Al-Khaw Al-Khawariz arizmi mi Insti Institute tute of Comp Computer uter Scienc Sciencee Univeristy of Engineering and Technology, Lahore Pakistan
LAB WORKBOOK
Parallel Programming With CUDA Summar Short Course
August 2009 © Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
TABLE OF CONTENTS
.......................................... ............................ ............................ ............................ ............................ ........................... ........................... ............................ .............. 4 1 INTRODUCTION ............................
1.1 1.2 1.3
......................................... ........................... ............................ .............. 4 GENERAL PURPOSE GRAPHIC PROCESSING UNIT (GPGPU) ............................ COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA) ........................... ......................................... ............................ ............................ ....................... ......... 4 ........................................ ............................ ............................ ............................ ............................ ............................ ............................ ....................... ......... 4 M AIN OBJECTIVES ..........................
......................................... ........................... ............................ .............. 5 2 SETTING UP CUDA DEVELOPMENT ENVIRONMENT ............................
2.1 2.2 2.3 2.4 2.5
V ERIFYING ERIFYING THAT YOU HAVE A CUDA-C APABLE S YSTEM ............................ .......................................... ............................ ............................ .................. .... 5 ........................................ ............................ ............................ ....................... ......... 6 DOWNLOADING CUDA DEVELOPMENT COMPONENTS .......................... INSTALLING CUDA SOFTWARE COMPONENTS ............................ .......................................... ........................... ........................... ............................ ..................... ....... 6 V ERIFYING ERIFYING CUDA INSTALLATIONS............................ .......................................... ............................ ............................ ............................ ............................ ....................... ......... 8 GENERAL PROCEDURE OF PROGRAMMING IN CUDA ........................... ......................................... ............................ ............................ ....................... ......... 11
......................................... ............................ ............................ ............................ ............................ ............................ ....................... ......... 11 3 PROGRAMMING IN CUDA ...........................
3.1 3.2 3.3 3.4
PROGRAMMING EXERCISE 1 (HELLO W ORLD ORLD ) .......................... ........................................ ............................ ............................ ............................ ..................... ....... 11 .......................................... ............................ ............................ ................ .. 13 PROGRAMMING EXERCISE 2 (M ATRIX MULTIPLICATION ) ............................ PROGRAMMING EXERCISE 3 (NUMERICAL CALCULATION OF VALUE OF PI ( Π )) .......................... ........................................ .............. 17 .......................................... ........................... ........................... ............................ ................... ..... 20 PROGRAMMING EXERCISE 4 (P ARALLEL SORT ) ............................
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
LAB WORKBOOK This workbook is written for assisting the students of Summer Short Course on “Parallel Programming With CUDA” at Al-Khawarzmi Institute of Computer Science (KICS). This edition was prepared over a short period of two months and was finalized in July 2009. The contents of this document have been compiled from various academic resources to expose the students to Genral Purpose Graphic Processing Units (GPGPU) and Nvidia’s Compute Unified Device Architecture (CUDA) in a hands-on fashion. For Further information, please contact the KICS at UET, Lahore:
Telephone: (042) 992 50450 Fax: (042) 992 50246 Email:
[email protected]
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
1
Introduction
Multicore and Many-core systems provide within-the-box parallel processing capabilities. Computing task that were run on supercomputers in past are now able to run on desktops provided that we know the capabilities of available hardware, and software techniques to exploit these available resources.
1.1
General Purpose Graphic Processing Unit (GPGPU)
Graphic Processing Unit (GPU) available on commodity video adapters has evolved into highly parallel, multithreaded, Many-core processor, thanks to gaming industry. These GPUs have huge computational power as well as very high memory bandwidth that can be exploited by general purpose high performance applications. These programmable GPU are also known as general purpose graphic processing units (GPGPU, from now onward we will use term GPU). GPU is specialized for compute-intensive, highly parallel computation just like graphics rendering is done. GPU is based on SIMD architectural model and utilized by data-parallel programming model.
1.2
Compute Unified Device Architecture (CUDA)
Nvidia Corporation, market leader in GPU market, introduced a general purpose parallel computing architecture in November 2006, to harness the computing capabilities of their high-end GPUs. Compute Unified Device Architecture (CUDA) is based on a new parallel programming model and instruction set architecture that leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than on a CPU. CUDA comes with a software environment that allows developers to use C as a high-level programming language. Other languages such as FORTRAN, C++, OpenGL, and DirectX will be supported in the future.
1.3
Main Objectives
The objective of this lab is to become familiar with parallel programming using CUDA. It will give you an idea that how we can run CUDA programs on systems with and without CUDA-capable GPU. Programming exercises will enable you to decompose a certain complex problem into portions that could run in parallel using data-parallel programming model. Following activities are intended to be carried out in this lab: • • •
Verification of CUDA-capable system Installation and verification of CUDA software components Programming exercises o Hello world o Matrix Multiplication o Numerical calculation of the value of π o Parallel Sort
At the end of this lab, you should be able to: • • •
Setup CUDA development environment Write, compile and run CUDA programs on Nvidia device as well as on x86 multicore systems in device emulation mode. Use data parallel programming model © Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
2
Setting up CUDA development environment
To use CUDA on your system, you will need a supported version of Linux with a gcc compiler and toolchain, CUDA software (available freely at http://www.nvidia.com/cuda) and a CUDA-capable GPU. If you do not have a CUDA-capable GPU, you can still use CUDA in device emulation mode. Device emulation mode is basically for debugging purposes and obviously, does not offer as much performance as with a CUDAcapable GPU. So device emulation mode should not be used for release versions and performance tuning. After installing CUDA software, we need to test our CUDA build environment by compiling and running one or more sample programs (available in CUDA SDK). This will validate that hardware and software are running and communicating correctly.
2.1 Verifying that you have a CUDA-Capable System Before starting installation of different CUDA software components, we should verify that we have supported version of Linux with a gcc compiler, toolchain and optionally CUDA-capable Nvidia GPU.
2.1.1
Verify Nvidia video adapter
Enter the following command to verify Nvidia video adapter,
Note: Skip this section if your system is not equiped wih a CUDA-capable Nvidia GPU. [root@gm gm]# lspci |grep -i nVidia 01:00.0 VGA compatible controller: nVidia Corporation GeForce 9600M GT (rev a1)
[root@gm gm]#
If you do not see anything, either you do not have an Nvidia graphic adapter or you have to update PCI hardware database, maintained by Linux, using following command. If your network connection is fine, output should look like below. [root@gm gm]# update-pciids % Total 100
148k
% Received % Xferd 100
148k
0
0
Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 6241k 0 --:--:-- --:--:-- --:--:-- 6767k
Done. [root@gm gm]#
2.1.2
Verify supported version of Linux
Current version (2.2) of CUDA software components requires an x86-based Linux distribution. Following command checks distribution and release number of running system, [root@gm gm]# uname -i && cat /etc/*release i386 Fedora release 10 (Cambridge) Fedora release 10 (Cambridge) Fedora release 10 (Cambridge) [root@gm gm]#
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
Output shows that running system is 32-bit (i386) Fedora version 10. On a 64-bit system running in 64-bit mode the typical output will be x86_64. Version 2.2 of CUDA development tools support only following distributions: Red Hat Enterprise Linux 4.3-4.7, 5.0-5.3 SUSE Enterprise Desktop 10-SP2 Open SUSE 11.0 or 11.1 Fedora 9 or 10 Ubuntu 8.04 or 8.10
You should frequently visit CUDA download page for updates because other distributions are promised to be supported latter.
2.1.3
Verifying gcc
Current CUDA development tools supports version 3.4, 4.x of gcc. You can check the version of currently installed gcc by issuing the following command: [root@gm gm]# gcc --version gcc (GCC) 4.3.2 20081105 (Red Hat 4.3.2-7) Copyright (C) 2008 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. [root@gm gm]#
2.2 Downloading CUDA development components You can get CUDA software components from http://www.nvidia.com/object/cuda_get.html. Read the instructions given on this page carefully and download necessary files. Nvidia CUDA Driver is not necessary if you do not have Nvidia GPU and want to run CUDA programs in device emulation mode.
2.3 Installing CUDA software components Uninstall any previously installed versions of CUDA SDK and toolkit, by just deleting the directory containing these packages. Default directory for toolkit and SDK are /usr/local/cuda/ and ~/NVIDIA_CUDA_SDK/ respectively. If you want to keep older versions, just rename these directories.
2.3.1
Installing CUDA driver Note: You do not have to install CUDA driver if you don't have an Nvidia GPU (cuda capable). If tried, You will see an error like "You do not appear to have an NVIDIA GPU supported by the 185.18.14 NVIDIA Linux graphics driver installed in this system."
You need to shutdown x server before installing the driver (best way is to change id:5:initdefault: to id:3:initdefault: in /etc/inittab file and reboot). You will get console only (No graphics). Secondly, you must have source code of running kernel (if needed) that can be installed by issuing following command: [root@gm gm]# yum install kernel-devel
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
More information about driver installation is available on http://us.download.nvidia.com/XFree86/Linux-x86/1.0-9755/README/index.html . To install driver, first of all exit the GUI (ctl-alt-backspace). On available command line issue the following commands to turn off x windows as a superuser, install driver and r estart GUI environment, respectively. [root@gm gm]# password: [root@gm gm]# [root@gm gm]# [root@gm gm]# [root@gm gm]#
su /sbin/init 3 cd
./NVIDIA-Linux-x86-185.18.14-pkg1.run /sbin/init 5
You can also issue the following command to start the GUI environment, [root@gm gm]# startx
Make sure your internet connection is working fine. Follow the instruction displayed on your screen. Note: You can verify driver release by running [root@gm gm]# /usr/bin/nvidia-settings
2.3.2
the
following
command,
Installing CUDA toolkit
Just issue following commands, [root@gm gm]# cd [root@gm gm]# ./cudatoolkit_2.2_linux_32_fedora10.run
(Output omitted for the sake of brevity)
2.3.3
Setting environment variables
Issue following commands, [root@gm gm]# export PATH=/usr/local/cuda/bin/:$PATH [root@gm gm]# export LD_LIBRARY_PATH=/usr/local/cuda/lib/:$LD_LIBRARY_PATH
You can make these settings permanent by putting the above mentioned commands to
2.3.4
Configuring CUDA libraries
Add LD_LIBRARY_PATH=/usr/local/cuda/lib/:$LD_LIBRARY_PATH to and issue the following command,
/etc/ld.so.conf
[root@gm gm]# ldconfig
2.3.5
~/.bashrc
Installing CUDA SDK
[root@gm gm]# cd [root@gm gm]# ./cudasdk_2.21_linux.run
(Output omitted for the sake of brevity) © Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
2.3.6
Installing CUDA Debugger
[root@gm gm]# cd [root@gm gm]# ./cudagdb_2.2_linux_32_rhel5.3.run
(Output omitted for the sake of brevity)
2.4 Verifying CUDA installations After installation, best practice is to validate the installed packages and environment setting.
2.4.1
Verifing CUDA environment
[root@gm gm]# env ORBIT_SOCKETDIR=/tmp/orbit-gm HOSTNAME=gm.kics-uet TERM=xterm SHELL=/bin/bash XDG_SESSION_COOKIE=871a3cd51587ff750aec3a5049a408c9-1247661191.484531-1772071398 HISTSIZE=1000 GTK_RC_FILES=/etc/gtk/gtkrc:/home/gm/.gtkrc-1.2-gnome2 WINDOWID=31457334 QTDIR=/usr/lib/qt-3.3 QTINC=/usr/lib/qt-3.3/include http_proxy=http://10.11.20.20:8888/ USER=gm
LD_LIBRARY_PATH=/usr/local/cuda/lib/: LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:do=00;35:bd=40;33;01:cd=40;3 3;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44: ex=00;32:*.tar=00;31:*.tgz=00;31:*.svgz=00;31:*.arj=00;31:*.taz=00;31:*.lzh=00;31:*.lz ma=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:*.dz=00;31:*.gz=00;31:*.bz2=00;31:*.tbz2=00;3 1:*.bz=00;31:*.tz=00;31:*.deb=00;31:*.rpm=00;31:*.jar=00;31:*.rar=00;31:*.ace=00;31:*. zoo=00;31:*.cpio=00;31:*.7z=00;31:*.rz=00;31:*.jpg=00;35:*.jpeg=00;35:*.gif=00;35:*.bm p=00;35:*.pbm=00;35:*.pgm=00;35:*.ppm=00;35:*.tga=00;35:*.xbm=00;35:*.xpm=00;35:*.tif= 00;35:*.tiff=00;35:*.png=00;35:*.mng=00;35:*.pcx=00;35:*.mov=00;35:*.mpg=00;35:*.mpeg= 00;35:*.m2v=00;35:*.mkv=00;35:*.ogm=00;35:*.mp4=00;35:*.m4v=00;35:*.mp4v=00;35:*.vob=0 0;35:*.qt=00;35:*.nuv=00;35:*.wmv=00;35:*.asf=00;35:*.rm=00;35:*.rmvb=00;35:*.flc=00;3 5:*.avi=00;35:*.fli=00;35:*.gl=00;35:*.dl=00;35:*.xcf=00;35:*.xwd=00;35:*.yuv=00;35:*. svg=00;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.m p3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36: SSH_AUTH_SOCK=/tmp/keyring-qpkd1F/ssh GNOME_KEYRING_SOCKET=/tmp/keyring-qpkd1F/socket USERNAME=gm SESSION_MANAGER=local/unix:@/tmp/.ICE-unix/2747,unix/unix:/tmp/.ICE-unix/2747 DESKTOP_SESSION=gnome PATH=/usr/local/cuda/bin/ :/usr/kerberos/sbin:/usr/lib/qt3.3/bin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin :/home/gm/bin MAIL=/var/spool/mail/gm PWD=/home/gm/Desktop XMODIFIERS=@im=imsettings GNOME_KEYRING_PID=2745 LANG=en_US.UTF-8 GDM_LANG=en_US.UTF-8 GDMSESSION=gnome SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass HOME=/root SHLVL=3
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
no_proxy=localhost,127.0.0.0/8 GNOME_DESKTOP_SESSION_ID=this-is-deprecated LOGNAME=gm QTLIB=/usr/lib/qt-3.3/lib DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbusE9ZoYtPeZC,guid=4328bc8674e6eb0b12d4ef874a5dcc87 LESSOPEN=|/usr/bin/lesspipe.sh %s DISPLAY=:0.0 G_BROKEN_FILENAMES=1 XAUTHORITY=/root/.xauth5fdjoq COLORTERM=gnome-terminal _=/usr/bin/env OLDPWD=/home/gm
2.4.2 Verify CUDA compiler nvcc is compiler driver for CUDA programs. It calls gcc compiler for C code and NVIDIA PTX compiler
foe CUDA code. To verify, enter one of the following commands: [root@gm gm]# which nvcc /usr/local/cuda/bin/nvcc [root@gm ~]# nvcc –V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2009 NVIDIA Corporation Built on Thu_Apr__9_07:37:20_PDT_2009 Cuda compilation tools, release 2.2, V0.2.1221 [root@gm ~]#
2.4.3
Compiling Sample Projects
[root@gm gm]# cd [root@gm gm]# make
The resulting binaries will be in NVIDIA_CUDA_SDK/bin/linux/release
2.4.4
Compiling Sample Projects in emulation mode
[root@gm gm]# cd [root@gm gm]# make emu=1
The resulting binaries will be in NVIDIA_CUDA_SDK/bin/linux/emurelease.
2.4.5
Running deviceQuery and bandwidthTest Note: You do not need to run deviceQuery and bandwidthTest if you don't have an Nvidia GPU (cuda-capable). In this case, you can try some other executable from nvidia_CUDA_SDK/bin/linux/emurelease directory
To run deviceQuery, on SELinux-enabled systems, you may need to disable this security feature using setenforce command. Run ./deviceQuery in /bin/linux/release.
[root@gm gm]# setenforce 0
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
[root@gm gm]# cd /bin/linux/emurelease [root@gm release]# ./deviceQuery CUDA Device Query (Runtime API) version (CUDART static linking) There is 1 device supporting CUDA Device 0: "GeForce 9600M GT" CUDA Capability Major revision number: CUDA Capability Minor revision number: Total amount of global memory: Number of multiprocessors: Number of cores: Total amount of constant memory: Total amount of shared memory per block: Total number of registers available per block: Warp size: Maximum number of threads per block: Maximum sizes of each dimension of a block: Maximum sizes of each dimension of a grid: Maximum memory pitch: Texture alignment: Clock rate: Concurrent copy and execution: Run time limit on kernels: Integrated: Support host page-locked memory mapping: Compute mode: threads can use this device simultaneously) Test PASSED Press ENTER to exit...
1 1 536150016 bytes 4 32 65536 bytes 16384 bytes 8192 32 512 512 x 512 x 64 65535 x 65535 x 1 262144 bytes 256 bytes 1.25 GHz Yes Yes No No Default (multiple host
To test that system and CUDA-capable device communicate correctly, run following [root@gm release]# ./bandwidthTest Running on...... device 0:GeForce 9600M GT Quick Mode Host to Device Bandwidth for Pageable memory . Transfer Size (Bytes) Bandwidth(MB/s) 33554432 1756.6 Quick Mode Device to Host Bandwidth for Pageable memory . Transfer Size (Bytes) Bandwidth(MB/s) 33554432 1168.8 Quick Mode Device to Device Bandwidth . Transfer Size (Bytes) Bandwidth(MB/s) 33554432 10762.2 &&&& Test PASSED
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
Press ENTER to exit...
Start using CUDA to build your own high performance applications. NVIDIA CUDA Programming Guide, located in /usr/local/cuda/doc/ is your next step in this course.
2.5
General procedure of programming in CUDA
You can use any text editor to write your CUDA source code for your program. Save it with .cu extension. Then issue the following commnd (assuming environment variables are properly set, as described above): [root@gm ]# nvcc –o -deviceemu .cu [root@gm ]# ./
Replace contents contained in “< >” with actual names. “ -deviceemu ” compiles code that is expected to run on CPU only.
3
Programming in CUDA
CUDA comes with a software environment that allows developers to use C as a high-level programming language. This section is composed of programming exercises for hands on practice. Problem partitionaing in terms of threads and thread Blocks, and organization of thread blocks in one or more block grids is the main challenge faced by CUDA programmers. Following programming exercises are designed to understand this concept of problem orchestration. Complicated details of CUDA like compilation steps, generated files, different file formats, and very precise and efficient use of different memory hierarchy etc. are out of scope of this activity. You will gradually learn these concepts. Most important is to tackle problem orchestration and to get output of your simple programs.
3.1
Programming Exercise 1 (Hello World)
This is a well-known warm-up program that asks all threads to prints Hello World!
3.1.1
Lab Objectives
Objectives of this lab experiment include: 1. 2. 3. 4.
3.1.2
Learning about the general structure of a CUDA program Learning the concept of kernel, kernel invocation, hierarchical thread grouping. Learning the concept of threadIdx, blockIdx and blockDim. Compiling and running CUDA code in device emulation mode
Setup
Make sure that environment variables are properly setup. If not first set the environment variables as mentioned in section 2.3.3.
/* * File: Hello_World.cu * Author: Ghulam Mustafa
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
*/ #include #include #include __global__ void printhello () { int thid = blockIdx.x * blockDim.x + threadIdx.x; printf("Thread%d: Hello World!\n", thid); } int main() { printhello<<<5,10>>>(); return 0; }
3.1.3
Procedure
Write this simple program in any text editor and save it with .cu extension (if softcopy is not available). Compile and run as mentioned below. Experiment with kernel invocation statement by changing the values of dimGrid and dimBlock where general kernel invocation statement is “kernel<<>> ( ).” Try to figure out how the ID of a thread will change by changing dimBlock and dimGrid.
To Compile & Run: [root@gm gm]# nvcc –o hello -deviceemu Hello_World.cu [root@gm gm]# ./hello
3.1.4
Conclusions
List your conclusions with respect to the objectives of this experiment
3.1.5
Lab Instructor’s Evaluation
Lab instructor’s remark whether the student finished the work to meet the lab objectives. © Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
3.2 Programming Exercise 2 (Matrix Multiplication) Parallel matrix multiplication is representative of those problems which are good examples for CUDA implementation. Each element of resulting matrix is calculated in parallel.
3.2.1
Lab Objectives
Objectives of this lab experiment include: 5. 6. 7. 8. 9. 10.
3.2.2
Learning the application of CUDA to linear algebra problems Learning how to partion a large problem in to subproblems Learning how to exploit the thread and block IDs for useful calculations Learning how to download parallel portion of code to device Learning how to use device memory Understanding hetrogeneous programming
Setup
Make sure that environment variables are properly setup. If not first set the environment variables as mentioned in section 2.3.3.
/* * * * * * */
File: matrix_mul.cu Author: Ghulam Mustafa Created on July 31,2009, 7:30 PM Code is adapted from Nvidia CUDA Programming Guide ver 2.2.1 Matrices are stored in row-major order:M(row, col) = M.ents[row*M.w + col]
#include #include #include #define BLOCK_SZ 2 #define DBG 1 //Order #define #define //Order
of Xc Xr of
Matrix X = (Xr x Xc) (2 * BLOCK_SZ) (3 * BLOCK_SZ) Matrix Y = (Yr x Yc)
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
#define #define //Order #define #define
Yc Yr of Zc Zr
(2 * BLOCK_SZ) Xc Matrix Z = (Zr x Zc) Yc Xr
#define N (Zr*Zc) typedef struct Matrix{ int r,c; float* elements; } matrix; void populate_matrix(matrix*); void print_matrix(matrix); __global__ void matrix_mul _krnl(matrix A, matrix B, m atrix C) { float C_entry = 0; int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; int i; for (i = 0; i < A.c; i++) C_entry += A.elements[row * A.c + i] * B.elements[i * B.c + col]; C.elements[row * C.c + col] = C_entry; } int main() { matrix X, Y, Z; X.r = Xr; Y.r = Yr; X.c = Xc; Y.c = Yc;
Z.r = Zr; Z.c = Zc;
if(DBG) printf("C(%d,%d) = A(%d,%d) x B(%d,%d)\n----------------------\n" ,Z.r,Z.c, X.r,X.c, Y.r,Y.c); size_t size_Z = Z.c * Z.r * sizeof(float); Z.elements = (float*) malloc(size_Z); populate_matrix(&X); populate_matrix(&Y); printf("Matrix A (%d,%d)\n",X.r,X.c); print_matrix(X); printf("Matrix B(%d,%d)\n",Y.r,Y.c); print_matrix(Y); matrix d_A; d_A.c = X.c; d_A.r = X.r; size_t size_A = X.c * X.r * sizeof(float); cudaMalloc((void**)&d_A.elements, size_A); cudaMemcpy(d_A.elements, X.elements, size_A, cudaMemcpyHostToDevice); matrix d_B; d_B.c = Y.c;
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
d_B.r = Y.r; size_t size_B = Y.c * Y.r * sizeof(float); cudaMalloc((void**)&d_B.elements, size_B); cudaMemcpy(d_B.elements, Y.elements, size_B,cudaMemcpyHostToDevice); // Allocate C in device memory matrix d_C; d_C.c = Z.c; d_C.r = Z.r; size_t size_C = Z.c * Z.r * sizeof(float); cudaMalloc((void**)&d_C.elements, size_C); dim3 dimBlock(BLOCK_SZ, BLOCK_SZ); dim3 dimGrid(Y.c / dimBlock.x, X.r / dimBlock.y); matrix_mul_krnl<<>>(d_A, d_B, d_C); // Read C from device memory cudaMemcpy(Z.elements, d_C.elements, size_C, cudaMemcpyDeviceToHost); // Free device memory cudaFree(d_A.elements); cudaFree(d_B.elements); cudaFree(d_C.elements); printf("Matrix C(%d,%d)\n",Z.r,Z.c); print_matrix(Z); free (X.elements); free(Y.elements); free(Z.elements); } void populate_matrix(matrix* mat) { int dim = mat -> c * mat -> r; size_t sz = dim * sizeof(float); mat -> elements = (float*) malloc(sz); int i; for (i = 0; i < dim; i++) mat->elements[i] = (float)(rand()%1000); } void print_matrix(matrix mat) { int i, n = 0, dim; dim = mat.c * mat.r; for (i = 0; i < dim; i++) { if (i == mat.c * n) { printf("\n"); n++; } printf("%0.2f\t", mat.elements[i]); }
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
printf("\n============================================================\n"); }
3.2.3
Procedure
Write this program in any text editor and save it with .cu extension (if softcopy is not available). Compile and run as mentioned below. Experiment with matrices of different sizes as well as with different block sizes. Try to understand the concept of threadIdx, blockDim and b lockIdx and how they are used in this context.
To Compile & Run: [root@gm gm]# nvcc –o matrix -deviceemu Matrix_mul.cu [root@gm gm]# ./matrix
3.2.4
Conclusions
List your conclusions with respect to the objectives of this experiment.
3.2.5
Lab Instructor’s Evaluation
Lab instructor’s remark whether the student finished the work to meet the lab objectives.
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
3.3 Programming Exercise 3 (Numerical calculation of value of pi ()) Parallel programming is extensively used in scientific computing. Numerical calculation of the value of Pi involves the usage of loop. This programming exercise uses specified numbers of threads in such a way that each thread is assigned an equal portion of specified interval.
3.3.1
Lab Objectives
Objectives of this lab experiment include: 11. Learning the application of CUDA to scientific (numerical) computing 12. Learning how to use thread IDs in the situations where sequence of executaion is important 13. Learning how to attack loops for parallelism
3.3.2
Setup
Make sure that environment variables are properly setup. If not first set the environment variables as mentioned in section 2.3.3. /* * File: pi.cu * Author: Ghulam Mustafa * Created on July 31,2009, 7:30 PM */ #include #include #include typedef int int int } data;
struct PI_data{ n; PerThrItr; nThr;
__global__ void calculate_ PI(data d, float* s) { float sum, x, w; int itr,i,j; itr = d.PerThrItr; i = blockIdx.x * blockDim.x + threadIdx.x; int N = d.n-i; w = 1.0/(float)N; sum = 0.0; if (i < d.nThr) { for (j = i * itr; j < (i * itr+itr); j++) { x = w * (j-0.5); sum+= (4.0)/(1.0 + x*x); } s[i] = sum * w; } } © Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
// Host code int main(int argc, char** argv) { printf("Usage: ./ #intervals #Threads\n"); if(argc < 2) { printf("Usage: ./ #itrations #Threads\n"); exit(1); } data pi_data; float PI=0; pi_data.n = atoi(argv[1]); pi_data.nThr = atoi(argv[2]); pi_data.PerThrItr = pi_data.n/pi_data.nThr; float *d_sum; float *h_sum; // Allocate vectors in device memory size_t size = pi_data.nThr * sizeof(float); cudaMalloc((void**)&d_sum, size); //Memory allocation on host h_sum = (float*) malloc(size); // cudaMemcpy(d_sum, h_sum, size, cudaMemcpyHostToDevice); int threads_per_block = 4; int blocks_per_grid; blocks_per_grid = (pi_data.nThr + threads_per_block 1)/threads_per_block; calculate_PI<<>>(pi_data, d_sum); cudaMemcpy(h_sum, d_sum, size, cudaMemcpyDeviceToHost); int i; for (i = 0; i < pi_data.nThr; i++) PI+= h_sum[i]; //PI = PI * pi_data.n; printf("Using %d itrations, Value of PI is %f \n", pi_data.n, PI); // Free device memory cudaFree(d_sum); }
3.3.3
Procedure
For computing Pi we use numerical methods.
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
Π =
1
∫ 1 + x 0
N −1
4
2
dx
=
∑ i =0
4
i − 0.5 1+ N
2
×
1 N
Using this technique each partial sum can be calculated in parallel. Write this program in any text editor and save it with .cu extension (if softcopy is not available). Compile and run as mentioned below. Experiment with of different values of intervals and threads. Try to understand how threadIdx, blockDim and blockIdx are exploited here to keep the sequence of workflow.
To Compile & Run: [root@gm gm]# nvcc –o PI -deviceemu pi.cu [root@gm gm]# ./PI <2300> <25>
3.3.4
Conclusions
List your conclusions with respect to the objectives of this experiment
3.3.5
Lab Instructor’s Evaluation
Lab instructor’s remark whether the student finished the work to meet the lab objectives.
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
3.4 Programming Exercise 4 (Parallel Sort) A sorting network is a sorting algorithm, where the sequence of comparisons is not data-dependent. That makes them suitable for parallel implementations. Bitonic sort is one of the fastest sorting networks, consisting of Θ(n log n 2 ) comparators. It has a simple implementation and it's very efficient when sorting a small number of elements
3.4.1
Lab Objectives
Objectives of this lab experiment include: 14. 15. 16. 17.
3.4.2
Learning Bitonic sorting algorithm Learning how to use __shared__ construct Learning how to use __device__ construct Using Barrier syncrhonization for thread coordinateion support parallelism.
Setup
Make sure that environment variables are properly setup. If not first set the environment variables as mentioned in section 2.3.3. /* * * * * */
File: Author: Created Code is
parallel_sort.cu Ghulam Mustafa on July 31,2009, 7:30 PM adapted from Nvidia CUDA SDK sample projects ver 2.2.1
#include #include #include #define NUM
32
__device__ inline void swa p(int & a, int & b) { int tmp = a; a = b; b = tmp; } __global__ static void bit onicSort(int * values) { extern __shared__ int shared[]; const unsigned int tid = threadIdx.x; // Copy input to shared mem. shared[tid] = values[tid]; __syncthreads(); // Parallel bitonic sort for (unsigned int k = 2; k <= NUM; k *= 2) { // Bitonic merge: for (unsigned int j = k / 2; j>0; j /= 2)
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
{ unsigned int ixj = tid ^ j; if (ixj > tid) { if ((tid & k) == 0) { if (shared[tid] > shared[ixj]) { swap(shared[tid], shared[ixj]); } } else { if (shared[tid] < shared[ixj]) { swap(shared[tid], shared[ixj]); } } } __syncthreads(); } } // Write result. values[tid] = shared[tid]; } int main(int argc, char** argv) { int values[NUM]; printf( "\nUnsorted Array\n==============\n"); for(int i = 0; i < NUM; i++) { values[i] = rand()%1000; printf("%d\t",values[i]); } printf("\n"); int * dvalues; cudaMalloc((void**)&dvalues, sizeof(int) * NUM); cudaMemcpy(dvalues, values, sizeof(int) * NUM, cudaMemcpyHostToDevice); bitonicSort<<<1, NUM, sizeof(int) * NUM>>>(dvalues); // check for any errors cudaMemcpy(values, dvalues, sizeof(int) * NUM, cudaMemcpyDeviceToHost); cudaFree(dvalues); bool passed = true; int i; printf( "\nSorted Array\n==============\n"); for( i = 1; i < NUM; i++) { if (values[i-1] > values[i]) passed = false; printf( "%d\t", values[i-1]);
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.
Al-Khawarizmi Institute of Computer Science – CUDA LABWORK BOOK University of Engineering & Technology, Lahore.
} printf( "%d\t\n", values[i]); printf( "Test %s\n", passed ? "PASSED" : "FAILED"); }
3.4.3
Procedure
Write this program in any text editor and save it with .cu extension (if softcopy is not available). Compile and run as mentioned below. Experiment with values of NUM and check the status of test (last line of the output). Try to understand the concept of threadIdx, blockDim and blockIdx and how they are used in this context. To Compile & Run: [root@gm gm]# nvcc –o ll_sort -deviceemu parallel_sort.cu [root@gm gm]# ./ll_sort
3.4.4
Conclusions
List your conclusions with respect to the objectives of this experiment.
3.4.5
Lab Instructor’s Evaluation
Lab instructor’s remark whether the student finished the work to meet the lab objectives.
© Copyright 2009 Al-Khawarizmi Institute of Computer Science University of Engineering and Technology, Lahore.