Welcome! • To Hear the Audio • To Ask Questions – You must have a – Please use the Q&A computer with a panel in the lower soundcard and left-hand corner of speakers or your screen. headphones. – Questions will be – Please click “Yes” answered at the end when prompted to of the presentation. join the VoIP session.
© 2007 ANSYS, Inc. All rights reserved.
1
ANSYS, Inc. Proprietary
ANSYS Structural Dynamics Aline BELEY Pierre THIEFFRY ANSYS, Inc.
© 2006 ANSYS, Inc. All rights reserved.
2
ANSYS, Inc. Proprietary
Rotordynamics
outline outline
Outline 1 2 3 4 5 6 7
Why / what is rotordynamics Equations for rotating structures Rotating and stationary frame of reference Elements that support Coriolis and/or gyroscopic matrices CORIOLIS command Campbell diagram - PLCAMP, PRCAMP, CAMP Backward / forward whirl & instability
© 2007 ANSYS, Inc. All rights reserved.
3
ANSYS, Inc. Proprietary
Rotordynamics
outline outline…
Outline … 8 9 10 11
Multi-spool rotors Whirl orbit plots – PLORB, PRORB Bearing element – COMBIN214 Unbalance response – SYNCHRO
12 Examples - 3D beam - 3D thin disk (solid) - Nelson (beam) - Multi-spool with unbalance (beam) - Transient orbits - Industrial rotor models
© 2007 ANSYS, Inc. All rights reserved.
4
ANSYS, Inc. Proprietary
Rotordynamics
1) 1) why why // what what is is rotordynamics rotordynamics ??
Why rotordynamics ?
• High speed machinery such as Turbine Engine Rotors, Computer Disk Drives, etc. • Very small rotor-stator clearances • Flexible bearing supports – rotor instability
© 2007 ANSYS, Inc. All rights reserved.
5
ANSYS, Inc. Proprietary
Rotordynamics
1) 1) why why // what what is is rotordynamics rotordynamics ??
What is rotordynamics ?
• • • •
Finding critical speeds Unbalance response calculation Response to Base Excitation Rotor whirl and system stability predictions • Transient start-up and stop
© 2007 ANSYS, Inc. All rights reserved.
6
ANSYS, Inc. Proprietary
Rotordynamics
1) 1) why why // what what is is rotordynamics rotordynamics ??
What analysis features are needed ?
• Model gyroscopic moments generated by rotating parts. • Account for bearing flexibility (oil film bearings) • Model rotor imbalance and other excitation forces (synchronous and asynchronous excitation).
© 2007 ANSYS, Inc. All rights reserved.
7
ANSYS, Inc. Proprietary
Rotordynamics
2) 2) theory theory
Typical Rotor – Bearing System
Bearing support coefficients
C xx C yx
C xy u& x K xx & + C yy u y K yx
K xy u x Fx = K yy u y Fy
Bearing coefficients may be function of rotational speed:
C (ω )
© 2007 ANSYS, Inc. All rights reserved.
K (ω )
8
ANSYS, Inc. Proprietary
Rotordynamics
2) theory
Dynamic equation in stationary reference frame
[M ]{u&&} + ([C] + [Cgyr ]){u&} + [K ]{u} = {F}
© 2007 ANSYS, Inc. All rights reserved.
9
ANSYS, Inc. Proprietary
Rotordynamics
3) reference frames
Dynamic equation in rotating reference frame
[M ]{&u& r } + ([C] + [Ccor ]){u& r } + ([K ] − [K spin ]){u r } = {F} Coriolis matrix in dynamic analyses:
[Ccor ] = 2∫ ρ Φ T ω Φ dv
0 ω = ωz − ωy
− ωz 0 ωx
ωy − ωx 0
By extension, the Coriolis force in a static analysis:
{f c } = [Ccor ]{u& r } © 2007 ANSYS, Inc. All rights reserved.
10
ANSYS, Inc. Proprietary
Rotordynamics
3) reference frames
Stationary Reference Frame
Ref: Advanced Analysis Guide – Section 8.4 Choosing the Appropriate Reference Frame Option
© 2007 ANSYS, Inc. All rights reserved.
Rotating Reference Frame
Not applicable in static analysis (ANTYPE, STATIC).
In static analysis, Coriolis force vector can be applied via the IC command
Can generate Campbell plots for computing rotor critical speeds.
Campbell plots are not applicable for computing rotor critical speeds.
Structure must be axi-symmetric about spin axis.
Structure need not be axi-symmetric about spin axis.
Rotating structure can be part of a stationary structure (ex: Gas Turbine Engine rotor-stator assembly).
Rotating structure must be the only part of an analysis model (ex: Gas Turbine Engine Rotor).
Supports more than one rotating structure spinning at different rotational speeds about different axes of rotation (ex: a multi-spool Gas Turbine Engine).
Supports only a single rotating structure (ex: a single-spool Gas Turbine Engine).
11
ANSYS, Inc. Proprietary
Rotordynamics
4) ANSYS elements
Applicable ANSYS element types Stationary Reference Frame
Rel. 10.0
BEAM4, PIPE16, MASS21 BEAM188, BEAM189
Rel. 11.0
SOLID185, SOLID186, SOLID187, SOLID45, SOLID95
Rel. 12.0 (planned)
© 2007 ANSYS, Inc. All rights reserved.
Rotating Reference Frame SHELL181, PLANE182, PLANE183, SOLID185 SOLID186, SOLID187, BEAM188, BEAM189, SOLSH190, MASS21
SHELL181, SHELL63, SHELL93, SOLSH190
12
ANSYS, Inc. Proprietary
Rotordynamics
5) commands
Coriolis / Gyroscopic effect CORIOLIS, Option, --, --, RefFrame Specifies Coriolis effects flag for a rotating structure. SOLUTION: inertia
Option 1 (ON or YES) – Activate Coriolis effects (default). 0 (OFF or NO) -- Deactivate. RefFrame 1 (ON or YES) – Activate stationary reference frame. 0 (OFF or NO) – Deactivate (default).
© 2007 ANSYS, Inc. All rights reserved.
13
ANSYS, Inc. Proprietary
Rotordynamics
5) commands
Specify rotational velocity:
ω
OMEGA, OMEGX, OMEGY, OMEGZ, KSPIN Rotational velocity of the structure. SOLUTION: inertia
activate KSPIN for gyroscopic effect in rotating reference frame (by default for dynamic analyses)
CMOMEGA, CM_NAME, OMEGAX, OMEGAY, OMEGAZ, X1, Y1, Z1, X2, Y2, Z2, KSPIN
Rotational velocity -element component about a user-defined rotational axis. SOLUTION: inertia
© 2007 ANSYS, Inc. All rights reserved.
14
ANSYS, Inc. Proprietary
Rotordynamics – 6) 6) Campbell Campbell diagram diagram
Campbell diagram
•
Variation of the rotor natural frequency with respect to rotor speed ω
•
In modal analysis perform multiple load steps at different angular velocities ω
•
In post processor (POST1), use Campbell commands
– PLCAMP: display Campbell diagram – PRCAMP: print frequencies and critical speeds – CAMPB: support Campbell for prestressed structures
© 2007 ANSYS, Inc. All rights reserved.
15
ANSYS, Inc. Proprietary
Rotordynamics – 6) 6) Campbell Campbell diagram diagram
Campbell diagram PLCAMP, Option, SLOPE, UNIT, FREQB, Cname, STABVAL Option Flag to activate or deactivate sorting SLOPE The slope of the line which represents the number of excitations per revolution of the rotor. UNIT Specifies the unit of measurement for rotational angular velocities FREQB The beginning, or lower end, of the frequency range of interest. Cname The rotating component name STABVAL Plot the real part of the eigenvalue (Hz) © 2007 ANSYS, Inc. All rights reserved.
16
ANSYS, Inc. Proprietary
Rotordynamics – 7) rotor whirl and instability
Rotor whirl motion
y
ω
whirl motion
x Elliptical whirl orbit
© 2007 ANSYS, Inc. All rights reserved.
17
ANSYS, Inc. Proprietary
Rotordynamics – 7) rotor whirl and instability
Rotor whirl motion
As frequencies split with increasing spin velocity, ANSYS identifies: • forward (FW) and backward (BW) whirl • stable / unstable operation • critical speeds (PRCAMP)
© 2007 ANSYS, Inc. All rights reserved.
18
ANSYS, Inc. Proprietary
Rotordynamics – 8) 8) multi-spool multi-spool rotors rotors
Multi-spool rotors
More than 1 spool and / or non-rotating parts, use components (CM) and component rotational velocities (CMOMEGA).
PLCAMP, Option, SLOPE, UNIT, FREQB, Cname
component name SPOOL1 © 2007 ANSYS, Inc. All rights reserved.
19
ANSYS, Inc. Proprietary
Rotordynamics – 8) 8) multi-spool multi-spool rotor rotor
Multi-spool rotors
© 2007 ANSYS, Inc. All rights reserved.
Whirl animation (ANHARM command)
20
ANSYS, Inc. Proprietary
Rotordynamics – 9) 9) whirl whirl orbit orbit plot plot // print print
Whirl orbit plot •
In a plane perpendicular to the spin axis, the orbit of a node is an ellipse
•
It is defined by 3 characteristics: semi axes A , B and phase ψ in a local coordinate system (x, y, z) where x is the rotation axis
•
Angle ϕ is the initial position of the node with respect to the major semi-axis A.
© 2007 ANSYS, Inc. All rights reserved.
21
ANSYS, Inc. Proprietary
Rotordynamics –– 9) 9) whirl whirl orbit orbit plot plot // print print Whirl orbit plot / print Plot orbit: PLORB
Print orbit: PRORB PRINT ORBITS FROM NODAL SOLUTION LOCAL y AXIS OF ORBITS IN GLOBAL COORDINATES 0.0000E+00 0.1000E+01 0.0000E+00 LOAD STEP= 1 RFRQ= 0.0000 ORBIT NODE 1 2 3 4 5
A 0.0000 0.0000 0.38232 0.70711 0.92301
SUBSTEP= IFRQ=
B 0.0000 0.0000 0.38232 0.70711 0.92301
© 2007 ANSYS, Inc. All rights reserved.
4 2.5606
PSI 0.0000 0.0000 0.0000 0.0000 0.0000
LOAD CASE=
PHI 0.0000 0.0000 0.0000 0.0000 0.0000
0
ymax 0.0000 0.0000 0.38232 0.70711 0.92301
22
zmax 0.0000 0.0000 0.38232 0.70711 0.92301
ANSYS, Inc. Proprietary
Rotordynamics – 10) 10) bearing bearing element element
Bearing element COMBI214 • 2D spring/damper with cross-coupling terms • REAL constants are stiffness and damping coefficients • REAL constants can be table parameters varying with spin velocity
© 2007 ANSYS, Inc. All rights reserved.
23
ANSYS, Inc. Proprietary
Rotordynamics – 10) 10) bearing bearing element element
Bearing element
! Example of table parameters input omega1 = 0. KYY1 = 1.e+4 KZZ1 = 1.e+7 omega2 = 250. KYY2 = 1.e+5 KZZ2 = 1.e+7 omega3 = 500. KYY3 = 1.e+6 KZZ3= 1.e+7
REAL constant
/com, Tabular data definition *DIM,KYY,table,3,1,1,omegs KYY(1,0) = omega1 , omega2 , omega3 KYY(1,1) = KYY1 , KYY2 , KYY3 *DIM,KZZ,table,3,1,1,omegs KZZ(1,0) = omega1 , omega2 , omega3 KZZ(1,1) = KZZ1 , KZZ2 , KZZ3 et, 3, 214 keyopt, 3, 2, 1 ! YZ plane r,1, %KYY%, %KZZ%
k = k (ω) c = c (ω) © 2007 ANSYS, Inc. All rights reserved.
Tabular input for
24
ANSYS, Inc. Proprietary
Rotordynamics – 11) 11) unbalance unbalance response response
Unbalance response Possible excitations caused by rotation velocity ω are: – Unbalance (ω) – Coupling misalignment (2* ω) – Blade, vane, nozzle, diffusers (s* ω) – Aerodynamic excitations as in centrifugal compressors (0.5* ω)
© 2007 ANSYS, Inc. All rights reserved.
25
ANSYS, Inc. Proprietary
Rotordynamics – 11) 11) unbalance unbalance response response
Unbalance response Ansys command for SYNCHRO, ratio, – ratio •
–
synchronous and asynchronous forces
cname
The ratio between the frequency of excitation, f, and the frequency of the rotational velocity of the structure.
Cname •
The name of the rotating component on which to apply the harmonic excitation.
Note: The SYNCHRO command is valid only for full harmonic analysis (HROPT,Method = FULL)
ω= 2πf / ratio
where, f = excitation frequency (defined in HARFRQ)
The rotational velocity, ω, is applied along the direction cosines of the rotation axis (specified via an OMEGA or CMOMEGA command) © 2007 ANSYS, Inc. All rights reserved.
26
ANSYS, Inc. Proprietary
Rotordynamics – 11) unbalance response
Unbalance response How to input unbalance forces?
Fy = Fb cos ω t = Fb e j ω t
Fz = Fb sin ω t = Fb cos (ω t - π / 2 ) => Fz = − jF b e j ω t
Fz
! Example of input file
z
/prep7 … F0=m*r F, node, fy, F0 F, node, fz, , - F0
© 2007 ANSYS, Inc. All rights reserved.
Fb = mrω 2 = F0 ω 2
m r
ωt
y
27
Fy ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 1a
Modal analysis of a 3D beam (SOLID185 – SOLID45)
Stationary reference frame
CORIO, on, , , on
r
ω ω = 30,000 rpm © 2007 ANSYS, Inc. All rights reserved.
28
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Analytical solution from beam theory
Ex: 1a Frequencies at 30,000 rpm using
1
0 0
Finite element solution (SOLID185)
0.00000000 j - 0.00000000 j
QRDAMP eigensolver
1 -0.62751987E-08
0.27924146E-03j
-0.62751987E-08
-0.27924146E-03j
2 2
0 0
4.64000956 j - 4.64000956 j 3
3
Ref: Gerhard Sauer & Michael Wolf, ‘FEA of Gyroscopic effects‘, Finite Elements in Analysis & Design, 5, (1989), 131-140
4
0 0 0 0
8.32109166 j - 8.32109166 j 18.5600383 - 18.5600383
5
0 0
33.2843666 j - 33.2843666 j
6
0 0
41.7600861 j 41.7600861 j
less than 0.5% error
4
5
6
7 7
0 0
74.889824 j - 74.889824 j 8
8 © 2007 ANSYS, Inc. All rights reserved.
0 0
74.2401530 j -74.2401530 j 29
0.0000000
4.6316102 j
0.0000000
-4.6316102 j
0.0000000
8.2842343 j
0.0000000
-8.2842343 j
0.0000000
18.515548 j
0.0000000
-18.515548 j
0.0000000
33.062286 j
0.0000000
-33.062286 j
0.0000000
41.619417 j
0.0000000
-41.619417 j
0.0000000
73.890203 j
0.0000000
-73.890203 j
0.0000000
74.113637 j
0.0000000
-74.113637 j ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 1a
Animation of the whirl using ANHARM command
Mode 1 - Backward whirl Mode 2 - Forward whirl
© 2007 ANSYS, Inc. All rights reserved.
30
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 1b
Clamped-free beam in rotating reference frame /com, SOLID185 coriolis, on omega, 2*62.832, 0, 0
! (20 Hz)
Comparison of frequencies SOLID185 / BEAM188 SOLID185 196.42 236.28 658.52 698.06 782.58 1340.9 1380.0
First Bending Second Bending torsion Third Bending
© 2007 ANSYS, Inc. All rights reserved.
31
BEAM188 195.61 235.34 666.36 705.42 782.79 1385.3 1423.5
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 2
Campbell diagram of spinning disk
© 2007 ANSYS, Inc. All rights reserved.
32
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 2
Spinning disk modeled with solid elements (SOLID45)
/com animation of the whirl set,1,5 plnsol,u,sum
anharm ! >>>>>>>> © 2007 ANSYS, Inc. All rights reserved.
33
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples Ex: 3
Nelson rotor modeled with BEAM188 Damped Natural Frequencies (Hz) Whirl
0 rpm
70,000 rpm [1] Ansys
F (Hz)
Ansys
[1]
Ansys
[1]
1
BW
BW
271.2
271.1
214.5
213.6
2
FW
FW
271.2
271.1
329.8
330.6
3
BW
BW
808.8
806.4
762.4
760.0
4
FW
FW
808.8
806.4
844.9
842.6
5
BW
BW
1272.0
1273.0
1068.7
1066.5
6
FW
FW
1272.0
1273.0
1516.2
1522.0
Critical speeds (rpm) Ansys
[1]
15,494
15,470
17,146
17,159
46,729
46,612
50,114
49,983
64,924
64,752
95,747
96,457
© 2007 ANSYS, Inc. All rights reserved.
Ref. [1]: ‘Dynamics of rotorbearing systems using finite elements’, J. of Eng. for Ind., May 1976
34
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 3
Animation of the whirl (Nelson rotor using BEAM188)
/com, animation of the whirl set,1,5 plnsol,u,sum anharm !>>>>>>>>
© 2007 ANSYS, Inc. All rights reserved.
35
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 4
Unbalance response of a twin spool rotor
Twin spool rotor model - 2 spools (BEAM188) - 4 bearings (COMBI214) - 4 disks (MASS21)
Disks are not visible (MASS21) © 2007 ANSYS, Inc. All rights reserved.
36
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 4
Unbalance response of a twin spool rotor (Harmonic Analysis)
! Campbell plot of inner spool plcamp, ,1.0, rpm, , innSpool
© 2007 ANSYS, Inc. All rights reserved.
! Input unbalance forces f0 = 70e-6 F, 7, FY, f0 F, 7, FZ, , -f0
37
! Solve /SOLU antype, harmic synchro, , innSpool
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 4
Unbalance response of a twin spool rotor (Harmonic analysis)
/POST1 set,1, 262 /view, , 1, 1, 1
plorb
! >>>>>
© 2007 ANSYS, Inc. All rights reserved.
38
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 5 Transient orbital motion – rotor instability
unsymmetric bearings
Stable at 30,000 rpm
Unstable at 60,000 rpm
(3141.6 rad/sec)
© 2007 ANSYS, Inc. All rights reserved.
(6283.2 rad/sec)
39
ANSYS, Inc. Proprietary
Rotordynamics – 12) examples
Ex: 5
Modal analysis – rotor instability Damped frequencies from QRDAMP eigensolver
Stable at 30,000 rpm
Unstable at 60,000 rpm
(3141.6 rad/sec)
(6283.2 rad/sec) LOAD STEP OPTIONS
LOAD STEP OPTIONS LOAD STEP NUMBER. . . . . . . . . . . . . . . . 2 INERTIA LOADS X Y OMEGA. . . . . . . . . . . . 3141.6 0.0000
LOAD STEP NUMBER. . . . . . . . . . . . . . . . 3 INERTIA LOADS X Y OMEGA. . . . . . . . . . . . 6283.2 0.0000
Z 0.0000
Z 0.0000
***** DAMPED FREQUENCIES FROM REDUCED DAMPED EIGENSOLVER *****
***** DAMPED FREQUENCIES FROM REDUCED DAMPED EIGENSOLVER *****
MODE
MODE
1 2
COMPLEX FREQUENCY (HERTZ) -27.142724 -27.142724 -0.18391233 -0.18391233
203.90118 j -203.90118 j 272.56561 j -272.56561 j
MODAL DAMPING RATIO
1
0.13195307 0.13195307 0.67474502E-03 0.67474502E-03
2
All complex frequencies real parts are negative
© 2007 ANSYS, Inc. All rights reserved.
COMPLEX FREQUENCY (HERTZ) -30.277781 -30.277781 6.0020412 6.0020412
186.52468 j -186.52468 j 289.58296 j -289.58296 j
MODAL DAMPING RATIO 0.16022861 0.16022861 0.20722049E-01 0.20722049E-01
One complex frequency has a positive real part
40
ANSYS, Inc. Proprietary
Rotordynamics – 12) applications
1
Hard Disk Drive (I.Y. Shen and C.-P. Roger Ku “A non-Classical Vibration Analysis of Multiple Rotating Disks/Shaft Assembly” ASME 1997)
2
1 Model 2 Campbell analysis 3 Mode shapes analysis Blower Shaft 1 Model 2 Modal analysis 3 Unbalance synchronous response 4 Transient start-up 5 Campbell with thermal prestress
© 2007 ANSYS, Inc. All rights reserved.
41
ANSYS, Inc. Proprietary
Hard Disk Drive - model 3 disks HDD sketch
ANSYS 4 disks model Disks thickness = 0.8mm Total mass = 87.5g Spin = 755 rd/s 7855 elements
© 2007 ANSYS, Inc. All rights reserved.
42
ANSYS, Inc. Proprietary
Hard Disk Drive - Campbell
Balanced and Unbalanced modes in Stationary Reference Frame ***** FREQUENCIES (Hz) FROM CAMPBELL (sorting on) ***** Spin(rd/s) 3 4 5 6 7 8 9 10 11 12
BW FW BW BW BW BW FW FW FW BW
0.000 577.879 578.196 654.745 668.441 668.441 668.441 668.759 668.759 668.759 668.834
376.992 521.296 640.950 654.745 611.326 611.326 611.326 731.224 731.224 731.224 668.834
753.984 470.631 709.918 654.744 559.352 559.352 559.352 799.040 799.040 799.040 668.833
(0,1)u (0,0)u (0,1)b (0,0)b
(i,j)x where i is the number of nodal circles j is the number of nodal diameters x is b for balanced or u for unbalanced © 2007 ANSYS, Inc. All rights reserved.
43
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
2 modes (0,1) unbalanced : FW and BW
Disks are vibrating in phase © 2007 ANSYS, Inc. All rights reserved.
Hub is titlting 44
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
Animation of (0,1)u
Hub looks still because its displacements are small compared to the disks displacements © 2007 ANSYS, Inc. All rights reserved.
45
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
6 modes (0,1) balanced : 3 FW and 3 BW
1
2
© 2007 ANSYS, Inc. All rights reserved.
Disks are not vibrating in phase
3
46
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
Animation of first (0,1)b
Hub is still while disks are vibrating © 2007 ANSYS, Inc. All rights reserved.
47
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
1 modes (0,0) unbalanced
Disks are vibrating in phase © 2007 ANSYS, Inc. All rights reserved.
Hub is moving axially 48
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
Animation of (0,0)u
Hub looks still because its displacements are small compared to the disks displacements © 2007 ANSYS, Inc. All rights reserved.
49
ANSYS, Inc. Proprietary
Hard Disk Drive – mode shapes
3 modes (0,0) balanced
1
2
© 2007 ANSYS, Inc. All rights reserved.
Disks are not vibrating in phase
3
50
ANSYS, Inc. Proprietary
Blower Shaft - model
Impeller to pump hot hydrogen rich mix of gas and liquid into Solid Oxyde Fluid Cell. Spin 10,000 rpm
ANSYS Model of rotating part 99 beam elements 2 bearing elements © 2007 ANSYS, Inc. All rights reserved.
51
ANSYS, Inc. Proprietary
Blower Shaft - modal analysis Frequencies and corresponding mode shapes orbits ***** FREQUENCIES (Hz) FROM CAMPBELL (sorting on) ***** Spin(rpm)
0.000
1.00xSpin 1 BW 2 FW 3 BW 4 FW
0.000 115.552 115.552 490.534 490.534
© 2007 ANSYS, Inc. All rights reserved.
5000.000
10000.000
83.333 105.999 124.949 448.773 537.184
166.667 96.640 133.875 413.217 586.075
52
ANSYS, Inc. Proprietary
Blower Shaft – modal analysis Campbell diagram Stability values
Frequency values
© 2007 ANSYS, Inc. All rights reserved.
53
ANSYS, Inc. Proprietary
Blower Shaft – critical speed
First FW critical speed ***** CRITICAL SPEEDS (rpm) FROM CAMPBELL (sorting on) ***** Slope of line : 1 2 3 4
1.000
6222.614 7796.469 none none
Bearings are symmetric so FW critical speeds will be the only excited ones © 2007 ANSYS, Inc. All rights reserved.
54
ANSYS, Inc. Proprietary
Blower Shaft – unbalance response
Harmonic response to disk unbalance - Disk eccentricity is .002” - Disk mass is .0276 lbf-s2/in. - Sweep frequencies 0-10000 rpm
Amplitude of displacement at disk © 2007 ANSYS, Inc. All rights reserved.
Orbits at critical speed 55
ANSYS, Inc. Proprietary
Blower Shaft – unbalance response
Bearings reactions
Forward bearing is more loaded than rear one as first mode is a disk mode.
© 2007 ANSYS, Inc. All rights reserved.
56
ANSYS, Inc. Proprietary
Blower Shaft – start up Transient analysis 10000
- Ramped rotational velocity over 4 seconds
8000
7000 Rotational velocity (rpm)
- Unbalance transient forces FY and FZ at disk
9000
6000
5000
4000
3000
2000
1000
0
0
0.5
1
1.5
2 Time (s)
2.5
3
3.5
4
Zoom of transient force © 2007 ANSYS, Inc. All rights reserved.
57
ANSYS, Inc. Proprietary
Blower Shaft – start up
Displacement UY and UZ at disk zoom on critical speed passage
Amplitude of displacement at disk
Ampl = U y2 + U z2
© 2007 ANSYS, Inc. All rights reserved.
58
ANSYS, Inc. Proprietary
Blower Shaft – start up
Transient orbits 0 to 4 seconds
3 to 4 seconds
As bearings are symmetric, orbits are circular © 2007 ANSYS, Inc. All rights reserved.
59
ANSYS, Inc. Proprietary
Blower Shaft – prestress
Include prestress due to thermal loading: Thermal body load up to 1500 deg F
Resulting static displacements
© 2007 ANSYS, Inc. All rights reserved.
60
ANSYS, Inc. Proprietary
Blower Shaft - prestress
Cambpell diagram comparison No prestress
© 2007 ANSYS, Inc. All rights reserved.
With thermal prestress
61
ANSYS, Inc. Proprietary
Compressor: Compressor: Free-Free Free-Free Testing Testing Apparatus Apparatus used used for for Initial Initial Model Model Calibration Calibration
+Z
Courtesy of Trane, a business of American Standard, Inc.
© 2007 ANSYS, Inc. All rights reserved.
62
ANSYS, Inc. Proprietary
Compressor: Compressor: Location Location of of Lumped Lumped Representation Representation of of Impellers Impellers and and Bearings Bearings
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
63
ANSYS, Inc. Proprietary
Compressor: Compressor: SOLID185 SOLID185 Mesh Mesh of of Shaft Shaft
Very stiff symmetric contact between axial segments
© 2007 ANSYS, Inc. All rights reserved.
64
ANSYS, Inc. Proprietary
Compressor: Compressor: Forward Forward Whirl Whirl Mode Mode
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
65
ANSYS, Inc. Proprietary
Compressor: Compressor: Backward Backward Whirl Whirl Mode Mode
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
66
ANSYS, Inc. Proprietary
Compressor: Compressor: Campbell Campbell Diagram Diagram with with Variable Variable Bearings Bearings
© 2007 ANSYS, Inc. All rights reserved.
67
ANSYS, Inc. Proprietary
Solid Solid Model Model of of Rotor Rotor with with Chiller Chiller Assembly Assembly
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
68
ANSYS, Inc. Proprietary
Meshed Meshed Rotor Rotor and and Chiller Chiller Assembly Assembly
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
69
ANSYS, Inc. Proprietary
Analysis Analysis model model –– Supporting Supporting Structure Structure Represented Represented by by CMS CMS Super Super Element Element
Finite Element Model of Rotor and Impellers
Housing and Entire Chiller Assembly Represented by a CMS Superelement Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
70
ANSYS, Inc. Proprietary
Analysis Analysis Model Model
Bearing Locations
Impellers
Outline of CMS Superelement
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
71
ANSYS, Inc. Proprietary
Typical Typical Mode Mode Animation Animation
Courtesy of Trane, a business of American Standard, Inc. © 2007 ANSYS, Inc. All rights reserved.
72
ANSYS, Inc. Proprietary
Additional v11 Web Events • • • • • • • • • • • •
ANSYS v11 Update v11 Enhancements to Elements, Materials and Solvers ANSYS CFX v11 Update Pressure Vessel Module Rotordynamics with ANSYS v11 ANSYS CFX TurboSystem Fluid Structure Interaction - ANSYS and CFX CFD Analysis with ANSYS CFX ANSYS AUTODYN in Workbench Design Modifications without CAD Up-Front CFD using ANSYS CFX Random Vibration Solutions in Workbench
http://www.ansys.com/special/ansys11/email1.htm © 2007 ANSYS, Inc. All rights reserved.
73
ANSYS, Inc. Proprietary