MECANICA DE ROCAS (MI4060)
DISEÑO EMPIRICO DE CASERONES
Caserones • Los Los cas casero erone ness son son la unida unidad d bási básica ca de explo explotac tació ión n en en min miner ería ía • Estos Estos se pue pueden den deja dejarr vací vacíos os (su (subb-lev level el sto stopi ping) ng),, rel relle lenos nos (cut (cut and and fill) o dejarlos colapsar (caving) • El dis diseñ eño o de caser caseron ones es se real realiz iza a con con gráf gráfico icoss de de esta estabi bilid lidad ad que que incorporan una relación entre la estabilidad del macizo rocoso y el tamaño/forma de la excavación expuesta
Caserones • Los Los cas casero erone ness son son la unida unidad d bási básica ca de explo explotac tació ión n en en min miner ería ía • Estos Estos se pue pueden den deja dejarr vací vacíos os (su (subb-lev level el sto stopi ping) ng),, rel relle lenos nos (cut (cut and and fill) o dejarlos colapsar (caving) • El dis diseñ eño o de caser caseron ones es se real realiz iza a con con gráf gráfico icoss de de esta estabi bilid lidad ad que que incorporan una relación entre la estabilidad del macizo rocoso y el tamaño/forma de la excavación expuesta
Caserones Nivel de perforación y tronadura
Pared colgante (hangingwall) hw
Vista en planta
Nivel de extracción (Geoffrey, 2009)
Caserones
20m
45m
Gráficos de estabilidad A STABLE case history of a single excavation surface s s g a n i m n k i c m o r d f n o a y e t r i u l s a a u e q M
The STABILITY BOUNDARY separates the stable and unstable cases as well as possible. It may be linear or curved.
An UNSTABLE case history of a single excavation surface
Measure of excavation geometry
Son métodos empíricos-no rigurosos, simples de usar. Se pueden dividir en: 1) Con entrada de personal: • Gráfico de luz crítica (Lang, 1994; Wang et al., 2002; Ouchi et al., 2004) 2) Sin entrada de personal: • Gráfico para estabilidad de caserones (Mathews, 1981; Potvin, 1988) • Gráfico de caving (Laubscher, 1987, 1990)
Gráficos de estabilidad • Se pueden utilizar para: – Estudios de pre-factibilidad – Planificación – Back-análisis • Usar SOLO para las condiciones para las que fueron construidos
Gráfico de luz crítica • Utilizado para el diseño inicial de techos en minería por corte y relleno (Cut and Fill) y Room and Pillar • Basado en 292 casos históricos de seis minas Canadienses • Desarrollado para esfuerzo bajos en el techo de la excavación. No incluye condiciones de estallidos de roca • Basado en un gráfico de RMR76 en función de la luz de la excavación • El factor de orientación de discontinuidades no es aplicado directamente. Se restan 10 puntos si hay discontinuidades con dip entre 0° y 60°. Esta corrección es independiente del strike de las discontinuidades relativo a la excavación
Gráfico de luz crítica
La luz crítica se define como el diámetro del circulo mayor que puede ser circunscrito entre pilares y paredes de la excavación
) 2 0 0 2 ( . l a t e g n a W ; ) 4 9 9 1 ( g n a L
) 3 9 9 1 ( l a s i a p g n o V d n a s i n l a k a P
• Estable: sin fallas no controladas, y sin movimiento significativo del techo, y no se necesitan medidas extraordinarias de refuerzo como cables • Potencialmente inestable: existen cuñas potencialmente deslizantes en el techo, o se requiere refuerzo adicional, o existen indicadores de movimiento del techo (más de 1mm en 24 horas) • Inestable: el área a colapsado, o refuerzo adicional no es efectivo
Gráfico de luz crítica
) 9 0 0 2 ( , . l a t e y d a r B
Gráfico de luz crítica Consideraciones: • El techo debe ser reforzado localmente (patrón de pernos) • Condiciones de altos esfuerzos no pueden ser analizados • El techo es horizontal • El término estable se refiere a estabilidad de corto plazo (aproximadamente 3 meses) • Cuñas discretas deben ser reforzadas adecuadamente
Método de estabilidad gráfico • Desarrollado originalmente por Mathews (1981) y modificado por Potvin (1988) • Para el diseño de caserones sin entrada de personal • Considera que los siguientes factores controlan el diseño de estabilidad de los caserones: Tamaño, forma y orientación de la excavación, Resistencia de la roca y estructura, Esfuerzos en las paredes del caserón. − − −
• Basado en el desarrollo de dos factores: N ’ el numero de estabilidad, S factor de forma o radio hidráulico. − −
Método de estabilidad gráfico Número de estabilidad N’
N ' Q' A B C Q'
A B C
Índice Q de Barton modificado
Q
RQD J r J w
Factor de esfuerzos
J N J a SRF
Factor de orientación de discontinuidades Q'
Factor de ajuste por gravedad
Rango
RQD J r J N J a
RQD/ J n
J r /J a
A
B
C
N’
Máximo
0,5 – 200
0,025 – 5
0,1 – 1
0,2 – 1
2–8
0,0005 – 8000
Típico (roca dura)
2,5 – 25
0,1 – 5
0,1 – 1
0,2 – 1
2–8
0,1 – 1000
Método de estabilidad gráfico Factor de esfuerzos A
• Esfuerzos totales relativo a la resistencia a la compresión uniaxial de roca intacta • Medida del efecto de fracturamiento por esfuerzos • Determinar el esfuerzo total máximo que actúa en el centro de la cara de interés del caserón mediante ábacos, soluciones analíticas, modelos numéricos 2D/3D lineal-elásticos
Método de estabilidad gráfico Factor de esfuerzos A Examine 2D - Análisis de esfuerzos (elementos de borde) Descargar gratis de: http://www.rocscience.com/ 10
20
• Distribución de 1 (MPa) alrededor de un caserón de 5 m de ancho y 10 m de alto Esfuerzos: • Techo 31,7 MPa • Pared colgante -1,6 MPa (Relajación) ≈
≈
Al aplicar el factor A los esfuerzos durante la vida útil del caserón deben ser anticipados
Método de estabilidad gráfico Factor de esfuerzos A Comparación de A con el gráfico para determinar los valores de SRF utilizando el sistema Q • Notar la disminución de SRF para la zona de confinamientos medios • Comparar con A • Es esto consistente?
Método de estabilidad gráfico
A versus SRF
1/A
10
?
1
• Similar a SRF en la región de medios y altos confinamientos • A debería disminuir en la zona de bajos confinamientos • El factor A no toma en cuenta falla en tensión ( A = 1)
Método de estabilidad gráfico Factor de orientación B • El sistema Q no incluye la orientación de discontinuidades relativo a la superficie de la excavación
• Basado en el juicio de “expertos” y observaciones de terreno
Método de estabilidad gráfico Factor de orientación B
1. entre 60 y 90: Difícil que las discontinuidades deslicen 2. entre 30 y 60: Alto potencial de deslizamiento de las discontinuidades 3. entre 0 y 30: Alta probabilidad para que puentes de roca sean destruidos por tronadura, esfuerzos y otras discontinuidades
Método de estabilidad gráfico Factor de orientación B • Ejemplo 1 – Utilizando red stereografica
Cara-1=20° Cara-2=53 ° Cara-3=71 °
BC-1=0,2 BC-2=0,65 BC-3=0,88
Método de estabilidad gráfico Factor de orientación B Repetir para los tres sistemas
• Ejemplo 2 – Utilizando Dips
h/w-J1 = 78° h/w-J2 = 88° h/w-J3 = 51°
back
h/w
f/w
J1: Dip=50° , DD=310° J2: Dip=45° , DD=340° J3: Dip=60° , DD=150°
h/w J1
Strike=120 ° Dip=60 ° Diproof =0
Diph/w=60°
DDroof =210 ° DDh/w=210°
h/w-J1 = 0,91 h/w-J2 = 0,98 h/w-J3 = 0,60
J3 es crítica para h/w
Método de estabilidad gráfico Factor de orientación B • Ejemplo 3 – Calculo directo del ángulo real Dado el Dip y DipDirection de un plano, el trend y plunge del polo correspondiste quedan dados por: T Trend DipDirection 180 P Plunge 90 Dip
Para una pared, w, del caserón y plano de la discontinuidad, j, los cosenos directores con respecto a un sistema de coordenadas globales (Norte, Este, Profundidad) denotado por N, E, D quedan dados por: N w cosT w cosPw
N j cos T j cos P j
E w sin T w cosPw
E j sin T j cosP j
Dw sin Pw
D j sin P j
Método de estabilidad gráfico Factor de orientación B • Ejemplo 3 – Calculo directo del ángulo real Calcular el producto punto, w• j ,entre la pared del caserón y el plano de la discontinuidad:
w • j N w N j E w E j Dw D j El ángulo real entre los planos, , queda dado por:
arccosw • j
Método de estabilidad gráfico Factor de orientación B – casos especiales • Discontinuidades horizontal o cara del caserón horizontal Dip 0 ≈
• Discontinuidad o superficie del caserón sub-vertical Dip 90 ≈
Método de estabilidad gráfico Factor de ajuste por gravedad C 1) Determinar el modo de falla estructural
2) Determinar el factor C basándose en el modo de falla
Método de estabilidad gráfico Factor de ajuste por gravedad C Ejemplo 1:
DIPw=70 STRIKEw=240 DDw=330 J1: DIP1=45 DD1=330
DD1
DDw
Dip1 Dipw STRIKE=240
DDw DD1
Método de estabilidad gráfico Factor de ajuste por gravedad C Ejemplo 2:
DIPw=70 STRIKE=240 DDw=330
DDw
J1: DIP1=45 DD1=150
DDw Dipw
DD1 Dip1
STRIKE=240
DD1
Método de estabilidad gráfico Radio hidráulico HR • Medida del área expuesta de una superficie HR
Area de la superficie analizada Perimetro de la superficie
Cuadrada (luz corta máxima)
HR
Caserón túnel (luz corta mínima)
w h
2 w 2h
Método de estabilidad gráfico Limite de estabilidad sin refuerzo
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
• 189 casos • Estable: poco o ningún deterioro durante el periodo de servicio • Inestable: caserones con falla limitada en las paredes, involucrando menos del 30% de la superficie • Caving: caserones presentan cantidad de falla inaceptable
Método de estabilidad gráfico Limite de estabilidad de refuerzo con cables
• 112 casos ) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
• Curva superior : el cableado es confiable • Curva inferior : limite de efectividad del cableado • Cables no pueden soportar bajo la curva inferior
Método de estabilidad gráfico Curvas de diseño combinadas
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
• Indica si el caserón será estable, requerirá soporte, o será inestable • El diseño del cableado se realiza con otro gráfico
Método de estabilidad gráfico Densidad de cableado y longitud • La densidad del cableado depende del tamaño de bloque relativo al tamaño de la excavación (RQD/Jn)/HR ) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
• A medida que el tamaño de bloque disminuye es necesario una densidad mayor
• Cables son inefectivos si ( RQD/Jn)/HR<0.6
• La longitud del cable depende de HR:
L=1,5xHR L hasta 15 m y HR hasta 10m
Método de estabilidad gráfico Densidad de cableado y longitud • Ejemplo: ) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
S
cables Densidad 2 Espaciamiento m 2 1
1 Densidad m 1
Espaciamiento
RQD 90 3 sets
RQD 10 J N 9 J N
Caseron hw 30mx15m HR
15 x30 15 15 30 30
RQD J N HR
S
10 5
2
Espaciamiento
1 4,4 m 0,23 m 1
L 1,5 HR 7,5 m
5 m
Método de estabilidad gráfico Densidad de cableado y longitud
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
• Datos en un nuevo gráfico sin HR • La zona de diseño es para caserones sin entrada de personal, excavaciones no permanentes • Bloques de mayor tamaño requieren menores densidades de cables
Método de estabilidad gráfico Calibración curvas de estabilidad a condiciones locales
• Predisposición en el diseño hacia las condiciones mineras Canadienses • Utilizar el método como una herramienta preliminar hasta que datos locales son colectados
Método de estabilidad gráfico Limitaciones
d)
e)
f)
g)
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
Método de estabilidad gráfico Limitaciones Caso A‐ Pared Colgante B‐ Techo C‐ Pared Colgante D‐ Techo
z (m) 200 600 150 1000
s1 (MPa) 10 20 8 60
UCS (MPa) 80 115 160 180
Caso A‐ Pared Colgante B‐Techo C‐Pared Colgante D‐ Techo
UCS/s1 8 5.75 20 3
A 0.78 0.52 1.00 0.21
Caso A‐ Pared Colgante B‐ Techo C‐ Pared Colgante D‐ Techo
Modo de falla Slabbing Slabbing‐Gravity fall Sliding Gravity fall
Caso A‐ Pared Colgante B‐ Techo C‐ Pared Colgante D‐ Techo
N' 9.3 9.4 9.6 9.6
w (m) 20.0 18.0 25.0 22.0
RQD 40 60 85 90
RQD/Jn 10 10 7.1 15
Jr/Ja 0.5 3 0.75 1.5
Q´ 5.0 30.0 5.3 22.5
B 0.0 0.3 0.0 0.3 0.0 0.3 90.0 1.0
Dip cara/disontinuidad 90.0 0.0 50.0 0.0
L (m) 40.0 55.0 30.0 34.0
C 8.0 2.0 6.0 2.0
RH (m) 6.7 6.8 6.8 6.7
(Hutchinson and Diederichs, 1996)
Método de estabilidad gráfico Limitaciones
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
Método de estabilidad gráfico Estimación de dilución Línea de minería Dilución no planeada Dilución planeada Cuerpo mineralizado
) 4 9 9 1 , s s o M d n a e l b o c S (
% Dilución
Dilución no planeada (t) Toneladas planeadas (t)
100
Método de estabilidad gráfico Estimación de dilución Es posible estimar la dilución a través del numero de cargas de mineral y estéril removidos del caserón
) 6 9 9 1 , s h c i r e d e i D d n a n o s n i h c t u H (
Cavity monitoring survey (CMS) Miller et al. (1992) Permite una mejor estimación del volumen de dilución y de la estabilidad del caserón Un láser scan es montado en un hombro telescopico que es extendido dentro del caserón o bajado por un sondaje El láser rota en 3D para obtener una imagen de la superficie de la excavación
Método de estabilidad gráfico Estimación de dilución
) 9 0 0 2 , y e r f f o e G (
Con el uso de datos de CMS, Clark and Pakalnis (1997) definieron el término ELOS (Equivalent Linear Ovebreak/Slough) para cuantificar la sobre excavación en las paredes del caserón
ELOS (m)
volumen de sobre excavación en la pared
% Dilución
área de la pared
ELOS
ancho del mineral
profundidad de falla promedio
Método de estabilidad gráfico Estimación de dilución Zona estable: Solo daño tronadura: ELOS < 0,5 m Inestabilidad: ELOS: 0,5-1 m Inestabilidad mayor: ELOS: 1-2 m Zona colapso: ELOS > 2 m
Caving Mecanismos de caving • Desconfinamiento o caving gravitacional inducido por discontinuidades • Stress Caving: el caving se encuentra en propagación a superficie. Envuelve falla de corte en discontinuidades y fracturamiento de roca • Subsidence caving: el caving se produce en contra de un área previamente hundida • No hay caving
) 3 0 0 2 (
n w o r B
Caving Mecanismos de caving Rock Tunneling Quality, Q
LEGEND : Successful Cave Caving required inducement Coarse fragmentation
y r a d n u k c o o B n R t o c i t a a t n v I a f c o x E h t n g i n s e r s t e r S t e S v e i s v i s s e r s e p r m p o m C o l C i a d x e i a c n u d U n I m u m i x a M : o i t a R
0.01
Extremely Poor
1.0
1
Very Poor
4
10
40
100
400
1000
Poor Fair Good V.G. Extr. Exc. Good G. Stress Induced
Not Practical to Maintain Stable Openings
0.8
Failure
0.6
G
D
H
0.4
E
A
I
Stress Caving
0.2
F
B
Caving n ot Practical
C
Gravity Caving 0.0
Very Poor 0
Moss et al. (1998)
0.1
Poor 20
Fair 40
Good 60
Rock Mass Rating , RMR
Very Good 80
100
Caving Aproximaciones al análisis de hundibilidad • Experiencia práctica • Gráficos empíricos • Análisis estructural • Análisis numérico
Caving Grafico de hundibilidad Gráfico Gráfico razonable para MRMR < 50
Stable: requiere solo soporte de cuñas Transición: refuerzo intensivo es requerido para mantener estabilidad
Barlett (1998)
Caving Gráfico de hundibilidad
) 3 0 0 2 ( c i v o l u z r a K d n a s e r o l F
Referencias • • • • • • • • • • • • • •
Lang, B. (1994). Span design for entry-type excavations. MSc Thesis, University of British Columbia. Wang, J., Milne, D. and Pakalnis, R. (2002). Application of a neural network in the empirical design of underground excavation spans. Trans. Insts. Min. Metall. (Sect. A: Min. technol.), 111, A73-A81. Mathews, K.E., Hoek, E., Wyllie, D.C. and Stewart, S.B.V. (1981). Prediction of stable excavation spans at depths below 1000m in hrad rock mines. CANMET Report, DSS Serial No. OSQ80-00081. Potvin, Y. (1988). Empirical open stope design in Canada. PhD Thesis, University of British Columbia. Bartlett, P.J. (1998). Planning a mechanised cave with coarse fragmentation in kimberlite. PhD thesis, University of Pretoria. Flores, G. and Karzulovic, A. (2003). Geotechnical guideline for a transition from open pit to underground mining: Geotechnical characterization. Report to International Caving Study II. Brisbane: JKMRC. Moss, A., Diachenko, S. and Townsend, P. (2006). Interaction between the block cave and the pit slopes at Palabora Mine. In Stability of Rock Slopes in Open Pit Mining and Civil Engineering Situations, Johannesburg, 3-6 April 2006. Johannesburg: SAIMM, Symposium Series S44, 399-410. Clark, L. (1998). Minimizing dilution in open stope mining with a focus on stope design and narrow vein longhole blasting. MSc. Thesis, University of British Columbia, Canada, 316p. Suorineni, F.T., Tannant, D.D., and Kaiser, P.K. (1999). Determination of fault-related sloughage in open stopes. International Journal of Rock Mechanics and Mining Sciences, 36, 891-906. Suorineni, F.T. (1998). Effects of faults and stress on open stope design. PhD Thesis, University of Waterloo. Suorineni, F.T., Tannant, D.D. and Kaiser, P.K. (1999). Fault factor for then stability graph method of open stope. Trans. Insts. Min. Metall. (Sect. A: Min. industry), 108. Hutchinson, D.J. and Diederichs, M.S. (1996). Cablebolting in Underground Mines.. Bitech Publishers Ltd., Vancouver. 416p Capes, G.W. (2009). Open stope hangingwall design based on general and detailed data collection in rock masses with unfavourable hangingwall conditions. PhD Thesis, University of Saskatchewan. Bawden, W.F. (1993). The use of rock mechanics principles in Canadian underground hard rock mine design. Comprehensive Rock Engineering Principles, Practice and Projects, (ed. Hudson), Oxford: Pergamon Press, 5, 247-290.