__..
~"'
~ \'.~"' ~ ... '!'.. ~
40 60 80 Distributed load on Beam (kN/m)
Gi
&5 01
500 ~
g!
r-...
, , .......
!"-i"'---.
"'
400 ~
·c:
:::l
'0 600 ~ Q)
0
...... 700
100
800
r: I
!_.
r '
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
(
I
I
I
'--'
E
E
"'~ -... ......... r--....
r-- r-:::: r--
I
.......
~
.s
ARUP
I '
J
4.4 Steel (Non-composite) (2/21)
4.4.1 Rules of thumb (Cont'd)
' ' )
Steel grades
1""'1
I
Generally grade 50 (Fe 510) (S 355)is most economical for quantities over 40 tonnes. Note:
' i
Grade 50 not readily available from stockholders. Therefore expect a 6 week additional lead in time. Typically, grade 50B sections cost 5% by weight more than grade 43B -- see section 2.3.
' ;
Columns
Preliminary design based on a concentric axial load (see section 4.4.4). '
)
'
!
',
J
'
I
Struts and ties
I
J
Slenderness limits: (No longer in BS5950 (2000) but still of interest)
' II
For !QQ. storey: Prelim. design axial load = total axial load
+ 4 x difference in Y-Y axis load + 2 x difference in X-X axis load
For intermediate storey: Prelim. design axial load = total axial load
+ 2 x difference in Y-Y axis load + 1 x difference in X-X axis load
Typical maximum column sizes for braced frames: - 203 - 254 - 305 -356
UC for buildings up to 3 storeys high. UC for buildings up to 5 storeys high. UC for buildings up to 8 storeys high. UC for buildings from 8 to 12 storeys high.
l
- members resisting load other than wind: ~180 - members resisting self weight and wind only: ~250 - members normally acting as a tie but subject to load reversal due to wind:
)
'II
A.~350
\
J
'
J
Minimum CHS sections which satisfy slenderness limits Effective Length (m)
Slenderness Limit 180 250 350
4
6
8
10
12
76.1 X 3.2 60.6 X 3.2 42.2 x4.6
114.3 X 3.6 76.1 X 3.2 60.3 X 3.2
139.7 X 5.0 114.3 X 3.6 76.1 X 3.2
168.3 X 5.0 139.7 X 5.0 88.9 X 3.2
193.7 X 5.0 139.7 X 5.0 114.3 X 3.6
\ J "i I
I \ J
"1I
Portal Frames
j
l
- Hauch length = span /1 0 - Haunch depth = rafter depth (same section) - Minimum rafter slope= 2.5° -Rafter depth =span /60 (approx.) -Stanchion depth =span /50 (approx. ---not high bay)
,..., I
' J
"i I I
J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
' J
,..., I
l
J
I
I
r
1
4.4 Steel (Non-composite) (3/21)
4.4.2 LOAD FACTORS (
I
Load case
I
{
I
(
Dead Load
Wind
adverse
beneficial
adverse
beneficial
Temperature
1. Dead + imposed
1.4
1.0
1.6
0
-
(1.2)
2. Dead + Wind
1.4
1.0
-
-
1.4
(1.2)
3. Dead + imposed + Wind*
1.2
1.0
1.2
1.0
1.2
(1.2)
• Notional horizontal load:
I
Imposed Load
0.5% of factored dead + live load at each level Wind load to be at least 1% of factored dead load
4.4.3 DESIGN STRENGTH (
I
I
BS EN 10025 : 2004 I
Thickness
'
s 275
'
1...1
'
\
Thickness
Py
(mm)
(N/mm 2 )
, 16
355
, 40
345
255
, 63
340
245
< 100
325
(mm)
Py (N/mm 2 )
, 16
275
, 40
265
, 63 < 100
BS EN 10025: 2004
S355
4.4.4 BEAM DESIGN
!
1...1
i
I
Ultimate strength in bending Compression flange restrained Plastic & Compact
r
I
'I
Mc:x =pySx ::; 1.5 pyZx
I..
(simply supported +cantilever) !
I
Mcx = pySx ::; 1.2 pyZx '
Note : Mb obtained directly from graph (P.5/23)
Requirement : ~ mMmax (for beam not loaded between restrained points)
Semi-compact
\
i
'-'
Mcx = pyZ* {Sx > Self > Zx)
r
*Note: Code allows
I
I
where:
S.n to be used instead of Z for I
Requirement :
\
I
mLT
15M2 +0.5M3 +15M4
= 0.2 + _
___.;::....____.::.___--'Mmax
or H sections, but this must be calculated.
!.-t
''
Mb = pbSx (plastic & compact) Mb = pbZ (semi-compact)
Mb
(continuous) I
Compression flange unrestrained:
I
but:
mLT
~ 0.44
The moments M2 and M4 are the values at the quarter points and the moment M3 is the value at mid-length.
r '
r '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION (
I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 (
I
I I
' 1.....1
ARUJP
'
)
l
)
I
>
l
)
4.4 Steel (Non-composite) (4/21) BENDING Universal Beams
GRADE43
DxbxMass (mmxmm xKa/m)
kNm
914x419x388 914x419x343 914x305x289 914x305x201 838x292x226 838x292x176 762x267x197 762x267x147 686x254x170 686x254x125 610x305x238 610x305x149 610x229x140 610x229x101 533x210x122 533x210x82 457x191x98 457x191x67 457X152X82 457X152X52 406x178x74 406x178x54 406x140x46 406x140x39 356x171x67 356x171x45 356X127X39 356X127X33 305x165x54 305x165x40 305x127X48 305X127X37 305x102x33 305x1Q2x25 254X146X43 254X146X31 254x102x28 254x102x22 203x133x30 203x133x25
4680 4100 3340 2220 2430 1800 1900 1370 1490 1060 1980 1460 1100 794 849 566 592 405 477 301 415 289 245 198 334 213 180 148 232 172 194 149 132 92.4 156 109 97.4 71.6 86.2 71.2
M~
L, m 11.0\
L2 m 10.75\
L3 m 10.5\
3.9 3.8 2.7 2.5 2.5 2.4 2.4 2.2 2.3 2.1 3.0 2.8 2.1 1.9 1.9 1.8 1.8 1.6 1.3 1.2 1.6 1.5 1.2 1.2 1.6 1.5 1.1 1.0 1.6 1.5 1.1 1.1 0.9 0.8 1.4 1.3 0.9 0.8 1.3 1.3
7.7 7.3 5.1 4.7 4.8 4.6 4.6 4.3 4.3 4.0 6.0 5.6 3.9 3.6 3.7 3.3 3.5 3.1 2.5 2.3 3.2 2.9 2.3 2.2 3.1 2.8 2.0 2.0 3.1 2.9 2.3 2.1 1.7 1.5 2.8 2.5 1.7 1.6 2.6 2.4
12.5 12.0 8.2 7.2 7.7 7.0 7.1 6.4 6.9 6.3 10.2 9.0 6.3 5.5 6.1 5.2 5.8 4.9 4.3 3.7 5.1 4.5 3.5 3.3 5.3 4.5 3.3 3.0 5.2 4.7 3.7 3.3 2.7 2.3 4.9 4.2 2.8 2.5 4.4 4.1
GRADE 50
L• m 10.35\
P, kN
-
3150 2810 2890 2180 2180 1860 1910 1550 1600 1260 1870 1150 1290 1050 1110 837 847 636 791 564 661 505 458 413 547 401 378 339 395 306 456 361 341 292 313 253 275 243 215 194
11.5 9.7 10.7 9.4 9.9 8.6 9.7 8.3 15.0 13.0 9.0 7.5 8.1 7.0 7.6 6.6 6.3 4.9 7.3 6.2 4.9 4.5 7.7 6.1 4.4 4.1 7.8 6.5 5.5 4.7 3.7 3.2 7.3 5.8 4.0 3.4 6.6 5.9
M"' kNm 6020 5270 4280 2840 3110 2320 2440 1760 1910 1360 2540 1550 1410 1020 1090 731 777 523 622 389 536 373 316 255 430 244 232 192 300 222 251 192 170 120 202 125 127 93 111 82
L, m 11.0\ 3.4 3.4 2.4 2.2 2.3 2.1 2.1 2.0 2.0 1.9 2.6 2.5 1.8 1.7 1.7 1.5 1.6 1.4 1.1 1.1 1.4 1.3 1.1 1.0 1.4 1.3 0.9 0.9 1.4 1.3 1.0 0.9 0.8 0.7 1.2 1.2 0.8 0.7 1.1 1.1
I
L2 m (0.75\
L3 m (0.5)
L. m (0.35\
P, kN
6.8 6.7 4.5 4.3 4.3 4.2 4.0 3.7 4.1 3.7 5.3 4.9 3.5 3.3 3.3 3.0 2.9 2.8 2.4 2.1 2.8 2.6 2.1 1.9 2.8 2.4 1.7 1.8 2.8 2.6 2.0 1.8 1.5 1.3 2.5 2.6 1.6 1.4 2.4 1.7
10.8 10.5 7.5 6.4 6.8 5.3 6.2 5.7 6.1 5.6 9.0 7.5 5.6 5.0 5.3 4.6 5.0 4.3 3.8 3.2 4.5 4.1 3.2 3.0 4.5 4.0 2.9 2.8 4.5 4.1 3.2 2.9 2.3 2.1 4.2 4.1 2.5 2.3 3.9 2.8
15.0 14.4 10.1 8.5 9.2 8.2 8.6 7.8 8.4 7.3 13.0 10.3 7.7 6.6 7.3 6.1 7.0 5.8 5.3 4.3 6.3 5.4 4.2 3.9 6.5 5.3 3.8 3.6 6.5 5.6 4.7 4.1 3.3 2.7 5.4 5.6 3.5 3.0 5.4 4.0
4100 3660 3760 2840 2840 2420 2490 2010 2080 1640 2440 1500 1670 1360 1440 1080 1100 821 1030 728 853 652 591 533 706 517 488 438 510 395 588 466 440 377 404 327 355 314 278 251
Intermediate masses (kg/m)
253,224
I
194 173 152,140
-,
I
179 \
j
'
J
'
)
125,113 109,101,92 89,82, 74 74,67,60 67,60
l""j I
57,51 l.
46
J
'l I
l
)
42 28 37 25
\ j
'"l
I
•
J
-, Universal Columns
GRADE43
l
GRADE 50 l
DxbxMass (mmxmm xKo/m\
M"' kNm
356x406x634 356x406x235 356X368X202 356x368x129 305x305x283 305x305x97 254x254x167 254x254x73 203x203x86 203x203x46 152x152x37 152x152x23
3490 1240 1050 601 1300 397 641 272 259 137 85 45.4
L, m
L2 m
L3 m
(1.0\
(0.75\
(0.5\
8.7 5.0 4.8 4.1 4.8 3.2 3.3 2.3 2.7 2.2 1.8 1.5
12.0 10.5 9.8 14.0 6.8 10.3 6.0 7.0 4.8 4.1 3.3
12.2
-
11.0 14.0 8.7 8.1 5.6
L• m (0.35\
P, kN
Mox kNm
L, m 11.0
L2 L3 m m 10.75\ 10.5J
-
3320 1120 1000 605 1500 503 883 360 459 245 216 153
4520 1620 1370 782 1730 512 834 318 338 159 110 58.6
6.8 4.2 3.9 4.8 4.4 4.0 3.0 3.4 2.2 2.7 1.7 2.0
16.0 9.0 8.7 11.5 6.0 8.7 6.2 5.9 5.0 3.5 3.5
-
-
-
13.7 8.8
-
-
L. m (0.35\
P, kN
Intermediate masses lka/m\
-
4410 1460 1300 788 2000 649 1150 465 598 316 279 198
551' 467, 393, & 340,287 177, 153
15.0 14.0 10.2
-
10.6 12.0 8.2 6.8 5.6
15.0 12.5 10.8 8.2
-
240, 198, 158 & 137,118 132,107,89 71,60,52
)
'"""'~ i i
1
I
I) !
' I
30 l""j I
, I THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
'
J
-, \j
' 1.....1
4.4 Steel (Non-composite) (5/21)
•
Approximate Mb calculation Table is to used in conjunction with the table on P. 4/23 to calculate approximate rvj,.
r ,
''......_,
1 r , i
0.9
u
:\. I I
(
0.8
l
L. r
0.7
!
.J 0.6
L (
"":c
:2 0.5
1
I I I
''
:
0.4
'
(
L r
0.2
1
l
w
0.1
'
(
!
0
~.,..,;
I
I
: I
: I
I
I
:
~,
"' "
~ I
'
~
I
I
I
:
I
:
I
:
I
I
I
I
:
' i' I
I
:
:
I
:
I
I
:
I
I
I
I
I
I
I
I
I
L1 (
~ I
I
0.3
'
I
1
1,....1
L1 = Effective length when Mb = Mcx L2 =Effective length when Mb = 0.75M •• L3 = Effective length when Mb = 0.50M •• L4 =Effective length when Mb =0.35Mcx
1'\
1
I
I
L2 L3 Effective Length
......... ......
L4
I
........
Example: 533x210x82UB (Py = 275 Mpa) with Le compression flange= 6m. (
'
From table L4
I '-
(
L3 M•• From graph Mb
'
I
=?.Om= 0.35Mcx = 5.2m = 0.50Mcx = 566 kNm = 0.43Mcx (approx.), for Le = 6m. = 243 kNm
'-1
r ,
:
I
L....
ri i
......,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
(
1
L.
ARUP
I
J'
I
)
'
)
4.4 Steel (Non-composite) (6/21) Effective lengths of beam compression flanges Rotational restraint on plan Conditions of restraint at the ends of the beams Compression flange laterally restrained; beam fully restrained against torsion
1. Flanges fully restrained on plan
( ~
2. Flanges partially restrained on plan ~~-
'f'
Compression flange laterally unrestrained; both flanges free to rotate on plan
Loading conditions Normal
Destabilizing
Both flanges fully restrained against rotation on plan
0.7L
0.85L
Both flanges partially restrained against rotation on plan
0.85L
Both flanges free to rotate on plan
1.0L
Restraint against torsion provided only by positive connection of bottom flange to supports
1.0L+2D
Restraint against torsion provided only by dead bearing of bottom flange on supports.
1.2L+2D
+
- ±
I
I
I
)
1.0L
1.2L I
)
1.2L+2D
' j
1.4L+2D
3. Flanges free to rotate on plan Lateral torsional buckling -Stress of fabricated girders 400 T~
0/T= 5 350
Pb vs Urwfor symmetrical compact fabricated girders. 2 Pv 350 N/mm
I
J
I
=
D
300
j
I
250 N
E
..§
z ..c
200
'l
I
a..
I
)
150
100
!
I.
...., 50 0
50
100
150
200
250
' J
_...., '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
I
J'
l
I
...., I
J
';
(
I
~
r ,
4.4 Steel (Non-composite) (9/21)
Castellated & cellular beams r '
Imposed loading 5+1 kN/m 2
I
;
s
s
I
l....i
r
SECONDARY BEAM SPAN (m) 6
l
L (
1
9
12
356 x 171 x45
Diameter
300
350
450
550
650
Spacing
450
525
675
825
975
0/A Depth
482
605
728
916
1116
457 X 191
X
67
533x210x92
686
X
254 X 125
838
292
X
X
176
MAIN BEAM SPAN (m)
1
(
18
Beam Size
r '
r
15
6
9
12
15
18
Beam Size
Beam Size
Beam Size
Beam Size
Beam Size
Secondary Beam Span (m)
Dia.l Spacing
6
457 X 191
1
,__.
I
0/A Depth
Dia.
I I Spacing
0/A Depth
Dia.
I I Spacing
0/A Depth
Dia.
I I Spacing
0/A Depth
Dia
I
Spaci"J 0/A g Depth
914 X 305 X 253
67
610 X 229 X 125
762 X 267 X 173
914 X 305 X 201
400 1 600 1 627
500 1 750 1 828
700 11000 11078
700 11000 11219 100 l10ool1235
610 X 229 X 101
762 X 267 X 147
914 X 305 X 201
914 X 305 X 289
500 1 750 1 819
500 1 7501 970
610 X 229 X 113
838 X 292 X 194
914 X 305 X 289
500 1 750 1 824
700 110ool 1157
700 11000 11243
686 X 254 X 125
914 X 305 X 253
550 1 750 1 934
70011000 11235
762 X 267 X 173
914 X 305 X 289
X
I
'
9
;
r
I
''
12
1
i
15 (
700 1100011219 700-11000 11243
'
18
700 1100011078 100 110ool 1243
( '
Assumptions 1. (
2. 3. 4.
I
!
(
'
I
Secondary beam spacing 3m 150mm thick concrete slab of normal weight concrete All beams grade S355 Beams laterally restrained by concrete slab.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I
1_.
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98 (
'
ARUJP
'
J
\
J
'
J
4.4 Steel (Non-composite) (9/21)
4.4.5 COLUMNS (AND BEAM COLUMNS)
'
~+ Mx +My :s;I Agpy Mcx Mcy
Local capacity check:
Py = squash load Buckling check: (minor axis failure) (Simplified check from from 885950
4.8.3.3.1)
Fe+ mxMx +my My ::;;1 ~ PyZx PyZY
.....,,
Fe + mLTMLT + myMy ::;I ~y PyZx PyZY 0.1M +0.6M +0.1M
2 __-"-----'4 3 Where: m = 0.2 + __,;:_
but
'
'
)
~
I
\
J
0.8M24
m:?:--~
Mmax
Mmax
for mLTsee 4.4.4
Mb is obtained from the graph in 4.4.4 Pc is the buckling capacity from table below Note:
For columns in simple construction use m = 1.0; when determining M, use L = 0.5 H, where H = column height
1. "" 1.1 1.0
I
0. 9 0. 8
r-......
!'-.... ...........
"'
'
0. 7
~
0. 6
I
0. 5
I
1'..
"'
1'.::
-,
..........
I
I
...........
' I
!'.
I
'
.............
0. 4
~, '
J
0. 3 0. 2 i
0. 1
' '
0 L1 Note:
....,
L2 EFFECTIVE LENGTH
L3
L4
J
l
This graph shows the approximate relationship between axial capacity and effective length. --- see following tables. L 1 =Effective length when Pc = Py. l3 = Effective length when Pc = 0.50Py.
L2 =Effective length when Pc = 0.75Py.
L. =Effective length when Pc = 0.35Py. ' J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
----
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
1
ARUJP
\_
,!'
r ,
r '
4.4 Steel (Non-composite) (9/21)
I I
I.....
COMPRESSION Circular Hollow Sections (CHS)
r •
Outside diameter imm)
r '
Thickness (mm)
88.9
I
139.7
;
168.3 193.7
I, L
219.1 244.5 273.0 323.9
r
~
.
L
pcmax
kN
3.2 5.0 3.6 6.3 5.0 10.0 5.0 10.0 5.0 12.5 5.0 12.5 6.3 16.0 6.3 16.0 6.3 16.0 8.0 16.0
114.3
r ,
GRADE 43 (S275)
355.6
Only part of the range
L,, m
L,, m
L,3 m
L,. m
_11.Ql
(0.75)
(0.5)
10.35\
237 363 344 589 583 1120 707 1370 814 1960 924 2230 1300 3160 1450 3550 1730 4260 2400 4700 IS
'
I....
f
'
I
I
1.r '
i r '
I I
I....
r ' I
i
I....
(
1
r ,
r '
NOTE:
LX "' 1.15
pcmax
kN
L,3 m
(1.0)
(0.75)
(0.5\
_i0.35)
2.1 2.1 2.8 2.7 3.4 3.3 4.2 4.0 4.8 4.5 5.4 5.1 6.0 5.8 6.8 6.5 8.0 7.7 8.7 8.5
3.0 2.9 3.8 3.7 4.6 4.5 5.6 5.7 6.7 6.3 7.3 7.1 8.2 7.9 9.2 8.9 11.0 10.6 12.0 11.7
3.7 3.6 4.8 4.6 5.8 5.7 7.0 6.7 8.0 7.7 9.1 8.7 10.1 9.7 11.3 10.9 13.5 13.0
<
19800 17200 15200 12800 11000 9690 7950 6840 5980 5180 4380 9190 8090 6690 5320 4620 3970 3390 5630 4470 3620 3010 2560 2920 2410 2090 1830 1620 1300 1060 816
L,. m
Intermediate thicknesses • (mm) 4.0 5.0 6.3, 8.0 6.3, 8.0 6.3, 8.0, 10.0 6.3, 8.0, 10.0 8.0, 10.0, 12.5 8.0, 10.0, 12.5 8.0, 10.0, 12.5
-
10.0, 12.5
GRADE 50
L,, m
L,3 m
L,. m
(1.0)
(0.75)
(0.5)
(0.35)
2.0 2.0 1.9 1.9 1.9 1.8 1.8 1.8 1.7 1.8 1.9 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.3 1.2 1.2 1.2 1.1 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.7
5.5 5.4 5.3 5.6 5.6 5.9 5.9 5.6 5.7 5.5 5.7 4.6 4.7 4.7 4.7 4.5 4.5 4.4 3.9 3.9 3.8 3.8 3.7 3.1 3.1 3.0 2.9 2.9 2.1 2.2 2.1
9.2 9.3 9.1 9.5 9.4 9.6 9.6 9.0 8.9 8.9 8.8 7.5 7.7 7.6 7.4 7.3 7.3 7.2 6.3 6.3 6.2 6.2 6.0 5.0 4.9 4.8 4.7 4.7 3.5 3.5 3.4
12.8 12.7 12.3 12.6 12.5 12.7 12.5 11.8 11.7 11.6 11.5 9.9 10.0 9.8 9.7 9.6 9.6 9.4 8.3 8.3 8.1 8.1 7.9 6.6 6.4 6.3 6.2 6.2 4.7 4.6 4.5
pcmax
kN
26300 22800 20200 17000 14700 12600 10300 89000 7780 6750 5700 12300 10500 8710 6930 6010 5160 4380 7330 5820 4710 3920 3300 3800 3140 2700 2360 2090 1680 1360 1050
L,, m
L,, m
L,3 m
L,. m
(1.0)
(0.75)
(0.5)
(0.35)
1.7 1.7 1.7 1.8 1.9 1.7 1.9 1.6 1.7 1.6 1.5 1.3 1.3 1.3 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.6 0.6 0.6
5.1 4.9 4.9 4.8 4.8 5.4 5.4 5.0 5.0 5.0 4.9 3.8 4.2 4.2 4.1 4.1 4.1 4.0 3.6 3.5 3.5 3.5 3.5 2.8 2.7 2.7 2.7 2.7 2.0 2.0 2.0
8.6 8.6 8.3 8.2 8.1 8.5 8.6 8.2 8.1 8.0 8.0 6.4 6.9 6.8 6.7 6.6 6.6 6.5 5.8 5.7 5.6 5.6 5.5 4.5 4.5 4.4 4.4 4.3 3.3 3.2 3.1
11.6 11.6 11.0 10.8 10.7 11.2 11.3 10.5 10.5 10.4 10.3 8.7 8.9 8.8 8.7 8.6 8.6 8.4 7.5 7.4 7.3 7.2 7.0 5.8 5.7 5.6 5.6 5.5 4.2 4.2 4.0
r I ~r LY
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR Ver 3.0 I Aug 98
L,, m
306 0.4 469 0.4 444 0.6 760 0.6 753 0.7 1440 0.7 912 0.8 1760 0.8 1050 1.0 2530 0.9 1190 1.1 2880 1.1 1670 1.2 4080 1.2 1870 1.4 4580 1.3 2230 1.7 5500 1.6 3100 1.8 6070 1.8 may be ava1lable
L,, m
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r •
L,, m
GRADE43
356x406x634 356x406x551 356x406x467 356x406x393 356x406x340 356x406x287 356x406x235 356x368x202 356x368x177 356x368x153 356x368x129 305x305x283 305x305x240 305x305x198 305x305x158 305x305x137 305x305x118 305x305x97 254x254x167 254x254x132 254x254x107 254x254x89 254x254x73 203x203x86 203x203x71 203x203x60 203x203x52 203x203x46 152x152x37 152x152x30 152x152x23
i
kN
-
DxbxMass (mmxmmxKg/m)
r ,
pcmax
0.4 2.3 3.3 4.1 0.4 2.2 3.2 4.0 0.6 3.1 4.3 5.3 0.6 3.0 4.3 5.2 0.7 3.7 5.2 6.4 0.7 3.6 5.0 6.2 4.5 0.8 6.3 7.9 4.4 0.8 6.1 7.5 1.0 5.2 7.3 9.0 0.9 5.0 7.0 8.6 1.1 6.0 8.3 10.0 1.1 5.7 8.0 9.9 1.2 6.7 9.3 11.4 1.2 6.5 8.9 11.0 1.4 7.6 10.3 12.7 1.3 7.2 9.9 12.3 1.7 8.8 12.3 1.6 8.6 12.0 1.8 9.7 13.5 1.8 9.5 13.1 g1ven For the larger sect1ons thicker tubes
Universal Columns
(
GRADE 50 (S355)
ARUJP
...., ' j 4.4 Steel (Non-composite) (10/21)
~ !
4.4.6 Portal Frame Sizing
' j
The following are simple charts for the sizing of pinned base portals. Assumptions :
•
wind loading does not control design
•
hinges formed at the eaves (in the stanchion) and near the apex .
•
Moment at the end of the haunch is 0.87M P Stability of sections is not addressed Load W
\ j
i J
'
=vertical load on rafter per meter
I ' J
J'
l
l L
'
J
: Horizontal base r~action H Sc:~an t
caws ,aagnt
=HFR WL
I I
J
l
I
L/11
!
J
l
...., I
' J
i I
' J
RJL 0·101-+--l~o-'-+-~~~~~~~~~~~~---------1
...., i.
!
J
l
' j
0·76
Horazontal forc:e at tlasa-
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
'
J
ARUJP ..
'
I
'
r ,
4.4 Steel (Non-composite) (11/21)
MP
required for rafter:
Mpratter
Soon 1 eaves nrzight
=
MP,
WL 2
L IH
r'
L r
'
r ,
Mp rat1o riZQuJred tor r a t t e r - Mpr MP
r ,
required for stanchion : Mpstanchion
I
Span 1 eavcrs ncr1ght
I
I....;
= MP1 WL2
LIH
8·5 7·5 6· 5 5·5
9 I 8 1 7 I 6 I r
1
I
L I
:...... '
(
R/L
(
1
I .......
r 0·05~------------~~~~~~~~~~~~~~~ 1:
0
Q. Ill
:
Mp ratio rrzQuJrfHI tor stancl'lron -
'
Mpt
I
L. r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
L.
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR Ver 3.0 I Aug 98
r ,
ARUJP
'
J
,_, j
l
4.4 Steel (Non-composite) (13/21)
' J
4.4. 7 ELEMENT STIFFNESS Serviceability check:
l
unfactored dead + imposed unfactored dead + 0.8 x (imposed + wind)
i
'
J
'
J
Deflection limits under imposed load· Element
Limit
• Cantilever
U180
• Beam supporting plaster or brittle finish
U360
• Beams supporting masonry • Crane beams
U500 U200 U500
• Columns
H/300
• Columns in multi-storey construction with movement sensitive
H/500
• Other beams
'
I
'! j
l
cladding.
,_,
Portal frames • Lateral at eaves
H/1 00 - H/300 *
• Vertical at apex
U250- U500 *
i '
J
'
J
* Depends on cladding system
Minimum I to satisfy deflection limit
Load case
w
aaaaa
U200
U360
U500
1.27 WL2
2.29 WL2
3.18 WL2
t
t
+p
2.03 PL2
t
3.66 PL2
t
.J.
.J.
i
'
)
5.08 PL2
t P/2 P/2
'!
'J 1.73 PL2
3.12 PL2
4.33 PL2
'!
t ' J
Note:
For castellated beams, assume a 30% increase 1n deflection due to presence of web openings. L in metres; W, P in kN; I in cm4 i
4.4.8 CONNECTIONS
J
l
Bolted • Assume S 275 fittings. • Simple connections -use grade 8.8, 20mm diameter bolts fin plates} t = 8mm for UB's < 457mm deep partial depth end plates} t = 1Omm for UB's > 457mm deep web cleats} Moment connections -use grade 8.8, 20mm or 24mm diameter. Assume end plate thickness equal to bolt diameter (25 thick with M24) Holding down bolts - assume grade 4.6 where possible. M16 x 300 Standard sizes: M20 X 450, 600 M24 x 450, 600 M30 X 450, 600 M36 X 450, 600, 750
'! '
' j J
l
J
-
i
' J
' J
See Appendices C12, C13, C14 for more information on bolts and fastening. When carrying out design, it is important to consult new SCI/BCSA guidelines (Ref 3.4.5) THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
l
' J
l '
J
r
r-
r-
[
r-·
-~
c
r
r----::
I
.---~
[
c--=
r-
r
r-
r
l
-~
4.4 Steel (Non-composite) (13/21) Bolts Non-preloaded ordinary bolts - GRADE 8.8 BOLTS Shear Value Dia
Tensile
Tensile
of
Stress
Cap
Bolt
Area
Single
Double
Shear
Shear
kN
kN
(Tension capacity= simple method with allowance for prying)
Bearing Value of plate at S275 and end distance equal to 2xbolt diameter
Bearing Value of plate at S355 and end distance equal to 2xbolt diameter
Thickness in mm of Plate Passed Through
Thickness in mm of Plate Passed Through
5
6
7
8
9
10
12
15
20
25
30
5
6
7
8
9
10
12
-
-
33.0
39.6
46.2
52.8
59.4
-
44.0
52.8
61.6
70.4
79.2
-
55.0
66.0
77.0
88.0
99.0
-
60.5
72.6
84.7
96.8
109
121
145
182
-
-
-
-
66.0
79.2
92.4
106
119
132
158
198
264
-
-
413
-
15
20
25
30
-
-
106
-
-
-
-
88.0
-
110
132
165
-
-
-
mm
mm2
kN
12
84.3
37.8
31.6
63.2
27.6
33.1
38.6
44.2
49.7
55.2
-
-
16
157
70.3
58.9
118
36.8
44.2
51.5
58.9
66.2
73.6
88.3
110
-
20
245
110
91.9
184
46.0
55.2
64.4
73.6
82.8
92.0
110
138
184
22
303
136
114
227
50.6
60.7
70.8
81.0
91.1
101
121
152
202
24
353
158
132
265
55.2
66.2
77.3
88.3
99.4
110
132
166
221
-
27
459
206
172
344
62.1
74.5
86.9
99.4
112
124
149
186
248
311
-
74.2
89.1
104
119
134
148
178
223
297
138
166
207
276
345
414
82.5
99.0
116
132
148
165
198
248
330
30
561
- ----
251
-
210
421
69.0
82.8
96.6
110
124
-
.. . G - ------ ----- ---r .--- ------- GENERAL GRADE BOLTS Slip Value
Dia
Proof
Tensile
of
Load
Cap
Bolt
of Bolt
mm
kN
kN
12
49.4
49.7
Bearing Value of Plate at S275 and end distance equal to 3xbolt diameter
Bearing Value of Plate at S355 and end distance equal to 2xbolt diameter
Thickness in mm of Plate Passed Through.
Thickness in mm of Plate Passed Though.
5
Single
Double
Shear
Shear
kN
kN
27.2
54.3
41.4
49.7
-
66.2
77.3
6
7
9
10
-
-
88.3
99.4
8
12
15
-
-
-
-
-
-
20
25
30
5
6
7
8
9
10
12.5
15
-
-
49.5
-
-
-
-
-
-
-
-
66.0
79.2
92.4
-
-
-
-
-
-
-
-
-
-
20
25
30
16
92.1
92.6
50.7
101
55.2
20
144
145
79.2
158
69.0
82.8
96.6
110
124
138
-
-
-
-
-
82.5
99.0
116
132
149
-
-
-
-
-
-
22
177
179
97.4
195
75.9
91.1
106
121
137
152
182
-
-
-
90.7
109
127
145
163
182
-
-
-
228
99.4
116
132
149
166
199
-
99
119
139
158
178
198
-
-
-
-
112
130
149
168
186
224
-
-
-
-
-
82.8
-
-
111
134
156
178
200
223
-
-
-
-
124
145
166
186
207
248
311
-
-
124
148
173
198
223
248
-
-
-
-
24
207
208
114
27
234
236
129
257
93.2
30
286
289
157
315
104
-
..
- ·
297
Note: f! = 0.5 in BS 5950-1: 2000
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
r
r
'
J
'
J
'
J
'
J
4.4 Steel (Non-composite) (18/21)
Welded
I
Use 6mm fillet where possible. 1.0 2.0 3.0
6mm fillet in downhand position 6mm fillet in vertical position 6mm fillet in overhead position
Relative costs:
' J
For each additional run multiply above by 1.75. Note:
.....,
1 run 2 runs 3 runs
6mm weld 8mm weld 10mmweld
I
' J
Single V butt weld in 1Omm plate Double V butt weld in 20mm plate Single U butt weld in 20mm plate Double U butt weld in 40mm plate Single J butt weld in 20mm plate9.0 Double J butt weld in 40mm plate Single level butt weld in 1Omm plate Double level butt weld in 20mm plate
-
6.0 12.0 10.0 20.0 18.0 5.0 10.0
'
j
"l
For each 5mm of plate thickness multiply above by 4.0.
I
' J
Weld design
Fillet welds - Grade S 275 steel, Grade E35 Electrodes Leg length mm
Throat thickness mm
Longitudinal Capacity at 250 N/mm 2 , PL. kN/mm
Leg length mm
Throat thickness mm
Longitudinal Capacity at 250 N/mm2 , PL. kN/mm
3.0 4.0 5.0 6.0 8.0 10.0
2.1 2.8 3.5 4.2 5.6 7.0
0.462 0.616 0.770 0.924 1.232 1.540
12.0 15.0 18.0 20.0 22.0 25.0
8.4 10.5 12.6 14.0 15.4 17.5
1.848 2.310 2.772 3.080 3.388 3.850
Note: Transverse Capacity, Pr = K PL, where K
I
' J
'
J
'
J
'
J
=1.25 for elements at goo to each other
Fillet welds- GradeS 355 steel, Grade E42 Electrodes Leg length mm
Throat thickness mm
Longitudinal Capacity at 250 N/mm2 , PL, kN/mm
Leg length mm
Throat thickness mm
Longitudinal Capacity at 250 Nlmm 2 ,PL, kN/mm
3.0 4.0 5.0 6.0 8.0 10.0
2.1 2.8 3.5 4.2 5.6 7.0
0.525 0.700 0.875 1.050 1.400 1.750
12.0 15.0 18.0 20.0 22.0 25.0
8.4 10.5 12.6 14.0 15.4 17.5
2.100 2.625 3.150 3.500 3.850 4.375
Note: Transverse Capacity, Pr = K PL. where K
-
=1.25 for elements at goo to each other
\ j
-
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug ga
'
ARUIP
'
J
\ J
ir ' I
l4.4 Steel (Non-composite) (13/21)
4.4.9 Corrosion protection Notes:
r
'
f
'
:
i
Define the environment correctly. The information given is typical. There are many alternatives depending on the individual situations. Avoid specifying too many schemes for any one job. The table takes no account of fire resistance. For further details, see Structural Guidance Note 5.1 (1997)
r ,
Environment r '
I..,_
Typical protection solution
External
All
E-2 (three coat scheme)
Internal
Controlled (e.g. office)
1-1 (Do nothing)
Cavity and perimeter
1-3
Uncontrolled (e.g. warehouses)
1-4
Specials (e.g. swimming pools kitchens)
1-5
r ,
i
L r , '
r ,
iI.... External scheme E-2
r ,
Preparation
Blast clean to Sa 2.5 of BS7079 Pt A1
Primer
Epoxy Zinc Phosphate 75!-lm
Barrier
Epoxy Micaceous Iron Oxide 10011m
Finish
Acrylic/Urethane 50!-lm
r '
Internal scheme 1-3
Internal scheme 1-4
Internal scheme 1-5
Primer
Epoxy Zinc Rich 75!-lm
Epoxy Primer finish 125!-lm
Epoxy Zinc Phosphate 50J.lm
Barrier
-
-
Epoxy MIO 125!-lm
Finish
-
-
Acrylic/Urethane
r '
Preparation r ' I
'--'
r
i
r
'
'
' '---'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 (
I
'
ARUIP
' j
'
j
'
J
'
J
'
J
'
J
4.4 Steel (Non-composite) (16/21)
r
SECTION PROPERTIES Universal Beams (1 of 2) X-------
------ X
I
y
PROPERTIES Designation
Moment of
Mass per Metre
Axis
em'
em
388 343
719300 625200
289 253 224 201
838x292
Serial Size
Radius Of Gyration
Buck. Para.
Tors. Index
u
X
Axis y-y
Axis
Axis y-y
Axis
X-X
X-X
y-y
em
em
em'
em'
em'
em'
45440 39160
38.1 37.8
9.58 9.46
15630 13720
2161 1871
17670 15470
3342 2890
0.884 0.883
504800 436400 376300 325900
15610 13300 1240 9433
37.0 36.8 36.3 35.6
6.50 6.42 6.27 6.06
10900 9503 8268 7217
1015 871 739 622
12590 10940 9533 8372
1603 1371 1163 983
226 194 176
339700 279200 246000
11360 9066 7791
34.3 33.6 33.1
6.27 6.06 5.90
7985 6641 5892
773 620 534
9155 7640 6806
762x267
197 173 147
239800 205200 168800
8175 6850 5462
30.9 30.5 30.0
5.71 5.58 5.39
6232 5385 4478
610 514 412
686x254
170 152 140 125
170300 150400 136300 118000
6630 5784 5183 4383
28.0 27.8 27.6 27.2
5.53 5.46 5.39 5.24
4916 4375 3987 3481
610x305
238 179 149
207700 151500 124700
15850 11400 9308
26.1 25.8 25.6
7.22 7.08 6.99
610x229
140 125 113 101
111700 98500 87380 75820
4499 3932 3434 2915
25.0 24.9 24.6 24.2
533x210
122 109 101 92 82
76180 66800 61650 55330 47520
3388 2939 2696 2389 2004
457x191
98 89 82 74 67
45770 41140 37090 33430 29410
82 74 67 60 52
36250 32470 28600 25450 21370
mm 914x419
914x305
457x152
Axis
Plastic Modulus
X-X
x-x
Axis y-y
Elastic Modulus
·,
Warp. Canst
Tors. Canst
Area
Axis H
J
A
dm6
em4
em2
26.7 30.1
88.8 75.7
1739 1193
495 437
0.866 0.866 0.861 0.853
31.9 36.2 41.3 46.7
31.2 26.4 22.1 18.4
930 626 422 294
369 323 286 257
1212 974 841
0.870 0.862 0.856
35.0 41.6 46.5
19.3 15.2 13.0
514 306 221
289 247 224
7164 6195 5169
959 807 648
0.869 0.864 0.857
33.2 38.1 45.1
11.3 9.39 7.40
404 267 160
251 220 188
518 455 409 346
5631 5001 4558 3994
811 710 638 542
0.872 0.871 0.868 0.862
31.8 35.5 38.7 43.9
7.42 6.43 5.72 4.80
308 220 169 116
217 194 178 159
6564 4907 4093
1018 742 611
7462 5515 4575
1576 1143 938
0.886 0.886 0.886
21.1 27.5 32.5
14.3 10.0 8.10
790 340 201
304 228 190
5.03 4.97 4.88 4.75
3619 3219 2878 2518
391 343 301 256
4139 3673 3287 2887
611 535 470 401
0.875 0.873 0.869 0.863
30.6 34.1 37.9 42.9
3.98 3.45 2.99 2.51
216 154 112 77.6
178 159 144 129
22.1 21.9 21.8 21.7 21.3
4.66 4.60 4.57 4.50 4.38
2798 2476 2297 2076 1799
320 279 257 228 192
3203 2827 2619 2366 2058
500 435 400 356 300
0.876 0.875 0.874 0.871 0.864
27.6 30.9 33.1 36.4 41.6
2.32 1.99 1.82 1.60 1.33
179 126 102 76.3 51.5
156 139 129 118 105
2347 2093 1871 1674 1452
19.1 19.0 18.8 18.7 18.5
4.33 4.28 4.23 4.20 4.12
1959 1775 1612 1462 1297
243 218 196 176 153
2234 2020 1832 1659 1472
379 339 304 273 237
0.881 0.879 0.877 0.876 0.872
25.8 28.2 30.9 33.8 37.9
1.18 1.Q4 0.923 0.820 0.706
121 91.3 69.2 52.2 37.1
125 114 105 95.1 85.5
1144 1013 879 795 645
18.6 18.5 18.3 18.3 17.9
3.31 3.26 3.21 3.24 3.11
1559 1408 1251 1119 950
149 133 116 104 84.6
1802 1624 1442 1283 1096
236 209 183 163 133
0.872 0.870 0.867 0.869 0.859
27.3 30.0 33.5 37.6 43.9
0.570 0.500 0.430 0.387 0.311
89.5 66.8 47.6 33.5 21.4
105 95.1 85.3 75.8 66.6
4
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
'
'""'! I '
J
'l
I
I
'
)
'
'
)
'
I
'
J
'
J
'
J
'
J
'
J
'
(
r .
4.4 Steel (Non-composite) (17/21)
r
Universal Beams (2 of 2)
' '
I
PROPERTIES Designation
(
Second Moment of Area
1
Serial Size I
!
(
Mass per Metre kg
Axis
em
em
406x178
74 67 60 54
27430 24330 21540 18670
406x140
46 39
356x171
mm
'
f
4
4
Axis
x-x
Axis y-y
Axis X-X
Axis y-y
Axis
x-x
Axis y-y
Buck. Para.
Tors. Index
u
X
Warp. Canst
Tors. Canst
Area
H
J
A
dm'
em4
em'
em 3
em'
em'
em'
1551 1365 1201 1019
17.0 16.9 16.8 16.5
4.03 3.99 3.97 3.86
1329 1189 1060 927
173 153 135 115
1509 1346 1195 1051
268 237 209 178
0.880 0.880 0.881 0.872
27.5 30.5 33.8 38.4
0.610 0.533 0.465 0.391
63.7 46.1 33.0 22.9
95.3 85.5 76.1 68.6
15670 12410
540 410
16.3 15.9
3.03 2.89
779 625
75.9 57.8
889 718
119 90.7
0.870 0.859
38.8 47.6
0.207 0.155
19.2 10.5
59.0 49.2
67 57 51 45
19540 16060 14160 12080
1362 1106 968 810
15.1 14.9 14.8 14.6
3.99 3.91 3.87 3.77
1073 896 796 686
157 129 113 94.7
1213 1009 895 773
243 198 174 146
0.886 0.883 0.882 0.875
24.4 28.9 32.2 37.0
0.413 0.330 0.287 0.237
55.7 33.1 23.6 15.7
85.5 72.2 64.6 57.0
356x127
39 33
10100 8192
358 280
14.3 14.0
2.69 2.59
573 470
56.8 44.7
654 539
88.9 70.2
0.872 0.864
35.2 42.3
0.105 0.0810
14.9 8.65
49.4 41.8
305x165
54 46 40
11690 9935 8551
1061 896 766
13.1 13.0 12.9
3.94 3.90 3.85
752 647 563
127 108 92.8
843 722 626
195 166 142
0.891 0.891 0.888
23.7 27.2 31.0
0.234 0.195 0.165
34.3 22.2 14.9
68.2 58.8 51.6
305x127
48 42 37
9507 8159 7162
460 389 337
12.5 12.4 12.3
2.75 2.70 2.67
613 532 471
73.5 62.6 54.6
706 612 540
116 98.4 85.6
0.874 0.872 0.871
23.3 26.5 29.6
0.101 0.0843 0.0724
31.5 21.1 14.9
60.9 53.4 47.4
305x102
33 28 25
6501 5439 4364
194 158 119
12.5 12.2 11.8
2.15 2.08 1.96
416 352 286
37.9 30.9 23.5
481 408 336
60.0 49.2 37.8
0.866 0.859 0.844
31.6 36.9 44.1
0.0442 0.0355 0.0265
12.2 7.69 4.57
41.8 36.4 31.2
254x146
43 37 31
6554 5547 4428
677 571 448
10.9 10.8 10.5
3.51 3.47 3.35
505 433 352
92.0 78.0 61.3
568 435 395
141 119 94.2
0.890 0.889 0.879
21.1 24.3 29.5
0.103 0.0857 0.0660
24.0 15.4 8.65
55.0 47.4 39.9
254x102
28 25 22
4013 3420 2853
178 149 119
10.5 10.3 10.0
2.21 2.15 2.06
308 266 225
34.9 29.2 23.5
354 307 260
54.8 46.1 37.3
0.873 0.865 0.854
27.4 31.3 36.1
0.0279 0.0230 0.0182
9.68 6.52 4.23
36.3 32.3 28.3
203x133
30 25
2888 2349
384 309
8.72 8.54
3.18 3.10
279 231
57.4 46.3
313 259
88.0 71.2
0.882 0.876
21.5 25.5
0.0373 0.0295
10.2 6.05
38.0 32.2
203x102
23
2091
163
8.49
2.37
206
32.1
232
49.5
0.890
22.5
0.0153
6.87
29.0
178x102
19
1357
138
7.49
2.39
153
27.2
171
41.9
0.889
22.6
0.00998
4.37
24.2
152x89
16
838
90.4
6.40
2.10
110
20.3
124
31.4
0.889
19.5
0.00473
3.61
20.5
127x76
13
477
56.2
5.33
1.83
75.1
14.7
85.0
22.7
0.893
16.2
0.00200
2.92
16.8
'
!
L
(
Axis y-y
Plastic Modulus
em
!
I
x-x
Elastic Modulus
em
I '
! \
Radius Of Gyration
\
r •
(
!
'
( I
.
r •
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
I
l...
ARUJP
'
j
'
J
'
)
I
'
J
I
......,
4.4 Steel (Non-composite) (18/21)
Universal Columns !
JE' y
PROPERTIES Designation
Serial Size
mm 356x406
Second Moment of Area
Radius Of Gyration
Elastic Modulus
' J
Plastic Modulus
Mass per Metre kg
Axis
Axis
Axis
Axis
Axis
Axis
Axis
Axis
x-x
y-y
x-x
y-y
X-X
y-y
x-x
y-y
em'
em'
em
em
em'
em'
em'
em'
634 551 467 393 340 287 235
275000 227000 183100 146700 122500 99930 79150
98190 82670 67930 55370 46850 38680 31040
18.5 18.0 17.5 17.1 16.8 16.5 16.2
11.0 10.9 10.7 10.5 10.4 10.3 10.2
11590 9964 8388 7001 6029 5077 4155
4631 3951 3295 2721 2325 1939 1572
14240 12080 10010 8225 6997 5814 4691
7112 6057 5040 4154 3543 2949 2386
Buck. Para.
Tors. Index
u
X
0.843 0.841 0.839 0.837 0.836 0.835 0.834
5.46 6.06 6.86 7.87 8.85 10.2 12.1
Warp. Canst
Tors. Canst
Area I
, I
H
J
A
dm6
em'
em'
38.8 31.1 24.3 18.9 15.5 12.3 9.55
13730 9232 5817 3545 2340 1441 813
808 702 595 501 433 366 300
COL CORE
477
172500
68090
16.9
10.6
8078
3209
9704
4981
0.815
6.90
23.8
5705
607
356x368
202 177 153 129
66330 57110 48640 40300
23630 20450 17510 14580
16.0 15.9 15.8 15.6
9.57 9.52 9.46 9.39
3541 3101 2687 2266
1262 1099 946 792
3978 3455 2970 2485
1917 1667 1433 1198
0.843 0.844 0.844 0.843
13.4 15.0 17.0 19.8
7.14 6.07 5.10 4.17
561 382 252 154
258 226 196 165
283 240 198 158 137 118 97
78800 64150 50860 38690 32770 27610 22200
24540 20220 16240 12500 10650 9006 7272
14.8 14.5 14.2 13.9 13.7 13.6 13.4
8.25 8.14 8.02 7.89 7.82 7.76 7.68
4314 3639 2993 2365 2045 1756 1443
1525 1272 1034 805 690 587 477
5101 4243 3438 2675 2293 1952 1589
2337 1945 1577 1225 1049 892 724
0.855 0.854 0.854 0.852 0.851 0.851 0.850
7.65 8.74 10.2 12.5 14.2 16.2 19.3
6.33 5.01 3.86 2.85 2.38 1.97 1.55
2034 1270 735 376 249 160 91.1
360 305 252 201 174 150 123
167 132 10 7 89 73
29920 22550 17500 14280 11370
9792 7506 5894 4835 3880
11.9 11.6 11.3 11.2 11.1
6.79 6.67 6.57 6.52 6.46
2070 1632 1312 1097 895
740 575 456 378 306
2418 1872 1484 1225 990
1131 877 695 574 463
0.852 0.850 0.848 0.849 0.849
8.49 10.3 12.4 14.5 17.3
1.62 1.18 0.893 0.714 0.558
625 321 173 103 57.5
212 169 137 114 92.9
203x203
86 71 60 52 46
9461 7634 6103 5254 4565
3114 2530 2047 1767 1539
9.27 9.16 8.96 8.90 8.81
5.32 5.28 5.19 5.16 5.12
851 707 582 510 449
298 245 199 173 151
979 801 654 567 497
455 373 303 263 230
0.849 0.852 0.847 0.848 0.846
10.2 11.9 14.1 15.8 17.7
0.317 0.249 0.195 0.166 0.142
138 81.0 46.9 31.9 22.2
110 90.9 76.0 66.4 58.8
152x152
37 30 23
2213 1748 1258
706 560 402
6.84 6.75 6.51
3.87 3.82 3.68
274 222 165
91.5 73.3 52.7
309 248 184
140 112 80.5
0.848 0.848 0.837
13.3 16.0 20.5
0.0399 0.0307 0.0213
19.3 10.6 4.82
47.3 38.4 29.7
305x305
254x254
'
J
I
I
l
j
'
J
I'
......, I '
J
'
J
'
J
'
J
l
'
I
I
......, i
• J
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUP
J
......, '
J
-
! \
4.4 Steel (Non-composite) (23/21)
Circular Hollow Sections r '.
DIMENSIONS AND PROPERTIES
r ,
Outside Dia. D(mm)
'
(
Designation
Area
Ratio For Local Buck.
cm
kg
0/t
c
358 448 550 673 837 1011 1210
6692 8320 10150 12290 15070 17910 21040
548 680 830 1006 1232 1466 1720
0.768 0.768 0.768 0.768 0.768 0.768 0.768
273.0
6.3 8.0 10.0 12.5 16.0 20.0 25.0+
41.4 52.3 64.9 80.3 101 125 153
52.8 66.6 82.6 102 129 159 195
43.3 34.1 27.3 21.8 17.1 13.6 10.9
4696 5852 7154 8697 10710 12800 15130
9.43 9.37 9.31 9.22 9.10 8.97 8.81
344 429 524 637 784 938 1108
448 562 692 849 1058 1283 1543
9392 11700 14310 17390 21420 25600 30260
688 858 1048 1274 1568 1876 2216
0.858 0.858 0.858 0.858 0.858 0.858 0.858
323.9
6.3 8.0 10.0 12.5 16.0 20.0 25.0+
49.3 62.3 77.4 96.0 121 150 184
62.9 79.4 98.6 122 155 191 235
51.4 40.5 32.4 25.9 20.2 16.2 13.0
7929 9910 12160 14850 18390 22140 26400
11.2 11.2 11.1 11.0 10.9 10.8 10.6
490 612 751 917 1136 1367 1630
636 799 986 1213 1518 1850 2239
15860 19820 24320 29700 36780 44280 52800
980 1224 1502 1834 2272 2734 3260
1.02 1.02 1.02 1.02 1.02 1.02 1.02
355.6
8.0 10.0 12.5 16.0 20.0 25.0.
68.6 85.2 106 134 166 204
87.4 109 135 171 211 260
44.5 35.6 28.4 22.2 17.8 14.2
13200 16220 19850 24660 29790 35680
12.3 12.2 12.1 12.0 11.9 11.7
742 912 1117 1387 1676 2007
967 1195 1472 1847 2255 2738
26400 32440 39700 49320 59580 71360
1484 1824 2234 2774 3352 4014
1.12 1.12 1.12 1.12 1.12 1.12
406.4
10.0 12.5 16.0 20.0 25.0+
97.8 121 154 191 235
125 155 196 243 300
40.6 32.5 25.4 20.3 16.3
24480 30030 37450 45430 54700
14.0 13.9 13.8 13.7 13.5
1205 1478 1843 2236 2692
1572 1940 2440 2989 3642
48960 60060 74900 90860 109400
2410 2956 3686 4472 5384
1.28 1.28 1.28 1.28 1.28
457.0
10.0 12.5 16.0 20.0 25.0+ 40.0
110 137 174 216 266 411
140 175 222 275 339 524
45.7 36.6 28.6 22.9 18.3 11.4
35090 43140 53960 65680 79420 114900
15.8 15.7 15.6 15.5 15.3 14.8
1536 1888 2361 2874 3475 5031
1998 2470 3113 3822 4671 6977
70180 86280 107900 131400 158800 229800
3072 3776 4722 5748 6950 10060
1.44 1.44 1.44 1.44 1.44 1.44
508.0
10.0 12.5 16.0 20.0 25.0+ 40.0+ 50.0+
123 153 194 241 298 462 565
156 195 247 307 379 588 719
50.8 40.6 31.7 25.4 20.3 12.7 10.2
48520 59760 74910 91430 110900 162200 190900
17.6 17.5 17.4 17.3 17.1 16.6 16.3
1910 2353 2949 3600 4367 6385 7515
2480 3070 3874 4766 5837 8782 10530
97040 119500 149800 182900 221800 324400 381800
3820 4706 5898 7200 8734 12770 15030
1. 60 1.60 1.60 1.60 1.60 1.60 1.60
i
i
i....
' i....
+
Check availability of section
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
...... '
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98 '
i
I...,.
m2
274 340 415 503 616 733 860
I '
'
cm 3
J
8.42 8.37 8.30 8.21 8.10 7.97 7.81
i 1.-o
(
cm 4
cm
s3
3346 4160 5073 6147 7533 8957 10520
i
'
z3
Surf. Area Per Metre
38.8 30.6 24.5 19.6 15.3 12.2 9.78
r ,
(
r em
I 4 cm
Tors. Const
47.1 59.4 73.7 91.1 115 141 172
......
'
Plastic Modulus
37.0 46.7 57.8 71.5 90.2 111 135
I
I
Elastic Modulus
6.3 8.0 10.0 12.5 16.0 20.0 25.0.
L 1.-o
Radius Of Gyration
A 2 cm
'
I
Second Moment of Area
244.5
r ,
'
Thickness t mm
Mass Per Metre
ARUIP
I
)
I
)
I
)
I
J
4.4 Steel (Non-composite) (23/21)
Rectangular Hollow Sections DIMENSIONS AND PROPERTIES Designation
Size
0
Mass Per Metre
Area
Ratios for Local Buck.
Thickness
Axis
B
A
mm
Second Moment of Area
kg
kg
em'
d/t
bit
Axis
Radius Of Gyration
Axis
Axis
Elastic Modulus
Plastic Modulus
Axis
Axis
Axis
Axis
y-y em 3
x-x em 3
em3
X-X
y-y
x-x
y-y
X-X
em4
em4
em
em
em3
y-y
Tors. Canst
J em4
Surf. Area
......,
c em3
I
m'
J
I
150x100
5.0 6.3 8.0 10.0 12.5.
18.7 23.3 29.1 35.7 43.6
23.9 29.7 37.1 45.5 55.5
27.0 20.8 15.7 12.0 9.00
17.0 12.9 9.50 7.00 5.00
747 910 1106 1312 1532
396 479 577 678 781
5.59 5.53 5.46 5.37 5.25
4.07 4.02 3.94 3.86 3.75
99.5 121 147 175 204
79.1 95.9 115 136 156
121 148 183 220 263
90.8 111 137 164 194
806 985 1202 1431 1680
127 153 184 215 246
0.489 0.486 0.483 0.479 0.473
160x80
5.0 6.3 8.0 10.0 12.5
18.0 22.3 27.9 34.2 41.6
22.9 28.5 35.5 43.5 53.0
29.0 22.4 17.0 13.0 9.80
13.0 9.70 7.00 5.00 3.40
753 917 1113 1318 1536
251 302 361 419 476
5.74 5.68 5.60 5.50 5.38
3.31 3.26 3.19 3.10 3.00
94.1 115 139 165 192
62.8 75.6 90.2 105 119
117 144 177 213 254
71.7 87.7 107 127 150
599 729 882 1041 1206
106 127 151 175 199
0.469 0. 466 0. 463 0.459 0.453
200x100
5.0 6.3 8.0 10.0 12.5 16.0.
22.7 28.3 35.4 43.6 53.4 66.4
28.9 36.0 45.1 55.5 68.0 84.5
37.0 28.7 22.0 17.0 13.0 9.50
17.0 12.9 9.50 7.00 5.00 3.25
1509 1851 2269 2718 3218 3808
509 618 747 881 1022 1175
7.23 7.17 7.09 7.00 6.88 6.71
4.20 4.14 4.07 3.98 3.88 3.73
151 185 227 272 322 381
102 124 149 176 204 235
186 231 286 346 417 505
115 1473 1802 2154 2541 2988
1202 1473 1802 2154 2541 2988
172 208 251 296 342 393
0.589 0.586 0.583 0.579 0.573 0.566
5.0 6.3 8.0 10.0 12.5.
24.2 30.3 37.9 46.7 57.3
30.9 38.5 48.3 59.5 73.0
37.0 28.7 22.0 17.0 13.0
21.0 16.0 12.0 9.00 6.60
1699 2087 2564 3079 3658
767 937 1140 1356 1589
7.42 7.36 7.28 7.19 7.08
4.98 4.93 4.86 4.77 4.67
170 209 256 308 366
128 156 190 226 265
206 255 316 384 464
144 178 220 266 319
1646 2025 2491 2997 3567
210 256 310 367 429
0.629 0.626 0.623 0.619 0.613
5.0 6.3 8.0 10.0 12.5 16.0
30.5 38.2 48.0 59.3 73.0 91.5
38.9 48.6 61.1 75.5 93.0 117
47.0 36.7 28.2 22.0 17.0 12.6
27.0 20.8 15.7 12.0 9.00 6.38
3382 4178 5167 6259 7518 9089
1535 1886 2317 2784 3310 3943
9.33 9.27 9.19 9.10 8.99 8.83
6.28 6.23 6.16 6.07 5.97 5.82
271 334 413 501 601 727
205 252 309 371 441 526
326 405 505 618 751 924
229 284 353 430 520 635
3275 4049 5014 6082 7317 8863
337 413 506 606 717 851
0.789 0. 786 0. 783 0.779 0.773 0.766
300x200
6.3 8.0 10.0 12.5 16.0
48.1 60.5 75.0 92.6 117
61.2 77.1 95.5 118 149
44.6 34.5 27.0 21.0 15.7
28.7 22.0 17.0 13.0 9.50
7880 9798 11940 14460 17700
4216 5219 6331 7619 9239
11.3 11.3 11.2 11.1 10.9
8.30 8.23 8.14 8.04 7.89
525 653 796 964 1180
422 522 633 762 924
627 785 964 1179 1462
475 593 726 886 1094
8468 10550 12890 15650 19230
681 840 1016 1217 1469
0. 986 0. 983 0.979 0. 973 0.966
400x200
8.0 10.0 12.5 16.0
73.1 90.7 112 142
93.1 116 143 181
47.0 37.0 29.0 22.0
22.0 17.0 13.0 9.50
19710 24140 29410 36300
6695 8138 9820 11950
14.5 14.5 14.3 14.2
8.48 8.39 8.29 8.14
985 1207 1471 1815
669 814 982 1195
1210 1492 1831 2285
746 916 1120 1388
15720 19240 23410 28840
1135 1377 1657 2011
1.18 1.18 1.17 1.17
450x250
8.0 10.0 12.5 16.0
85.7 106 132 167
109 136 168 213
53.2 42.0 33.0 25.1
28.2 22.0 17.0 12.6
30270 37180 45470 56420
12200 14900 18100 22250
16.7 16.6 16.5 16.3
10.6 10.5 10.4 10.2
1345 1653 2021 2508
976 1192 1448 1780
1630 2013 2478 3103
1086 1338 1642 2047
27060 33250 40670 50480
1629 1986 2407 2948
1.38 1.38 1.37 1.37
500x300
10.0 12.5 16.0 20.0.
122 152 192 237
156 193 245 302
47.0 37.0 28.2 22.0
27.0 21.0 15.7 12.0
54120 66360 82670 100100
24560 29970 37080 44550
18.7 18.5 18.4 18.2
12.6 12.5 12.3 12.1
2165 2655 3307 4006
1638 1998 2472 2970
2609 3218 4042 4942
1834 2257 2825 3442
52400 64310 80220 97310
2696 3282 4046 4845
1.58 1.57 1.57 1.56
200x120
250x150
•
I
I
I
I
J
I
J
•
j
I
)
......, I
i I
\
j
I
)
I
j
I I
Check availability of section
• J
I
)
I
)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
..., i I
J
',
(
I
'-'
'
(
I
4.4 Steel (Non-composite) (21/21)
4.4.11 References r ,
' '-'
f
'
I
r.....
I
4.
SCI, Guide to BS 5950: Part 1: 1990, Volume 1
5.
ARBED, Structural shapes, 1990
6.
Simple Connections, Volume 1: Design Rules, SCI/BCSA
7.
Simple Connections, Volume 2: Practical Applications
8.
Moment Connections, SCI BCSA
'
i
L r . i
....... '
(
I
L '
( I
I
....... '
(
I
i
'-' r
'
! I ........
(
'
i,
"-'
( '
L r , '
I ,
L (
1
'
(
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
I,
ARUP
'
j
'
'
)
4.5 Composite Steel and Concrete (1/11)
4.5
COMPOSITE STEEL AND CONCRETE
4.5.1
RULES OF THUMB
•
Typical starting point Overall concrete depth 130mm (Grade 30) Depth of profiled decking 60mm Size beam with Z = ( Z for non-composite beam ) x F where F = 1.6 - 2.0
•
Typical maximum slab spans (m}
Decking gauge
'
)
'
)
'
)
'
j
'
)
'
)
Normal Weight Concrete
Lightweight concrete
Slab depth (mm)
Simply Supported
Continuous
Simply Supported
Continuous
0.9 (A142 mesh)
130 150
2.95 2.88
3.11 3.22
2.78 2.66
3.03 3.00
1.2 (A193 mesh)
130 150
3.20 3.08
3.73 3.62
3.02 2.89
3.55 3.41
Design assumes 60 m1nute fire resistance, provided that the slab
•
)
1
"Ribdeck AL" (Richard Lees Ltd) 2 Imposed load of 4+1 kN/m (unfactored) 2 (including floor, ceiling and services= 6.7 kN/m ) Unpropped For other profiles see section D2
Figures based on:
'
IS
..
cont1n1ous (decking need not be)
Choice of beam system
Scheme
Likely span range
Economic and
Accommodation
Estimated unit cost
(m)
practical
of major
index for fabricated
maximum
services.
and erected
As primary
As secondary
ratios of span
Maximum x-
steelwork
beams
beams
to structural
sectional area
depth
for 15m span m2
Simple construction with
6-10.5
sections Haunched Beams Parallel Beam approach Castellated sections Stub girders
Composite
Above 12
Above 12
Above 12
Above 12
Spans up to 10.5
Ribs up to 15
N/A
up to 16
10-15
N/A
-
15
1.9
25
0.9
25 (support)
5.3
32(midspan)
3.6
21
14
5.0
18
2.8
30
I
17
1.5
20
1.3
13
3.0
16
2.5
12
1.5
16
1.0
Above 12
Above 12
Slimfloor
-
4.5 to 9
20
-
Slimdek
-
5 to 7
-
-
trusses
'
)
'
I
'
J
'
)
'
)
'
J
'
)
1.0 1.3 with reinforced
28
rolled sections Fabricated
1.7
20
8-18
' j
openings 1.2 1.3 I
0.9
i
1.3 I
1.4
1.5
·,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
ARUIP
l
, I
I
\
{
\
(
\
(
\
4.5 Composite Steel and Concrete (2/11) 4.5.1
RULES OF THUMB (CONT'D)
•
Preferred beam layoue Inefficient
Efficient
For maximum structural efficiency:
tf-_-
-~1-----,-,..--,--l 1
-Pri-""'""'
'
;
'
Lsecondary
=4/3
Lprimary
Secondafy beam
...
-ri__J__J__j__r_ r
1
(
1
'
J t~._,~. . ,.
•
r ,
Initial scheming chart Universal beams, 125mm concrete slab (Dotted Line on upper graph indicates that a 150mm slab may be required).
I I
i....o
1\ ~
r ,
L
Rasidantial
r ,
Officas
\
-~Q,
·~'z.
.9! ~·
•
J
L
.•
•
\I\
'
i
.
la>,,
'~ 1\~
Shops
.12._
\
\ _l
'-
(
\
~ ~
! (
\
•
.
1
I
L .s~,~
\\ ~
\
r ,
" ~
L r ,
'""~
~ r" ~".,..S
~ ~II)
~
~
i
I
!.,.;
!'""'<.
~ ~
........ "'e. I'
I"- 61,-.....;
""
!'...
..:.1~~
"
L L
0
10
20
30
40
Distributed load on Beam (kN/m)
r,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
L
AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR Ver 3.1 I Oct 00
200
........ 700 50
ARUJP
l
)
l
i
•
I
4.5 Composite Steel and Concrete (3/11) 4.5.1 RULES OF THUMB (CONT'D) Fabricated beams
Castellated cellular beams (not very good for point loads): Span/depth < 20 hole = 0.670 Castellated beams, centres = 0.720 diameter = 0.60 - 0.80 Cellular beams holes centres = 1.1 -1.5 diameter
'"'il I
Haunched beams (use as part of frame action): D = midspan depth Span/depth:;;; 35 (span/depth including slab = 26 -28) Maximum overall depth at haunch = 2D Haunch length typically 7 - 10% of span
I
l
'
I
i
~
Tapered beams: D = midspan depth Span/depth 15 - 25 Depth at support= 0.50 or maximum taper of 6 degrees
•
L
1
l
I
l
' j'
'
)
Openings in beams (non-seismic applications) r-'1
Geometrical constraints : - Limit unstiffened openings to 0.60 depth by 1.50 length -Limit stiffened openings to 0.70 depth by 20 length - Space > D apart - Ideally positioned between L/5 and L/3 from support for beams with UDL - Position > D from any point load -Position> 20 (or L/10) from support - Openings should ideally be located mid-height. If not, the depths of the upper and lower sections of web should not differ by more than a factor of 2.
\ I
J
l
i l
)
....., I
i J
l
~
I I
J
l
I
I
' J THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
ARUJP
' J
l '
j
4.5 Composite Steel and Concrete (4/11)
L
4.5.2
'' '
LOAD FACTORS As .for non-composite steel (see section 4.4.2)
r ' I ' I
4.5.3
BENDING RESISTANCE (composite condition) 3
•
Approximate moment resistance calculation
w
2.6
r ,
2.4
I
L
0::::
.2 0
Glo:::: UJo
r ,
oUJ
C..-
1.6
0~
1.4
-01/J
'
"
2.0 1.8
Ea>
c'
2.2
Q):;:;
-o ·;;; Q)
00
1.2
.;,~ '(3'(3
1.0
c.. c..
1
0.8
• 1--
0.6 'E'E Q)Q)
•I--
tutu 00
EE
00
::2:::2:
I'...
~
1. Obtain Mp for steel r-beamfrom section 4.4. 2. Use multiplier to obtain r-Mp of composite beam.
1'---
B. - 5(D8 +Dp) ':!> 3m
tutu
I
ConcretE C30 Ste el py = 35f Be = L/4 3m
_'\.
0.4 •r--
:·t
I~
0.2 •I--
·~..-.~
I
i~
=
...
=II7o Dp=50 r---·-
ASSUMED SECTION I
I
I
I
I
I
I
I
I
I
r ,
I
150
100
50
0
I
I
I
200
Weight of steel section (kg/m)
v
'.....
Be
I
250
1/
r'
L I
Deck
Shear connector
'
DECK PARALLEL TO
DECK PERPENDICULAR TO SECONDARY BEAM
'I
PRIMARY BEAM
'-'
r ,
~p I
r
1
'
'
~ YP IN SLAB
Yp IN STEEL FLANGE
r, Case (c)
Case (b)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ,
Ver 3.1/ Oct 00
yP IN STEEL WEB Case( c)
ARUIP
4.5 Composite Steel and Concrete (5/11)
Bending Resistance Formulae (Assuming 100% interaction) Rs = pyA Rc = 0.45 feu (Ds - Dp)Be
•
CASE (a): Rc > Rs (P.N.A. in concrete slab)
•
J
'
J
' J
-~
2
Mvc
'
'l
CASE (b) : Rs > Rc > Rw (P.N.A. in steel flange) =
J
Be = 0.25 L D b eam spacing
_ Rs [ l+DsD Rs MpcRc ( Ds-Dv)] 2 •
'
I'
D + (Ds+DvJ _ (Rs-Rc) T Rs 2 Rc Rr 2 4
-
where T =flange thickness R1 = axial capacity of ~steel flange CASE (c): Rc < Rw (P.N.A. lies in web)
_ (Ds+Dv+D) Mvc- Ms+Rc 2
'
J
'
J
'
J
R~ D -4 Rw
i
where Ms = plastic capacity of steel section Rw = axial resistance of web only
I
4.5.4
' j
SHEAR CONNECTORS4 Design strength of headed studs in normal weight concrete (kN)
Dimensions of stud shear connectors (mm) Diameter
Nominal
As-welded
height
height
Design strength of concrete (N/mm 25
30
2
35
100
95
117
123
129
134
100
95
95
101
106
111
19
100
95
76
80
83
87
19
75
70
66
70
73
77
16
75
70
56
59
62
66
13
65
60
35
38
39
42
For concrete of characteristic strength greater than 40 N/mm2 use the values for 40 N/mm2 • For connectors of heights greater than tabulated use the values for the greatest height tabulated.
---r;:-
min 0.8 (N = 2 ) min 0.6 (N = 3 )
= no studs/trough = stud height =average trough width = depth profile
Design resistance= Design strength X rcan x rprafile
•
,
I
40
22
_ 0.85 b. (h- Dv) - -JN Dv
J
)
25
= 0.9 for lightweight concrete = 1.0 for normal weight concrete
'
'
J
l
J
I
'
j
'
j
'
J
'
J
Spacing Minimum longitudinal transverse
= 6
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
Maximum longitudinal = 600mm
ARUJP
'
L r ,
4.5 Composite Steel and Concrete (6/11)
r ,
L
4.5.5
BENDING STRENGTH (DURING CONSTRUCTION)
•
Conform with requirements in section 4.4 for non-composite sections.
•
Decking perpendicular to beam (secondary) provides restraint to top flange.
•
Decking parallel to beam (primary) does not provide restraint.
4.5.6
STIFFNESS 3
I
L.....
r
~
I
L
Approximate ratio of second moment of area of composite section to that of the steel section.
r , j
L
Be = 5(D8 +Dp)
~
3m
M
4.0
r ,
I~-. 3.6
r ,
ASSUMED SECTION
I
I......
Normal weight concrete U= 1 0
3.2 2.8
L r '
2.4
Lightweight concrete U= 1 5
2.0
r '
20
r.
40
60 Weight of section (kg/m)
i
I-.
r , I I
r ,
L
L r. I
-i
l
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
I ,
ARUJP
'
J
I
J
I
j
I
j
4.5 Composite Steel and Concrete (7/11) 4.5.7
SAFE LOAD TABLES Concrete grade
C35
Modular ratio
15
Overall concrete depth
130 mm
'"""'I
i
J
I
Depth of decking
60mm
Partial interaction
60%
I
J
l
Flange width
as large as possible
Deflection limit
DL: 1/200
Dead Load
4.5.8
'"""'I
LL : 1/350
I
'j
steelwork - self weight decking -0.18 kPa -3.12 kPa slab (dense) slab (lightweight) - 2.34 kPa services + ceiling - 1.00 kPa
I ' J
REFERENCES 1. RICHARD LEES Ltd, Steel Deck Flooring Systems
l.
;
I
J
2. STEEL CONSTRUCTION INSTITUTE, Steel Designers Manual 3. STEEL CONSTRUCTION INSTITUTE, SCI-P-055 Design of Composite Slabs and Beams with Steel Decking 4. BS 5950 Structural use of steelwork in building Part 3: Design in composite construction
' j
1.
I
J
l
' j
I I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.1 I Oct 00
ARUJP
i i
'
)
l
;
4.5 Composite Steel and Concrete (8/11) SAFE LOAD TABLES (1) GRADE 43 • DENSE CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2
Minimum Weight
r '
r,
r '
i
'-
r
'
(
'
I
I
r ,
r '
r '
r ,
Minimum Depth
Bay size (mxm)
No. sec. Beams per grid
Spacing of sec. beams
Secondary Beams
Primary Beams
Weight ( kg/m 2)
Secondary Beams
Primary Beams
Weight (kglm 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x28 356x 127 x 39 356x 127x39 406x 140x39 457 x 152 x52 457x 152x60 533 X 210 X 82 610x229x113" 762x267x147"
406x 140x46 457 X 152 X 52 457 X 152 X 60 457x152x60 457x191 x74 533x210x82 533x210x92 610x229x101 610 X 229 X 125
17.00 20.22 21.00 20.50 25.56 28.20 35.00 44.40 55.94
203 x 203 x46 203 x203 x60 203 x203 x 71 203 x203 x 86 254 x254 x 89 254 X 254 X 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
254 X 254 X 89 254x254x 107 254x254x 107 254 X 254 X 132 254 X 254 X 132 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X 305 X 240
30.17 34.86 37.93 45.17 44.33 52.37 68.83 93.20 126.67
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
305x 102x25 305x 102x33 356x171x45 457 x 152 x67 686 X 254 X 125"
457 X 152 X 60 457x152x67 533 X 210 X 82 610 X 229 X 101 762 X 267 X 147
2D.42 23.06 27.86 36.33 60.25
152 X 152 X 37 203 x203 x 46 203 x203 x 71 254 x 254 x132" 356 X 406 X 287"
254 X 254 X 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 198 356 X 406 X 287
33.25 37.50 48.14 71.50 135.53
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356x127x33 356x171x45 457 X 152 X 67 610 X 229 X 101 686x 254 x 140 •
457 X 152 X 60 533x210x82 533x210x92 610x229x 113 686 X 254 X 125 762 X 267 X 147
20.00 24.13 28.22 36.22 48.73 64.17
203x 203 x46 203x 203 x 52 203 X 203 X 86 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 287"
254x254x 132 254x254x 167 305 X 305 X 158 305 X 305 X 240 305 X 305 X 283 356 X 406 X 340
40.40 43.07 51.96 72.80 98.07 133.69
8.0 X 6.0 8.0 X 8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
305x 102x25 356 X 127 X 39 406x 140x46 457 X 152 X 52 457 X 191 X 74 610 X 229 X 101 686x254x140"
457x152x74 533x210x82 610x229x 101 610 X 229 X 101 610 X 229 X 125 762 X 267 X 147 762 X 267 X 173
21.71 24.88 28.47 29.60 38.17 47.68 62.11
203 x 203 x46 203 x203 x 71 203 X 203 X 86 254 x254 x 89 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 287"
254 X 254 X 132 305x305x 158 305x305x 198 305x305x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 393
39.25 46.38 54.25 53.18 69.50 93.38 129.46
9.0 X 6.0 9.0 X 7.2 9.0x 7.5 9.0 X 8.0 9.0 X 9.0 9.0x 10.0 9.0 X 12.0 9.0 X 15.0 9.0 X 18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x28 356x 127x39 356x 127x39 406 X 140 X 39 457x 152x52 457x 152x60 533 x 210 x82 610x229x113" 762 X 267 X 147"
533 X 210 X 82 610 X 229 X 101 610 X 229 X 101 610 X 229 X 101 610x229x 113 610 X 229 X 125 686 X 254 X 140 762 X 267 X 173 838x 292 x 194
23.00 27.03 26.47 25.63 29.89 32.50 39.00 49.20 59.78
203 x203 x46 203 X 203 X 60 203 x203 x 71 203 x203 x 86 254 X 254 X 89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
254 x 254x 167 305 X 305 X 198 305 X 305 X 198 305x305x 198 305 X 305 X 240 305 X 305 X 240 356 X 406 X 287 356 X 406 X 393 COLCORE x 477
43.17 47.50 50.07 53.42 56.33 59.67 79.58 106.20 139.83
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0 X 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356x 127x39 356x171x45 457 X 152 X 52 457 X 152 X 67 610 X 229 X 101 686x 254 x 140 •
610x229x 101 686 X 254 X 140 762 X 267 X 147 762 X 267 X 147 838 X 292 X 176 914 X 305 X 201 914 X 305 X 253
26.83 33.10 34.33 35.50 41.47 53.80 70.06
203 x203 x46 203 X 203 X 71 203 X 203 X 86 254x 254 x 89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 287"
305 X 305 X 198 356 X 406 X 287 356 X 406 X 287 356 X 406 X 340 356 X 406 X 393 356 X 406 X 551 356 X 406 X 634
51.40 64.28 66.29 69.60 85.55 115.93 150.02
12.0x6.0 12.0x 7.2 12.0 X 7.5 12.0 x8.0 12.0 X 9.0 12.0 X 10.0 12.0 X 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x28 356x 127 x 39 356 X 127 X 39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533 X 210 X 82 610x229x 113" 762x267x147"
686 X 254 X 140 686 X 254 X 170 762 X 267 X 173 762 X 267 X 173 838 X 292 X 194 914 X 305 X 201 914 X 305 X 224 914 X 305 X 289 914x419x388
32.67 36.61 36.07 34.63 38.89 40.10 46.00 56.93 70.56
203 x203 x46 203x203 x 60 203 X 203 X 71 203 x203 x 86 254 x254 x 89 254 X 254 X 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
406 X 406 X 287 356 X 406 X 340 356 X 406 X 393 356 X 406 X 393 COL CORE x 477 356 X 406 X 467 356 X 406 X 551 914x419x343 914x419x388
63.17 67.22 76.07 77.79 82.67 82.37 101.58 102.87 134.89
15.0 X 6.0 15.0x7.5 15.0 x8.0 15. Ox9.0 15.0 X 10.0 15. 0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 28 356x127x39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533x210x82 610x229x113" 762 X 267 X 147"
838 X 292 X 176 914 X 305 X 224 914 X 305 X 224 914 X 305 X 253 914 X 305 X 289 914x419x343"
38.67 42.87 41.00 45.44 48.90 55.92
203x 203 x46 203x203x71 203 X 203 X 86 254 X 254 X 89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
COL CORE x 477"
94.83 97.13 97.54 100.11 64.57 88.00
18.0 x6.0 18.0 X 7.2 18.0 X 7.5 18.0 X 8. 0 18.0x9.0 18.0 X 10.0 18.0 X 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x28 356x127x39 356 X 127 X 39 406 X 140 X 39 457 X 152 X 52 457 X 152 X 60 533x210x82 610x229x113" 762 X 267 X 347"
914 x305 x253 • 914x419x343" 914x419x343" 914 X 419 X 343"
FAIL FAIL
51.50 60.64 58.73 55.88
FAIL FAIL FAIL FAIL FAIL
203 X 203 X 46 203 X 203 X 60 203 X 203 X 71 203 x203 x86 254 x 254 x89 254x254x 107 254 X 254 X 167" 305 X 305 X 240" 356 X 406 X 340"
356 X 406 X 551 356 X 406 X 551 356 X 406 X 634" 914 X 305 X 289" 914 X 419 X 388" FAIL FAIL
356 X 406 X 634" 914 X 419 X 343" 914 X 419 X 343" 914x419x388" FAIL FAIL FAIL FAIL FAIL
(*) Natural frequency of the beam is less then 4.5Hz.
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AOND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1/ Oct 00
ARUIP
121.00 67.64 69.40 77.17
4.5 Composite Steel and Concrete (9/11) SAFE LOAD TABLES (2) GRADE 43 • LIGHTWEIGHT CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2 Minimum Weight Bay size (mxm)
No. sec. beams
n"•nrin
'
)
l
)
Minimum Depth '"""'I
Spacing of sec. beams
Secondaoy Beams
Primaoy Beams
Weight 2 (kg/m
)
Secondaoy Beams
Primaoy Beams
Weight (kg/m 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3 00 3.00 3.00 3.00 3.00 3.00 3.00
305x102x25 356x 127x33 305 X 102 X 37 356 X 127 X 39 406 x 140 x46 457x152x52 457x191x74 610x229x101 686 X 254 X 140'
406 X 140 X 46 457 X 152 X 52 457x152x52 457 x 152 x60 457 X 152 X 67 457x 191 x74 533x210x82 610 X 229 X 101 610x229x 113
16.00 18.22 19.27 20.50 22.78 24.73 31.50 40.40 52.94
203 X 203 X 46 203 X 203 X 52 203 X 203 X 60 203 X 203 X 71 203 x203x86 254x254x 107 254 X 254 X 167 305 X 305 X 198' 356 X 406 X 340'
203 x203 x 86 254 x254 x 89 254x254x107 254 X 254 X 107 254 x254 x 132 254x254x 132 254x 254 x 167 305 X 305 X 198 305 X 305 X 240
29.67 29.69 34.27 37.04 43.33 48.87 69.58 79.20 126.67
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254x 102x22 305 X 102 X 28 356x127x39 457 X 152 X 60 610 X 229 X 125'
457 X 152 X 52 457 X 152 X 67 533x210x82 610x229x 101 686 X 254 X 140
17.83 20.97 25.36 33.42 59.86
152x152x37 203 x 203 x46 203 X 203 X 71 254x254x 107 356 X 406 X 287'
254x254x 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 198 305 X 305 X 287
33.25 37.50 48.14 61.08 135.53
7.5 X 6.0 7.5 X 7.5 7.5 x9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 305 X 102 X 33 406 x 140 x39 457x152x60 533x210x92 610x229x125'
457 x 152 x60 457x 191 x74 533x210x82 610 X 229 X 101 610x229x 125 762 X 267 X 147
20.00 23.07 24.71 32.42 45.13 58.17
152x 152x37 203 x 203x46 203 X 203 X 71 254 X 254 X 132 305 X 305 X 198' 356 X 406 X 287'
254 X 254 X 107 254 X 254 X 132 254x254x 167 305x 305 x 198 305 X 305 X 283 356 X 406 X 287
32.63 36.00 46.96 69.30 98.07 130.74
8.0 X 6.0 8.0 X 8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
305 X 102 X 25 356 X 127 X 39 406 X 140 X 39 457 x 152 x52 457 x 152 x67 610 X 229 X 101 686 X 254 X 125'
457 X 152 X 67 533 x210 x 82 533x210x92 610x229x101 610x229x113 686 X 254 X 140 686x254x 170
20.54 24.88 24.85 29.60 34.54 47.21 56.32
152x152x37 203 X 203 X 60 203 X 203 X 86 254 x254x 89 254x 254 x 132 305 X 305 X 198' 356 X 406 X 287'
254 x 254x 132 254 X 254 X 167 305 X 305 X 158 305x305x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 340
35.88 43.38 49.81 53.18 69.50 93.38 126.51
9.0 x6.0 9.0 X 7.2 9.0 X 7.5 9.0 X 8.0 9.0 x9.0 9.0 X 10.0 9.0 X 12.0 9.0 X 15.0 9.0x18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102 x25 356 X 127 X 33 305 X 102 X 37 356x 127x39 406x 140x46 457x152x52 457x191x74 610x229x101 686 X 254 X 140'
533x210x82 533 X 210 X 92 533 x210 x 92 610 x229 x 101 610x229x101 610 X 229 X 125 686 X 254 X 140 686x254x 170 838 X 292 X 176
22.00 23.78 24.60 25.63 26.56 29.83 36.33 45.00 56.44
203 x 203 x46 203x 203 x 52 203 X 203 X 60 203x203x71 203 x203 x 86 254 X 254 X 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
254x254x 167 305x 305 x 158 305 X 305 X 198 305x305x 198 305 x305 x 198 305 X 305 X 240 356 X 406 X 287 356 X 406 X 340 COL CORE x 477
43.17 39.28 46.40 48.42 50.67 59.67 79.58 88.67 139.83
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0x 10.0 10.0 X 12.0 10.0 X 15.0 10.0x 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
305x 102x25 356 X 127 X 33 406x 140x39 406 x 140 x46 457 X 152 X 60 533x210x92 610 X 229 X 125'
610 x229 x 101 610x229x 125 686 X 254 X 140 762 X 267 X 147 762 x267 x 173 914 X 305 X 201 914 X 305 X 253
26.83 28.83 31.16 33.10 38.42 50.20 64.06
152x 152x37 203 x 203x 60 203x 203 x 71 203 x203 x86 254x254x 132 305 X 305 X 198' 356 X 406 X 287'
305 X 305 X 198 305 X 305 X 283 356 X 406 X 287 356 X 406 X 287 356 X 406 X 393 356 X 406 X 467 356 X 406 X 634
47.80 59.38 60.29 63.10 85.55 110.33 150.02
12.0 X 6.0 12.0 X 7.2 12.0 X 7.5 12.0 X 8.0 12.0 X 9.0 12. 0 x10.0 12.0x 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 356x 127x33 305x 102 x37 356x127x39 406x 140x46 457x 152x52 457 X 191 X 74 610 x229 x 101 686 X 254 X 140'
686 X 254 X 125 762 X 267 X 147 762 X 267 X 147 762x267x 173 838 x292 x 176 838 X 292 X 194 914 X 305 X 224 914 X 305 X 289 914x419x343
29.17 31.42 31.93 34.63 34.89 36.73 43.33 52.93 65.72
203 x 203x 46 203x 203 x 52 203 X 203 X 60 203 X 203 X 71 203 x203x 86 254 X 254 X 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
305 X 305 X 283 356 X 406 X 287 356 X 406 X 340 356 X 406 X 340 356 X 406 X 393 COL CORE x 477 356 x406 x 511 356 X 406 X 634 914x419x388
62.50 57.19 65.33 66.17 72.33 83.37 98.25 108.27 134.89
15.0 X 6.0 15.0 X 7.5 15.0 X 8.0 15.0x 9.0 15.0 X 10.0 15.0 X 12.0 15.0x 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x 102x37 356 x 127 x39 406 x 140 x46 457 X 152 X 52 457x 191 x74 610x229x101 686 X 254 X 140'
762x267x 173 914 X 305 X 201 934 X 305 X 224 914 x 305 x253 914 X 305 X 289 914x419x343 FAIL FAIL
37.37 39.13 41.00 43.44 46.23 53.25
203 x 203x46 203x 203 x 60 203 X 203 X 71 203 x 203 x86 254x254x 107 254 X 254 X 167 305 X 305 X 198' 356 X 406 X 340'
356 X 406 X 393' 356 X 406 X 551 356 X 406 X 551 356 X 406 X 634' 356 X 406 X 634' 914x419x343 FAIL FAIL
80.83 93.47 92.54 99.11 99.07 84.25
18.0 X 6.0 18.0 X 7.2 18.0 X 7.5 18.0x8.0 18.0 X 9.0 18.0x 10.0 18.0x 12.0 18.0 X 15.0 18.0x 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 356x 127x33 305 X 102 X 37 356 X 127 X 39 406x 140x46 457x152x52 457x191 x74 610x229x 101 686 x 254 x140'
914x305x253' 914 x305 x289 • 914x419x343' 914x419x343' 914x419x388' FAIL FAIL FAIL FAIL
50.50 51.14 58.07 55.88 58.44
203 x203 x46 203x 203 x 52 203 x203 x 60 203 x203 x 71 203x 203 x 86 254x254x 107 254x254x 167 305 X 305 X 198' 356 X 406 X 340'
356 X 406 X 634' 914 X 305 X 289' 914x419x343' 914x419x34' 914x419x388' FAIL FAIL FAIL FAIL
121.00 57.47 65.73 66.54 71.78
'
J
'"""'I
' J
' j '"""'I
'
)
'
j
'
J
l
j
'"""'
' i
J'
i
'"""' '
J
'
j
'
J
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I August 00
'"""'I
ARUIP
'
' J
.....,
4.5 Composite Steel and Concrete (10/11)
SAFE LOAD TABLES (3) GRADE 50 - DENSE CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2
L '
{
Minimum Weight Bay size (mxm)
L r , I
L
'
r '
r '
..... '
:
;
(
;
:
;
No. sec. beams per grid
Spacing of sec. beams
Secondary Beams
Minimum Depth
Primary Beams
Weight 2 (kg/m
)
Secondary Beams
Primary Beams
Weight 2 (kg/m )
6.0 X 6.0 6.0 X 7.2 6.0 X 7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X 15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x102x33 305x102x33 356x127x33 406 X 140 X 39 457 X 152 X 52 457x191 x67 533x210x92 686 X 254 X 125
406x 140x39 406 x 140 x46 457 X 152 X 52 457 X 152 X 52 457x152x60 457x152x67 533x 210 x 82 533x 210 x 92 610x229 x 101
14.83 17.39 17.93 17.50 19.67 24.03 29.17 36.80 47.28
152 X 152 X 37 203 X 203 X 46 203 x 203 x52 203 x 203 x60 203 x 203 x86 254 x 254x 89 254 x 254 x132" 305 X 305 X 198" 356 X 406 X 340"
203 X 203 X 86 254 x254x 89 254 x254 x 89 254 X 254 X 89 254 X 254 X 107 254 X 254 X 132 254x254x 167 305 X 305 X 158 305x305x 198
26.67 27.69 29.20 31 .13 40.56 42.87 57.92 76.53 124.33
7.2 7.2 7.2 7.2 7.2
6.0 7.2 9.0 X 12.0 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254 X 102 X 22 305 X 102 X 25 305x127x37 457 X 152 X 52 610 x229x 101
457 X 152 X 52 457 X 152 X 60 457 X 152 X 74 533x210x92 610x229x125
17.83 18.75 23.64 29.33 49.03
152x 152x30 203 x 203 x46 203 X 203 X 60 254 X 254 X 107" 356 X 406 X 287"
254 x 254x 89 254 X 254 X 107 254 X 254 X 132 254 X 254 X 167 305 X 305 X 283
27.33 34.03 39.67 58.50 135.31
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5 X 18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
254x102x22 305x102x28 356 X 127 X 39 457 x 152 x52 533 X 210 X 82 610x229x 113"
457x152x52 457 x 152 x67 457 X 152 X 74 533x210x92 610x229x113 686 X 254 X 125
17.47 20.13 23.82 28.47 40.33 52.14
152x152x30 203x 203 x46 203 X 203 X 60 254x 254 x 107" 305 X 305 X 198" 356 X 406 X 287"
254 X 254 X 89 254x254x 132 254x254x 167 305 X 305 X 198 305 X 305 X 240 305 X 305 X 283
26.83 36.00 42.56 59.30 95.20 130.52
8.0 X 6.0 8.0 x8.0 8.0 X 9.0 8.0 X 10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
254 x 102 x22 305 X 102 X 33 356 X 127 X 39 406 x 140 x46 457 X 152 X 60 533x210x82 610x229x125"
457 X 152 X 60 457 X 152 X 74 533x210x82 533x210x92 610x229x101 610x229x 125 762 X 267 X 147
18.25 21.63 23.74 26.45 30.92 39.08 55.04
152 X 152 X 37 203 X 203 X 52 203 X 203 X 71 203 x 203 x86 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 287"
254x254x 107 254 X 254 X 167 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X 305 X 240 356 X 406 X 287
31.71 40.38 45.18 48.05 66.00 90.25 123.57
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 x 102 x25 305x102x33 305x102x33 356x127x33 406 x 140 x39 457 X 152 X 52 457 X 152 X 67 533x210x92 686 X 254 X 125"
457x191x74 533 X 210 X 82 533x210x82 533x210x92 610x229x101 610x229x101 610x229x125 762 X 267 X 147 762 X 267 X 173
20.67 22.39 21.93 22.50 24.22 27.43 32.75 40.47 51.28
152x 152x37 203 X 203 X 46 203 x 203 x52 203 x 203x60 203 x 203 x86 254 x 254 x89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 340"
254 X 254 X 132 254 X 254 X 167 254 X 254 X 167" 305 X 305 X 158 305 X 305 X 198 305 X 305 X 198 305 X 305 X 240" 356 X 406 X 287" 356 X 406 X 340"
34.33 38.53 39.60 39.75 50.67 49.47 64.00 85.13 132.22
10.0 X 6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0 X 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
254 x 102 x22 305 X 102 X 33 356x127x39 406 X 140 X 39 457 x 152 x52 533 X 210 X 82 610x229x 113
533x210x92 610x229x113 610 x229 x 125 686 X 254 X 140 762 X 267 X 147 838 x292 x 176 914 X 305 X 201
24.13 27.33 29.49 29.60 33.05 44.53 56.37
152x 152x30 203 X 203 X 52 203x 203 x 60 203x 203 x 86 254 X 254 X 107" 305 X 305 X 198" 356 X 406 X 287"
305 X 305 X 158" 305 X 305 X 240" 305 X 305 X 240" 305 X 305 X 283" 356 X 406 X 393" COLCORE x 4 77"
38.33 50.80 50.67 62.70 71.13 1 05.40 141.30
12.0 X 6.0 12.0 X 7.2 12.0 X 7.5 12.0 X 8.0 12.0 X 9.0 12.0 X 10.0 12.0 X 12.0 12.0 X 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 25 305 X 102 X 33 305 x 102 x33 356x 127x33 406x 140x39 457x152x52 457x152x67 533 X 210 X 92 686 X 254 X 125
610 x229 x 125 686 X 254 X 140 686 X 254 X 140 762 X 267 X 147 686 X 254 X 170 762 X 267 X 173 838 x292 x 194 914 X 305 X 253 914 X 305 X 289
29.17 30.44 29.67 29.38 31.89 34.63 38.50 47.53 57.72
152x 152x37 203 x 203 x46 203 X 203 X 52 203 X 203 X 60 203 X 203 X 86 254 x254x 89 254 X 254 X 332" 305 x 305 x198" 356 X 406 X 340"
305 X 305 X 240" 305 X 305 X 283" 305 X 305 X 283 356 X 406 X 287" 356 X 406 X 340" 356 X 406 X 340" COLCORE x 4 77" 356 X 406 X 551 914 X 419 X 343
52.33 54.64 55.07 55.88 66.44 63.67 83.75 102.73 132.39
15.0 X 6.0 15.0 X 7.5 15.0 X 8.0 15.0 X 9.0 15.0 X 10.0 15.0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305 X 102 X 25 305 X 102 X 33 356. X 127 X 33 406 X 140 X 39 457 X 152 X 52 457 X 152 X 67 533x210x92 686 X 254 X 125
762x267x147" 838 x292 x 176 • 838 x292 x 194 • 914x305x201" 914x305x224" 914x305x289" 914x419x343" FAIL
32.83 34.47 35.25 35.33 39.73 46.42 53.53
152x 152 x37 203 x 203 x52 203 x 203 x60 203 x 203 x86 254 x 254 x89 254 x 254 x132" 305 x 305 x198" 356 X 406 X 340"
356 X 406 X 393" COL CORE x 477" 356 X 406 X 467" 356 X 406 X 551 356 X 406 X 634" 914 X 305 X 289" 914x419x343" FAIL
77.83 80.93 78.38 89.89 93.07 68.08 88.87
18.0x6.0 18.0 X 7.2 18.0 X 7.5 18.0 x8.0 18.0 X 9.0 18.0 X 10.0 18.0 X 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
305x 102x25 305x102x33 305x102x33 356 X 127 X 33 406x140x39 457x152x52 457x 152x67 533 x210 x 92 686 X 254 X 125
914x305x201" 914x305x253" 914x305x253" 914 x 305 x289 • 914x419x343" 914x419x343" FAIL FAIL FAIL
41.83 46.14 44.73 47.13 51.11 51.63
152 X 152 X 37 203 X 203 X 46 203 x 203x 52 203 X 203 X 60 203 x 203x 86 254 x 254x 89 254 X 254 X 132" 305 X 305 X 198" 356 X 406 X 340"
356 X 406 X 634 • 914 X 305 X 253" 914 X 305 X 253" 914 X 305 X 289" 914 x 419 x343" 914 X 419 X 343" FAIL FAIL FAIL
118.00 50.47 51.07 56.13 66.78 63.97
X X X
6.0 7.2 7.5 X 8.0 X 9.0 X 10.0 X 12.0 X 15.0 X 18.0 X X X
3% X 406 X 340*
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. {
;
Ver 3.1 I August 00
ARUJP
4.5 Composite Steel and Concrete (11/11) SAFE LOAD TABLES (4) GRADE 50 - LIGHTWEIGHT CONCRETE SLAB Imposed load = 4.0 + 1.0 kN/m 2 '
Minimum Weight Bay size (mxm)
No. sec. beams per grid
Minimum Depth
Spacing of sec. beams
Secondary Beams
Primary Beams
Weight (kg/m2
)
Secondary Beams
Primary Beams
Weight (kg/m 2 )
6.0 X 6.0 6.0 X 7.2 6.0 X7.5 6.0 X 8.0 6.0 X 9.0 6.0 X 10.0 6.0 X 12.0 6.0 X15.0 6.0 X 18.0
2 2 2 2 2 2 2 2 2
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 X 102 X 22 305x 102x28 305 X 102 X 28 305x102x33 356x 127x39 406 X 140 X46 457 X 191 X 60 533x210x82 610 X 229 X 125'
356 X 127 X 39 406 x 140 x46 406 X 140 X 46 457 X 152 X 52 457 X 152 X 52 457 x 191 x60 457x 191 x74 533x210x82 610 X 229 X 101
13.83 15.72 15.47 17.50 18.78 21.33 26.17 32.80 47.28
152 X 152 X 37 203 x 203 x46 203 x 203 x46 203 X 203X 52 203x 203 x 71 254x254 x 73 254 x 254 x132' 305 X305 X 198' 356 X 406 X 340'
203 x203 x 71 203 x203 x 86 254 x254 x 73 254x 254 x 89 254x254x 107 254 X254 X 107 254 X254 X 132 254x254x 167 305 X 305 X 198
24.17 27.28 25.07 28.46 35.56 35.03 55.00 77.13 124.33
7.2 X 6.0 7.2 X 7.2 7.2 X 9.0 7.2 X 12.0 7.2 X 18.0
3 3 3 3 3
2.40 2.40 2.40 2.40 2.40
254 X 102 X 22 305 X 102 X 25 305x102x33 457x152x52 610x229x 101
406 X 140 X 46 457 X 152 X 52 457 X 152 X 67 533x210x82 610x229x 125
16.83 17.64 21.19 28.50 49.03
152x 152x30 152x 152 x37 203x 203 x 52 254 X254 X 107' 356 X 406 X287'
254x254 x 73 254 X 254 X 107 254x254x 132 254 X254 X 167 305 x305 x240
24.67 30.28 36.33 58.50 132.92
7.5 X 6.0 7.5 X 7.5 7.5 X 9.0 7.5 X 12.0 7.5 X 15.0 7.5x18.0
3 3 3 3 3 3
2.50 2.50 2.50 2.50 2.50 2.50
254x 102x22 305 X 102 X 25 356x127x33 457 X 152 X 52 533 X 210 X 82 610 x229 x 101
457 X 152 X 52 457 x 152 x60 457 X 152 X 74 533x 210 x 92 610 X 229 X 101 610x229x 125
17.47 18.00 21.42 28.47 39.53 47.34
152 X 152 X 30 203 x 203 x46 203 x203 x60 254 x 254 x132' 305 X 305 X 198' 356 X 406 X28]'
254 x254x 89 254 X254 X 107 254 X254 X 132 305 X 305 X 158 305 X 305 X 198 305 X 305 X 283
26.83 32.67 38.67 65.97 92.40 130.52
8.0 X 6.0 8.0 x8.0 8.0 X 9.0 8.0x10.0 8.0 X 12.0 8.0 X 15.0 8.0 X 18.0
3 3 3 3 3 3 3
2.67 2.67 2.67 2.67 2.67 2.67 2.67
254 X 102 X 22 305 X 102 X 33 356x127x33 406 X 140 X 39 457 X 152 X 52' 533 X 210 X 82' 610 X 229 X 101'
457 X 152 X 52 457 X 152 X 74 533x210x82 533 x210 x 82 610 X 229 X 101 610 X 229 X 125 686 X254 X 140
16.92 21.63 21.49 22.83 27.92 39.08 45.65
152 X 152 X 30 203 x 203 x46 203 X 203 X 60 203 x203 x86 254 x 254 x132' 305 x 305 x198' 356 X406 X287'
254 X 254 X 107 254x254x 132 254 X254 X 167 254x254x 167 305 X 305 X 198 305 X 305 X240 305 X 305 X283
29.08 33.75 41.06 48.95 66.00 90.25 123.35
9.0 X 6.0 9.0 X 7.2 9.0 X 7.5 9.0 x8.0 9.0 X 9.0 9.0 X 10.0 9.0 X 12.0 9.0 X 15.0 9.0 X 18.0
3 3 3 3 3 3 3 3 3
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 X 102 X 22 305 X 102 X 28 305x 102x28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533x210x82 610x229x 125
457x 191 x67 533x 210 x 82 533 x210 x 82 533x210x82 533x210x92 610x229x 101 610x229x 113 686 X254 X 140 686x254x 170
18.50 20.72 20.27 21.25 23.22 25.43 29.42 36.67 51.11
152x 152x37 203x203 x46 203 x 203 x46 203 x 203 x52 203 X 203 X 71 254x 254 x 73 254 x 254 x132' 305 x 305 x198' 356 X 406 X 340'
254 X 254 X 132 254x254x 167 254 X254 X 167 254 X 254 X 167 305 X 305 X 158 305 X 305 X 198 305 X305 X240 305 X 305 X283 356 X406 X 340
34.33 38.53 37.60 38.21 41.22 44.13 '64.00 84.87 1 32.22
10.0 x6.0 10.0 X 8.0 10.0 X 9.0 10.0 X 10.0 10.0 X 12.0 10.0x 15.0 10.0 X 18.0
4 4 4 4 4 4 4
2.50 2.50 2.50 2.50 2.50 2.50 2.50
254 X 102 X 22 305 X 102 X 28 356x 127x33 356x 127x39 457 x 152x 52 533x210x82 610x229x 101
533 x210 x 82 610 X 229 X 101 610 X 229 X 125 686x254x 125 762 X267 X 147 762 X 267 X 173 838 X 292 X 194
22.47 23.83 27.09 28.10 33.05 44.33 51.18
152x 152x30 203 x203 x46 203 X 203 X 60 203 x203 x 86 254 X254 X107' 305 X 305 X 198' 356 X 406 X287'
254 X254 X 167' 305 X 305 X 198' 305 X 305 X 240 305 X305 X283 356 X 406 X287' 356 X406 X 393 COL CORE x 477'
39.83 43.15 50.67 62.70 66.72 105.40 141.30
12.0x6.0 12.0 X 7.2 12.0 X 7.5 12.0 x8.0 12.0x 9.0 12.0 X 10.0 12.0x 12.0 12.0x 15.0 12.0 X 18.0
4 4 4 4 4 4 4 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254 x 102 x22 305x 102x28 305 X 102 X 28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533x210x92 610x229x 125
610 X229 X 101 686 X 254 X 125 686 X254 X 125 686 X254 X 140 762 X 267 X 147 686 x254 x 170 838x292x 176 914 X 305 X224 914 x 305 x289
24.17 26.69 26.00 28.50 29.33 32.33 34.67 45.60 57.72
152x152x37 203 x 203 x46 203 x203 x46 203 x203 x 52 203 X 203 X 71 254 x254 x 73 254 x 254 x132' 305 x 305 x198' 356 X406 X340'
305 X 305 X 240' 305 X 305 X283' 305 X 305 X283' 356 X406 X 287" 356 X406 X287 356 X 406 X340' 356 X406 X 393' 356 X406 X 551 356 X 406 X 634'
52.33 54.64 53.07 53.21 55.56 58.33 76.75 102.73 148.56
15.0x6.0 15.0 X 7.5 15.0 X 8.0 15.0x 9.0 15.0 X 10.0 15.0 X 12.0 15.0 X 15.0 15.0 X 18.0
5 5 5 5 5 5 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254x 102x22 305x 102x28 305 X 102 X 33 356 X 127 X 39 406x 140x46 457x152x60 533 X210 X 82' 610 X 229 X 125'
762 X 267 X 147' 762 X267 X 173' 838 X292 X 176' 838x 292 x 194' 914 X 305 X224' 914 X305 X 253' 914x419x343' 914x419x388'
31.83 32.40 33.00 34.56 37.73 41.08 50.20 63.22
152 X 152 X 37 203x203x46 203 X203 X 52 203 X 203 X 71 254 x254 x 73 254 X 254 X 132' 305 X 305 X 198' 356 X406 X340'
356 X406 X 393' COLCORE x 477' 356 X406 X467' 356 X406 X 551 356 X 406 X 634' 914 X 305 X 289 914x419x343' 914x419x388'
77.83 78.93 75.71 84.89 87.73 68.08 88.87 134.89
18.0 X6.0 18.0 X 7.2 18.0 X 7.5 18.0x 8.0 18.0 X 9.0 18.0 X 10.0 18.0x 12.0 18.0 X 15.0 18.0 X 18.0
6 6 6 6 6 6 6 6 6
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
254x 102x22 305 X 102 X 28 305x 102x28 305x 102x33 356 X 127 X 39 406 x 340 x46 457 X 152 X 60 533 X 210 X 82 610 X229 X 125
838 x292 x 194' 914 X 305 X 224' 914 X 305 X253' 914 X 305 X253' 914 X 305 X 289' 914x419x343' 914x419x388' FAIL FAIL
39.67 40.44 43.07 42.63 45.11 49.63 52.33
152 X 152 X 37 203 x203x 46 203x203 x46 203 X 203 X 52 203x203x71 254x254 x 73 254 x 254 x132' 305 X 305 X 198' 356 X406 X 340'
356 X406 X 634' 914 X 305 X 224' 914 X 305 X 253' 914 X305 X253' 914 X 305 X 289' 914x419x343' 914x419x388' FAIL FAIL
118.00 46.44 49.07 48.96 55.78 58.63 76. 33
)
-
'
J
,
I
'
J
'
J
'
)
'
)
-
(*) Natural frequency of the beam is less then 4.5Hz.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I August 00
ARUIP
-
'
(
r ,
4.6 Timber (1/9)
4.6 '
(
TIMBER ALL THE INFORMATION IN THIS SECTION APPLIES TO SOFTWOOD IN DRY LOCATIONS. For temperate or tropical hardwoods, or timber in external locations, Refer to BS 5268 Pt 2.
4.6.1
RULES OF THUMB Span/depth ratios:
principal members load-sharing systems rectangular trusses triangular trusses
r '
15 20 10 8
(e.g. floor/roof joists)
Individual members of assemblies such as trusses should be set at only half capacity on initial sizing, otherwise the connections (eg bolts) will be overloaded. Trussed rafters, with pressed metal plate fasteners, are an exception to this rule.
r '
rI
-up to -up to -up to -up to
4.6.2
'
MATERIALS SUPPLY
I I
Sizes of solid timber (based on table NA. 2 of BS EN 336)
"r
'
'
Width in mm
'
Thickness
100
125
150
175
200
225
300
(97)
(120)
(145)
(170)
(195)
(220)
(295)
38 (35)
./
./
./
./
./
./
./
-
47 (44)
./
./
./
./
./
./
./
./
(:;;100mm)
-1,3
63 (60)
./
./
./
./
./
./
-
(>100mm)
-2,4
75 (72)
-
./
./
./
./
./
./
0
Planed
100 (97)
-
0
-
0
-
0
0
0
(:;;100mm)
±1.0
150 (145)
-
-
-
0
-
0
-
0
(> 100mm)
±1.5
r'
r '
I
I
'
./
0
-
i
Tolerances (mm)
75 (72)
(mm)
Sawn
Readily available (lengths up to 5.7m) Can be obtained in limited species (check with suppliers) Can be cut from larger sections
Douglas Fir- available up to 400 x 400 x 15m
I.....
NOTES
'
(
1.
Planed and regularised sizes shown in brackets. Regularised refers to members planed 2 sides only.
2.
When calculating A, Z or I for plane members use the appropriate reduced sizes (e.g.: Values of 'I' are reduced by about 20% by planning all round).
Glued laminated timber (Giulam) Laminates
- normal finished depth: 45mm (reduce when curved - ensure r/t :2: Emean/70) - normal max. width: 250mm Length/depth - limited only by the question of transport
'
(
i I
There is a limited range of straight stock sizes. Most members (straight/curved} are specially fabricated. Fabricators have generally standardised on grade C24 Whitewood. Most glulam is fabricated abroad, to standards similar to BS EN 386, the UK standard for fabrication. Fasteners (
'
r .
Nails: to BS 1202: Part 1 Black Bolts: to BS EN 20898-1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I
'-
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
1
I
'
Screws: to BS 1210 Washers: to BS 4320
'
ARUJP
'
J
'
j
'
)
'
J
4.6 Timber (2/9)
4.6.3
GRADE STRESSES Solid timber Timber should be specified either by species and visual grade in accordance with BS 4978 (eg: whitewood/SS) or by strength class in accordance with BS 5268. Grade stresses and moduli of elasticity: dry exposure condition (extracted from table 2, 7 & 8 of BS 5268 Pt 2) Compression
parallel to
parallel to
parallel to
perpendicular
parallel
grain
grain
grain
2 (N/mm )
(N/mm 2)
(N/mm 2)
to grain (N/mm 2)*
to grain (N/mm2)
Strength
Bending
Grade to
class to
BS 4978
BS 5268
(Redwood/
Compression
Modulus of elasticity
Tension
Visual
Shear
Average density
Mean (N/mm 2)
Minimum (N/mm 2)
~ I
(kg/m 3 )
I
'
)
whitewood/ sprucepine-fir/ • J
Douglas Fir/Larch) GS
5.3
C16
3.2
6.8
2.2
1.7
0.67
8800
5800
370
I I
)
*
ss
C24
7.5
4.5
7.9
2.4
1.9
0.71
10800
7200
420
+
C27
10.0
6.0
8.2
2.5
2.0
1.10
12300
8200
450 • J
When the specification specifically prohibits reductions at bearing areas, the higher values may be used.
+Grades better than C24 can only be justified by machine grading to BS EN 519. •
j
Glulam • J
For C24 timber, the grade stresses above are modified by the following factors:
Modification factors K1s, K,e, K17, K18 , K,g, K2o for single grade glued laminated members and horizontally glued laminated beams (extracted from table 21 of BS 5268) Pt 2.
.
Number of
Bending
Tension
Compression
Compression
Shear
Modulus
!
laminations
parallel to
parallel to
parallel to
perpendicular
parallel to
of
the grain
the grain
the grain
to the grain K18
the grain
elasticity
K,e
K11
K,g
K2o
K,s 4
1.26
1.26
5
1.34
1.34
7
1.39
1.39
10
1.43
1.43
15
1.48
1.48
~20
1.52
1.52
}
'
' j
• J
1.04
1.55
2.34
1.07
\
j
.
\ )
Thereafter design members as in the method given in 4.6.5-8. Refer to BS 5268 Pt.2 for radial stresses in curved beams.
• J THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
' l
' J
I
....... 4.6 Timber (3/9)
4.6.4
SIZING OF ELEMENTS IN DOMESTIC CONSTRUCTION Information taken from BS 8103 Pt 3 Tables 7, 26, 27, 32, 33, 64. Loading in kN/m 2 .
JOISTS FLOORS C24 Size of joists f
DL = 0.5
DL = 1.25
LL 0.75 DL = 0.75
Spacing of joists (mm)
(mm)
'
FLAT ROOFS
LL 1.5 (inc. partitions)
DL = 1.00 Purlln supported by
Spacing of joists (mm)
(planed on 2
450
faces)
'
'
'
.
(
(
600
450
600
600
450
450
600
47x 97
1.92
1.68
1.71
1.50
1.91
1.83
1.83
1.74
47
X
122
2.55
2.29
2.27
2.01
2.55
2.43
2.43
2.30
47
X
147
3.06
2.78
2.75
2.50
3.21
3.04
3.04
2.87
47
X
170
3.54
3.21
3.18
2.88
3.81
3.54
3.61
3.36
47
X
195
4.05
3.68
3.64
3.30
4.44
4.05
4.22
3.85
47 x220
4.55
4.14
4.10
3.72
5.00
4.56
4.76
4.33
75
X
122
2.97
2.71
2.68
2.43
3.08
2.93
2.93
2.77
75
X
147
3.57
3.25
3.22
2.93
3.84
3.57
3.64
3.40
75
X
170
4.11
3.75
3.71
3.38
4.50
4.11
4.29
3.92
75
X
195
4.69
4.29
4.25
3.86
5.14
4.70
4.90
4.48
75 x220
5.11
4.78
4.74
4.35
5.77
5.28
5.50
5.04
Take the clear span for the purlin as the clear dimension between support struts and/or walls
1
PURLINS r ,
\......
(roof pitch between 22.5"- 30") DL = 0.75
Size of
DL= 0.75
DL = 1.00
sawn
LL = 0.75
sawn
LL = 0.75
LL = 0.75
rafters
Spacing of purlins (mm)
(mm)
'
1500
1800
2100
2400
2700
(mm)
(
I
I
I
(
'
.
X
175
2.08
1.95
1.84
47
X
200
2.38
2.23
2.10
1.97
1.85
47
X
225
2.68
2.50
2.36
2.20
2.07
63
X
150
1.97
1.86
63
X
175
2.32
2.17
2.05
1.95
1.87
63 x200
2.64
2.48
2.34
2.23
2.13
2.04
63 x225
2.97
2.78
2.63
2.51
2.40
2.28
1.96
C24
450
600
38
X
100
1.96
1.82
1.82
1.68
38
X
125
2.66
2.44
2.46
2.25
38
X
150
3.21
2.92
3.04
2.72
47
X
100
2.28
2.10
2.12
1.95
47
X
125
2.88
2.62
2.73
2.48
47
X
150
3.44
3.13
3.27
2.97
C24
150
1.87
47x175
2.18
2.04
1.93
1.83
38
X
100
2.24
2.03
2.12
1.93
47
X
200
2.49
2.33
2.20
2.10
2.00
1.92
38
X
125
2.79
2.53
2.65
2.40
47
X
225
2.80
2.62
2.47
2.35
2.25
2.16
38
X
150
3.34
3.04
3.17
2.88
63
X
150
2.08
1.95
1.84
63
X
175
2.42
2.27
2.15
2.04
1.96
1.88
47
X
100
2.40
2.18
2.27
2.07
63 x200
2.76
2.59
2.45
2.33
2.24
2.15
47
X
125
2.99
2.72
2.84
2.58
63
3.10
2.91
2.75
2.62
2.51
2.42
47
X
150
3.58
3.26
3.40
3.09
X
\
'
600
C16
47
47
Spacing of rafters (mm) 450
3000
C16
(
(pitch between 22.5" & 30")
Size of purlins
(
RAFTERS
X
225
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
'
)
' j
4.6 Timber (4/9)
4.6.5
OUTLINE OF DESIGN RULES FOR TIMBER MEMBERS
'
)
',
)
The Code (UK) BS 5268: Part 2. This is a permissible stress code- all analysis is carried out under 'working' loads. No y factors are used.
,....,
i
Notation '
SUBSCRIPTS
SYMBOLS
a Stress
Compression
c
T
Shear Stress
m Bending
i
Rad. of Gyration
I
Direction
a
Applied
II
Parallel
adm
Permissible
j_
Perpendicular
a
Angle to the grain
Tension
compressive stress
eg: crc,adm II
~
Significance
Types of Force
permissible
J
parallel to the grain
I '
)
I
'
'
I
J
Design procedure
4.6.6
1.
Determine GRADE stresses cro,grade relevant to applied stress conditions (see 4.6.3).
2.
Modify GRADE stresses by relevant factors (K(n)) (see 4.6.6) to obtain PERMISSIBLE stresses cr*,adm {> o*,a ).
SELECTED TIMBER MODIFICATION FACTORS K3
' J
Duration of Load Loading
K3
(e.g. dead + permanent imposed )
1.00
'
Long term Medium term
(e.g. dead +snow)
)
1.25
Short term (e.g. dead+ snow+ wind, when largest diagonal dim. of loaded area > 50m)
1.50
Very short term (e.g. dead+ imposed+ wind, when largest diagonal dim. of loaded area:<> 50m)
1.75
2
Note: 1.5 kN/m imposed load for domestic buildings should be treated as long term. I
j
'
J
'
j
0
)
'
)
'
' )
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
(
I
r ,
4.6 Timber (5/9)
K7
Depth in bending Width (greatest dimension) for axial tension only
K14 (
1
1.175 1.150 (
1
L\
\
1.125
1\
1.100
.
I
\
1.075
i
'
olj
1.050
:0:
1.025
\.
""
f!
. 0
u
1.000
LL
c
0.975
:g
0.950
K1
0
,~
"""
K1
I~
'\.
J
0.900
r ',
K, •
~ ~
0.925
0
:;;
K,.
~
1'---~
0.875
......._
0.850 I
--- -
r- r--
~
t:::::::.......
0.825
'
0.800 0
100
200
300
400
500
600
700
800
900
1000
Depth or Width, h (mm) (
1
I
'
Ks
Load Sharing systems 1.1 (eg: 4 or more floor joists, rafters, wall studs)
K12
Slenderness For slenderness ratio A (=le I i) < 5 A;:::5
=1 K12 is a function of A and E I
K12
For solid members, including load sharing systems For horizontally laminated C24 members The value of Oc, 11 is the grade stress multiplied by K3 (
E E
aG,II
= Emin = E mean
l
0.9 (
l
0.8
i"' '
(
'""'
"'
0.7
..: 0.6
.s
".
I C241ong term (i.e E/cr=1370)
~
~
~ ~24 ~ ~~
medium term (i.e E/cr=1140)
LL
c 0.5 .!2
'1ii
( '
"""
:0
0.4
C24 short term (i.e E/cr-910)
~~~
0
:;;
0.3
Limit A=180 for long & medium term loading
/
~ ~ t::::--.~*"'
0.2
~
0.1
-...::::::-
t:===:---~ r---= t------.::::::__-::-
-
0 (
'
'
0
50
100
150
200
250
·,
I
Slenderness Ration, A
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
i
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
i..,_:
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Updated July 2002 r ,
ARUJP
J
'
II I
J 4.6 Timber (6/9)
4.6.7
~
MODIFICATION FACTOR COMBINATIONS (Examples)
j
For solid timber: Bending
II
Om,grade eg:
X
K3
X
K7
C24
Medium
200mm
7.5
1.25
1.05
X
(Ks)
=
O'm,adm
9.8 N/mm•
J
'
"'"""" J
I
Tension
Ot,grade
X
~
X
K14
X
(Ks)
=
Ot,adm
j
eg:
C16
Short
150mm
3.2
1.5
1.08
5.2 N/mm 2 ~
'
\
Com(2ressionac ,grade eg:
Shear
X
K3
X
K12
C24
Long
{A.=100)
7.9
1.0
0.40
Tgrade
X
K3
X
(Ks)
=
Oc,adm,ll
3.2 N/mm•
X
(Ks)
=
Tadm
)
)
'
eg:
C24
Long
0.71
1.0
0.7 N/mm 2
For rectangular sections, a parabolic stress distribution is assumed i.e. max shear stress = 3F/2ht
I
'
4.6.8
DEFLECTION Generally, BS 5268 Pt. 2, Cl 2.1 0. 7 recommends that total deflection under dead and imposed load:
Notes:
<= 0.003 L <= 14 mm
to limit vibration of floors
J
' )
'J
1.
Deflection must include bending and shear components. For a central point load, shear deflection= 3 WU8Ght (where G = E/16).
2.
For glulams, dead load component can be reduced by precambering.
3.
E = Em;n (individual members on which integrity of structure depends) \ J
= Emean {load-sharing systems)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
'
J
\
'
\
J
i
....... I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
• J
'
J
(
'
r
'
4.6 Timber (7/9)
4.6.9
FASTENERS This section deals only with lateral loads on nails, screws and bolts in timber of strength class C16 (capacity of fixings in C24 and C27 timber are up to 20% higher- see BS 5268 Pt. 2). Design procedure 1.
Determine
2.
Determine BASIC fastener capacity below).
3.
Modify BASIC capacity by relevant factors
4.
Check that
• • •
APPLIED fastener shear loads (Fa) (for bolts) angle of loads to grain (a) member thicknesses/nail or screw penetrations Fb
(for bolts, this is a function of a- see diagram
(K(nJ)
to obtain PERMISSIBLE loads
Fadm
Fa::; Fadm
Selected modification factors
Load Duration
'
(
r '
Nails K.s /Screws
Long Term
1.00
Medium Term
1.12
Short Term
1.25
Number of Fasteners in Line
Bolts
Effect of load duration is included in table of capacities below.
Nails Kso/Screws K54
Bolts Ks1
n < 10
1.0
1 - 0.03 (n- 1)
n >= 10
0.9
0.7
Timber fixed to steel plate
r '
Ks2
Nails/Screws K.s
Bolts K.s
Where lp1ate;, 1.2mm & 0.3 dia
When tprare ;, 2.5mm & 0.3 dia 1.25 (a= 0')
1.25
r ,
1.00 (a= 90')
Fastener spacing Key: N N/St NPr Sc t
-nails - nails through steel plates -nails in pre-drilled holes -screws -timber thickness
NAILS AND SCREWS ( '
(
IIll
N
20d
N
20d
NISI
14d
NISI
14d
NPr/Sc
10d
NPr/Sc
10d
I ....
I
•·
'" I
N NISI NPrfSc
1
~~~~~7d(loadedend) ..
1 5d
10d 7d 3d
(edgadiStanee)
(
'
(
'
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
r ,
ARUIP
'
J
\
J
Nails - lateral strength
'
)
Fadm = Fb x ~s x K5o (x ~ 6 ) (x 1.15 if pre-drilled holes)
,--1
4.6 Timber (8/9) '
Basic single shear lateral loads for round wire nails driven at right angles to the grain (from table 61 BS 5268 Pt. 2)
Diameter of Nail
Standard penetration
Basic lateral load per nail
(mm)
(mm) headside and
in C16 timber
Stock Sizes of Nails
\
j
pointside
2.7
32
258
65 60 50 45 40
3.0
36
306
65 60 50
3.4
41
377
75 65 60
3.8
46
453
75
4.2
50
534
100 90 75
4.6
55
620
100
5.0
60
712
125115 100
5.5
66
833
125
6.0
72
962
150
I
J
~
J
'
)
-
Screws - lateral strength
Basic single shear lateral loads for wood screws inserted into pre-drilled holes at right angles to the grain (from table 66 in BS 5268 Pt. 2)
Screw shank diameter (mm)
Standard penetration
Basic lateral load per screw in C16 timber
Headside (mm)
Pointside (mm)
3
11
21
205
4
14
28
361
5
18
35
550
' J
6
21
42
765
7
25
49
1011
8
28
56
1286
10
35
70
1608
I
I
J
'
)
,-, I
)
'
)
Non-standard penetrations Where the penetrations are less than the standard values above, the basic load should be multiplied by the smaller of: (a) actual to standard headside penetration, or (b) actual to standard pointside penetration For nails, neither ratio should be < 0.66 For screws, minimum headside member thickness = 2 x shank diameter
! ' J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
ARUJP
'
)
'
'-' r '
4.6 Timber (9/9)
r ,
Basic single shear loads for one bolt in a two-member joint (from table 70 in BS 5268 Pt. 2)
Basic shear load for one bolt in C16 timber as a function of
Actual Thickness of
Nominal bolt size
load duration
thinner member* Parallel to grain
47
( '
60
r,
C
I
72
'
97
(
Perpendicular to Grain
LT
MT
ST
LT
MT
ST
M8
1.22
1.44
1.59
1.13
1.33
1.47
M10
1.54
1.95
2.20
1.36
1.72
1.96
M12
1.80
2.29
2.61
1.56
1.98
2.26
M16
2.30
2.91
3.32
1.91
2.42
2.76
M20
2.73
3.47
3.95
2.19
2.78
3.17
M24
3.12
3.95
4.51
2.41
3.06
3.49
M12
2.30
2.91
3.19
1.99
2.53
2.88
M16
2.93
3.72
4.24
2.44
3.09
3.53
M20
3.49
4.43
5.05
2.80
3.55
4.05
M24
3.98
5.05
5.75
3.68
3.90
4.45
M16
3.52
4.46
5.09
2.93
3.71
4.23
M20
4.19
5.31
6.06
3.36
4.26
4.85
M24
4.77
6.06
6.90
3.69
4.68
5.34
M16
4.63
5.46
6.03
3.94
4.77
5.25
M20
5.64
7.16
8.16
4.52
5.74
6.54
M24
6.43
8.16
9.30
4.97
6.31
7.19
M24
9.74
11.46
12.64
7.54
9.52
10.45
I
147
*The loads for intermediate thicknesses may be obtained by linear interpolation.
Bolts - lateral strength
i....,
(
\
! ~
Basic load for bolts at an angle to the grain a
(
\
I
L-
F;; '
~
Grain direction
I
I
F a
!
=
F;;Fj_
r1711
• 2 sm a+ F j_ cos 2 a
i..... (
I
F.L
L
r
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Updated July 2002
r ,
ARUJP
4.7 Masonry (1/9)
4.7
MASONRY
I
)
4.7.1 RULES OF THUMB Ultimate resistances in compression Wall sizing: e < 0.05 t ; grade (iii) mortar (Note: For cavity walls load is applied to inner leaf only.) BS 5628 : Pt 1 Cl 28.1. limits slenderness ratio to 27
' )
BOO
'E1so -..
'
J
I
J
~ 700
-6so ~ 600 r::::
/215 brick wall (35N brick)
.fl II)
550 "iii 500 (J) .... 450 ~ 400 -~ 350
~
r---
(J)
a. 300
/
E 250 0
(.) 200 (J) (ij 150 E 100 :;:::; 5 50 0 1.0
- --........
100 brick+ 140 block {10N block ~
Jl..
2.0
2.5
-:I
~ ...........
/1100 brick + 100 block (3.5N block)l
...
3.0
3.5
4.0
4.5
5.0
5.5
J
I
-- --- --- -- -----... .....
;/
1.5
~
j
I
6.0
Effective wall height (m) Pier sizing: e < 0.05 t; 20N brick; grade (iii) mortar BS 5628 : Pt 1 Cl 28.1. limits slenderness ratio to 27
,...._ I
300
-z
\ J
275
~250
/L440x327 ier
(J)
g 225
co ti
-
"
200
'iii ~ 175 (J)
j
I
r-- r--.._
.2:: 150 II)
'
......
--......
J
I
II)
215x 327 pier
~ 125
c..
,.. /
§ 100
215x215pier
(.)
$ 75 co ~ 50
5
Ji
---
/
25
0 1.0
' J
,..., :,
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Effective pier height (m)
J
I
,., I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUJP
/
I I
I
J
I
j
I
:
[
4.7 Masonry (2/9)
Initial sizing rules Trial wall thicknesses: For compressive loading only:
(
\
Supported top and bottom
Supported at base only
Solid
H/16
H/8
Cavity*
H/11
H/5.5
H is wall height
Min. leaf thickness 100mm
• Wall thickness is sum of leaf thickness ( '
For lateral loading: solid walls, Height = 1/40 distance between supports cavity walls, Height= 1/30 distance between supports
4.7.2 LOAD FACTORS (From BS 5628 Part 1 Clause 22)
Load Combination
Load Type
(Including Earth
Dead, G,
Imposed,
a,
and Water Loading
Earth and
Wind,
Water, E,
w,
Adverse
Beneficial
Adverse
1.4
0.9
1.6
0
1.4
-
2. Dead and Wind
1.4
0.9
-
-
1.4
1.4*t
3. Dead, Imposed
1.2
1.2
1.2
1.2
1.2
1.2t
Where Present) 1. Dead and
Beneficial
Imposed
and Wind t Use 0.015G, if greater than factored W,.
'
(
• A partial factor of 1.2 may be used for freestanding walls and laterally loaded walls panel, whose
......
removal would in no way affect the stability of the remaining structure .
'
4.7.3 MATERIAL FACTORS (From BS 5628 Part 1 Table 4) (
\
Partial safety factors for material strength Construction Control
Manufacturing (
Control
\
Special
Normal
Special
2.5
3.1
Normal
2.8
3.5*
• Use for initial sizing Note particular requirements for use of 'Special' category
( '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
I
'
I
r-
ARUP
)
\
4.7 Masonry (3/9)
4.7.4 MODULAR DIMENSIONS (Brickwork) 102.5, 215, 327.5, 440 ~~=-~--~~--~~~~~
0
' J
' i
Mortar Thickness
= 1Omm
(n x225)- 10
-
4.7.5 TYPICAL UNIT STRENGTHS Material and BS
Class
Typical unit compressive strength (N/mm2 ) '
Fired-clay bricks (BS 3921)
Calcium silicate bricks (BS187)
Engineering At
> 70
Engineering Bt
>50
Facing brickst
10-50
Common bricks
10-30
Class 7
48.5
Class 6
41.5
Class 5
34.5
Class 4
27.5
Class 3
20.5
Reconstructed stonet (BS 6457)
'
I
'
J'
7-20
Concrete bricks (BS 6073: Part 1) Concrete blocks (BS 6073: Part 1)
j
Dense solidt
7,10-35
Dense hollowt
3.5, 7, 10
Lightweightt
2.8, 3.5, 4, 7 (10)
Dense solid
As dense solid concrete blocks
Natural stonet (BS 5390 and BS
Structural quality
15-100
I
•
8298)
J
{dependent on stone type, bed, location, etc.)
t These are often selected by client or architect for appearance or thermal performancecheck this, and establish strength, before starting to size members. ~ '
j
,..., c
J
~ '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
J
......,
'
J
'I
4.7 Masonry (4/9)
4.7.6 MASONRY COMPRESSIVE STRENGTH (BS 5628, Pt. 1, Table 2) (
Characteristic compressive strength of masonry' f.k• in N/mm2
1
(a) Constructed with standard format bricks Mortar
NOTE TO TABLE OF fk
Compressive strength of unit (N/mm')
1. For piers, columns, and short
desig-
walls with plan area A (in m') ~ 5
10
15
20
27.5
35
50
70
100
(i)
2.5
4.4
6.0
7.4
9.2
11.4
15.0
19.2
24.0
(ii)
2.5
4.2
5.3
6.4
7.9
9.4
12.2
15.1
18.2
(iii)
2.5
4.1
5.0
5.8
7.1
8.5
10.6
13.1
15.5
(iv)
2.2
3.5
4.4
5.2
6.2
7.3
9.0
10.8
12.7
nation
'
(
0.2m', multiply fk by (0.7 + 1.5A). 2. For 'half-brick thick' brick walls, multiply Table (a) values by 1.15. 3.
For 90
modular
X
90mm section
bricks,
multiply the
Table (a) values by: (b) Constructed with blocks having a ratio of height to least horizontal dimension f
of0.6
1
Mortar nation
2.8
3.5
5.0
7.0
10
15
20
35 or greater
(i)
1.4
1.7
2.5
3.4
4.4
6.0
7.4
11.4
(ii)
1.4
1.7
2.5
3.2
4.2
5.3
6.4
9.4
i '
4. For unfilled hollow blocks, interpolate between Tables (b) and (c) as necessary.
I I
i,...,.
5. For solid and concrete-filled
r ,
r '
(iii)
1.4
1.7
2.5
3.2
4.1
5.0
5.8
8.5
(iv)
1.4
1.7
2.2
2.8
3.5
4.4
5.2
7.3
(c) Constructed from hollow blocks having a ratio of height to least horizontal
\
Mortar
0.6 and 2.0, interpolate between Tables (b) and (d) as necessary. 6. For squared natural stone and between Tables (b) and (d) as
Compressive strength of unit (N/mm')
necessary.
designation
2.8
3.5
5.0
7.0
10
15
20
35 or greater
(i)
2.8
3.5
5.0
5.7
6.1
6.8
7.5
11.4
(ii)
2.8
3.5
5.0
5.5
5.7
6.1
6.5
9.4
7. For random rubble natural
'
I'"-
hollow blocks, with height:least horizontal dimension between
reconstructed stone, interpolate
dimension of between 2.0 and 4.0
.......
(
= brick
Compressive strength of unit (N/mm')
desig-
I
1.25 if wall thickness width, 1.1 otherwise
stone, take 75% of squared natural stone values. If using lime mortar, take 50% of strength for grade (iv) mortar.
(iii)
2.8
3.5
5.0
5.4
5.5
5.7
5.9
8.5
(iv)
2.8
3.5
4.4
4.8
4.9
5.1
5.3
7.3
1
IL.... r ,
L
MORTAR STRENGTHS
(d) Constructed from solid concrete blocks having a ratio of height to least
Desig-
horizontal dimension of between 2.0 and 4.0
nation
Mortar
Compressive strength of unit (N/mm 2 )
(i)
designation
2.8
(i)
2.8
3.5 3.5
5.0 5.0
7.0 6.8
10 8.8
15 12.0
20
35 or greater
14.8
22.8
Cement:Lime:Sand
1:0-)1.,:3
(ii)
1 : Y:z: 4 -4Y:z
(iii)
1:1:5-6
(iv)
1:2:8-9
Pure lime 0 : 1 : 3
r , I
(
(ii)
2.8
3.5
5.0
6.4
8.4
10.6
12.8
18.8
(iii)
2.8
3.5
5.0
6.4
8.2
10.0
11.6
17.0
(iv)
2.8
3.5
4.4
5.6
7.0
8.8
10.4
14.6
See also Section 4.7.12, and BS 5628, Pt1, Table 1.
1
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
'
J
4.7 Masonry (5/9)
Wp
t1
~..
t2
te = t max
Sp
or 2/3 (t1 + t2)
te = t
tP ''
'
te = t x k
[whichever greater]
Values of K for the design of piers (From BS 5628, Pt. 1, Table 5) Ratio of pier spacing
' j
Ratio of pier thickness to actual thickness of wall or leaf (t, I t)
(centre-to-centre) to 1
2
3 and thicker
1
1.4
2
10
1
1.2
1.4
20 (or more)
1
1
1
pier width (s, I w,) 6 (or less)
Reduction factor 13 (From BS 5628, Pt. 1, Table 7) Capacity reduction factor, Slenderness
:/ /
t
~ /
Eccentricity at top of wall, e
L
Up to
0
:;;
~
Pt
ratio: l.ft.
i
0.11
0.21
0.31
/
1.00
0.88
0.66
0.44
1/~
6
1.00
0.88
0.66
0.44
1.00
0.88
0.66
0.44
10
0.97
0.88
0.66
0.44
12
0.93
0.87
0.66
0.44
14
0.89
0.83
0.66
0.44
16
0.83
0.77
0.64
0.44 0.44
18
0.77
0.70
0.57
20
0.70
0.64
0.51
0.37
22
0.62
0.56
0.43
0.30
24
0.53
0.47
0.34
26
0.45
0.38
27
0.40
0.33
'i
l I
'
)
L
/
0.051
8
'
'
Le= 0.75L
Le=2L
'
j
'
J
L DPC Le= 1.0L
\ J
Linear interpolation between eccentricities and
slenderness ratios is permitted
Vertical load resistance of wall or column per unit length: 13tfk
P=--
Ym where
', J
13 = capacity reduction factor from above table t =actual wall, column, or leaf thickness fk = characteristic compressive strength from table Ym =partial safety factor for material from Table 4.7.3- use 3.5 for sizing.
'
''
' J THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
' J
'
l
4. 7 Masonry (6/9)
4.7.7
SIZING EXTERNAL WALL PANELS •
• r '
•
(
;
• •
(
1
•
Walls in buildings up to four storeys high and subject only to lateral loads may be sized as below. Gravity stresses generally improve capacity to resist wind, and so thickness may be guesstimated for higher load bearing walls. Applicable only in areas with many windbreaks (cities, towns, woodland etc.) within the defined wind zones. Thickness of wall should be at least: For solid wall: 1/40th of distance between supports total thickness 1/30th of distance between supports; each leaf For cavity wall: min. 1OOmm thick; cavity width 1OOmm max; wall ties 900 x 450mm spacing; mortar grade (i), (ii) or (iii) Treat pitched gable walls as rectangular panels with height taken at mid-height of roof slope. Openings (windows, doors, etc.) only if either: -Openings are entirely framed by lateral restraints (floors, roof, crosswalls, etc.) or -(a) the total area of openings is less than the lesser of 10% of the maximum tabulated area 25% of the actual wall area and -(b) no opening is less than half its maximum dimension from any edge of the wall panel (other than its base) and from any adjacent opening. If above conditions not satisfied, calculate wind forces and use Table in 4.7.8 or design to BS 5628: Part 1.
r ,
Maximum permitted areas of certain walls
'
(
Wind Height
------
zone
c
B
A
D
Cavity 190mm Cavity 90mm Cavity 90mm Cavity wall (
wall
1
2
3 ;
4 (
wall
solid
wall
solid
wall
wall
wall
F 90mm Cavity 190mm
solid
solid
wall
wall
wall
wall
solid
I
H
G
90mm Cavity
;
I
(
solid
E
avity 90mm Cavity 90mm Cavity 90mr solid wall solid wall solid
wall
wall
wall
wall
wall
m
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
m'
5.4
11.0
13.5
17.5
19.0
26.5
28.5
20.5
29.0
32.0
41.0
32.0
41.0
8.5
10.0
14.0
19.0
19.5
30.5
10.8
9.0
11.5
13.0
15.5
17.5
21.5
15.5
23.5
24.0
32.5
32.0
41.0
7.0
8.0
10.0
14.5
15.5
21.5
5.4
9.5
12.0
14.0
17.0
21.0
24.0
17.5
25.5
27.0
35.5
32.0
41.0
7.5
8.5
10.5
16.5
17.0
24.5
10.8
8.0
9.5
11.5
14.0
13.5
17.5
13.0
20.5
19.0
28.5
28.0
36.5
6.0
7.0
9.0
11.0
13.0
17.5
5.4
8.5
10.5
12.5
15.0
15.5
20.0
14.5
22.5
22.0
31.0
30.5
40.5
6.5
7.5
9.5
13.5
14.5
20.0
10.8
7.0
8.5
10.0
12.0
11.5
15.5
11.0
17.5
14.5
24.5
24.5
31.5
5.0
6.0
7.5
9.0
11.5
15.0
5.4
8.0
9.5
11.0
13.5
13.0
17.0
12.5
19.5
18.0
27.5
27.0
35.0
6.0
6.5
8.5
10.5
12.5
17.0
10.8
6.5
7.5
9.0
11.0
10.5
13.5
9.5
14.5
12.5
21.0
21.5
27.5
4.0
5.5
6.5
7.5
10.0
12.5
;
Notes:
1. Cavity wall:
100mm outer leaf (any bricks or blocks not less than 14.0 N/mm') 1OOmm inner leaf (any bricks or blocks not less than 3.5 N/mm'). If either leaf is increased to 140mm, increase the areas by 20%
I
,
2. Solid walls:
Single leaf, collar-jointed, grouted cavity. Any bricks or blocks not less than 3.5 N/mm'
3. Wind zones:
As BS 5628 Part 3 Figure 1.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
)
\
'"""'
!
'
J
4.7 Masonry (7/9)
4.7.8
'"""'l
FLEXURAL STRENGTH OF MASONRY
' J
Characteristic Flexural Strength of Masonry, f"", in N/mm'
Mortar designation
Plane of failure parallel to bed
Plane of failure perpendicular to
joints (spanning vertically)
bed joints (spanning horizontally)
(i)
(i)
(ii) and
(iv)
(ii) and
(iii)
' J
(iv)
(iii)
'
!
'
J
l
j
'
j
'
j
Clay bricks having a water absorption: less than 7%
0.7
0.5
0.4
2.0
1.5
1.2
between 7% and 12%
0.5
0.4
0.35
1.5
1.1
1.0
over 12%
0.4
0.3
0.25
1.1
0.9
0.8
Calcium silicate bricks
0.3
0.2
0.9
0.6
Concrete bricks
0.3
0.2
0.9
0.6
Concrete blocks (solid or hollow) of compressive strength in N/mm': 2.8
used in wall
3.5
thickness* up
7.0
to 100mm
2.8
used in wall
3.5
thickness* of
7.0
0.25
0.15
0.2
0.4
0.45
0.4
0.60
0.5
0.25
0.2
0.25
0.2
250mm
0.35
0.3
10.5
used in walls of
0.75
0.6
14.0
any thickness*
0.90t
0.7t
0.25
0.1
0.40
0.2
and
',
' '
over • The thickness should be taken to be the thickness of the wall, for a single leaf wall, or the thickness of the leaf, for a cavity wall. For concrete blocks 100-250mm thick, interpolate. t When used with flexural strength in parallel direction, assume the orthogonal ratio ~=0.3
'
'
I
'
I J
Note: Mortar designation as in Table 4.7.6
4.7.9
INTERNAL NON-LOADBEARING MASONRY WALLS For single-leaf wall of length Land height H, with adequate lateral restraint. calculate the minimum thickness required from the graph:
' j
Extract from BS5628: Part 3, figure 6.
Note: This graph only applies where significant internal wind pressures cannot occur.
20
40 60 80 100 Length I thickness ratio
120
'
j
'
J
•
J
•
J
'
J'
140 I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
ARUP
'!
-.
r '
I
4. 7 Masonry (9/9)
For cavity wall with wall ties, sum of leaf thicknesses to be not less than 1Y2t where t is calculated as above. Note that the presence of openings, chases, and movement joints may demand greater thickness and/or additional intermediate restraints. r
4.7.10 FREESTANDING MASONRY WALLS
'
Thickness of freestanding walls (Single leaf, unstiffened by piers) (
1
Wind zone
Max. ratio of height (above
Max. ratio of height {above
lateral restraint): actual
d.p.c.t): actual thickness
thickness '
( I
I
'
1
8.5
6.4
2
7.5
5.6
3
6.5
4.9
4
6.0
4.5
t Assume d.p.c. cannot res1st flexure. Notes:
1. Unit compressive strength
2
3.5 N/mm 2, density
2
1400 kg/m 3•
2. Applicable only in areas with many windbreaks (cities, towns, woodland, etc.)- elsewhere calculate wind
r .
forces and design as gravity wall or to BS 5628: Part 1.
i
3. Wind zones as BS 5628 Part 3 Figure 1
4.7.11 JOINTS r ' '
Recommended Vertical Joints in Masonry
'-"
Material
r
Max. joint spacing (m)t
Joint width (mm)
Max. aspect ratio*
1.3 x spacing in
3:1 (suggested)
1
Fired-clay bricks
15 12 (preferable)
r ,
Calcium silicate (sand-
i
lime) bricks
w
Concrete blocks and
r
metres (minimum)
7.5-9
10 (typical)
3:1
6
10 (suggested)
2:1
6
10
3:1 (suggested}
bricks
1
i
l.,..
Natural stone cladding in cement-based mortar
'
( I
t Use max of half these values for joint nearest corner (Internal or External) * Ratio of panellength:panel height for solid panel; if openings, check each sub-panel separately and consider
L
reinforcement for ratios beyond max. value.
Horizontal joints in non-loadbearing masonryt (BS 5628 Part 1 Cl 29.2.2)
r
'
Uninterrupted wall height
Joint spacing (m)
Joint width (m)
Multi-storey
9m or every third storey (whichever
Allow 1mm per metre between
is less), but can omit if building is
masonry support and top of
less than 12m with four or fewer
masonry below; minimum 10mm
storeys
r
1
Storey-high t
At head of wall
Allow 1mm per metre
Consider also other requirements for joint (acoustic and thermal insulation, weathertightness, fire separation, etc) when selecting joint filler.
f
I
i ~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98 ( '
ARUIP
'
)
4. 7 Masonry (9/9) I
4.7.12 OTHER ISSUES
' J
Non-structural issues influencing decisions on material strength, wall thickness, and mortar grade: Issue
Influence on
Weathertightness
Wall thickness
Recommendation Use cavity construction (min. 90mm thick outer leaf), or assume min. solid wall thickness for Sheltered/Moderate exposure (Table 11, BS 5628: Part 3): Rendered Clay/calcium silicate/dense concrete/reconstructed stone- 190mm; ',
Lightweight concrete- 140mm.
,...,
Unrendered 440mm Durability
)
' j
Material, strength,
See Table 13 BS 5628: Part 3.
mortar grade.
For unrendered external walls with high [and low] risk of saturation:
Conservatively, for
Fired-clay units - FL,FN [ML,MN] in (i), (ii),[iii] grade mortar;
sizing, choose lowest
Calcium silicate units- classes 2-7 in (iii),[iv] mortar*;
unit strength and mortar
Concrete bricks
grade to satisfy
Concrete blocks (any strength) in (iii), [iv] mortar*.
durability
For internal walls and inner leaves of cavity walls:
2
'
~ J
15 [7] N/mm' in (iii) mortar;
~ I,
Fired-clay units - any in (i)-(iv) mortar;
l I
Calcium silicate units- classes 2-7 in (iii) or (iv) mortar; Concrete bricks -
2
7N/mm' in (iv) mortar;
)
,...,
Concrete blocks (any strength) in (iii) or (iv) mortar.
I
• See remarks on table 13C for mortar grade (iv). Fire resistance
Material and whether
See Table 16, BS 5628: Part 3.
solid/perforated/hollow;
A 1OOmm unplastered wall or leaf of a cavity wall will give 2 hour fire resistance
thickness
I
J
I
)
I
)
in all materials and loading conditions (sometimes conservatively) except: Fired-clay bricks/blocks with voids or perforations (75-1 00% solid - use min. 170mm thickness); Hollow concrete blocks with gravel or natural stone aggregate (limestone OK)min. 200mm thickness with vermiculite-gypsum plaster. Pay attention to joints around panels.
Thermal
Material, strength,
This often dictates use of cavity wall with lightweight/hollow- hence WEAK-
insulation (and
thickness of external
concrete blocks, typically 2.8-7 N/mm 2 and 100-150mm min. thickness; this
avoidance of
walls
may be a problem on multi-storey loadbearing wall construction. Applied insulation in cavity or on inner [or outer] face may be used. This must be
condensation)
resolved with architect/service engineer EARLY in design.
I I
'
}
,..., I
Sound absorption
Material, strength,
See Building Regulations Approved Document E1
and noise
thickness
Airborne sound resistance where necessary (e.g. between dwellings) is typically
reduction
'i
'
J
l
)
achieved by: Single leaf walls- 215mm plastered brickwork (min. density 1610kg/m 3 ) or dense blockwork (min. density 1840kg/m 3 ), or 190mm unplastered concrete (min. density 2200kg/m
3
I
);
Cavity walls -two 102mm leaves of plastered brickwork (min.density 1970kg/m 3 ), two 100mm leaves (50mm cavity) of plastered dense blockwork (min. density 1990kg/m 3 ), or two 1OOmm leaves (75mm cavity) of plastered drylined lightweight blockwork (max. density 1600 kg/m 3 ). Pay attention to joints aroud panels.
' J
,..., I
Appearance
Material, strength
Architect's choice- must be resolved EARLY as it profoundly influences structural design.
Health and safety
Thickness of unit
Units weighing more than 20kg should not be used if one-man laying is intended (which is normal). E.g. max. thickness dense blockwork at 2000kg/m
3
thicker wall required ( tcheck strength with manufacturer).
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.0 I Aug 98
'
J
,...,
is 105mm
(standard 440x215 block). Consider collar-jointed wall or blocks laid on side t if
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
I
ARUP
i l
)
,...,
I
i
J
4.8 Aluminium (1/2)
'
(
I I
4.8
ALUMINIUM
4.8.1 MAIN STRUCTURAL ALLOYS Typical uses:
r ,
Curtain walling Rainscreen cladding Glazing arms/rails
Alloy
Condition
Product
Range of
Dura-
thickness
bility.
(mm) Heat-
6063
T4
Extruded
0-150
treatable
(H9)
T6
Extruded
0-150
\__.
6082
T4
Extruded
0-150
(H30)
T6
Extruded
20-150
5083
0
Sheet, plate
0.2-80
(N8)
H22
Sheet, plate
0.2-6
Limiting stress (N/mm 2 ) Po
B
B
Pa
Pv
65 (65]
85 (85]
40 [40]
160 [80]
175 [87]
95 [47]
115 [115]
145 [145]
70 [70]
270 [135]
290 [145]
160 (80]
(
NonI-<
heattreatable
(
A
105 [105]
150 [150]
65 [65]
235 [105]
270 [121]
140 [63]
' where:
\__.
Po is the limiting unfactored stress for bending and overall yielding Pa is the limiting unfactored stress for local capacity of the section in tension or compression Pv is the limiting unfactored stress in shear
r
Note :
A material factor up to 1.3 must be used with these numbers
I-<
Figures in square brackets [] apply to all material within 25mm of a weld zone. • For durability see corrosion protection table below.
r '--'
r
4.8.2 DURABILITY (General corrosion protection of aluminium structures)
1
I
I-<
r
P = Protection is required (see BS 8118 · Part 2) Alloy
Material
durability
thickness
rating
(mm)
Protection needed according to environment
Rural
\__.
Industrial/urban Moderate
Severe
'
(
'--' (
\
Immersed
Atmospheric
1
Marine Non-
Moderate
Severe
Fresh
Sea
water
water
industrial A
All
None
None
p
None
None
p
None
None
B
<3
None
p
p
p
p
p
p
p
~3
None
None
p
None
None
p
p
p
I...
4.8.3 TYPICAL PHYSICAL PROPERTIES
(
'
Density Young's modulus Thermal coefficient
2710 kg/m 3 70 kN/mm 2 23 X 10·6 °C
r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION
I
r ' I
ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
'
I
4.8 Aluminium (2/2)
4.8.4 DESIGN Design in accordance with BS 8118: 1991 BS 8118 : 1991 uses the limit state for design.
I '
Aluminium comes in the following forms: -extrusion -cast -plate -sheet
I
I ' j
Usually buckling in compression is critical.
I
'
)
'
j
'
'
I
.......I '
J
' j
't
)
'
)
'
)
'
J
'
I
'
,...., I
•
j
'
J
I
)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP --
r ,
r ,
4.9 Stainless Steel (1/3)
4.9
STAINLESS STEEL As described in Notes on Materials: 190 the system of designation for stainless steel has been changed by the introduction of BS EN 10088. The mechanical properties given below are for the grades in BS EN 10088. The nearest equivalent old designation is also given.
r '
4.9.1
MATERIAL GRADES For structural use with high resistance to corrosion· use austenitic or duplex stainless steels Suggested grades for atmospheric applications
r '
Location Steel I
grade
•
Rural
Urban
Industrial
Marine
L
M
H
L
M
H
L
M
304L
,/
,/
,/
,/
,/
( ,/)
( ,/)
316L
0
0
0
0
,/
,/
duplex
0
0
0
0
0
0
H
L
M
H
( ,/)
X
,/
( ,/)
X
,/
,/
( ,/)
,/
,/
( ,/)
0
0
,/
0
0
,/
2205 I
'
I
L - Least corrosive conditions within that category.
WARNING: Consult Arup Swimming Pool Design Guide
M -Typical of that category.
where appropriate.
H - Corrosion higher than typical. I
1
0 - Potentially over-specified for corrosion . ./-The optimum choice for corrosion resistance. X- Likely to suffer excess corrosion. ( ./ ) - Can be considered if precautions are taken.
r '
L
4.9.2 MECHANICAL PROPERTIES '
(
I
'
Old
Material Name
designation
Material
0.2% proof stress
UTS
number
(N/mm')
(N/mm 2 )
r, L
Hot
Bars,
Hot
Bars,
Hot
Rolled
rods
Rolled
rods
Rolled
rods
Plate
+sectio
Plate
+secti
Plate
+secli
ons
ns (
Elongation(%)
Bars,
ons
' 304L
X2CrNi19-11
1.4306
200
180
304 S11 316L
X2CrNiMo17-12-2
1.4404
220
200
316S11 316L
X2CrNiMo18-14-3
1.4435
220
200
316S13 Duplex
X2CrNiMoN22-5-3
1.4462
460
450
2205 r
I
500 to
460to
650
680
520 to
500 to
670
700
520 to
500 to
670
700
640to
650 to
840
880
45
45
45
40
45
40
25
25
'
I
L r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
r 1
'r
ARUJP
'
I
4.9 Stainless Steel (2/3)
4.9.3 PHYSICAL PROPERTIES Old
Material
Density
Thermal expansion
Thermal
Heat capacity
designation
Number
(kg/m 3 )
20-100'C (1o·•t C)
conductivity
(J/kg'C)
(W/mC)
304L
1.4306
7900
16
15
500
316L
1.4404
8000
16
15
500
duplex 2205
1.4462
7800
13
15
500
4.9.4 DESIGN STRENGTH
.)
I '·)
The basic design strength, Py, may generally be taken as the 0.2% proof stress given in 4.9.2 as those are minimum values. The exception is Duplex 2205 where a maximum of 450N/mm 2 should be used and this should be verified by mill certificates. For duplex 2205 with thickness 1O
4.9.5 ELASTIC PROPERTIES Design values of elastic properties
'
)
'
)
I
Values of constants to be used for determining secant modulus (see
l
)
'
J
'
J
over) Grade
Young's modulus, E (N/mm 2 )
Shear
Transverse
Longitudinal
direction
direction
modulus, G (N/mm
2
I
)
Transverse
Longitudinal
direction
direction
304L
200 000
200 000
76 900
316L
195 000
190 000
74 000
duplex 2205
205 000
200 000
77 900
m
k
2.22
7.50
2.22
5.50
2.05
8.00
2.00
6.00
0.91
4.00
0.89
4.00
k
m
1 ' )
Deflection calculations For estimating deflections, use the secant modulus:
'
)
'
J
'
I
E
P1 and Pc are the values of pin the tension and compression flange respectively. k and m are constants obtained from the previous table.
'
\
)
'
)
' j THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
'
I
....., '
'
( I
'
(
4.9 Stainless Steel (3/3)
4.9.6 AVAILABILITY Sheet, plate, bar and tubes widely available for 304L and 316L. Similar for duplex 2205 but not as widely stocked. Certain rolled sections available for 304L and 316L. None for duplex 2205. UTS
fv High tensile rod (
'
i_,
Weldable
Sizes (mm)
1350
N
4- 11 !jl
1100
N
950
N
12-19$ 19-25 !jl
Reinforcing bar and
300
500
N
6-50 !jl plain
plain rod
460
625
6 - 32 !jl deformed
180
N y
180+
y
l,c,L 250-300 100 !jl 0
Structural sections
6-50 !jl
0
400 !jl
4.9.7 REFERENCES r ,
1. SCI, Concise guide to the structural design of stainless steel. 2. BS EN 10088: 1995, Stainless steels, Parts 1-3
L (
'
(
\
r '
I
(
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLy WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUIP
I
' I
5. Foundations (1/7)
5.
FOUNDATIONS
5.1
GENERAL PRINCIPLES
'
'
All foundations should be taken down to an adequate bearing stratum, which ensures the settlement under load will be acceptable to the structure. Settlement under loads should always be considered. This may be done by calculation and/or by reference to successful use of similar foundations in similar materials, preferably in the local neighbourhood of the site. Advice from Building Control Engineers is helpful in this respect. '
In assessing settlement the interaction between foundations needs to be considered plus the overall load of the complete structure as well as the loading of an individual foundation. Settlement arises from the following: Undrained elastic settlement which occurs on loading and hence during construction Consolidation settlement of clays as porewater pressures dissipate (time dependant) secondary consolidation of soft clays and peat (time dependant) creep of fill (time dependant) settlement induced by construction vibration, seismic loading or inondation creep of natural granular deposits (time dependant but usually small) Foundations should be taken to a depth at which they will not be affected by seasonal changes, including both frost and action and swelling and shrinkage due to changes of water content. Frost action is particularly important in silty soils, including chalk, and shrinkage is important in many clays, especially if there are trees nearby. BRE Digests and NHBC guidelines provide advice on foundations in clay deposits which have become desiccated due to vegetation. It is important that all foundation designs are reviewed by a geotechnical engineerpreferably in advance of any design decisions. In addition advice may be required to determine the geological character of the founding strata and whether any unusual features may be present.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUJP
J
' I
' I
'
)
..--, !
'
J
'
)
5. Foundations (2/7)
5.2
APPROPRIATE FOUNDATION SOLUTIONS APPROPRIATE FOUNDATION TYPE SOIL CONDITIONS
AND LOCATION
1.
DESIGN COMMENTS
-It· Lbti., boOW,.Udop~" ·r< . . .•. '
. ··oence nrui1Ugreatdepth '·.· ..
r ,
. . . ···.··
Spread footings most appropriate for conventional foundation needs. A deep foundation such as piles could be required if uplift forces were to act.
where erosion might occur
r , Spread footings most appropriate
2.
solution in many cases, depending on settlement considerations
--- C:aonbolow~tdop:or±8-----
ground turface Firm clay or firm tilt - and clay to great depth
-
r .
-
bolowmno whore ohrinkago and
'I.....
expansion due to change In water
canbtnt could ocCI.I'
'
(
Spread footings would be appropriate for low to medium
3. '
{
range of loads if not installed too close to soft clay. Take care to not
o.. ~_
_ a..
...... '
(
'
·Finn clay -
_ -
_ 3m-
~-
Soft clay to great depth
'
(
_ -
.
e .
-
:men! as for 2 above
4.
· ·
-
overstress the soft clay. If settlements become excessive deep foundation might be required. Cyclic loading may cause larger settlements.
Spread footings may settle excessively or require use of very low bearing pressures. Any later disturbance to the sand by vibration, groundwater changes or seismic loading for example, may cause large settlements. Consider mat (raft) foundations or consider compacting sand by vibroflotation or other method then use spread footings. Driven piles could be used and would density the sand.
r ,
Also consider continuous flight
L
auger piles.
r .
·~..... r
,
-
!
r .
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUJP
I
J
I
}
5. Foundations (3/7) APPROPRIATE FOUNDATION TYPE SOIL CONDITIONS
AND LOCATION
DESIGN COMMENTS
5.
Spread footings probably not Om·~----~g_ro_un_ds~
Soft
Om
Bm.~______b_u_ts_tr_e_n_g_th_________
Bm
increasing with depth to very great depth
Soft firm _16m
appropriate. Friction piles or piers would be satisfactory if some
Softclay
settlement could be tolerated. Long piles would reduce
16m
firm
settlement problems. Also
I
I
'
)
consider mat or floating foundation.
6.
Om
____9!P~-~-~~-~a_c_~ -
Softclay -
Dftl
Deep foundations - piles, piers, caissons- bearing directly on or in
_
-
_
the rock. Downdrag (negative skin 2D_ra
friction) may add to the loads on
1
the piles. The weathering, infill etc. Rock
design of the socket
7.
J
of the rock may be critical in the
..-,
For heavy loads, spread footings in upper sand layer would probably experience large settlement because of underlying soft clay layer. Consider straight shafted
-
Softtn firm clay-
~ Stiff clay to great depth
piles or piles with bells in the stiff clay layer. Bells may be difficult to form in some clay strata. If time is available preloading might make
tt
possible to use shallow foundations.
Deep foundations best, continuous flight auger piles suitable.
8.
Expanded base piles into sand layer not common. Bored piles
water table - - - - - - - -
bentonite (if not) to balance water
· · ·· . Medium i:lense sand.: · to great depth '
pressures.
· 0 ·<:
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
'
I J
require water (if cased) or
ARUP
,-,
r ,
f
5. Foundations (4/7)
'
.....
·
SOIL CONDITIONS
r •
APPROPRIATE FOUNDATION TYPE DESIGN COMMENTS
AND LOCATION
'
L..
Deep foundation types extending
9.
~
r •
L
miscellaneo.usmade aro 1.1nd 1 ~ 1~01 1, non-101) Sm loose sand, soft clay
r '
1m medium dense sand
I
into medium dense sand, or preferably into compact glacial till. Strong possibility for drilled pile bored under bentontte. Also consider cast-in-place and driven concrete pile, steel piles,CFA
-
...
stiff/dense glacial till
r ,
piles. (Cannot underream in till.)
·.
Negative skin frcition should be considered
r r r R~ck r r
f '
I
L...
I. L
10.
~ Miscellaneous loose Made Ground
~ : :' ..• ~.: ·.
~ _:.-·.~·:.<: :/··.>-.··
.;·-·'· · ... _~·. : >/
·;.·., ·,: ,.
:':,··. . />"
ldeilii.mdenseeli~::·> ,.
'.·.··.. :
'
( I
.
"<.,·-~:·
. .. . .
<-·· .. <-··:._:-.
:. ·.. : .. ..
:. -~~-: .:,...
~
Dm
2.5rrr· .·
···.··-~-
Deep foundations penetrating through fill are appropriate. With ..
piles or piers consider stopping in
-, .• / :~N~~r~tiii~~~'iriem<)"': ··· :,-:: .. ·.·., 'fill well comp.acted
. ' ' . :·-·::··:<:,• .->· '. ··,·
;·.
_, ..
~- .,. ::. ..;- .:
12.:n,.··-•·'::_ >·L······_.-··:_~·· ·---~·- -::
..... I
,...
j:.·
upper zone of sand layer to limtt consolidation of clay layer. Also consider replacing poor fill wtth new imported, compacted, fill, then use spread footings in the new fill. Calculate settlements due to consolidation of clay under complete load of new structure.
r .
i
Firm Clay
L... r •
Rock Rock
r .
r • ~~
r.
r. 1.
L...
r ,
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
...., I I
j
'
j
5. Foundations (5/7) SOIL CONDITIONS
APPROPRIATE FOUNDATION TYPE
DESIGN COMMENTS
AND LOCATION
...., If foundation loads are not too
11.
I
;
heavy, consider using piles or Om
piers bearing in the upper zone of
Ground Surface
- ·- -·--------------~--------- - -
~oft
sand layer and check for settlement. If foundation loads are
Cley - - - - -
heavy, consider driven piles (steel)
12m-
or caissons to rock. Also consider
~:
floating foundation. Nature of rock is very important. Driving can
J
I
induce positive pore presures and negative skin friction. - :::sottS:Iay
M!rlr
' j
Rock For light to medium heavy loading
' J For heavy loading
....,
I I
I
'
J
I
J
12. Foundations should bear directly
Om
ground sn1:• __ _
on the rock which is relatively close to the ground surface. If no basement areas are needed for the building consider piers. If
5m
Loose sand and soft clay
basement areas are useful,
...., '
I J
I
J
consider full excavation to rock Rock
and construction of two basement levels.
I
I
J
I
'J
..,
I
I
' J
I
i
' J
I I
' J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVEARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
l '
J
'
J
'
I '-'
;
i L.. 5. Foundations (6/7)
!
......
5.3
'
PRESUMED ALLOWABLE BEARING VALUES UNDER STATIC, NONECCENTRIC STATIC LOADING
'
f I 'I
Bearing values relate to characteristic loads. Further values are given in BS8004. This information is given for preliminary assessment purposes only.
i-
L
Foundations in non-cohesive soils at a minimum depth of 0.75m below ground level
r , Description of soil
L
N-value in standard
Presumed bearing value
penetration test
(kN/m' or kgf/cm' x 100) for foundation of width
r , 1m
2m
4m
>50
600
500
400
Dense sands and gravals
30-50
350-600
300-500
250-400
Medium-dense sands and gravels
10-30
150-350
100-300
100-250
Loose sands and gravals
5-10
50-150
50-100
50-100
L Very dense sands and gravels f
'
!
Ir
'
r
The allowable bearing pressure is defined as that causing 25mm settlement under the foundation width.
l
r ,
f
'
If the water table is within a depth equal to the width of the foundation and the depth of the foundation is small in relation to its width, the settlements will be doubled. If settlements must not exceed 25mm, the allowable bearing values should be halved. Foundations in conhesive soils at a minimum depth of 1m below ground level
I
I
i-
Description
r,
Presumed bearing value (kN/m2 or kgf/cm2 x
(kN/m' or kgf/cm'
100) for foundation of width
X
Hard boulder clays, hard fissured clays ('
Cohesive strength 100)
1m
2m
4m
>300
800
600
400
150-300
400-800
300-500
150-250
75-150
200-400
150-250
75-125
40-75
100-200
75-100
50-75
20-40
50-100
25-50
Negligible
(e.g. deeper London and Gault clays) Very stiff boulder clay, very stiff 'blue' London Clay
r ,
.....
Stiff fissured clays (e.g. stiff 'blue' and
I
brown London clay), stiff weathered boulder clay
r , Firm normally consolidated clays (at depth), fluvio-glacial and lake clays, upper weathered 'brown' London clay
I '
Soft normally consolidated alluvial clays (e.g. marine, river and estuarine clays)
r ,
r! '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
r .
L
ARUP
\ j
.., : '
J
'
J
5. Foundations (7/7) Chart for estimating allowable bearing pressure for foundations in sands
I
SPT 'N' values are shown as belows per 300mm
'
' J
If the water table is within a depth equal to the width of the foundation and the depth of the foundation is small in relation to its width, the settlements will be doubled.
'
J
l
If settlements must not exceed 25mm, the allowable bearing values should be halved.
'I ' J 0
5.4
'"l
1 2 3 4 5 6 Width offoundation B (m)
I
' J
SHALLOW FOUNDATIONS Area offoundation • _ __:C:.:..h:.::a::...:ra::.:c:..:.te::.:fi.:..:is:..::tJ:..:..c:.:..lo:..:a::.:d:___ Allowable bearing pressure
5.5
l_
J
l
J
'
J
\_
_j
l
J
'
J
'
J
PILED FOUNDATIONS Working load on pile< 0.25fcu (0.1fcu for continuous flight auger)
I
I
Warning: The following relationships apply only to bored cast in place concrete piles in London clay. For all other piles check with Geotechnics (which should always be done anyway).
Working bearing capacity of straight shafted piles • (
0.5c x perimeter u
Working bearing capacity of large undero reamed piles • (
3
x base area
9c )• (
u,base
0.35c x perimeter u
·,
x base area
9c )• (
)
3
u,base
f1
)
f2
For straight sided piles higher capacities may be available by following the guidelines for Site Investigations and pile tests in the London District Surveyors Association Publication, Guide Notes for the Design of Straight Shafted Piles in London Clay (1996)
!
Cu = undrained shear strength of London Clay Typically diameter of under-ream = 3 x diameter of shaft Factor of safety:
f1 = f2 = 2.5 or f 1 = 1
f2 = 3
'"""I I
whichever gives the lower capacity
' J
Minimum spacing of pile shafts= 3 x diameter (ensure under-reams do not encroach)
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. VER 3.1/March 99
ARUP
'
J
'
J
I
f
'
6. Water Resistant Basements (1/6)
i...... r ,
6.
WATER RESISTANT BASEMENTS
6.1
RULES OF THUMB Minimum thickness
L f
Preferred minimum thickness of walls and slabs: 300mm Where thicker consider surface zones of 200mm each face for reinforcement to control shrinkage/thermal cracking.
1
i
I !.....
Reinforcement
r '
Typically for water resistant walls: T16 @ 200 c/c in both faces and in both directions or T12@ 150 c/c in both faces and in both directions Standard cover
L r ,
Assumed concrete grade 35 (This should be a minimum) Put the horizontal reinforcement furthest from earth face. r'
Face
Cover (mm)
'
I.-
Earth face of walls where shuttered
50
r ,
Earth face of walls (cast against
75
i
earth)
I.-
f
1
L
External exposed faces of walls
40
Bottom and sides to base
75
Internal faces
Greater of 25 or bar diameter
r ' !
Waterstops I waterbars
r
• • • • •
1
'
I.-
r,
Required by BS 8102 for grade 1 basements with concrete design to BS 8110 Give extra "comfort" at construction joints, otherwise total reliance on workmanship Not essential but often desirable Use external waterstop for basements (preferred) Can use centrestop in vertical construction if necessary (e.g. swimming pool), must be carefully supported/kept in place.
L r,
L :
6.2
ESTABLISH CLIENT'S REQUIREMENTS I EXPECTATIONS These can vary even for the same type of space. Tables 6.1 and 6.2 (from CIRIA Report 139) will help.
1
I i
r
1
1
Establish {for example}: a). Does small amount of leaking {liquid) matter (for people and contents)? b). Do stains matter? (aesthetics) c). What level of (vapour) ingress is acceptable/tolerable (for people and contents)? Note. Some of the requirements for a particular performance will not be within our control {heating, ventilation etc).
L r , I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
L ! I
1
Ver 3.1 I January 99
ARUJP
I
j
I
j
I
J
I
J
I
.J
6. Water Resistant Basements (2/6)
6.3
CONSTRUCTION OPTIONS Structural concrete can prevent ingress of liquid water, except at joints and cracks. It will not, generally, prevent the passage of moisture vapour. Steel sheet piling can prevent ingress of liquid water, except at joints. It will also reduce the passage of moisture vapour. Consider welded sheet piling- low carbon type. Construction option Cut & cover
Sheet piling Post and panel
Diaphragm wall & Secant piles
Contiguous piles
Disadvantages
Advantages
. ... . .. . ...
..
Allows easy inclusion of membrane to the structure
external
.
Deep basements not easy
•
Not always sufficient room (e.g.
Enhanced quality of concrete elements
I
inner city sites)
'
J
~ I
Continuous construction I
j
'
J
Good finish Straightness of line of walls Provides restraint to the ground Provides restraint to water flow (both short
and long term)
Can be used as a shutter for the concrete
Provides restraint to the ground Provides some restraint to water flow Can build deep basements
Provides restraint to the ground Cost
. . . .
. .. .. .. .
Provides restraint to concrete increased risk of cracking Difficult to install a membrane on external face of structure
'\ j
I
Difficult to install a membrane on external face of structure Allows water through the joints (use drained cavity?)
j
I
Difficult to get an effective connection with the slab
'\ I
Poor appearance Expensive
I
J
I
j
Little restraint to water flow Difficult to get an effective connection with the slab Difficult to install a membrane Poor appearance Expensive
Table 6.2 (from CIRIA report 139) gives examples of types of basement.
6.4
WATERPROOFING OPTIONS (Combined with options of structure) Tanking (Type A) • • • •
Preformed membranes or liquid applied Can prevent liquid and vapour passage Best installed by open cut construction Best installed external to construction (outside face of structural wall)
....., : '
J
Structurally Integral Protection (Type B) • • •
Reinforced concrete with calculated crack widths to BS8110 Part 2 possible for Type 1 Concrete design to BS8007 required for type 2 and 3 If used, particularly for type 2 and 3 basements, there must be careful consideration of mix design and the workmanship required as well as a strategy for dealing with leaks.
'\
'
'
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUIP
J
,....., ' I
I
(
;
I '
6. Water Resistant Basements (3/6) Drained cavity (Type C)
r , I
• • • • • • r
'
6.5
1
i
'-"'
(
CRITICAL POINTS • • • • • •
'I
r '
6.6
'
L
Re-entrant corners- keep plan form simple Penetrations e.g. pipe services (group together), earthing pits Wall/slab junctions- particularly in non-open excavation Changes in section/depth e.g. lift pits Pile/slab junctions "One column per pile" junctions, e.g. steel columns into top of pile.
CONSTRUCTION JOINTS • • • •
I '
Provide channels to allow drainage of water Ventilate cavity externally to reduce vapour and build up of other gases Ventilate basement to reduce vapour Automatic pump may be required in sump Design inner leaf as free-standing or restrained at top by slab Beware vermin
Need to control the effects of temperature and shrinkage The fewer, the better Arrange the sequence of castings to reduce restraint from adjacent pours Recommended spacing of joints (principally to control workmanship, not cracking):
r ' Construction
Max. area (m? )
Max. dimension (m)
Watertight walls
25
5
Watertight slabs
100
10
May be reviewed for particular cases '
(
!
6.7
MOVEMENT JOINTS • •
Rarely necessary below ground level Potential weak points. Only consider providing them if essential to control movements e.g. between tower and podium blocks above.
r, I,_.
r.
6.8
REFERENCES CIRIA Report 139 Water- resisting basements 1995 CIRIA, Guide 5, Guide to the design of waterproof basements BS 8007: 1987: Design of concrete structures for retaining aqueous liquids BS8102: 1990: Protection of structures against water from the ground
'
(
I ~
BS8110: Part 1: 1997: Structural use of concrete: Code of Practice for design and construction BS8110: Part 2: 1985: Structural use of concrete: Code of Practice for special circumstances OVE ARUP PARTNERSHIP: Structural Typical details for use in buildings
r
~
OVE ARUP & PARTNERS, Reinforcement detailing manual Notes on Materials 86, 138, 145 Notes on Structures 4, 24, 29
(
;
w
r: i
'' - '
(
;
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
I
j
\
j
6. Water Resistant Basements (4/6) Table 6.1
Guide to level of protection to suit basement use from table 2.1 of CIRIA 139 (The first four columns are from table 1 of BS81 02)
""'"'\
i Grade of
Basement
basement Grade 1 (basic utility)
usage Car parking; plant rooms (excluding electrical equipment); workshops
J
Performance level
Form of protection•
Commentary on Table 1 of 858102: 1990
I
Some seepage and damp patches tolerable
Type B. Reinforced concrete design in accordance with BS8110
Unless there is good ventilation, or local drainage, visible water may not be acceptable even for the suggested uses.
l
Calculated crack widths less than 0.3 mm to BS8110 Part 2
,..,
BS8110: Part 1 contains only limited guidance on crack control and lacks consideration of early thermal movement. Using Part 1 may result in the formation of cracks with widths unacceptable in permeable ground. There is no guidance on control of thermal cracking in BS8110.
J
I
i I
'
""'"'\ I I I
J
I
j
l
J
Groundwater should be checked for chemicals, which may have a deleterious effect on the structure or internal finishes.
Grade 2 (better utility)
Grade3 (habitable)
Grade 4 (special)
Workshops and Plantrooms requiring drier environment ; retail storage areas
Ventilated residential and working areas including offices, restaurants etc., leisure centres Archives and stores requiring controlled environment
No water penetration but moisture vapour tolerable
Type A Type B. Reinforced concrete design in accordance with BS8007
The performance level defined in BS8102 for workshops is unlikely to meet the requirements of the Building Regulations, approved Document C for workshops, which are more likely to require a Grade 3 (habitable) environment. Membranes may be applied in multiple layers with well-lapped joints.
I
The performance level assumes no serious defects in workmanship, although these may be masked in dry conditions or impermeable ground. Groundwater should be checked as for Grade 1.
Dry environment
Totally dry environment
Type A. Type B. With reinforced concrete design to BS8007. Type C. with wall and floor cavity and DPM
Type A. Type B. With reinforced concrete design to BS8007 plus a vapour-proof membrane. Type C. With ventilated wall cavity and vapour barrier to inner skin and floor cavity with DPM
A high level of supervision of all stages of construction is necessary. As Grade 2 In highly permeable ground multi-element systems (possibly including active precautions) will probably be necessary.
i
I
I
I
j
I
)
I
j
I
I J
I
J
As Grade 3
i
' j
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUIP
.
'
'
'
l
j
I
'
6. Water Resistant Basements (5/6)
Table 6.2
I
'
I
•
Guidance on the functional environments requirements for basement usage (Table 2.2 of CIRIA 139)
Performance level Grade of
Relative
basement
humidity
Grade 1 (basic utility)
>65% normal UK external range
'
(
Grade 2 (better utility)
i \
'
(
Grade 3 (habitable)
35-50%
40-60%
I
55-60% for a restaurant in summer
Wetness
Car parks: atmospheric
Visible damp patches may be acceptable
Minor seepage may be acceptable
None acceptable
Electrical plantrooms 42°C max
No visible damp patches, construction materials to contain less than the air-dry moisture content
Offices: 21-25°C
None acceptable
Residential: 18-22°C
Active measures to control internal humidity may be necessary
Workshops: 15- 29°C. Mechanical plantrooms: 32°C max, at ceilina level Retail storage: 15°C max
Restaurants: 18-25°C
Kitchens 29°C max
r • Grade 4 (special)
50% for art storage
Art storage: 18-22°C
>40% for microfilms and tapes
i '
L
35% for books I
Dampness
Leisure centres: 18°C for spectators 1ooc for squash courts 22°C for changing rooms 24-29°C for swimming pools
r ,
!
Temperature
Active measures to control internal humidity probably essential
Book archives: 13-18°C
'
!
(
(N.B. The limits for a particular basement application should be agreed with the client and defined at the design approval staae).
)
L r , I
....... r .
I1.(
'
I '
i I
1.-
( ' I
I .._
I
'
1.
L,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
I
j
\
I
I
J
•
I
•
I
6. Water Resistant Basements (6/6) Table 6.3
Construction methods and examples of passive precautions available to achieve the required Grade of internal environment in deep or shall basements. (Table 3.1 of CIRIA 139)
Basement depth and construction materials
Shallow (assumed no hydrostatic pressure, i.e. groundwater level below basement floor or drainage provided) likely to be residential
Target internal environment I examples of construction methods andpassive_m-ecautions Grade 3* Grade 4* Grade2 Grade 1 (special) (better utility) (habitable\ (basic utiliM Complete Limited environment control environment control normally required possibly adequate (Low cost, low reliability) Some water penetration Acceptable Grade not usually acceptable for residential basements
Masonry, reinforced masonry, plain or reinforced (pre-cast or insitu) concrete or steel sheet piling Shallow (with permanent hydrostatic pressure) Masonry, reinforced masonry, plain or reinforced (pre-cast or insitu) concrete or steel sheet piling
Deep (with permanent hydrostatic pressure) Reinforced concrete including piled or in-site perimeter wall.
Water penetration Unacceptable Masonry or plain concrete plus tanking (Type A) or drained cavity (Type C) protection
Reinforced concrete box (Type B) protection
Masonry, plain or reinforced concrete box construction plus tanking (Type A) or drained (Type C) protection
Reinforced concrete box (Type B) protection
Steel sheet piling in conjunction plus drained (Type C) protection Reinforced concrete box (Type B) protection
Concrete piled wall possibly requiring drained cavity (type C) protection
Masonry, plain or reinforced concrete box construction plus tanking (Type A) or drained (type C) protection
(Hiqh cost, hiqh reliability) Increasing requirements for vapour control Masonry or plain concrete plus tanking (Type A) protection and/or Type C protection
Reinforced concrete box (type B) plus tanking vapour barrier (Type A) or drained (type C) protection Masonry or plain concrete plus tanking (vapour barrier, Type A) and drained (Type C) protection
If grade required the methods and precautions for shallow basements with permanent hydrostatic pressure should be followed
Reinforced concrete box (type B) with tanking (vapour barrier, Type A), plus drained (Type C) protection
I
)
1"""'"1 I
\
Reinforced concrete box (Type B) protection
Reinforced concrete box (Type B) protection
Concrete piled wall or reinforced concrete box (Type B) plus drained (Type C) protection
Reinforced concrete box (Type B) plus tanking (vapour barrier, Type A) or drained (Type C) protection
Passive precautions alone are not likely to be sufficient
Concrete piling or reinforced concrete box (Type B) plus an internal vapour barrier (Type A) or drained (Type C) protection
Concrete piling or reinforced concrete box (Type B) plus tanking (vapour barrier, Type A) and drained (Type C) protection
Passive precautions alone are not likely to be sufficient
Achieved only at high cost
I
• J
Passive precautions alone are not likely to be sufficient Notes: When tanking is required, external or sandwich tanking systems are recommended for both new and existing basements where it is possible to use them. Such systems become feasible either by virtue of an existing permanent external surface (including faced sheet piling) or where working space is created through open excavation. The choice of tanking system also requires an assessment of the external hydrostatic pressure and its effect on the basement wall design and construction. For deeper basements, or where excavation is impracticable, internal protection by cavity construction with internal or reverse tanking may be used. This implies a reduction in usable volume or increased excavation volume. Integral protection must not be damaged by wall fixings. The costs of available options and associated risks will need to be evaluated. Where significant quantities of water are likely to accrue in sumps on a regular basis the drainage authority should be approached at an early stage to request acceptance of the discharge. *
I
• J
1"""'"1
~
I
J
I
The design for Grade 3 or Grade 4 should take account of the contribution of active precautions (heating and ventilation, etc.) in achieving the required internal environment.
'"'""I
I
'"'""I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.1 I January 99
ARUJP
. I
)
J
'
(
i i_,
I
-
7. Fire (1 /3)
I
(
7.
FIRE
7.1
MINIMUM PERIODS OF FIRE RESISTANCE. (UK Practice only)
'
Table A2 from the approved document 8 to Building Regulations (1991). Other British Standards or Local Acts may set higher standards.
r ·,
Purpose group of building I
;
Minimum periods (hours) for elements of structure in a: Basement storey( •)
Ground or upper storey
including floor over
'
(
Depth (m) of a lowest
Height (m) oftop floor above ground, in building or
basement
separating part of building.
more than
not more
not more
not more
not more
more than
10
than 10
than 5
than 20
than 30
30
r ,
1. Residential (domestic): (a) flats and maisonettes
1Y.
1
X*
1**
1%**
2**
(b) & (c) dwelling houses
not
%*
Ya*
1
not relevant
not relevant
relevant 2. Residential:
c '
(a) Institutional(-)
1Y.
1
%*
1
1Y.
2#
(b) other residential
1Y.
1
%*
1
1Y.
2#
- not sprinklered
1Y.
1
%*
1
1Y.
permitted
- sprinklered (2)
1
1
%*
%*
1
2#
- not sprinklered
1Y.
1
1
1
1Y.
permitted
- sprinklered (2)
1
1
%*
1
1
2#
- not sprinklered
1Y.
1
1
1
1Y.
permitted
- sprinklered (2)
1
1
Ya*
1
1
2#
- not sprinklered
2
1Y.
1
1Y.
2
permitted
- sprinklered(2)
1
1
%*
1
1Y.
2#
- not sprinklered
2
1Y.
1
1Y.
2
permitted
- sprinklered (2)
1Y.
1
%*
1
1Y.
2#
3. Office:
not
4. Shop and commercial:
w
'
f -,
not
not
5. Assembly and recreation:
(
1
not
6. Industrial:
1
\,...I
I
'
7. Storage & other non-residential: not
a. building or part not described above:
b. Car park for light vehicles:
not
not
i) open sided park (3)
applicable
applicable
%*+
%*+
%*+
1
ii) any other park
1Y.
1
Ya*
1
1Y.
2#
•
The floor over a basement (or if there is more than 1 basement, the floor over the topmost basement) should meet the provisions for the ground and upper storeys if that period is higher.
I
1
* Increased to a minimum of 1 hour for compartment walls separating buildings Reduced to Y, hour for any floor within a maisonette. but not if the floor contributes to the support of the building # Reduced to 1Y. hours for elements not forming part of the structural frame
+ Increased to Y, hour for elements protecting the means of escape I
'
(
'
-
Multi-storey hospitals designed in accordance with the NHS Firecode documents should have a minimum 1 hour standard
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUP
'
J
'
J
7. Fire (2/3)
7.2
FIRE PROTECTION TO STEEL ELEMENTS (UK Practice only) Fire resistance period
Section Hp/A
240
2 hr
220 200 180
'
J
160 1.5 hr
' j 25\l~bo\---
/:/
140 120
'
I
'
J
'
J
Board systems
1 hr
Note: some systems require framing elements: allow upto 20mm on each face Blanket systems: use board thicknessX 1.5
100 90
80
I
70 60 Unprotected beam directly supporting concrete slab
0.5 hr
50
' j
40
-
Unprotected column in simple construction
'
I
'
J
30 Approximate thickness (mm) of protection for fully loaded steel members based on a range of manufacturers' test data (Fire protection for structural steel in buildings, ASFPCM, (1988), also see revised 2nd edition (1992)) For the example line given:
HP/ A= 130 Fire resistance period = 1Y:z hours
Line intersects zones:
Board 20 and 25
'
Spray 20 and 25 Solution:
' J
Spray 20mm to 25mm depending on system used Board 25mm to 30mm depending on system used
J
r'-1
i
' j
Blanket 38mm to 45mm depending on system used
7.3
FIRE PROTECTION FOR REINFORCED CONCRETE
'
J
:,
J
For cover details, see Section 4.2 Reinforced Concrete
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98
ARUJP
' !
'
)
r, I
'-"'
7. Fire (3/3)
r •
7.4
r .
See Table 16, BS 5628: Part 3. A 1OOmm unplastered wall or leaf of a cavity wall will give 2 hour fire resistance in all materials and loading conditions (sometimes conservatively) except: • Fired-clay bricks/blocks with voids or perforations (75-100% solid- use min. 170mm thickness); • Hollow concrete blocks with gravel or natural stone aggregate (limestone OK) - min. 200mm thickness with vermiculite-gypsum plaster.
I '-' r ' I
L r,
7.5
I ...... (
• •
'
i..-
I I
L.. rI '
f \ I
Period of fire resistance The Regulations also define specific periods of fire resistance for elements of structure (although generally no period is required for roofs). This requirement is often satisfied for walls and floors by applying protective materials to the frame, and these are described in BS 5268: Part 4; Section 4.2.
1....1 '
L
Alternatively, the fire resistance of the members themselves may be calculated by the method given in BS 5268: Part 4; Section 4.1, based on charring rates. Timber will ignite when subjected to temperatures of around 270°C, if a pilot flame is present to ignite the gases given off during the 'cooking' process. The insulation value of the outer charred layer, however, means that timber which is just a few millimetres inside the burning zone is only warm. Thus timber burns at a predictable speed, known as the 'charring rate', which, for common softwoods with a density of about 450kg/m' is defined in section 4.1 as 20mm (or 25mm for columns), in 30 minutes.
r , I
!.... \
I
I..-
r,
The reduced section (ie. the full section minus the charred zone) is checked for strength and deflection. Increased stresses are allowed (of the order x2 to x2.25), together with more generous deflection limits (1/30 span). The charring rates quoted for solid timber may be applied without modification to glulams made with the conventional adhesives.
i I .......
r,
In addition, it is necessary to look at the overall stability of the charred structure, and to protect any metal (including bolts) which forms part of the structural system, either by ensuring that the component lies with the residual section, or that it is suitably protected by a fire resistant cladding or sacrificial timber.
r . I
7.6 I
(82) Spread of flame (83- (1)) Period of fire resistance
Spread of flame The Regulations define spread of flame classes for walls and ceilings for various building purpose groups and sizes. Spread of flame is determined by tests described in BS 476: Parts 6 & 7 which allocate materials into classes, related to the extent of travel of a flame front under standard conditions in a given time. Most timber (>400kg/m') falls into Class 3. A lower class rating can be achieved by impregnation, or by surface treatment. Structural elements, because of their size, are generally given surface coatings. Many are moisture sensitive, and can discolour if they get wet.
r .,
(
FIRE REQUIREMENTS FOR TIMBER (UK Practice only) The requirement of the Building Regulations with respect to timber fall under two headings:
I
(
FIRE PROTECTION FOR MASONRY (UK Practice only)
FURTHER INFORMATION
'
The requirements above relate to standard furnace tests, and assume the member is fully stressed. If the fire load is small and/or the member is lightly stressed, significant improvements may be obtained. Contact Arup Fire for more information. (
1
I
I
w r ,
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR
I
AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 (
I
'
I
.._. (
\
ARUIP
I I
)
I
I
Appendix A- Mathematical formulae (1/5) I I
APPENDIX A- MATHEMATICAL FORMULAE Version 3.1. Jan 99. A.5. corrected equation for trapezium inertia. Version 3.2. May 2000. A.5. corrected equation for trapezium inertia. Version 3.3 March 2004. A.5. corrected equation for triangle section modulus.
' J
A.l Trigonometric functions eix- e-ix sinx=---
2i sin(A±B)= sinAcosB ± cosAsinB tanA ± tanB tan (A ±B) = 1 +tan A tanB . A
sm
. A+B
.
A-B
+smB= 2 sm--cos-2 2 A+B A-B cos A+ cos B = 2 cos-- cos-2 2 sin A sin B = ![cos(A- B)- cos(A+ B)]
COS X
=
2 cos(A ±B)= cos A cosB +sin A sinE
. A . B A+B . A-B sm -sm = 2 cos--sm-2 2 . A+B . A-B cos A - cosB =- 2sm-- sm-2 2
2
sin 2 x = ![1- cos2x] 2
I
I
,..., i
' J
'"""': I I
cos A cosB = ![cos(A +B)+ cos(A- B)]
'
J
2
2
sin A cos B = ![sin(A +B)+ sin(A- B)]
l
cos 2 x = ![1 + cos2x] 2 1
I
4
' J
cos 3 x =-[3 cosx + cos3x]
sin 3 x =..!_[3 sinx- sin3x]
I
4
' j A.2 Hyperbolic functions I
ex +e-x
coshx=--2
cosh ix = cos x sinhix = isinx 2
I
ex- ex smhx=--2 cos ix = cosh x
J
0
I
sin ix = i sinh x
2
cosh x- sinh x = 1 cosh(x ± y) = coshx cosby± sinhx sinhy sinh (x ± y) = sinh x cosh y ± cosh x sinh y cosh(x ± iy) = coshx cosy± isinhx siny sinh (x ± iy) = sinhx cosy± icoshx siny
'
J
1
I
'
J
I
J
' ) THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.3 I Mar 04
ARUJP
'
J
I
)
'
(
Appendix A - Mathematical formulae (2/5)
A.3 Standard indefinite integral
I
'
I ,
Integrand
Integral
Integrand
Integral
sin x
-cos x
sinh x
cosh x
COS X
sin x
cosh x
sinh x
tan x
-In (cosx)
tanhx
In (coshx)
cosecx
In(tan xI 2)
cosechx
secx
In (tanx + secx)
sechx
In (tanhx I 2) 2 tan- 1(ex)
cotx
In (sinx)
cothx
In (sinhx)
2
'
(
I
.
(
2
sec x
tanx
sech x
tanhx
tanx secx
secx
tanhx sechx
-sechx
cotx cosecx
-cosecx
coth x cosech x
-cosechx
sin- 1 (~)
~a2 -x2
or
X) -cos -1( ~
\
!,_.,
~x2 + a2
'
(
~x2- a2
· h-1( -X) sm a
or
2 ln(x + ~ x + a 2 )
cosh-1 (~)
or
1n(x+~x 2 -a 2)
r . 1
~tan
x 2 +a 2 '
'!
-1(~ X)
A.4 Standard substitutions for integration If the integrand is a function of : Substitute:
!
(a2 -x2)
or
~a2 -x2
x=asinO
or
x =a cosO
(a2 + x2)
or
~a2 +x2
x=atanO
or
x= a sinh(;}
(x2 - a2)
or
~x2 -a2
x=asecO
or
x =a cosh(;}
or of the form:
{(ax+b}~t (
I
'
px+q=u 2
{(ax+b)~px 2 +qx+rr
1
ax+b=u
or a rational function of:
r .
X
sin x and I or cos x
[
. 2t whence sm x = - 1 + !2
t =tan2 1- !2 cosx=--2 1+ t
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. ( '
Ver 3.3 I Mar 04
ARUJP
,_, I
'
J
Appendix A- Mathematical formulae (3/5)
A.5 Geometric properties of plane sections section
Area
'"'"i !
Position of centroid
Moments of inertia
)..
"r~:-, ~ I
Xt·-.· I
~
X
3
zxx
3
=hb /48
base= bh 2 112
3
apex= bh 2 /24
/xx=bh /36 h e =x 3
A= bh 2
lyy
/aa=bh /4
f--b-JTLI
b
Section Moduli
3
=bh 112
/bb
:1...
= hb 2 124
zyy
' J
\ J
~ 1.
'
J
~
I
'
j
'
J
3
/xx=bd /12 h
A=bd
I yy =db !12
2
x
2
Zxx =bd /6
3
e =-
Zyy
3
2
=db /6
=bd 13
/bb
d--'
x~x :a~ j,..
oxls
A=bd
z,, =
T
6J
b2d2 b2 + d2
On di0!/0110/
.
I,,=
A=bd
bsin(} + d cos(} 2
bd(b 2 sin 2 (} + d 2 cos 2 (}) 12 6(bsin (} + d cos(})
fxx =fyy
• J
=s 4 /12
Ihh
=s4 /3
Ivv
= s 4 112 ' 3
1
A= d(a+b) 2
XX
d(2a+b) e, 1 = 3(a+b)
2
=d (a +4ab+b 36(a+b) 2
bd 3 I=xx 48
d e =-
2
e,
= 0.866s d 2
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.3 I Mar 04
I,,
z =~ dXX
3
)
eX
.
''
I
;
2/
z
-~v
z
3
XX
= ---'2:.. b '
J
'
J
'
j
bd 2 =24 2
db 48
I=-
zyy =db24-
= Iv_v = Ivv
z,, = 0.1203d3 zxv = zvv
J:v
A= 0.866d 2
)
(two values) 2
d(a +a b+ab +b 48
x
2
I YY = 3
A= bd 2
I )
= 0.060Id 4
= 0.1042d 3
ARUIP
.
)
(
1
I
Appendix A - Mathematical formulae (4/5)
Geometric properties of plane sections (cont.)
r ,
Section
r
§ ~
t)
r' i
0
Moments of inertia
v~ '~ev
l
I
Position of centroid
Area
T'
A= 0.8284d 2
I
~·
X-'tl
1 :'.
~
X
s
= 0.4142d
d
ex
=l
zxx = zyy
I"'= IYY =Ivy = 0.0547d
ev = 0.541d
Section Moduli
= 0.1095d3
4
Zvv = 0.10lld
;.s.o~\
3
:... v
l....J
'1.
n sirle:s
~
r '
A= ns' cotB
e =ror R
/1 =I,
A=nr tanB
depending on
=
A(6R' -s 2 )
A= nR'sin2B
the axis and =
A(12r + s
4 2
2
\ ''t.
24
value of n
2
Regultlf' liguf'e
@
L
A= ;rr 2 A= 0.7854d
2
2
)
48
7r d4 1=-64
d e =r=2
7r d3 Z=-32 Z = 0.7854r 3
I= 0.7854r 4
r, !
z"
(1)
u .!:=
'-
u
L
A= 1.5708r
I
2
ex= 0.424r
·~
r'(Jt8°
Z180o -sine
)
(1) l
crown= O.I907r 3
I·" = ~(Jteo -sinze) 16 90°
A=
8 b.()
(
I yy = 0.3927r 4
Zw = 0.3927r 3
11
l....i
base= 0.2587r 3
if.)
r . I
e
ex =eo- rcos2
if.)
zxx base= Ixx I e1
20r 4 (1- cos B)' Jt8°-180°sin8 I,. =
.
crown=~
t_r~~:J 48 8sinB+sin2B
b-e1
z = 2Ivy vv
'
eo 2 A=--7rr 360°
e =-rx 3 a
r 2c e =x 3A
'
{
2 c
I l....
I .u
360° B 4r =l ---sin 2 - 8°7t 2 9 0
=.C(" r'("(}
8
I yy
o
8 180°
2
A= 7rr 4
!
1 x:r: e,
crown=~ r-e.t
J
! 0 = - -+sin() 8 180°
I xx =IYY = 0.0549r r '
centre=
-sineJ
0
c
z,,,
4
(
=
!XX = 0.1098r 4
ex= 0.424r
ev = 0.6r e, = 0.707r
Ihh
= 0.1963r
4
Minimum Values
zxx = zyy = 0.0953r
4
Z,, = 0.1 009r
I,, = 0.0714r 4
3
3
Zw = 0.064r 3
Ivy = 0.0384r 4
r ' A= 0.2146r 2
r , :1.. I (
Y'tJ
ex= 0.777r ev = l.098r e, = 0.707r e" = 0.316r eh = 0.391r
!,, = 0.012r 4 Ivy= 0.003Ir 4
4
Minimum Values Zxx
= z,. = 0.0097r 3
Z,, =0.017r 3
Zw = 0.0079r 3
1
....... r
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ·,
Ver 3.3 I Mar 04
!
\
I xx =IYJ' = 0.0076r
ARUIP
< z )>Q-i zi
co
..., ~
w -..
s::
., o -""
Dl
cn-"U
1 kg 1 tonne
= 0.4536 kg = 1.016 tonne
lib 1 ton
= 2.205lb = 0.9842 ton
Length lmm lm lm Area 1 mm2 1m2 1m2 Volume
c;:g;t;
~-uG) c-ui -u)>-i o::U)> z-iz CJ!fio -<;u(ii )>cn-u z~c -<-uCJ -i:....C I-icn ;;J(iiffi 0 zo -uo,., )>-iO ;u_;u
= 25.40 mm = 0.3048 m = 0.9144 m
1 in 1 ft 1 yd
= 0.03937 in = 3.281 ft = 1.094 yd
= 645.2 mm2 = 0.09290m2 = 0.8361 m 2
1 in2 1 ft 2 1 yd2
= 0.00155 in2 = 10.76 ~ 2 = 1.196 yd
= 16390mm3 = 0.02832 m3 = 0.7646m 3
1 in3 1 ft 3 1 yd3
w
Density 3
1 kg/m 1 tonne/m3
3
= 0.06242 lb/ft = 0.7524 ton/yd3
3
1 lb/ft 1 ton/yd3
3
= 16.02 kg/m = 1.329 tonne/m3
>
1 N/mnl 1 N/m2 1 kgf/m2 1 N/m2 2 1 kN/m 1 N/mm2
1 N/m 1 kgf/m 1 kN/m 1 kN/m
2
llbf/in 1 kgf/m2 1 lbf/ft2 1 lbf/ft2 1 tonf/ft2 1 tonf/in2
== <
2
= 0.006895 N/mm = 9.807N/m2 = 4.882 kgf/m2 =47.88 N/m 2 2 = 107.3 kN/m 2 = 15.44 N/mm
Q ~ '"I ~ .... '"I
"CC
-....
= 0.102 kgf = 0.2248lbf = 0.1004 tonf
1 kgf llbf 1 tonf
••
"'Q
~ ..... '"I
f)
~
~=~ f) f)
= < Q
1 kgf/m 1 lbf/ft 1 lbf/ft 1 tonf/ft
= 0.102 kgf/m = 0.6720 lbf/ft = 68.53 lbf/ft = 0.03059 tonf/ft
...."' '"I
Q
=
;' f) ..... Q
'"I
"'
lNm 1 kgf.m lNm lNm lkNm
1 kgf.m llbf.in llbf.in 1 lbf.in 1 tonf.in
= 0.102 kgf.m = 86.80 lbf.in = 8.85llbf.in = 0.7376lbf.ft = 3.951 tonf.in
=9.807Nm = 0.01152 kgf.m = 0.1130Nm = 1.356 Nm = 0.2531 kNm
~
"C "C
(I)
:s a.
Modulus of Elasticity
1 mm
)("
= 145.00 lbf/in
2
llbf/in
2
= 6.895
X
3
10- N/mm
~
2
I
s: Ill
3
:T (I)
= 61.01
X
6
10- in
3
1 in
3
= 16390 mm
3
3
Ill
(;"
~
!!!..
Second Moment of Area 1 mm4
= 2.403
X
1m . 4
10-6 in4
0' ..,
=416200mm4
3
s:::
iii (I)
-~
~
J
~
_]
=-~J
Q '"I "'
~
= 9.807N/m = 1.488 kgf/m = 0.0146 kN/m = 32.69 kN/m
Section Modulus
= 9.807N =4.448 N = 9.964 kN
~
.........
Moment
1 N/mm2
Force IN IN 1 kN
'"'"t""l
= 145.0 lbf/in2 = 0.102 kgf!d = 0.2048lbf/ff = 0.02089 lbf/ft2 = 0.009324 tonf/ft2 = 0.06475 tonf/in2
Strip Loading
= 0.000061 in3 = 35.32 = 1.308 yd3
1 mm3 1m3 1m3
.~~0 mzen o-i m;:Q oCJ ,.,c o::! ;uO z
?>
0\
Stress
Mass
Or-(j)
-9
J
- _]
---- J
=--
~}
_]
J
J
:_J
___ ]
J
J
J
-J
J
J
J
J
r , I'
!....<
r , Appendix B- Analysis formulae (1/8)
(
APPENDIX B-ANALYSIS FORMULAE
'
I
B.1 Elastic bending formulae I
'
Bending about a principle axis:
I 1..,.1
a
M
y
I
-=-=EK
1 R
1 R0
K=---
In general, bending moment is section modulus Z times maximum bending stress. Longitudinal shear force S on material of area A, , due to transverse shear force F on the beam.
r , I
I
1I
curvature-change
'
L
S = F f dA = F As y I JA/ I
per unit length of beam.
I ,
L B.2 Elastic torsion formulae
r , I i
'-'
Round shafts:
r
r ,
i I
T __ Gd. 'f/
J
where ~ is the angle of twist per unit length and J
I.....
7r
'
I
T __ -
= Jr 2 dA
R4
Circular area, radius R: J = - -
2
'-'
Thin circular tube, radius R thickness t: (
is the polar moment of area.
J = 2 1r R 3 t
'
Thin walled tube of arbitrary cross-section: r '\ \
l_;
where Ae is the enclosed area to mid thickness, t is the wall thickness. and s is the distance round the permiter.
(
'
r ,
I
I
'
!....<
I I
'
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUlP
' '
'
I
'
)
Appendix 8- Analysis formulae (2/8)
B.3 Taut wires, cables or chains Uniformly loaded cables with horizontal chords
s = span length f= cable sag n = f/s = sag ratio L = length of cable curve Ms = cable elongation due to axial stress M, = cable elongation due to temperature change, t A = area of cable E = modulus of elasticity of cable e= thermal coefficient of linear expansion t = temperature change in °F p = load per unit length a. y = : { (sx- x
Uniformly loaded cables with inclined chords
2
Hs(3sec e. ,1Ls = ..t
f.&,
2
:n
sec(} )
AE +
d. L=s(l+%n'-
2
32 4 n + ... ) 5
e. L\L,
~ ;;(l+~n')
f. L\L,
=EIL~Ets(l+%n')
a.y=.f
(
I
~
~&t{1+-3s-8e:-:-(}}ecB
'
'
J
'·
I
'
)
'
J
I
I-s;,') 2
b.H = ps /24/
V•~illi.I.!:...:;:=--D!II[WWIWiv·~Tmo~·Tm~ =(JI+I836n'
HTrs;:
1 2 1 1 -3s-ec2-(} sec·(}
' j
c. Tmax =HJI+16n
•-....~ ....n!II!II!!!!P
)
L~s( 1+~
~ (sx-x')
s-
b.H=S.f
/Tmax
Triangular loading on cables with horizontal chords
1+(~+ 4nr
4
ps2
ff[!Jr
)
'
•
x
b.H= ps 1~8f_ _ _.,.
d:
2
'!iiliiiiii"milii""iiii"""m"m"l'v-¥ I
2
c.Tmax =H
a. y=
=
) E7i~~H d.L=s 1+-(S n -18n) +... e. L\L, ~ ; ; I+ 3: n' s .f.L\L, ~&IS(!+ 158n') /
•
!
Hh ps g.VR =--_;-+]
2
4
1""'1
I I
J
'
J
I
)
'
}
i
* Exact expression for L: B.4 Vibration !
Typically
f
=
~
for most structures
JY
• E
z
~
•
~
Where: f is in cycles per second y is the static deflection in mm
Simply supported Mass concentrated in centre
f
Simply Supported Mass and stiffness distributed
!=~
Cantilever Mass concentrated at end
Cantilever Mass and stiffness distributed
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP.IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
= 15.8
' j
JY
JY
f-
'
J
l I
)
I
)
15.8
-JY
f-
19.7
-JY
"'i
ARUJP
i
\ J
I
I
r ,
Appendix B- Analysis formulae (3/8)
B.5 Design formulae for beams- cantilever !
'
CANTILEVER
UNIFORM LOAD ON PART OF SPAN
w
A~·
a
a,~0 b •C e :
t::::::.:~~~:=:·.~~
I
'
R ~r:
'
Span
=
L
Uniform Load
=
W
Uniform Load
W
RA
RA
j
lllllllililllllll'tl!nnnnn..
•c = 10 = 6~1 13a'+3ab+b'l 6o = .: !S.'+18a 1 b+12ab1 +3b3 +4c:(3a'+3ab+b1ll 2 1 I
~
L
=
•
= -w(a+~)
MA
I
SPECIAL CASE: UNIFORM LOAD ON FULL SPAN b
0
c
w w
= =-!!!h 2
MA
WL'
io
iET
6o
iEf
WL'
'
-
CANTILEVER
TRIANGULAR LOAD ON PART OF SPAN
A~:a ...----·- ___ ____ _..
Span
b _..,.:c
L
Soln
TFtangular Load
'
1
"A r·---.· I.._.W!!!!l.!.!:!!!!!IIIWIIIIIIII------i '
= w
a
L
b
........ ·-····-·--·-·-·-·--
I
L
SPECIAL CASE: TRIANGULAR LOAD ON FULL SPAN
=
Triaf111ular Load =
0
w w
RA
w
RA
MA
=-~a
MA
=-~L
&c:
=15EI wa• {L•!!) 4
6c
=
I
' r I I
'
-
•a
I
=
'C
Wa'
WL'
ic
= 12EI
WL'
i5Ei ffii
! '
I
I
r
POINT LOAD AT ANY POSITION
CANTILEVER
'
i
!_.
w A
~;-----·--.:.····-·--·.., a I,
,
B•
b
;
r-·-·--·-·-·-···-·--·-···--;
AA
I
=L
Span
C 1
=w
Po1nt Load
r-·~mmmm1mmm1mmnm1 I
SPECIAL CASE: POINT LOAD AT FREE END
b
=
Point Load
=
0
w w
=w
=
=-Wa
=-WL
i
3
WL =m
i
r '
8
Span•L=a
18
..
ic
Wa~
=m
ic
WL~
=rer
r '
...... i
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
\' \
ARUJP
_, l
' J
Appendix B- Analysis formulae (4/8)
_, I
B.6 Design formulae for beams - fixed both ends UNIFORM LOAD ON FULL SPAN
BEAM FIXED AT BOTH ENOS
Span " Total Uniform Load =
~#1&Af?u1¥f1!uia
A
1
I
---,
\.
J
~ WL'
3iiEi
,_t
E"'4UIJII
J
WL
- - .. ~---:~Me
r·:
'
W
=-~~
==
A.(-~c : 'liC ~_,Ao .... ... M•·L .Ill" 1111llP'o
)
w 2
r-------------•
\
L
•Me
at X from A
=-
J'!..{L'-6LX+6X'I 12L
=
2iffill-XI
wx•
•
i
' J
....!!!...tL'-3LX+2X 11 12EIL
at 0·211l from eother end Mo = Me = 0
~
POINT LOAD AT MID-SPAN
=
Span Poon1 Load
=
RA
' J
L
w w = 2
Rg
MA
I i
BEAM FIXED AT BOTH ENDS
=- ~L
Me
A.
WL
= 8
at mod·SPan (Me 6rna•
r·
=
:
-: l'CIIIill!lli!i!!iilllllllll ~ :A 8
~
~.-·---~·-r ,,.,. ' ;Me M ~- ~0 . E'""ij. M
i
:
~f4X -Ll
8 WX' 4iEJf3L-4XI
A.
t. -
- .l
B
l
' )
wx = ffifl-2Xl
'X
r-il!lllll!!lll!llllllllll\
J
I.----
WL' = i92ei ':
at X from A between llx A&C
'
at 0· 25L from en her end Mo
= Me = 0 I
' j
BEAM FIXED AT BOTH ENOS
POINT LOAD AT ANY POSITION Span Poont Load R _ Wb'IL • 2al At:
,.. --X
I
M. 1
•
-lllillliJii""
t.~
:Ra
_ Wa'IL•2bl 8L
Wa'b Mg=-7
at C. under load. Me ::.
• .1
~-·J'M
between AlrC
When a :> b the muimum deflectoon os at X =
W.a,' Wb 1L •2aiX =-v· I?
llx
=
2 La l+ 2a
•x
=
(
&....,.=
' j
~
Mx 111 X from A
8
'I
2Wa'b'
2
~--···•t 1 ~ Me
_j
L
w R
Wab' MA=-Ll
-, ,
=
Wb1 X'(3La-ll• 2a1XI 6EJL' Wb 1 X(2La-IL •2a1XI 2EJL' 2Wa'b' 3EICL+2al 1
j
l
' j
1i '
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
)
I I
'
)
'
J
I I.... I
'
!
Appendix B- Analysis formulae (5/8)
(
B.7 Design formulae for beams- simply supported
'
SIMPLY SUPPORTED BEAM
r , ~
:--- ..!. A'
--r.. w
= l.
Span Point Load
~
L-.,
•
POINT I.OAD AT MID-SPAN
=W w
.
=2
18
·------------·
.
r ,
l
'
o
R• [
Wt.
I
~ Jillllllllllllllllllllll~ :
X
:
=4
:_
_111111111111111111111111_
1 wt.' = 4i'il
j RB
~---------~-~
'A
·~UIUIIII!IIIIniiii~·M"u o • .1
I
=
Mx
=¥
ox
= 4~;J IlL' -4X'I
ix
= ,;: 1 IL'-4X'I
at X from A
bet-en A Be centre
WL'
•a
(
1iii
rI '
! 1..-1
POINT LOAD AT ANY POSITION
r .
Span Point Load
=L
=w
RA:~
Ra
L
r ,
SIMPLY SUPPORTED BEAM
A ...
=~ L
+ L C +B -----------....
=~
I
L Wa'b'
at C under load
'
I
r
Wab 'A"' &Eit(L+bl; 1
! \.._,
I
....
I
1
I
'-
i
X
a
W b W a r-----r---T---~
A!
-
._ ___ --~I
I
r ,
• .J
IS 81
SIMPLY SUPPORTED BEAM
1
'"I
--X -·
-~.--f Mtt~ax
a ('"'ax
Wh6en > b max X fro"' A
(
I
A• [_ -.~l!ili!ll!ii!l!ii!i!i!li!i!i!i!·-,
= 'Jei"L
I ,_.
a W b ------r--~
Ra[JilDJI
I
-
---- _.,iB I
TWO EQUAL SYMMETRICAl. POINT lOADS
Two Point Loads. each R~~o = Rg Mmaa owr length II b..,8 • at mrd•SDan A under tl!ther load
I
I....
r .
=L =W
=W
= Wa a ~= 1 13L'-4a'J 2 Wa' = iii 13L-4al
'A
=
Wa = ffiiL-al
If a ,. b
=j. 6ma,.
_ 23 WL3
- iiiii'Er
I
1..-1
r ,
L
L r , I
I....
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
""""
1
I
J
l
Appendix B- Analysis formulae (6/8)
I
i
'
J
[B.7 Design formulae for beams- simply supported (cont..)]
Span Total Uniform Load
w
I
UNIFORM LOAD ON FULL SPAN
SIMPLY SUPPORTED BEAM
=
L
I
l
J
'
J
=W :!!
i
2
M,ax = ~l at m•d-span
:.... ~-
(
'
S
....,
Wl>
&max
= 384·e.
•a
Wl = 24ii
Mx
=~!L-XI
~x
= 24EIL .J!lL IX'-2X'L+L'I
•x
=
i
1
'A
.L
at X from A
{
j
l
2L
...1L.t4X'-6X'L+L'l 24EIL
-, I I
' SIMPlY SUPPORTED BEAM
UNIFORM LOAO ON PART OF SPAN :: L
Total Unotorm Load Let r
... ~---- _b- • I
=W =-
A
-r--
Q-Sb+c
)
I
c
I
0 $ ,. - - - - - -1.- - - - - - .,
AA.r·~· ~
= Wrla+O·Srbl
'A.: :e•l IL -c'-Lbrl; 1
I
I
&
...., i
•·X-•
Ra = WU-rl at X=- aorb Mmax
W
I
i ••c ......
Wff:ff1/!J4
I
..
.)
'
.
I
••
.... --- -... 1
•a "W~~~riiL'-•'-Lbll-rll
J
I
"44llDddlliill. ] As
a ... rb
'I I '
I
Equauon to elasttc 1tn11 betWGI!n C and D ••. e. a"' X.;; a tb
6 :.. ...!!.. {x' -41a+rblX' +6a 1 X1 •41rb{L'-c'-cb- ~) " 24Eib 2
-~ J X +a' J ' J
l
' J
TRIANGULAR LOAD ON FULL SPAN
SIMPLY SUPPORTED BEAM
~
~
,..--·--·--·--·--.., W ' I
Al~ia .. --··--L·····-'
AA l . t -
I
JJDnnrrrn,., '
X
~---·
Span Total Load
RA
I
Ra
=~
Mmax
=~L
'A
=
WL3
( 6max
= 66Ei
•a
SWl' =-96EI
Mx
= ~ 13L' -4X'I
at X from A betWIIIIn &x A & centr11 (
ix
Ver 3.2 I Dec 04
J
l
J
lJ I
_!!L ft6X' -40X't:' +25L'I
480EIL 2
=96EIL: _!!__ 116X' -24X' C s.: I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
i
l
6L""
z
...., I
=W
atm•d-span
I
'"'4UIIIUliiDII".aRe 1
=L
t
ARUJP
I
I
I
)
'
)
'""''
I
\J
I . Appendix B- Analysis formulae (7/8)
i
B .8 Design formulae for beams - propped cantilever
r .
PROPPED CANTILEVER
UNIFORM LOAD ON FULL SPAN Span Total Uniform Load
r ,
r '
L
w
RA=Iw
Ra
at A
Mmax
at
I
1w 8 WL =-8
~L. from A
9 i2ijWL
I
iiSEi
at 8
4iEI
WL'
'8
'
(
WL'
at 0·5785L. from A 6ma><
=- ~IL'-5LX+4X'I 8L
at X
WX' (3L'-5LX+2X'I 48EIL
from A
~16L'-15LX+8X 2 1
at tL from A, Me= o
r ,
48EIL.
I
\_,
'
(
!
POINT LOAD AT MID·SPAN
L
Span
Point Load (
RA=
I
llw 16
at A
Fla
= = =
PROPPED CANTILEVER
L
w 5
i6w
3 Mmax =- i6WL.
s
32WL
at m!CI·span under load
3
7WL
768EI WL.3
at 0·5528L from A. ~>mao
iOffi
at B
ffii
'
(
WL 1
'8
at
~ l from A. M = 0
'
(
1
I
"-' POINT LOAD AT ANY POSITION
PROPPED CANTILEVER I I
'
\__,
Span
L
Point Load
w
Wbl3L 1 -b 1 1
RA::. r '
M
2L'
__ WabCL+bl
2L'
A-
Wa'I2L.+bl 2L' _ Wa'bi2L+bl Mc2L'
Rs
=
Wa'b
'B "' (
!
'
4ii'L
AbSolute max deflection is under the load
when a~
b../2 = 0·5858L When a>b../2
I
\__,
max defler;toon is between AandC
I '
'
iL.
at n
L+b = eLlL'-bl from A,
M
=0
When a
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r :
Ver 3.2 I Dec 04
WL'
lomax max ::.
i02Ei'
Wa'b
Cl+bl'
hmax
= 3Ef'I3L'-b'l'
6ma"
=
Wa'b ~ 6EI
11/n+b
ARUJP
Appendix 8- Analysis formulae (8/8}
J
I
[B.8 Design formulae for beams- propped cantilever (cont..)] MOMENT APPLIED AT ANY POINT
PROPPED CANTILEVER a ................
b
Span
t. ..... /!~... ;8 ~-----·-
A • R.
f ~ v:::•:::~: ::!mm:mln!lltii!''"'
I
I
,
'
~
::
M2
=
.
~
.@ a:o·42265 t · • • • • .. .. .. .. : • -m a ,• -- ... - - -b - - -· . ., . . r
-
•a =4;~L 12b-al
=m
{
"""'
-!!!.(a• .. la'b+b') L' 2
M,
!!:!!!2/b+
M,
= -0·42265 m
M,
=
1.'
f!t?::::::,.... .....
-
Applied Moment
)
m+MA FIA = -Ra =- 31L'-b'l -n'"" m = - - L -
R. ,
(
~M,
L
L'-3b'
""'2C'm
M,
M A' 0 :
I I
\1
I
I
j
I
!) =m+M ' 2
!
\ j
0·57735 m
'! I l
)
;'l UNIFORM LOAO ON LENGTH BEYOND PROP Span
=L
Uniform Load
=- W
Ra
~
:;
Full Length
=
= ~(s-!)
Ra
.£1. 3
Slape at C
........
I
"'"'"! I
'
M"f: l£:>,
WL'a
6 neg
=- 54EI
'C
=
I
l
Span
=L Pornt Load W
A~~-----L----·a~lP, . --.. . --s· -.. --:---.~fC . -:
=
~
,. ................................... .. X : ~-JDDI!I""' ' .R, : ~ :~rrnm@ii!U:i!ltil!i@liii!!!:.:::;.... 1 I
~~
Full Length =
MAf::prr.r.,.: . . . , }..
at X
,M 8
~----·
= ~ from
A, M
=0
rMs
'! I I
j
I
)
S
RA=-~ 2L
Wa
= -wa
2
Oeflectron at C
= ~fs.!)
MaK. Negative Oeflectron } at X :. ~ L hneg
= -2ffi
SlOPe at C
=
4EI \'
'
: ~ :~IIIIIIW¥-fUV
.....
:,.. } . .;~.--1 at X .. ~from A. M =0 I
POINT LOAD AT FREE END
w
'
)
\.
PROPPED CANTILEVER
..
J
I
-·---·--·------X
BET
Max. Negative Oeflectron}
A4
I
Wa'S
Dellectron at C
•
L
s
=-T
4
1
~c=J B a :C
~·---·--------·
Wa
Wa
at X=
w
S A;."l
-~ 4L
I ' J
PROPPED CANTILEVER
3
•c
I
)
l
J
I
J
3
WL'a
Wa IS+el
ffi
l ~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.2 I Dec 04
ARUIP
J
lJ l
\. .J
I '
'
(
i
Appendix C- Useful Design Data (1/12)
I
~
APPENDIX C- USEFUL DESIGN DATA
r . !
L r
C.l Road transport limitations (simplified) (in the UK) '
I I
'-'
Upto 2.9m
Upto 18.3m
r· L
Movements ofloads within these parameters do not require Police notification etc.
Up to 4.975m
rI ' i
I... r ,
L r!
1
r
I
L 2.9m to5.0m
18.3m to 27.4m
L
r.
Movements ofloads within these parameters require notification of all Police forces at least 2 clear days in advance.
I
'--'
00 r , I
L r )
L r
Greater than 27.4m
Greater than5.0m
Movements ofloads exceeding these parameters requires special pennits from the DoT, normally needing 8 weeks prior notice; additional plans and drawings of routing may be requested
1
I
00
I....
I '
0
L r
1
L THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r '
r
i
1
Ver 3.0 I Aug 98
ARUJP
I I
J
c
Appendix C- Useful Design Data (2/12)
>-i I
I
;
i
J
C.2 Craneage data - double girder
....,, j
I
8
Double gifr/erpend11111 conllOJied cranes tor kNiding class 021o BS
446-
I
)
I
)
I
BS 2573: PBII 11 11
I I
c
Capacity tonnes
10
25
1.
2. 3. 4. 5. 6.
Span
A
B
c
D
E
F
H
w
s
mm
mm
mm
mm
mm
mm
mm
mm
920 920 920 920 920 920 950 950 950 950
1250 1250 1278 1280 1375 1375 1535 1715 1715 1865 1650 1650 1650 1800 1800 1950 1950 2100 2100 2125
1225 1225 1255 1255 1325 1325 1485 1665 1665 1815 1540 1540 1540 1690 1690 1840 1840 1990 1990 2035
metres 8 10 12 14 16 18 20 22 24 26 8 10 12 14 16 18 20 22 24 26
1650
Crab wt. tonnes
~ 2500
'25oo 970
1150
200
220 220 220 220 220 220 220 220 235 235
430
500 500 500 500 500 500 500 520 600 600
9700
~ ~ 3700
1.70
: 3700 I 3700 4300 4300 4300
8000
~ 4300 43oO 43oO 4300
~ ~ 4900
49oo
4.00
Crane wt. tonnes 5.18 5.84 7.98 8.82 10.68 11.60 11.11 12.67 13.65 15.17 11.40 11.97 13.14 14.36 15.22 18.83 20.03 22.54 24.53 27.78
Wheel load tonnes 6.19 6.47 6.98 7.26 7.77 8.04 7.91 8.30 8.61 8.99 14.90 15.04 15.62 16.13 16.49 17.52 17.92 18.64 19.20 20.08
Dimension B is based upon construction where end carriages are built into bridges member for maximum rigidity and compact headroom dimension. Alternative end constructions can be provided to either increase or reduce dimension B to suit existing building condition The height oflift, H or hook path dimension, is based upon a standard crab unit. Alternative crabs are available in ail capacities for extended heights oflift. Crane weights include the crab. Weights of crane and crab are with unloaded hooks. Wheel loads are for static conditions with maximum working load and minimum crab approach. Above information is approximate only and is intended for guidance. Exact information should be obtained from manufactures' publication.
)
I ' J
I
J
I
'I
I
I
j
...., THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
!
'
J
I I!
J
r , I
I....
rI '
Appendix C- Useful Design Data (3/12)
L.. C.3 Craneage data- double hoist
r,
L
,. I
r ,
CD
c.
t.:l
>-
I L...
CD
~
Cl
CD
1
"'
'tJ ~
0
I
N
.J
rI ' i
1....
M
r , i I
I.,...
<
r ,
c:
ru
L
C/J
r ,
..
CD
!
C>
r '
L r ,
...... '
'
r '
L '
(
Capacity tonnes
A m
B mm
c
10 12.5 16 20 25 32
330 330 330 340 340 340
2.6 2.6 2.6 2.7 2.7 2.7
m
D m
E m
F m
G m
H m
K m
L m
0.6
0.8 1.0 1.1 1.3 1.4 1.6
4.3 4.6 4.7 4.9 5.0 5.2
5.5 5.8 5.9 6.1 6.2 6.4
M M
'
'L 50/10
1. 2. 3. ''
'
4.
1.5
2.0
16
1.1
Crab
Crane
wt.
wt.
tonnes
tonnes
Wheel load tonnes
21.0 35.0 30.0 35.0 41.0 50.0
30.0 32.0 34.2 37.0 40.0 43.0
20
Wheels in end carriage
2
Crane weights include the weight of the crab. Weights of crane and crab are with unloaded hooks. Wheel loads are for static conditions with maximum working load and minimum crab approach. Above information is approximate only and is intended for guidance. Exact information should be obtained from manufactures' publication.
' .
' '
L
! :
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
I ' J Appendix C- Useful Design Data (4/12)
~
i
i
' J
C.4 Standard rail sections
i Dimension mm Head Base Height Section width width c B A 13 bridge 13.31 36.0 92 47.5 108 54.0 44.5 16 bridge 15.97 19.86 50.0 127 55.5 20 bridge 28 bridg_e 28.62 50.0 152 67.0 76.0 35 bridge 35.38 58.0 160 50.18 58.5 165 76.0 50 bridge 56 bridge 55.91 76.0 171 102.0 89 crane 88.93 102.0 178 114.0 100.38 100.0 101 crane 165 155.0 164 crane 165.92 140.0 230 150.0 For A, Band C see figure below Mass/ unit length Kg/m
Area cm
2
y
Iyy
Ixx 4
mm
cm
21.5 24.3 25.8 28.9 34.4 29.3 43.8 53.3 73.9 67.7
39.01 64.01 82.10 167.45 265.67 325.83 794.38 1493.04 3410.78 4776.95
4
Zxx
Zyy
3
cm 3
cm
cm
74.38 116.34 192.76 371.37 505.23 719.67 685.90 1415.91 1266.34 5121.70
14.70 21.55 27.66 44.05 63.79 69.81 141.24 245.91 420.47 580.59
16.17 21.54 30.36 48.86 63.15 87.23 80.67 159.09 153.50 445.37
Maximum lengths for individual Bridge and crane rail sections Section Length (m) 13 bridge 9.144 16 bridge 9.144 20 bridge 9.144 28 bridge 15.000 35 bridge 15.000 50 bridge 15.000 56 bridge 15.000 89 crane 15.000 101 crane 12.192 164 crane 9.144
Rail dimensions
AJRL.Jnl~~J"L 56 kg/m Crane rail
89 kg/m Crane rail
20 kg/m Bridge rail
101 kg/m Crane rail
'
J
I
'j ' J
....,
y B
16 kg/m Bridge rail
)
:
16.95 20.34 25.30 36.46 45.06 63.92 71.22 113.29 127.88 211.37
A
13 kg/m Bridge rail
!
l
28 kg/m Bridge rail
35 kg/m Bridge rail
50 kg/m Bridge rail
164 kgtm Crane rail
Profiles of bridge and crane rails
i i
'
J
'
I J
I
j
•
J
I
i
j
l
...., I
;
'
j
'
l '
j
l
J
_, I I
'J
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
r ' I
I
I.....
r , I
Appendix C- Useful Design Data (5/12)
' ,_.
r ,
C.5 Typical bend radii- rolled sections
L
Typical recommended bend radii Typical possible bend radii X-X Axis Y-Y Axis (metres) (meters)
Serial size
r •
L 533 X 210 X 122 UB 406x 178x74UB 305 X 165 X 54 UB 254 X 146 X 43 UB 203 X 133 X 30 UB 178x 102x 19UB 152x89x16UB 127 X 76 X 13 UB
25 18 7 5 4 4 2.5 2
2.5 2.25 2 1.75 1.5 1.25 1 1
254 X 203 X 81.85 RSJ 203 X 152 X 52.09 RSJ 152 X 127 X 37.20 RSJ
4 2.5 1.5
2.25 1.75 1.5
305 X 305 X 283 UC 254 X 254 X 167 UC 203 X 203 X 86 UC 152 X 127 X 37 UC
6 4.5 3 2
3.5 3 2.25 1.75
250 X 250 X 16 SHS 200 X 200 X 12.5 SHS 200 X 100 X 10 RHS 150 X 100 X 10 RHS 120 X 80 X 10 RHS
10 7 4 2.5 2
10 7 6 4 3
219.1 X 12.5 CHS 168.3 x 10 CHS 114.3 x 6.3 CHS 60.3 x 5 CHS
3 1.5 1.25 0.75
3 1.5 1.25 0.75
r,
L f
'
i
r,
r.
L
L
. .
r , I......
C.6 Safe load for 25 tonne capacity mobile crane Main boom capacities (tonncs)- through full360° circle slew- with outriggers fully
L
extended
,,' '
load curve tor each
/ ~
~~CII;----- •
1 '
I 1000
copocily (lonnos)
L
Boom length
1
r ' ! I.....
..
The examples shown are not the mm1mum radu possible
given jib lenqth
/
\
'' '' '
t I I
'' ''
15.00m
17.50m
20.00m
to 15.00m
to 17.50m
to 20.00m
22.50m
to
20.70
20.10
20.10
22.00
20.00
19.00
18.80
16.00
''
4.0m
19.50
18.00
17.80
17.60
15.50
4.5m
17.00
16.80
16.70
16.50
14.90
12.70
5.0m
15.30
15.30
15.30
15.00
13.90
12.30
10.40
6.0m
13.00
12.80
12.40
12.40
12.20
11.60
9.80
7.0m
10.50
10.50
10.50
10.50
10.50
10.50
9.40
8.0m
8.30
8.30
8.30
8.30
8.30
8.30
lO.Om
5.35
5.35
5.35
5.35
5.35
5,35
3.85
3.85
3.85
3.85
3.85
2.80
2.80
2.80
2.80
2.15
2.15
2.15
18.0m
1.70
1.70
20.0m
1.30
I I I I I
_., ..-"",;
1' I
.I
12.0m 14.0m
mon
max.
rod ius
rod ius
16.0m
22.0m
r ,
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
1.30 0.90
' '
L
22.50m to 24.57m
25.40
overload
outriggers extended &. wheels off ground
12.50m
3.5m
... ~ ......
............... ,
10.07m to 12.50m
3.0m
I I I .........
10.07m fully retracted
I I I
''
Radius in meters
ARUJP
j
l
Appendix C- Useful Design Data (6/12)
...., I I
j
I
)
C. 7 Standard durbar plate sections Standard Sizes Thickness range on plain Width mm mm 8.0 10.0 4.5 6.0 1000 10.0 4.5 6.0 8.0 1250 6.0 8.0 10.0 1500 4.5 8.0 10.0 4.5 6.0 1750 6.0 8.0 10.0 1830
Mass per square metre of durbar plates Thickness on plain Kg/m2 mm* 4.5 37.97 6.0 49.74 8.0 65.44 10.0 81.14 12.5 100.77
12.5 12.5 12.5 12.5 12.5
Consideration will be given to reqmrements other than standard sizes where they represent a reasonable tonnage per size, i.e. in one length and one width. Lengths up to I 0 meters can be supplied for plate 6mm & over
Depth of pattern rangmg from 1.9 mm to 2.4 mm. *Thickness as measured through body of the plate
I
' j
~' i
' J
""'i '
i '
2 (kN/m )
J
Ultimate load capacity for plates simply supported on two sides , stressed to 275 N/mm2 Thickness on plain mm 4.5 6.0 8.0 10.0 12.5
Span (mm) 600 20.48 36.77 65.40 102.03 159.70
800 11.62 20.68 36.87 57.42 89.85
1000 7.45 13.28 23.48 36.67 57.40
1200
1400
1600
1800
2000
5.17 9.20 16.38 25.55 39.98
3.80 6.73 11.97 !8.70 29.27
2.95 5.20 9.23 14.45 22.62
2.28 4.07 7.23 11.30 17.68
1.87 3.30 5.93 9.25 14.50
I 'J
....,
Stiffeners should be used for spans m excess of II OOmm to avmd excessive deflectiOns
i '
J
...., !
C.8 RHS sections - standard lengths Length ranges and tolerances for rectangular hollow sections (RHS) Size Square mm
Rectangular
mm
Welded Standard Special mill mill lengths lengths m m
20 X 20
6.4
25
6.4& 7.5
X
25 & 30 X 30
Seamless Standard lengths m
Maximum exact lengths m
Length tolerance
mm
' j
""'i I J
I
5.4- 7.5
50 x25
7.5
40 x 40 up to 100x100xS
50 x 30 up to 120 X SO X S
7.5, 10 & 12
5.4- 13.7
100 x 100 x 10 up to 150x 150x 12.5
120 x SOx 10 up to 200 X J00 X 12.5
7.5, 10 & 12
6.1-14.6
l50x l50x 16
200x100xl6
ISO x ISO up to 400 X 400 X 16
250 x !50 up to 500 X 300 X J6
10& 12
400 X 400 X 20
500 X 300 X 20
S.5-9.0 random
+150-0
""'i
' J 10- 11.2
9-14.S
5.6- 11.2
+300- 0 +300- 0
' J
'
)
-
!
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
I
J
I
I J
ARUJP
r. I
L... '
(
Appendix C- Useful Design Data (7/12)
i
!...,.
C.9 CHS sections- standard lengths Length ranges and tolerances for circular hollow section (CHS) Size (mm)
Welded
r •
'
(
'
(
Seamless
Thickness
Standard mill lengthsm
Special mill lengths m
21.3 & 26.9
All
6.0 & 6.4
5.4- 7.5
+150- 0
33.7-48.3
All
6.0, 6.4 & 7.5
5.4-7.5
+150- 0
60.3- 114.3
All
6.0, 6.4, 7.5 & 10
5.4- 12
+150- 0
139.7- 168.3
All
7.5, 10 & 12
6.1- 14.6
+150- 0
Up to 12.5
7.5, 10, & 12
6.1- 14.6
+150- 0
193.7
16.0 Up to 12.5
r •
219.1
r . 244.5
10 & 12
16.0 20.0 6.3- 16 8- 12.5
10 & 12
'
6.3- 16 273
r '
9- 14.8
'
(
r ,
+300- 0
8, 10 6, 8 & 10
+300- 0
8, 10 & 12 10, 12 & 14
+300- 0
9- 14.8
10 & 12
10 & 12
10 & 12
6, 8 & 10 4, 6&8
+300- 0
6, 8 & 10 4, 6&8
+300- 0
6, 8 & 10 4, 6&8
+300- 0
8, 10 & 12 4,6&8 2,4&6
+300- 0
9- 14.8
9- 14.8
20.0 25.0 10.0- 16.0
406.4
10 & 12
20.0 25.0 8.0- 16.0
355.6
8, 10 & 12
6, 8 & 10
20.0 25.0 6.3- 16.0
323.9
Standard mill lengths m
9- 14.8
20.0 (
Length tolerance mm
O.D.
9- 14.8
20.0 25.0 32.0
:
:
10.0- 16.0
:....
r. (
:
457
508 r ,
9- 14.8 8,10&12 6, 8 & 10 4, 6 &8 2,4&6
20.0 25.0 32.0 40.0 10.0- 16.0
'
10 & 12
10 & 12
+300- 0
9- 14.8
20 &25 32 40 50
6, 8 & 10 4, 6&8 2,4&6 3,4&5
+300- 0
r .
L... r ' I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
, I
'
j
l
Appendix C- Useful Design Data (8/12)
'
J
C.l 0 Carbon steel plate sections - British Steel standard sizes Typical size range of carbon steel plates (maximum length in m) Width 1220· 1250· 1300. 1500· 1600. 1750· 1800. 2000. 2100- 2250- 2500- 2750- 3000- 3050- 3250- 3460- 3500- 37501250 1300 1500 1600 1750 1800 2000 2100 2250 2500 2750 3000 3050 3250 3460 3500 3750 3960 (rum) Thickness
: 1:
5
12
12
12
12
12
12
12
6
13.5
13.5
13.5
13.5
13.5
13.5
13.5
7
13.5
13.5
13.5
13.5
13.5
13.5
13.5
12
12
-
13.5
13.5
13.5
12.5
12.5
-
13.5
13.5
13.5
13.5
13.5
13.5
12
-
-
-
-
-
-
8
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
II
9
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
10
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
18.3
10
-
-
19
19
19 19
12.5
19
19
19
19
19
19
19
19
19
19
19
19
19
19
15
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
20
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
25
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
30
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
' '
,....,
I
35
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
40
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
45
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
50
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
16.3
15.4
60
15.3
17
17
17
17
17
17
17
17
17
17
16.9
15.6
15.6
14.6
14.6
13.6
12.8
65
13.1
17
17
17
17
17
17
17
17
17
15.9
14.6
13.4
13.4
12.5
12.5
11.6
11
70
13.1
17
17
17
17
17
17
17
17
17
15.9
14.6
13.4
13.4
12.5
12.5
11.6
II
75
8.4
17
17
16.8
16.8
17
17
17
17
15.3
13.9
12.7
11.6
11.6
10.9
10.9
10.2
9.7
80
7.9
17
17
16.8
16.8
17
17
17
17
15.3
13.9
12.7
11.6
11.6
10.9
10.9
10.2
9.7
90
-
17
17
15
15
17
17
15.1
15.1
13.6
12.4
11.3
10.5
10.5
9.7
9.7
9.1
8.6
15.7
15.7
13.5
15.3
15.3
13.6
13.6
12.2
11.1
10.2
9.4
9.4
8.7
8.7
8.7
8.2
7.7
-
13.1
13.1
11.2
11.2
12.7
12.7
11.3
11.3
10.2
9.3
8.5
7.8
7.8
7.3
7.3
6.8
6.4
140
11.2
11.2
9.6
9.6
10.9
10.9
9.7
9.7
8.7
7.9
7.3
6.7
6.7
6.2
6.2
5.8
160
9.8
9.8
8.4
9.6
9.6
8.5
8.5
8.5
7.6
6.9
6.4
5.9
5.9
5.5
5.5
5.1
100 120
180
8.7
8.7
7.5
7.5
8.5
8.5
7.5
7.5
6.8
6.2
5.7
5.2
5.2
4.9
4.9
4.5
200
7.9
7.9
6.7
6.7
7.6
7.6
6.8
6.8
6.1
5.6
5.1
4.7
4.7
4.4
4.4
4.1
250
4
4
4
4
4
4
4
4
3.9
3.5
3.2
-
-
4
4
4
4
4
4
3.6
3.6
3.2
-
4
4
4
4
3.5
3.5
3.1
3.1
-
-
-
300 350
-
-
I
. I
• J
I
'
J
'
J
'
)
'
J
'
J
I
)
'
)
-
-
indicates size not available
I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
,...., I I
J
[
L r '
'
r '
Appendix C- Useful Design Data (9/12)
I
I......
C.ll Carbon and carbon manganese wide flats- British Steel standard sizes
r, !
Typical size range of carbon and carbon-manganese wide flats (max length in m)
\._,
r ,
(mm)
10
12
15
20
25
30
35
40
45
50
55
60
65
70
75
80
90
100
L [
;
L...
r . '·,
r, '
L l
L... r ,
'
(
D (
l
Not available
D
Development range- please consult
May be available with dimensions and material properties by arrangement
i
L...
•
Not normally available except by special arrangement on straightness and flatness tolerances
'
'L...
(
'
(
1
r,
r ,
r , THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ,
Ver 3.0 I Aug 98
ARUJP
Appendix C- Useful Design Data (10/12)
....., i
\
)
C.12 Fasteners- mechanical properties and dimensions of ordinary bolts 1"""1
Ml2 1.74 84.3
Ml6 2.00 157
M20 2.50 245
M24 3.00 353
M30 3.50 561
M36 4.00 817
10.863
14.701
18.376
22.051
27.727
33.402
33.1 18.7 66.2 48.1
61.6 34.8 123 89.6
96.1 54.3 192 140
138 78.2 277 201
220 124 439 321
321 181 641 466
30 36 49
-
38 44 57 24
46 52 65 30
54 60 73 36
66 72 85
78 84 97
19.0 21.9 8.0 10.0
24.0 27.7 10.0 13.0
30.0 34.6 13.0 16.0
36.0 41.6 15.0 19.0
46.0 53.1 19.0 24.0
55.0 63.5 23.0 29.0
Metric coarse threads Pitch (mm) Tensile stress area Basic effective diameter (pitch diameter) (mm) Grade4.6 Grade 8.8
Ultimate load kN Proofload Ultimate load kN Proof load
Length of threads = 125mm > 125mm and= 200mm >200mm = 125mm (short thread length)
-
i
\ j
....., I I
\ J
I
I
• J
-
'l
Dimensions (mm) Maximum width across flats Maximum width across comers Nominal head depth of bolts Nominal depth of nuts
j
1"""1 I
'
j
l
j
C.13 Fasteners - clearance for tightening Up to and including M20 diameter, tightening is usually best done by hand
3.2. bolt
.....,
aiameter
I \ J
I Hand Spanner
tor Ordinary Bolts
Size ofbolt
a
b
c
d- power
Ml2 Ml6 M20 M24 M30 M36
23 30 30 36 49 49
27 46 46 65 78 97
30 60 60 60 70 100
500 500 600 600 700 700
'
J
l
)
I
I' J
Impact wrench for HSFG bolts
Size of bolt
v
w*
X
M24
65
250 500 270 600 300 600
60
M30
78
M36
97
65 65
min.y to max.y 82 210 89 260 89 260
Note that the clearances given are the minimum values for convenient working. Lesser values than these may be used where necessary, after consultation with the equipment manufacturer.
..., I
'
\
J
\ J
Torque multiplier for HSFG bolts
!
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUIP
\
)
'
j
!
\ J
r
1
I
'-'
[
1
Appendix C- Useful Design Data (11/12)
1...,.,
C.14 Fasteners- high strength friction grip bolts Dimensions for high strength friction grip bolts and nuts to BS 4395 parts 1 and 2 (
Nominal diameter
1
L
Diameter of unthreaded shank
r, mm (Ml2) Ml6 M20 M22 M24 M27 M30 M33 M36
r , ~ 1
(
\
Max
Min
mm
mm
12.70 16.70 20.84 22.84 24.84 27.84 30.84 34.00 37.00
I 1.30 15.30 19.16 21.16 23.16 26.16 29.16 32.00 35.00
A
c
mm 1.75 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0
Max
Min
mm
mm
22 27 32 36 41 46 50 55 60
21.16 26.16 31.00 35.00 40.00 45.00 49.00 53.80 58.80
mm 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5
Thickness of *Dia hexagon head ofCsk. Head
F
Diameter of washer face
*Dept h of Csk. Flash
G
H
J
Max.
Min.
mm
mm
8.45 10.45 13.90 14.90 15.90 17.90 20.05 22.05 24.05
7.55 9.55 12.10 13.10 14.10 16.10 17.95 19.95 21.95
mm 24 32 40 44 48 54 60 66 72
Max.
Min.
mm
mm
22 27 32 36 41 46 50 55 60
19.91 24.91 29.75 33.75 38.75 43.75 47.75 52.55 57.75
mm 2.0 2.0 3.0 3.0 4.0 4.0 4.5 5.0 5.0
Thickness of nuts Addition to grip length to give length of bolt required** E Max.
Min.
mm
mm
11.55 15.55 18.55 19.65 22.65 24.65 26.65 29.65 31.80
10.45 14.45 17.45 18.35 21.35 23.35 25.35 28.35 30.20
mm 22 26 30 34 36 39 42 45 48
HEXAGON HEAD
'
i
Depth of washer face
See figures below for the dimensiOns used m the table Size shown in brackets is non-preferred * Countersunk head ** Allows for nut, one flat round washer and sufficient thread protrusion beyond nut.
L (
Width across flats
B
L
r
Pitch (coarse pitch series)
i
L
Po 0
General grade
r ,
,
I
'
(
....
A
II '
Length
0
r.
'
(
i
Higher grade Pt 2
L (
{~ c-EJ
1
L... (
COUNTERSUNK HEAD
'
E
r •
L r ,
Grip length Length
General grade Pt 1 countersunk head
@
@
([)
General grade Pt 1
Higher grade Pt 2
Higher grade Pt 2 countersunk head
I !
....... (
'
!
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
r ,
Ver 3.0 I Aug 98
L... r '
ARUJP
'
Appendix C- Useful Design Data (12/12)
j
~ I,
'
J
C.15 Staircase dimensions ~
Go Tread
I
/ Rise
dr
I
•.._Riser, .~~:;== where / applicable
~
I
' J Rise of stair
-=
·'
Pitch line- -"""'==
)
I
-ll-overlap
' J
or rake
I I '
J
Stairway terms \
)
I
j
Single rung 90° ladders
Companion,step i
75° or ship type ladders
~
II
\
)
'
)
50° Exceptional cases only
45°
STAIRS
1 ' j
' j
1co Limited use ramos
...., i
'
200
250
300
)
'
350
Tread 'Go' in millimetres
I
c I
'
J
I i '
J
~
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
i ' J
' J
I
w
r
'
I I
I
1,....1
r ,
Appendix D- Proprietary Components (1/9)
!
1,....1
APPENDIX D
r ,
D .1 Macalloy Bars Bar dia.
mm
Stressing ties
Stainless steel stressing ties
18 20
Stainless steel architectural ties
High strength precision ties
43
50
17m
79
80
36
49
58
52
71
83
82
114
132
144
198
229
219
303
351
147
22
r '
24 r ,
Tie rods grades
92
153
27
112
187
30
138
230
195
322
25
241
26.5
270
232
I
u I
'
I
L '
32
394
'--'
36
500
r
~
40
618
L.
45
(
I
379
591
I
(
1
I
50
959
L
60
398
525
636
r ,
72
574
758
918
L
75
2056
r , I
90
709
1022
i......
100
892
1286
I
'
I
Approximate safe working loads (kN)
'--'
I I
'
L r
! L
'
r ,
r '
I .
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
r '
ARlUIP
Appendix D - Proprietary Components (2/9)
Super Holorib Z28
D.2 Composite decking [Richard Lees ltd.] .h Load ::SJan !able- Normal Weig SUPPORT CONDITION
A
SLAB DEPTH mm
0.9mmGAUGE IMPOSED LOAD (kN/m')
.
Permanent -+Temporary
100 120 130 150 175 200 100 120 130 150 175 200 100 120 130 150 175 200
SINGLE
A
1.\
MULTIPLE
A
IS
1.\
PROPPED
A
+
1.\
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.25 4.60 5.30 5.04 4.82
I.OMMGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.25 4.60 5.18 5.04 4.82
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.55 4.16 4.33 4.63 4.96
2.55 2.41 2.35 2.23 2.12 2.02 3.00 2.82 2.75 2.61 2.47 2.35 3.17 3.50 3.65 3.92 4.23
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.60 5.30 5.44
I~ ~
1.2mmGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.60 5.30 5.44
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.55 4.25 4.53 4.83 5.17
2.79 2.63 2.57 2.44 2.31 2.20 3.22 3.07 3.00 2.85 2.70 2.56 3.34 3.68 3.83 4.11 4.42
_5.2~ ~.20
~0
~
. 3.09 2.92 2.85 2.71 2.57 2.45 3.51 3.35 3.28 3.14 2.99 2.84 3.55 4.25 4.60 5.30 5.95 5.69
5.0
6.7
10.0
3,09 3.09 2.92 2.92 2.85 2.85 2.71 2.71 2.57 2.57 2.45 2.45 3.51 3.51 3.35 3.35 3.28 3.28 3.14 3.14 2.99 2.99 2.84 2.84 3.55 3.44 4.25 4.01 4.60 4.18 5.22 4.47 4.79 5.56 5.~ __J.69_ ~08
3.09 2.92 2.85 2.71 2.57 2.45 3.51 3.35 3.28 3.14 2.99 2.84 3.55 4.25 4.60 5.30 5.95
I
Notes (On tables to left) I. *depicts maximum spans when deck used as permanent shuttering only. 2. The spans indicated assume clear span+ IOOmm to the centreline of supports. 3. A span to depth ratio of35:1 for normal weight and 30:1 for lightweight concrete is imposed in deriving the above spans. 4. For calculating deflections an additional loading of0.5 kN/m2 is included by RLSD Ltd to allow for non-recoverable deflection due to construction personnel. Maximum deflections are limited to span/130 after taking account ofponding. 5. All other construction stage design checks include an allowance of 1.5 kN/IW for construction loading. 6. Tables are based on grade C30 concrete of wet density 2,400 kglml and 1900 kg/m2 for lightweight. 7. The dead weight of the slab has been included in the development of the spans shown. However, consideration should be given to finishes, partition walls, etc when reading from these tables. 8. Composite slabs are designed as simply supported irrespective of the deck support configuration. A nominal crack control mesh is required over the supports in accordance with clause 6.7, 6.8 and 6.9 ofBS 5950:Part 4. 9. Decking is manufactured from material meeting the following specification: BS EN 10147 designated in accordance with BS EN 10025
S280 GD + Z275 NA-C.
s·---FIRE RATING hrs
_____ --o---·· . htC- - - - - - - - Ligh --o--LoadS oan Tab! ----1.0 SUPPORT CONDITION
A
SLAB DEPTH mm
0.9mmGAUGE IMPOSED LOAD (kN/m')
.
Permanent -+Temporary
SINGLE
A
1.\
MULTIPLE
A
IS
1.\
PROPPED
A
+
1.\
-
100 120 130 150 175 200 100 120 130 150 175 200 100 120 130 150 175 200
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.30 5.21
l.OMMGAUGE IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.30 5.21
2.74 2.60 2.53 2.42 2.30 2.19 3.05 3.05 2.97 2.83 2.69 2.56 3.05 3.65 3.95 4.55 5.12 5.21
2.74 2.60 2.53 2.42 2.30 2.19 3.D4 3.05 2.97 2.83 2.69 2.56 3.04 3.55 3.71 4.55 4.32 4.61
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.00 5.30 5.62
1.2mmGAUGE
IMPOSED LOAD (kN/m')
5.0
6.7
10.0
.
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.55 5.30 5.62
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.65 3.95 4.55 5.30 5.62
3.00 2.84 2.77 2.65 2.52 2.40 3.05 3.28 3.21 3.09 2.94 2.80 3.05 3.64 3.89 4.19 4.52 4.82
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
5.0
6.7
10.0
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 5.30 6.05
3.05 3.14 3.08 2.94 2.80 2.67 3.05 3.57 3.50 3.37 3.22 3.10 3.05 3.65 3.95 4.55 4.89 5.20
1.5
2.0
SLAB DEPTH mm
100 120 130 150 175 200 105 110 130 150 175 200 130 140 150 175 200
lified ---
Fire -. D
MethodC -·
-o--
A142 6.7 2.50 3.00 3.07 3.19
2.77 2.50 2.14 3.30 3.00 2.59 3.42 3.12 2.71
A252 6.7 2.50 3.00 3.64 3.78 3.94 4.08
A193 6.7 2.50 3.00 3.64 3.78 3.94 4.08
10.0 2.14 2.58 3.14 3.28 3.44 3.58
5.0 2.78 3.31 4.01 4.10 4.10 4.10
2.77 2.50 3.30 3.00 4.06 3.71 4.10 3.86 4.10 4.00
2.14 2.59 3.22 3.38 3.52
2.77 2.50 3.30 3.00 4.06 3.71 4.10 3.86 4.10 4.00
3.30 3.35 3.48 3.50
2.59 3.30 2.65 3.98 2.79 4.10 2.90 4.10
10.0 5.0 2.14 2.78 2.58 3.31 2.64 4.01 2.76 4.10 4.10 4.10
3.00 3.06 3.19 3.30
10.0 2.14 2.58 3.14 3.28 3.44 3.58
5.0 2.79 3.43 3.50 3.50
3.00 2.59 3.63 3.15 3.79 3.31 3.93 3.45
~--)
=-·--]
~--J
::___)
~---)
:_ ___ j
J
=-J
~----J
-
..
10.0 2.12 2.63 2.70 2.84
5.0 2.79 3.60 3.90 4.10 4.10 4.10 2.79 2.83 3.90 4.10 4.10 4.10 3.33 3.40 3.46 3.50 3.50
A193 6.7 2.50 3.60 3.69 3.85 4.02 4.02 2.50 2.54 3.64 3.80 3.98 4.10 3.00 3.07 3.13 3.28 3.41
10.0 2.12 3.07 3.15 3.31 3.48 3.63 2.12 2.16 3.12 3.27 3.44 3.59 2.57 2.63 2.69 2.84 2.96
5.0 2.79 3.60 3.90 4.10 4.10 4.10 2.79 2.83 3.90 4.10 4.10 4.10 3.90 4.08 4.10 4.10 4.10
A252 6.7 2.50 3.60 3.69 3.85 4.02 4.10 2.50 2.54 3.64 3.80 3.98 4.10 3.60 3.68 3.76 3.93 4.09
10.0 2.12 3.07 3.15 3.31 3.48 3.63 2.12 2.16 3.12 3.27 3.44 3.59 3.08 3.16 3.23
I
3.40 3.56
Notes (on table above) I. The simplified fire design method is based on fire tests on composite slabs incorporating steel meshes with 15-45mm top cover. This method is applicable for any construction where the mesh may act in tension over a supporting beam or wall (negative bending). This includes all end bay conditions. 2. All figures in the table are derived strictly in accordance with guidance given in SCI publication 056-'The fire resistance of composite floors with steel decking' (2nd edition), 1991. 3. Loads shown here are unfactored working loads and should include all imposed dead and live loads, excluding only the self weight of the slab. An ultimate load factor of 1.0 is assumed throughout.) 4. The mesh should satisfy the minimum elongation requirement given in BS4449 : 1998. 5. For conditions outside the scope of these tables, including all isolated spans, consult the appropriate fire engineering chart.
ARUIP
Ver 3.0 I Aug 98
=·_j
A142 6.7 2.50 3.08 3.16 3.30
2.79 2.50 2.12 2.14 2.83 2.54 2.16 2.59 3.41 3.07 2.63 3.22 3.50 3.20 2.76 3.38 3.52
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
)
--
LIGHTWEIGHT CONCRETE SPAN (m) FOR GIVEN IMPOSED LOAD (kN/m')
NORMAL WEIGHT CONCRETE SPAN (m) FOR GIVEN INPOSED LOAD (kN/m2)
5.0 2.78 3.31 3.38 3.49
~---
~--.J
~--·-]
.J
J
_j
)
_j
:_._J
·--J
(
r-
r-
[
[
r-
r-
[
r
[
[
(
f
-
r-
r-
r----: r
--
[
-
Appendix D - Proprietary Components (2/9)
Composite Decking cont. [Ward Multideck 60- Normal weight concrete] Lo~._.
...
........ ""' .......... "-' ...............~ .....
Span Type (Support Condition)
X
X
X
X
X
---------
Slab Depth
Min Mesh
(mm)
Size
120 130 140 150 160 175 200 250 120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252 A98 A142 A142 A142 A142 A193 A193 A252
...,.,.._.,.._.,,a:.&...,.A.O.&,..A.JU'-'.O.~"-'""
t-0.9
4.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.88 2.78 2.68 2.60 2.52 2.42 2.28 2,06_
t-0.9
Slab Depth
Min Mesh Size
120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252
4.0 4.19 4.42 4.61 4.78 4.94 4.79 4.56 4.12
200
A193
250
A252
X
oc
X X
4'
X+ X
+ +X
10.0 3.01 2.90 2.80 2.71 2.63 2.53 2.37 2.14 3.15 3.22 3.13 3.05 2.96 2.84 2.67 2.40
12.0 2.81 2.90 2.80 2.71 2.63 2.53 2.37 2.14 2.80 3.03 3.13 3.05 2.96 2.84 2.67 2.40
14.0 2.54 2.73 2.80 2.71 2.63 2.53 2.37 2.14 2.53 2.72 2.92 3.05 2.96 2.84 2.67 2.40
4.0 3.36 3.26 3.17 3.09 3.01 2.89 2.71 2.44 3.66 3.55 3.45 3.36 3.28 3.16 3.00 2.69
10.0 3.31 3.26 3.17 3.09 3.01 2.89 2.71 2.44 3.31 3.51 3.45 3.36 3.28 3.16 3.00 2.69
12.0 2.93 3.16 3.17 3.09 3.01 2.89 2.71 2.44 2.93 3.16 3.38 3.36 3.28 3.16 3.00 2.69
Total Applied Load (kN/m 1)
14.0 2.65 2.86 3.05 3.09 3.01 2.89 2.71 2.44 2.65 2.86 3.05 3.23 3.28 3.16 3.00 2.69
4.0 3.50 3.40 3.31 3.22 3.14 3.03 2.85 2.56 3.82 3.71 3.60 3.51 3.42 3.30 3.13 2.83
6.0 3.50 3.40 3.31 3.22 3.14 3.03 2.85 2.56 3.82 3.71 3.60 3.51 3.42 3.30 3.13 2.83
t=l.l
t-1.0 Total Applied Load (kN/m 2)
Total Applied Load (kN/m1)
. . . .. .. ... .
6.0 3.54 3.78 4.00 4.18 4.33 4.53 4.56 4.12
-(See note 6) 8.0 10.0 3.03 3.23 3.43 3.62 3.20 3.79 3.36 4.04 3.59 4.40 3.94 4.12 4.12
2.89 3.04 3.25 3.57 4.12
2.98 3.27 3.81
(See note6) 6.0 4.0 4.20 3.75 3.99 4.55 4.90 4.21 5.09 4.40 4.61 5.25 4.82 5.47 5.14 5.34 4.80 4.80
5.45
4.83
4.40
3.93
3.55
3.27
5.79
5.91
5.30
4.87
4.52
. .
or
X+ P++X
8.0 3.01 2.90 2.80 2.71 2.63 2.53 2.37 2.14 3.31 3.22 3.13 3.05 2.96 2.84 2.67 2.40
(See note 6) 6.0 8.0 3.36 3.36 3.26 3.26 3.17 3.17 3.09 3.09 3.01 3.01 2.89 2.89 2.71 2.71 2.44 2.44 3.66 3.63 3.55 3.55 3.45 3.45 3.36 3.36 3.28 3.28 3.16 3.16 3.00 3.00 2.69 2.69
-(see note 6) 8.0 10.0 3.50 3.32 3.40 3.40 3.31 3.31 3.22 3.22 3.14 3.14 3.03 3.03 2.85 2.85 2.56 2.56 3.77 3.32 3.71 3.57 3.60 3.60 3.51 3.51 3.42 3.42 3.30 3.30 3.13 3.13 2.83 2.83
12.0 2.94 3.15 3.31 3.22 3.14 3.03 2.85 2.56 2.94 3.15 3.38 3.51 3.42 3.30 3.13 2.83
14.0 2.65 2.85 3.05 3.22 3.14 3.03 2.85 2.56 2.65 2.85 3.05 3.24 3.42 3.30 3.13 2.83
....................................................................
(mm)
+
14.0 2.39 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.39 2.58 2.68 2.60 2.52 2.42 2.28 2.06
(See note6) 6.0 4.0 3.01 3.01 2.90 2.90 2.80 2.80 2.71 2.71 2.63 2.63 2.53 2.53 2.37 2.37 2.14 2.14 3.31 3.31 3.22 3.22 3.13 3.13 3.05 3.05 2.96 2.96 2.84 2.84 2.67 2.67 2.40 2.40
t-1.2
Total Applied Load (kN/m 2)
Total Applied Load (kN/m 1)
12.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.65 2.78 2.68 2.60 2.52 2.42 2.28 2.06
au,..,.o.&AJ&.I
Condition)
X
6.0 2.48 2.40 2.32 2.25 2.19 2.10 1.98 1.79 2.88 2.78 2.68 2.60 2.52 2.42 2.28 2.06
-(See note 6) 8.0 10.0 2.48 2.48 2.40 2.40 2.32 2.32 2.25 2.25 2.19 2.19 2.10 2.10 1.98 1.98 1.79 1.79 2.88 2.85 2.78 2.78 2.68 2.68 2.60 2.60 2.52 2.52 2.42 2.42 2.28 228 2.06 2.06
t-1.1
t-1.0
Total Applied Load (kN/m 1)
(Support
Span Type
. ...
&u•&'-'<'&&.-..A"-'TA&._,.,_, • ._.._..LI._..&
12.0
14.0
6.27
. .. .. .. .. .. . 8.0
10.0
3.42 3.62 3.80 3.98 4.23 4.61 4.80
3.20 3.37 3.53 3.76 4.11 4.73
12.0
3.19 3.41 3.37 4.31
14.0
3.13 343 3.97
. . . . . . . . 5.63
5.15
t-1.2
Total Applied Load (kN/m 1) See note 6)
4.0 4.20 4.55 4.90 5.25 5.53 5.76 6.00 5.38 6.07
6.58
6.0 3.91 4.15 4.37 4.50 4.78 5.06 5.40 5.38
. .. .. .. .. .. 8.0
10.0
12.0
3.56 3.76 3.95 4.13 4.39 4.77 5.38
3.33 3.57 3.67 3.90 4.26 4.88
3.32 3.54 3.87 4.45
14.0
.. . . . . . . . . 5.92
3.56 4.11
5.42
Total Applied Load (kN/m 1)
4.0 4.20 4.55 4.90 5.25 5.60 5.98 6.26 5.66 6.32
6.86
6.0 3.91 4.15 4.37 4.58 4.78 5.06 5.47 5.66
-(see note 6) 8.0 10.0
12.0
14.0
3.76 3.95 4.13 4.38 4.77 5.42
3.54 3.87 4.45
3.25 3.56 4.11
.. .. .. .. .. ... ... 3.67 3.90 4.26 4.88
. . . . . . . . . 6.16
-
Notes:
1 2
All tabulated figures include the self weight of the slab. All tabulated figures include a construction allowance of 1.5kN/m1 for spans of 3m and over, or 4.5/span kN/m1 for spans less than 3m in accordance with the recommendations ofBS 5950: Part4l994. The suggested maximum ratios of slab span to slab depth are 30 for LWC and 35 for NWC to control deflections. Deflection under construction loading (wet concrete etc.)
has been limited to that stipulated in BS 5950: Part 4 1994. For the purpose of calculating the span/depth ratio, the distance between the centre-lines of the supports of an end span may be used. 4 Minimum reinforcement mesh sizes provide 0.1% of the gross cross-sectional areas of the concrete at the support. The composite slabs should meet the requirements ofBS 5950; Part 4 1994 with regard to their composite behaviour under normal imposed loads. Total applied load referred to in the above table is a working
Load based on factored combinations of live loads, finishes, ceilings, services and partitions, divided by a load factor of 1.60 (excluding slab self weight). Temporary supports should remain in place until the concrete 7 has achieved its 28 day cub strength. • The addition of props gives no further benefit in these cases. Propped loads assume props are equally spaced.
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
10
Deck must lie flat on all support beams. Point only contact will affect design loading.
ARUJP
r---~
[
--
Appendix D - Proprietary Components (3/9)
Composite Decking cont. [Ward Multideck 60- Lightweight concrete] JYJ..n.."l....1U I,.JJU C &:,n.JUA.::>O:JJ.D.Lo.l!< .:OJ: n.l'l
&..O.&'U".&.&AOTL<.U.... .&.&&'-''U'H"-'.I'U:.<.&.A'<
Span Type (Support Condition)
K
K
K
K
K
a....a"Ur.a.aan.ao..a'-".&.1.& '-''-""'-'
Span Type
120 130 140 150 160 175 200 250 120 130 140 150 160 175 200 250
A98 A142 A142 A142 A142 A193 A193 A252 A98 Al42 A142 Al42 A142 Al93 A193 A252
'.&L<
..
4.0 2.67 2.58 2.50 2.43 2.37 2.28 2.15 1.79 3.08 3.00 2.91 2.82 2.74 2.63 2.48 2.25
Total Applied Load (kN/m1) See note_!}_ 10.0 12.0 6.0 8.0 2.67 2.65 2.67 2.39 2.58 2.58 2.58 2.58 2.50 2.50 2.50 2.50 2.43 2.43 2.43 2.43 2.37 2.37 2.37 2.37 2.28 2.28 2.28 2.28 2.15 2.15 2.15 2.15 1.96 1.96 1.96 1.96 3.08 3.08 2.39 2.65 3.00 2.58 2.85 3.00 2.9 2.91 2.77 2.91 2.82 2.82 2.82 2.82 2.74 2.74 2.74 2.74 2.63 2.63 2.63 2.63 2.48 2.48 2.48 2.48 2.25 2.25 2.25 2.25
n.vraa:...-
IU~IUUIU
120 130 140 150 160 175 200 250
A98 A142 Al42 A142 Al42 Al93 A193 A252
4.0 3.66 3.92 4.20 4.50 4.94 5.25 4.95 4.50
3.89 4.13 4.32 4.80 4.71 4.95 4.50
... K
200
A193
5.76
5.05
P+Of'K
250
A252
6.30
5.59
...
K
or
X+ X+ X ...
3.55 3.76 4.48 4.23 4.55 4.50
--
3.30 3.95 3.72 4.11 4.50
3.48 3.35 3.70 4.20
14.0
.
3.38 3.71
. . . . . . 5.06
t~1.1
Total Applied Load (kN/m1)
C.l!.n..LVII.3.:;u_oa.,£, ,;,crt..n
. .. .. .. .. . .. .. . 4.68
t~I.2
t~1.0
Total Applied Load (kN/m:) (See note 6) 4.0 6.0 8.0 10.0 3.19 3.19 3.19 3.17 3.10 3.10 3.10 3.10 3.03 3.03 3.03 3.03 2.95 2.95 2.95 2.95 2.86 2.86 2.86 2.86 2.75 2.75 2.75 2.75 2.59 2.59 2.59 2.59 2.35 2.35 2.35 2.35 3.51 3.51 3.51 3.17 3.42 3.40 3.42 3.42 3.33 3.33 3.33 3.33 3.25 3.25 3.25 3.25 3.18 3.18 3.18 3.18 3.08 3.08 3.08 3.08 2.92 2.92 2.92 2.92 2.63 2.63 2.63 2.63
12.0 2.81 3.03 3.03 2.95 2.86 2.75 2.59 2.35 2.81 3.03 3.24 3.25 3.18 3.08 2.92 2.63
14.0 2.54 2.73 2.92 2.95 2.86 2.75 2.59 2.35 2.54 2.72 2.92 3.11 3.18 3.08 2.92 2.63
4.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.87 3.77 3.68 3.59 3.51 3.40 3.23 2.96
8.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.60 3.77 3.68 3.59 3.51 3.40 3.23 2.96
6.0 3.55 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.60 3.77 3.68 3.59 3.51 3.40 3.23 2.96
10.0 3.32 3.44 3.38 3.30 3.22 3.12 2.97 2.72 3.30 3.57 3.68 3.59 3.51 3.40 3.23 2.96
12.0 2.94 3.16 3.38 3.30 3.22 3.12 2.97 2.72 2.94 3.16 3.68 3.59 3.51 3.40 3.23 2.96
14.0 2.66 2.86 3.05 3.24 3.22 3.12 2.97 2.72 2.66 2.86 3.05 3.24 3.43 3.40 3.23 2.96
14.0 2.65 2.86 3.05 3.24 3.36 3.26 3.10 2.82 2.65 2.86 3.05 3.24 3.43 3.55 3.38 3.10
4.0 3.95 4.21 4.47 4.73 4.98 5.35 6.00 6.20
t=1.2 Total Applied Load (kN/m1) _(See note~_ 8.0 10.0 12.0 6.0
14.0
3.90 4.20 4.50 4.80 5.24 5.82 6.20
3.67 4.11
7.32
6.50
4.0 3.71 3.61 3.52 3.44 3.36 3.26 3.10 2.82 3.97 3.94 3.84 3.75 3.67 3.55 3.38 2.96
Ill
t~l.l
Total Applied Load (kN/m1 ) (See note 6) 6.0 8.0 10.0 4.0 3.79 3.60 4.05 3.53 3.90 4.31 3.74 3.33 4.20 4.56 4.47 3.95 3.47 3.65 4.81 4.77 4.14 3.90 5.25 5.01 4.42 5.31 4.82 4.29 5.84
3.29 3.51 3.87
3.21 3.54
6.00
5.36
4.83
4.28
3.87
3.54
6.00
6.51
5.93
5.38
4.97
4.37
3.87
7.02
. .. .. .. .. ... 12.0
14.0
4.0 3.90 4.15 4.41 4.67 4.92 5.28 5.98 5.92
Total Applied Load (kN/m1 ) See note 61_ 10.0 12.0 8.0 14.0
. .. .. .. .. . . .. .. .. . .. .. .. .. .. . .. . . . . . . . . . . . . . . . . . . . . 6.0
3.90 4.20 4.50 4.80 5.25 5.63 5.92
3.66 3.88 4.10 4.30 4.58 5.01 5.66
6.23
5.65
3.43 3.61 3.79 4.04 4.44 5.14
3.65 4.01 4.52
3.34 3.67 4.00
4.10 4.30 4.57 5.01 5.76
...
-
NOTES I All tabulated figures include the self weight of the slab. 2 All tabulated figures include a construction allowance of 1.5kN/rrt for spans of 3m and over, or 4.5kN/m2 for spans less than 3m in accordance with the recommendations of 855950: Part 4 1994. The suggested maximum ratios of slab span to slab depth are 30 for
Total Applied Load (kN/m1) • isee note 6l 10.0 6.0 8.0 12.0 3.60 3.60 3.32 2.94 3.61 3.57 3.16 3.61 3.52 3.38 3.52 3.52 3.44 3.44 3.44 3.44 3.36 3.36 3.36 3.36 3.26 3.26 3.26 3.26 3.10 3.10 3.10 3.10 2.82 2.82 2.82 2.82 3.60 3.60 3.32 2.94 3.94 3.94 3.57 3.16 3.84 3.84 3.38 3.84 3.75 3.75 3.75 3.75 3.67 3.67 3.67 3.67 3.55 3.55 3.55 3.55 3.38 3.38 3.38 3.38 3.10 3.10 3.10 3.10
See not~(;)
t~I.O
Total Applied Load (kN/m1) -(See note 6) 6.0 8.0 10.0 12.0
or
K...
14.0 2.39 2.58 2.50 2.43 2.37 2.28 2.15 1.96 2.39 2.58 2.77 2.82 2.74 2.63 2.48 2.25
t~0.9
Min Mesb Size
K
IU
t~0.9
Slab Depth fmml
(Support Condition)
K
(mm)
Min Mesh Size
Slab Depth
L WC and 35 for NWC to control deflection. Deflection under construction loading (wet concrete etc. ) has been limited to that stipulated inBS5950: Part 4 1994. For purpose of calculating the span /depth ratio, the distance between the centre-lines of the supports of an end span may be used.
Minimum reinforcement mesh sizes provide 0.1% of the gross cross -sectional area of the concrete at the support. The composite slabs should meet the requirements ofBS 5950: Part 4 1994 with regard to their composite behaviour under normal imposed loads. Total applied load referred to in the above table is a working load based on factored combinations oflive loads, ceilings, finished, services and partitions, divided by a load factor of 1.60 (excluding slab self weight).
]
J
J
J
J
-J
__ ]
__j
~---J
J
~--
_j
L__
Temporary supports should remain in place until the concrete has achieved its 28 day cube strength. *The addition of props gives no further benefit in these cases. Propped loads assume props are equally spaced. Deck must lie flat on all support beams. Point only contact will affect design loading.
9 10
ARUJP
Ver 3.0 I Aug 98
_]
3.63 4.01 4.65
-
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
J
3.79 4.03 4.43 5.12
:_____ __
]
J
__ j
=---J
~--~J
J
__ j
[
~
[
r~~~
~-~-=
r
r-
--~
c--~
c
r
r~-~
l
r-
r
r-
r
r-
r--= r ----=
r---~
Appendix D -Proprietary Components (4/9)
Composite Decking cont. [Ward Multideck 60- Fire resistance] ,,....,
........
Slab Depth (mm)
H~Jl\.JUJl.O.
Min
Mesh
.._VI''-'"'-'"'-"-"'
Fire ratine: 1.0 hour s Total Applied Load (kN/m 2) See note 6 (page 8)
...
UUUIU... AJ.O.'UU._>Jo.;:r'-LIO ... &O>"'Jln.i\
Ill
Fire ratin2: 1.5 hour s Total Applied Load (kN/m 2) See note 6 (page 8)
Fire ratine: 2.0 hour s - end span Total Applied Load (kN/m 2) See note 6 (page 8)
Fire rating: 2.0 hour(s internal span Total Applied Load (kN/m 2) See note 6 (page 8)
Size
4.00 130 3.85 142 130 193 4.18 130 252 4.51 140 142 4.01 140 193 4.36 140 252 4.71 !50 142 4.06 !50 193 4.44 !50 252 4.80 160 142 4.13 !60 193 4.49 !60 252 4.86 175 142 4.19 175 193 4.55 175 252 4.93 *142 200 4.29 200 193 4.65 5,03 200 252 *142 250 4.44 250 *193 4.81 250 252 5.19 ciGHTWEIGHT CONCRETE Fire Slab Min Depth Mesh (mm) Size
6.00 3.43 3.74 4.03 3.60 3.91 4.23 3.67 3.99 4.32 3.73 4.05 4.39 3.80 4.13 4.47 3.92 4.25 4.59 4.10 4.43 4.79
4.00 8.00 10.00 12.00 6.00 2.73 2.96 3.20 3.63 2.98 2.77 2.87 3.25 3.02 3.12 3.95 3.54 3.25 4.28 3.84 3.51 3.26 3.37 3.13 2.91 2.95 3.78 3.40 4.13 3.72 3.41 3.17 3.20 4.02 3.69 3.43 4.47 3.46 3.23 3.00 3.89 3.52 3.01 4.26 3.85 3.54 3.29 3.26 4.62 4.17 3.83 3.57 3.53 3.31 3.08 3.95 3.58 3.09 4.33 3.62 3.38 3.35 3.92 4.69 3.92 3.65 3.62 4.25 3.42 3.21 4.04 3.69 3.21 4.03 3.74 3.50 4.42 3.48 4.05 3.80 4.79 3.76 4.38 3.60 3.42 4.18 3.86 3.39 4.56 3.93 3.70 3.70 4.21 4.01 4.26 3.99 4.95 4.56 MAXIMUM PERMISSIBLE SPAN m ratine: 1.0 houris Fire ratine: l.S hour s Total Applied Load (kN/m2) Total Applied Load (kN/m2) See note 6 (page 8) See note 6 (page 8)
4.00 120 142 3.60 120 193 3.60 120 252 3.60 130 142 3.90 130 193 3.90 130 252 3.90 140 142 4.20 140 193 4.20 140 252 4.20 !50 142 4.31 !50 193 4.50 !50 252 4.50 160 142 4.37 160 193 4.76 160 252 4.80 175 *142 4.45 175 193 4.84 175 252 5.19 *142 200 4.57 200 193 4.97 200 252 5.38 *142 250 4.76 250 *193 5.16 250 252 5.58 Spans of3.5m and over are based on
6.00 10.00 8.00 12.00 3.43 2.87 2.68 3.11 3.60 3.12 3.39 2.91 3.37 3.14 3.60 3.60 3.63 3.04 3.30 2.84 3.32 3.10 3.90 3.60 3.59 3.90 3.89 3.35 3.77 3.17 3.43 2.97 4.12 3.46 3.75 3.24 3.76 3.51 4.20 4.07 3.84 3.24 3.50 3.04 4.19 3.82 3.54 3.31 4.50 3.83 4.14 3.59 3.91 3.57 3.31 3.10 4.26 3.89 3.60 3.38 3.91 4.62 4.22 3.66 3.40 3.19 3.99 3.66 4.35 3.98 3.70 3.47 4.01 4.71 4.31 3.76 4.13 3.54 3.80 3.33 4.49 3.85 4.13 3.61 4.16 4.86 4.47 3.91 3.77 4.34 3.56 4.03 4.09 4.71 4.37 3.86 5.10 4.72 4.42 4.17 12mm deck only. For single span conditions use the
8.00 3.15 3.41 3.68 3.30 3.58 3.87 3.37 3.66 3.97 3.43 3.72 4.03 3.51 3.81 4.12 3.63 3.94 4.25 3.83 4.14 4.47
10.00 2.92 3.16 3.41 3.06 3.32 3.59 3.14 3.41 3.69 3.20 3.47 3.75 3.27 3.55 3.84 3.40 3.69 3.98 3.60 3.90 4.21
4.00
6.00
8.00
3.63 3.22 2.92 3.90 3.54 3.22 3.52 3.90 3.87 3.83 3.40 3.10 4.20 3.42 3.75 3.74 4.20 4.11 3.93 3.19 3.50 4.35 3.88 3.53 4.50 3.88 4.25 3.97 3.56 3.25 4.40 3.93 3.59 3.94 4.80 4.31 4.04 3.62 3.32 4.45 4.00 3.67 4.02 4.89 4.39 4.13 3.44 3.73 4.56 3.79 4.12 5.00 4.52 4.15 4.28 3.62 3.91 4.72 3.99 4.31 5.17 4.72 4.37 Ward Multideck Software (see page 6)
10.00
12.00
4.00
6.00
8.00
10.00
12.00
4.00
6.00
8.00
2.60 2.83 3.06 2.73 2.98 3.22 2.83 3.10 3.36 2.91 3.18 3.45 3.03 3.31 3.58 3.22 3.51 3.80
3.13 3.48 3.85 3.26 3.65 4.03 3.38 3.78 4.19 3.45 3.86 4.28 3.53 3.96 4.39
2.82 3.14 3.47 2.95 3.30 3.64 3.07 3.43 3.80 3.15 3.53 3.90 3.26 3.66 4.05
2.59 2.88 3.18 3.72 3.03 3.35 2.83 3.17 3.50 2.92 3.27 3.62 3.05 3.41 3.78
2.41 2.68 2.96 2.53 2.83 3.12 2.65 2.96 3.27 2.74 3.06 3.39 2.87 3.22 3.56
2.27 2.52 2.78 2.38 2.66 2.93 2.49 2.79 3.08 2.59 2.89 3.20 2.73 3.05 3.38
3.73 4.16 4.60 3.95 4.42 4.87 4.15 4.66 5.15 4.31 4.86 5.40 4.55 5.15 5.74
3.36 3.75 4.14 3.56 3.99 4.40 3.76 4.22 4.67 3.94 4.44 4.93 4.20 4.75 5.30
3.09 3.44 3.80 3.28 3.67 4.04 3.47 3.90 4.31 3.65 4.11 4.56 3.92 4.44 4.94
Fire rating: 2.0 houris -end soan
4.00
2.70 2.52 2.97 2.77 3.03 3.25 2.86 2.68 3.39 3.80 3.16 2.96 3.23 3.46 4.20 2.96 2.77 3.56 3.06 4.00 3.27 3.36 4.43 3.59 2.82 3.63 3.01 3.33 3.12 4.09 3.42 4.53 3.65 3.08 2.89 3.67 3.41 3.20 4.14 3.50 4.59 3.74 3.20 3.01 3.74 3.32 4.21 3.53 3.64 3.87 4.67 3.21 3.85 3.39 3.53 4.33 3.74 4.09 3.86 4.80 or contact Ward Technical Services.
6.00
8.00
10.00
3.01 3.38 3.73 3.17 3.56 3.95 3.25 3.66 40.5 3.30 3.72 4.12 3.39 3.81 4.22 3.52 3.95 4.38
2.74 3.07 3.40 2.90 3.25 3.60 2.97 3.34 3.70 3.03 3.41 3.77 3.12 3.50 3.88 3.26 3.66 4.06
2.54 2.84 3.14 2.68 3.01 3.34 2.76 3.10 3.43 2.81 3.16 3.50 2.91 3.27 3.62 3.06 3.43 3.80
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
2.87 3.20 3.53 3.06 3.42 3.75 3.24 3.64 4.02 3.42 3.85 4.27 3.70 4.18 4.65
12.00
2.70 3.01 3.31 2.87 3.21 3.54 3.05 3.43 3.78 3.23 3.64 4.03 3.50 3.96 4.41
Fire rating: 2.0 hour s internal span Total Apptied Load (kN/m 2) Sec note 6 (page 8)
Total Applied Load (kN/m 2) See note 6 (page 8)
12.00
10.00
12.00
2.38 2.66 2.94 2.51 2.82 3.12 2.58 2.90 3.21 2.64 2.97 3.29 2.73 3.07 3.40 2.89 3.24 3.59
4.00
6.00
8.00
4.09 4.20 4.20 4.35 4.50 4.50 4.48 4.80 4.80 4.59 5.17 5.25 4.76 5.40 5.00 5.02 5.70 6.37
3.63 4.08 4.20 3.87 4.37 4.50 4.01 4.53 4.80 4.12 4.67 5.17 4.30 4.87 5.43 4.58 5.21 5.81
3.31 3.72 4.11 3.53 3.98 4.42 3.66 4.14 4.59 3.77 4.27 4.75 3.96 4.48 4.99 4.24 4.82 5.38
10.00
3.06 3.43 3.80 3.27 3.68 4.09 3.39 3.83 4.25 3.51 3.97 4.40 3.68 4.17 4.64 3.97 4.51 5.04
12.00
2.86 3.21 3.55 3.06 3.45 3.82 3.18 3.59 3.96 3.29 3.72 4.13 3.46 3.92 4.36 3.75 4.26 4.75
I
ARUJP
r~--:
r----
...., i
!
~ J
Appendix D- Proprietary Components (6/9) '
I j
l
I
D.3 Purlin Systems- Zed purlin sleeved system [Metsec] SECTION REFEREN CE
1000
1200
1500
6.14 8.29 9.29
1.02 1.3!1
0.85
1.55
172.Z.I6 202.2.15 202.Z.I6 202.Z.I!I 202.Z.20 232.Z.I6
9.97 11.02 12.20 14.47 16.62 14.68
1.66 1.84 2.03 2.41 2.77 2.45
1.29 1.39 !.53
0.68 0.92 1.03
1.69 2.01 2.31 2.04
1.36 1.61 !.liS 1.63
172.Z.IS 172.Z.I6 202.Z.IS 202.Z.I6 202.Z.I8 202.Z.20 232.Z.l6 232.Z.I8
3.85 4.ll 4.21 4.49 5.03 5.57 5.11 5.37
8.01 8.52 10.13 11.23 13.32 15.20 13.51 16.39
1.23 1.31 1.56 1.73 2.05 2.34 2.08 2.52
1.03 1.09 1.30 1.44 1.71 1.95 1.73 2.10
0.82 0.87 1.04 1.15 1.37 1.56 !.39 1.68
202.Z.IS 202.Z.16 202.Z.I8 232.Z.I6 232.Z.18 232.Z.20 262.Z.I!I
4.21 4.49 5.03 5.11 5.73 6.34 6.25
9.37 10.39 11.!19 12.51 15.17 17.75 17.45
1.34 1.4!1 1.70 1.79 2.17 2.54 2.49
1.12 1.24 1.41 1.49 !.HI 2.11 2.08
0.89 0.99 1.13 1.19 1.45 1.69 !.66
262.Z.18 262.Z.20
4.49 5.03 5.11 5.73 6.34 7.26 6.25 6.92
9.26 10.37 11.63 14.12 16.51 19.62 16.24 19.18
1.23 1.38 1.55 1.811 2.20 2.62 2.17 2.56
!.03 1.15 1.29 !.57 ).83 2.18 1.80 2.13
0.82 0.92 1.03 1.25 1.47 1.74 1.44 1.70
202.2.20 202.Z.23 232.Z.I6 232.Z.III 262.Z.18 262.Z.20 262.Z.23 262.Z.25
5.57 6.35 5.11 5.73 6.25 6.92 7.92 8.59
IO.o? 11.50 111.611 13.19 15.17 17.92 21.83 24.32
1.26 1.44 1.36 ).65 1.90 2.24 2.73 3.04
!.OS 1.20 1.13 1.37 l.S8 1.87 2.27 2.53
0.84 0.96 0.91 1.10 1.26 1.49 1.82 2.03
232.Z.I!I 232.Z.20 262.Z.I8 262.Z.20 262.Z.23 262.Z.25
5.73 6.34 6.25 6.92 7.92 8.59
12.11 13.40 14.23 16.81 2CJ.48 22.55
1.42 1.58 1.67 1.98 2.41 2.65
1.19 1.31 1.39 1.65 2.01 2.21
0.95 !.OS 1.12 1.32 1.61 1.77
232.Z.l8 232.Z.20 262.Z.18 262.Z.20 262.Z.23 262.Z.25 302.Z.23 302.Z.25
5.73 6.34 6.25 6.92 7.92 8.59
10.79 11.94 13.38 1582 18.59 20.13 23.84 26.86
1.20 !.33 1.49 1.76 2.07 2.24 2.65 2.98
1.00 1.11 1.24 1.46 1.72 1.86 2.21 2.49
0.80 0.88 0.99 1.17 1.38 1.49 1.77 1.99
262.2.111 262.Z.20 262.2.23 262.Z.25 302.Z.23 302.Z.25
6.25 6.92 7.92 8.59 9.80
12.63 14.59 16.68 18.06 22.51 25.36
1.33 ).54 !.76 1.90 'l.37 2.67
1.11 1.211 1.46 1.58 1.97 2.22
0.89 1.02 1.17 1.27 1.58 1.7!1
262.Z.I8 262.Z.20 262.Z.23 262.Z.25 302.Z.23 302.Z.25
6.25 6.92 7.92 8.59 9.114 9.80
11.88 13.15 15.03 16.27 21.31 "4.01
1.19 1.31 !.50 1.63 2.13 2.40
11.99 1.10 1.25 1.36 1.78 2.00
0.79 0.88 1.00 1.08 1.42 1.60
7.92 8.59
13.60 14.72 20.22 22.20 27.24
1.29 1.40 !.93 2.11 2.59
1.08 1.17 1.60 1.76 2.16
0.86 0.93 1.28 1.41 1.73
13.36 18.64 20.20 25.91 32.02
1.21 1.69 1.84 2.36 2.91
1.01 1.41 1.53 1.96 2.43
0.81 1.13 1.22 1.57 1.94
172.Z.14 172.Z.IS
f ~
~
§ ] il
~
.§ "'§
,;;
]
:~
-5
g. ~
·~
~
~
£
l{
]
'll
~
~
~
·f
·g ] ] ~ ""] ] ] .;' "li 1 1 "" ~ l .§"' .... ~
"' "'
]
.§
li
g .9
"li
.9
] .g
~ ~
j
j ·cl Q
WORKING LOAD TOTAL ALLOWABLE LOADNG in kN/m' PURLIN CENTRES In millimetre! U.D.L kN
3.60 3.60 3.85 4.11 4.21 4.49 5.03 5.57 5.11
142.2.16
]
WEIG liT kglm
• 202.Z.I6 202.Z.IR
9.04 9.80
9.04
9.04 1302.Z.25 342.Z.25 262.Z.25 302.Z.23 302.Z.25 342.Z.25 342.Z.29
9.80 10.98 8.59
9.04 9.80 10.98 12.68
LIS
I.ll 1.22
SPAN
180
360
1800
2400 0.43 0.5!1 0.64 0.69 0.76 0.85 1.00 1.15 1.02
6.35 8.98 9.60 10.22 13.72 14.60 16.35 18.08 21.61
3.18
4.!10 S.ll 6.86 7.30 8.17 9.04 10.81
0.51 0.55 0.65 0.72 0.85 0.97 0.87 1.05
8.25 8.78 11.80 12.56 14.06 15.55 18.61 20.85
0.56 0.62 0.71 0.74 0.90 1.06
1000 SPAN6.0m 0.51 0.69 0.77 0.92 O.!B 1.02 0.92 1.13 1.02 1.34 1.21 1.54 1.38 1.36 1.22 SPAN 6.5m 0.68 0.62 0.73 0.66 0.87 0.78 0.96 0.86 1.02 1.14 1.30 1.17 1.15 1.04 1.40 1.26 SPAN7.0m 0.74 0.67 0.!12 0.74 0.94 0.!15 0.99 0.89 1.20 1.08 1.41 1.27 1.39 1.25 SPAN7.5m 0.69 0.62 0.77 0.69 0.116 0.78 1.05 0.94 1.10 1.1"' 1.45 1.31 1.20 !.OR 1.42 1.28 SPANB.Om 0.70 0.63 0.80 0.72 0.75 11.68 0.92 0.82 1.05 0.95 1.24 1.12 1.52 1.36 1.69 1.52 SPAN8.5m 0.79 0.71 0.88 11.79 0.93 0.84 1.10 0.99 1.34 1.211 1.47 1.33 SPAN9.0m 0.67 0.60 0.74 0.66 11.!13 0.74 0.98 0.8!1 1.15 1.03 1.24 1.12 1.47 1.32 1.66 1.49 SPAN9.5m 11.74 0.66 O.KS 0.77 0.98 0.88 1.06 0.95 1.32 1.18 1.48 1.33 SPANlO.Om 0.66 0.59 0.73 0.66 0.84 0.75 0.90 0.81 1.18 1.07 1.33 1.20 SPANlO.Sm 0.72 0.65 0.78 0.70 1.07 0.96 1.17 1.06 1.30 1.44 SPANll.Om 0.67 0.61 0.94 0.85 1.02 0.92 1.31 1.18 1.62 1.46
ULTIMATE U.D.L.INkN/SPAN DOWN Uplift- Metal Cladding LOAD
SPAN
0.57 0.77 0.86
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
DEFLECTION
Number of Anti Sags
0
I
2
831
13.09 !3.56 !6.17
16.73
19.89 23.57 27.04 23.92
9.45 8.78 9.46 10.74 11.92 13.66
13.09 13.56 15.17 16.73
17.97 19.89 23.57 27.04 23.92
17.97 19.89 23.57 27.04 23.92
....,
4.13 4.39 5.90 6.28 7.03 7.78 9.30 10.42
14.01 15.44 16.59 18.36 21.75 24.96 22.08 26.74
7.91 8.51 7.85 8.47 9.62 10.68 12.19 14.311
14.01
14.01 15.44 16.59 18.36 21.75 24.96 22.0!1 26.74
'
15.44 16.59 18.36 21.75 24.96 22.08 26.74
1.04
10.27 10.92 12.23 16.19 18.14 20.07 24.43
5.13 5.46 6.12 8.10 9.07 10.04 12.22
15.40 17.05 20.20 lO.SO 24.83 29.01 28.53
7.11 7.67 8.71 11.02 13.02 15.00 13.90
15.40 17.05 20.20 20.50 24.113 29.01 28.53
15.40 17.05 20.20 lO.SO 24.83 29.01 28.53
0.51 0.58 0.65 0.78 0.9' 1.09 0.90 1.07
5.59 10.74 14.22 15.94 17.63 20.15 21.47 23.77
4 .. 79 5.37 7.11 7.97 11.82 10.08 lll.74 11.118
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
12.65 14.64
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
15.92 18.85 19.13 23.17 27.08 32.58 26.62 31.40
0.52 0.60 0.57 0.69 0.79 0.93 1.14 1.27
10.51 12.00 12.60 14.11 19.03 21.06 24.08 26.07
5.25 6.00 6.30 7.06 9.51 10.53 12.04
13.03
20.28 24.110 17.94 21.73 24.96 29.43 35.80 39.85
10.28 24.1111 17.94 21.73 24.96 29.43 35.110 39.85
20.28 24.011 17.94 21.73 24.96 29.43 35.08 39.85
11.59 0.66 0.70 0.82 1.00 1.11
12.59 13.93 16.98 1879 21.48 23.26
6.29 6.96 8.49 9.39 10.74 11.63
20.45 23.89 23.49 27.70 33.70 37.51
20.45 23.89 23.49 27.70 33.70 37.51
20.45 23.89 23.49 27.70 33.70 37.51
0.50 0.55 11.62 0.73 0.86 0.93 1.10 1.24
11.30 12.50 15.24 16.87 19.29 20.89 28.63 31.111
5.65 6.25 7.62 8.44 9.64 10.44 14.31 15.51
19.31 22.56 22.19 26.16 31.82 35.42 39.26 44.18
0.55 0.64 0.73 0.79 0.99 1.11
13.76 15.23 17.42 18.K6 25.86 2K.02
6.88 7.62 8.71 9.43 12.93 14.01
21.02 24.79 30.15 33.56 37.19 41.85
0.49 11.55 11.63 0.68 11.89 1.00
12.49 13.83 15.81 17.12 23.4S 25.44
6.25 6.91 7.90 8.56 11.74 12.72
0.54 0.58 11.80 0.88 1.08
14.41 15.61 21.42 23.21 32.69
0.51 0.71 0.77 0.98 1.21
14.29 19.62 21.25 29.65 34.54
4.49
13.Q9 13.56 15.17 16.73
17.97
8.10 !UW
i
39.26 44.18
19.31 22.56 22.19 26.16 31.82 35.42 39.26 44.18
37.19 41.85
21.02 24.79 30.15 33.56 37.19 41.85
19.97 23.55 28.64 31.88 35.33 39.76
35.33 39.76
19.97 23.55 28.64 31.88 35.33 39.76
7.21 7.80 10.71 11.611 16.35
27.28 30.36 33.65 37.87 45.16
33.65 37.87 45.16
27.28 30.36 33.65 37.87 45.16
7.14 9.81 10.63 14.98 17.27
28.98 32.12 36.15 43.11 53.15
32.12 36.15 43.11 5315
28.98 32.12 36.15 43.11 53.15
..
J
:
' :
I""'\ r 'r
I
)
I
j'
'
)
'
J
~
j
I
...., I
)
'
j
I
)
ARUJP ....,
I I
l.....i I ,
Appendix D - Proprietary Components (7/9)
Zed purlin butt system [Metsec] '
( j
l.....
J"' 0
0 0
r . !
1'!
~
0
N
~
1'!
0
N
q
]
\....,
:;;
~
.g .9
fl ~ ~
L L
:E
§-
:fe
"§
1
]
i
lI
~
~
~
-~
]
]
·I]
~
~ .,~
~
B
g B
] ] .g ] ] ] ] !.... ]Cl ...c ]Cl .§ .§~ ~ ~ ~~ = "
'0
r, I
'-'
r ,
L r .
j ~
"' ·c Cl
WEIG HT kglm
WORKING LOAD TOT ALLOWABLE LOADNG In kN/m• AL PURLIN CENTRES In milllmetres U.D.L kN 1000 1200 1500 1800
142.Z.l4 142.Z.IS
3.16 3.38
8.63 9.58
!
l.....i
L r ,
L r '
I
L (
.,
I
2.05 2.28
1.64 1.82
137 1.52
3.16 3.38 3.60 4.03
6.99 7.42 7.94 8.87
1.75 1.85 1.98 222
1.46 1.55 1.65 1.85
!.Hi 1.24 1.32 1.48
0.97 1.03 1.10 1.23
142.2.15 172.2.14 172.2.15 172.2.16
3.38 3.60 3.85 4.11
5.82 8.39 9.40 10.30
1.29 1.86 2.09 2.29
1.08
0.86 1.24 1.39 l.S3
0.72 1.04 1.16 1.27
172.2.14 172.2.15 172.2.16 202.2.15 202.2.16 202.2.18
3.60 3.85 4.11 4.21 4.49 5.03
7.29 7.79 K.29 9.99 11.07 13.13
1.46 1.56 1.66 2.00 2.21 2.63
2.19
0.97 1.04 1.11 1.33 1.48 1.75
0.81 0.87 0.92 1.\1 1.23 1.46
172.2.14 172.2.15 172.2.16 102.2.15 202.2.16 202.2.18
3.60 3.K5 4.11 4.21 4.49 5.03
5.98 6.39 6.80 9.05 9.98 11.17
1.09 1.16 1.24 1.65 1.81 2.03
0.91 0.97 1.03 1.37 1.51 \.69
0.72 0.77 0.82 1.10 1.21 1.35
0.60 0.65 0.69 0.91 1.01 1.13
202.2.15 202.2.16 202.2.18 232.2.16 232.2.18 232.2.20
4.21 4.49 5.03 5.11 5.73 6.34
7.82 8.32 9.32 11.D2 13.37 15.64
1.30 1.39 1.55 1.114 2.23 2.61
1.09 1.16 1.29 1.53 1.86 2.17
0.87 0.92 1.04 1.22 1.49 1.74
0.72 0.77 0.86 1.02 1.24 1.45
202.2.18 202.2.20 232.2.16 132.2.18 262.2.1K 262.2.20
5.03 5.57 5.11 5.73 6.25 6.92
7.78 8.71 10.13 11.99 14.15 16.71
1.21 1.34 1.56 1.84 2.18 2.57
1.01 1.12 1.30 1.54 1.81 2.14
0.81 0.89 1.04 1.23 1.45 1.71
0.67 0.74 0.87 1.02 1.21 1.43
232.2.16 231.2.18 262.2.18 262.2.20 262.2.23
5.11 5.73 6.25 6.92 7.92
9.16 10.26 13.08 15.46 17.89
1.31 1.47 1.87 2.21 2.56
1.09 1.56 1.84 2.13
0.117 0.9!1 1.25 1.47 1.70
0.73 0.81 1.04 1.23 1.42
I! 262.2.25
5.73 6.25 6.92 7.92 8.59
8.86 12.16 13.54 15.48 16.76
l.l8 1.62 1.81 2.06 2.23
0.98 1.35 1.50 1.72 1.116
0.79 1.08 1.20 138 1.49
0.66 0.90 1.00 1.15 1.24
10.66 11.80 13.49 14.61 20.22
L33 1.48 1.69
1.11 1.23 1.41
302.2.23
6.25 6.92 7.92 S.59 9.04
2.53
2.11
0.89 0.98 1.12 1.22 1.68
0.74 O.H2 0.94 1.01 1.40
262.2.20 262.2.23 262.2.25 302.2.23 302.2.25
6.92 7.92 8.59 9.04 9.80
10.36 11.84 12.K2 18.12 19.63
1.22 L39 1.51 2.13 2.31
1.02 1.16 1.26 1.78 1.92
0.!11 0.93 1.01 1.42 1.54
0.68 0.77 0.84 1.18 1.211
262.2.25 302.2.23 302.2.25
8.59 9.90 9.04 9.80
11.32 13.03 16.04 17.37
1.26 1.45 1.78 1.93
1.05 1.21 1.48 1.61
0.84 0.97 1.19 1.29
0.70 0.80 0.99 1.07
302.2.23 302.2.25 342.2.25 342.2.29
9.04 9.80 10.98 12.68
14.27 15.46 22.3H 25.80
1.50 1.63 2.36 2.72
1.25 1.36 1.96 2.26
t.no 1.08 1.57 1.81
0.83 0.90 1.31 1.51
302.2.23 302.2.25 342.2.25 342.2.29 342.2.32
9.04 9.80 10.98 12.68 13.94
12.75 13.81 20.04 23.11 25.38
1.28 1.38 2.00 2.31 2.54
1.06 1.15 1.67 1.93 2.11
0.85 0.92 1.34 1.54 1.69
0.71 0.77 1.11 1.28 1.41
302.2.25 342.2.25 342.2.29 342.2.32
9.80 10.98 12.68 13.94
12.39 18.02 20.78 22.82
1.18 1.72 1.98 2.17
0.98 1.43 1.65 1.81
0.79 1.14 1.32 1.45
0.66 0.95 1.10 1.21
342.2.25 342.2.29 342.2.32
10.98 12.6S 13.94
16.27 18.76 20.60
1.48 1.71 1.87
1.23 1.42 1.56
0.99 1.14
1.25
0.82 0.95 1.04
342.2.25 342.2.29 342.2.32
10.98 12.68 13.94
14.73 16.98 18.65
1.28 1.4K 1.62
1.07 1.23 1.35
0.85 0.98 1.08
0.71 0.82 0.90
342.Z.29 342.2.32
12.68 13.94
15.42 16.93
1.28 1.41
1.07 1.18
0.86 0.94
0.71 0.78
262.2.29
r.
2.46 2.74
142.2.14 142.Z.15 142.Z.l6 142.2.18
•
L (
u
SECTION REFEREN CE
un
J.S5 1.74 1.91 1.21 1.30 1.38 1.67
1>5
1.22
J.S1
DEFLECTION SPAN SPAN 180 360
2000
2400
SPAN3.5m 1.23 1.03
1.37
ULTlMATE U.D.L. IN kN/SPAN DOWN !:!J!!ift MetaiCiaddln~ LOAD Number of Anti Sags
1.14
SPAN4.0m 0.87 0.73 0.93 0.77 0.99 O.K3 1.11 0.92 SPAN4.5m 0.65 0.54 0.93 0.78 1.04 0.87 1.)4 0.95 SPANS.Om 0.73 0.61 0.78 0.65 0.83 0.69 1.00 0.83 1.11 0.92 1.31 1.09 SPANS.Sm 0.54 0.45 0.58 OAK 0.62 0.51 0.82 0.69 0.91 0.76 1.02 0.85 SPAN6.0m 0.65 0.54 0.69 0.58 0.78 0.65 0.92 0.77 1.11 0.93 1.30 1.09 SPAN6.5m 0.61 0.50 0.67 0.56 0.78 0.65 0.92 0.77 1.09 0.91 1.29 1.07 SPAN7.0m 0.65 0.55 0.73 0.61 0.93 0.78 1.10 0.92 1.28 1.07 SPAN7.5m 0.59 0.49 0.81 0.68 0.90 0.75 1.03 0.86 1.12 0.93 SPANB.Om 0.67 0.56 0.74 0.61 0.84 0.70 0.91 0.76 1.26 1.05 SPAN8.5m 0.61 0.51 0.70 0.58 0.75 0.63 1.07 0.89 0.96 1.15 SPAN9.0m 0.63 0.52 0.72 0.60 0.89 0.74 o.so 0.97 SPAN9.5m 0.75 0.63 0.81 0.68 1.18 0.98 1.36 1.13 SPAN lO.Om 0.64 0.53 0.69 0.5S 1.00 0.84 1.16 0.96 1.27 1.06 SPANlO.Sm 0.59 0.49 0.86 0.72 0.99 O.K2 1.09 0.91 SPANll.Om 0.74 0.62 0.85 0.71 0.94 0.78 SPANll.Sm 0.64 0.53 0.74 0.62 0.81 0.6S SPAN n.om 0.64 0.54 0.71 0.59
0
I
9.29 9.86
4.64 4.93
13.95 15.49
8.19 9.11
13.95 15.49
7.11
3.56 3.77 4.04 4.52
12.21
K.08 9.03
13.55 14.83 17.25
7.25 8.07 8.84 10.24
12.21 13.55 14.83 16.98
12.21 13.55 14.83 16.98
5.97 9.22 9.85 10.48
2.98 4.61 4.93 5.24
12.05 13.65 15.27 16.84
7.20 7.40 8.32 9.20
12.05 13.65 15.27 16.84
12.05 13.65 15.27 16.84
7.47 7.98 8.49 11.62 12.37 13.85
3.73 3.99 4.25 5.81 6.18 6.92
12.28 13.75 15.15 16.28 18.02 21.35
6.65 7.49 8.28 7.94 8.83 10.49
12.28 13.75 15.15 16.2K Ut02 21.35
12.2K 13.75 15.15 16.28 18.02 21.35
6.17 6.60 7.02 9.61 10.22 11.44
3.09 3.30 3.51 4.80 5.11 5.72
11.17 12.50 13.78 14.80 16.38 19.41
6.02 6.77 7.49 7.18 7.98 9.48
11.17 12.50 13.78 14.80 16.38 19.21
11.17 12.50 13.7K 14.80 16.3K 19.41
8.07 8.59 9.62 12.94 14.50 16.04
4.04 4.29 4.81 6.47 7.25 8.02
13.57 15.02 17.19 18.05 21.87 25.55
6.52 7.25 8.62 8.39 10.22 11.92
13.32 14.11 15.78 18.05 21.87 25.55
13.57 15.02 17.43 18.05 21.87 25.55
lU9 9.06 11.03 12.36 16.90 18.70
4.10 4.53 5.51 6.18 !1.45 9.35
16.42 18.85 16.67 20.19 23.19 27.35
7.87 9.00 7.69 9.37 10.03 11.83
12.89 14.24 16.67 20.19 23.19 27.35
14.91 16.45 16.67 20.19 23.19 27.35
9.51 10.65 14.57 16.13 18.44
4.75 5.33 7.28 8.06 9.22
15.4!1 18.74 21.53 25.39 30.89
7.07 8.63
9.24 10.90 13.14
15.25 17.06 21.40 23.64 26.90
15.48 1!1.74 21.53 25.39 29.92
9.28 12.69 14.05 16.06 17.39
4.64 6.35 7.02 8.03 8.70
17.49 20.10 23.70 28.83 32.09
8.54 10.08 12.15 13.39
14.26 17.97 19.85 22.59 24.43
16.67 20.10 22.94 26.11 28.22
11.15 12.35 14.12 15.28 21.31
5.58 6.17 7.06 7.64 10.65
llt84 22.22 27.03 30.09 33.34
Ut01 19.89 22.62
13.31
15.12 16.72 190.3 20.59 29.73
33.34
10.94 12.50 13.54 18.87 20.45
5.47 6.25 6.77 9.44 10.22
20.91 25.44 28.32 31.38 35.31
14.16 16.13 17.46 25.43 27.38
17.18 19.54 21.11 29.64 31.95
12.08 13.90 16.84 IR.24
6.04 6.95 H.42 9.12
26.74 31.96 29.64 33.35
21.82 23.50
18.24 20.83 26.05 28.06
15.11 16.37 23.40 26.98
7.56 8.18 11.70 13.49
28.08 31.60 37.68 46.45
18.81 20.27 29.95 34.29
22.84 24.60 35.28 40.40
13.64 14.77 24.35 26.74
6.82 7.39 10.56 12.17 13.37
26.67 30.02 35.80 44.13 50.o7
1&.31 17.58 26.07 29.H7 32.H4
10.04 11.57 31.32 35.S5 39.34
13.40 19.16 22.09 24.26
6.70 9.58 11.04 12.13
28.59 34.09 42.03 47.69
15.34 22.80 26.1J 28.74
18.96 27.77 31.77 34.88
17.45 20.12 22.10
8.73 10.06 11.05
32.54 40.12 45.52
20.03 22.96 25.28
24.64 28.19 30.95
15.97 18.41 20.22
7.98 9.21 10.11
31.13 38.38 43.54
17.68 20.28 22.34
21.90 25.06 27.52
16.91 18.57
8.45 9.29
36.78 41.73
18.00 19.83
22.33 24.53
7.55
21.11
L.
L
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
I
Ver 3.0 I Aug 98
,
I !
l_..,
ARUJP
' 13.95 15.49
24.45
\ j Appendix D - Proprietary Components (8/9)
D.4 Precast hollow composite concrete floors [Bison]
l
LOAD I SPAN TABLE Overall
structural depth mm
Available fire period
Unit depth
SelfWt KN/m' 0.75
200 250 300 375 425 475 525
150 200 250 300 350 400 450
1 Hour or 2 Hours 2 Hours or 4 Hours 2 Hours 2 Hours 2 Hours 2Hours 2 Hours
3.6 4.1 4.5 5.7 6.2 6.6 7.1
8.2 10.5 12.0 14.2 15.7 16.7 18.0
I
Spans indicated below allow for characteristic service load (live load) Plus self weight plus 1.5 kN/m' for finishes Characteristic service loads kN/m1 1.5 2.0 2.5 3.0 10.0 I I 4.0 I 5.0 Effective span in metres 8.2 8.2 8.1 7.9 7.1 7.5 5.8 10.1 9.8 9.6 9.3 8.5 8.9 6.9 11.6 11.3 11.0 10.7 10.1 9.6 7.9 13.7 13.4 13.2 12.9 12.4 12.0 10.3 15.2 14.6 14.9 14.3 13.7 13.3 11.5 16.2 15.9 15.6 15.3 14.7 14.2 12.4 17.4 16.8 17.1 16.5 15.9 15.4 13.4
15.0
I
5.0 6.0 6.8 9.2 10.3 11.1 12.1
' J i I
' j
The above data ts based upon 50 or 75mm structural toppmg ofC30 concrete whtch should be regarded as a mmtmum. Other topping depths may be recommended in some circumstances. Design data for alternative combinations are available from Bison Design Offices. Topping reinforcement, daywork and movement joints should be considered in relation to the overall structural concept of the building.
r-!
Composite Profiles -r-
uooo
Composite depth 200mm 250mm
300mm _________ j __
Composite depth 375 mm 425mm 475 mm 525mm
'
150mm Thick 200111111 250mm
-
75 mm
l
1
300mm Thick 350mm
deplh 50mm at cemre ' of span. Ovemll thickness at bearing
4!Klmm 450mm
1
I
50 or 75 rnm
must tak~ account of
j
!
' J
I
I
[
the camh:r of tl~ slab.
I
___L_ _ _ _ __
1200 mm Nominal width
Simple bearing on top flange of steelwork
Insitu construction
Nominal support reinforcement and/or daywork joints Determined by general layout and site operation
Solid composite floors may be placed on insitu beam downstands or supported on shutters before pouring site concrete
I
j
l
)
I
j
i
~-------------~------------
I ' J 50111111
;\'I in. hearing
Nominal 50 mm hearing ror
'I
!
pn:cast clcmcnls I
J
I
1j l
! I
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY.
Ver 3.0 I Aug 98
ARUJP
)
1I \
J
,-. I
i
I
L r
'L.. Appendix D - Proprietary Components (9/9)
r , I
I
D.S Heavy duty anchors (Hilti HSL) [Hilti- feb 1994] Features:
high loading capacity force controlled expansion reliable pull-down of part fastened suitable for dynamic loading no rotation when tightening bolt
Bolt material:
8.8, ISO 898 Tl Galvanised to min 5 )lm
!.,....
r .
L
r ,
L r ,
L
Versions: Hilti HSLB heavy-duty anchor with inspection control Features: -Automatic torque control Hilti HSLG heavy-duty anchor with threaded rod Feature: -Various threaded rod lengths Settine; Details
I
M 8/20
Anchor Setting details d" rrnn Drill bit diameter h 1 mm Hole d~Qth hnom mm) Min. d9?th of embedment tnx mm Max. thickness fastened I mm Anchor len~tth hn mm) Head wei ht + washer
I M 8/40
20 95
dh nun Max. clearance hole dw mm Washer diameter
r ,
I.......
Drilling system
M 16/251M 16/50
M 20/30 I M 20/60
M 24/301M 24/60
18 100 80
24 125 105
28 155 130
32 180 155
40 115
20 107
4 13
17
25 120
50 145
25 148
II 80
5
14 20 120 TE-C-12/20 TE-Y-12/34 TEIO, TEI4, TE18-M TE24, TE54
Drill bit
40 127 10 50
HSL HSLB
h mm) Min. base material thickness
M 12/25 I M 12/50
15 90 75
7.5 25
Max. gap mm
Sw (mm) Width across flats
Bolt/rod material HSLG 8.8, ISO 898 Tl, galvanised to min 5 )lm HSLG-R: X5CrNi Mol810, 1,4401, A4-70 DIN 267 Til (stainless steel)
M 10/20 IM 10/40
12 80 65
" torque:~ T;n,1(Nm) T 1g h temng HGSGL-R
L
FatJgueJ
8 19 24 20 30 160 TE-C-18/20 TE-Y-18/34
17 25 140 TE-C-15/25 TE-Y-15/34
50 173
14 200 120 9 24 30 26 40 180 TE-C-24125 TE-Y-24132 TE24, TE54, TE74
TE 14, TE 18-M, TE24 TE54
30 183
60 213
17 380 200 12 30 36 31 45 220 TE-Y-28/37
30 205
60 235 19 500
16 36 41 35 50 270 TE-Y-32137
TE54, TE74 TE54, TE74
r '
I
\..-
Recommended load F,o, in kN, non-cracked Concrete f = N/mm', V= 3 0
" Anchor size
Tensile N
L
Combined Load ShearV
0 30 45 60 90
M8 6.9 7.9 8.4 8.8 9.8
MIO 10.4 12.5 13.6 14.6 16.7
Ml2 15.0 18.2 19.8 21.3 24.5
Ml6 25.7 31.3 34.2 37.0 42.6
M20 34.6 42.6 46.6 50.6 58.6
Recommended load for specific application: F"~ = F30 fa fr fA fR Influence of concrete strength fs Fa= I+ 0.02 (I -a/90) (f"·'"- 30) For (20 ~ f"·"'' ~ 55) Influence of depth embedment fT fT =h!!f!
M24 45.5 55.9 61.1 66.2 76.6
hnom
Limiting depth of embedment hlim = 1.5 hnom h," actual embedment depth
r , I
L Influence of anchor spacing and ed2e distance fA, fR Reduction Factors Anchor ~pacing) fA Tensile/Shear Anchor size s MS MIO M12 M16 M20 M24 (mm)
Spacing
r. L.... r.
L r, i
......
Edge Distance M8
c
Reduction Factors Ed e Distance fR Tensile r RN Shear _!Ry_ Anchor size Anchor size MIO Ml2 M16 M20 M24 M8 MIO M12 M16 M20
65 75 80 105 130 155 175 195 225 240 275 315 350 395 430 470
0.70 0.72 0.73 0.79 0.85 0.90 0.95 1.0
0 0.70 0.71 0.76 0.81 0.86 0.90 0.94 1.0
0 0.70 0.74 0.79 0.84 0.87 0.91 0.97 1.0 1.0
0 0.70 0.73 0.77 0.80 0.82 0.87 0.89 0.94 1.0
0 0.70 0.73 0.77 0.80 0.82 0.87 0.89 0.94 1.0
0 0.70 0.71 0.73 0.76 0.78 0.81 0.85 0.88 0.92 0.96 1.0
65 75 80 105 130 155 162 187 200 225 265 275 300 325 350 390
0.70 0.73 0.75 0.82 0.90 0.97 1.0
0 0.70 0.71 0.78 0.85 0.91 0.93 1.0
0 0.70 0.76 0.83 0.88 0.90 0.96 1.0 1.0
0 0.70 0.74 0.79 0.80 0.85 0.88 0.92 1.0 1.0 1.0
0 0 0.73 0.75 0.78 0.80 0.84 0.91 0.92 0.96 1.0 1.0
THIS DOCUMENT IS COPYRIGHT AND IS PUBLISHED FOR DISTRIBUTION ONLY WITHIN THE OVE ARUP PARTNERSHIP. IT IS NOT INTENDED FOR AND SHOULD NOT BE RELIED UPON BY ANY THIRD PARTY. Ver 3.0 I Aug 98 lI
I-
M24
mml
0.70 0.71 0.74 0.75 0.79 0.84 0.85 0.88 0.92 0.95 1.0
0.30 0.37 0.40 0.59 0.77 0.95 1.0
0 0.30 0.33 0.49 0.64 0.80 0.84 1.0
0 0.30 0.44 0.59 0.74 0.78 0.92 1.0 1.0
0 0.30 0.41 0.52 0.55 0.66 0.72 0.83 1.0 1.0 1.0
0 0.30 0.39 0.41 0.50 0.55 0.64 0.79 0.82 0.91 1.0 1.0
0 0.30 0.32 0.39 0.43 0.51 0.63 0.66 0.73 0.81 0.89 1.0
ARUJP
l
_)
~
I
r
l
j
l
I
'
...., I
, I
...., I ' i
l '
'
I
i
J
L
I
' J
'
J
i
;_
)
'
I
i
I I
l l ,
I
"l
I ' J 1'""'1 f
'
)