Menu
Follow Us
Official Publication of:
search
(http://www.connectedplantconference.com/?utm_source=power&utm_medium=headerlogo) (http://www.connectedplantconference.com/?ut m_source=power&utm_medium=headerlogo)
Find all of your industry-related resources resources in one spot. Visit the POWER STORE (HTTP://STORE.POWERMAG.COM/ (HTTP://STORE.POWERMAG.COM/?LIMIT=24) ?LIMIT=24) now. now.
Home (http://www.powermag.com) / Coal (http://www.powermag.com/category/coal/) / Boosting Efficiency with a Sootblowing Optimizatio Optimization n System
Boosting Efficiency with a Sootblowing Optimization System 11/01/2014 11/01/2014 | Neel Parikh, Peter Rogge and Kenneth Luebbert PRINT MODE : ON
Save to myPOWER
T oo-frequent oo-frequent sootblowing can damage boiler components and place a big load on plant efficiency, efficiency, but not enough of it can be just as big a problem. A sootblowing optimization system can help you find the “sweet spot.”
With the increasing increasing demands placed on today’s coal-fired power plants worldwide, w orldwide, operators operators are continuously looking for the best options to increase their efficiency and maintain process optimization—all while watching the bottom line. A big part of this is complying with evertightening emissions regulations. In the U.S., for example, the Environmental Protection Protection Agency is in the process of developing and implementing implementing new standards requiring the power sector to cut carbon emissions by 30% by 2030, and the industry is looking to comply by the most efficient means possible. Fortunately, for coal-fired plants looking to achieve optimization without costly modifications, there are economical alternative technologies that can be considered. In coal-fired power plants, optimizing any process can be demanding. Operators Operators at the Kansas City Power & Light (KCP&L) Hawthorn Generating Station recently accepted the challenge of optimizing their sootblowing process. Located in Jackson County, Mo., and situated on the south bank of the Missouri River, Hawthorn Unit 5 is a 594-MW, wall-fired, water-cooled boiler that fires 100% Powder River Basin subbituminous coal (Figure 1).
(http://www.powermag.com/wp-
content/uploads/2014/11/PWR_110114_Emissions_Fig1.jpg) 1. Clean-up time. Kansas City Power & Light’s (KCP&L’s) Hawthorn Generating Station recently implemented a comprehensive improvement in its sootblowing processes. Courtesy: KCP&L
Beyond Ad-Hoc Sootblowing Today’s coal-fired plants are increasingly expected to operate at varying loads while simultaneously dealing with operational influences such as fuel-quality variations and air quality–control requirements. For the most part, these plants still utilize traditional sootblowing technology to remove soot deposits. However, these traditional patterns can present challenges to optimal plant operation. If there is insufficient sootblowing, the transfer of heat from flue gas to steam is impeded, resulting in decreased boiler efficiency. Large soot deposits can also restrict flue gas draft, requiring additional fan power and further reducing efficiency. On the other hand, too-frequent cleaning causes heating surface erosion and related unit outages, high steam and metal temperatures, as well as increased spray flows that will reduce efficiency on most units.
Typical sootblower equipment uses jets of steam, water, or air to remove deposits on heating surface tubes. Sootblowing increases power generation costs, both from expenses associated with the cleaning medium as well as the parasitic power required to drive compressors and pumps. The sootblower activation cycle is usually based on the operator’s experience and recommendations from the boiler manufacturer. This generally results in a simplistic solution based on continuous sootblowing at fixed intervals or individual operator judgment. Sootblowing at fixed intervals cleans the boiler and avoids hard-to-remove buildup, but it can also mean that sootblowing occurs when it isn’t truly necessary and it can cause undesirable process parameter fluctuations during load variations and other dynamic operating conditions. Sootblowing on individual operator judgment leads to inconsistent sootblowing patterns and requires continuous operator intervention on a 24-hour basis, which burdens operators and usually results in suboptimal sootblowing activities.
Optimization Challenges In 2000, as part of rebuilding work after an accident in 1999, Hawthorn Unit 5’s sootblowing system was reconstructed, and engineers encountered the traditional problems detailed above. Substantial engineering hours were spent developing sequences over the years that would accommodate the varying operating conditions. The system was functional but certainly not optimized. There were several specific operational challenges with the existing sequence-based sootblowing control system at Hawthorn. Catalyst Temperature Limitations. Economizer exit gas temperature (EEGT) is constrained by selective catalytic reduction (SCR) catalyst temperature limitations. Hawthorn had been forced to reduce load on several occasions when this EEGT constraint was encountered. EEGT is dependent on fuel type, combustion parameters, and cleanliness of the boiler surfaces. Specific sootblowing activity is known to help EEGT in certain conditions, but it needs to be carefully executed and relies on manual blower intervention when using sequence-based controls. Reheater. Managing reheater cleanliness is especially challenging. There is a delicate balance between a clean reheater, which causes excessively high reheat temperatures (and maximum attemperation spray flow), and a dirty reheater, which can cause plugging and excessive fan horsepower. Managing this balance with sequences and manual intervention at Hawthorn proved to be problematic. Platen Superheater Slagging. Platens are the most prone to slagging, and platen sootblowers are the most frequently blown sootblowers. Slag rate is heavily influenced by coal type and combustion parameters in the furnace. Sequence controls are unable to respond to these changes, leading to over-blowing during low-slag conditions and under-blowing during high-slag conditions. Over-Blowing at Low Load. Although Hawthorn was designed as a baseload unit and intended to cruise near full load, in 2012 there were more than 3,000 operating hours between 350 MW and 550 MW. At these reduced loads, sootblowing needs are significantly lower than at full load, but the sequence-based controls were programmed for full load—resulting in significant over-blowing during these periods. Carbon Emissions Reduction. Another wrinkle was that in 2007, the Sierra Club and KCP&L agreed on a set of initiatives to offset the utility’s carbon dioxide (CO2) and other emissions by adding wind power and taking steps to conserve energy on a large scale. KCP&L employed an engineering consultant to conduct a study of the best technologies to employ fleetwide to meet a portion of its CO 2 reduction goals via plant efficiency improvements. The first tier of proposed projects focused on improved performance monitoring and manual optimization. The second tier focused on advanced optimization using closed-loop products, such as combustion and sootblowing optimizers. After completing the first tier, KCP&L reviewed a fleetwide proposal for combustion and optimized sootblowing.
Finding the Best Solution Generally, operators want a sootblowing optimizer to clean the boiler using minimal blowing media and without damaging tubes or cleaning certain sections too heavily relative to others. They want to reduce the total number of blowing operations while maintaining other key process parameters. Sootblowing is also only a piece of the optimization process. It’s important to consider a comprehensive program that includes the ability to optimize other processes such as combustion. Taking a holistic approach ensures that all of the subparts work together to maximize the impact of each. For KCP&L, the key process parameters to optimize/minimize were:
■ Reheat and
superheat steam temperature variations and excursions
■ Reheat and
superheat attemperation spray flows
■ Flue gas
exit temperature
■ Load derates ■ Auxiliary power usage ■ Unplanned outages
Looking to improve those parameters, increase their process and boiler optimization at Hawthorn Unit 5, and meet their CO 2 emissions goal, KCP&L chose the Siemens SPPA-P3000 sootblowing optimization solution. An important differentiator for the team when choosing the SPPA-P3000 optimizer was its adaptive technology. KCP&L wanted a flexible platform that would support both combustion and sootblowing optimization and allow for future alterations. For sootblowing, individual blower activation was important. Sootblowing a group of sootblowers in a given section was known to upset boiler operation, and the team knew most plants had little operational margin for upsets when operating at full load. The SPPA-P3000 offers a customized solution that determines the need for sootblowing based on dynamic plant operating conditions, equipment availability, and plant operational drivers. The system then generates individual sootblower activation signals for propagation to the existing sootblower control system in a closed-loop manner at optimal times. With sootblowing optimization, new equipment and sensors are not required. The SPPA-P3000 interfaces with an existing control system, takes a current set of plant parameters that are available, and works with those. Unit-specific customizations can be viewed and modified by the end user—making it flexible, reliable, and extensible—which results in sustained benefits. The SPPA-P3000 is able to work alongside a foreign distributed control system. This technology allows plants to keep their current control system while gaining the benefits from the sootblowing optimizer (Figure 2).
PWR_110114_Emissions_Fig2
(http://www.powermag.com/wp-content/uploads/2014/11/PWR_110114_Emissions_Fig2.jpg)
2. Easy implementation. The P3000 sootblowing optimization system can be installed alongside an existing distributed control system. Courtesy: Alistair Tutton Photography
Putting Optimization to Work With the new system in place, KCP&L and Siemens engineers could attack individual plant-specific problems by fine-tuning sootblowing individually for each blower. To achieve successful results, however, engineers found a balanced approach was necessary. The optimizer was configured to make blowing decisions based primarily on EEGT. The measured results of previous blowing operations allowed the optimizer to automatically select the best blower to improve EEGT. Because of this, some areas were blown more frequently. There were also sensitive areas that needed extra controls to prevent temperature and spray flow excursions. The reheat section, in particular, was configured to prevent any consecutive or near-consecutive blowing operations. By the end of the initial tuning process, it appeared that the sootblowing optimizer was going to be a success. The next step was to release to plant operations staff for continuous operation. Despite a few hurdles, operators generally embraced the optimizer after it proved to reduce sootblowing-related problems. Operators had the ability to enable and disable the optimizer at any time, but its in-service rate during the first year was over 95%.
When the system was up and running, plant operators helped identify an opportunity for additional sootblowing optimization. During soft market conditions, Hawthorn was operating in evening hours at minimum load and significant daytime hours at low load. Generally, there are very few sootblowing needs at low load and not much time spent there, so it was Hawthorn’s previous practice to suspend automatic blowing and blow manually only as needed. The optimizer was initially set up to match this protocol. Operators saw the opportunity for the optimizer to handle this low-load blowing, and the optimizer was easily updated with logic that allowed for minimal blowing at low loads. After commissioning, another configuration change was related to process stability. There had always been certain occasions when multiple sootblowers (in different areas of the boiler) were blown nearly simultaneously. This was known to cause short-duration furnace draft pressure excursions and steam pressure decays. The furnace draft pressure caused a temporary reduction in airflow, which affected combustion, and the steam pressure decay caused megawatt setpoint control issues. After discussion with Siemens, the optimizer was configured to incorporate a short delay between any consecutive blower initiations.
Less Work, More Efficient Several positive operational results were realized at Hawthorn Unit 5: ■ EEGT/SCR inlet flue
gas temperatures were reduced by about 10F on average. This increased boiler efficiency and eliminated most load reductions due to catalyst temperature concerns. ■ Superheat and reheat steam
temperatures were maintained closer to their desired setpoint, and large excursions were significantly reduced,
increasing reliability. ■ Superheat attemperation spray flows were lower by about 20
klb/hr to 40 klb/hr on average, and reheat attemperation spray flows were lower
by about 15 klb/hr on average—a significant efficiency gain. ■ Generally, calculated cleanliness of various boiler surface areas is the same or better. ■ There are about 5% to 10% fewer sootblowing operations on the whole, reducing media usage and auxiliary power consumption. ■ Plant heat
rate has improved by an estimated 1%.
The payback of sootblowing optimization technology can typically be measured in months, with a strong likelihood of seeing immediate positive results. KCP&L’s implementation on Hawthorn 5 has increased boiler efficiency and reduced sootblowing-related load constraints. Blowing operations have been reduced while maintaining boiler cleanliness, so there is less damage to the tubes and less energy wasted on unnecessary sootblowing operations. Prior to this technology, the reheat spray valves would frequently run wide open, reducing cycle efficiency and allowing the reheater tube temperatures to increase—potentially resulting in long-term damage to the boiler surfaces. Looking at the future of the optimizer from a performance and life-cycle cost standpoint, KCP&L is pleased with the results so far. Currently, the performance engineer at KCP&L is spending less time on sootblowing, with improved results. The optimizer continues to be used for over 95% of the plant operating hours since it was commissioned in 2012. “When we’re talking about optimization, we look at it as the true future of all coal plants,” says Dominic Scardino, Hawthorn plant manager. “We’re not planning on building more coal units at this time, so it’s important to be proactive in maximizing the value of the existing units. We’re actively trying to implement operational excellence at our plants to maximize the value of these critical assets. This is good for our rate-payers and our community.” Following a successful pilot of the sootblowing optimizer at KCP&L’s Hawthorn Unit 5, the team is now working on placing optimizers at other plants in the fleet, including two units at LaCygne. ■ — Neel Parikh is a principal engineer with Siemens Energy Inc. Peter Rogge is a plant performance and combustion engineer, and Kenneth Luebbert is a supervising engineer, both with KCP&L.
PRINT MODE : ON
myPOWER
my dashboard (http://engage.powermag.com/content/home?
mypower) COAL
COAL
More Coal and Nuclear Can Replace Retired Generation, State Supreme Court Rules (http://www.powermag.com/more-coal-and-nuclearcan-replace-retired-generation-state-supreme-courtrules/?mypower)
Test Your Knowledge Archive (http://www.powermag.com/test-your-knowledgearchive/?mypower)
The Supreme Court for the state of New Mexico affirmed a final order by state…
Read More (http://www.powermag.com/test-your-knowledgearchive/?mypower)
Test Your Knowledge The quizzes provided here offer an easy way to test your knowledge…
Read More (http://www.powermag.com/more-coal-and-nuclear-canreplace-retired-generation-state-supreme-court-rules/?mypower) FEATURES
A Break in the Nuclear Waste Impasse? (http://www.powermag.com/a-break-in-the-nuclearwaste-impasse/?mypower) Spent nuclear fuel has continued to accumulate at sites across the nation, paralyzed by a…
Read More (http://www.powermag.com/a-break-in-the-nuclearwaste-impasse/?mypower)
0 Comments Recommend
⤤ Share
Login
Sort by Best
Start the discussion… LOG IN WITH
Learn More (http://www.powermag.com/partnercontent/red-and-green-to-grey-why-switch-my-hmi/? mypower)
1
Powermag 3
Red and green to grey -- Why switch my HMI? (http://www.powermag.com/partner-content/redand-green-to-grey-why-switch-my-hmi/?mypower)
OR SIGN UP WITH DISQUS
?
Name
✉ Subscribe d Add Disqus to your siteAdd DisqusAdd
Privacy
DecisionBriefs | CIS
Network Monitoring is Key for Public Power Utilities Network monitoring can provide key cy bersecurity insights into an organization’s netflow activity and rapidly detect unusual behavior. View More
Get POWER e-letters FREE! Sign up to receive weekly and monthly e-letters written by POWER editors. Subscribe now (http://www.powermag.com/e-lettersignup/)
More Jobs JOB FEED (http://jobs.powermag.com/jobseeker/search/results/) Housing Facilities Planner - University of Illinois, Housing Facilities - UrbanaChampaign, IL (https://jobs.powermag.com/job/housingfacilities-planner/39796089/2669/) Advanced Metering Infrastructure (AMI) Program Manager - American Municipal Power, Inc. - Columbus, OH (https://jobs.powermag.com/job/advancedmetering-infrastructure-ami-programmanager/39796035/2669/) Housing Facilities Planner - University of Illinois, Housing Facilities - UrbanaChampaign, IL (https://jobs.powermag.com/job/housingfacilities-planner/39795985/2669/)
Search Jobs
Post a Job (http://jobs.powermag.com/c/profile/index.cfm? site_id=2669&referrer=2669) Post a Resume (http://jobs.powermag.com/r/jobs/post/post.cfm? site_id=2669)
Most Read ()
Most Commented ()
Most Shared ()
Most Read GE Embarks on Plan to Keep Power Unit Competitive (http://www.powermag.com/geembarks-on-plan-to-keep-power-unitcompetitive/) NRG Sells Renewables Assets, 3.6 GW of Louisiana Coal and Gas Power Plants (http://www.powermag.com/nrg-sellsrenewables-assets-3-6-gw-of-louisianacoal-and-gas-power-plants/) AEP, American Power Giant, Sets Goal to Slash Carbon Emissions 80% by 2050 (http://www.powermag.com/aepamerican-power-giant-sets-goal-to-slashcarbon-emissions-80-by-2050/) FirstEnergy Suffers Steep Losses, Will Close Massive Coal Plant (http://www.powermag.com/firstenergysuffers-steep-losses-will-close-massivecoal-plant/) Vogtle Improves Safety and Productivity Following Westinghouse Bankruptcy (http://www.powermag.com/vogtleimproves-safety-and-productivityfollowing-westinghouse-bankruptcy/)
Connected Plant Conference …
Connected Plant Conference Highlights (http://www.powerma g.com/videos/connect ed-plant-conferencehighlights/) Partner Videos
Innogy Consulting- Using digital to build the workforce of the future (http://www.powermag.com/videos/innogyusing-digital-to-build-the-workforce-of-thefuture/) More from Innogy (/videos/?tag=innogy)
Successful Generator Stator Rewinds (http://www.powermag.com/videos/generator stator-rewind/)
Transforming Site Access through Meaningful Innovation (http://www.powermag.com/videos/transform site-access-through-meaningfulinnovation/)
Sulzer - The Service Partner to Keep Your Operations Running (http://www.powermag.com/videos/sulzerthe-service-partner-to-keep-youroperations-running/) More from Sulzer (/videos/?tag=sulzer) View All Videos » (/videos/)
Tweets by @POWERmagazine POWER magazine @POWERmagazine Test Your Knowledge: Boiler C hemical Cleaning Most engineers and operators know (o r should know) that boiler tubes containing dep osits create long-term reliability problems fo r the boiler. Long-term overheating of the metal wil l result from prolonge... ow.ly/pHYK50gLxwp Test Your Knowledge : Boil… Boiler tubes containing depo… powermag.com
6h
Embed
VIDEOS & INFOGRAPHICS
View on Twitter
Guy DeLeonardo - GE Power
GE CONTINUES TO IMPROVE GAS TURBINE EFFICIENCY Guy DeLeonardo, leader of gas turbine products for GE’s Gas Power Systems, provided POWER with an exclusive explanation of how the new nozzle design for the improved 9HA.02 gas turbine works. GE Power in early December 2017 said its 9HA.02 gas turbine reached a new milestone by exceeding 64% efficiency in combined cycle power plants. The company attributes at least part of the achievement to advances in additive manufacturing (3-D printing). For more, see “Market-Challenged, GE Continues to Improve Gas Turbine Efficiency.”
Visit our video archive (/power-videoarchive/)
March 7, 2018
Average U.S. coal mining productivity increases as production falls ›
Source: EIA, Annual Coal Report and Mine Safety and Health Administration
INDUSTRY NEWS INDUSTRY PRESS (http://www.powermag.com/pressreleases/abb-microgrid-technology-willintegrate-wind-power-in-remote-parts-ofalaska/)
(http://www.powermag.com/pressreleases/new-marley-md-everestcounterflow-cooling-towers-modulardesign-speeds-site-delivery-andinstallation-allowing-process-coolingplants-to-be-operational-and-productivesooner/)
(http://www.powermag.com/pressreleases/ge-announces-innovativeenergy-storage-platform-called-thereservoir/)
(http://www.powermag.com/pressreleases/mem-delivers-developmentexpertise-for-240-mw-of-wind-and-solarprojects-in-southeast-asia/)
(http://www.powermag.com/pressreleases/vaisala-bolsters-its-globalremote-sensing-support-network/)
UPCOMING EVENTS ELECTRIC POWER, PRESENTED BY POWER MAGAZINE – 20th ANNUAL, 03/19 - 03/19 (http://www.electricpowerexpo.com) Vietnam Renewable Energy Summit, 03/26 03/28 (http://www.neoventurecorp.com/events/vietnamrenewableenergy/) IEEE T&D Conference & Expo, 04/16 - 04/19 (http://www.ieeetd.org/IEEE18/public/enter.aspx) Gas Power Generation Engineering and Construction, 06/18 - 06/19 (http://www.petchem-update.com/gaspower-generation-engineering-andconstruction-usa/) World Nuclear Exhibition, 06/26 - 06/28 (https://www.world-nuclear-exhibition.com) Global Power & Energy Exhibition, 09/17 09/20 (http://gpexevent.com) 47TH TURBOMACHINERY AND 34TH PUMP SYMPOSIA, 09/18 - 09/20 (https://tps.tamu.edu)
Follow Us:
About (http://www.powermag.com/about-us) Contact (http://www.powermag.com/contact-us) Subscribe (http://www.powermag.com/subscribe-to-power-print-e-newsletters-and-job-alerts/) Advertise (http://www.powermag.com/mediakit/) Contribute (http://cdn.powermag.com/wp-content/uploads/2014/05/1_ContributorGuidelines_2014.pdf?_ga=1.248967175.1450376133.1440038585) More () © 2018 Access Intelligence, LLC – All Rights Reserved.