Reinforced Concrete II
Hashemite University
T h e H a s h e m i t e U n i ve ve r s i t y D e p a r t m e n t o f C i vi vi l E n g i n e e r i n g
L e ct c t u r e 6 – B iiaa x iiaa l B e n d i n g o f S h o r t Co C o lu lu m n s .
Dr. D r. Hazim Hazim Dwairi Dwairi
The The Hashemite Hashemite University University
Reinforced Concrete II
B i a x iiaa l lly y L o a d e d Co C o lu lu m n
Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
1
Reinforced Concrete II
Hashemite University
I n t e r a c tio n D ia g r a m
Uniaxial Bending about y-axis
Uniaxial Bending about x-axis
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Ap p r o x im a t i o n o f S e ct io n Th r o u gh I n t e r s e ct io n S u r fa c e
Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
2
Reinforced Concrete II
Hashemite University
Notation • Pu = factored axial load, positive in compression • x , the right. • ey = eccentricity measured parallel to yy--axis, axis, positive positive upward. • Mux = factored moment about x x--axis, positive positive when when causing compression in fibers in the +ve + ve y-direction = P u.ey • Muy = factored moment about yy -axis, positive when causing compression in fibers in the +ve + ve x-direction = P u.ex
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
An a l ys i s a n d D e s i gn • Method I: Strain Compatibility Method s s e mos near y eore ca y correc me o of solving biaxially biaxially--loadedloaded-column (see Macgregor example 1111-5) • Method II: Equivalent Eccentricity Method An approximate method. Limited to columns that are symmetrical about two axes with a ratio of side lengths lx / /lly between 0.5 and 2.0 (see Macgregor example 1111-6) Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
3
Reinforced Concrete II
Hashemite University
S tr a i n Co m p a t ib i lit y M e t h o d
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
E q u iva l e n t E cc e n t r ic it y M e t h o d • Replace the biaxial eccentricities e x & ey by an equivalent eccentricity e 0x if
e x l x
≥
y
l y
then design column for Pu and M 0y e0 x
for Pu Ag f c'
⎛ ⎜ ⎝
α = ⎜ 0.5 + Dr. Hazim Dwairi
Dr Hazim Dwairi
= e x +
α e y l x l y
≤ 0.4
for Pu Ag f c'
⎞ f y + 276 ⎟ ≥ 0.6 ' Ag f c ⎠⎟ 696 Pu
= Pu e0x
⎛ ⎜ ⎝
α = ⎜1.3 −
The Hashemite University
> 0.4
⎞ f y + 276 ⎟ ≥ 0.5 ' Ag f c ⎠⎟ 696 Pu
Reinforced Concrete II
4
Reinforced Concrete II
Hashemite University
An a l ys i s a n d D e s i gn • Method III: 45 o Slice through Interaction Surface see acgregor page Bresler Reciprocal Load Method • Method IV: Bresler ACI commentary sections 10.3.6 and 10.3.7 give the following equation, originally presented by Bresler for calculating the capacity under under biaxial bending.. bending 1 1 1 1
≅
Pu
φ Pnx
+
φ Pny
−
φ Pn0
V: Bresler Bresler Contour Contour Load Method • Method V: Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
B r e s llee r R e cip r o ccaa l Lo a d M e t h o d Br 1. Use Reciprocal 2
(1/ Pn,ex,ey) (1/P 2. The ordinate 1/P 1/ Pn on the surface S2 is approximated by n
plane S’2 (1/ (1/P Pn ex,ey) 3. Plane S2 is defined by points A,B, and C. Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
5
Reinforced Concrete II
Hashemite University
B r e s llee r R e cip r o ccaa l Lo a d M e t h o d Br P0 = Axial Load Strength under pure axial Mnx = Mny = 0 P0x = Axial Load Strength under uniaxial eccentricity, ey (corresponds to point B ) Mnx = Pn ey P0y = Axial Load Strength under uniaxial eccentricity, ex (corresponds to point A ) Mny = Pn ex Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
B r e s llee r Lo a d Co n t o u r M e t h o d Br • In this method, the surface S 3 is approximated values of Pn. These curves may be regarded as “load contours.” where Mnx and Mny are the nominal biaxial moment strengths in the direction of the xand y-axes, respectively. equivalent of the nominal uniaxial moment M n . The moment M n0x is the nominal uniaxial moment strength about the x-axis, and Mn0y is the nominal uniaxial moment strength about the y-axis. Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
6
Reinforced Concrete II
Hashemite University
B r e s llee r Lo a d Co n t o u r M e t h o d Br • The general expression for the contour curves can be approximated as: β
α M ⎞ ⎛ M nx ⎞ ⎛ ⎜⎜ ⎟⎟ + ⎜ ny ⎟ = 1.0 ⎝ M n 0 x ⎠ ⎜⎝ M n 0 y ⎠⎟
• The values of the exponents α and β are a , of reinforcement, the dimensions of the column, and the strength and elastic properties of the steel and concrete. Bresler indicates that it is reasonably accurate to assume that α = β Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
B r e s llee r Lo a d Co n t o u r M e t h o d Br • Bresler indicated that, typically, α varied from 1.15 . , . accurate for most square and rectangular sections having uniformly distributed reinforcement. A value of α = 1.0 will yield a safe design.
⎞ ⎛ M nx ⎞ ⎛ ⎜ M ny ⎟ = ⎝ M n 0 x ⎠ ⎝ M n 0 y ⎠
.
• Only applicable if: Pn Dr. Hazim Dwairi
Dr Hazim Dwairi
< 0.1 f c' Ag The Hashemite University
Reinforced Concrete II
7
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e 66mm
The section of a short tied and is reinforced with 6 φ32 bars as shown. Determine the allowable ultimate load on the section φPn if its acts at e = 200mm. and e = 300mm. Use fc’ = 35 MPa and fy = 420 MPa MPa..
234mm m m 0 0 6
234mm
400mm 66mm
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • Compute P0 load, pure axial load Ast = 6 × 804 = 4824mm Ag
2
= 400 × 600 = 240000mm 2
= 0.85 f c' ( Ag − Ast ) + Ast f y P = 0.85 × 35 × 240000 − 4824 + 4824 × 420 P0 = 9023kN Pn 0 = 0.8 × 9023 = 7218kN Pn 0 = 7218kN P0
Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
8
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • Compute Pnx, by starting with ey term and . e y
= 300mm < 2 / 3d = 2 / 3(534) = 356mm
OK!
• Compute the nominal load, Pnx and assume second compression steel does not contribute .
Pn
= C c + C s1 + C s 2 − T
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • Brake equilibrium equation into its components: c = . c c = .
= (1608)(420 − 0.85 × 35) = 627715 N 534 − c 534 − c = (1608)( )(600) = 964800( )
C s1 T s
c c • Com ute the moment about tension steel:
β c ⎞ = C c ⎛ ⎜ d − 1 ⎟ + C s1 (d − d ' ) 2 ⎠ ⎝ Pn (300 + 234) = 9639c(534 − 0.405c ) + (627715)(534 − 66) Pn .e '
Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
9
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • The resulting equation is:
= 9,639c − 7.311c 2 + 550,132
Pn
• Recall equilibrium equation: Pn
= 9,639c + 627715 − 1608 f s
• Set the two equation equal to one another and solve for f :
f s
= 0.0046c 2 + 390.4
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • Recall fs definition: f s
534 − c
= 600⎜ ⎝
c
⎟ ⎠
• Combine both equations:
⎛ 534 − c ⎞ ⎟ c ⎝ ⎠ 0.0046c 3 + 990.4c − 320400 = 0 0.0046c 2 + 390.4 = 600⎜
• Solve cubic equation by trial and error c = 323 mm Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
10
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • Check the assumption that f s2 = 0.0 323 − 300 = 600⎜ ⎟ = 42.72 MPa 323 ⎝ ⎠ C s 2 = 68.7 kN TOO SMALL f s 2
• Calculate Pnx n
=
−
,
Pnx Dr. Hazim Dwairi
.
2
,
= 2900kN The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • Compute Pny, by starting with ex term and .
e x
= 200mm < 2 / 3d = 2 / 3(334) = 223mm
OK!
• Compute the nominal load, Pny
Pn Dr. Hazim Dwairi
Dr Hazim Dwairi
= C c + C s1 − T The Hashemite University
Reinforced Concrete II
11
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • Brake equilibrium equation into its components: = . c . c c = .
= (2412)(420 − 0.85 × 35) = 941283 N 334 − c 334 − c = (2412)( )(600) = 1447200( )
C s1 T s
c c • Com ute the moment about tension steel:
β c ⎞ = C c ⎛ ⎜ d − 1 ⎟ + C s1 (d − d ' ) 2 ⎠ ⎝ Pn (200 + 134) = 14458.5c (334 − 0.405c ) + (941283)(334 − 66) Pn .e '
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • The resulting equation is: Pn
= 14,458.5c − 17.50c + 755,281
• Recall equilibrium equation: Pn
= 14,458.5c + 941,283 − 2,412 f s
• Set the two equation equal to one another and solve for f :
f s Dr. Hazim Dwairi
Dr Hazim Dwairi
= 0.0073c 2 + 77.12 The Hashemite University
Reinforced Concrete II
12
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • Recall fs definition: f s
334 − c
= 600⎜ ⎝
c
⎟ ⎠
• Combine both equations:
⎛ 334 − c ⎞ ⎟ ⎝ c ⎠ 0.0073c 3 + 677.12c − 200400 = 0 0.0073c 2 + 77.12 = 600⎜
• Solve cubic equation by trial and error c = 295 mm Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
Bia x ia l Co lu m n E xa m p l e • Calculate Pny
= 14,458.5c − 17.50c + 755,281 Pn = 14,458.5( 295) − 17.50( 295) 2 + 755,281 Pn
Pny
Dr. Hazim Dwairi
Dr Hazim Dwairi
= 3498kN
The Hashemite University
Reinforced Concrete II
13
Reinforced Concrete II
Hashemite University
Bia x ia l Co lu m n E xa m p l e • Calculate Nominal Biaxial Load Pn Pn
1 Pn
= =
1 2900
Pn Pu
+
Pnx
Pny
+
−
Pn 0
1 3498
−
1 7218
= 2032kN
= φ Pn = (0.65)(2032) = 1321kN
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
D e s i gn o f Bi a x ia l Co l u m n 1) Select trial section Ag ( trial )
≥
0.40( f
u
' c
+ ρ t f y )
; use ρ t = 0.0015 γlx
2) Compute 3) Compute φPnx, φPny, φPn0 ρ t = e x l x Dr. Hazim Dwairi
Dr Hazim Dwairi
=
As
ly
l x l y
M uy
e y
Pu l x
l y
=
M ux Pu l y The Hashemite University
lx Reinforced Concrete II
14
Reinforced Concrete II
Hashemite University
D e s i gn o f Bi a x ia l Co l u m n
Pn0
Pnx Pn
Dr. Hazim Dwairi
The Hashemite University
Reinforced Concrete II
D e s i gn o f Bi a x ia l Co l u m n 4) Solve for φPn
1
φ Pn
=
1
φ Pnx
+
1
φ Pny
−
1
φ Pn 0
5) If φPn < Pu then design is inadequate, increase either area of steel or column dimensions
Dr. Hazim Dwairi
Dr Hazim Dwairi
The Hashemite University
Reinforced Concrete II
15