An Apartment can be defined as a structure with individual apartment units but a common entrance and hallway. In apartment building the spaces themselves must be simple and universal enough to adapt to a variety of life styles. It should be designed in such a way that makes possible to move any room without crossing. Some of the characteristics of Apartment Buildings: a) Enter Entering ing apartment apartment:: Outer clothing clothing should should be taken taken off the entrance entrance like shoes, shoes, umbrella. b) Children coming in from play: children should be able to reach bathroom, bedroom without crossing living room. c) Deliv Delivery ery person person should should be paid paid without without entering entering living room room.. d) Pas Passin sing g from from bedroom bedroom to bath bathroo room m e) Pas Passin sing g from from kitch kitchen en to bath bathroo room m A well planned apartment is divided into living zone and sleeping zone, separated by the entry hall. Equally important as the relation of each room to the other is the relative position it occupies in relation to daylight and fresh air. Ideally, every room should have exterior exposure to ensure light and air. This may however increase the perimeter of the building to an extent that no one could afford to build it. Therefore bathrooms, invariably, kitchens, often and dining rooms, are handled as interior spaces. Thus the apartment plan is divided into outer and inner zones.
High Rise Apartment buildings have recently developed in massive way in context to Kathmandu Valley. The growing population and the decrement of land for residential buildings lead to the apartment buildings. Today, Kathmandu is a rapidly urbanizing city with
building construction at just about every corner of the city that one can see. Kathmandu valley is facing tremendous pressures on its population and infrastructures due to haphazard and rapid urbanisation. The agricultural land has been converted into residential building and it is increasing tremendously. Nevertheless, high rise building can be one of the solutions. High Rise building is very justifiable in Kathmandu Valley as attempt to solve land use problems by economizing precious urban territories used for service and utilization. This need for new housing, considered against a background of continuing urbanization, clearly indicates that an increasing proportion of an expanding housing market will be devoted to multifamily types of housing or apartments. The inevitability of this trend contains a challenge to the architect to do more than merely met a statistical demand. The process of designing an apartment building may be graphically depicted in a general way as shown in table.
Site analysis
Program development
PROGRAM
Market analysis
SITE CONSIDERATION
ZONING AND CODES controls
BUILDING CONFIGURATION
site characteristics utilities floor shape and site
Distribution finding standards
large scale development Building types
building height length and width wind bracing
STRUCTUAL SYSTEMS concrete steel limitations systems
Building orientation
SERVICE SPACES
FIRST FLOOR ORGANIZATION
TYPICAL LIVING UNIT DESIGN
TYPICAL FLOOR DETERMINATIO
Refuse disposal
spatial requirement
guidelines
guidelines
Boiler room ventilating
circulation core
use criteria
procedure
Mail room wheeled
VERTICAL SERVICING elevators egress plumbing heating
cooling Storage commercial Laundry and community
Buildin desi n
Chart 1: process of designing apartment
and
Nepal is an earthquake prone region. Nearly 1/3rd of the Himalayan arc marking an active plate boundary between Eurasian and Indian plates lies in the northern part of Nepal. This earthquake was of such immense power that it resulted in the high peaks which now characterize Nepal – the Himalayas. Kathmandu valley, which is the capital of Nepal, has been severely hit by earthquakes as strong as of magnitude 8.3 on Richter scale in the history (1255, 1833 and 1934 earthquakes). Many researchers have predicted the occurrence of s trong earthquake in Kathmandu valley in the near future. Nevertheless, most of the soil of Kathmandu valley is black cotton. Recent years have seen an increase in the opportunities to High Rise Building in Kathmandu Valley which lie within seismically active regions of the world. The question arises can the high rise building resist in such seismically active zones? . Designer deals with the design of civil engineering structures in a safe and economic way and also the study of behavior of civil engineering structures under the effect of various kinds of loads. Due consideration are given to the aesthetic and ecological aspects. A designer has to deal with various structures ranging from simple ones like curtain rods and electric poles to more complex ones like multistoried frame buildings, shell roofs bridges etc. these structure are subjected to various load like concentrated loads uniformly distributed loads, uniformly varying loads live loads, earthquake loads and dynamic forces. The structure transfers the loads acting on it to the supports and ultimately to the ground. While transferring the loads loads acting on the structure, the members of the structure are subjected to the internal forces like axial forces, shearing forces, bending and torsional moments. Structural Analysis deals with analyzing these internal forces in the members of the structures. Structural Design deals with sizing various members of the structures to resist the internal forces to which they are subjected during their effective life span. Unless the proper Structural Detailing method is adopted the structural design will be no more effective. The Indian Standard Code of Practice should be thoroughly adopted for proper analysis, design and detailing with respect to safety, economy, stability and strength.
:
The projected selected by our group is an apartment building located at Bafal, Kathmandu. th
According to IS 1893:2002, Kathmandu lies on V Zone, the severest one. Hence the effect of earthquake is pre-dominant than the wind load. So, the building is analyzed for Earthquake as
lateral Load. The seismic coefficient design method as stipulated in IS 1893:2002 is applied to analyze the building for earthquake. Special reinforced concrete moment resisting frame is considered as the main structural system of the building. The project report has been prepared in complete conformity with various stipulations in Indian Standards, Code of Practice for Plain and Reinforced Concrete IS 456-2000, Design Aids for Reinforced Concrete to IS 456-2000(SP-16), Criteria Earthquake Resistant Design Structures IS 1893-2000, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces- Code of Practice IS 13920-1993, Handbook on Concrete Reinforcement and Detailing SP-34, Reynolds Handbook. Use of these codes have emphasized on providing sufficient safety, economy, strength and ductility besides satisfactory serviceability requirements of cracking and deflection in concrete structures. These codes are based on principles of Limit State of Design. This project work has been undertaken as a partial requirement for B.E. degree in Civil Engineering. This project work contains structural analysis, design and detailing of a high rise apartment building located in Kathmandu District. All the theoretical knowledge on analysis and design acquired on the course work are utilized with practical application. The main objective of the project is to acquaint in the practical aspects of Civil Engineering. We, being the budding engineers of tomorrow, are interested in such analysis and design of structures which will, we hope, help us in similar jobs that we might have in our hands in the future.
This group under the project work has undertaken the computer aided analysis and design of high rise apartment building. The main aim of the project work under the title is to acquire knowledge and skill with an emphasis of practical application. Besides the utilization of analytical methods and design approaches, exposure and application of various available codes of practices is another aim of the work.
The specific objectives of the project work are i. ii.. ii
Ide dent ntif ific icat atio ion n of st stru ruct ctur ural al arr rran ang gem emeent of pla lan. n. Unde Un ders rsta tand ndin ing g th thee lo load as asse sess ssme men nt fo for the the st strruc uctu ture re..
iii.
Modeling of the building for structural analysis.
iv.
Detail structural analysis using structural analysis program.
v.
Sectional design of structural components.
vi.
Structural detailing of members and the system.
To achieve above objectives, the following scope or work is planned i. Identification of the building and the requirement of the space. ii. Determination of the structural system of the building to undertake the vertical and horizontal loads. iii. Estimation of loads including those due to earthquake iv. Preliminary design for geometry of structural elements like slab, beam, column, foundation, stair case v. Determination of fundamental time period by free vibration analysis. vi. Calculation of base shear and vertical distribution of equivalent earthquake load. vii. Calculation of torsional moment and its additional shear viii. Identification of load cases and load combination cases. ix. Finite element modeling of the building and input analysis x. The structural analysis of the building by SAP2000 for different cases of loads. xi. Review of analysis outputs for design of individual components xii. Design of RC frame members, walls, mat foundation, staircase, and other by limit state method of design xiii. Detailing of individual members and preparation of drawings as a part of working construction document.
Building Type
: Apartment Building, Located in Kathmandu
Structural System
: RCC Space Frame
Plinth area covered
: 12574.65 ft
2
Type of Foundation
: Mat Foundation
No. of Storey
: 11
Floor Height
: 3.505m (Basement, semi basement and ground floor), 3.05 m all other floors
Type of Sub-Soil
: Soft Soil (Zone III)
Expansion Joints
: expansion joints are provided
According to IS 456-2000, Clause 27, structures in which changes in plan dimensions take place abruptly shall be provided with expansion joints at the section where such changes occur. Reinforcement shall not extend across an expansion joints and the break between the sections shall be completed. Normally structure exceeding 45m in length is designed with one or more expansion joints. The design is intended to serve for the following facilities in the building:-
•
Basement for Parking ,
•
Semi Basement for gymnasium hall, shops
•
Ground floor for departmental stores
•
Other floors for different apartments
•
Swimming pool
•
Dead loads are calculated as per IS 875 (Part 1) -1987
•
Seismic load according to IS 1893 (Part 1)-2002 considering Kathmandu located at Zone V
•
Imposed loads according to IS 875(Part 2)-1987 has been taken
The building is modeled as a space frame. SAP2000 is adopted as the basic tool for the execution of analysis. SAP2000 program is based on Finite Element Method. Due to possible actions in the building, the stresses, displacements and fundamental time periods are obtained
using SAP2000 which are used for the design of the members. Lift wall, mat foundation, staircase, slabs are analyzed separately.
Following codes of practices developed by Bureau of Indian Standards were followed in the analysis and design of building: 1. IS 456:2000 (Code of practice for plain and reinforced concrete) 2. IS 1893 (part 1):2002 (Criteria for earthquake resistant design of structures) 3. IS 13920: 1993 (Code of practice for ductile detailing of reinforced concrete structures subjected to seismic forces) 4. IS 875 (part 1):1987 (to assess dead loads) 5. IS 875 (part 2):1987 (to assess live loads) 6. IS 875 (part 5):1987 (for load combinations) 7. SP 16, SP 24 and SP 34 (design aids and hands book)
The following materials are adopted for the design of the elements:
•
Concrete Grade: M20, M25 and M30
− M30 for the all columns, slabs and beams − M25 for shear walls − M20 for foundation •
Reinforcement Steel –Fe415
Limit state method is used for the design of RC elements. The design is based on IS:456-2000, SP-16, IS:1893-2002, SP-34 and Reinforced Concrete Designer’s Handbook- Charles E. Reynolds and James C. Stedman are extensively used in the process of design.
The space frame is considered as a special moment resisting frame(SMRF) with a special detailing to provide ductile behavior and comply with the requirements given in IS 139201993, Hand book on Concrete Reinforcement and Detailing (SP-34) and Reinforced Concrete Detailer’s Manual- Brian W. Boughton and Reinforced Concreter Designer’s HandbookCharles E. Reynolds and James C. Stedman ( for Helicoidal Staircase) are extensively used.
This project has been broadly categorized into five chapters, Summery of each chapter are mention below:
Chapter 1
: Introduction
Chapter 2
: Preliminary load calculation and design In this chapter, upon the preliminary load calculation is done and every element is designed for a particular section. We generally deal with the design of every structural element of particular floor like roof, typical floor, first floor and basement floor. Structural arrangements is done with necessary computations that are performed for the vertical load calculation, preliminary design of the structure elements, seismic load calculation and the different load combinations that are used.
Chapter 3
Load assessment It deals with the assessment of gravity and earthquake loads acting or likely to be acted on the building.
Chapter 4
: Modeling and Structural Analysis This chapter deals with the modeling techniques with SAP2000 that is followed by the analysis of the different structural members. This includes the
inputs given and outputs obtained in the process, the time period calculation and storey drift of the building.
Chapter 5
: Structural Design and Comparison It deals with the earthquake resistance design of beams, columns, slabs, shear walls and footings considering limit state of collapse and serviceability, their comparison with the provided ones and locating the areas of insufficient designs. The result is compared with the results obtained from the proposed program.
Chapter 6
: Structural Detailing and Drawings The various structural detailing and drawings of the different members as obtained from their respective design are listed in this chapter.
Chapter 7
Result, Conclusion and Recommendation:
ny structure is made up of structural Elements
Load carrying, such as beams and
columns and non structural elements (such as partitions, false ceilings, doors). The structural elements put together, constitute the structural systems. Its function is to resist effectively the action of gravitational and environmental loads, and to transmit the resulting forces to the supporting ground without significantly disturbing the geometry, integrity and serviceability of the structure.
The planning of the building has been done as per available land area, shape, space according to building bylaws and requirement of commercial public building. The positioning of columns, staircases, toilets, bathrooms, elevators etc are appropriately done and accordingly Beam arrangements is carried out so that the whole building will be aesthetically, functionally and economically feasible. The aim of design is the achievements of an acceptable probability that structures being design will perform satisfactorily during their intended life. With an appropriate degree of safety, they should sustain all the loads and deformations of normal construction and use and have adequate durability and adequate resistance to the effect of misuse and fire.
It is necessary to know the preliminary section of the structure for the detail analysis. As the section should be given initially while doing analysis in every softwares, the need of
preliminary design is vital. Only dead loads and live loads are considered while doing preliminary design. Preliminary design is carried out to estimate approximate size of the structural members before analysis of structure. Grid diagram is the basic factor for analysis in both Approximate and Exact method and is presented below.
Dead Load
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Imposed Load
For roof
= 1.5 KN/m
2
Dead load Self weight of beam
= 25×0.25×045
= 2.81 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular Dead Load
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
2
3
Plaster
=
25 mm x 20 KN/m
Finishes
=
25 mm x 26.70 KN/m
3
Total
= 0.51 KN/m
2
= 0.67 KN/m
2
= 5.18 KN/m
2
Imposed Load
For typical floor
= 3 KN/m
2
b) Beam Dead load Self weight of beam
= 25×0.3×0.5
= 3.38 KN/m
Rectangular
= 0.9 x 0.6 x 25
= 13.5 KN/m
Dead Load
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Imposed Load
For roof
= 5 KN/m
2
Dead load Self weight of beam
= 25×0.3×0.5 5
= 3.75 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular
Dead Load
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Imposed Load
For roof
= 5 KN/m
2
b) Beam Dead load Self weight of beam
= 25×0.35×0.55
= 4.38 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular Dog Legged
Total thickness
= 160 mm
Riser
= 180 mm
Tread
= 300 mm
Wt. of waist slab
= 0.25 x 25
= 6.250 KN/m
Wt. of each step
= 0.50 x 0.18 x 0.3 x 25
= 0.675 KN/m
Wt. of landing
= 0.25 x 25
= 6.250 KN/m
Wt. of finishing
= 0.09 x [22(0.18+0.3) + 0.18] x20 = 19.33 KN/m
Imposed load
= 5 KN/m
2
2
2
Interior panel
Thickness of slab and durability consideration
Clear Spans
Lx=6 m Ly=6 m
Shorter Span
Depth of slab, ( d ) =
αβγδ
=26 =1 =1.65 =1.05 =1
= d =
6000 26 x1.65 * 1.05
= 133 mm Say D = 160 mm
Design Load
Self load of slab = 0.16 x 25 = 4KN/m Live load = 1.5 KN/m
2
2
Design load , w = 1.5(DL+LL) = 8.25 KN/m
2
Considering unit width of slab , w= 8.25 KN/m
Moment Calculation
-ve Bending moment coefficient at continuous edge
x=
-0.032,
y=
-0.032
+ve Bending moment coefficient at mid span x=
0.024,
y=
0.024
Support moment ,Ms = Mid span moment ,Mm =
xwlx
2
2
= -0.032x 8.25 x 6 = -9.50 KNm
2 ywlx =
2
0.032 x 8.25 x 6 = -9.50 KNm
Check for depth from Moment Consideration Depth of Slab,d =
M max 0.138fck x b
=
9.5 x 10 6 0.138 x 30 x1000
= 48 mm <
133mm
Interior panel
Thickness of slab and durability consideration
Clear Spans Lx=6 m Ly=6 m
Shorter Span
Depth of slab, ( d ) =
αβγδ
=26 =1 =1.65 =1.05 =1
d =
6000 26 x1.65 * 1.05
= 133 mm
Say D = 160 mm
Design Load
Self load of slab = 0.16 x 25 = 4KN/m Live load = 3 KN/m
2
2
Design load , w = 1.5(DL+LL) = 10.5 KN/m
2
Considering unit width of slab , w= 10.5 KN/m Moment Calculation
-ve Bending moment coefficient at continuous edge x=
-0.032,
y=
-0.032
+ve Bending moment coefficient at mid s pan x=
0.024,
y=
0.024
Support moment ,Ms = m
Mid span moment ,Mm = m
Check for depth from f rom Moment ConsiderationDepth of Slab,d = M max 0.138fck x b
=
xwlx
2
2
= -0.032x 10.5 x 6 = -12.1 KN-
2 ywlx =
2
0.032 x 10.5 x 6 =-12.1 KN-
12.1 x 10 6 0.138 x 30 x1000
= 54 mm >133mm
Interior panel
Thickness of slab and durability consideration
Clear Spans Lx=6 m Ly=6 m
Shorter Span
Depth of slab, ( d ) =
αβγδ
=26 =1 =1.65 =1.05 =1
d =
6000 26 x1.65 * 1.05
= 133 mm
Say D = 160 mm
Design Load
Self load of slab = 0.16 x 25 = 4KN/m Live load = 5 KN/m
2
2
Design load , w = 1.5(DL+LL) = 13.5 KN/m
2
Considering unit width of slab , w= 13.5 KN/m
Moment Calculation
-ve Bending moment coefficient at continuous edge x=
-0.032,
y=
-0.032
+ve Bending moment coefficient at mid span x=
0.024,
y=
0.024
Support moment ,Ms =
Mid span moment ,Mm =
xwlx
2
2
= -0.032x 13.5 x 6 = -15.6 KN-m
2 ywlx =
2
0.032 x 13.5 x 6 =-15.6 KN-m
Check for depth from f rom Moment Consideration Depth of Slab,d =
M max 0.138fck x b
=
15.6 x 10
6
0.138 x 30 x1000
133mm
= 61.4 mm <
Interior panel
Thickness of slab and durability consideration
Clear Spans Lx=6 m Ly=6 m
Shorter Span
Depth of slab, ( d ) =
αβγδ
=26 =1 =1.65 =1.05 =1
d =
6000 26 x1.65 * 1.05
= 133 mm
Say D = 160 mm
Design Load
Self load of slab = 0.16 x 25 = 4KN/m Live load = 5 KN/m
2
2
Design load , w = 1.5(DL+LL) = 13.5 KN/m
2
Considering unit width of slab , w= 13.5 KN/m
Moment Calculation
-ve Bending moment coefficient at continuous edge x=
-0.032,
y=
-0.032
+ve Bending moment coefficient at mid s pan x=
0.024,
y=
0.024
Support moment ,Ms = -
xwlx
2
2
= -0.032x 13.5 x 6 = -15.6 KNm
Mid span moment ,Mm = m
Check for depth from Moment Consideration
2 ywlx =
2
0.032 x 13.5 x 6 =-15.6 KN-
Depth of Slab,d =
M max 0.138fck x b
=
15.6 x 10 6 0.138 x 30 x1000
= 61.4 mm < 133mm
Deflection Criteria Beam size-250mm*450 mm Now,
l d
ratio =
6000 450
M max 0.138fck x b
147.60 x 10
=
= 377.63 mm < 450mm(Okay)
6
0.138 x 30 x 250
= 13.33 15(Okay)
Depth of Beam,d =
Deflection Criteria Beam size-350mm*500 mm Now,
l d
ratio
=
6000 450
= 13.33 15(Okay)
Depth of Beam,d =
M max 0.138fck x b
=
164.12 x 10
6
0.138 x 30 x 300
= 363.51 mm <
450mm(Okay)
Deflection Criteria Beam size-350mm*500 mm Now,
l d
ratio
=
6000 500
= 12 15(Okay)
Depth of Beam,d =
M max
0.138fck x b
202.93 x 10 6
=
0.138 x 30 x 350
= 374.23 mm <
500mm(Okay)
Deflection Criteria Beam size-350mm*550 mm Now,
l d
ratio
=
6000 550
= 10.90 15(Okay)
Depth of Beam,d =
M max 0.138fck x b
=
227.61 x 10 6 0.138 x 30 x 350
= 396.33 mm <
550mm(Okay)
Column ID: B4,basement floor Axial column
900mm
600mm Known data:
Axial load =5043.35KN assume section of 600mm x 900mm Height, L = 3.048m
L D
= 3.38 Hence the column can be designed as short.
Calculation:
Factored Axial Load, Pu = 7565.02 KN
Assuming minimum reinforcement=0.8%
Design for section:
Pu= 0.4fck(Ag-p Ag/100)+0.67fyp Ag/100 7565.02=0.4×30×(1-0.008) Ag+0.67×415×0.008 Ag Ag=535447.75mm
2
Take B=600mm Then, D=892.4mm 900mm
Column ID: O basement floor) X
400
Y
400mm
Known data:
Axial load =407.04KN assume section of 400mm Height, L = 3.048m
L
= 7.62 Hence the column can be designed as D short.
Calculation:
Factored Axial Load, Pu = 610.56 KN
Assuming minimum reinforcement=0.8% Design for section:
Pu= 1.05(0.4fckAc+0.67fyAs)
610.56 =1.05×(1-0.008) Ag+0.67×415×0.008 Ag Ag=42923.4mm
2
Then, D=234mm D=400mm (ok)
Calculations
Column ID: A11 (Basement floor) Biaxial Column X
-101.5 KNm
Y
350mm
101.5 KNm
350mm Known data: Axial load =237.79KN
assume section of 350mm x 350mm Height, L = 3.048m
L
D
= 3.38 Hence the column can be designed as
short.
Calculation: Factored Axial Load, Pu = 356.7 KN Assuming minimum reinforcement=0.8%
Design for section:
Pu= 0.4fck(Ag-p Ag/100)+0.67fyp Ag/100 356.7=0.4×30×(1-0.008) Ag+0.67×415×0.008 Ag 2
Ag=25247mm
Take B=350mm
Then,
D=350mm
Interior panel
Thickness of slab and durability consideration
Clear Spans Lx=6 m Ly=1.5m =26 =1 =1.65 =1.05
=1
d =
6000 26 x1.65 * 1.05
= 133 mm
Say D = 160 mm
Design Load
Dead of flight Calculating area Step section =0.3*0.15/2=0.0225m Inclined slab = .335*.16=.0536m Finish =\(.15+.3)*.015=.0135m Total area = 0.0896m
2
2
2
2
Dl of step section,1m width and 300mm in plan length = 2 2.24kN/m 2
Dl per m on plan = 7.46kN/m 2
LL per m plan=4kN/m
2
2
Total load = 11.466kN/m
2
Factored load=17.2kN/m
2
Taking 1.5m width of slab, load = 25.8kN/m
2
Landing load Self wt. of slab = .16*25 = 4kN/m Finish = 0.03*25 = .75kN/m LL = 4kN/m
2
2
2
Total load = 8.75kN/m
2
Factored load = 13.125kN/m
2
Taking 1.5m width, load = 19.68kN/m Reaction at |B R b = 65.65 kN Reaction at A, Ra = 67.18 kN Mmax = 78.714kN-m
Check for depth from Moment Consideration Depth of Slab, d =
M max 4.14 x b
=
70.254 x 10 6 4.14 x 1500
= 106.36mm
Hence adopt overall depth of slab = 160mm
Reference
Steps
Result
Total plinth area of building=1257.65 sq. m
From soil report of site
Soil bearing capacity= 90 tonnes/m
2
Total load of the building
From I.S. 875_2
Transferred from columns=102752.62KN
From Floor of Basement i. Live load of Garage building=2.5KN/m
2
Table 1(1.i.e) From I.R.C
ii. Impact Factor=0.15+8/(6+L)=1KN/m
2
Total load=102752.63+(2.5+1)*1257.65 = 106028.497KN Area of foundation=Total Load/soil bearing capacity = 106028.497/90=1178.0944m
2
Since the area required for the foundation of the building is less than the area available for foundation construction. Mat foundation is provided Mat foundation
As described earlier, the building is a RCC framed structure, located in th e Kathmandu valley. Thus wind loads, snow loads, and other special types of loads described by IS 875 (part 5):1987 can be taken as negligible as compared to the dead, live and seismic loads.
According to the IS 875:1964: The dead load in a building shall comprise the weights of all walls, partitions, floors and roofs and shall include the weights of all other permanent features in the building.
It means the load assumed or known resulting from the occupancy or use of a building and includes the load on balustrades and loads from movable goods, machinery and plant that are not an integral part of the building.
These are the load resulting from the vibration of the ground underneath the superstructure during the earthquake. The earthquake is an unpredictable natural phenomenon. Nobody knows the exact timing and magnitude of such loads. Seismic loads are to be determined essentially to produce an earthquake resistant design.
Seismic loads on the building may be incorporated by1. In this method the design earthquake forces are determined adopting IS 1893:2002. These design forces for the buildings located along
two perpendicular directions may be assumed to act separately along each of these two horizontal directions.
2. In it the ground is subjected to a predetermined acceleration and subsequent stress in the structural elements are determined by appropriate methods.
1. RCC: (IS 875 (part 1) :1987 table 1) a) For slabs and shear walls: RCC =
25 KN/m
3
b) For columns: RCC =
25 KN/m
c) For Beams:
RCC
3
= 25 KN/m
3
2. Plaster (12mm thickness): plaster =
20.40 KN/m
3
3. Tile (mosaic - 25mm thick): tile =
20.40 KN/m
3
4. Marble: brick =
26.70 KN/m
3
(IS 875 (part 1): 1987, table 1))
5. Cement punning: cement =
20.40 KN/m
3
(IS 875 (part 1):1987, table 17))
1. On floors: (IS 875 (part 2): 1987 table 1, (iii)) 2. On Partition walls: Live Load = 1 KN/m
2
(Assuming a minimum live load as per IS 875 (part 2): 1987, 3) 3. On roof slabs and slab projections: Live load = 0.75 KN/m
2
(Assuming access not provided except for the case of maintenance) (IS 875 (part 2):1987 (table 2(i), (b))
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Dead load Self weight of beam
= 25×0.25×045
= 2.81 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
Dead load Self weight of beam
= 25×0.3×0.5
= 3.38 KN/m
2
Rectangular
= 0.9 x 0.6 x 25
= 13.5 KN/m
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Dead load Self weight of beam
= 25×0.3×0.5 5
= 3.75 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular
Self Weight of the slab= 160 mm x 25 KN/m
3
= 4 KN/m
Plaster
=
25 mm x 20 KN/m
3
= 0.51 KN/m
2
Finishes
=
25 mm x 26.70 KN/m
= 0.67 KN/m
2
= 5.18 KN/m
2
3
Total
2
Dead load Self weight of beam
= 25×0.35×0.55
= 4.38 KN/m
= 0.9 x 0.6 x 25
= 13.5 KN/m
Rectangular
Dog Legged
Total thickness
= 160 mm
Riser
= 180 mm
Tread
= 300 mm
Wt. of waist slab
= 0.25 x 25
= 6.250 KN/m
Wt. of each step
= 0.50 x 0.18 x 0.3 x 25
= 0.675 KN/m
Wt. of landing
= 0.25 x 25
= 6.250 KN/m
Wt. of finishing
= 0.09 x [22(0.18+0.3) + 0.18] x20 = 19.33 KN/m
Imposed load
= 5 KN/m
2
2
2
Detail load calculation of every floor is shown in table
Seismic weight is the total dead load plus appropriate amount of specified imposed load. While computing the seismic load weight of each floor, t he weight of columns and walls in any story shall be equally distributed to the floors above and below the storey. The seismic weight of the whole building is the sum of the seismic weights of all the floors. It has been calculated according to IS: 1893(Part I) – 2002. IS: 1893(Part I) – 2002 states that for the calculation of the design seismic forces of the structure the imposed load on roof need not be considered The seismic weights and the base shear have been computed in table
According to IS 1893 (Part I): 2002 Cl. No. 6.4.2 the design horizontal seismic coefficient Ah for a structure shall be determined by the following expression: Ah =
Z I Sa 2 R g
Where,
Z = Zone factor given by IS 1893 (Part I): 2002 Table 2, Here for Zone V, Z = 0.36 I = Importance Factor, I = 1.5 for commercial building R = Response reduction factor given by IS 1893 (Part I): 2002 Table 7, R = 5.0 Sa/g = Average response acceleration coefficient which depends on Fundamental natural period of vibration (T a). For T = 0.8 and soil type IV (Soft Soil) Sa/g = 1.67/0.869797 =1.92
Now, The design horizontal seismic coefficient,
A b=
ZISa
Ah =
2 Rg
0.36 x1.5 x2.05916 2 x5
=0.10368
According to IS 1893 (Part I) : 2002 Cl. No. 7.5.3 the total design lateral force or design seismic base shear (V B) along any principle direction is given by VB = Ah x W Where, W = Seismic weight of the building=102752.62KN VB = 0.1*102086.67 = 1 . KN The total base shear is firstly distributed horizontally in basement in proportion to the stiffness. Then according to IS 1893 (Part I): 2002 Cl. No. 7.7.1 the design base shear (V B) computed above shall be distributed along the height of the building as per the following expression: Q i = VB
Wi h i2 n
Σ W j h j2
j=1
Where, Qi = Design lateral force at floor i
Wi = Seismic weight of floor i hi = Height of floor I measured from base n = No. of storeys in the building Q i = VB
Wi h i2 n
Σ W j h j2
j=1
Where, Qi = Design lateral force at floor i Wi = Seismic weight of floor i hi = Height of floor I measured from base n = No. of storeys in the building
W5
W5
W4
W4
W3
W3
W2
W2
W1
W1
Center of Rigidity (CR) - A point through which a horizontal force is applied resulting in translation of the floor without any rotation
Center of Mass (CM) - Center of gravity of all the floor masses. Structural eccentricity (e) e = CR − CM The eccentricity in building is calculated by e da = α e + β b e db = δ e − β b Where, eda & edb = static eccentricity at floor a & b define as the distance between center of mass and center of rigidity. b = maximum dimension of the building perpendicular to the direction of earthquake under consideration
α and δ = Dynamic magnification factors β = Accidental eccentricity factor
α =1.5 ,
β = 0.05
δ =1
and
The location of the center of rigidity is determined by x r =
k x And k y
y
y r =
k y k x
x
EI EI k x = 3 3 And k y = 3 3 L L Where k x and k y are lateral stiffness of a particular element along the x and y axes. E= Young’s Modulus of rigidity I= Moment of Inertia L= Length of the Member
The total torsional stiffness of a storey I p about the center of rigidity is given by
I p =
(k y x
2
+ k y x 2 )
Where, x , y = coordinates of the centroid of a particular element in plan from the center of rigidity. I p = polar moment of stiffness
The additional shear on any frame on column line to a horizontal torsional moment T is given by
V x' =
'
Vy =
T x y I p
k xx
Ty x I p
k yy
Where, Vx' = Additional shear on any frame or column line in the x-direction due to torsional moment Vx = initial storey shear in x-direction due to lateral forces Tx = Vx e y , torsional moment due to lateral force in x-direction only K xx = total stiffness of the column line under consideration in the xdirection. The subscript y represents y-direction.
The response history analysis provides structural response r(t) as a function of time, but the structural design is usually based on the peak values of forces and deformations over the duration of the earthquake induced response. The peak response can be determined directly
from the response spectrum for the ground motion in case of single degree of freedom. The peak response of multi degree freedom systems can be calculated from the response spectrum. st
The exact peak calue of the nth mode response r n(t) =-r n An Where An is the ordinate of the pseudo acceleration spectrum corresponding to natural period Tn and damping ratio The peak value r o of the total response can be estimated by combining the modal peaks r no according to one of the modal combination rules. Because the natural frequencies of transverse vibration of a beam are well separated, the SRSS combination rule is satisfactory. Thus,
α 2 r no n ~1
Different load cases and load combination cases are considered to obtain most critical element stresses in the structure in the course of analysis. There are together four load cases considered for the structural analysis and are mentioned as below: i.) ii.)
Dead Load (D.L.) Live Load (L.L)
iii.)
Earthquake load in X-direction (E.Q x)
Static
iv.)
Earthquake load in Y-direction (E.Q y) static
v.)
Earthquake load in X direction (Rx) response spectrum method
vi.)
Earthquake load in Y direction (Ry) response spectrum method
Following Load Combination are adopted as per IS 1893 (Part I): 2002 Cl. No. 6.3.1.2 i.)
1.5 (D.L + L.L)
ii.)
1.5 (D.L + E.Q x)
iii.)
1.5 (D.L - E.Q x)
iv.)
1.5 (D.L + E.Q y)
v.)
1.5 (D.L - E.Q y)
vi.)
1.2 (D.L + L.L + E.Q x)
vii.)
1.2 (D.L + L.L - E.Q x)
viii.)
1.2 (D.L + L.L + E.Q y)
ix.)
1.2 (D.L + L.L - E.Q y)
x.)
0.9 D.L + 1.5 E.Q x
xi.)
0.9 D.L -1.5 E.Q x
xii.)
0.9 D.L + 1.5 E.Q y
xiii.)
0.9 D.L -1.5 E.Q y
xiv.)
1.5 (D.L + Rx)
xv.)
1.5 (D.L - Rx)
xvi.)
1.5 (D.L + Ry)
xvii.)
1.5 (D.L - Ry)
xviii.)
1.2 (D.L + L.L + Rx)
xix.)
1.2 (D.L + L.L - Rx)
xx.)
1.2 (D.L + L.L + Ry)
xxi.)
1.2 (D.L + L.L - Ry
After checking the results, it was found that the stresses developed are most critical for the following load combinations: i.)
1.5 (D.L + L.L)
ii.)
1.2 (D.L + L.L + E.Q x)
iii.)
1.2 (D.L + L.L - E.Q x)
iv.)
1.2 (D.L + L.L + E.Q y)
v.)
1.2 (D.L + L.L - E.Q y)
vi.)
1.2 (D.L + L.L + Rx)
vii.)
1.2 (D.L + L.L - Rx)
viii.)
1.2 (D.L + L.L + Ry)
ix.)
1.2 (D.L + L.L - Ry
The characteristic loads considered in the design of foundation are: i.)
Dead Load plus Live Load To find the stress at the various points of the foundation, depth of footing and reinforcements most critical factored loads are taken into account
SAP2000 represents the most sophisticated and user-friendly release of SAP series of computer programs. Creation and modification of the model, execution of the analysis, and checking and optimization of the design are all done through this single interface. Graphical displays of the results, including real-time display of time-history displacements are easily produced. The finite element library consists of different elements out of which the three dimensional FRAME element was used in this analysis. The Frame element uses a general, threedimensional, beam-column formulation which includes the effects of biaxial bending, torsion, axial deformation, and biaxial shear deformations. Structures that can be modeled with this element include: • Three-dimensional frames • Three-dimensional trusses • Planar frames • Planar grillages • Planar trusses A Frame element is modeled as a straight line connecting two joints. Each element has its own local coordinate system for defining section properties and loads, and for interpreting output. Each Frame element may be loaded by self-weight, multiple concentrated loads, and multiple distributed loads. End offsets are available to account for the finite size of beam and column intersections. End releases are also available to model different fixity conditions at the ends of
the element. Element internal forces are produced at the ends of each element and at a userspecified number of equally-spaced output stations along the l ength of the element. Loading options allow for gravity, thermal and pre-stress conditions in addition to the usual nodal loading with specified forces and or displacements. Dynamic loading can be in the form of a base acceleration response spectrum, or varying loads and base accelerations.
The design of earthquake resistant structure should aim at providing appropriate dynamic and structural characteristics so that acceptable response level results under the design earthquake. The aim of design is the achievement of an acceptable probability that structures being designed will perform satisfactorily during their intended life. With an appropriate degree of safety, they should sustain all the loads and deformations of normal construction and use and have adequate durability and adequate resistance to the effects of misuse and fire. For the purpose of seismic analysis of our building we used the structural analysis program SAP2000. SAP2000 has a special option for modeling horizontal rigid floor diaphragm system. A floor diaphragm is modeled as a rigid horizontal plane parallel to global X-Y plane, so that all points on any floor diaphragm cannot displace relative to each other in X-Y plane. This type of modeling is very useful in the lateral dynamic analysis of building. The base shear and earthquake lateral force are calculated as per code IS 1893(part1)2002 and are applied at each master joint located on every storey of the building
After the analysis of structure using SAP2000 the maximum displacement of nodes at the expansion joint was found out. It is clear from table below that the available gap for expansion joint is much greater relative displacement of the nodes at joint. In order to reduce the pounding effect between the two units, the adequte spacing is provided. The separation between the adjacent units of the same buildings in between shall be separated by a distance equal to the amount R times the sum of the calculated storey displacements to avoid the damaging contact when the two units deflect towards each other. Since the elevation levels of both units are same in our case the factor R is replaced by R/2. Hence the building will not collide at the expansion joint during earthquake condition.
Table 13 Along X
Along X
Max Displaceme Relative Floor
Top
Bottom
Drift
Displacement
Max Displaceme Relative Bottom Top
Drift
Displacemen
0 0.003
0.00331
0.0009457
0
0.003
0.0027 0.00077
Semi Basemen 0.00331 0.007
0.00418
0.0011943
0.0027
0.01
0.0072 0.00206
0.00749 0.019
0.01191
0.00397
0.0099
0.021
0.011 0.00367
First
0.0194 0.031
0.0119
0.0039667
0.0209
0.033
0.0118 0.00393
Second
0.0313 0.043
0.0118
0.0039333
0.0327
0.045
0.0119 0.00397
Third
0.0431 0.055
0.0119
0.0039667
0.0446
0.056
0.0118 0.00393
Fourth
0.055 0.067
0.0118
0.0039333
0.0564
0.068
0.0113 0.00377
0.0668 0.078
0.01121
0.0037367
0.0677
0.08
0.0118 0.00393
0.09
0.01199
0.0039967
0.0795
0.091
0.0117
0.406
0.0912 0.0299
Basement
Ground
Fifth Sixth
Total
0.07801
0.39
0.09 0.0296433
spacing =0.09125/2=0.228m (in one side)
0.0039
Fi : Ex ansion Joint Elevation
Fig: Expansion Joint (Plan)
`
In the method if design based on limit state concept, the structure shall be designed to withstand safely all loads liable to act on it throughout its life; it shall also satisfy the serviceability requirements, such as limitations on deflection and cracking. The acceptable limit for the safety and serviceability requirements before failure occurs is called a ‘limit state’. The aim of design is to achieve acceptable probabilistic that the structure will not become unfit for the use for which it is intended, that is, that it will not reach a limit state.
Assumptions for flexural member:
i)
Plane sections normal to the axis of the member remain plane after bending.
ii)
The maximum strain in concrete at the outermost compression fiber is 0.0035.
iii)
The relationship between the compressive stress distribution in concrete and the strain in concrete may be assumed to be rectangle, trapezoidal, parabola or any other shape which results in prediction of strength in substantial agreement with the result of test. For design purposes, the compressive strength of concrete in the structure shall be assumed to be 0.67 times the characteristic s trength. The partial safety factor m =
1.5 shall be applied in addition to this.
iv)
The tensile strength of concrete is ignored.
v)
The design stresses in reinforcement are derived from representative stress-strain curve for the type of steel used. For the design purposes the partial safety factor
m =
1.15 shall be applied. vi)
The maximum strain in the tension reinforcement in the section at failure shall not be less than:
f y 1.15Es
+ 0.002
Where, f y = characteristic strength of steel Es = modulus of elasticity of steel
Limit state of collapse for compression: Assumption:
In addition to the assumptions given above from i) to v), the following shall be assumed: i.)
The maximum compressive strain in concrete in axial compression is taken as 0.002.
ii.)
The maximum compressive strain at highly compressed extreme fiber in concrete subjected
to axial compressive and bending and when there is no tension on
the section shall be 0.0035 minus
0.75 times the strain at the least compressed
extreme fiber. The limiting values of the depth of neutral axis for different grades of steel based on the assumptions are as follows: Fy
xu,max
250
0.53
415
0.48
500
0.46
Materials adopted in our design:
M30 (1:1.5:3) M25 (1:1:2) Fe250-Mild Steel Fe415 Use of SP16, IS456-2000, IS1893-2002, IS13920-1993, SP34:
After analyzing the given structure using the software SAP2000 the structural elements are designed by Limit state Method. Account should be taken of accepted theories, experiment, experience as well as durability. The code we use for the design is IS456-2000; IS1893-2002, IS13920-1993 and Design aids are SP16 and SP34. Suitable material, quality control, adequate detailing and good supervision are equally important during implementation of the project.
Use of different handbook for the design:
The structural elements (special staircases, lift wall, basement wall) which are not described by the above mentioned codes and design aids were handled with the help of the handbooks viz. Reinforced concrete Designer’s Handbook – Charles E. Reynolds
Computer aided design is the method of analyzing and designing any structure with the help of various general use softwares and some particularly designed softwares made by using some popular programming languages like visual basic, C++,etc. In present time most of the building analysis and design is done b y using computers. Basically analysis and design based softwares like SAP, STAAD, etc are available in market. These types of softwares are easy to use and can provide analysis results of complicated structures in the matter of minutes which if calculated manually would take months. Methodology 1. Analysis of building was done by using SAP 2000. 2. Design of slab was done by analyzing the slab of each floor on SAP 2000 in a separate model. 3. For beam design, analysis result from SAP 2000 was arranged by using a small program made from Visual Basics, which extracts data from SAP analysis and arranges the required data. 4. Now beam was designed by using EXCEL and required reinforcement was calculated. 5. In case of columns, we used the design data from SAP. 6. All the other structural members were designed manually.
. m a e b e h t f o 0 0 0 2 P A S m o r f a t a d e h t g n i t c a r t x e r o f m a r g o r p e l p m a s A
The design includes design for durability, construction and use in service should be considered as a whole. The realization of design objectives requires compliance with clearly defined standards for materials, workmanship, and also maintenance and use of structure in service. This chapter includes all the design process of sample calculation for a single element as slab, beam, column, staircases, basement wall, lift wall, ribbed slab and mat foundation. i.) ii.)
Design of slab Design of Beam
iii.)
Design of Column
iv.)
Design of Staircase
v.) vi.) vii.)
Design of Basement Wall Design of Lift Wall Design of Mat and Foundation
Table 14
Depth of slab, ( d ) =
Shorter Span
αβγδ
d =
6140 26 x 1.65 * 1.05
Ø
l y
l x
=
6140
6140
=1< 2
M max
4.14 x b
18.66 x106
=
4.14 x1000
= 67.13 mm
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd 2
(1 − 1 −
) bd
4.6 x18.66 x10 30 x1000 x136
6
2
) x 1000 x136
Ø
A b A st
x1000
78.5 399.7
x1000
Ab S v
x1000 =
78.5 190
x1000 = 413.2
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u
) bd
f ck bd 2
4.6 x14 x10
(1 − 1 −
6
30 x1000 x136
2
) x 1000 x136
Ø
A b A st
x1000
78.5 296
x1000
Ab
S v
78.5
x1000 =
260
x1000 = 302
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd 2
(1 − 1 −
) bd
4.6 x16.87 x10 30 x1000 x138
6
2
) x 1000 x138
Ø
A b A st
x1000
50.26 358.14
x1000
A b
Sv
x1000 =
50.26 140
x1000 = 359
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd 2
(1 − 1 −
) bd
4.6 x12.77 x106 30 x1000 x1382
) x 1000 x138
Ø
A b A st
x1000
50.26 267.17
x1000
A b
Sv
x1000 =
50.26 180
x1000 = 279.22
6.14 2
47.5 3.07
=
V u
3.07 − 0.136
τ c = 0 .37
τ c
τ c =
1.28 x 0.37 x 1000 x 136 1000
0.58 f y
Area of Steel Re quired Area of Steel Pr ovided
296 302
l x M . F . x Basic Value
=
6140 1.75 x 26
= 134.9
Φ σ s
1.6 x 4 x τ bd
Φ x 0.87 x 415 = 40.3Φ 1.6 x 4 x 1.4
Ld ≤
M1 V
+ Lo
M1
V
18.66 + Lo
2 + 0.275 = 0.483 45.4
A b A sd
x 1000
78.5 192
x 1000
A b Sv
x 1000
78.5 400
x 1000 = 196.3
Table 15
Depth of slab, (d ) =
Shorter Span
αβγδ
d =
6140 26 x 1.65 * 1.05
Ø
l y l x
=
7140 6140
= 1.16 < 2
M max
4.14 x b
=
23.33 x10
6
4.14 x 1000
= 75.1mm
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u
) bd
f ck bd 2
4.6 x 23.33 x106
(1 − 1 −
30 x1000 x 136 2
) x 1000 x 136
Ø
A b A st
x1000
78.5 506.7
x1000
Ab S v
78.5
x1000 =
150
x1000 = 523.33
0.5
f ck f y
(1 − 1 −
4.6 M u f ck bd
2
) bd
0.5 x
30 415
4.6 x17.5 x 10
(1 − 1 −
6
30 x 1000 x136
2
) x 1000 x136
Ø
A b
x1000
A st
78.5
x1000 373.6
Ab
S v
78.5
x1000 =
200
x1000 = 392.5
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u
) bd
f ck bd 2
4.6 x18.66 x 10
(1 − 1 −
6
2 30 x1000 x136
) x 1000 x136
Ø
A b
x1000
A st
78.5 399.7
x1000
Ab
S v
x1000 =
78.5 190
x1000 = 413.2
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd
2
(1 − 1 −
) bd
4.6 x 14 x106 30 x 1000 x1362
) x 1000 x136
Ø
A b A st
x1000
78.5 296
x1000
Ab
S v
x1000 =
78.5 260
x1000 = 302
6.14 2
47.5 3.07
=
V u 3.07 − 0.136
τ c = 0.4
τ c
1.28 x 0.4 x 1000 x 136 1000
τ c =
0.58 f y
Area of Steel Re quired Area of Steel Pr ovided
373.6 392.5
l x M . F . x Basic Value
=
6140 1.8 x 26
=131.2
Φ σ s
1.6 x 4 x τ bd
Φ x 0.87 x 415 1.6 x 4 x 1.4
= 40.3Φ
Ld ≤
M1 V
+ Lo
M1 V
18.66 + Lo
2 + 0.275 = 0.483 45.4
A b A sd
x 1000
78.5 192
x 1000
A b Sv
x 1000
78.5 400
x 1000 = 196.3
Table 16
Depth of slab, (d ) =
Shorter Span
αβγδ
4140
d =
26 x 1.65 * 1.05
Ø
l y l x
=
4340 4140
= 1.05 < 2
M max
4.14 x b
9.28 x10
=
6
4.14 x 1000
= 47.3 mm
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u
) bd
f ck bd 2
4.6 x 9.28 x 10
(1 − 1 −
6
30 x 1000 x136
2
) x 1000 x 136
Ø
A b A st
x1000
78.5
x1000 193.7
Ab S v
x1000 =
78.5 300
x1000 = 261.7
0.5
f ck f y
(1 − 1 −
4.6 M u f ck bd 2
) bd
0.5 x
30 415
4.6 x 6.9 x 10
(1 − 1 −
6
30 x 1000 x136
2
) x 1000 x136
Ø
A b A st
x1000
78.5 x1000 192
Ab S v
78.5
x1000 =
300
x1000 = 262
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd 2
) bd
4.6 x 8.4 x10
(1 − 1 −
6
2 30 x 1000 x136
) x 1000 x136
Ø
A b A st
x1000
78.5 x1000 192
Ab
S v
x1000 =
78.5 300
x1000 = 262
0.5
f ck f y
(1 − 1 −
0.5 x
30 415
4.6 M u f ck bd 2
(1 − 1 −
) bd
4.6 x 6.4 x10
6
30 x 1000 x 136
2
) x 1000 x138
Ø
A b A st
x1000
78.5 x1000 192
Ab S v
x1000 =
78.5 300
x1000 = 262
4.14 2
32 2.07
=
V u 2.07 − 0.136
τ c = 0.3
τ c
τ c =
1.28 x 0.3 x1000 x136 1000
0.58 f y
Area of Steel Re quired Area of Steel Pr ovided
192 262
l x M . F . x Basic Value
=
4140 2 x 26
= 79.6
A b A sd
x 1000
78.5 192
x 1000
A b Sv
x 1000
78.5 400
x 1000 = 196.3
Table 17: Design of Beam 106ÿ(B2ÿC2)
Table 18: Design of Beam 102ÿ(B8ÿC8)
Table 19: Design of Beam 196ÿ(c4ÿc5)
Table 20 Reference
Step
Calculations
Output
column D9
Overall Depth of Column, D =
350
mm
D=
350
mm
Column, B =
350
mm
B=
350
mm
Height, L =
3.5
mm
L=
Clear height, l =
3.5
mm
Clear cover, d=
40
mm
diameter of longitudinal reinforcement, ø =
32
mm
So, effective cover, d’= 40+10/2 =
50
mm
Width of
3.5 mm
Assume following data:
effective cover d’=
50
mm
Lowest factored Axial Load =
4846
KN
Lowest among all load combination
Factored Axial Stress =
4846 x1000
IS 3920:1993 cl.7.1.1
Axial Stress = 8.97>
900 600
=
8.97
Mpa
2.28
m
le =
mm2
Min.
0.1fck(2.5)
Hence, design as Column Member. IS13920:1993
Check for Member Size:
cl.7.1.2
Width of Column, B = 600mm > 200mm
IS13920:1993
Depth of Column, D =
cl.7.1.3
900mm
B/D = 600/900 = 0/67 > 0.4
IS 456 : 2000
Hence, OK
table 28
Eff Length, le = 0.65 x l = 0.65 x 3.50 =
IS 456:2000
2.28 m
Check for Short and Slender Column:
cl.25.1.2
le/D = (2.28x1000)/900 = 2.53<12,(short column),ok
IS 456:2000 cl.26.5.3.1
Min. Reinforcement, = 0.8% of BD 0.8*350*350/100=
980
980
mm2
4900
mm
Asc=
Max. Reinforcement, Max. Asc = 4% of
Max.
BD
Asc = 0.04 x 350 x 350 =
4900
2
mm
extreme case,
2
But in extreme case, Max. Asc = 6% of
Asc=
7350
Mu=
28
Mu=
148
mm 2
BD 0.06 x 900 x 600 =
IS 456:2000,
mm2
7350
Design of column for Max. Moment:
cl.26.5.3.1
IS 456:2000
Pu=
433.9
KN
Mx=
26
KNm
My=
2
KNm
Mu = abs(Mx) + abs(My) =
28
KNm
Min. eccentricity:
cl.25.4
emin= l/500 + D/30 20 mm where, l= unsupported length of the column D= lateral dimension in plane of bending emin
3 . 50 x 1000
=
500
+
350
18.67
=
30
Min. Moment = Pu x emin = Mu= d D
'
52 =
350
P u f ck BD M u f ck BD 2 Assume
=
=
=
26x1000 30 x 350 x 350 28 x10 6 3025 x600 x900 2
reinforcement
8.10
KNm
34.10
KNm
0 . 148
is
distributed on four sides,
p
SP16
=
0.1181
=
0.0265
uniformly
f ck
=
0.005 P=
0.15
Asc= pBD =
183.75
Min Ast=
980
mm
Pmax=
498
KN
Mx =
76
KNm
My =
71.5
KNm
Mu = 76+71.5 =
147.5
KNm
chart 48
<20mm
% mm2 2
Data from sap analysis,
KNm
Now,
P max
=
f ck BD
498x1000
=
30x350x350
0.14
SP16 chart 48
M u 2
f ck BD
6
30 x 350 x 350
=
2
0.11
=
0.05
P=
1.5
%
Adopt P=
1.5
%
and Asc=
1837.5
f ck
= 0 . 062
D
Chart 48
147 . 5 x10
p
d '
SP16
=
mm 2
Providing 12 0f 32mmø
Asc= Asc provided =
p=
p
1.6824
%
M
chart48
Act)
0.0561
Pu/fckBD=
0.14
2
mm2
chart63
n
154.35
KNm
154.35
KNm
0.12
=
Muxl=
154.35
for p=
1.68
Puz/Ag=
18
Puz=
220
SP16
= 0.667+1.667xPu/Puz
n
α
M ux M uxl
M uy + M uy1
KNm % N/ mm2 KN
2
n
α
=
0.45
<
Muxl=
1, ok
cl.39.6
Muyl =
2060.9
0.0561
for p/fck=
u
f ck BD
Percentage of steel provided=
1.68
%
Design Shear Strength of concrete, τ
IS 456:2000 table 19
Asc(
SP16
IS456:2000
mm2
mm 2
=
f ck
2060.9
1837.5
c
=
0.76
N/ mm2
Considering lowest, Pu = 1297.6 KN
For members subjected to axial compression Pu , the design shear strength of concrete c , shall be multiplied by the following factor:
3 x Pu = 1+ A x f g ck
IS 456:2000
cl. 40.2.2 =
1
x
3 +
=
1.5
481
350
x 1000 x
350
30
=
1.39
1.39 <1.50k
Multiplying factor, = 1.39 Actual, τ
=
c
1.0564
N/ mm2
129.41
KN
Shear capacity of the section, Vc= Shear force as per sap analysis Vux = 40.6 KN Vuy = 16 KN Hence, the shear capacity of the column section exceeds the induced shear force. So, shear reinforcement is not required.
IS 456:2000
Diameter of ties:
cl
øt
not less than 6mm
26.5.3.2.C.2 0.25*maximum diameter of longitudinal reinforcement 0.25*20=5mm Hence, adopt ties of 6 mmø IS
Spacing of the ties:
13920:1993 cl.7.3.3
Sv 300mm Thus, provide 8mm ø lateral ties @ 300 c/c in central part.
Area
of
cross-section
of
bar
forming
rectangular hoop to be used as confining links IS 13920:1993
A sh = 0 . 18 S h
f ck A g
− 1 f y A k
cl.7.4.8
Ak = (350-2 x 40 + 2 x 5)x(350-2 x 40 + 2 x 5)=78400 mm2 h= Max of where 3
is no. of bars in each face of column section
= 90 mm Area of 6 mm ø bar = 28.27 mm2 Therefore, 28.27 = 0.18 x S x 90
30 350x350 − 1 415 78400
or, S= 43mm
IS 13920:1993
Spacing of hoop should be least of Lateral Dimension 14 of minimum 100mm
=
cl.7.4.6
350 4
=
87.5
but need not be less than 75 mm
Provide 8 mm ø links @ 90 mm c/c for a distance Lo which shall not be less than
IS 13920:1993 cl.7.4.1
L arg er Lateral Dimension = 350 mm 1 6 of Clear Span = 3500 6 = 583 mm 450 mm
Hence, Provide 8 mm ø links @ 75 mm c/c for a distance Lo = 583mm on either side from the joint.
Tab Reference
Step
Calculations
Output
Rectangular column B4 Known data: Overall Depth of Column, D = Width of
Column, B = Height, L =
900
mm
D=
900
mm
600
mm
B=
600
mm
mm
L=
3.50
mm
56
mm
3.5
Clear height, l =
3.5
mm
Clear cover, d=
40
mm
diameter of longitudinal reinforcement, ø =
32
mm
So, effective cover, d’= 40+32/2 =
56
mm
Assume following data:
effective cover d’=
Lowest factored Axial Load =
4846
KN
8.97
Mpa
2.28
m
Lowest among all load combination
Factored Axial Stress = 4846 x1000
IS 3920:1993
900
cl.7.1.1
60 0
Axial Stress = 8.97>
=
0.1fck(2.5)
Hence, design as Column Member. IS13920:1993
Check for Member Size:
cl.7.1.2
Width of Column, B = 600mm > 200mm
IS13920:1993
Depth of Column, D =
cl.7.1.3
900mm
B/D = 600/900 = 0/67 > 0.4
IS 456 : 2000
Hence, OK
table 28
Effective Length, le = 0.65 x l = 0.65 x 3.50 =
IS 456:2000
le =
2.28
Min. Asc=
4320
mm2
Max. Asc
21600
mm2
m
Check for Short and Slender Column:
cl.25.1.2
le/D = (2.28x1000)/900 = 2.53<12,(short column),ok
IS 456:2000 cl.26.5.3.1
Min. Reinforcement, = 0.8% of BD 0.8*600*900/100=
4320
mm2
Max. Reinforcement, Max. Asc = 4% of BD
= 0.04 x 610 x 610 =
21600
mm2
extreme case,
But in extreme case, Max.Asc = 6% of BD 0.06 x 900 x 600 =
IS 456:2000,
32400
mm2
Pu=
2022.7
KN
Mx=
185
KNm
My=
137.8
KNm
Mu = abs(Mx) + abs(My) =
322.8
KNm
37
>20m
Asc=
32400
Mu=
322.8
mm2
Design of column for Max. Moment:
cl.26.5.3.1
IS 456:2000
Min. eccentricity:
cl.25.4
emin= l/500 + D/30 20 mm where, l= unsupported length of the column D= lateral dimension in plane of bending
3 . 50 x 1000
emin =
500
+
900
=
30
m
Min. Moment = Pu x emin =
74.84
KNm
322.8
KNm
M = 74.84KNm < Mx or My Mu=
d ' D
=
56 900
P u
=
f ck BD M u f ck BD
2
=
=
0 . 0622
2022.7x100 0 30 x 900 x 60 0 322 . 8 x10 6 3025 x 600 x 900 2
0.125
=
=
0.022
Assume reinforcement is uniformly distributed on four sides, p f ck
SP16 chart 48
=
0.005
P=
0.15
Asc= pBD =
810
mm2
Min Ast=
4320
mm2
Pmax=
8510.8
Mx =
-216
%
Data from sap analysis, KN KNm
KNm
My =
71.5
Moment due to min. eccentricity (315)> Mx
KNm KNm
and My. Mu = 216+315 =
531
Mu=
531
KNm
Asc=
8910
mm2
Asc(Act)=
9651
mm2
IS456:2000
Muxl=
874.8
KNm
cl.39.6
Muyl =
874.8
KNm
KNm
Now, SP16
P max
8510x1000 =
f ck BD
chart 48
M u f ck BD
=
2
=
30x600x900
531 x 10
0.525
6 2
30 x 600 x 900
p
SP16
f ck
=
0.036
=
0.055
P=
1.65
%
Adopt P=
1.65
%
and Asc=
8910
Chart 48
mm2
Providing 12 0f 32mmø Asc provided =
9651
p=
1.78
p
f ck
SP16
M
chart48
0.06
Pu/fckBD=
0.525
=
0.06
Muxl=
874.8
KNm
for p=
1.787
%
Puz/Ag=
19
Puz=
10260
u 2
SP16 chart63
= 0.667+1.667xPu/Puz
M ux M uxl
n
α
M uy + M uy 1
%
0.1
for p/fck=
f ck BD
n
=
mm2
N/ mm2 KN
2
n
α
=
0 .06
<
1, ok
Percentage of steel provided=
1.78
%
0.78
N/ mm2
Design Shear Strength of concrete, IS 456:2000 table 19
τ
c
=
Considering lowest, Pu = 1297.6 KN
n = 1.26
For members subjected to axial compression Pu , the design shear strength of concrete c , shall be multiplied by the following factor:
= 1+
3 x Pu A g x f ck
IS 456:2000 cl. 40.2.2 =
1
+
3 x 1297
= 1.42 1.42
. 685 x 1000
600 x 900
<1.50k
=
30
Multiplying factor, = 1.42 Actual,
τ
c
=
1.108 N/mm2
Shear capacity of the section, Vc=
598.1
KN
Shear force as per sap analysis Vux = 40.6 KN Vuy = 92.6 KN Hence, the shear capacity of the column section exceeds the induced shear force. So, shear reinforcement is not required.
IS 456:2000
Diameter of ties:
26.5.3.2.C.2
øt
not less than 6mm
0.25*maximum diameter of longitudinal reinforcement 0.25*32=8mm Hence, adopt ties of 8 mmø
IS 13920:1993 cl.7.3.3
Spacing of the ties: Sv 300mm Thus, provide 8mm ø lateral ties @ 300 c/c in central part. Area of cross-section of bar forming rectangular hoop to be used as confining links
cl.7.4.8
Ak = (600-2 x 40 + 2 x 8)x(900-2 x 40 + 2 x 8)=448096 mm2
h= Max of ( 900 − 40 − 40 ) mm = 205 4 ( 600 − 40 − 40 ) = 130 mm 4 where 4 is no. of bars in each face of column
section
= 205 mm Area of 8 mm ø bar = 50.26 mm2 Therefore, 50.26
IS 13920:1993
cl.7.4.6
=
0.18 x S x 205
30 600 x900
415 448096
−
1
Spacing of hoop should be least of
1 of min imum Lateral Dimension 4 100 mm
=
600 4
=
150
but need not be less than 75 mm Provide 8 mm ø links @ 90 mm c/c for a distance Lo which shall not be less than
IS 13920:1993
cl.7.4.1
L arg er Lateral Dimension = 900 mm 1 3500 = = of Clear Span 583 mm 6 6 450 mm Hence, Provide 8 mm ø links @ 100 mm c/c for a distance Lo = 900mm on either side from the joint.
Table 22
Step
Calculations
Output
Circular column O Known data:
Overall Depth of Column, D =
Height, L =
400
mm
3.5
mm
Clear cover, d=
40
mm
diameter of longitudinal reinforcement, ø
32
mm
56
mm
D=
400
mm
B=
400
mm
L=
3.5
mm
56
mm
Clear height, l = Assume following data:
= So, effective cover, d’= 40+32/2 =
Eff cover d’=
1
Check for Axial Stress:
Lowest factored Axial Load =
705.44
KN
Factored Axial Stress = 705
. 44
900
x
x
1000
Axial Stress =
all load
5.6137
=
600
Lowest among
5.6137
combination
> 0.1fck
Hence, design as Column Member.
Check for Member Size:
Depth of Column, D =
400mm>200mm B/D = 400/400 =
1
Effective Length, le = 0.65 x l = 0.65 x
2.28
>0.4
Hence, OK
m
le =
2.28
Min. Asc=
1005
M
3.50 = Check for Short and Slender Column:
le/D = (2.28x1000)/400 = 5.7<12,(short
column),ok
Min. Reinforcement, = 0.8% of ( D2)/4 0.8 x(
x 4002)/400 =
1005.3
mm2
mm2
Max. Asc =
Max. Reinforcement, Max. Ast = 4% of
5027
mm2
( D2)/4 0.04 x (
x 4002)/4=
5026.5
extreme case, Max. Ast = 6% of
( D2)/4 7539.8
mm2
Pu=
1959.14
KN
Mx=
75.43
KNm
My=
44.9
KNm
Mu = abs(Mx) + abs(My) = (i.e. max.
120.33
KNm
0.06 x(
mm2
x 4002)/4 = 17534.8 mm2
extreme
case,
Asc=
7540
mm2
Mu=
120.3
KNm
absolute sum among all combination) Min. eccentricity:
emin= l/500 + D/30 20 mm
where, l= unsupported length of the column D= lateral dimension in plane of bending
emin=
x1000
3 . 50
500
20.33
400 +
=
30
mm
Min. Moment = Pu x emin =
39.82932
KNm
120.33
KNm
M = 39.82KNm < My Mu= d
'
D
P u
0.14
=
400
1959.14x10 =
f ck BD
00
0.4082
=
30 x 400 x 400 6
M u 2
f ck BD Assume
56 =
=
120 x10
2
30 x400 x400
reinforcement
is
0.0627
=
uniformly
distributed on four sides, p f ck
P=
=
Asc= p( D2)/4=
0.1
3 3769.92
% mm2
Data from sap analysis, Pmax=
2286.6
KN
Mx =
-70.21
KNm
My =
-36.91
KNm
Moment due to min. eccentricity =
46.48
>My
Mu = 70.21+46.5=
116.69
KNm
Now,
P max
f ck BD
M u f ck BD
2
2286.6x100
=
0
30x400x400 531 x 10 6 30 x 600 x 900
=
f
=
2
p
0.476
=
0.060
=
0.12
ck
Then P=
3.6
%
Hence adopt, P=
3.6
%
and Asc=
4523.90
mm2
Providing 6 0f 32mmø
Asc provided =
4825.5
p=
3.8
for p/fck=
0.126667
Pu/fckD2=
0.476375
mm2
Asc=
4524
mm2
Asc(Act)=
4826
mm2
Muxl=
124.8
KNm
Muyl =
124.8
KNm
Puz =
3140
%
M
u
f ck BD
0.065
=
2
Muxl=
124.8
for p=
3.8
Puz/Ag=
25
Puz=
3140
KN
0.44
<
n
= 0.667+1.667xPu/Puz
M ux M uxl
α
n +
M uy M uy 1
% N/mm2
1.88
α
n =
1, ok
Percentage of steel provided=
3.8
Design Shear Strength of concrete,=
KNm
0.96
τ
c
% N/mm2
=
KN
Considering lowest, Pu =625.98 KN
For
members
subjected
to
n=
axial
1.880
compression Pu , the design shear strength
9
of concrete c , shall be multiplied by the following factor:
3 x Pu
= 1+
=
1.489
A g x f ck
=
1+
3 x625.98 x1000 x4
x4002 30
=
1.489 < 1.5, ok
π
Multiplying factor, = 1.489 Actual, τ
c
1.4294 N/mm2
=
Shear capacity of the section, Vc= 1.429* x4002/(4x1000)=
179.6
KN
Shear force as per sap analysis Vux = -16.2 KN Vuy = 26.2 KN Hence, the shear capacity of the column section exceeds the induced shear force. So, shear reinforcement is not required.
øt not less than 6mm
0.25*maximum
diameter
of
longitudinal reinforcement 0.25*32=8mm Hence, adopt ties of 8mmø
Sv
8 mm ø @
300mm
Thus, provide 8mm ø lateral ties @ 300 c/c in central part. Area of cross-section of bar forming rectangular hoop to be used as confining links
A sh = 0 . 09 S D k
f ck A g
1 − f y A k
Dk = 400-2 x 40 + 2 x 8 = 336 mm
300
mm
Ak = π 4 D k 2 = π 4 x 336 Area of 8 mm ø bar = 50.26 mm2
2
=
88668.3
mm2
Therefore, 50.26
=
0.09 x S x336
or, S= 55.1 mm
125663.7 1 415 88668.3 30
−
75mm 400/ 6 = 40mm
Provide 8 mm ø links @ 55 mm c/c for a distance Lo which shall not be less than
Dimension= 400mm L arger Lateral 1 6 of Clear Span= 35006 = 583mm 450mm Hence, Provide 6 mm ø links @ 75 mm c/c for a distance Lo = 583mm on either side from the joint.
Concrete Grade=M30
1914mm
Table 23
Steel Grade=Fe415
3300mm
Riser Height, R=175 mm Tread Height,T=300 mm Floor Height=3.505m Flight Width, W=1.5m No of riser= 20 No. of Treads in the flights=19 Type of staircase= doglegged Span of stair case=6m Length of the flights=3.3m Tan =180/300 = 30.964º
1914mm
B 2 + R 2 2
2
270 + 175 Assuming Slab Thickness,D=250 mm Considering 1m Width of Slab Self Wt.of Slab= DSec =25 x 0.24 x Sec30.964=7.00 KN/m Wt. of Steps= R/2=25 x .18/2=2.25 KN/m 9cm Thick Floor Finishing= x 0.09=20 x 0.09=1.8 KN/m Live Load=5 KN/m
Total Characteristics Load=16.05 KN/m Design Load=1.5 x 17.796=24.075 KN/m
Self Wt. of Slab= D=25 x .24=6.00 KN/m 9cm Thick Floor Finishing= x 0.09=20 x 0.09=1.8 KN/m Live Load=5 KN/m Total Characteristics Load=12.8 KN/m Design Load=1.5 x 12.8=19.2 KN/m
Effective depth,d = 160-15-12/2 =139mm
For Upper and Lower Flight, Moment at , End support C Mc=74.35 KN/m(From SAP) About Mid span,
Mmid=64 KN/m
Internal Hinge, Mhinge=82.42 KN/m Clear Cover=20 mm,16 mm dia. bars Effecrtive Depth= 240-20-8= 212 mm
For Mid Span
A st x 500 64 x 106 = 0.87 x 500 x Ast x 212 x 1 − 1000 x 212 x 20
2
Ast=570.858 mm >Amin. (.0012 x 1000 x 240) Required spacing of 10 mm Bars, C/C Spacing=1000/570.858 x 78.546=137.59 mm Provide 10 mmØ @135 mm
A st x 500 74.35 x 106 = 0.87 x 500 x Ast x 212 x 1 − 1000 x 212 x 20
Ast=669.589 mm2 >Amin. (.0012 x 1000 x 240) C/C Spacing=1000 x 78.546/669.589=117.295 mm Provide 10 mmØ @115 mm
Moment M b =60.97 KN/ m
Ast x 500 Ast=748.01 82.42 x 106 = 0.87 x 500 x A st x 212 x1 − 1000 x 212 x 20
mm2 >Amin Required spacing of 10 mm Bars C/C Spacing=1000/748.01 x 78.546=105.00 Provide 10 mmØ @105 mm
, Astmin=.0012 x 1000 x 240=360 mm2 Required spacing of 10 mm Bars, C/C Spacing=1000/360.00 x 78.546=218.167 mm Provide 10 mmØ @215 mm
Ld =
φσ s 4τ bd
Ld = 453.125 mm Provide Development Length 455 mm D=l/(20 x mt) Percentage of steel,P t=0.194 For f s =247.54Mpa mt=1.5 D=7128/(20 x 1.5)=238 mm< 240 mm(O.K)
Introduction Basement wall is constructed to retain the earth and to prevent moisture from seeping into the building. Since the basement wall is supported by the mat foundation, the stability is ensured and the design of the basement wall is limit ed to the safe design of vertical stem. Basement walls are exterior walls of underground structures (tunnels and other earth sheltered buildings), or retaining walls must resist lateral earth pressure as well as additional pressure due to other type of loading. Basement walls carry lateral earth pressure generally as vertical slabs supported by floor framing at the basement level and upper floor level. The axial forces in the floor structures are , in turn, either resisted by shear walls or balanced by the lateral earth pressure coming from the opposite side of the building. Although basement walls act as vertical slabs supported by the horizontal floor framing , keep in mind that during the early construction stage when the upper floor has not yet been built the wall may have to be designed as a cantilever. Design of vertical stem The basement wall is designed as the cantilever wall with the fixity provided by the mat foundation.
Soil Pressure
Due to Surcharge
Basement Wall
(Rear Face)
(Front Face)
Mat Footing
2
KN/m
KN/m
Concrete Grade = M20
Table 24
Design Constants Clear height between the floor (h) =5.26 m unit weight of soil, = 17 KN/m3 0 Angle of internal friction of the soil, = 30 surcharge produced due to vehicular movement is Ws = 10 KN/m2 Safe bearing capacity of soil , q s = 90 KN/m2
1 − sin θ 1 − sin 30 K a = = = 0.333 1 + sin θ 1 + sin 30 Lateral load due to soil pressure, Pa = Ka x x h2/2 = 0.333x17x5.262/2 = 23.52 KN/m Lateral Load due to surcharge load, Ps = Ka x Ws x h = 0.333x10x5.26 = 17.53 KN/m Characteristic Bending moment at the base of wall , Since weight of wall gives i nsignificant moment ,so this can be neglected in the design. Mc = Pa x h/3 + Ps x h/2 = 23.52x5.3/3 + 11.67x5.3/2 = 71.5KN-m Design moment, M = 1 .5Mc = 1.5x71.5=107.2 KN-m
Let effective depth of wall = d BM = 0.136 ƒ ck bd2 107.2x106 = 0.136x20x1000xd2 d = 198.5 mm Let Clear cover is 25mm & bar is 20mmOverall depth of wall , D = 198.5+25+10 = 233.5 mm Take D = 235mm So , d = 235 – 25- 10 = 200 mm
bdf ck 1 − 2 xf y
Ast=
Steel Grade = Fe415 (TMT)
1−
4 . 6 M f ck bd
2
1000 x 200 x 20 4.6 x107.2 x10 6 Ast= 1− 1− 2 x 415 20 x1000 x 200 2 Ast = 1637 mm
2
Min. Ast = 0.0012xbxD = 0.0012x1000x235 = 282 mm2 < Ast 2 Max. Dia. of bar = D/8 = 235/8 = 29.4 mm Providing 20mm- bar , spacing of bar is
S=
π x 20 2 x1000 4 x1637
=192 mm/m
Provide 20mm- bar @195 mm c/c 2 So, Provided Ast = 314.16x1000/185= 314.16x1000/185= 1698mm Pt = 1698x100/(1000x235) = 0.7 %
Max. Spacing = 3d = 3x200 = 600 mm Provide nominal vertical reinforcement 8mm @300mm c/c at the front face.
The critical section for shear strength is taken at a distance of ‘d ’ from the face of support .Thus , critical section is at d = 0.2 m from the top of mat foundation. i.e. at (5.3- 0.2) = 5.1m below the top edge of wall. Shear force at critical section is, 2 Vu = 1.5x(K a x Ws x Z + Ka x x Z /2) 2 = 1.5x(0.333x10x5.1 + 0.333x17x5.1 /2) = 58.7 KN V Nominal shear stress , τ u = u bd = 58.7x1000/(1000x20 58.7x1000/(1000x200) 0) 2 = 0.29 N/mm Permissible shear stress , c = 0.55 N/mm2 c > u , Hence safe. Leff = 5.3+d = 5.3+.2 = 5.5 m Allowable deflection = l eff /250 = 5500/250 = 22 mm
Actual Deflection =
p s l 4 eff 8EI
+
p a l 4 eff 30EI
17.53 23.52 + = 3 30 1000 x235 x5000 25 8 55004 x12
=
17.64 mm Which is less than allowable deflection, hence safe.
Area of Hz. Reinforcement = 0.002Dh 2 = 0.002x220x3500 = 1540 mm As the temperature change occurs at front face of basement wall, 2/3 of horizontal reinforcement is provided at front face and 1/3 of horizontal reinforcement is provided in inner face. Front face Horizontal Reinforcement steel, = 2/3x2391.2= 1594 mm2 Prov Pr ovid idin ing g 12 12mm mm-- ba barr No. of bar required, N = 1594/113 1594/113 = 14 nos. Spacing = (h-clear cover at both sides- )/(N-1) = (4270-30-12)/(14-1) = 325 mm Provid Pro videe 12mm12mm- bar @ 320 320 mm c/c
Inner face Horizontal Reinforcement steel, 2 = 1/3x2391.2= 797 mm
Prov Pr ovid idin ing g 8m 8mmm- ba barr No. of bar required, N = 797/50.27 797/50.27 = 16 nos. Spacing = (h-clear cover at both sides- )/(N-1) = (4270-30-12)/(16-1) = 281 mm Provi Pro vide de 8mm8mm- bar @ 280 mm c/c c/c Max. spacing = 3d = 3x240 = 720 mm or 450 mm Hence, spacing provided for Hz. Steel is OK.
No bars can be curtailed in less than Ld distance from the bottom of stem , σsφ 0.87 x 415x12 Ld = = = 564 mm 1.6x 4xτ bd 1.6x 4 x1.2 The curtailment of bars can be done in two layers 1/3 and 2/3 heights of the stem above the base. Let us curtail bars at 1/3 distance i.e. 1423 mm from base Lateral load due to soil pressure , Pa = Ka x x h2/2 2 = 0.333x17x2.847 /2 = 22.94 KN/m Lateral load due to surcharge load , Ps = Ka x Ws x h = 0.333x10x2.847 = 9.48 KN/m Characteristic Bending moment at the base of wall is, Mc = Pa x h/3 + Ps x h/2 = 22.94x2.847/3 + 9 .48x2.847/2 = 35.26 KN-m Design Moment , M = 1.5Mc = 1.5x35.26 = 52.89 KN-m Since this moment is less than half of the moment at base of stem, spacing of vertical reinforcement are doubled from 1423mm from the base of the wall. Providing Prov iding 20mm20mm- bar @280 @280 mm c/c c/c above above 1423mm 1423mm from base.
vi. Design of Lift wall 20mm
400mm
2100mm
1500mm Table25
Ref
Step
Length of lift wall = 1.9 m Breadth of lift wall = 2.5 m Floor Height (H) = 2.133 m Assume, wall thickness t = 200mm
Effective height of the wall H we = 0.75H = 0.75 X 2.133 =1.6 m Slenderness ratio = H we / t = 1.6 /0.2 = 8 < 30
emin = 0.05t =0.05 X 200 = 10 mm
Calculation
2 2 ea = (H we / 2500 t) = (1600 /2500X200) = 5.12 mm
Output
emin= 10mm
ea = 5.12 mm
Ultimate load carrying capacity per unit length of t he wall
is Puw = 0.3 ( t - 1.2e – 2e a) X f ck ck = 0.3 (200 – 1.2 X 10 – 2 X 5.12) X 30 = 1599.84 N/mm Total capacity of wall = 1599.84 X 2.15=3439.656 KN
Assume, clear cover = 20 mm Using 12 mm dia bar, effective cover = d’ =26 mm a Mu= 5620.231/2 = 2810.1155 KN-m Vu = 516.04/2 = 258.02 KN Pu =4041.37/2 = 2020.685 KN d’/D = 26/2500 =0.0104 (Mu/ f ck bd2) = (2810.1155 X10 6/30 X 200 X 2500 2) =0.075 ck Pu/ f ck bd = (2020.685 X 10 3/30 X 200 X 2500) = 0.134 ck P/f ck ck =0.04 P = 0.04 X 30 = 1.2 % Min Ast = 0.012 X 200 X 2500 = 6000mm 2 Area of 12 mm dia = 113.09 mm 2 No of bars = 6000 / 113.09 = 53.05 54nos.
d’ = 26mm
Spacing of bars, Sv = ((2500 -40 -12)/(54 – 1)) = 46.18mm
Check for spacing Spacing of vertical steel reinforcement should be least of 3t and 450mm = 3 X 200 =600mm and 450mm To take account of the reversal effect, provide 12 mm ø bars @ 45 mm c/c on both faces of the wall Mu= 5620.231/2 = 2810.1155 KN-m Vu = 516.04/2 = 258.02 KN Pu =4041.37/2 = 2020.685 KN d’/D = 26/1900 =0.013 (Mu/ f ck bd2) = (2810.1155 X10 6/30 X 200 X 1900 2) =0.129 ck Pu/ f ck bd = (2020.685 X 10 3/30 X 200 X 1900) = 0.177 ck P/f ck ck =0.06 P = 0.06 X 30 = 1.8 % Min Ast = 0.12% of bD Therefore, Ast = 0.018 X 200 X 1900 = 6840mm 2 Area of 12 mm ø = 113.09 mm 2 No of bars = 6840/113.09 = 60.48 62 nos. Therefore, spacing of bars,Sv = ( (1900 -40 – 12) /( 62- 1)) = 30.29 mm Check for spacing Spacing of vertical steel reinforcement should be least of 3t and 450 mm 3t = 3 X 200 = 600mm and 450 mm To take account of the reversal effect, provide 12 mm ø bars @ 30 mm c/c on both faces of the wall
area of horizontal reinforcement = 0.2 % of bH = 0.002 X 200 X 2133 2 = 853.2 mm Provide 12 mm ø bar No of bars = 853.2/113.09 =7.54 8nos. Spacing of bars, Sv = 2133/(8 -1) = 304.71 mm To take account of the reversal effect, provide 12 mm ø bars @ 300 mm c/c on both sides of the wall
When lateral load I acting along X- direction Nominal Shear stress Tv =Vu/td = Vu/ (t x 0.8 Lw) = (258.02 x 10 3)/(200 x 0.8 x 2500) = 0.64 N/mm2 Allowable Shear Stress
Sx = 12 mm ø @45 mm
Sy = 12mmø @30mm
2
Tallowable = 0.17f ck = 0.17 x 30 = 5.1 N/mm > Tv ck = Hw/Lw = 2133/2500 = 0.853 < 1 Tcw should be lesser of Tcw = (3 - H w/Lw)K 1 f ck ck
Tv = 0.64 2 N/mm
= (3 – 0.853) x 0.2 x 30 =2.35 N/mm2 But not less than 0.15 f ck = 0.15 30 = 0.821 N/mm 2 2 Therefore, T cw = 2.35 N/mm > Tv Hence safe (O.K)
Tcw = 2.35 2 N/mm O.K
Calculation of Corner stresses of mat foundation x
y 27.02
11.05
Safe Bearing Capacity of Soil (SBC) = 90KN/m
Description
Summation of Forces ( pi)
2
131083.5
Summation of Moments ( Mx)
49.66
Summation of Moments ( My)
-6.27
Location of centroid of Resultant forces x
27.9
y
10.6
Eccentricity ex
0.88
ey
-0.45
Mex = P X ex
-58987.575
Mey = P x ey
115353.48
Total Moment ( Mx = Mex + Mx)
-138559.31
Total Moment ( My = M ey + My)
11108.01
Area (m2)
1002.1
P/A
130.8
Moment of Inertia ( I x-x)
20238
Moment of Inertia ( I y-y)
190906
Coordinate of Corner of mat foundation(Table 26)
-27.02 -22.83 -16.84 -10.84 -28.47 -27.02 -22.83 -16.84 -10.84 -3.86 2.14 5.80 11.79 18.78 24.77 30.76 -27.02 -22.83 -16.84 -10.84 -3.86 2.14 5.80 11.79 18.78 24.77 30.76 -22.83 -16.84 -10.84 -3.86 2.14 5.80 11.79 18.78 24.77 30.76 -22.83 -16.84 -10.84 -3.86 2.14 5.80 11.79 18.78 24.77 30.76
-11.037 -11.037 -11.037 -11.037 -5.704 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -7.050 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 -1.056 4.938 4.938 4.938 4.938 4.938 4.938 4.938 4.938 4.938 4.938 8.936 8.936 8.936 8.936 8.936 8.936 8.936 8.936 8.936 8.936
0.00
-3.99
4.19 10.19 16.18 -1.45 0.00 4.19 10.19 16.18 23.16 29.16 32.82 38.81 45.80 51.79 57.78 0.00 4.19 10.19 16.18 23.16 29.16 32.82 38.81 45.80 51.79 57.78 4.19 10.19 16.18 23.16 29.16 32.82 38.81 45.80 51.79 57.78 4.19 10.19 16.18 23.16 29.16 32.82 38.81 45.80 51.79 57.78
-3.99 -3.99 -3.99 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.99 11.99 11.99 11.99 11.99 11.99 11.99 11.99 11.99 11.99 11.99 15.99 15.99 15.99 15.99 15.99 15.99 15.99 15.99 15.99 15.99
Stress ( ) = (P/A) ± (M x /I x ) x y ± (M y /I y ) x x (Table 27) columns
E1 E2 E3 E4 O A1
146.64 149.18 152.80 156.42 130.22 135.02 137.55 141.18 144.80 149.02 152.64 154.85 158.47 162.69 166.32 169.94 117.55 120.08 123.71 127.33 131.55 135.17 137.38 141.00 145.22 148.84 152.47 102.61 106.23 109.86 114.08 117.70 119.91 123.53 127.75 131.37 135.00 90.96 94.58 98.20 102.42 106.05 108.26 111.88 116.10 119.72 123.34
A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
Concrete Grade = M20
Table 28
Output
Upward Soil Pressure, q = 156.41 KN/m Max Span Length, L = 6. m Moment Calculation
156.41 KN/m q= 156.41 KN/m2 6m
2
2
Maximum Support Moment, M s = q L / 10
Ms = 115.09 x 6.906 / 10 = 563.076 KNm per m width
2
563.08 KNm
Ms = 557.450 KNm
469.23 KNm
Mm = 464.542
2
Maximum Span Moment, M m = q L / 12 2
Mm = 115.09 x 6.906 / 12
KNm
=464.542 KNm per m width Depth form Moment Consideration Depth of footing, d =
M
563 . 06 x 10 6
2.66 x b
2 . 66 x 1000
= 457.786 mm But the footing is critical in shear, increase d = 1000 mm Providing 20 mm dia. Bar D = 1000 + 20/2 + 50 = Check for two way shear i.e Punching Shear Perimeter, bo = 3.25 m Nominal Shear stress τv =
1060 mm
d = 1000 mm D = 1060 mm
Pu b o x d
=291 . 15 x 10 3 3250 x 500 2 = 0.423 N/mm β Permissible punching shear, τ v =
τv = .423N/mm x
. 25
x
f
ck
20 = 1 x . 25 x 2 = 1.118 N/mm > τv Calculation of Area of steel Min Ast = 0.12% of bD= Area of Steel at Support (Bottom Bars)
Ast = 0.5x
=
0.5 x
τ
1272 mm2
4.6 x 563 x106 (1 − 1 − ) x1000 x1000 500 20 x1000 x10002
= 1326.257 mm
< Min. Ast
2
So provide Ast = 1392 mm
2
Provide 20 mm Ø bars Area of each bar, A b = 314.159 mm
2
= 1.118
2
N/mm Hence Safe
f ck 4.6x M (1− 1− )x bxd f y f ck x bxd2
20
2
Min Ast = 1272
Provide Ast =
Spacing of Bars ,
2
S v
=
x 1000
A st
314 . 159
=
1326mm
A b
x 1000
1326
Spacing Ok 20mm bar @ 225 mm c/c
= 225.70 mm Provide 20mm bar @ 225 mm c/c Act. A =
st
A b
=
Sv
x 1000
Act. Ast =
314 . 159 x 1000 225
2
1396.260 mm
Pt = 0.1204 % Area of Steel at mid span (Top Bars)
Ast = 0.5 x
= 0.5 x
f ck f y
20 500
(1− 1−
(1− 1−
4.6 x M f ck x b x d 2
) x b x d
4.6 x 464.542x 106 20 x 1000x 10002
) x 1000x 1000
Provide Min Ast = 2
1272 mm
2
= 1098.751 mm < Min. Ast So provide Ast = 1272 mm
2
Provide 20 mm Ø bars Area of each bar, A b = 314.159 mm Spacing of Bars , A b S v = x 100 A st
=
314 .159 1392
2
x 100
= 225.70 mm Provide 20mm bar @ 225 mm c/c Act. A
=
st
A b
=
Sv
314 . 159
Spacing Ok 20mm bar @ 225 mm c/c
x 1000
x 1000
225
= 1396.260 mm
2
Pt = 0.1204 % Total Pt = 0.1204% + 0.1204% = 0.241% [ Note: For permissible shear stress calculation the top and bottom rei nforcement can be summed up but not for the deflection calculation.] Check for One Way Shear Shear At Critical Section
.4
Vu = 359.7 KN For Pt = 0.241%
2
τc = 0.36 N/mm τc x b x d = 360 KN > V u
τc = 0.36 N/mm Hence, Safe
2
Table 29
Concrete Grade: M20 Safe Bearing Capacity: 90 KN/m
2
Total Depth of Foundation: 1060 mm Clear cover: 50mm
A-A B-B C-C D-D E-E
6.3 6 6 7 6
20 mm 20 mm 20 mm 20 mm 20 mm
225 225 225 225 225
20 mm 20 mm 20 mm 20 mm 20 mm
225 225 225 225 225
1_1 2_2 3_3 4_4 5_5 6_6 7_7 8_8 9_9 10_10 11_11
4.5 6 6 6 7 6 6 6 7 6 6
20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm
225 225 225 225 225 225 225 225 225 225 225
20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm
225 225 225 225 225 225 225 225 225 225 225
9 6 . 0 7 9 8 7 4 1 -
8 8 . 3 6 7 9 2 9 9 5 1
8 4 . 6 6 9 9 7 1
2 0 . 9 5 6 0 2 1
2 9 . 9 9 2 6 4 2
7 3 . 7 2 8 4 4 3
6 2 . 6 9 5 5 3 3
6 9 . 9 0 8 6 7 3
3 2 2 6 . . 8 . 2 8 3 6 2 9 9 7 5 9 7 4 4 2
7 0 . 5 3 3 5 4
x r e g m v n r e o L A l a
0 2 . 6 2
3 0 . 1 3
6 8 . 5 3
6 3 . 2 4
6 8 . 8 4
6 0 7 5 0 0 0 8 . 0 . 1 . 8 . 7 . 1 . 2 . 4 - 2 2 7 5 4 2 0
0 2 . 3 1
t x n e t u m o o b M a
0 2 . 9 3 0 2 7 8 1 8
8 0 . 5 0 9 3 5 8 4 1
0 2 . 9 3 0 2 7 8 1 8
4 0 . 6 9 4 9 9 2 6 3 1
0 2 . 9 3 0 2 7 8 1 8
0 2 . 9 3 0 2 7 8 1 8
1 0 . 6 7 0 3 5
6 8 . 0 5 9 4 6 0 1
6 5 . 1 3 8 0 6 7
0 3 1 . 2 . 9 3 0 . 9 6 0 7 6 6 7 3 6 8 5 1 7 1 4 0 0 1 3 - 1 -
3 9 . 0 7 6 7 7 1 0 1 -
y 5 r e 3 m g v . n e r o 6 L a l a 1 7 1 . y 4 ) f 6 f 4 e 7 k ( 0 0 5
5 3 . 6 1
5 3 . 6 1
5 3 . 6 1
5 3 . 6 1
5 3 . 6 1
0 0 . 4 1
4 3 . 2 1
3 6 . 3
7 7 0 1 . 0 . . 0 4 0 - 4 -
7 0 . 4 -
2 7 . 5 9 4 8 0 9
7 1 . 4 6 4 7 0 0 5
1 6 . 0 6 3 6 3 3 8
7 1 . 4 6 4 7 0 0 5
7 1 . 4 6 4 7 0 0 5
4 1 . 1 9 7 3
2 7 . 0 0 3 6 8
7 5 . 4 8 8 9 0 2
9 4 9 0 . 5 . . 0 3 2 9 6 3 4 6 7 3 8 1 3 8 0 4 4 1 7 5 2
9 0 . 2 3 7 3 0 5 2
4 0 . 3 2 2 6 5 7 1 9
5 9 . 8 6 8 6
9 5 . 8 8 8 3
5 9 . 8 6 8 6
8 9 . 0 4 1 8
5 9 . 8 6 8 6
5 9 . 8 6 8 6
4 2 . 2 2 8 0 1 9
3 7 . 7 1 1 1
1 9 . 0 6 9 1 7 9 1
0 5 7 3 . 6 . 4 . 9 7 9 8 4 3 5 2 4 4 2 3
7 4 . 4 3 4 3
5 2 . 3 4 9 4 7 1 6
x ) f f e k (
4 9 . 8 8 2 3 4 6 3
t y n e t u m o o b M a
9 8 . 7 0 2 3
1 8 . 5 5 0 1 0 6 1 5 7
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
1 4 . 0 6 2 8 9 y K
7 1 . 4 6 4 7 0 0 5
2 7 . 5 9 4 8 0 9
7 1 . 4 6 4 7 0 0 5
1 6 . 0 6 3 6 3 3 8
7 1 . 4 6 4 7 0 0 5
7 1 . 4 6 4 7 0 0 5
3 1 . 9 6 7 9 1 4
9 9 7 0 . 0 . 1 . 3 3 4 9 9 6 6 6 4 3 3 7 8 4 8 4 0 0 1 1 5
7 1 . 4 6 4 7 0 0 5
3 6 . 0 8 7 7 8 3 2 0 1
3 4 2 8 . . 0 0 5 5 3 4 . 6 4 1 4 3 3 9 9 4 . . . . . 5 2 2 7 5 9 9 8 8 3 3 9 7 6 6 3 3 7 8 7 5 4 2 2 4 4 5 4 8 6 8 6 4 7 9 9 1 3 2 1 2 2 2 2 9 0 1 1 2 2 1 1 1 1 1 1 0 1 1 1 1 1 1 + + + + + + + + 1 + + + + E E E E E E E E + E E E E 4 1 4 9 4 4 7 6 E 6 6 4 4 2 6 2 6 2 2 6 4 2 7 2 2 . 7 6 7 6 3 6 6 0 0 7 7 6 6 . . . . . . . . 2 . . . . 2 4 2 4 2 2 2 9 7 7 2 2 5 9 . 8 6 8 6
x I
4 4 . 1 0 6 2 7 1
1 2 . 4 6 0 7 0 6 3 2
x K
y I
9 2 . 3 4 9 3
9 5 . 8 8 8 3
5 9 . 8 6 8 6
8 9 . 0 4 1 8
5 9 . 8 6 8 6
5 9 . 8 6 8 6
9 9 9 9 9 1 9 2 9 9 9 9 9 0 1 0 0 0 0 0 0 0 0 0 0 1 + + + + + + + + + + + + + E E E E E E E E 4 E 7 E 7 E 7 E 7 E 6 6 6 6 . 0 . 2 . . 9 . 4 . 6 . 6 . . . . . 0 . 4 3 2 3 4 3 3 4 1 2 2 3 3 1 2
n m u l o C
4 , 5 l l a w t S
5 , 5 l l a w t S
6 , 5 l l a w t S
7 , 5 l l a w t S
8 , 5 l l a w t S
9 , 5 l l a w t S
6 l l a w t S
7 l l a w t S
8 l 9 1 2 3 L l a W E E E A w W W T t S W S S S O T S
9 Y 1 . 8
1 8 . 5
0 . X 9 5 2
9 7 . 8 2
8 3 . 2 -
9 8 . 2
s s s e n s f f a i m t f S o x y f e e o e r r t e n n e t e C C
Table 31 Column A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 E1 E2 E3 E4 Circular Lift Lift St wall1 St wall1 St wall2 St wall2
Basement Kx Ky 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2397.72 2397.72 1832292.27 1718573.00 1832292.27 1718573.00 1061705.79 4095.93 1061705.79 4095.93 107327.34 1908.04 107327.34 1908.04
semi-basement kx ky 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2386.05 2397.72 2397.72 1832292.27 1718573.00 1832292.27 1718573.00 1061705.79 4095.93 1061705.79 4095.93 107327.34 1908.04 107327.34 1908.04
ground floor kx ky 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 69548.11 30910.27 0.00 0.00
2386.05 2386.05 2386.05 2386.05
2386.05 2386.05 2386.05 2386.05
2397.72 1832292.27 1832292.27 1061705.79 1061705.79 107327.34 107327.34
2397.72 1718573.00 1718573.00 4095.93 4095.93 1908.04 1908.04
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Column St wall3,1 St wall3,2 St wall3,3 St wall3,4 St wall3,5 St wall 4(1) St wall 4(2) St wall 4(3) St wall 5,1 St wall 5,2 St wall 5,3 St wall 5,4 St wall 5,5 St wall 5,6 St wall 5,7 St wall 5,8 St wall 5,9 St wall 6 St wall 7 St wall 8 SW9 Total
Basement Kx 6868.95 6868.95 8140.98 8140.98 6868.95 948296.64 4197691.35 4197691.35 6868.95 6868.95 8140.98 6868.95 3888.59 6868.95 8140.98 6868.95 6868.95 947374.42 2235.46 3943921.83 4579.30 22464959.95
Ky 5007464.17 5007464.17 8336360.61 8336360.61 5007464.17 3943.92 6487.34 6487.34 5007464.17 5007464.17 8336360.61 5007464.17 908495.72 5007464.17 8336360.61 5007464.17 5007464.17 3943.29 172601.44 419769.13 1483693.09 85830305.75
semi-basement kx ky
948296.64 4197691.35 4197691.35 171163.30 171163.30 202860.21
3943.92 6487.34 6487.34 124778045.70 124778045.70 207728852.39
23607064.21 2235.46 3943921.83
98260.41 172601.44 419769.13
45566984.21
462404757.85
ground floor kx ky
8101036.11
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
4388404.02
first floor
Column
second floor
third floor
kx
ky
kx
ky
kx
ky
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 E1 E2 E3 E4 Circular Lift Lift St wall1 St wall1 St wall2 St wall2
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
Total
12515553.17
6752563.79
12515553.17
6752563.79
12515553.17
6752563.79
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
fourth floor
Column
fifth floor
sixth floor
kx
ky
kx
ky
kx
ky
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 E1 E2 E3 E4 Circular Lift Lift St wall1 St wall1 St wall2 St wall2
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 105755.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 47002.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3646.01 2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
Total
12515553.17
6752563.79
12515553.17
6752563.79
12515553.17
6752563.79
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
pent house
Column
last
kx
ky
kx
ky
105755.88 105755.88 105755.88 105755.88
47002.61 47002.61 47002.61 47002.61
374334.14 374334.14 105755.88 105755.88
166370.73 166370.73 47002.61 47002.61
105755.88 105755.88 105755.88 105755.88
47002.61 47002.61 47002.61 47002.61
105755.88 105755.88 374334.14 374334.14
47002.61 47002.61 166370.73 166370.73
105755.88 105755.88 105755.88 105755.88
47002.61 47002.61 47002.61 47002.61
105755.88 105755.88 105755.88 105755.88 0.00
47002.61 47002.61 47002.61 47002.61 0.00
374334.14 374334.14 105755.88 105755.88 0.00 0.00 105755.88 105755.88 374334.14 374334.14
166370.73 166370.73 47002.61 47002.61 0.00 0.00 47002.61 47002.61 166370.73 166370.73
105755.88 105755.88 105755.88
47002.61 47002.61 47002.61
105755.88 105755.88 105755.88
47002.61 47002.61 47002.61
3840720.16
1706986.74
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 E1 E2 E3 E4 Circular Lift Lift St wall1 St wall1 St wall2 St wall2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2786210.53 2786210.53 1614445.41 1614445.41 163203.52 163203.52
2613287.33 2613287.33 6228.33 6228.33 2901.40 2901.40
Total
11454348.34
6278891.63
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
HORIZONTAL DISTRIBUTION OF BASE SHEAR ( Table 32 ) BASE SHEAR
10584.3 KN
Horizontal distribution of base shear along X axis
Horizontal distribution of base shear along Y ax
FRAME
FRAME
E1-E4 A1-A11 SW3 SW1 SW2 LIFT O SWE SW8 B1-B11
STIFFNESS
BASE SHEAR Vbx 3976.74 0.50 36254.18 4.55 26688111.51 3349.50 452053.72 56.74 991.63 0.12 1459.44 0.18 266.41 0.03 5097556.03 8336360.61 1046.26 44190.89 5.55
C2-C11 41614.00 SW7 5007464.17 SW6-SW4,1 5915959.89 D2-D11 38449.38 SW5,1-SW5,9 27661420.28 SW9 5007464.17 84333593.06
5.22 628.46 742.48 4.83 3471.65 628.46 9944.53
STIFFNESS BASE SHEAR Vby O 266.41 0.55 E1-D1 21219.05 43.99 SW8 8140.98 16.88 SW7 6868.95 14.24 SW6 3888.59 8.06 E2-D2 18652.94 38.67 SW9 13737.90 28.48 SW3,1-SW5,1 930683.19 1929.31 E3-D3 21219.05 43.99 SW3,2-SW5,2 3022659.91 6265.97 E4-D4 38210.60 79.21 SW1,1 240983.23 499.56 SSW3,3-SW5, 14590.61 30.25 SW2,1 128519.78 266.42 LIFT1 1193.02 2.47 A5-D5 37017.58 76.74 SW5,4 6603.93 13.69 A6-D6 25984.61 53.87 SW5,5 7826.88 16.23 A7-D7 27177.63 56.34 SW5,6 6868.95 14.24 A8-D8 31232.06 64.74 SW3,4-SW5,7 6868.95 14.24 LIFT2 266.41 0.55 SW2,2 128519.78 266.42 SW1,2 240983.23 499.56 A9-D9 31232.06 64.74 SW3,5-SW5,8 8140.98 16.88 A10-D10 27177.63 56.34 SW5,9 15009.93 31.12 A11-D11 27177.63 56.34 SW4,3-SW4,1 6868.95 14.24 5105791.40 10584.30
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Vertical Stiffness Distribution along X axis ( Table 33 ) Frame E-E
Frame
A-A
Frame
B-B
Frame
C-C
Frame D-D
Frame SW3
load load, w(KN) h,(m) wh2 Vb,X force, Q(KN) storey shear(KN semi basemen 465.03 7.01 22851.58 0.50 0.39 0.39 basement 498.72 3.51 6126.79 0.50 0.11 0.50 total 963.75 28978.37
load load, w(KN) h,(m) wh2 Vb,X force, Q Roof 1290.12 34.90 1571289.01 4.55 Pent 1291.85 31.85 1310563.19 4.55 sixth 2503.61 28.80 2077027.92 4.55 fifth 2881.68 25.76 1911473.23 4.55 fourth 2922.13 22.71 1506672.37 4.55 third 2948.18 19.66 1139402.10 4.55 second 3003.03 16.61 828613.10 4.55 first 3043.49 13.56 559864.49 4.55 ground 3075.52 10.52 340045.19 4.55 semi basemen 4237.95 7.01 208253.10 4.55 basement 3621.59 3.51 44491.27 4.55 total 30819.13 11497694.98
0.62 0.52 0.82 0.76 0.60 0.45 0.33 0.22 0.13 0.08 0.02
storey shear 0.62 1.14 1.96 2.72 3.32 3.77 4.09 4.32 4.45 4.53 4.55
load load, w(KN) h,(m) wh2 Vb,X force, Q Roof 1290.12 34.90 1571289.01 5.55 Pent 1848.87 31.85 1875650.67 5.55 sixth 3778.29 28.80 3134519.37 5.55 fifth 3950.47 25.76 2620423.47 5.55 fourth 4017.22 22.71 2071309.08 5.55 third 4069.57 19.66 1572792.04 5.55 second 4150.72 16.61 1145288.99 5.55 first 4217.47 13.56 775825.00 5.55 ground 4404.81 10.52 487019.33 5.55 semi basemen 5470.42 7.01 268817.14 5.55 basement 4847.15 3.51 59547.31 5.55 total 42045.11 15582481.41
0.56 0.67 1.12 0.93 0.74 0.56 0.41 0.28 0.17 0.10 0.02
storey shear 0.56 1.23 2.34 3.28 4.01 4.57 4.98 5.26 5.43 5.52 5.55
load load, w(KN) h,(m) wh2 Vb,X force, Q Roof 0.00 34.90 0.00 5.22 Pent 856.71 31.85 869116.82 5.22 sixth 2157.21 28.80 1789645.91 5.22 fifth 2170.91 25.76 1440010.76 5.22 fourth 2195.51 22.71 1132024.28 5.22 third 2220.11 19.66 858021.42 5.22 second 2244.71 16.61 619373.45 5.22 first 2269.31 13.56 417451.60 5.22 ground 2811.39 10.52 310842.48 5.22 semi basemen 4469.92 7.01 219652.16 5.22 basement 4144.21 3.51 50911.72 5.22 total 25540.00 7707050.60
0.00 0.59 1.21 0.98 0.77 0.58 0.42 0.28 0.21 0.15 0.03
storey shear 0.00 0.59 1.80 2.78 3.54 4.13 4.55 4.83 5.04 5.19 5.22
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear ground 203.18 10.52 22464.46 4.83 1.07 1.07 semi basemen 1154.06 7.01 56710.78 4.83 2.71 3.79 basement 1769.29 3.51 21735.74 4.83 1.04 4.83 total 42361.37 100910.98
load basement
load, w(KN) h,(m) wh2 1.00 3.51
Vb,X force, Q storey shear 12.29 3349.50 3349.50 3349.50
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame
O-O
Frame SW8
Frame
SW1
Frame
LIFT
Frame
SW2
load load, w(KN) h,(m) wh2 Vb,X force, Q sixth 25.28 28.80 20974.49 0.03 fifth 52.34 25.76 34720.26 0.03 fourth 52.69 22.71 27167.97 0.03 third 53.04 19.66 20498.38 0.03 second 53.39 16.61 14730.87 0.03 first 53.74 13.56 9884.85 0.03 ground 34.18 10.52 3778.72 0.03 semi basemen 85.67 7.01 4209.91 0.03 basement 36.43 3.51 447.55 0.03 total 446.76 136413.00
load load, w(KN) h,(m) wh2 semi basemen 1.00 7.01 basement 1.00 3.51 total 712.16
0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
storey shear 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03
Vb,X force, Q storey shear 49.14 1046.26 837.00 837.00 12.29 1046.26 209.25 1046.26 61.43
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 56.74 14.24 14.24 sixth 1.00 28.80 829.61 56.74 11.65 25.89 fifth 1.00 25.76 663.32 56.74 9.31 35.20 fourth 1.00 22.71 515.61 56.74 7.24 42.44 third 1.00 19.66 386.48 56.74 5.43 47.86 second 1.00 16.61 275.93 56.74 3.87 51.74 first 1.00 13.56 183.95 56.74 2.58 54.32 ground 1.00 10.52 110.57 56.74 1.55 55.87 semi basemen 1.00 7.01 49.14 56.74 0.69 56.56 basement 1.00 3.51 12.29 56.74 0.17 56.74 total 10.00 4041.37
load load, w(KN) h,(m) wh2 Vb,X force, Q Pent 1.00 31.85 1014.49 0.18 sixth 1.00 28.80 829.61 0.18 fifth 1.00 25.76 663.32 0.18 fourth 1.00 22.71 515.61 0.18 third 1.00 19.66 386.48 0.18 second 1.00 16.61 275.93 0.18 first 1.00 13.56 183.95 0.18 ground 1.00 10.52 110.57 0.18 semi basemen 1.00 7.01 49.14 0.18 basement 1.00 3.51 12.29 0.18 total 10.00 4041.37
load load, w(KN) h,(m) wh2 Vb,X force, Q Pent 1.00 31.85 1014.49 0.12 sixth 1.00 28.80 829.61 0.12 fifth 1.00 25.76 663.32 0.12 fourth 1.00 22.71 515.61 0.12 third 1.00 19.66 386.48 0.12 second 1.00 16.61 275.93 0.12 first 1.00 13.56 183.95 0.12 ground 1.00 10.52 110.57 0.12 semi basemen 1.00 7.01 49.14 0.12 basement 1.00 3.51 12.29 0.12 total 10.00 4041.37
0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00
storey shear 0.05 0.08 0.11 0.14 0.15 0.17 0.18 0.18 0.18 0.18
0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
storey shear 0.03 0.06 0.08 0.09 0.10 0.11 0.12 0.12 0.12 0.12
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame SW7
Frame SW4,3
Frame SW4,2
load load, w(KN) h,(m) wh2 semi basemen 1.00 7.01 basement 1.00 3.51 total 17.00
Vb,X force, Q storey shear 49.14 628.46 502.77 502.77 12.29 628.46 125.69 628.46 61.43
load load, w(KN) h,(m) wh2 semi basemen 1.00 7.01 basement 1.00 3.51 total 21.00
49.14 12.29 61.43
load load, w(KN) h,(m) wh2 semi basemen 1.00 7.01 basement 1.00 3.51 total 25.00
49.14 12.29 61.43
FRAME
load load, w(KN) h,(m) wh2 semi basemen 1.00 9.02 SWIMMING 1.00 5.51 SW6-SW4,1 BASEMENT 1.00 3.51
Frame SW3
load basement total
load, w(KN) h,(m) wh2 1.00 3.51 4.00
81.27 30.36 12.32 123.95
Vb,X force, Q storey shear 0.00 0.00 0.00 0.00 0.00 0.00
Vb,X force, Q storey shear 0.00 0.00 0.00 0.00 0.00 0.00
Vb,X force, Q storey shear 742.48 486.82 486.82 742.48 181.86 668.68 742.48 73.80 742.48
Vb,X force, Q storey shear 12.29 3349.50 3349.50 3349.50 12.29
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Vertical Stiffness Distribution along Y axis Frame
O-O
Frame
E1-D1
Frame SW8
Frame SW7
Frame SW6
Frame
E2-D2
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear sixth 25.28 28.80 20974.49 0.55 0.08 0.08 fifth 52.34 25.76 34720.26 0.55 0.14 0.23 fourth 52.69 22.71 27167.97 0.55 0.11 0.34 third 53.04 19.66 20498.38 0.55 0.08 0.42 second 53.39 16.61 14730.87 0.55 0.06 0.48 first 53.74 13.56 9884.85 0.55 0.04 0.52 ground 34.18 10.52 3778.72 0.55 0.02 0.53 semi basement 85.67 7.01 4209.91 0.55 0.02 0.55 basement 36.43 3.51 447.55 0.55 0.00 0.55 total 446.76 136413.00
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 0.00 34.90 0.00 43.99 0.00 0.00 Pent 0.00 31.85 0.00 43.99 0.00 0.00 sixth 222.37 28.80 184482.31 43.99 8.20 8.20 fifth 277.50 25.76 184070.37 43.99 8.18 16.38 fourth 409.10 22.71 210935.50 43.99 9.38 25.76 third 413.02 19.66 159623.07 43.99 7.10 32.86 second 365.21 16.61 100770.94 43.99 4.48 37.34 first 368.68 13.56 67820.05 43.99 3.01 40.35 ground 399.76 10.52 44200.03 43.99 1.96 42.32 semi basement 638.42 7.01 31372.01 43.99 1.39 43.71 basement 507.06 3.51 6229.23 43.99 0.28 43.99 total 3601.12 989503.52
load load, w(KN) h,(m) wh2 semi basement 1.00 7.01 basement 1.00 3.51 Total 5882.25
49.14 12.29 61.43
Vb,X force, Q storey shear 16.88 13.50 13.50 16.88 3.38 16.88
load load, w(KN) h,(m) wh2 semi basement 1.00 7.01 basement 1.00 3.51 Total 5886.25
49.14 12.29 61.43
load load, w(KN) h,(m) wh2 semi basement 1.00 7.01 basement 1.00 3.51 Total 5890.25
Vb,X force, Q storey shear 49.14 8.06 6.45 6.45 12.29 8.06 1.61 8.06 61.43
Vb,X force, Q storey shear 14.24 11.39 11.39 14.24 2.85 14.24
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 479.84 34.90 584421.30 38.67 7.34 7.34 Pent 247.72 31.85 251309.94 38.67 3.16 10.49 sixth 695.98 28.80 577396.49 38.67 7.25 17.74 fifth 716.59 25.76 475328.45 38.67 5.97 23.71 fourth 726.75 22.71 374718.48 38.67 4.71 28.42 third 736.91 19.66 284798.98 38.67 3.58 32.00 second 747.07 16.61 206136.34 38.67 2.59 34.58 first 757.23 13.56 139296.94 38.67 1.75 36.33 ground 869.27 10.52 96110.54 38.67 1.21 37.54 semi basement 1463.40 7.01 71911.76 38.67 0.90 38.44 basement 1457.69 3.51 17907.70 38.67 0.22 38.67 Total 8898.46 3079336.90
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame
load swimming SW3,1-SW5,1 basement Total
Frame
E3-D3
load swimming SW3,2-SW5,2 basement Total
E4-D4
Frame
SW1,1
Frame
Vb,X force, Q storey shear 1.44 1929.31 117.84 117.84 22.14 1929.31 1811.47 1929.31 23.58
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 479.84 34.90 584421.30 43.99 6.28 6.28 Pent 549.52 31.85 557480.66 43.99 5.99 12.27 sixth 966.62 28.80 801920.61 43.99 8.62 20.89 fifth 928.48 25.76 615876.20 43.99 6.62 27.51 fourth 946.48 22.71 488010.04 43.99 5.24 32.75 third 950.08 19.66 367181.53 43.99 3.95 36.69 second 982.48 16.61 271089.79 43.99 2.91 39.61 first 1000.48 13.56 184042.39 43.99 1.98 41.59 ground 1036.98 10.52 114654.34 43.99 1.23 42.82 semi basement 1726.75 7.01 84852.67 43.99 0.91 43.73 basement 1952.82 3.51 23990.50 43.99 0.26 43.99 Total 11520.52 4093520.01
Frame
Frame
load, w(KN) h,(m) wh2 1.00 1.20 1.00 4.71 14195.12
load, w(KN) h,(m) wh2 1.00 1.20 1.00 4.71 18222.03
Vb,X force, Q storey shear 1.44 6265.97 382.70 382.70 22.14 6265.97 5883.27 6265.97 23.58
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 165.22 34.90 201223.21 79.21 3.66 3.66 Pent 726.79 31.85 737313.76 79.21 13.41 17.07 sixth 1050.84 28.80 871790.01 79.21 15.85 32.92 fifth 1106.72 25.76 734110.97 79.21 13.35 46.27 fourth 1128.02 22.71 581617.08 79.21 10.58 56.85 third 1134.92 19.66 438620.49 79.21 7.98 64.83 second 1170.62 16.61 323004.29 79.21 5.87 70.70 first 1191.92 13.56 219260.00 79.21 3.99 74.69 ground 1189.43 10.52 131509.67 79.21 2.39 77.08 semi basement 1901.08 7.01 93419.15 79.21 1.70 78.78 basement 1929.08 3.51 23698.84 79.21 0.43 79.21 Total 12694.64 4355567.48
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 499.56 125.40 125.40 sixth 1.00 28.80 829.61 499.56 102.55 227.95 fifth 1.00 25.76 663.32 499.56 81.99 309.94 fourth 1.00 22.71 515.61 499.56 63.73 373.68 third 1.00 19.66 386.48 499.56 47.77 421.45 second 1.00 16.61 275.93 499.56 34.11 455.56 first 1.00 13.56 183.95 499.56 22.74 478.30 ground 1.00 10.52 110.57 499.56 13.67 491.97 semi basement 1.00 7.01 49.14 499.56 6.07 498.04 basement 1.00 3.51 12.29 499.56 1.52 499.56 Total 10.00 4041.37
load swimming SW3,3-SW5,3 basement Total
load, w(KN) h,(m) wh2 1.00 1.20 1.00 4.71 17.00
Vb,X force, Q storey shear 1.44 30.25 1.85 1.85 22.14 30.25 28.40 30.25 23.58
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame
SW2,1
Frame
LIFT1
Frame
A5-D5
Frame SW5,4
Frame
A6-D6
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 266.42 66.88 66.88 sixth 1.00 28.80 829.61 266.42 54.69 121.57 fifth 1.00 25.76 663.32 266.42 43.73 165.30 fourth 1.00 22.71 515.61 266.42 33.99 199.29 third 1.00 19.66 386.48 266.42 25.48 224.77 second 1.00 16.61 275.93 266.42 18.19 242.96 first 1.00 13.56 183.95 266.42 12.13 255.08 ground 1.00 10.52 110.57 266.42 7.29 262.37 semi basement 1.00 7.01 49.14 266.42 3.24 265.61 basement 1.00 3.51 12.29 266.42 0.81 266.42 Total 10.00 4041.37
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 2.47 0.62 0.62 sixth 1.00 28.80 829.61 2.47 0.51 1.13 fifth 1.00 25.76 663.32 2.47 0.41 1.53 fourth 1.00 22.71 515.61 2.47 0.32 1.85 third 1.00 19.66 386.48 2.47 0.24 2.09 second 1.00 16.61 275.93 2.47 0.17 2.26 first 1.00 13.56 183.95 2.47 0.11 2.37 ground 1.00 10.52 110.57 2.47 0.07 2.44 semi basement 1.00 7.01 49.14 2.47 0.03 2.47 basement 1.00 3.51 12.29 2.47 0.01 2.47 Total 10.00 4041.37
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 165.22 34.90 201223.21 76.74 3.75 3.75 Pent 488.18 31.85 495256.54 76.74 9.22 12.97 sixth 1010.58 28.80 838389.83 76.74 15.61 28.58 fifth 1133.44 25.76 751836.58 76.74 14.00 42.58 fourth 1151.14 22.71 593539.25 76.74 11.05 53.63 third 1168.84 19.66 451730.76 76.74 8.41 62.04 second 1186.54 16.61 327397.73 76.74 6.10 68.14 first 1204.24 13.56 221526.80 76.74 4.13 72.27 ground 1227.34 10.52 135700.65 76.74 2.53 74.79 semi basement 1710.56 7.01 84056.99 76.74 1.57 76.36 basement 1657.99 3.51 20368.50 76.74 0.38 76.74 Total 12104.09 4121026.85
load basement Total
load, w(KN) h,(m) wh2 1.00 3.51 19091.77
Vb,X force, Q storey shear 12.29 13.69 13.69 13.69 12.29
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 0.00 34.90 0.00 53.87 0.00 0.00 Pent 0.00 31.85 0.00 53.87 0.00 0.00 sixth 448.51 28.80 372087.57 53.87 10.17 10.17 fifth 706.57 25.76 468680.20 53.87 12.80 22.97 fourth 715.63 22.71 368983.59 53.87 10.08 33.05 third 724.69 19.66 280075.29 53.87 7.65 40.70 second 733.75 16.61 202460.36 53.87 5.53 46.23 first 742.81 13.56 136643.90 53.87 3.73 49.97 ground 748.48 10.52 82755.97 53.87 2.26 52.23 semi basement 1009.65 7.01 49614.37 53.87 1.36 53.58 basement 839.92 3.51 10318.45 53.87 0.28 53.87 Total 6670.01 1971619.70
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame SW5,5
Frame
A7-D7
Frame SW5,6
Frame
A8-D8
Frame
load basement Total
LIFT2
Vb,X force, Q storey shear 12.29 16.23 16.23 16.23 12.29
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 0.00 34.90 0.00 56.34 0.00 0.00 Pent 0.00 31.85 0.00 56.34 0.00 0.00 sixth 448.51 28.80 372087.57 56.34 11.13 11.13 fifth 664.47 25.76 440754.31 56.34 13.18 24.31 fourth 671.73 22.71 346348.32 56.34 10.36 34.67 third 678.99 19.66 262413.26 56.34 7.85 42.52 second 686.25 16.61 189353.86 56.34 5.66 48.18 first 693.51 13.56 127574.89 56.34 3.82 52.00 ground 713.90 10.52 78932.35 56.34 2.36 54.36 semi basement 1102.88 7.01 54195.45 56.34 1.62 55.98 basement 975.24 3.51 11980.83 56.34 0.36 56.34 Total 6635.47 1883640.85
load basement Total
load, w(KN) h,(m) wh2 1.00 3.51 10808.24
12.29 12.29
Vb,X force, Q storey shear 14.24 14.24 14.24
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 165.22 34.90 201223.21 64.74 3.42 3.42 Pent 483.68 31.85 490691.35 64.74 8.35 11.77 sixth 1010.58 28.80 838389.83 64.74 14.26 26.03 fifth 988.84 25.76 655918.58 64.74 11.16 37.19 fourth 1002.94 22.71 517124.67 64.74 8.80 45.98 third 1017.04 19.66 393062.54 64.74 6.69 52.67 second 1031.14 16.61 284518.14 64.74 4.84 57.51 first 1045.24 13.56 192277.43 64.74 3.27 60.78 ground 1201.52 10.52 132846.02 64.74 2.26 63.04 semi basement 1661.09 7.01 81625.93 64.74 1.39 64.43 basement 1516.76 3.51 18633.45 64.74 0.32 64.74 Total 11124.05 3806311.14
load basement SW3,4-SW5,7 Total
Frame
load, w(KN) h,(m) wh2 1.00 3.51 10745.62
load, w(KN) h,(m) wh2 1.00 3.51 17580.80
Vb,X force, Q storey shear 12.29 14.24 14.24 14.24 12.29
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 0.55 0.14 0.14 sixth 1.00 28.80 829.61 0.55 0.11 0.25 fifth 1.00 25.76 663.32 0.55 0.09 0.34 fourth 1.00 22.71 515.61 0.55 0.07 0.41 third 1.00 19.66 386.48 0.55 0.05 0.47 second 1.00 16.61 275.93 0.55 0.04 0.50 first 1.00 13.56 183.95 0.55 0.03 0.53 ground 1.00 10.52 110.57 0.55 0.02 0.54 semi basement 1.00 7.01 49.14 0.55 0.01 0.55 basement 1.00 3.51 12.29 0.55 0.00 0.55 total 10.00 4041.37
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame
SW2,2
Frame
SW1,2
Frame
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 266.42 66.88 66.88 sixth 1.00 28.80 829.61 266.42 54.69 121.57 fifth 1.00 25.76 663.32 266.42 43.73 165.30 fourth 1.00 22.71 515.61 266.42 33.99 199.29 third 1.00 19.66 386.48 266.42 25.48 224.77 second 1.00 16.61 275.93 266.42 18.19 242.96 first 1.00 13.56 183.95 266.42 12.13 255.08 ground 1.00 10.52 110.57 266.42 7.29 262.37 semi basement 1.00 7.01 49.14 266.42 3.24 265.61 basement 1.00 3.51 12.29 266.42 0.81 266.42 total 10.00 4041.37
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Pent 1.00 31.85 1014.49 499.56 125.40 125.40 sixth 1.00 28.80 829.61 499.56 102.55 227.95 fifth 1.00 25.76 663.32 499.56 81.99 309.94 fourth 1.00 22.71 515.61 499.56 63.73 373.68 third 1.00 19.66 386.48 499.56 47.77 421.45 second 1.00 16.61 275.93 499.56 34.11 455.56 first 1.00 13.56 183.95 499.56 22.74 478.30 ground 1.00 10.52 110.57 499.56 13.67 491.97 semi basement 1.00 7.01 49.14 499.56 6.07 498.04 basement 1.00 3.51 12.29 499.56 1.52 499.56 total 10.00 4041.37
load basement SW3,5-SW5,8 total
Frame
A9-D9
Frame
A10-D10
load, w(KN) h,(m) wh2 1.00 3.51 16.00
12.29 12.29
Vb,X force, Q storey shear 16.88 16.88 16.88
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 165.22 34.90 201223.21 64.74 3.26 3.26 Pent 726.79 31.85 737313.76 64.74 11.94 15.19 sixth 1050.84 28.80 871790.01 64.74 14.11 29.31 fifth 940.52 25.76 623865.25 64.74 10.10 39.41 fourth 954.62 22.71 492209.18 64.74 7.97 47.37 third 968.72 19.66 374387.01 64.74 6.06 53.43 second 982.82 16.61 271184.72 64.74 4.39 57.82 first 996.92 13.56 183388.25 64.74 2.97 60.79 ground 1234.39 10.52 136480.25 64.74 2.21 63.00 semi basement 1771.57 7.01 87055.22 64.74 1.41 64.41 basement 1673.17 3.51 20554.92 64.74 0.33 64.74 total 11465.56 3999451.79
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 479.84 34.90 584421.30 56.34 8.17 8.17 Pent 538.27 31.85 546067.69 56.34 7.63 15.80 sixth 966.62 28.80 801920.61 56.34 11.21 27.01 fifth 910.32 25.76 603833.49 56.34 8.44 35.45 fourth 921.12 22.71 474936.70 56.34 6.64 42.08 third 931.92 19.66 360164.98 56.34 5.03 47.12 second 942.72 16.61 260120.32 56.34 3.64 50.75 first 953.52 13.56 175404.74 56.34 2.45 53.20 ground 1169.77 10.52 129336.38 56.34 1.81 55.01 semi basement 1594.04 7.01 78331.40 56.34 1.09 56.11 basement 1358.16 3.51 16685.00 56.34 0.23 56.34 total 10766.31 4031222.61
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
Frame SW5,9
Frame
A11-D11
Frame SW4 Frame SW9
load basement total
load, w(KN) h,(m) wh2 1.00 3.51 16785.52
12.29 12.29
Vb,X force, Q storey shear 31.12 31.12 31.12
load load, w(KN) h,(m) wh2 Vb,X force, Q storey shear Roof 479.84 34.90 584421.30 56.34 13.32 13.32 Pent 236.47 31.85 239896.97 56.34 5.47 18.79 sixth 567.66 28.80 470938.37 56.34 10.73 29.52 fifth 501.93 25.76 332939.67 56.34 7.59 37.10 fourth 507.33 22.71 261582.90 56.34 5.96 43.07 third 512.73 19.66 198157.66 56.34 4.52 47.58 second 518.13 16.61 142964.96 56.34 3.26 50.84 first 523.53 13.56 96305.79 56.34 2.19 53.03 ground 704.07 10.52 77845.24 56.34 1.77 54.81 semi basement 1124.72 7.01 55268.75 56.34 1.26 56.07 basement 968.08 3.51 11892.84 56.34 0.27 56.34 total 6644.48 2472214.45
load basement total
load, w(KN) h,(m) wh2 1.00 3.51 10484.00
Vb,X force, Q storey shear 12.29 14.24 14.24 14.24 12.29
load basement total
load, w(KN) h,(m) wh2 1.00 3.51 4.00
12.29 12.29
Vb,X force, Q storey shear 28.48 28.48 28.48
Mani Pandit, Manika Maharjan, Narendra Dangol, Pankaj Baral, Pravash Mool
) d a s o k l r a e v m l e i R r o F (
) g g r s / n n C r e i i o v n m m m m m s i n W m m m m m s e i d r l i o o o o o o o o o o s e i b b b r e e r r m D D o m o o o o o o o o o t b b & s r v o o a d R R R R R o e d s R R R R l a e v a l a n a l a l R o e l d o o r a l i l c s s c s s S i l l l l l l l l l l C i r n o n m r t t R a a a R i a a a a a a a a a t ( r o o o o o n n a n m m m m m d S n o d o & t m m m m o m N N y N N N a a r r r r r r r r r r n e e e e S C e R C C o B r h o o o o o B h o o o o o c c c o d N N N N N N N N N N l t t t i i e a S K K B B
) d a . o L 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 L L 8 4 4 4 4 4 4 4 4 4 . 4 4 4 4 4 4 4 . . 4 4 4 . 4 4 . 4 4 . 4 . 4 . 8 4 4 4 4 h . . . l . . . . . . . . . . . . . . . . . . . m m m m a t 9 9 9 9 9 8 9 9 9 0 0 9 9 6 0 9 0 9 9 4 0 6 6 6 9 9 1 1 1 9 9 9 9 9 i t 1 1 1 1 1 o ( T W
d a 5 5 2 o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 m 0 2 2 1 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 0 . . . . . . . . . . . . . . . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . . e N 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 0 . 0 0 . 0 4 4 1 1 4 4 4 4 4 1 4 4 4 0 v i K L ) r e d L . t a s e r L l a 8 8 o e 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 e l l t t b 4 4 4 l s r u 4 4 4 4 4 4 4 4 4 4 . . 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 . 4 i P l . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 4 . a T r t a l o 5 5 6 5 5 5 5 5 5 6 6 5 5 6 6 5 6 5 5 6 5 5 5 5 5 a h 5 5 5 5 5 1 1 1 e P t M o i n n T ( w I f o s s e n k c i h T
) 4 3 e l b a T (
r o o l F t n e m e s a B 3 3 3 3 m / m / m / m / N N N N K K K K
7 . 4 . 6 5 0 2 6 2 2 e e r m t l e e m r b 5 s r t c a 2 n a l o P ( e l i C M T s t h g i e W t i n U
r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 l 4 m 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P / . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 2 . N r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e K n n I l l a 2 w m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n / 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . o N 0 i 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 t r K a P 7 7 e 2 7 6 6 6 l . . . 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 m b 0 0 0 / r 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . a N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M K 1 1 1 r 4 4 4 . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e 2 t m 0 0 0 / s 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . a N l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 1 1 0 1 A W 0 0 0 d 0 a . 0 . 0 . o 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . d N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a e K D 6 6 6 s s 1 1 1 . . . e 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 k . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . m c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i h T 1 1 1 1 0 0 1 1 2 3 4 5 6 8 9 0 3 4 5 6 8 9 1 1 1 B 3 4 5 6 8 9 1 C D B B B B B B B - B C C C C D D D D D D C C D 2 C - B 0 0 0 1 2 3 1 1 C 2 3 5 4 7 8 9 1 3 4 2 3 4 7 2 5 7 8 9 1 5 8 9 1 - C C C C C C C C D D D D D D D D b B B B B B B B B B - A - A - A 2 a A - 4 - 5 - 6 - 8 - 9 - 0 - 1 - - - - - - - - r l 2 3 4 B 1 a 2 3 4 5 6 8 9 0 3 4 5 6 8 9 0 - 3 S A A A l 1 1 1 1 1 1 1 A A A A A A A B B B B B B C C C C C C 1 u A A B B C C 2 3 4 c B 1 2 3 4 5 7 8 2 3 4 5 7 8 2 3 4 5 7 8 r i A A A A A A A 9 0 B B B B B B 9 0 C C C C C C 9 0 E E E 1 1 C 1 B 1 2 3 A A C C B E E E
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) d a s o k l r a e v m l e i R r o F (
) g g r s / n n C r e i i o v n n m m m m m m m m m m W s s e i i d r r l i o m s o o o o o o o o o e i e e r m D D b o o o o o o o o o o o r t b b b b & s r v v o o a a a a a n a e o d R R R R R d R R R R R o d l s e e l l l l o r n l l l l s s a c l l n s i s l l l l l l S i i C r c o m t t R a a i a R r a a a a a a a a a t ( r o o y o o o n n a n m m m m m d S n o d o & t m m m m o m N N n N N N a a r r r r r r r r r r e e e e S C C C o B e o o o o o B h R o o o o o r h c c N N N N N c d N N N N o t l N t t i e a S i K K B B
) d a . o L 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 8 8 8 8 8 L L 4 4 4 4 4 4 4 4 4 4 . 4 4 4 4 . 4 4 4 . 4 4 . 4 . . . 4 . 0 0 0 4 4 4 4 4 4 4 h . . . . . . . . . . . . . . . . . . . . . m m m m l . 0 0 0 0 0 0 0 0 t a i 9 9 9 9 9 9 1 9 9 9 9 1 9 7 1 9 1 1 1 1 9 1 2 2 9 9 9 9 9 9 t o ( T W
d a 5 5 2 o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 2 2 2 1 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 . . . . . . . . . . . . 0 . 0 0 . . . . . . . . . . . . . . . 0 . 0 . . . . e 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 4 4 4 4 4 4 0 0 0 0 i v N K L ) r e d L . t a s e r L l a o e t 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 e l l t b l P l u 8 r s 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 . . . . . . . . . . . . . . . . . 4 . 4 . 4 . 4 . 0 . 0 . 4 . 4 . 4 . 4 . 4 . 4 . . a i o ) a l a h 5 5 5 5 5 5 6 5 5 5 5 6 5 5 6 5 6 6 r T 6 6 5 6 1 1 5 5 5 5 5 5 t e 6 M P t o i n 3 n T ( e w I l b a T f ( o
s r o s e o n l k F c t i n e h T m e s a B i m e S
3 3 3 3 m / m / m / m / N N N N K K K K 7 . 4 . 6 5 0 2 6 2 2 e e r m t l e e m r b 5 s r t c a 2 n a l o P ( e l i C M T s t h g i e W t i n U
r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 l m 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 P / . . . . . . . . . . . . . . . . . . . . . . r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e N K n n I
4 4 4 4 4 4 2 2 2 2 2 2 . . . . . . 0 0 0 0 0 0
l l a 2 w m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . 0 . 0 . 0 . 0 . 0 . . o N i 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 t r a K P 7 7 e 2 7 6 6 6 l . . . 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 m b 0 0 0 7 / r 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . a N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M K 1 1 1 r 4 . 4 . 4 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e 2 1 1 1 1 1 1 t m 0 0 0 1 / s 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . a N l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P K 0 0 0 d 0 a . 0 . 0 . o 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . d N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a e K D 6 6 6 s s 1 1 1 . . . e 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 k . 1 . 1 . . . . . . . . . . 1 . . . . . . . . . . . 1 . 1 . m c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i h T 1 1 1 1 0 0 1 1 2 3 4 5 6 8 9 0 1 B 3 4 5 6 8 9 1 1 3 4 5 6 8 9 1 C D B B B B B B - B C C C C D D D D C C D D D 2 C - B - B 0 0 0 1 2 3 1 1 C 5 2 3 4 7 8 9 1 3 4 4 7 2 5 7 8 9 1 2 3 5 8 9 1 - C C C C C C C C D D D D D D D D b B B B B B B B B - A - A - A 2 a A - B - 4 - 5 - 6 - 8 - 9 - 0 - 1 - - - - - - - - r l 2 3 4 B 1 a 2 3 4 5 6 8 9 0 3 4 5 6 8 9 0 - 3 S A A A l 1 1 1 1 1 1 1 A A A A A A A B B B B B B C C C C C C 1 u A A B B C C 2 3 4 c B 1 2 3 4 5 7 8 2 3 4 5 7 8 4 5 7 2 3 8 r i A A A A A A A 9 0 B B B B B B 9 0 C C C C C C 9 0 E E E 1 1 C 1 B 1 2 3 A A C C B E E E
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) g g r s / n n C r e i i ) o v n n m m m m m m m m m m d W s s e i i d r r l a i o o o o o o o o o o s s e i e e r r m m D D b o o o o o o o o o o o t b b b b b & s r k l v v o o o a a a a a a n r a d d e R o d R R R R R d R R R R l s e e l l l l l i o d o r n i a a e c l l n s s s s s i l l l l l l l l l l S i i C r o o c v o m r t t R R a a i a a a a a a a a a a t i m ( o o y o o o o n n a n V m m m m m d S n o e l m d r o & t m m m o V m N N n N N N N a a r r r r r r r r r r e e e e R r S C o o B e C C o o o o o B h R o o o o o r h F c c N N N N N c d N N N N o t l ( N t t i e a S i K K B B ) d a . o L 2 2 2 2 2 2 0 2 2 2 0 2 2 2 2 2 2 2 0 2 2 2 2 0 L L 3 8 3 3 8 8 0 3 3 3 3 8 3 3 0 3 8 3 3 0 0 3 8 h . . . . . . . . . . . . . . . . . . . . . 8 . m m m m l . . t a i 8 8 9 9 9 8 0 8 8 8 8 9 8 9 8 8 0 8 9 8 8 0 0 8 t o ( T W
2 2 3 . 3 . 8 8
d a 5 5 2 o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 2 2 2 1 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0 0 . . . . . . . e 2 2 3 3 3 2 0 3 3 3 3 3 2 2 2 0 3 3 3 3 0 0 2 0 0 0 0 3 3 0 0 0 0 i v N K L ) r e d L . t a s e r L l a o e t 2 2 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 2 0 0 2 0 0 0 0 2 2 2 e l l t b l P l u 2 s r 3 8 3 3 3 3 8 8 0 3 3 3 3 8 8 3 . . . . . . . . . . . . . . . . 0 . 3 . 8 . 3 . 3 . 0 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . a i a l o a h 6 6 6 6 6 6 0 5 5 5 5 6 6 6 6 6 T r 0 5 6 5 5 0 0 6 0 0 0 0 5 5 t e P n o t M i n T ( w I
r o o l F d n u o r G
f o s s e n k c i h T
3 3 3 3 m / m / m / m / N N N N K K K K 7 . 4 . 6 5 0 2 6 2 2 e e r m t l e e m r b 5 s r t c a 2 n a l o P ( e l i C M T s t h g i e W t i n U
r e t s a 2 4 4 4 4 0 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 l m 4 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 P / . . . . . . . . . . . . . . . . . . . . . r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e N K n n I
4 2 . 0
4 4 2 2 . . 0 0
l l a 2 w m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n 0 . 0 . 5 . 5 . 0 . 5 . 0 . 0 . 0 . 0 . 0 . 5 . 5 . 0 . 0 . 0 . 0 . 5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 o / N 1 i 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 t r a K P 7 7 e 2 7 6 6 6 l . . . 7 7 0 7 7 7 7 7 7 7 7 7 0 7 7 7 7 0 0 7 0 0 0 0 7 7 m b 0 0 0 7 / r 6 . 6 . 0 . 6 . 6 . 6 . 6 . 0 . 0 . 0 . 0 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 0 . 6 . 6 . 6 . 6 . 0 . 0 . 6 . 6 . a N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M K 1 1 1 r 4 . 4 . 4 . 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 e 2 t m 0 0 0 / s 4 . 4 . 0 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 0 . 4 . 4 . 4 . 4 . 0 . 0 . 4 . 0 . 0 . 0 . 0 . 4 . 4 . a N l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P K 0 0 0 d 0 a . 0 . 0 . o 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 4 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . d N 4 4 4 0 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 0 0 4 4 a e K D 6 6 6 s s 1 1 1 . . . e 0 0 0 6 6 0 6 6 6 6 6 6 6 6 6 0 6 6 6 6 0 0 6 0 0 0 0 6 6 6 n 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 k . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . m c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i h T 1 1 1 0 1 0 0 1 4 5 6 7 8 9 1 B 3 4 5 6 7 8 9 1 1 3 4 5 6 7 8 9 1 C D 1 B B B B B B B C C C C C C D D D D D C D D D 2 C 0 0 0 2 3 B C 4 5 6 8 3 7 9 1 3 4 3 4 5 6 7 2 5 6 7 8 9 1 2 8 9 1 B - C C C C C C C C C D D D D D D D D D b - B - B B B B B 2 a 1 - B - B - B - 4 - 5 - 6 - 7 - 8 - 9 - 0 - 1 - - - - - - - - - 1 2 l A B 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 S B B - 3 r 1 1 1 1 1 1 1 A A A A A A B B B B B B B C C C C C C 1 a 2 3 - - - - - - A A - - - - - - - B B C C C B 3 4 5 6 7 8 2 3 4 5 6 7 8 3 4 5 6 7 2 8 u A A 9 0 9 0 c 9 0 B B B B B B B A A A A A A C C C C C C C r 1 2 1 1 1 B A A C C B C A A
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) ) g g g g g g g r r / C / i n m n C n C n s n i n i n s r r e e / i i i i ) o o v v n n n n n n n m o d W W s s s e e r r i i i i i i i d d W l l a i i o o s i i e e e r r r m m m y D D D D D D D o o t t b b b b b & & s r r k l v v h & o o o n a l a n a l a n a r a d e R t d o d d d o d d d s s e e l l l i o o o o r a a a e s l c l a n s s s s s n n i i C i C a l r n c R n o m n c c v l o n m R R t t a a a a a a a t m i B ( ( m o o o o o o o n a n n n & n m / n a d n & t V e l y N N y o t d o o n a a N n e d o e e e S e e e e e r e S n e N N n e e R r l o B B r R R C C o o o h h h r B F c c c N i c r c h c h c t c d d h c d o B h o t o t l l ( t t t t t e i i t i i i i i e e a a T S S B K B B K K K K K K B B
) d L a . o L 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 0 2 2 2 0 2 2 L h 2 8 3 3 0 0 0 3 8 8 8 8 8 8 8 8 8 8 8 3 8 3 0 3 8 3 0 l . . . . . . . . . . . . . . 3 . 3 . 0 . . . . . . . . . . . . . . 8 t a i t o W 9 8 8 9 9 8 8 8 9 8 8 8 8 9 8 8 0 8 8 8 8 0 0 9 0 0 9 9 9 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F t s r i F
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 u L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L d 3 2 2 3 3 2 2 2 3 2 2 2 2 3 2 2 0 2 2 2 2 0 0 3 0 0 3 3 3 0 e R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . 0 . . . . . . . . . . . . . e N v K 3 2 2 3 3 2 2 2 3 2 2 2 2 2 2 0 2 2 2 2 0 0 3 0 i L
0 0 0 0 0 0 0 0 . . . . 3 3 3 0
) L . d a o L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 0 2 2 0 2 2 2 2 2 0 t l u 8 0 3 8 l . 0 . 3 . 0 . 3 . 0 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 3 . 8 . 3 . 3 . 3 . 0 . 0 . 8 . 3 . . . . . o 3 a h t 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 4 l m 4 2 2 2 P / . . 2 . 0 . 2 . 0 . 2 . 2 . 0 . . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 2 . 2 . 2 . 2 . 0 . 0 . 2 . r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 7 0 b m 7 r 6 6 6 6 6 6 0 0 6 0 0 6 6 6 6 6 0 6 6 0 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 n o / 0 . . . . . . . . . . . 1 . 0 . 1 . 0 . 0 . 1 . 1 . 1 . . . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 0 i t N 1 1 1 1 1 1 1 1 1 1 1 . 1 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 t m 1 s 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 6 0 0 6 6 6 0 6 6 6 0 6 6 6 6 n 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 a 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 - 3 l 1 1 1 1 C C C C C C C 1 1 B B A A A A A A A A u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 2 B / m 6 . n o N 1 K 5 d 1 a o L s o l l t a e u w 0 0 d h . c d n 0 a o i L 9 h t 0 g 0 . n e 0 l
7 7 7 9 9 7 7 7 8 0 8 7 7 7 8 8 7 7 7 8 7 . 7 . 7 . 6 . 6 . 7 . 7 . 7 . 3 . 2 . 2 . 8 . 2 . 7 . 8 . 0 . 2 . 8 . 2 . 7 . 3 3 4 9 4 6 6 7 7 6 6 4 6 4 7 6 7 6 8 5 9 0 6 3 6 4 5 4 5 4 5 9 4 4 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 2 2 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 . 3 . 0 0 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 0 . 0 . 3 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 1 . 0 . 1 . 0 . 0 5 5 0 0 5 5 5 0 0 0 0 0 5 5 5 5 0 5 0
t h g i e h
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 9 9 9 9 9 9
2 b a l S f O . m i D
x L
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 6 6 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 6 7 6 6 6 7 6 6
2 ) b a d a l o S l 2 e m v 8 i o l . r 8 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 2 e m i v 8 o l . r f h 8 t d i a o ( L W 1 b a l S 2 m 2 m 8 o / . r N 6 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 8 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 9 9 8 8 8 9 8 8 0 0 8 9 8 8 0 8 8 8 8 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 0 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 8 9 9 8 8 8 9 8 8 0 8 8 9 8 8
2 2 2 2 3 . 8 . 3 . 3 . 8 8 8 8
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6
2 2 2 2 3 . 8 . 3 . 3 . 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) ) g g g g g g g r r / C / i n m n C n C n s n i n i n s r r e e / i i i i ) o o v v n n n n n n n m o d W W s s s e e r r i i i i i i i d d W l l a i i o o s i i e e e r r r m m m y D D D D D D D o o t t b b b b b & & s r r k l v v h & o o o n a l a n a l a n a r a d e R t d o d d d o d d d s s e e l l l i o o o o r a a a e s l c l a n s s s s s n n i i C i C a l r n c R n o m n c c v l o n m R R t t a a a a a a a t m i B ( ( m o o o o o o o n a n n n & n m / n a d n & t V e l y N N y o t d o o n a a N n e d o e e e S e e e e e r e S n e N N n e e R r l o B B r R R C C o o o h h h r B F c c c N i c r c h c h c t c d d h c d o B h o t o t l l ( t t t t t e i i t i i i i i e e a a T S S B K B B K K K K K K B B
) d L a . o L 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 0 2 2 2 0 2 2 L h 2 6 1 1 0 0 0 0 6 6 5 5 6 6 6 5 6 6 6 0 6 1 0 1 6 0 0 l . . . . . . . . . . . . . . 0 . 0 . 0 . . . . . . . . . . . . . . 5 t a i t o W 9 8 8 9 9 8 8 8 9 8 8 8 8 9 8 8 0 8 8 8 8 0 0 9 0 0 9 9 9 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F d n o c e S
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 7 u L 7 8 7 7 8 8 8 7 8 8 0 7 8 7 8 8 8 8 8 8 0 8 8 7 7 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L d 2 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 0 1 1 1 1 0 0 2 0 0 2 2 2 0 e R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . 0 . . . . . . . . . . . . . e N v K 3 2 2 3 3 2 2 2 3 2 2 2 2 2 2 0 2 2 2 2 0 0 3 0 i L
0 0 0 0 0 0 0 0 . . . . 3 3 3 0
) L . d a o L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 0 2 2 0 2 2 2 2 2 0 t l u 8 0 3 8 l . 0 . 3 . 0 . 3 . 0 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 3 . 8 . 3 . 3 . 3 . 0 . 0 . 8 . 3 . . . . . o 3 a h t 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 4 l m 4 2 2 2 P / . . 2 . 0 . 2 . 0 . 2 . 2 . 0 . . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 2 . 2 . 2 . 2 . 0 . 0 . 2 . r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 7 0 b m 7 r 6 6 6 6 6 6 0 0 6 0 0 6 6 6 6 6 0 6 6 0 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 n o / 0 . . . . . . . . . . . 1 . 0 . 1 . 0 . 0 . 1 . 1 . 1 . . . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 0 i t N 1 1 1 1 1 1 1 1 1 1 1 . 1 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 t m 1 s 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 6 0 0 6 6 6 0 6 6 6 0 6 6 6 6 n 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 a 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 - 3 l 1 1 1 1 C C C C C C C 1 1 B B A A A A A A A A u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 8 B / m 1 . n o N 8 K 4 d 1 a o L s o l l t a e u w 0 0 d h . c d n 0 a o i L 9 h t 0 g 0 . n e 0 l
7 7 7 7 7 7 7 7 8 0 8 7 7 7 8 8 7 7 7 8 2 . 3 . 2 . 3 . 3 . 2 . 2 . 1 . 5 . 7 . 6 . 0 . 6 . 1 . 0 . 0 . 7 . 0 . 6 . 3 . 5 8 0 7 3 6 1 7 3 6 3 4 3 4 3 6 3 6 5 5 7 0 5 8 5 0 5 3 5 0 5 6 4 3 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 2 2 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 . 3 . 0 0 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 0 . 0 . 3 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 1 . 0 . 1 . 0 . 0 5 5 0 0 5 5 5 0 0 0 0 0 5 5 5 5 0 5 0
t h g i e h
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
x L
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6
2 ) b a d a l o S l 2 e m v 6 i o l . r 8 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 2 e m i v 6 o l . r f h 8 t d i a o ( L W 1 b a l S 2 m 2 m 8 o / . r N 6 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 2 2 2 0 5 . 5 . 6 . 6 . 6 . 5 . 6 . 6 . 0 . 0 . 6 . 0 . 6 . 1 . 0 . 1 . 6 . 1 . 1 . 0 . 9 9 8 8 8 9 8 8 0 0 8 9 8 8 0 8 8 8 8 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 0 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6
0 0 0 0 0 . 0 . 0 . 0 . 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6
0 0 0 0 0 . 0 . . 0 . 0 6 7 6 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 6 . 5 . 5 . 6 . 6 . 6 . 5 . 6 . 6 . 0 . 6 . 6 . 0 . 6 . 1 . 0 . 1 . 6 . 1 . 1 . 8 9 9 8 8 8 9 8 8 0 8 8 9 8 8 0 8 8 8 8
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 0 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) ) g g g g g g g r r / C / i n m n C n C n s n i n i n s r r e e / i i i i ) o o v v n n n n n n n m o d W W s s s e e r r i i i i i i i d d W l l a i i o o s i i e e e r r r m m m y D D D D D D D o o t t b b b b b & & s r r k l v v h & o o o n a l a n a l a n a r a d e R t d o d d d o d d d s s e e l l l i o o o o r a a a e s l c l a n s s s s s n n i i C i C a l r n c R n o m n c c v l o n m R R t t a a a a a a a t m i B ( ( m o o o o o o o n a n n n & n m / n a d n & t V e l y N N y o t d o o n a a N n e d o e e e S e e e e e r e S n e N N n e e R r l o B B r R R C C o o o h h h r B F c c c N i c r c h c h c t c d d h c d o B h o t o t l l ( t t t t t e i i t i i i i i e e a a T S S B K B B K K K K K K B B
) d L a . o L 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 L h 2 4 9 9 0 0 0 0 7 4 4 4 2 4 4 4 2 4 4 4 7 4 9 0 9 4 7 7 l . . . . . . . . . . . . . . . 9 . 0 . . . . . . . . . . . . . . 4 t a i t o W 8 8 8 8 9 8 8 8 9 8 8 8 8 8 8 7 0 7 8 7 7 0 0 8 0 0 8 8 7 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F d r i h T
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 6 u L 4 6 6 4 6 6 6 4 6 6 6 6 4 6 6 6 6 6 6 0 6 6 4 4 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L d 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 0 1 1 1 1 0 0 2 0 0 2 1 1 0 e R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e N v K 3 2 2 2 3 2 2 2 3 2 2 2 2 2 2 0 2 2 2 2 0 0 3 0 0 3 2 2 0 i L ) L . d a o L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 0 2 2 0 2 2 2 2 2 0 t l u 8 0 3 8 l . 0 . 3 . 0 . 3 . 0 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 3 . 8 . 3 . 3 . 3 . 0 . 0 . 8 . 3 . . . . . o 3 a h t 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 4 l m 4 2 2 2 P / . . 2 . 0 . 2 . 0 . 2 . 2 . 0 . . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 2 . 2 . 2 . 2 . 0 . 0 . 2 . r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 7 0 b m 7 r 6 6 6 6 6 6 0 0 6 0 0 6 6 6 6 6 0 6 6 0 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 n o / 0 . . . . . . . . . . . 1 . 0 . 1 . 0 . 0 . 1 . 1 . 1 . . . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 0 i t N 1 1 1 1 1 1 1 1 1 1 1 . 1 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 t m 1 s 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 6 0 0 6 6 6 0 6 6 6 0 6 6 6 6 n 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 a 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 - 3 l 1 1 1 1 C C C C C C C 1 1 B B A A A A A A A A u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 4 B / m 7 . n o N 4 K 4 d 1 a o L s o l l t a e u w 0 0 d h . c d n 0 a o i L 9 h t 0 g 0 . n e 0 l
7 7 7 4 4 7 7 7 8 0 8 7 7 7 8 8 7 7 7 8 5 . 7 . 7 . 0 . 0 . 7 . 7 . 5 . 7 . 2 . 0 . 2 . 0 . 5 . 2 . 0 . 2 . 2 . 0 . 1 . 7 4 7 5 1 5 8 5 8 5 0 4 0 4 8 5 8 5 1 5 5 0 5 4 5 7 4 1 4 7 4 2 4 1 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 2 2 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 . 3 . 0 0 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 0 . 0 . 3 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 1 . 0 . 1 . 0 . 0 5 5 0 0 5 5 5 0 0 0 0 0 5 5 5 5 0 5 0
t h g i e h
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
x L
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6 0
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6 0
2 ) b a d a l o S l 2 e m v 4 i o l . r 8 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 2 e m i v 4 o l . r f h 8 t d i a o ( L W 1 b a l S 2 m 2 m 8 o / . r N 6 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 2 2 2 0 4 . 2 . 4 . 4 . 4 . 2 . 4 . 4 . 0 . 0 . 4 . 7 . 4 . 9 . 0 . 9 . 4 . 9 . 9 . 0 . 8 9 8 8 8 9 8 8 0 0 8 8 8 7 0 7 8 7 7 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 0 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6
0 0 0 0 0 . 0 . . 0 . 0 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6
0 0 0 0 0 . 0 . . 0 . 0 6 7 6 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 4 . 4 . 2 . 4 . 4 . 4 . 2 . 4 . 4 . 0 . 4 . 4 . 7 . 4 . 9 . 0 . 9 . 4 . 9 . 9 . 8 8 9 8 8 8 9 8 8 0 8 8 8 8 7 0 7 8 7 7
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 0 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) ) g g g g g g g r r / C / i n m n C n C n s n i n i n s r r e e / i i i i ) o o v v n n n n n n n m o d W W s s s e e r r i i i i i i i d d W l l a i i o o s i i e e e r r r m m m y D D D D D D D o o t t b b b b b & & s r r k l v v h & o o o n a l a n a l a n a r a d e R t d o d d d o d d d s s e e l l l i o o o o r a a a e s l c l a n s s s s s n n i i C i C a l r n c R n o m n c c v l o n m R R t t a a a a a a a t m i B ( ( m o o o o o o o n a n n n & n m / n a d n & t V e l y N N y o t d o o n a a N n e d o e e e S e e e e e r e S n e N N n e e R r l o B B r R R C C o o o h h h r B F c c c N i c r c h c h c t c d d h c d o B h o t o t l l ( t t t t t e i i t i i i i i e e a a T S S B K B B K K K K K K B B
) d L a . o L 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 L h 2 2 7 7 0 0 0 0 4 2 2 9 9 2 2 2 9 2 2 2 4 2 7 0 7 2 4 4 l . . . . . . . . . . . . . . . 7 . 0 . . . . . . . . . . . . . . 2 t a i t o W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 0 7 8 7 7 0 0 8 0 0 8 8 7 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F h t r u o F
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 4 u L 1 4 1 1 4 4 4 1 4 4 4 4 1 4 4 4 4 4 4 0 4 4 1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L d 2 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 0 1 1 1 1 0 0 2 0 0 2 1 1 0 e R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e N v K 3 2 2 3 3 2 2 2 3 2 2 2 2 2 2 0 2 2 2 2 0 0 3 0 0 3 2 2 0 i L ) L . d a o L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 0 2 2 0 2 2 2 2 2 0 t l u 8 0 3 8 l . 0 . 3 . 0 . 3 . 0 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 3 . 8 . 3 . 3 . 3 . 0 . 0 . 8 . 3 . . . . . o 3 a h t 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 4 l m 4 2 2 2 P / . . 2 . 0 . 2 . 0 . 2 . 2 . 0 . . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 2 . 2 . 2 . 2 . 0 . 0 . 2 . r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 7 0 b m 7 r 6 6 6 6 6 6 0 0 6 0 0 6 6 6 6 6 0 6 6 0 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 n o / 0 . . . . . . . . . . . 1 . 0 . 1 . 0 . 0 . 1 . 1 . 1 . . . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 0 i t N 1 1 1 1 1 1 1 1 1 1 1 . 1 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 t m 1 s 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 6 0 0 6 6 6 0 6 6 6 0 6 6 6 6 n 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 a 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 - 3 l 1 1 1 1 C C C C C C C 1 1 B B A A A A A A A A u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 1 B / m 3 . n o N 1 K 4 d 1 a o L s o l l t a e u w 0 0 d h . c d n 0 a o i L 9 h t 0 g 0 . n e 0 l
7 7 7 1 1 7 7 7 8 0 8 7 7 7 8 8 7 7 7 8 2 . 5 . 2 . 7 . 7 . 2 . 2 . 9 . 9 . 7 . 4 . 4 . 4 . 9 . 4 . 0 . 7 . 4 . 4 . 4 . 9 9 3 3 9 5 0 6 4 5 6 3 6 3 4 5 4 5 7 4 3 0 4 9 4 3 4 9 4 3 4 8 3 9 7 7 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 2 2 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 . 3 . 0 0 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 0 . 0 . 3 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 1 . 0 . 1 . 0 . 0 5 5 0 0 5 5 5 0 0 0 0 0 5 5 5 5 0 5 0
t h g i e h
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
x L
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6
2 ) b a d a l o S l 2 e m v 2 i o l . r 8 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 2 e m i v 2 o l . r f h 8 t d i a o ( L W 1 b a l S 2 m 2 m 8 o / . r N 6 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 2 2 2 0 9 . 9 . 2 . 2 . 2 . 9 . 2 . 2 . 0 . 0 . 2 . 4 . 2 . 7 . 0 . 7 . 2 . 7 . 7 . 0 . 8 8 8 8 8 8 8 8 0 0 8 8 8 7 0 7 8 7 7 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 0 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6
0 0 0 0 0 . 0 . 0 . 0 . 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6
0 0 0 0 0 . 0 . . 0 . 0 6 7 6 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 . 9 . 9 . 2 . 2 . 2 . 9 . 2 . 2 . 0 . 2 . 2 . 4 . 2 . 7 . 0 . 7 . 2 . 7 . 7 . 8 8 8 8 8 8 8 8 8 0 8 8 8 8 7 0 7 8 7 7
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 0 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) ) g g g g g g g r r / C / i n m n C n C n s n i n i n s r r e e / i i i i ) o o v v n n n n n n n m o d W W s s s e e r r i i i i i i i d d W l l a i i o o s i i e e e r r r m m m y D D D D D D D o o t t b b b b b & & s r r k l v v h & o o o n a l a n a l a n a r a d e R t d o d d d o d d d s s e e l l l i o o o o r a a a e s l c l a n s s s s s n n i i C i C a l r n c R n o m n c c v l o n m R R t t a a a a a a a t m i B ( ( m o o o o o o o n a n n n & n m / n a d n & t V e l y N N y o t d o o n a a N n e d o e e e S e e e e e r e S n e N N n e e R r l o B B r R R C C o o o h h h r B F c c c N i c r c h c h c t c d d h c d o B h o t o t l l ( t t t t t e i i t i i i i i e e a a T S S B K B B K K K K K K B B
) d L a . o L 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 L h 2 0 5 5 0 0 0 0 1 0 0 6 6 0 0 0 6 0 0 0 1 0 5 0 5 0 1 1 l . . . . . . . . . . . . . . . 5 . 0 . . . . . . . . . . . . . . 0 t a i t o W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 0 7 8 7 7 0 0 8 0 0 8 8 7 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F h t f i F
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 2 u L 8 2 8 8 2 2 2 8 2 2 2 2 8 2 2 2 2 2 2 0 2 2 8 8 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 e R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e N v K 3 2 2 3 3 2 2 2 3 2 2 2 2 2 2 0 2 2 2 2 0 0 3 0 0 3 2 2 0 i L ) L . d a o L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 2 2 0 2 2 0 2 2 2 2 2 0 t l u 8 0 3 8 l . 0 . 3 . 0 . 3 . 0 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 3 . 8 . 3 . 3 . 3 . 0 . 0 . 8 . 3 . . . . . o 3 a h t 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 4 l m 4 2 2 2 P / . . 2 . 0 . 2 . 0 . 2 . 2 . 0 . . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 2 . 2 . 2 . 2 . 0 . 0 . 2 . r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 0 0 7 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 7 0 b m 7 r 6 6 6 6 6 6 0 0 6 0 0 6 6 6 6 6 0 6 6 0 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 0 0 5 0 0 0 0 0 0 0 0 5 0 0 n o / 0 . . . . . . . . . . . 1 . 0 . 1 . 0 . 0 . 1 . 1 . 1 . . . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 0 i t N 1 1 1 1 1 1 1 1 1 1 1 . 1 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 t m 1 s 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 0 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 0 0 4 0 0 4 4 4 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 6 0 0 6 6 6 0 6 6 6 0 6 6 6 6 n 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 a 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 - 3 l 1 1 1 1 C C C C C C C 1 1 B B A A A A A A A A u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 7 B / m 8 . n o N 7 K 3 d 1 a o L s o l l t a e u w 0 0 d h . c d n 0 a o i L 9 h t 0 g 0 . n e 0 l
7 7 7 9 9 7 7 7 8 0 8 7 7 7 8 8 7 7 7 8 7 . 1 . 7 . 3 . 3 . 7 . 7 . 3 . 1 . 2 . 8 . 6 . 8 . 3 . 6 . 0 . 2 . 6 . 8 . 9 . 1 5 9 2 7 4 5 5 9 4 3 3 3 3 9 4 9 4 4 4 2 0 4 5 4 9 3 7 3 9 3 5 3 7 7 7 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 2 2 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 0 . 3 . 0 0 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 0 . 0 . 3 . 0 . 3 . 0 . 0 . 0 . 0 . 3 . 3 . 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 1 . 1 . 0 . 0 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 1 . 1 . 1 . 1 . 0 . 1 . 0 . 0 5 5 0 0 5 5 5 0 0 0 0 0 5 5 5 5 0 5 0
t h g i e h
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
x L
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6
2 ) b a d a l o S l 2 e m v 0 i o l . r 8 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 2 e m i v 0 o l . r f h 8 t d i a o ( L W 1 b a l S 2 m 2 m 8 o / . r N 6 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 2 2 2 2 0 6 . 6 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . 5 . 0 . 5 . 0 . 5 . 5 . 0 . 8 8 8 8 8 8 8 8 0 0 8 8 8 7 0 7 8 7 7 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 0 2 2 2 2 0 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 0 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 0 . 0 6 6 6 6 6 6 6 6 0 6 6 6 6 0 6 6 6 6 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 7 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 3 6 6 6 6 0 0 6 6 6 6
0 0 0 0 0 . 0 . 0 . 0 . 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 6 6 7 6 6 0 0 6 6 7 6
0 0 0 0 0 . 0 . . 0 . 0 6 7 6 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 0 . 6 . 6 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . 5 . 0 . 5 . 0 . 5 . 5 . 8 8 8 8 8 8 8 8 8 0 8 8 8 8 7 0 7 8 7 7
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 0 . 8 . 8 . 3 . 8 . 3 . 0 . 3 . 8 . 3 . 3 . 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 0 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) t t g r e g e f f f C f l e n f f n f f l f f f o o i / i i i ) v o o o o o o o o o i n o o o n o d e i o o o o o o o o o W l a m m R R T T r r r r r r r i r r m s e e D t D o o o b b b b b b b s s k e l e l l l e & d a l e l e a d o e & o l e l e o & l e l e l e l a l a l a l a l a l a n a b a r l o l a a e b b s c c b b b b b b b b b R R s s s s s s n s l s n i i r i r a R i i i i i i i v i C m m a i i s s m i m s s s s s s s s s ( g g o o o o o o o o s s o n t a a o d s s s s s s s s s e l t n n e e e i n o e o e S e e e o i e e e e N N N N N N y N N o e B n R r S c c c c c c c c c c c o e r v v R R o c c d h c h c i c F l c c l d c c c i c c c c a a ( A e A l A e t i A A d i A I n A t n A B e A I a K B K B B
) d L a . o L 0 0 0 0 0 2 0 0 7 2 2 2 7 2 7 2 2 2 7 7 2 2 7 2 7 2 2 7 0 L h 7 8 8 0 0 0 8 8 3 0 8 0 3 8 0 0 8 0 8 0 8 8 0 l . 0 . 0 . 0 . 0 . 0 . 8 . . . . . . . . . . . . . . . 0 . . . . . . . 0 . . t a i t o W 6 6 7 7 8 6 5 6 8 7 7 6 6 7 7 6 5 6 7 7 6 0 0 0 0 0 0 6 0 0 T (
m m m m
5 5 2 2 2 2 1 0 0 . 0 0 . . . 0 0 0 0
r o o l F h t x i S
r e t s r e l a e l e l t b s r i P a T r a l P e M n n I f o s s e n k c i h T
d e 5 5 0 0 0 5 0 5 0 0 0 5 5 0 0 5 0 5 0 0 5 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 u L 7 7 0 7 5 7 0 0 7 7 7 5 7 0 0 0 5 5 0 0 0 5 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . L d e 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 R
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 L / 0 0 0 0 0 0 0 5 5 0 0 0 5 0 5 0 0 5 5 5 0 5 0 0 0 0 5 2 0 . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . e N v K 1 1 2 2 3 1 1 1 3 2 2 1 1 2 1 1 1 2 2 1 0 0 0 0 0 0 3 0 0 i L ) L . d a o L 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2 2 2 0 t l u 0 8 l . 3 . 8 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 8 . 3 . 3 . 8 . 3 . 3 . 3 . 8 . 8 . 3 . 0 . 0 . 0 . 0 . 0 . 3 . 0 . 0 . . . o 3 a h t 5 5 6 6 6 5 5 5 6 6 6 5 5 6 5 5 5 6 6 0 0 0 0 0 0 5 0 6 5 0 o t i T w ( r e t s a 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 4 0 0 l m 4 2 P / . 2 . 0 . 0 . 0 . 0 . 0 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0 . 0 . . 0 r N e K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n I
e 2 l 7 7 7 7 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 0 7 0 b m 7 r 6 6 6 6 6 6 0 0 0 0 0 0 0 6 6 6 6 0 6 . 6 . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . . . . . . . . . . . . . a / N 0 M K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s l l a w 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 5 5 5 0 0 0 5 5 5 0 0 5 5 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 n o / 0 . . . . . . . . . . . 0 . . . . . . . . . . 1 . 1 . 0 . 0 . 0 . 1 . 1 . . 0 i t N 0 0 1 1 1 0 0 0 1 1 1 . 0 0 0 0 0 0 0 0 0 0 i K t r a P
3 3 3 3 m / m / m / m / N N N N K K K K
r e 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 t m 1 s 4 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 4 . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a / l N 0 P K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. 4 . 6 5 7 0 2 6 2 2
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L / d N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a e K 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 4 0 0 D
) e e r m t l t e e m r 5 s r c b a 2 a l n o P ( e l i C M T
s s e 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 0 0 n 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 k m 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h T
s t h g i e W t i n U
b a l S
1 1 1 1 0 1 1 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 3 4 5 6 7 8 9 1 B C D B B B B B B B B B B - - - - - - - - - - 0 2 C C C C C C C C D D D D D D D D 0 0 1 1 C 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 9 1 - C C C C C C C C C D D D D D D D D D A B - B - B - B - B - B - B - B - B - B - 2 - - - - - - - - - - - - - - - - - r B 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 3 4 5 6 7 8 9 0 1 a - 3 l 1 1 1 1 C C C C C C C 1 1 A A A A A A A A B B u - B - B - B - B - B - 1 - 3 - 4 - 5 - 6 - 7 - 8 - C c - B - 2 - A - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A - C i 9 0 9 0 9 0 B B B B B B B C C C C C C C C A A A A A A A A A 1 1 1 B B C A C
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 0 B / m 1 . n o N 0 K 2 d 1 a o L s o l l t a e u w 2 3 . d h 8 c d 4 n a o i L 9 h t 0 g 1 . n e 5 l
7 7 2 3 3 2 7 7 8 2 7 2 3 3 2 7 2 3 0 7 . 2 . 5 . 6 . 2 . 7 . 3 6 . 7 . 0 . 6 . 7 . 0 . 6 . 6 . 5 . 0 0 . 0 . 6 . 0 . 0 5 9 9 5 0 . 5 5 5 4 4 0 3 4 4 4 2 5 5 2 4 4 7 0 7 5 2 0 2 4 2 0 2 4 4 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 5 2 2 2 2 2 2 0 0 2 2 2 0 2 0 2 3 3 3 3 3 3 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 . 0 . 8 . 8 . 8 . 0 . 8 . 8 . 8 8 8 8 8 8 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5
t h g i e h
5 5 5 5 0 . 0 . 0 . 0 . 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 0 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
5 5 5 5 0 . 0 . 0 . 0 . 3 3 3 3
5 0 . 3
5 0 . 3
5 0 . 3
5 0 . 3
x L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 . 0 . 0 . 0 . 0 . 0 . 0 6 6 6 6 0 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 0 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6
2 ) b a d a l o S l 2 e m v 8 i o l . r 7 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 7 e m i v 0 o l . r f h 6 t d i a o ( L W 1 b a l S 2 m 2 m 3 o / . r N 5 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 7 2 2 7 2 7 2 2 7 0 2 2 7 2 7 2 2 2 0 8 . 3 . 0 . 8 . 0 . 3 . 8 . 8 . 0 . 0 . 0 . 8 . 8 . 0 . 8 . 0 . 8 . 8 . 0 . 0 . 7 8 6 5 6 8 7 7 0 0 6 7 7 6 5 6 7 7 6 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 0 8 . 3 . . 8 . 3 . 3 . 3 . 8 . 8 . 8 . 0 . 0 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 3 . 0 0 6 6 5 5 5 6 6 6 0 5 6 6 5 5 5 6 6 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 0 9 9 9 9 0 3 9 9 9 9 0 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 0 6 6 6 6 0 2 6 6 6 6 0 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 0 6 7 6 6 0 6 6 6 7 6 0 6 7 6 6 2 2 2 7 2 7 2 2 2 0 7 7 2 2 7 2 7 2 2 7 8 . 8 . 3 . 0 . 8 . 0 . 3 . 8 . 8 . 0 . 0 . 0 . 8 . 8 . 0 . 8 . 0 . 8 . 8 . 0 . 7 7 8 6 5 6 8 7 7 0 6 6 7 7 6 5 6 7 7 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 8 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 8 . 0 . 3 . 3 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 3 . 6 6 6 5 5 5 6 6 6 0 5 5 6 6 5 5 5 6 6 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) d a L . o L 0 0 5 5 5 0 0 5 5 0 0 0 5 5 0 5 5 5 0 L 5 7 0 0 5 5 5 0 l h . 0 . . . . . . . 0 . 5 . 5 . 5 . 0 . . 5 . 5 . 0 . 0 . 0 . 5 . 5 t a i 0 0 6 6 6 0 0 1 6 6 5 0 0 6 6 0 0 0 6 6 t o W T (
d e 5 0 0 5 5 0 0 5 5 0 0 0 5 5 c 0 5 5 5 0 5 u L 7 . 0 . 0 . 7 . 7 . 7 . 0 . 0 . 0 . 7 . 7 . 7 . 0 . 7 . 7 . 0 . 0 . 0 . 7 . 7 . m m m m d L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e R d
a 2 5 5 2 o m 0 0 0 0 0 2 2 2 1 L / 5 0 . 0 . 5 . 5 . 5 . 0 . 0 0 . e . . N 1 0 1 1 1 0 v K 0 0 0 i
0 0 0 5 0 0 0 0 0 0 0 0 0 0 . 5 . 5 . 5 . 0 . 0 . . 5 . 0 . 0 . 0 . 5 . 5 . 0 1 1 1 0 0 1 1 0 0 0 1 1
L
r e t s e r l a e e l t b l s r i P a T r a l P e M n n I
) L d . a o L t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l u 0 8 0 8 8 8 0 0 0 8 8 0 l . . . . . . 0 . . . . . . . . 8 . 8 . 0 . 0 . 0 . 8 . 8 o a t h 0 0 5 5 5 0 0 1 5 5 4 0 0 5 5 0 0 0 5 5 o t T i w (
f o s s e n k c i h T
r e t s a 2 l 0 4 4 4 m 0 0 P / . 0 . 2 . 2 . 2 . r N e K 0 0 0 0 0 n n I
4 0 0 4 4 0 0 0 4 4 0 4 4 0 . 2 . 2 . 2 . 0 . 0 . 2 . 0 . 2 . . 2 . 0 . 0 . 2 0 0 0 0 0 0 0 0 0 0 0 0 0
e 2 l b m r a / N M K
0 0 0 0 0 0 . . . 1 1 1
e s u o H t n e P
3 3 3 3 m / m / m / m / N N N N K K K K
0 0 0 0 0 0 . . . 1 1 1
0 0 0 0 . . 1 1
0 0 0 0 . . 1 1
s l l a w 2 0 0 5 5 5 m 0 1 1 1 n / . . . . . o N 0 i t i K 0 0 0 0 0 t r a P
0 0 5 5 5 0 0 5 5 0 0 0 5 5 1 0 0 1 1 0 . . . . 0 . . . . 1 . 1 . 0 . 0 . 0 . 1 . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r e 2 0 1 1 1 t m 0 s 0 4 4 4 . 0 . . . . a / N 0 l P K 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 4 4 4 0 0 4 4 0 0 0 4 4 . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d a o 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L . . 5 7 6 d / . . . . . 0 . . . . . . . . . . . . . . . 2 6 N 0 0 4 4 4 0 0 4 4 4 0 0 4 4 0 0 0 4 4 2 0 2 a e K D
) e e r m t l e e m r t b 5 s r c a 2 n a l o P ( e l i C M T s t h g i e W t i n U
s s e 0 6 6 6 0 0 0 6 6 6 0 0 6 6 0 0 0 6 6 n 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 k m 0 . 0 . . . . . . . . . . . . . . . . . . . c i h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T
b a l S
1 1 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 B B - 2 3 B B B B B B B B B C C C C C C C 0 1 1 2 3 4 5 6 7 8 9 1 C 2 3 4 5 6 7 8 C 9 A B B B B B B B B B B C C C C C C C C - - - - - - - - - 1 - 2 - 4 - 5 - 6 - 7 - 8 - 9 - 0 r B a 2 3 4 5 6 7 8 9 0 3 l 1 1 1 A 1 B u - B - B - B - B - B - B - A - A - A - A - A - A - A - - A c - B 2 3 4 5 6 7 8 B r 1 2 3 4 5 6 7 8 A i 9 9 0 B B B B B B B A A A A A A A A C 1 B A A
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e 0 B / m 1 . n o N 0 K 2 d 1 a o L s o l l t a e u w 2 3 . d h 8 c d 4 n a o i L 9 h t 0 g 1 . n e 5 l
7 7 2 3 3 2 7 7 8 2 7 2 3 3 2 7 2 3 0 7 . 2 . 5 . 6 . 2 . 7 . 3 6 . 7 . 0 . 6 . 7 . 0 . 6 . 6 . 5 . 0 0 . 0 . 6 . 0 . 0 5 9 9 5 0 . 5 5 5 4 4 0 3 4 4 4 2 5 5 2 4 4 7 0 7 5 2 0 2 4 2 0 2 4 4 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 5 2 2 2 2 2 2 0 0 2 2 2 0 2 0 2 3 3 3 3 3 3 . 3 . 3 . 0 0 . 3 . 3 . 3 . 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 . 0 . 8 . 8 . 8 . 0 . 8 . 8 . 8 8 8 8 8 8 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5
t h g i e h
5 5 5 5 0 . 0 . 0 . 0 . 3 3 3 3
) . p a r T r a e r o e A l g n a i r T (
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 0 9 9 9 9 0 0 9 9 9 9 0 9 9 9 9 0
2 b a l S f O . m i D
5 5 5 5 0 . 0 . 0 . 0 . 3 3 3 3
5 0 . 3
5 0 . 3
5 0 . 3
5 0 . 3
x L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 . 0 . 0 . 0 . 0 . 0 . 0 6 6 6 6 0 6 6 6 6 0 0 6 6 6 6 0 6 6 6 6
y L
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 0 6 7 6 6 0 0 6 6 7 6 0 6 7 6 6
2 ) b a d a l o S l 2 e m v 8 i o l . r 7 f h t d i a o W L ( 2 b a l S 2 m 2 m / o N 8 . r f K 6 d a o L . p a r T r 9 a e r o . e 1 A l 8 g n a i r T ( 1 b x 0 2 a L . l 4 S f O . y 0 m L 0 i . 6 D 1 ) b a d a l o S l 7 e m i v 0 o l . r f h 6 t d i a o ( L W 1 b a l S 2 m 2 m 3 o / . r N 5 f K d a o L d a 0 o l 3 . m 5 a 1 e b d a o m 5 L / . N 5 d a K 2 e D
0 7 2 2 7 2 7 2 2 7 0 2 2 7 2 7 2 2 2 0 8 . 3 . 0 . 8 . 0 . 3 . 8 . 8 . 0 . 0 . 0 . 8 . 8 . 0 . 8 . 0 . 8 . 8 . 0 . 0 . 7 8 6 5 6 8 7 7 0 0 6 7 7 6 5 6 7 7 6 0
2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 2 0 8 . 3 . . 8 . 3 . 3 . 3 . 8 . 8 . 8 . 0 . 0 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 3 . 0 0 6 6 5 5 5 6 6 6 0 5 6 6 5 5 5 6 6 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 9 9 9 9 0 9 9 9 9 0 3 9 9 9 9 0 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 6 0 6 6 6 6 0 2 6 6 6 6 0 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 7 6 0 6 7 6 6 0 6 6 6 7 6 0 6 7 6 6 2 2 2 7 2 7 2 2 2 0 7 7 2 2 7 2 7 2 2 7 8 . 8 . 3 . 0 . 8 . 0 . 3 . 8 . 8 . 0 . 0 . 0 . 8 . 8 . 0 . 8 . 0 . 8 . 8 . 0 . 7 7 8 6 5 6 8 7 7 0 6 6 7 7 6 5 6 7 7 6
2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 8 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 8 . 0 . 3 . 3 . 8 . 8 . 3 . 3 . 3 . 8 . 8 . 3 . 6 6 6 5 5 5 6 6 6 0 5 5 6 6 5 5 5 6 6 5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . . 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 6 6
L m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 4 5 6 7 8 9 0 1 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 B B B B B B B B B B C C C C C C C C C C C 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 A A A A A A A A 1 1 B B B B B B B B B 1 B B A A
B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . m a e B
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
) d a L . o L 1 1 0 1 1 0 0 0 0 0 L 0 0 0 0 0 0 0 0 9 4 9 l h . . . . . . . . . . 4 . t a i 0 0 9 6 0 0 0 0 0 6 9 t o W T (
d e 0 0 0 0 0 0 0 5 5 c 0 0 u L 0 . 7 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 7 . m m m m d L 0 0 0 0 0 0 0 0 0 0 0 e R d
a 2 5 5 2 o m 2 2 2 1 L / 0 0 . 0 0 . e . . 0 v N 0 0 0 i K
0 0 5 . 5 . 1 1
0 0 5 . 5 . 1 1
r e t s e r l a e e l t b l s r i P a T r a l P e M n n I
) L d . a o L t l u l o a h t o t i T w (
1 1 9 . 4 . 7 5
1 1 4 . 9 . 5 7
f o s s e n k c i h T
r e t s a 2 l m P / r N e K n n I
0 0 0 . 0 . 1 1
0 0 0 . 0 . 1 1
e 2 l b m r a / N M K
0 0 . 0
0 0 . 0
s l l a w 2 m n / o N i t i K t r a P
0 5 . 2
0 5 . 2
r e 2 t m s a / N l P K
1 1 4 4 . . 0 0
1 1 4 . 4 . 0 0
d a o 2 4 m L . . 5 7 6 d / 2 6 N 2 0 2 a e K D
0 0 0 . 0 . 4 4
0 0 0 . 0 . 4 4
) e e r m t l e e m r t b 5 s r c a 2 n a l o P ( e l i C M T
6 6 1 . 1 . 0 0
6 6 1 1 . . 0 0
L
k n a t r e t a W
3 3 3 3 m / m / m / m / N N N N K K K K
s t h g i e W t i n U
s s e n k c m i h T
b a l S
1 1 1 2 3 4 5 6 7 8 9 0 1 B B B B B B B B B B B - - - - - - - - - 0 1 1 4 5 6 7 8 9 2 3 1 A B - B - B - B - B - B - B - B - B - B r 2 3 4 5 6 7 8 9 0 1 a l 1 1 A u - A - A - A - A - A - A - A - - A c r 1 2 3 4 5 6 7 8 A i 9 0 A A A A A A A A C 1 A A
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
m a e B / m n o N K d a o L . p a r T r a o e r l A e g n a i r T (
2 x b a L l S f O . m y i D L
) 6 4 e l b a T (
k n a t r e t a w f o n o i t a l u c l a c d a o L
3 m / N K 5 2 . c n o C . t W t i n U
2 ) b a d a l o S l e m v i o l r f h t d i a o W L ( 2 b a l S 2 m m / o r N f K d a o L ) . p a r T r a o e r l A e g n a i r T ( 1 b x a L l S f O . y m L i D 1 ) b a d a l o S l e m v i o l r f h t d i a o W L (
7 0 0 0 0 7 7 0 7 7 7 7 7 0 0 7 7 7 7 0 0 0 0 0 0 0 0 6 9 9 6 0 . 0 . 0 0 . 0 0 . 0 . 0 0 . 0 . 0 0 . 6 . 6 . 1 . 1 . 0 . 1 . 6 . 6 . . 6 . 9 . 0 . 0 . 9 . 6 . 0 . 4 . 2 . 0 . 0 . 2 . 4 . 0 . 1 4 2 2 4 4 4 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 2 6 2 6 0 0 2 6 6 8 8
6 0 7 0 0 0 7 0 6 6 6 1 1 0 0 1 1 6 6 0 0 0 6 7 0 0 0 7 0 6 8 8 8 8 0 . 0 . 0 . 0 0 . 8 . 8 . 1 . . 8 . 2 . 0 . 0 . 0 . 2 . 0 . 1 . 0 . 1 . 2 . 0 . 0 . 0 . 2 . 0 . 8 . 1 . 0 . 0 . 1 . 1 . . 1 1 0 1 0 9 0 0 0 9 0 0 0 0 9 0 0 0 9 0 1 1 1 1 1 1 1 1 8 8 0 0 8 8 1 1 1
0 0 5 0 0 1 0 0 0 0 3 0 0 0 5 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4 . 0 . 0 0 . 0 . 0 0 0 . 0 . 0 . 0 . 3 . 0 . 0 . 0 . 0 . 2 . 1 . 0 . 2 . 3 . 0 . 2 . 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 4 9 9 2 9 3 9 9 9 0 3 9 9 9 3 9 9 9 9 9 9 9 7 9 9 9 9 9 1 1 1 1 0 0 0 0 0 6 0 0 0 0 2 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 4 6 6 6 6 3 6 6 6 6
0 0 0 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 5 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 . 0 . . 0 . 0 . 0 . 0 2 6 6 6 6 3 6 6 6 6 6 6 6 6 3 6 6 6 6 0
0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 7 6 6 6 7 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 6 6 6 7 6 6 6 7 6 6 6 6 7 6 6 6 7 6 6 0
0 1 0 . 4 . 0 9
1 0 0 0 1 0 1 9 . 0 . 0 . 0 . 9 . 0 . 4 . 6 0 0 0 6 0 9
0 1 0 . . 4 9 0
1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 9 . 0 . 0 . 0 . 0 . 4 . 4 . 9 . 9 . 4 . 9 . 0 . 0 . 9 . 9 . 4 . 4 . 6 6 0 0 0 0 9 9 9 6 6 0 0 6 6 9 9
0 1 0 . 9 . 0 7
1 0 0 0 1 0 1 4 . 0 . 0 . 0 . 0 . 4 . 9 . 5 0 0 0 5 0 7
0 1 0 . . 9 0 7
1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 4 . 0 . 0 . 0 . 0 . 4 . 9 . 9 . 9 . 4 . 4 . 0 . 0 . 4 . 4 . 9 . 9 . 5 0 0 0 5 0 7 7 7 5 5 0 0 5 5 7 7
0 0 0 9 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 . 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 4 . 0 . 0 . 2 . 3 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 0 0 0 0 0 0 0 0 0 9 0 4 9 1 9 3 9 2 1 9 9 8 9 9 9 9 7 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 6 0 0 0 0 2 . 0 . 0 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 2 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 6 6 4 6 6 6 3 6 6 6 4 6 6 6 6 3 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 7 6 6 6 6 6 6 7 6 6 6 6 6 7 6 6 6 7 6 6
1 b a l S 2 0 0 0 0 0 0 0 0 0 0 m 0 m / 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . o r N 0 0 0 0 0 0 0 0 0 0 0 f K d a o L d a o 0 0 0 0 0 0 0 0 0 0 0 l 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . m 0 0 0 0 0 0 0 0 0 0 0 a e b d a o m 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 L / . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . N 5 d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 a e K D 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 L m 0 . 2 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 8 . 2 . 0 . 0 . 0 . 0 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . . 0 2 4 6 6 7 6 3 6 7 6 6 4 4 6 6 7 6 3 6 7 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 D m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B m 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 4 5 6 7 8 9 0 9 0 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 m 1 2 3 4 5 6 7 8 A B B B B B B B B B B B A B B B B B B B B B a A B A A A A A A A A r e 2 3 4 5 6 7 8 9 0 1 - - - - - - - - 8 9 0 0 i 1 2 3 4 5 6 7 8 r B 1 1 1 1 2 3 4 5 6 7 A A 1 C B B B B B B B B 9 i A A A A A A A A B B A A A C A A A A A A A
l o o M h s a v a r P , l a r a B j a k n a P , l o g n a D a r d n e r a N , n a j r a h a M a k i n a M , t i d n a P i n a M
Loa column E1 E2 E3 E4 O A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
water tankDL Of column seventh
0.00 0.00 84.67 84.67 72.53 72.53 0.00 0.00 72.53 72.53 84.67 84.67 0.00 84.67 84.67 72.53 72.53 0.00 0.00 72.53 72.53 84.67 84.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41.15 41.15 41.15 41.15
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
41.15 41.15 41.15 41.15
125.82 125.82 113.68 113.68 0.00 0.00 113.68 113.68 125.82 125.82 0.00 125.82 125.82 113.68 113.68 0.00 0.00 113.68 113.68 125.82 125.82
0.00 0.00 67.53 130.78 140.75 80.88 0.00 0.00 82.00 140.75 121.78 61.90 0.00 70.90 197.40 272.81 157.33 0.00 0.00 155.08 272.81 191.78 65.28 0.00 70.90 148.63 85.38 0.00 0.00 82.00 148.63 74.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n o umn ( Table 47 )
DL Of column sixth
41.15 41.15 41.15 41.15 0.00 41.15 41.15 41.15 41.15 0.00 41.15 41.15 41.15 41.15 0.00 0.00 41.15 41.15 41.15 41.15 0.00 41.15 41.15 41.15 0.00 0.00 41.15 41.15 41.15
234.49 297.74 295.58 235.71 0.00 0.00 236.83 295.58 288.74 228.87 0.00 237.87 364.37 427.64 312.16 0.00 0.00 309.91 427.64 358.74 232.24 0.00 112.05 189.78 126.53 0.00 0.00 123.15 189.78 115.42
15.71 62.02 179.02 213.46 236.45 220.70 84.35 84.35 220.70 236.45 213.46 135.43 78.05 260.28 370.29 396.60 389.26 156.37 156.37 389.26 396.60 370.29 197.71 92.09 197.71 232.62 215.45 84.35 84.35 215.45 232.62 197.71 69.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DL Of column fifth
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
56.86 37.99 103.17 118.30 454.67 186.00 552.35 223.88 573.18 272.38 497.56 241.40 125.49 122.75 125.49 148.33 498.68 266.98 573.18 266.98 543.35 242.64 405.44 113.07 119.20 163.43 539.29 257.94 775.80 325.63 865.39 411.75 742.57 450.69 197.52 261.26 197.52 227.42 740.32 350.44 865.39 326.28 770.18 342.14 471.10 154.56 133.24 87.48 350.91 193.80 463.55 237.42 383.13 256.18 125.49 137.39 125.49 103.55 379.75 186.25 463.55 162.09 354.28 140.38 111.08 49.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DL Of column
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
135.99 262.62 681.82 817.38 886.72 780.11 289.39 314.97 806.82 881.32 827.14 559.66 323.78 838.38 1142.58 1318.28 1234.41 499.93 466.09 1131.91 1232.81 1153.46 666.81 261.87 585.85 742.12 680.46 304.03 270.19 607.15 666.79 535.80 201.37
column E1 E2 E3 E4 O A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
fourth
38.34 119.97 189.06 228.38 278.23 246.35 125.31 150.90 271.93 271.93 246.24 114.87 165.69 263.24 334.63 422.40 459.54 265.96 231.21 357.49 333.33 347.54 157.26 89.28 198.30 242.22 260.08 139.19 104.45 188.35 164.19 142.18 50.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DL Of column third
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
215.48 423.74 912.03 1086.91 1206.10 1067.61 455.85 507.02 1119.90 1194.40 1114.53 715.67 530.62 1142.77 1518.36 1781.83 1735.10 807.03 738.45 1530.55 1607.29 1542.14 865.21 392.30 825.30 1025.49 981.69 484.38 415.79 836.65 872.13 719.13 292.56
38.68 121.64 192.12 225.68 276.88 251.30 127.88 153.46 276.88 276.88 249.84 116.67 167.94 268.54 336.43 425.85 468.39 270.65 235.01 364.54 340.38 352.94 159.96 91.08 202.80 247.02 263.98 140.99 105.35 190.45 166.29 143.98 50.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DL Of column second DL Of column first
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
295.31 586.52 1145.30 1353.74 1524.13 1360.06 624.88 701.63 1437.93 1512.43 1405.52 873.48 739.71 1452.45 1895.94 2248.82 2244.64 1118.83 1014.61 1936.23 1988.81 1936.23 1066.31 524.53 1069.24 1313.66 1286.83 666.52 562.29 1068.25 1079.57 904.25 384.65
39.03 123.30 195.18 237.38 289.93 256.25 130.44 156.02 281.83 281.83 253.44 118.47 170.20 273.84 352.63 443.70 477.24 275.35 238.81 371.59 347.43 358.34 162.66 92.88 207.30 251.82 267.88 142.79 106.25 192.55 168.39 145.78 51.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
375.49 39.38 750.97 124.97 1381.63 198.24 1632.26 241.88 1855.22 295.78 1657.46 261.20 796.47 133.00 898.80 158.59 1760.92 286.78 1835.42 286.78 1700.11 257.04 1033.10 120.27 951.05 172.45 1767.44 279.14 2289.72 361.63 2733.67 454.35 2763.03 486.09 1435.33 280.05 1294.56 242.61 2348.97 378.64 2377.39 354.48 2335.71 363.74 1270.12 165.36 658.56 94.68 1317.69 211.80 1606.63 256.62 1595.86 271.78 850.46 144.59 709.69 107.15 1301.95 194.65 1289.10 170.49 1091.18 147.58 477.64 52.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DL Of column
41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15 41.15
456.01 917.09 1621.02 1915.29 2192.15 1959.81 970.62 1098.53 2088.85 2163.35 1998.30 1194.51 1164.65 2087.73 2692.50 3229.17 3290.27 1756.53 1578.32 2768.76 2773.01 2740.60 1476.62 794.39 1570.64 1904.41 1908.79 1036.20 857.99 1537.75 1500.74 1279.90 571.53
column E1 E2 E3 E4 O A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
ground
DL Of column semibase 62.75 128.56 148.30 82.49 18.39 47.32 521.72 69.16 120.44 47.32 1084.84 210.95 204.09 47.32 1872.43 372.93 250.88 47.32 2213.49 441.77 290.53 47.32 2530.00 429.13 281.53 47.32 2288.66 352.55 144.43 47.32 1162.36 207.73 139.93 47.32 1285.78 207.73 266.53 47.32 2402.70 352.55 266.53 47.32 2477.20 361.55 223.88 47.32 2269.50 312.57 139.93 47.32 1381.75 207.73 143.54 47.32 1355.51 212.03 323.85 47.32 2458.90 440.98 370.63 47.32 3110.44 501.14 443.85 47.32 3720.33 558.80 475.59 47.32 3813.18 501.56 255.79 47.32 2059.63 309.38 225.70 47.32 1851.34 309.38 420.44 47.32 3236.51 501.56 421.86 47.32 3242.19 529.38 379.87 47.32 3167.79 471.77 196.88 47.32 1720.82 353.68 137.65 47.32 979.36 252.93 211.80 47.32 1829.75 342.61 251.37 47.32 2203.10 481.88 266.53 47.32 2222.64 473.52 144.59 47.32 1228.11 279.61 144.59 47.32 1049.90 279.61 282.28 47.32 1867.35 473.52 276.69 47.32 1824.75 492.34 282.63 47.32 1609.85 432.37 134.33 47.32 753.18 251.78 0.00 0.00 33.61 0.00 0.00 58.53 0.00 0.00 114.38 0.00 0.00 159.27 0.00 0.00 82.49 0.00 0.00 82.49 17.85 10.73 28.58 104.43 54.89 10.73 65.62 159.27 68.98 10.73 79.72 148.30 18.52 10.73 29.25 82.49
DL Of column 10.73 73.48 10.73 139.29 10.73 159.03 10.73 93.22 47.32 638.20 47.32 1343.11 47.32 2292.68 47.32 2702.58 47.32 3006.44 47.32 2688.53 47.32 1417.41 47.32 1540.83 47.32 2802.57 47.32 2886.07 47.32 2629.39 47.32 1636.80 47.32 1614.86 47.32 2947.20 47.32 3658.91 47.32 4326.45 47.32 4362.06 47.32 2416.33 47.32 2208.04 47.32 3785.39 47.32 3818.89 47.32 3686.87 47.32 2121.82 47.32 1279.60 47.32 2219.68 47.32 2732.29 47.32 2743.48 47.32 1555.03 47.32 1376.83 47.32 2388.19 47.32 2364.41 47.32 2089.54 47.32 1052.28 10.73 44.34 10.73 69.27 10.73 125.12 10.73 170.00 10.73 93.22 10.73 93.22 10.73 143.74 10.73 235.62 10.73 238.75 10.73 122.48
baseme DL Of column 52.01 10.73 136.23 136.21 10.73 286.23 155.95 10.73 325.72 90.14 10.73 194.10 19.92 47.32 705.44 136.53 47.32 1526.96 313.79 47.32 2653.79 363.82 47.32 3113.72 361.83 47.32 3415.59 305.33 47.32 3041.18 160.46 47.32 1625.19 169.46 47.32 1757.60 297.00 47.32 3146.89 315.83 47.32 3249.22 256.34 47.32 2933.05 160.46 47.32 1844.58 117.58 47.32 1779.76 359.15 47.32 3353.67 462.10 47.32 4168.32 473.07 47.32 4846.83 445.24 47.32 4854.62 253.07 47.32 2716.72 291.53 47.32 2546.89 501.30 47.32 4334.00 518.48 47.32 4384.69 376.99 47.32 4111.18 267.91 47.32 2437.04 262.57 47.32 1589.49 470.36 47.32 2737.35 482.49 47.32 3262.10 450.79 47.32 3241.58 213.47 47.32 1815.82 213.47 47.32 1637.61 395.74 47.32 2831.25 422.34 47.32 2834.06 317.13 47.32 2453.99 206.10 47.32 1305.70 140.83 10.73 195.91 255.46 10.73 335.47 276.43 10.73 412.28 227.61 10.73 408.34 71.76 10.73 175.72 71.76 10.73 175.72 93.69 10.73 248.17 187.49 10.73 433.85 178.66 10.73 428.14 104.58 10.73 237.79 Total 96249.55