CONSTRUCCIÓN DEL DIODO En la figura 1.10 se muestra un material de tipo p y otro de tipo n colocados juntos para formar una unión. Esto representa un modelo simplificado de construcción del diodo. El modelo ignora los cambios graduales en la concentración de impurezas en el material. Los diodos prácticos se construyen como una sola pieza de material semiconductor, en la que un lado se contamina con material de tipo de y el otro con material de tipo n. Los materiales más comunes utilizados en la construcción de diodos son tres; germanio, silicio y arsenurio de galio. En general, en silicio ha reemplazado al germanio en los diodos debido a su mayor barrera de energía que permiten la operación a temperaturas más altas, y los costos de material son mucho menores. El arsenurio de galio es particularmente útil en aplicaciones de alta frecuencia y microondas. La distancia precisa en el que se produce el cambio de material de tipo p a tipo n en el cristal varía con la técnica de fabricación. La característica esencial de la unión pn es que el cambio en la concentración de impurezas se debe producir en una distancia relativamente corta. De otra manera, la unión no se comporta como un diodo. C abran una región desértica en la vecindad de la unión, como se muestra en la figura 1.11 (a). Este fenómeno se debe a la combinacón de huecos y electrones donde se unen los materiales. La región desértica tendrá muy pocos portadores. Sin embargo, los dos componentes de la corriente constituida por el movimiento de huecos y electrones a través de la unión se suman para formar la corriente de difusión, ID. La dirección de esta corriente es del lado p al lado n. Además de la corriente de difusión existe otra corriente debido al desplazamiento de portadores minoritarios a través de la unión, y se conoce como IS. Si ahora se aplica un potencial positivo al material p en relación con el material n, como se muestra en la figura 1.11 (b), se dice que el diodo está polarizado en directo, por otra parte, si la tensión se aplican como en la figura 1.11 (c), el diodo se polariza en inverso.
Figuras 1.10 y 1.11 Operación del diodo El la figura 1.12 se ilustran las características de operación de un diodo práctico. Esta curva difiere de la característica ideal de la figura 1.9 (b) en los siguientes puntos: conforme la tensión en directo aumenta más allá de cero, la corriente no fluye de inmediato. Es necesaria una tensión mínima, denotada por Vð , para obtener una corriente significativa. Conforme la tensión tiende a exceder Vð la corriente aumenta con rapidez. La pendiente de la curva característica es grande pero no infinita, como en el caso del diodo ideal. La tensión mínima necesaria para obtener una corriente significativa, Vð , es aproximadamente 0.7 V para semiconductores de silicio (a temperatura ambiente) y 0.2 V para semiconductores de germanio. La diferencia de tensión para el silicio y el germanio radica en la estructura atómica de los materiales. Para diodos de arsenurio de galio, Vð es más o menos 1.2 V. Cuando el diodo está polarizado el inverso, existe una pequeña corriente de fuga, está corriente se producen siempre que la tensión sea inferior a la requerida para romper la unión. El daño al diodo normal en ruptura se debe a la avalancha de electrones, que fluyen a través de la unión con poco incremento en la tensión. La corriente muy grande puede destruir
el diodo si se genera excesivo calor. Esta ruptura a menudo se conoce como la tensión de ruptura del diodo (VBR).
Figura 1.12 Modelos de circuito equivalentes del diodo El circuito mostrado en la figura 1.13 (a) representa un modelo simplificado del diodo de silicio bajo condiciones de operación en cd tanto en directo como en inverso. El resistor Rr representa la resistencia en polarización inversa del diodo y, por lo general, es del orden de megahoms (Mð ). El resistor Rf representa la resistencia de bloque y contacto del diodo, y suele ser menor que 50ð . Cuando se encuentra polarizado en directo, el diodo ideal es un cortocircuito, o resistencia cero. La resistencia de circuito del diodo practicó modelado en la figura 1.13 (a) es Rr ð ð Rf ð Rf Bajo condiciones de polarización en inverso, el diodo ideal tiene resistencia infinita (circuito abierto), y la resistencia de circuito del modelo práctico es Rr. Los modelos de circuito en ca son más complejos debido a que la operación del diodo depende de la frecuencia.
Física de los diodos en estado sólido
Un diodo de estado sólido se forma cuando se unen dos piezas de cristal semiconductor compuestas por átomos de silicio (Si) puro, pero procesadas cada una de forma diferente. Durante el proceso de fabricación del diodo ambas piezas se someten por separado a un proceso denominado “dopado” consistente en añadirle a cada una “impurezas” diferentes, procedentes de átomos de elementos semiconductores también
diferentes. Al final del proceso se obtiene una pieza de cristal de silicio positiva (P) con faltante de electrones en su estructura atómica (lo que produce la aparición de “huecos”) y otra pieza negativa (N) con exceso de electrones.
Principio de funcionamiento Un fotodiodo es una unión P-N o estructura P-I-N. Cuando una luz de suficiente energía llega al diodo, excita un electrón dándole movimento y crea un hueco con carga positiva. Si la absorción ocurre en la zona de agotamiento de la unión, o a una distancia de difusión de él, estos portadores son retirados de la unión por el campo de la zona de agotamiento, produciendo una fotocorriente.
Fotodiodos de avalancha Tienen una estructura similar, pero trabajan con voltajes inversos mayores. Esto permite a los portadores de carga fotogenerados el ser multiplicados en la zona de avalancha del diodo, resultando en una ganancia interna, que incrementa la respuesta del dispositivo
Metodo De Aleación Este método consiste esencialmente en fundir sobre un semiconductor una impureza de tipo P o de tipo N. Si, por ejemplo, se hace fundir sobre una placa de germanio del tipo N, calentada a 500 °C, una cierta cantidad de indio, este ultimo se funde, el germanio se disuelve y las fases liquidas penetran en la placa paralelamente a las superficies, hasta que la solución se satura, es decir, a una profundidad que
depende del peso del indio, del área en contacto y de la temperatura alcanzada, obteniéndose así una región P. Metodo De Difusión Este método consiste en difundir un vapor de tipo N o P sobre un monocristal de un semiconductor determinado que contenga ya una impureza del tipo contrario a la que se hace difundir. Por ejemplo, si se coloca una placa de germanio de tipo N dentro de un recipiente en el cual circula vapor de indio, se puede obtener una unión P-N por difusión de los átomos de indio a través de la superficie de la placa de germanio, mayor será la penetración del indio; por ejemplo, a 570 °C se puede tener una penetración de de 80 A en 100 seg. Y a 870°C se obtiene una penetración de de 8000 A en el mismo tiempo. Metodo Epitaxial Tomando el caso del germanio, este método consiste en evaporar dentro de una atmósfera gaseosa yoduro de germanio (Gel2) y alguna impureza sobre un monocristal de tipo P o tipo N. El yoduro de germanio se descompone sobre el monocristal de germanio según la reacción reversible: Gel2 Gel4 + Ge. Evaporando en forma simultanea Gel2 y la impureza sobre el monocristal calentado a una temperatura dada, se puede obtener una unión. La mayor ventaja de este método es que permite la obtención de regiones muy delgadas de pureza controlada. Se puede emplear en combinación con otras técnicas (de difusión y de aleación) para construir transistores con aplicaciones en ultra alta frecuencia y circuitos integrados.