SECTION: TITLE
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET ( i ) OF (v)
DC SYSTEM
DESIGN GUIDE FOR DC SYSTEM
TATA CONSULTING ENGINEERS 73/1, ST. MARK’S ROAD BANGALORE 560 001
FLOPPY NO FILE NAME
: TCE.M6-EL-FP-DOC-006 : M6-6000.DWG
REV.NO
R1
R2
R3
ISSUE
INITIALS
SIGN
INITIALS
SIGN
INITIALS
SIGN
PPD.BY
CPS
Sd/-
RRN
Sd/-
RRN
Sd/-
CKD.BY
DKB/DDRC
Sd/-
VS
Sd/-
VS
Sd/-
APP.BY
DKB
Sd/-
UAK
Sd/-
UAK
Sd/-
DATE
92-09-04
97-03-31
INITIALS
SIGN R3
99-03-02 FORM NO. 020R2
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: REV. STATUS
SHEET (ii ) OF (v)
DC SYSTEM
REVISION STATUS REV. NO
DATE
R3
99-03-02
DESCRIPTION
1.Design guides for Lead Acid battery-(M6-EL-BT-6000 R2),NiCad battery (M6-EL-BT-6000A R1) and battery Chargers(M6-EL-BC-6004 R2) have been combined to make a composite design guide on the ‘DC System’. 2. In addition the loads considered for emergency lighting , auxiliary relays and indicating lamps have been revised. 3.Section 4.0 providing recommendation for quantities of batteries in different installations has been revised.
ISSUE R3 FORM NO. 120 R1
SECTION: CONTENTS
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET (iii) OF (v)
DC SYSTEM
CONTENTS PART-A LEAD ACID BATTERY SL.NO. 1.0
TITLE SCOPE
SHEET NO. 2
2.0
TYPES OF LEAD ACID CELLS
2
3.0
SELECTION OF DC VOLTAGE LEVELS
3
4.0
QUANTITIES OF BATTERIES
5
5.0
AMPERE HOUR CAPACITY SIZING
6
6.0
INSTALLATION OF BATTERY
11
7.0
REFERENCES
13
APPENDIX-1 TYPICAL EMERGENCY LOADS
14
APPENDIX-2 RATING AND DESIGNATION
16
CAPACITIES AND DIMENSIONS OF TUBULAR CELLS
18
CAPACITIES AND FINAL CELL VOLTAGE OF HDP TUBULAR CELLS AT VARIOUS RATES OF DISCHARGE AT 27deg.C
19
CAPACITIES AT 27deg.C AT VARIOUS RATES OF DISCHARGE OF TYPE II HDP CELLS (TUBULAR)
20
PERFORMANCE CURVES TYPE-II HDP CELLS (TUBULAR)
21
CAPACITIES AND DIMENSIONS OF PLANTE CELLS
23
APPENDIX-3 BATTERY SIZING - SAMPLE CALCULATION
24
APPENDIX-4 TYPICAL BATTERY ROOM PLAN
31
SAMPLE WORK SHEET
32
ISSUE R3 FORM NO. 120 R1
SECTION: CONTENTS
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET (iv ) OF (v)
DC SYSTEM
CONTENTS PART-B NICAD BATTERY SL.NO. 1.0
TITLE SCOPE
2.0
DIFFERENT TYPES OF NICAD CELLS
35
3.0
PERFORMANCE CHARECTERISTICS
35
4.0
APPLICATIONS OF NICAD BATTERIES
38
5.0
MODE OF OPERATION
39
6.0
NUMBER OF CELLS
40
7.0
OTHER CONSIDERATIONS FOR SIZING NICAD BATTERIES
41
8.0
INSTALLATION
42
9.0
BATTERY SIZING CALCULATIONS
43
10.0
SPECIFYING THE BATTERY
44
11.0
REFERENCES
45
APPENDIX-1 CELL DESIGNATION
SHEET NO. 35
46
PREFERRED DIMENSIONS
47
DISCHARGE DATA FOR NICAD BATTERY (L,M & H TYPE CELLS)
48
TEMPERATURE CORRECTION FACTOR CURVES APPENDIX-2 SAMPLE CELL SIZING CALCULATION CELL SIZING WORK SHEET
64 67 69
APPENDIX-3 COMPARISION OF NICAD BATTERIES WITH LEAD ACID BATTERIES
71
SAMPLE WORK SHEET
72
ISSUE R3 FORM NO. 120 R1
SECTION: CONTENTS
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET (v ) OF (v)
DC SYSTEM
CONTENTS PART-C BATTERY CHARGER SL.NO.
TITLE
SHEET NO.
1.0
SCOPE
75
2.0
RECOMMENDED PRACTICE
75
3.0
DISCUSSION
79
4.0
ENCLOSURES i) FLOAT CUM BOOST CHARGER WITH 2 x 100% BATTERIES ii)
iii)
TCE.M2-EL-CW-S-2631 R0
FLOAT CUM BOOST CHARGER WITH 1 x 100% BATTERY
TCE.M2-EL-CW-S-2632 R0
FLOAT AND BOOST CHARGER WITH 1 x 100% BATTERY
TCE.M2-EL-CW-S-2633 R0
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: Facing Sheet SHEET
1
OF 79
PART – A : LEAD ACID BATTERY
PART-A LEAD ACID BATTERY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
2
OF 79
PART – A : LEAD ACID BATTERY
1.0
SCOPE This design guide outlines the recommendation for the determination of voltage level, capacity, quantities and installation of DC battery of lead acid storage type required for providing DC power supply to essential services in the plant when the normal power supply fails. This also gives consideration to the safe shut down of the plant as well as human safety.
1.1
This section (Part –A) of this guide pertains to lead acid batteries and also includes a few recommendations applicable to NiCad batteries also like selecting voltage levels. The sizing criteria for Nickel Cadmium batteries are dealt in Part – B of this design guide and Part – C of this guide covers details about Battery chargers .
2.0
VARIOUS TYPES OF LEAD ACID CELLS
2.1
The plante type cells are more rugged, need less maintenance and have a life expectancy of about 15-18 years, which is 5-7 years longer than that for tubular type. However, the plante type battery is costlier than the tubular type. All the manufacturers make tubular cells while very few manufacturers make plante cell.
2.2
The cells with tubular plate construction are smaller in size than the plante type for a given AH rating.
2.3
The following types of tubular cells are available in the market in addition to standard variety : a) b) c)
High Discharge Performance (HDP) Maintenance Free-Valve Regulated (MF-VR) Low-Maintenance (LM) type
2.4
The capacity of HDP cells under short duration discharge conditions are higher than that of normal tubular batteries and are comparable to that of Plante type batteries. Hence the capacity of battery required will be smaller than that with the standard performance cells for applications requiring high discharge currents for short duration. Hence these cells are preferred for power plant applications.
2.5
The MF-VR cells require minimal attention from operation / maintenance staff and are stated to need no topping up of distilled water and no regular equalising charges. This type is well suited in ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
3
OF 79
PART – A : LEAD ACID BATTERY
the plants where organised maintenance is infrequent. The low maintenance cells have grids made of low-antimony lead and require topping up only once in a year or so even at higher float voltages like 2.25 VpC. Hence this type also is well suited for plants where organised maintenance is infrequent or standalone substations in the distribution system or medium or small scale industries or where battery capacity is less than 300/500 AH. 2.6
The operating experience of the MF-VR and LM type cells for large capacities is limited and very few manufacturers make the same. Hence the sizing of these cells is not being discussed in the present guide and use of these cells may be decided on case to case basis.
2.7
The recommended float voltage for lead acid batteries is between 2.16 V and 2.25V/ cell. The recommended boost charging duration is 10 hours in case of smaller capacity batteries and 14 to 16 hours for larger capacities (1000 AH and above). The recommended maximum boost charger voltage is 2.75 V/cell. The recommended equalising charge voltage is 2.33 VpC.
3.0
SELECTION OF DC VOLTAGE LEVELS
3.1
The voltage level selection for the plant shall consider the following aspects :
3.2
a)
Quantum of power
b)
Individual load point power ratings, quantum of such load points and the geographic spread of the load points
c)
Standard voltages suitable for the equipment
For the same power requirement, the battery room size, and battery cost with higher voltage will be higher than those with lower voltage. However, the lower voltage requires higher current for the loads and hence to meet this current and to limit the voltage drop within limits cable sizes will be higher than those with higher voltage. Considering all the aspects following voltage levels are recommended.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
4
OF 79
PART – A : LEAD ACID BATTERY
3.2.1 Power Plant 3.2.1.1 Large power plants (Coal based) a)
For electrical power, control & protection requirements
-
b)
I&C system
Normally most of the I&C vendors' systems are suitable for +24V or 48V DC.The voltage level shall be fixed after I&C system requirement is finalised.
c)
Isolated auxiliary plants
-
30 V DC or 110 V DC like raw water pump house (dedicated battery if running lengths of cables from the main plant is comparatively much higher)
d)
Switchyards
-
220 V DC (If switchyard has got separate control building)
e)
Coal handling plant
-
110 V DC/220 V DC
3.2.1.2 Gas based/diesel/Hydro
-
110 V/220 V DC power plants including captive power plants
3.2.2
220 V DC
Industrial Plants a)
Large plants with many load points and distributed in large area
220 V DC
b)
Small plants with multiple load points and outdoor substations
110 V DC
c)
Small plants with very few switchboards / load points
30 V DC
d)
For process control
Generally 24/48V (As required by the I&C system design)
-
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
5
OF 79
PART – A : LEAD ACID BATTERY
4.0 4.1 4.1.1
4.1.2
QUANTITIES OF BATTERIES Power Plants a) In case of unit sizes upto 250 MW, each unit shall be provided with one battery and also, a separate battery shall be provided for the common services of these units and switchyard load. The unit and common services batteries shall be sized to cater one unit and station service loads so that one serves as a standby to the other. b)
For instrumentation and control system two 100% batteries for each unit shall be provided.
c)
If switchyard is having a separate control building one 100% battery shall be provided for the switchyard. In addition switchyard DCDB will be provided with a tie feeder from station DCDB (as a standby).
d)
One no. 100% rating battery shall be considered for coal handling plant DC power requirements.
For large power units (500 MW and above) and nuclear power plants, for each unit, the 220V DC unit loads shall be divided into two categories, e.g. a)
D.C. power loads comprising D.C. motor drives, solenoids, emergency lighting , etc.
b)
D.C. control loads comprising tripping and closing circuits, indicating lamps, protection and control panels, safetysupervisory systems etc.
Each category of loads will be catered to by a separate 220V battery and battery charger system. There will be three 50% rated batteries.Each battery is capable of catering to 50 % power loads of unit ( since the power load requirement of 500MW unit is very huge ) and entire control load of unit. Normally two of the three batteries will cater power loads and the third one will be catering control loads. For switchyard load there will be a seperate 100% battery feeding switchyard loads.It is recommended to provide a tie from DCDB of control loads to DCDB of switchyard. One number 100% battery shall be considered for coal handling plant DC power requirement.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
6
OF 79
PART – A : LEAD ACID BATTERY
4.1.3
Gas Power Plants The battery and charging equipment for each gas turbine is supplied by gas turbine supplier as part of the package.It is recommended to have each unit battrery rated to cater two gas turbine units.and a tie feeder is provided between one unit DCDB to another unit DCDB. The station and STG DC loads shall be catered by provision of 2X100% batteries . If switchyard and station building is seperate from the main plant control building a seperate 1X 100% dedicated battery shall be recommended. For catering I&C loads , it is recommended to have 2X 100% rated batteries for each unit.
4.1.4
Separate batteries with chargers are required to be provided for UPS for power plants. For details please refer to design guide M6-CL-AUG-715-6011 for UPS.
4.2
Industrial Plants and Small Power Plants Two 1X 100% rated batteries to cater for all the emergency power, control and protection requirements of the plant. Shall be provided. However, it shall be firmed up based on the quantum of the load points and their geographic location. A separate battery may be required for instrumentation, control and annunciation requirement for process purposes. The specific requirements in each case shall be ascertained. Separate batteries with chargers are required to be provided for UPS for Industrial and Small power plants. Possibility of using the same station battery for UPS as well may be explored on a case to case basis.
4.3
The recommendations on quantities are included int Part – C of this design guide in Tabular form.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
7
OF 79
PART – A : LEAD ACID BATTERY
5.0
AMPERE HOUR CAPACITY SIZING
5.1
The capacity of a cell or battery as defined in Indian standards 1651 & 1652 is expressed in Ah, at 27deg.C, attainable when the cell or battery is discharged at the 10-hour rate to an end voltage of 1.85 V per cell. The capacity is a function of number of positive plates per cell.
5.2
The battery capacity is influenced by the factors listed below. a) b) c) d) e)
5.2.1
Duty cycle End of the duty cycle voltage Temperature correction factor Compensation for ageing Design margin
Duty cycle a)
At the time of power supply failure, the battery is required to supply D.C. power requirements of essential circuits for safe shut down of the station, vital instrumentation, controls, communication system, DC annunciation and emergency lighting.
b)
In power plants and some industrial plants an emergency diesel generator is available, which will provide a.c. power to the battery charger after the period required to start and connect it to the emergency AC bus. However, the battery size shall be calculated on the assumption that the engine driven generator may fail to start or operate satisfactorily.
c)
The duration for which each type of D.C. load will have to be supplied by battery when the normal power supply fails is different. The same may be continuous or for short time duration or momentary. In a typical power plant the DC power, control & protection loads and their classification based on duration for which they need to be supplied are as follows. Time duration i)
Upto 1 minute
Loads (Amperes) *
Trip relay / Trip coil currents of circuit breakers.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
8
OF 79
PART – A : LEAD ACID BATTERY
*
Starting currents of all automatically started D.C. motors.
*
DC motor operated emergency steam stop valves.
*
Solenoid valves for isolation, safety relief, minimum recirculation etc.
*
Inrush currents of supervisory safety system for fuel, turbine and generator controls.
ii)
Upto one(1) hour
* * *
Emergency oil pump Jacking oil pump Steam generator control panels (including FSSS, Mill panels)
iii)
Upto two(2) hours
* * * * *
D.C. seal oil pump Scanner air fan D.C. emergency lighting P.A. system Annunciation (20%)
iv)
Upto 10 hours
*
* * •
d)
Indicating lamps / Semaphore indicators in switchgears/control panels Control room emergency lighting Annunciation (10%) Auxiliary relay ( which are likely to be energized during black out condition )
A table of loads indicating their power requirement and duration shall be prepared and a load curve for the battery shall be established. Appendix-1 indicates a table for typical emergency DC loads. Appendix-3 indicates a list of equipment and their typical D.C. loads for a 210 MW unit. It is recommended that project specific loads for DC motors, T.G. & S.G. vendor loads and inrush currents shall be obtained before proceeding with the sizing.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
9
OF 79
PART – A : LEAD ACID BATTERY
e)
5.2.2
I&C battery for power plant application shall be sized to cater the loads for half hour. The loads to be considered shall be the maximum load of I&C system at any operating condition viz starting, running and tripping/stopping.
End of duty cycle voltage a)
The allowable end of duty cycle voltage of a battery has a major role in determination of the capacity of the battery. This in turn is dependent on the limits of system voltages that can be withstood by D.C. equipment. The D.C. equipment are generally rated to operate between +10% and -15% of their rated value with certain exceptions like trip coils and trip relays which can accept lower voltages.
b)
Manufacturers recommend a float voltage ranging from 2.06V to 2.3 volts per cell, for different float voltage adopted, the required frequency of equalising charges are given below. -----------------------------------------------------------------------------------Float Voltage Per Cell Approximate periodicity of equalising charges ----------------------------------------------------------------------------------2.25 No equalising charges 2.20 12 months 2.15 3 months 2.10 1 month 2.06 2 weeks ---------------------------------------------------------------------------------
c)
It is desirable to keep the float voltages as high as the D.C. system can accept to minimise frequency of equalising charges. It is recommended to keep a float voltage of 2.2V per cell. However, this shall be confirmed from the battery supplier specific to the project. i)
ii)
Considering the above, the number cells of a battery are selected as : Max.allowable DC voltage - Regulation due to charger --------------------------------------------------------------Float voltage per cell The end of duty cycle cell voltage is determined ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
10
OF 79
PART – A : LEAD ACID BATTERY
by Min. allowable D.C. voltage + Cable drop ------------------------------------------------No. of cells d) Sl. No 1
2
Typical values for 220V DC system and 24V DC systems are given in the table below: System Max.allow Min.allowable No.of End of duty cycle voltage cells voltage able voltage 220V 242V 187V 108 1 min - 1.75V / cell 1,2 HRS & 10 hours 1.85V/cell 24V 30V* 21.5V* 13 1.8V/cell
* To be ascertained on project to project basis Note : For 110V & 30V plant DC systems, the details can be worked out in the same manner as for 220V system above.
5.2.3
e)
The cable drop to be considered in DC system shall be 2% from the charger/battery to Distribution board and 3% from board to any feeder in case of 220V DC system.
f)
In case of 24V DC system to keep the voltage drop within 5% limit, the cable sizes between DC board and I&C cabinets are very large and sometimes impractical to terminate. Hence for 24V system a total drop of 7.5% (2.5% between board and charger/battery and 5% between board and individual loads) is recommended.
Temperature correction factor The standard temperature for stating cell capacity is 27deg.C. If the lowest expected electrolyte temperature is below 27deg.C, a cell large enough to have the required capacity available at the lowest expected temperature shall be selected. The lowest electrolyte temperature shall be considered as 10o above minimum ambient temperature. If the lowest expected temperature is above 27deg.C, no correction factor shall be applied. The correction factor shall be calculated according to the formula: ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
11
OF 79
PART – A : LEAD ACID BATTERY
Correction factor = / K \ for the lowest | 1 + -------- (27-T) | expected electrolyte | 100 | temperature, Tdeg.C \ / The factor 'K' for plante cells is 0.9 and for tubular, 0.43. The minimum electrolyte temperature (T) shall be considered as 10deg.C higher than the minimum ambient air temperature at site. 5.2.4
Compensation for age ANSI/IEEE STG.450-1270 recommends that a battery be replaced when its actual capacity drops to 80% of its rated capacity. Hence a factor of 1.25 shall be considered for ageing.
5.2.5
Design margin When the D.C. loads are more or less final at the time of battery sizing for tender specification purposes and/or the battery sizing is being done for a similar plant already executed, no design margin is considered necessary. If the sizing is being done for a new type of project or with very little confirmed loads, a design margin of 10 to 15% shall be provided over the final capacity arrived. While sizing the battery for nuclear power plant applications, it shall be noted that the "margins" required by IEEE STD.323-1273. 6.3.15 & 6.3.3 are to be applied during "Qualification" and are not related to "design margin".
5.3
Calculation of Ampere Hour Capacity The plante and tubular high discharge performance cells have better capacity factors at the short duration discharges (1 hour, 2 hours etc.). For durations less than one hour, the above types of cells have higher capacity factor than the tubular standard discharge performance cell. Hence for power plant application and for applications where short duration loads are appreciable high discharge performance cell shall be used. The capacity of the battery shall then be determined in accordance with the procedure outlined in Appendix-3.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
12
OF 79
PART – A : LEAD ACID BATTERY
6.0
INSTALLATION
6.1
Battery cells shall be installed in a separate battery room, preferably near the D.C.load. The 24V batteries shall be in the same floor as I&C cabinets and as near as possible. Fig.4 included in design guide TCE.M6-EL-PJ-G-SG-6602 R1 (GA of Turbine Building Electrical Equipment & Space Organisation) indicates a typical battery Room Plan (Copy of Fig.4 enclosed as Appendix-4 for ready reference).
6.2
The flooring shall be provided with acid resistance tiles, a dished floor drain and drainage piping for collecting spilled acid. The spilled acid shall be diluted before discharging to the outside storm water drainage system.
6.3
Acid proof paint shall be provided on walls upto 2.3m height.
6.4
A wash basin shall be provided for emergency drenching of face and body.
6.5
The total capacity of exhaust fans (suitably distributed) should be minimum 1/10th of the total volume of the battery room per minute. The exhaust shall be directly outside the building. However, specific requirements shall be obtained from the battery manufacturer.
6.6
Separate cable(s) shall be provided for each polarity of the outgoing battery leads. If the cables are unarmoured they shall be taken in separate conduits and the conduits shall be PVC coated for protection against corrosion. Routing of any cables in cable-trays through battery room shall be avoided.
6.7
Adequate provision for storage of acid, distilled water, instruments, accessories, etc. should be provided in the battery room.
6.8
During float or boost charging of the lead acid battery hydrogen gas is generated. The volume of hydrogen gas generated depends on the amount of charging current. Also, the float current demand of a fully charged battery will double approximately for every 10deg.C rise above the base temperature of 27deg.C. Each fully charged cell produces 4.5 x 10-4 Cu.m (0.016 Cu.pt) hydrogen gas per hour per charging amperes in an ambient of 25deg.C to 27deg.C. Hydrogen explosive concentration is reached if the explosives mixture is three percent of the volume of room air.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
13
OF 79
PART – A : LEAD ACID BATTERY
6.9
In view of the presence of hydrogen gas, warning signs shall be installed outside and inside the room prohibiting smoking, sparks of flame.
6.10
Lighting fixtures shall be vapour-proof type with reflectors painted with anticorrosive epoxy-paint. Lighting switch should be outside the battery room.
7.0
REFERENCES
7.1
IS:1651-1991
:
Stationary cells and batteries,lead-acid type with Tubular positive plates Specification.
7.2
IS:1652-1991
:
Stationary cells and batteries, lead-acid type with Plante' positive plates Specification.
7.3
IEEE Std 485-1273 :
Recommended practice for sizing large lead acid storage batteries for Generating Stations and Sub-stations.
7.4
IS:8320-1272
:
General requirements and methods of tests for lead-acid storage batteries
7.5
IS:1885-1965
:
Electrotechnical vocabulary Secondary cells and batteries.
7.6
IEEE Std. 450-1270 :
Recommended practice for maintenance testing and replacement of large lead storage batteries for generating stations and sub-stations.
7.7
IEEE Std. 484-1271 :
Recommended practice for Installation design and installation of large lead storage batteries for generating stations and substations.
7.8
IEEE Std. 323-1273 :
IEEE Standard for Qualifying class-1E Equipment for Nuclear Power Generating Stations.
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX - 1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
14
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX-1 TYPICAL EMERGENCY LOADS
1
a) Bearing oil pump b) Bearing oil pump for BFPT c) Bearing oil pump for MBFP
STEAM TG 500MW 120MW 13kW 15kW 2x5.5kW --11kW ---
2
a) Seal oil pump b) Seal water pump for BFPS
13kW 60kW
10kW ---
11kW ---
3
Jacking oil pump
35kW
37KW
28KW
4
Scanner air fan
----
4.4KW
7.5KW
5
Inverter for instruments
5kW
10kW
6
Inverter for PA system
2kW
2kW
2kW
7
Carrier panels
<-----------
8
Auxiliary relay (each)
<-----------
150watt/ ---------> panel 3watts --------->
9
Auxiliary contactor (each)
<-----------
10watts
--------->
10
DC emergency lights
<-----------
Approx. 10% of normal lighting
--------->
11
UPS load (Incl. DAS, transmitters, controllers)
55kVA
45KVA
30kVA
210MW 13kW -----
.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX - 1 SHEET
15
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX-1 (Cont’d) TYPICAL EMERGENCY LOADS
500MW
STEAM TG 120MW 210MW
1
Continuous Loads Annunciator window (each)
2
Indicating lamp (each)
ß -----5-10W For filament type ----à ß ----1 W For cluster LED type type ---à
3
Auxiliary relays (each)
<--------------------3W--------------------------à
4
Auxiliary contactors (each)
<--------------------10W-----------------------à
5
Semaphore indicator (each)
<--------------------3W------------------------à
6
Control room emergency lighting
<---------------------1kW---------------------à
7
FSSS load
ß-------------------10kW---------------------à
ß---------------------5W -----------------à
NOTES: 1.
The data for 120MW and 210MW units are taken from the designed data for GIPCL and Bhatinda units. All DC motor loads, electromagnetic valve loads, FSSS loads, instrumentation & control, UPS loads, other turbine generator supervisory loads should be as far as possible ascertained from the manufacturers.
2.
When starting currents of DC motors are not available it may be assumed as 3.5 x FL current. If step resistor starting is provided the starting current may be assumed as 2.5 x FL current.
3.
Instrumentation and control loads and annunciation loads may be on a separate 48 V / 24V battery.
4.
For 210 MW unit loads also refer Appendix-3.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: APPENDIX-2 SHEET
DC SYSTEM
16
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX-2 CELL DATA RATING AND DESIGNATION 1
Ampere-Hour Rating The rating assigned to the cell shall be the capacity expressed in ampere-hours (after correction to 27deg.C) stated by the manufacturer to be obtainable when the cell is discharged at the 10hour rate (C10) to a final voltage of 1.85 voltage.
2.
Designation The cell shall be designated by symbols given below, arranged in the following sequence : Type of Positive Plate (See 2.1)
Ah Rating of Cell (See 2.2)
Type of Container (See 2.3)
Notes: 1.
The plates are not replaced in this type of construction therefore, this designation does not include the number of positive plates; and
2.
The designation of partially plated cells is not being standardized because partial plating of cells in this type of construction is not done.
2.1
The positive plates shall be designated by the letter 'T' for tubular and 'P' for plante.
2.2
The capacity rating shall be indicated by a number equal to the capacity in Ah.
2.3
The material of container shall be designated by any one of the following letters as the case may be : G - for glass; H - for hard-rubber; P - for plastics; ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
17
OF 79
PART – A : LEAD ACID BATTERY
W - for wood, lead-lined; or F - for fibre reinforced plastics (FRP) Example : T 400H HDP - designates a high discharge performance cell having tubular positive plates and a capacity of 400 Ah at 10 hour rate in hard-rubber container. SOURCE : IS 1651 & 1652 - 1991
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
18
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX-2 (Cont’d) CELL DATA Capacities and Dimensions of Tubular Cells ----------------------------------------------------------------------------------------------Capacity at Maximum Overall Dimensions 10-Hour Rate ---------------------------------------------------------------------Length Width Height (1) (2) (3) (4) Ah mm mm mm --------------------------------------------------------------------------------------------20 105 170 365 40 105 170 365 60 140 170 365 80 165 190 365 100 190 190 450 120 190 190 450 150 190 190 550 200 265 215 550 300 320 215 550 400 380 215 550 500 390 235 550 600 390 235 715 800 515 235 715 1000 515 300 750 1500 450 400 865 2000 500 450 865 2500 650 450 865 4000 900 480 1240 5000 900 480 1240 6000 900 500 1240 7000 1100 500 1240 8000 1100 500 1240 --------------------------------------------------------------------------------------------NOTES : 1.
The length and width dimensions given in this table may be interchanged.
2.
In the case of batteries with built-in cell connectors, the height of the interconnector shall be disregarded. ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
19
OF 79
PART – A : LEAD ACID BATTERY
3.
For capacities not covered in this table, the cell dimensions shall not exceed the dimensions of the cell of next higher size covered by this table. SOURCE : IS 1651 - 1991 APPENDIX - 2 (Cont’d) Standard Discharge Performance Cells (Tubular)
Capacities and Final Cell Voltage at various rates of discharge at 27deg.C ------------------------------------------------------------------------------------------Period of Capacity Ratio : Capacity Final Discharge Ah capacity (CT) Rating Factor Cell Hours (T) divided by the 10hr (KT) = (1/2) Voltage Rated capacity (C10) (Volts) (1) (2) (3) (4) --------------------------------------------------------------------------------------------1 0.500 2 1.75 2 0.633 3.16 1.78 3 0.717 4.18 1.80 4 0.782 5.12 1.81 5 0.833 6.00 1.82 6 0.879 6.83 1.83 7 0.917 7.63 1.83 8 0.950 8.42 1.84 9 0.979 9.19 1.84 10 1.0 10 1.85 -------------------------------------------------------------------------------------------Source : IS 1651-1991
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: APPENDIX-2 SHEET
DC SYSTEM
20
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX - 2 (Cont’d) CELL DATA Capacities at 27deg.C at various rates of discharge Type II High Discharge Performance (HDP) Cells (Tubular) ------------------------------------------------------------------------------------------------Period of Capacity Ratio : Capacity Final Remarks Discharge Ah capacity (CT) Rating Factor Cell Hours (T) divided by the 10hr (KT) = (1/2) Voltage Rated capacity (C10) (Volts) (1) (2) (3) (4) ------------------------------------------------------------------------------------------------1/60 (1 min) 0.022 0.76 1.75 } M/s Chloride 1/2 (30 min) 0.368 1.36 1.75 } India 1
0.60 0.488 0.392
1.67 2.05 2.55
1.75 1.80 } M/s Chloride 1.85 } India
2
0.738 0.714 0.597
2.71 2.80 3.35
1.78 1.80 } M/s Chloride 1.85 } India
3
0.811
3.77
1.80
4
0.862
4.13
1.81
5
0.90
5.55
1.82
6
0.93
6.45
1.83
7
0.951
7.361 1.83
8
0.971
8.239 1.84
9
0.988
9.109 1.84
10 1.0 10.0 1.85 ---------------------------------------------------------------------------------------------Source : IS 1651-1991 & Capacity Rating curves from M/s Chloride India. NOTE : The above data is applicable for plante cells also. The capacities for Type-I HDP cells are same as above for discharge rates of 3 hour, 5 hour and 10 hours (ISS does not specify capacities at other discharge rates for Type-I cells).
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
21
OF 79
PART – A : LEAD ACID BATTERY
TYPICAL CELL PERFORMANCE CURVES (SH-1)
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
22
OF 79
PART – A : LEAD ACID BATTERY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET
23
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX - 2 (Cont’d) CELL DATA Capacities and Dimensions: Plante Cells ----------------------------------------------------------------------------------Capacity at Maximum Overall Dimensions 10-Hour Rate ---------------------------------------------------------Length Width Height (1) (2) (3) (4) Ah mm mm mm ----------------------------------------------------------------------------------20 130 140 225 40 205 140 225 60 205 140 225 80 175 235 370 100 175 235 370 120 175 235 370 150 175 235 370 200 210 235 370 300 290 235 370 400 365 235 370 500 375 310 625 600 375 310 625 800 375 335 625 1000 385 375 635 1500 520 390 635 2000 650 390 635 2500 785 405 130 4000 1160 405 130 5000 1350 515 650 ----------------------------------------------------------------------------------NOTES : 1.
The length and width dimensions given in this table may be interchanged.
2.
For capacities not covered in this table, the cell dimensions shall not exceed the dimensions of the cell of next higher size covered by this table. Source : IS 1652-1995
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-3 SHEET
24
OF 79
PART – A : LEAD ACID BATTERY
BATTERY DUTY CYCLE DIAGRAM L 4 = 9 0 0 A
L6 = 84 A
L5 = 186 A
L3 = 46A
L2 = 30A L1 = 13 A SECTION-1
60
1
120
600
SECTION-2 SECTION-3 SECTION - 4 DURATION ( MIN )
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-3
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
25
OF 79
PART – A : LEAD ACID BATTERY
APPENDIX - 3 SAMPLE CALCULATION FOR SIZING OF A THERMAL POWER STATION 220V UNIT BATTERY (210 MW)
LOAD TABULATION Sl. no
Load description
Qty.
Rating Watts
1 min
1 hr.
I.
UNIT LOADS
1.
Tripping loads ( Prot. Relay + Trip Relay + CB Trip coil )
a.
6.6 kV CBs
34
300
10,200
b.
415 V CBs
7
250
1,750
2.
Turb. Generator
a.
E.O.P.
1
13,000
32,500*
13,000
b.
DC seal oil pump
1
11,000
27,500*
-
c.
Jacking oil pump
1
28,000
70,000*
28,000
d.
Others
2,000
2,000
3
Steam generator
10,000
-
2hrs.
10 hrs.
11,000
10,000
DC CSP (includes FSSS, mill panel) 4.
Main steam stop valve
2
4,000
10,000
5.
Scanner air fan
1
7,500
18,750 *
-
7,500
6.
Emergency lighting
-
-
5000
7.
Indicating lamps
400
1#
8.
Annunciation windows
10
5
9.
Auxiliary relays
LS
LS
1000 400
100
50 600 (200 nos @ 3W each )
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-3
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
26
OF 79
PART – A : LEAD ACID BATTERY
II
STATION LOADS
1.
Tripping loads 6.6 kV CBs
70
300
21,000
415 V CBs
12
250
3,000
2.
Indicating lamps
500
1 #
3.
PA system
LS
LS
4.
Auxiliary relays
LS
LS
500 2,000 300 (100 nos @3W each )
TOTAL AMPS
894
232
116
13
* #
Starting currents of motor ( 2.5 times the rated current ) Cluster LED type indicating lamps
2.0
SIZING CALCULATION
2.1
Battery duty cycle diagram in Sh.24 is constructed as detailed below from the above DC emergency load list for a typical 210 MW unit.
2.2
Analysis of load data in Sh.25&26 indicates the distribution of loads with duration as under : Load
Sl. no
Duration
1
0 – 10 hrs.
2850 W
13A
2
1 min. - 2 hrs.
(11000+7500) =18500W
84A
3
0 – 2 hrs.
(5000-1000) + (100- 50) + 2000 = 6500W
30A
4
1 min. - 1 hr.
(28000+13000) = 41000 W
186A
5
0 – 1 hr.
(51000 -(13000+28000)) =10000 W
46A
6
0 - 1 min.
196680 W
894A
In Watts
in Amperes
NOTE: These loads are arrived at taking care to see that loads are not ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-3 SHEET
27
OF 79
PART – A : LEAD ACID BATTERY
repeated under the same time duration , for example in (0-1hr) load duration the load would be (51000-(13000+28000))=10000, (13000+28000) being subtracted from the total load as the same is already considered under (1minute -1hr )load. 2.3
The cell sizing data that will be useful in filling out the cell sizing work sheet is derived from the duty cycle diagram and tabulated as below : Cell sizing data --------------------------------------------------------------------------------period Loads Total Amperes Duration (min) ---------------------------------------------------------------------------------
2.4
1. L1+L2+L3+L4 983 1 2. L1+L2+L3+L5+L6 359 59 3. L1+L2+L6 127 60 4. L1 13 480 -------------------------------------------------------------------------------Capacity rating factors (KT) are derived from the table for HDP, Type II tubular lead acid cells enclosed in Appendix-2. (These can be read from the curves enclosed in Appendix-2 also).
2.5
Sh.29 &30 shows the way in which the cell sizing work sheet and the KT rating factor would be used to size the battery for the duty cycle indicated.
2.6
Design margin Considered as 1.0 since the loads for 210 MW thermal power plant are well established.
2.7
Temperature correction factor : Minimum ambient temperature for the installation is 7deg.C. Hence, the lowest expected electrolyte temperature to be considered (in accordance with cl.5.2.3) is 17deg.C (=7deg.C+10deg.C) Temperature correction factor to be applied 0.43 (27-17) = 1 + ----100 = 1.043
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-3 SHEET
28
OF 79
PART – A : LEAD ACID BATTERY
NOTES : 1.
Tubular cell type HDP-II is considered in the above sample calculation as the duty requires the cells to deliver high discharge in short duration (1 hr). However, the same procedure as above can be followed for sizing the battery using HDP Type-I or standard discharge performance cells. Data on cell capacities at varying periods of discharge for standard discharge performance type cells & for Type-I HDP cells is enclosed in Appendix-2.
2.
If plante cells are being sized, the data on capacities for Type II HDP cells enclosed in Appendix-2 can be used sizing procedure also remains same except the value of 'K' in formula for temperature correction factor (Refer cl.5.2.3).
3.
Typical DC emergency loads for a 210 MW unit are considered for the sample calculation above. In case the load cycle diagram for a particular installation happens to be more complex than the one in the sample calculation above, IEEE 485-1273 may be referred for further guidance.
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-3
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
29
OF 79
PART – A : LEAD ACID BATTERY
Project :
Date :
Lowest Expected Electrolyte Temp : 17oC
(1)
Period
(2)
Load (Ampe res)
Minimum 1 Min.:1.75V DC Cell Voltage : Others: 1.85V DC
Cell Chloride Mfg. : India
Cell Tubular Type : HDP, Type-II Sized By : RRN
(3)
(4)
(5)
(6)
(7)
Change in Load (Amperes)
Duration of Period (minutes)
Time to End of Section (minutes)
Capacity at T Min. rate K Factor (KT)
Required Section Size or (3)x(6B) = Rated AH
Pos Values
Neg.Value
LOAD DATA : A1= 983 A, M1= 1 Min; A2 = 359 A, A3= 127 A, M3= 60 Min; A4 = 13 A, A5= A, M5= Min; A6 = A, M6 = Min.
M2 = 59 Min. M4 = 480 Min.
Section - 1: First Period only - If A2 is greater than A1, go to Section-2 1 A1=983 A1-0=983 M1=1 T=M1=1 Sec.-1
Section - 2: First Two Periods only - If A3 is greater than A2, go to Section-3 1 A1=983 A1-0=983 M1=1 T=M1+M2=60 2 A2=359 A2-A1= -624 M2=59 T=M2=59 Sec.-2
Section - 3: First Three Periods only - If A4 is greater than A3, go to Section-4 1 A1=983 A1-0=983 M1=1 T=M1+...+M3=120 2 A2=359 A2-A1= -624 M2=59 T=M2+M3=119 3 A3=127 A3-A2= -232 M3=60 T=M3=60 Sec.-3
Section - 4: First Four Periods only - If A5 is greater than A4 go to Section-5 1 A1=983 A1-0=983 M1=1 T=M1+...+M4=600 2 A2=359 A2-A1= -624 M2=59 T=M2+...+M4=599 3 A3=127 A3-A2= -232 M3=60 T=M3+M4=540 4 A4=13 A4-A3= -134 M4=480 T=M4=480 Sec.-4
Section - 5: First Five Periods only - If A6 is greater than A4 go to Section-6 1 A1= A1-0= M1= T=M1+...+M5= 2 A2= A2-A1= M2= T=M2+...+M5= 3 A3= A3-A2= M3= T=M3+...+M5= 4 A4= A4-A3= M4= T=M4+M5= 5 A5= A5-A4= M5= T=M5= Sec.-5
0.76 Total
747 747
2.55 2.55 Sub Total Total
2507
3.35 3.35 2.55 Sub Total Total
3293
10 10 9.1 8.2 Sub Total Total
9830
2507 916
3293 611
9830 544
Sub Total Total
*** ***
1591 1591 ***
2090 592 2682 ***
6240 2111 935 9286 ***
***
Section - 6: IF LOAD CYCLE HAS MORE THAN 5 LOAD PERIODS, CONTINUE FURTHER IN SIMILAR MANNER.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-3 SHEET
30
OF 79
PART – A : LEAD ACID BATTERY
Section - 7: Random Equipment Load only (if needed) R AR= AR-0= MR=
T=M+R=
Section - 8: Maximum Section Size = 916
Section - 9: Random Section Size = -
Section - 10: Temperature Correction Factor = 1.043
Section - 11: Design margin = 1.0
Section - 12: Aging Factor = 1.25
Section - 13: Uncorrected size = (8) + (9)= 916+ - = 916
Section - 14: All capacity required = (13) x (10) x (11) x (12) = 916 x 1.043 x 1.0 x 1.25 = 1193 AH
Section - 15: When AH capacity required is larger than the nearest standard cell, the next larger size cell is required.
Section - 16: Therefore AH capacity of the cell = 1200 AH
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-4 SHEET
31
OF 79
PART – A : LEAD ACID BATTERY
TYPICAL BATTERY ROOM LAYOUT
FOR DETAILS REFER HARDCOPY
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-4
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
32
OF 79
PART – A : LEAD ACID BATTERY
Project :
Date :
Lowest Expected Minimum Electrolyte Temp : oC Cell Voltage :
Cell
Cell
Mfg. :
Type :
Sized By :
(1)
(2)
(3)
(4)
(5)
(6)
Period
Load (Amperes)
Change in Load (Amperes)
Duration of Period (minutes)
Time to End of Section (minutes)
Capacity at T Min. rate K Factor (KT)
(7) Required Section Size or (3)x(6B) = Rated AH
Pos Values
Neg.Value
LOAD DATA : A1= A3= A5=
A, A, A,
M1= M3= M5=
Min; Min; Min;
A2 = A4 = A6 =
A, A, A,
M2 = M4 = M6 =
Min. Min. Min.
Section - 1: First Period only - If A2 is greater than A1, go to Section-2 1 A1= A1-0= M1= T=M1= Sec.-1
Section - 2: First Two Periods only - If A3 is greater than A2, go to Section-3 1 A1= A1-0= M1= T=M1+M2= 2 A2= A2-A1= M2= T=M2= Sec.-2
Section - 3: First Three Periods only - If A4 is greater than A3, go to Section-4 1 A1= A1-0= M1= T=M1+...+M3= 2 A2= A2-A1= M2= T=M2+M3= 3 A3= A3A2= M3= T=M3= Sec.-3
Section - 4: First Four Periods only - If A5 is greater than A4 go to Section-5 1 A1= A1-0= M1= T=M1+...+M4= 2 A2= A2-A1= M2= T=M2+...+M4= 3 A3= A3-A2= M3= T=M3+M4= 4 A4= A4-A3= M4= T=M4= Sec.-4
Total
*** ***
Sub Total Total
***
Sub Total Total
***
Sub Total Total
***
Sub Total Total
***
Section - 5: First Five Periods only - If A6 is greater than A4 go to Section-6 1 A1= A1-0= M1= T=M1+...+M5= 2 3 4 5
A2= A3= A4= A5=
A2-A1= A3-A2= A4-A3= A5-A4=
M2= M3= M4= M5=
T=M2+...+M5= T=M3+...+M5= T=M4+M5= T=M5= Sec.-5
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-4 SHEET
33
OF 79
PART – A : LEAD ACID BATTERY
Section - 6: IF LOAD CYCLE HAS MORE THAN 5 LOAD PERIODS, CONTINUE FURTHER IN SIMILAR MANNER.
Section - 7: Random Equipment Load only (if needed) R AR= AR-0= MR=
T=M+R=
Section - 8: Maximum Section Size =
Section - 9: Random Section Size =
Section - 10: Temperature Correction Factor =
Section - 11: Design margin =
Section - 12: Aging Factor =
Section - 13: Uncorrected size = (8) + (9)=
Section - 14: All capacity required = (13) x (10) x (11) x (12)
Section - 15: When AH capacity required is larger than the nearest standard cell, the next larger size cell is required.
Section - 16: Therefore AH capacity of the cell = AH
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: FACING SHEET SHEET
34
OF 79
PART – B : NICAD BATTERY
PART-B NICAD BATTERY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
35
OF 79
PART – B : NICAD BATTERY
1.0
SCOPE This section outlines the Ni-Cd alkaline station storage battery performance characteristics, usage and sizing.
2.0
DIFFERENT TYPES OF Ni-Cd BATTERIES
2.1
The most common electrode design for the nickel-cadmium batteries is the pocket plate type designated by 'P' as per IS:10918-1274. The active constituents are cadmium in the negative plates and nickel in the positive plates. The active material in each electrode is enclosed in metal pockets of finely perforated steel strips. Each plate is insulated from the next by thin plastic separators. The electrolyte is a solution of potassium hydroxide in de-ionised water. The resulting electrochemical reaction produces a nominal discharge voltage of 1.2 volts per cell. The electrolyte takes no part in these reactions and acts only as an ion conductor. The other electrode designs are sintered plate(s) and tubular plate(T).
2.2
The cells are further classified as H,M,L and X type based on the discharge performance of individual designs. The plate type, and the number of such plates employed in a cell indicate the cell type and determine its discharge characteristics.
2.3
The cell container is usually translucent polypropelene plastic.Polypropelene has high strength, it is corrosion free and not electrically conductive. Cells can also be supplied in stainless steel containers, if required, to with-stand conditions of high shock and vibrations. Steel cells are mounted on wooden racks.
3.0
PERFORMANCE CHARACTERISTICS
3.1
The rated capacity C5 of any cell type is defined as available amperehours (Ah) at 5 hours discharge rate at 27°C, to an end voltage of 1.0V/Cell after charging for 8 hours with 0.2C5 A. (In the U.S. the Ni-Cd capacity is based on 8 hours discharge). The standard ambient temp. specified by IS:10918 is 27°C, whereas the Ni-Cd batteries available in Indian market are rated at 20°C +5°C ambient. The same is adopted in the design guide for the present.
3.2
Normal voltage is 1.2V/Cell ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
36
OF 79
PART – B : NICAD BATTERY
3.3
Open circuit voltage is 1.28 V/Cell.
3.4
The measure of performance is not the rated Ah capacity but the battery cell construction. H type cells have thin plates (more plate area per amount of active material) giving excellent high rate performance. M and L types have medium thickness plates and thick plates respectively. For example H-type cell at 15 minutes discharge can deliver about twice the discharge current compared to an L-type cell of equal rated capacity.
3.5
The published discharge data for nickel-cadmium cells are most commonly available in tabular form, in which the current, available from each cell type, is stated for a given discharge time and end of discharge voltage. For intermediate times and voltages, it is necessary to interpolate between the known values (IEEE 11151992).
3.6
There are three manufacturers in India, AMCO (in collaboration with SAFT,France), SABNIFE POWER SYSTEMS LTD., Hyderabad in collaboration with M/s Sabnife, Sweden and Punjab Power Packs Ltd. in collaboration with M/s Alcad Ltd. UK. The available tabulated discharge performance data from M/s SABNIFE on different types of cells for varying end cell voltages, is enclosed at Appendix-1.(The cell designations of Sabnife make cells confirm to IS.S10918-1274). More details if required, may be obtained from the manufacturers.
3.7
EFFECT OF TEMPERATURE Battery optimum performance is based on cell electrolyte temperature maintained at 20°-25°C. For temperatures below 20°C a loss of about 0.5% of rated capacity per °C is expected for Ni-Cd battery. No increase in capacity is to be considered above 20°C. The derating curves enclosed in Appendix-1 can be used for arriving at the derating factors appropriate to the lowest expected electrolyte temperature for the individual installation. Example: Cell Type Cell end Volt Discharge time Min. Ambient temperature Lowest expected electrolyte temp.
: KPM100P : 1.1 V : 30 mins : 0°C : 0+10°C ( Ref. Clause 5.2.3 ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
37
OF 79
PART – B : NICAD BATTERY
of Part – A of this design guide ) : 0.925
Temp. derating factor (From enclosed curves) Available current at 10°C = 101A
(Data from performance table at 20-25°C) x 0.925 = 93.425A
3.7.1
Life of the battery is shortened when temperatures are above the reference temperature of 25°C. Generally it has been estimated that Ni-Cd battery loses approximately 15% of its life for every 8°-10°C electrolyte temperature above 25°C.
3.8
CHARGING REQUIREMENTS To fully charge, a cell will require an Ah input, from the charger to the battery, of 160% of the capacity. For example a 100Ah cell requires 160 Ah to fully charge it from a fully discharged state. If the charger can supply 20A then the time for charging will be 160/20 i.e. 8 hours.
3.9
Cell Data : Type-L
Type-M
Type-H
a) D C internal resistance, ohms
0.20x(1/C5) 0.15x(1/C5) 0.06x(1/C5)
b) Maximum Short circuit current, A
10xC5
15xC5
25xC5
3.10
The electrolyte specific gravity (S.G.) is not an indication of the state of charge in Ni-Cd cells since it does not change appreciably during charge or discharge. The acceptable limits to be maintained in normal service (of the electrolyte S.G) are 1.17-1.19 at a reference temperature of 20° at the specified level line of the cell.
3.11
Indian Standard 10918-1274 specifies the general requirements and methods of test for Ni-Cd batteries. This is derived from IEC Pub 6231978.
4.0
APPLICATIONS OF Ni-Cd BATTERIES Some typical applications of different battery (Cell) types (X,H,M,L) are mentioned herewith for their optimum usage. Applications of very high rates of discharge batteries (Type X) are to deliver very large currents (>7C5) for very short durations (1 Sec-15 min).
4.1
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
38
OF 79
PART – B : NICAD BATTERY
4.2
Applications of High rate (H type) batteries are to deliver high currents (>3.5C5 A) for very short discharge times of 20 mins and less. Typical uses are - Engine starting (gen-sets, fire pumps, locomotives, vehicles) - Some applications of Uninterruptible power supply (UPS). - Switch closing, electromagnets. In such cases the capacity of the battery is not so important as the ability to deliver high current.
4.3
Medium rate (M type) applications are load duties having discharge times between 3 hours to 30 min, for examples: - UPS for A.C process control - Electric train control - Off-shore applications - Combined discharge cycle like switchgear operation, standby pumps and emergency lighting.(Typically medium rate of discharge usage is between 0.5C5A and 3.5C5A).
4.4
Low rate (L type) applications are of power requirements for an extended discharge time of 3 hours and longer. Example are:- Telecommunications and signalling - Scada/Computer system - General standby applications for power stations/ industrial projects, i.e. load cycle duty of switch trippings, emergency oil pumps, emergency lighting, protection/controls annunciation, communication. (Typically low rate of discharge usage is between less than 0.5C5A to C5A).
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
39
OF 79
PART – B : NICAD BATTERY
4.5
For applications where adverse conditions of usage prevail, (like extremes of temperature, on regular routine maintenance and nonavailability of a separate battery room), Ni-Cd batteries are most suitable for use because of their following special features. a)
Tolerance of extremes of temperature. The manufacturers claim the range from -50°C to +55°C. It is of advantage to use Ni-Cd battery for cold temperature performance.
b)
Maintenance requirements are very low for pocket plate Ni-Cd batteries when operated as mentioned in clause 5.0 within the range of 15°C to 25°C.
c)
Overcharging even for a prolonged period is tolerated. Also, these batteries can be left in discharged/partially discharged conditions without damage.
d)
Gases given off by Ni-Cd batteries are not corrosive and normal building materials/room can be used and therefore the battery can be kept in the electrical/mechanical equipment room, if it becomes necessary to do so. However, adequate ventilation is necessary as stated under installation (Clause 7.0).
5.0
MODE OF OPERATION
5.1
In the standby battery usage for continuous parallel operation with rectifier, with occasional battery discharge, the recommended charging values are as follows: Charging in service: a)
Float charge
:
1.4 - 1.42 V/Cell H,M,L
b)
High rate (Boost) charge
:
1.53-1.67 V/Cell for H type 1.54-1.69 V/Cell for M type 1.55-1.7 V/Cell for L type
c)
Trickle charging current of : fully charged cell
1.5 mA per Ah
d)
Boost charging standard
0.4C5A for 8 hours,H,M,L
:
ISSUE R3 FORM NO. 120 R1
SECTION: WRITEUP
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
40
OF 79
PART – B : NICAD BATTERY
e)
Fast recharging
:
0.5C5A for 2.5 Hours followed by 0.2C5A for 2.5 hours.
f)
With float charging at 1.4-1.42 V/Cell and where the load temporarily exceeds the charger rating, it is beneficial to apply an equalising charge every 6 to 12 months (depending on use) to keep the battery up to a fully charged condition.
5.2
For use of batteries without any boost charge, the float charge voltage is 1.47-1.5V pC for L type, 1.46-1.49V pC for M type and 1.45-1.47V pC for H type.
6.0
NUMBER OF CELLS For the usual standard system voltages, the recommended number of cells is as follows:
6.1 Nominal System Voltage 24 No. of Cells For continuous operation with 19 float charging
48
110
220
37-38
84-86
168-172
6.2
The number of cells to be used for a specific project should be checked considering the nominal system voltage, voltage tolerances, charging voltage (i.e. mode of operation) and type of load (i.e. discharge currents / time for given cell end - voltage). Based on these factors the number of cells may vary from the number given above.
6.3
Recommendations on selection of voltage level and quantities of batteries cells are provided at Clause 3.0 & 4.0 of Part – A of this design guide.
6.4
Example : a)
Nominal system voltage 110V
b)
All equipments are specified to operate satisfactorily at 80-110% of rated DC voltage, except the DC motors which work satisfactorily upto 85% of rated voltage.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
41
OF 79
PART – B : NICAD BATTERY
c)
No. of cells 'n' Allowable max. voltage for DC system = 110% of 110V = 121 volts Float voltage to be selected = 1.4 to 1.42 V/Cell With float voltage of 1.42 V pC and system voltage limit of 121 volts.
d)
No. of cells required of 110V rated DC system 121 = ---- = 85.2 or 85 cells. 1.42 Cell end voltage : Allowable min. voltage for DC system 85% of 110V at equipment terminals = 93.5 volts. Considering a max. voltage drop of 5% in the system, Allowable min. voltage at battery terminals = 90% of 110V = 99 volts. 99 Thus permissible cell end voltage =---- = 1.16 volts 85
7.0
OTHER CONSIDERATIONS FOR SIZING Ni-Cd BATTERIES In addition to the above factors, factors like design margin, ageing factor also influence the final size of the battery selected.
7.1
Design Margin : This is to allow for unforeseen additions to the dc systems and less than optimum operating conditions of the battery due to improper maintenance, recent discharge or ambient temperatures lower than anticipated. This shall be decided on case to case basis. The cell size calculations for a specific application will seldom match a commercially available cell exactly and it is normal procedure to select the next higher size cell. The additional capacity obtained thus, can be considered part of the design margin. While sizing battery for ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
42
OF 79
PART – B : NICAD BATTERY
Nuclear power plant applications, it may be noted that the "margins" required by IEEE Std. 323-1273, 6.3.1.5 and 6.3.3 are to be applied during "qualification" and are not related to "design margin". 7.2
Ageing Factor : Capacity decreases gradually during the life of the battery, with no sudden capacity loss being encountered. Since the rate of capacity loss is dependent upon such factors as operating temperature, electrolyte sp.gravity, and depth and frequency of discharge, an ageing factor should be chosen based on required service life. The choice of ageing factor is, therefore, essentially an economic consideration. IEEE recommends a factor of 1.11 for batteries used for UPS wherein the discharges are for a short time and 1.43 for applications involving continuous high temperatures and/or frequent deep discharges.
7.3
State of Charge Factor : When the batteries are subjected to discharge and then charge, they get charged gradually. The state of charge at any point depends on the initial state of charge, the recharge voltage, the charge current limit and the charging voltage. The state of charge factor can be determined by consulting the charging curves provided by Battery manufacturers and shall be considered if the selected float charge voltage is 1.47-1.50V (Ref. item 5.2 above).
7.4
Float Charge Factor : When batteries are expected to remain in continuous float charge for prolonged periods without boost charge, they exhibit a dip in performance depending on end voltage and duration of discharge. The cells float charged at 1.4-1.42V pC (Ref item 5.1 of above) are not expected to lose much charge if the schedule for equalising charges is adhered to. Hence no provision is made for float charge factor in cell sizing calculations.
8.0
INSTALLATION
8.1
Ni-Cd battery can be installed in a separate room or in the same room as the electrical/mechanical equipment since the gases given off are not corrosive. However, a separate room specially for large size ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
43
OF 79
PART – B : NICAD BATTERY
batteries would be preferable. The typical battery room layout is enclosed in Part – A of this design guide for information. 8.2
Though Ni-Cd batteries are tolerant of extremes of temperature, it is preferable to operate within the range of 15°C to 25°C to optimise efficiency. Direct sunlight and heat on cells should be avoided.
8.3
Hydrogen and oxygen evolved from a battery during charge can form an explosive mixture. For this reason adequate ventilation is to be provided to keep the hydrogen content to a low value. The maximum gas evolution occurs at end of charge or on overcharge. Since hydrogen is lighter than air, openings/grilles to take away the gas mixture should be located as high as possible in the room. Following formula is given by the Manufacturers for a mean hydrogen concentration of 1%. Air changes required per hour
=
1.47xFinal charge(amps)xNo. of cells Room air Vol.in Cu.ft
If forced ventilation is found necessary to obtain the required air changes per hour, the air should be drawn from a high location in the room. When calculating air changes in confined spaces it will be necessary to deduct the volume of other apparatus and the battery. 9.0
BATTERY SIZING CALCULATIONS The method to be used for sizing Ni-Cd battery is same as explained in PART–A of this DC System Design guide .
9.1
The duty cycle profile (the load currents and the durations for which the battery is to be sized) shall be prepared.
9.2
The factor KT related to the specified end cell voltage and load duration is readily available for lead-acid cells. But for Ni-Cd cells, this shall be computed from the discharge data tables (enclosed at Appendix-1). Wherever the required data is not available, it can be interpolated/extrapolated from the known values (Refer item 3.5 above). Select the cell type most suited to the duty profile required (Ref. item 4.0).
9.3
Add 10°°C to the min. ambient temperature specified to obtain expected minimum electrolyte temperature and read the temperature ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
44
OF 79
PART – B : NICAD BATTERY
correction factors corresponding to the cell type selected and specific discharge duration, for the above temp, from the relevant curves enclosed in Appendix-1. 9.4
Divide the load currents specified by the temperature correction factors corresponding to the specified duration to obtain the load currents corrected to 25°C.
9.5
Select the cell size, looking at the discharge tables, that can meet the short duration load current requirements.
9.6
Crated Calculate the capacity rating factors ( KT = ------- ; t = duration ) It for different load currents & corresponding durations as above, from the discharge tables.
9.7
Follow the worksheet (Blank form enclosed in Appendix-3) and determine the cell size. Apply ageing factor, design margin etc. (in accordance with item 7.0 above) to arrive at final cell size.
9.8
Sample cell sizing calculation is included in Appendix-2.
10.0
SPECIFYING THE BATTERY It is observed that the discharge data available from different manufacturers for a given type and AH rating of cells differs considerably at durations other than nominal duration (5 hours). Hence it is recommended that while specifying the battery, the following may be noted.
10.1
Load profile, required end cell voltage, factors to be considered and other data shall be provided to the bidder and the bidder is allowed to offer cell size other than the one indicated (determined by TCE through cell sizing calculations as above) providing the supporting calculations.
10.2
Bidder may be allowed to offer cell type other than the one indicated, if the offered cell type & size meets the load cycle duty requirements satisfactorily (bidder to establish the same through supporting calculations). This is being recommended as many a time the load profile consists of mixed type of loads (ie. of different durations) and thus more than one type (but with different ratings) can meet the ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
45
OF 79
PART – B : NICAD BATTERY
requirements satisfactorily. 11.0
REFERENCES
11.1
TCE.M6-EL-718-6000 'Station battery- Lead Acid' Design Guide.
11.2
IS:10918-1274 Specification for vented type Ni-Cd batteries.
11.3
Technical Data from M/s SABNIFE.
11.4
IEEE 1115-1992 IEEE Recommended Practice for sizing NickelCadmium Batteries for Stationary applications.
11.5
IEEE : 1106-1277 IEEE Recommended practice for maintenance, testing and replacement of Nickel-Cadmium storage batteries for Generating Stations and Substations.
11.6
IEEE : 323-1273 IEEE Standard for qualifying class IE equipment for Nuclear Power Generating Stations.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-1 SHEET
46
OF 79
PART – B : NICAD BATTERY
APPENDIX-1 CELL DESIGNATION Vented nickel cadmium prismatic rechargeable cells shall be designated by the letter 'K' followed by a second letter referring to the positive plates: T for cells with tubular plates, P for cells with pocket plates, and S for cells with sintered plates. The second letter shall be followed by a third letter: L for low rate of discharge (below 0.5 C5), M for medium rate of discharge (between 0.5 C5 and 3.5 C5), H for high rate of discharge (between 3.5 C5 and 7 C5), and X for very high rate of discharge (above 7 C5). The group of three letters shall then be followed by a group of figures indicative of the capacity of the cell in ampere-hours, for example KSH 185. Cells in cases of plastic material shall be marked with the letter "p" after the figures, for example KSH 185 P. Source : IS:10918-1274
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-1 SHEET
47
OF 79
PART – B : NICAD BATTERY
APPENDIX-1 (contd) PREFERRED DIMENSIONS TABLE :
THESE DIMENSIONS ARE VALID FOR OPEN NICKEL CADMIUM PRISMATIC CELLS IN STEEL CONTAINERS AND PLASTIC CONTAINERS
STEEL CONTAINERS PLASTIC CONTAINERS Max. Width. (b)in Max. Height (h) in Max. Width. (b) Max. Height (h) in mm mm mm in mm 81 291 62 178 105 350 81 241 131 409 87 273 148 409 123 273 157 409 138 273 188 409 147 285 --165 406 --173 375 --195 406 NOTE 1 --
The dimensions, given in Table 1, represent preferred values.
NOTE 2 --
The widths relate to the overall width dimension of the cell excluding the thickness of the lug flanges.
NOTE 3 --
The maximum height relates to the total height dimensions over terminals or closed cell valves. The data for heights given in table are maximum values, no lower limits being stated.
NOTE 4 --
It is not possible to make proposals for length dimensions (d) at this stage.
NOTE 5 --
The dimensions shown in Table 1 are not coupled to particular cell capacities. The apply to all kinds of open prismatic nickelcadmium cells, such as L,M,H, and X types.
Source : IS:10918-1274
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
48
SHEET
DC SYSTEM
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors.
AMPERES ON DISCHARGE TO 1.00 VOLT PER CELL
CELL TYPE
CAP (Ah)
SECONDS
MINUTES
HOURS
1
10
60
5
10
30
60
90
2
3
5
8
10
KPL5P KPL11P KPL19P KPL29P KPL39P KPL49P KPL60P KPL70P KPL75P KPL90P KPL100P KPL130P KPL155P KPL190 KPL220P KPL250P KPL280P KPL320P KPL350P KPL380P KPL410P KPL440P KPL480P KPL500P
5 11 19 29 39 49 60 70 75 90 100 130 155 190 220 250 280 320 350 380 410 440 480 500
11.8 25.9 44.7 68.3 93.6 120 138 157 177 204 231 283 337 389 440 486 531 579 628 675 723 750 805 916
9.7 21.4 37 56.5 76.8 96.6 115 131 150 171 193 236 282 327 373 413 453 496 539 581 624 654 713 808
8 17.7 30.5 46.6 62.9 80 96.5 111 118 137 156 192 213 258 308 346 377 409 442 473 505 570 615 676
6.6 14.5 25 38.1 51.3 67.7 81.8 90.5 94.9 108 123 150 182 230 244 274 300 326 351 378 406 483 525 566
5.9 12.9 22.3 34 45.5 59.8 72.5 79.4 82.8 93.1 105 131 158 186 214 241 265 290 315 339 363 443 482 514
4.6 10 17 26.7 35.9 45.1 55.2 61.7 65 74.8 85.7 108 124 147 172 197 222 246 271 296 321 368 400 428
3.5 7.7 13.3 20.3 27.3 34.3 42 48.3 51.7 61. 71.4 89.6 107 129 150 171 193 215 236 258 279 297 323 352
2.8 6.2 10.6 16.2 21.8 27.4 33.6 38.6 42 49.5 57.1 71.7 87.9 106 124 141 159 177 194 212 230 243 254 278
2.3 5 8.6 13.1 17.6 22.1 27 31.1 34.2 40.1 45.9 57.6 70.7 85.1 99.5 113 128 142 156 171 185 199 216 227
1.6 3.5 6.1 9.3 12.5 15.7 19.2 22.1 24.3 28.5 32.6 41 50.2 60.5 70.7 80.6 90.9 101 111 121 132 141 154 162
1 2.2 3.8 5.8 7.8 9.8 12 14 15 18 20 26 31 38 44 50 56 64 70 76 82 88 95 100
0.6 1.4 2.4 3.7 4.9 6.2 7.6 8.7 9.5 11.2 12.9 15.1 19.8 23.8 27.8 31.8 35.8 39.8 43.7 47.8 51.8 55.4 61.2 64.4
0.5 1.1 1.9 2.9 3.9 4.9 6.1 7 7.7 9 10.3 12.9 15.9 19.1 22.3 25.3 28.7 31.9 35 38.3 41.5 45.5 49.4 52
KPL580P KPL655P KPL730P KPL810P KPL885P KPL960P KPL1100P KPL1210P KPL1320P KPL1440P
580 655 730 810 885 960 1100 1210 1320 1440
1030 1150 1270 1390 1500 1610 1900 2080 2250 2410
914 1020 1120 1230 1330 1420 1690 1840 1992 2140
768 860 955 1050 1140 1230 1430 1570 1710 1840
644 722 801 880 966 1050 1200 1320 1450 1570
596 678 743 808 886 964 1090 1210 1330 1440
490 552 612 672 736 800 912 1010 1100 1190
400 448 494 540 594 646 729 810 891 969
319 360 402 446 487 528 605 666 726 792
261 295 329 365 398 432 495 545 594 648
186 210 234 259 283 307 352 387 422 461
116 131 146 162 177 192 220 242 254 288
74 83.5 93.1 103 113 122 140 154 168 184
59.7 67.5 75.2 83.4 91.2 98.9 113 125 136 148
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
49
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors.
AMPERES ON DISCHARGE TO 1.02 VOLT PER CELL
CELL TYPE
CAP (Ah)
1
10
60
5
10
30
60
90
2
3
5
8
10
KPL5P KPL11P KPL19P KPL29P KPL39P KPL49P KPL60P KPL70P KPL75P KPL90P KPL100P KPL130P KPL155P KPL190 KPL220P KPL250P KPL280P KPL320P KPL350P KPL380P KPL410P KPL440P KPL480P KPL500P
5 11 19 29 39 49 60 70 75 90 100 130 155 190 220 250 280 320 350 380 410 440 480 500
11.1 24.4 42.2 64.3 88 113 130 147 167 192 218 267 318 367 415 453 500 546 592 637 683 706 757 875
9.2 20.2 34.9 53.3 72.2 91 108 124 140 160 181 222 264 307 350 388 425 463 502 540 578 628 674 762
7.5 16.6 28.7 43.8 58.9 75.2 90.5 104 112 128 145 182 215 251 288 322 351 383 414 445 476 537 579 638
6.2 13.5 23.4 35.7 48.4 63.5 76.7 84.8 88.9 101 115 139 169 198 227 255 279 304 331 354 380 452 491 532
5.5 12.1 20.9 32 43.4 56.5 68.1 74.4 77.5 86.9 98.6 122 147 173 199 224 247 272 298 321 344 416 452 482
4.4 9.7 16.6 25.7 34.8 43.9 53.5 59.4 62.4 71.3 81.8 102 119 142 165 188 211 235 259 282 306 351 381 406
3.4 7.5 13 19.8 26.7 33.5 41 47.2 49.9 58.7 68.1 85.5 103 123 144 164 185 206 227 247 268 286 311 337
2.7 6 10.4 15.9 21.4 26.9 32.9 37.8 41 48.2 55.5 69.6 85.4 103 120 137 154 172 189 206 224 237 258 271
2.2 7.9 8.4 12.9 17.3 21.8 26.6 30.6 33.7 39.5 45.3 56.8 69.7 83.9 98.1 112 126 140 154 168 182 196 213 223
1.6 3.5 6 9.2 12.4 15.5 19 21.9 24.1 28.2 32.3 40.6 49.7 59.9 70 79.8 90 100 110 120 130 139 151 159
1 2.2 3.8 5.7 7.7 9.7 11.9 13.9 14.8 17.8 19.8 25.7 30.7 37.6 43.6 49.5 55.4 63.4 69.3 75.2 81.2 87.1 95 99
.6 1.4 2.4 3.6 4.9 6.1 7.5 8.6 9.5 11.1 12.8 16 19.7 23.7 27.7 31.6 35.5 39.5 43.4 47.5 51.5 56.5 60.9 64.1
0.50 1.1 1.9 2.9 3.9 4.9 6 6.9 7.6 8.9 10.2 12.9 15.8 19 22.2 25.3 28.5 31.7 34.8 38.1 41.3 45.3 49.2 51.8
KPL580P KPL655P KPL730P KPL810P KPL885P KPL960P KPL1100P KPL1210P KPL1320P KPL1440P
580 655 730 810 885 960 1100 1210 1320 1440
979 1086 1198 1310 1412 1514 1792 1960 2118 2266
862 964 1060 1162 1254 1344 1594 1740 1883 2020
724 810 899 988 1073 1158 1346 1478 1610 1735
603 675 750 826 904 982 1124 1236 1354 1470
554 627 693 760 832 904 1030 1138 1246 1352
462 519 581 642 702 759 872 963 1050 1134
382 426 474 522 576 621 709 784 859 932
311 349 391 435 474 513 591 649 708 771
257 290 323 359 391 424 487 536 584 638
183 206 230 255 279 302 347 381 416 454
115 130 145 160 175 190 218 240 261 285
73.5 83.1 92.5 103 112 122 140 154 163 183
59.5 67.1 74.8 83 90.7 98.4 113 124 135 143
SECONDS
MINUTES
HOURS
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
50
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors.
AMPERES ON DISCHARGE TO 1.02 VOLT PER CELL
CELL TYPE
CAP (Ah)
1
10
60
5
10
30
60
90
2
3
5
8
10
KPL5P KPL11P KPL19P KPL29P KPL39P KPL49P KPL60P KPL70P KPL75P KPL90P KPL100P KPL130P KPL155P KPL190 KPL220P KPL250P KPL280P KPL320P KPL350P KPL380P KPL410P KPL440P KPL480P KPL500P
5 11 19 29 39 49 60 70 75 90 100 130 155 190 220 250 280 320 350 380 410 440 480 500
11.1 24.4 42.2 64.3 88 113 130 147 167 192 218 267 318 367 415 453 500 546 592 637 683 706 757 875
9.2 20.2 34.9 53.3 72.2 91 108 124 140 160 181 222 264 307 350 388 425 463 502 540 578 628 674 762
7.5 16.6 28.7 43.8 58.9 75.2 90.5 104 112 128 145 182 215 251 288 322 351 383 414 445 476 537 579 638
6.2 13.5 23.4 35.7 48.4 63.5 76.7 84.8 88.9 101 115 139 169 198 227 255 279 304 331 354 380 452 491 532
5.5 12.1 20.9 32 43.4 56.5 68.1 74.4 77.5 86.9 98.6 122 147 173 199 224 247 272 298 321 344 416 452 482
4.4 9.7 16.6 25.7 34.8 43.9 53.5 59.4 62.4 71.3 81.8 102 119 142 165 188 211 235 259 282 306 351 381 406
3.4 7.5 13 19.8 26.7 33.5 41 47.2 49.9 58.7 68.1 85.5 103 123 144 164 185 206 227 247 268 286 311 337
2.7 6 10.4 15.9 21.4 26.9 32.9 37.8 41 48.2 55.5 69.6 85.4 103 120 137 154 172 189 206 224 237 258 271
2.2 7.9 8.4 12.9 17.3 21.8 26.6 30.6 33.7 39.5 45.3 56.8 69.7 83.9 98.1 112 126 140 154 168 182 196 213 223
1.6 3.5 6 9.2 12.4 15.5 19 21.9 24.1 28.2 32.3 40.6 49.7 59.9 70 79.8 90 100 110 120 130 139 151 159
1 2.2 3.8 5.7 7.7 9.7 11.9 13.9 14.8 17.8 19.8 25.7 30.7 37.6 43.6 49.5 55.4 63.4 69.3 75.2 81.2 87.1 95 99
.6 1.4 2.4 3.6 4.9 6.1 7.5 8.6 9.5 11.1 12.8 16 19.7 23.7 27.7 31.6 35.5 39.5 43.4 47.5 51.5 56.5 60.9 64.1
0.50 1.1 1.9 2.9 3.9 4.9 6 6.9 7.6 8.9 10.2 12.9 15.8 19 22.2 25.3 28.5 31.7 34.8 38.1 41.3 45.3 49.2 51.8
KPL580P KPL655P KPL730P KPL810P KPL885P KPL960P KPL1100P KPL1210P KPL1320P KPL1440P
580 655 730 810 885 960 1100 1210 1320 1440
979 1086 1198 1310 1412 1514 1792 1960 2118 2266
862 964 1060 1162 1254 1344 1594 1740 1883 2020
724 810 899 988 1073 1158 1346 1478 1610 1735
603 675 750 826 904 982 1124 1236 1354 1470
554 627 693 760 832 904 1030 1138 1246 1352
462 519 581 642 702 759 872 963 1050 1134
382 426 474 522 576 621 709 784 859 932
311 349 391 435 474 513 591 649 708 771
257 290 323 359 391 424 487 536 584 638
183 206 230 255 279 302 347 381 416 454
115 130 145 160 175 190 218 240 261 285
73.5 83.1 92.5 103 112 122 140 154 163 183
59.5 67.1 74.8 83 90.7 98.4 113 124 135 143
SECONDS
MINUTES
HOURS
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
51
SHEET
DC SYSTEM
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors.
AMPERES ON DISCHARGE TO 1.05V PER CELL
CELL TYPE
CAP AH
SECONDS 1 10
KPL5P KPL11P KPL19P KPL29P KPL39P KPL49P KPL60P KPL70P KPL75P KPL90P KPL100P KPL130P KPL155P KPL190 KPL220P KPL250P KPL280P KPL320P KPL350P KPL380P KPL410P KPL440P KPL480P KPL500P
5 11 19 29 39 49 60 70 75 90 100 130 155 190 220 250 280 320 350 380 410 440 480 500
10.1 22.2 38.3 58.4 79.6 102 118 133 151 175 199 244 289 335 378 416 453 496 539 581 624 640 685 814
8.3 18.4 31.7 48.4 65.4 82.7 97.9 113 125 143 162 201 238 277 315 351 382 414 447 478 510 573 615 692
6.8 15 25.9 39.5 52.8 67.9 81.5 94 102 114 129 166 193 225 258 286 313 343 373 403 432 487 526 580
5.5 12.2 21 32.1 44 57.3 69 76.1 79.6 90.2 102 123 149 175 201 225 248 271 301 317 342 406 440 480
KPL580P KPL655P KPL730P KPL810P KPL885P KPL960P KPL1100P KPL1210P KPL1320P KPL1440P
580 655 730 810 885 960 1100 1210 1320 1440
902 990 1090 1190 1280 1370 1630 1780 1920 2050
786 880 970 1060 1140 1230 1450 1590 1720 1840
658 736 806 896 974 1050 1220 1340 1460 1580
542 604 674 744 812 880 1010 1110 1210 1320
60
MINUTES 5 10
HOURS 2 3
30
60
90
5 11 18.9 28.9 40.2 51.5 61.5 66.9 69.6 77.7 89 108 130 153 176 198 220 245 272 294 316 375 407 434
4.2 9.2 15.9 24.3 33.1 42.2 51 56 58.5 66 76 94.5 112 133 154 174 195 217 242 262 284 325 352 373
3.3 7.3 12.5 19.1 25.7 32.3 39.6 45.5 47.1 55.2 63.2 79.4 97.3 115 134 153 173 193 213 232 251 270 292 314
2.7 5.8 10.1 15.4 20.7 26 31.8 36.6 39.5 46.3 53 66.6 81.6 98.3 115 131 148 164 180 197 214 228 248 262
2.2 4.8 8.3 12.6 17 21.3 26.1 30 33.1 38.7 44.4 55.7 68.3 82.2 95.1 110 124 137 151 165 179 191 208 217
492 550 619 688 750 814 939 1030 1120 1220
420 470 534 596 650 697 813 894 975 1050
354 394 445 496 540 584 678 744 810 876
300 333 375 418 455 491 570 625 680 740
250 282 315 350 380 412 475 523 568 622
5
8
10
1.5 3.4 6.9 9 12.2 15.3 18.7 20.5 23.7 27.8 31.7 39.9 49.8 59.8 69 78.5 88.5 98.6 108 113 123 149 152 160
1 2.2 3.7 5.7 7.6 9.5 11.8 13.7 14.7 17.6 19.6 25.5 30.4 37.2 43.1 49 54.9 62.7 68.6 74.5 80.4 86.2 94.1 98
0.6 1.4 2.4 3.6 4.8 6.1 7.4 8.6 9.4 11 12.5 15.9 19.5 23.4 27.4 31.2 35.2 39.2 43 47 51 55.8 60.6 63.7
0.5 1.1 1.9 2.9 3.9 4.9 6 6.9 7.6 8.9 10.1 12.7 15.6 18.8 22 25.1 28.3 31.4 34.5 37.7 40.9 45.1 48.9 51.5
183 207 232 256 281 306 346 383 418 456
114 128 143 159 173 188 216 237 259 282
73.2 82.7 92.1 102 112 121 139 153 167 182
59.1 56.8 74.4 82.6 90.2 97.9 112 123 135 147
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
52
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.10V PER CELL CELL
CAP
TYPE
AH
SECONDS 1
10
MINUTES 60
HOURS
5
10
30
60
90
2
3
5
8
10
KPL5P
5
8.3
6.9
5.6
4.6
4.4
3.8
3.2
2.6
2.1
1.5
1
0.5
0.5
KPL11P
11
18.4
15.2
12.3
10.1
9.6
8.4
6.9
5.6
4.6
3.4
2.1
1.3
1.1
KPL19P
19
31.7
26.3
21.3
17.5
16.1
13.5
11.5
9.5
8
5.8
3.7
2.3
1.9
KPL29P
29
48.4
40.2
32.5
26.7
25.3
22.2
18.3
14.8
12.2
8.9
5.6
3.5
2.8
KPL39P
39
65.1
53.8
43.6
36.3
35
30.4
24.5
19.9
16.4
12
7.5
4.8
3.8
KPL49P
49
82.6
68.1
55.1
47.3
45
39
31
25
20.6
15
9.5
5.9
4.8
KPL60P
60
97.4
81
66.6
57.3
54
46.5
37.5
30.6
25.2
18.4
11.6
7.3
5.9
KPL70P
70
111
93.3
76.6
61.9
58
50.6
41.7
35.2
29
21.2
13.5
8.4
6.8
KPL75P
75
128
106
81.2
64.2
60
52.5
43.8
36.1
30.4
22.3
14.5
9.3
7.4
KPL90P
90
147
119
94.7
71
66
58.8
50
42.3
35.6
26.7
17.4 10.9
8.7
KPL100P
100
166
135
106
82
75
66.9
57
48.5
40.8
30.8
19.3 12.4
10
KPL130P
130
202
166
130
99
92
83.1
71
60.8
51.2
38.4
25.1 15.5
12.5
KPL155P
155
240
199
158
117
110
101
87
74.6
62.8
47.1
29.9 19.2
15.4
KPL190
190
278
231
182
140
133
121
105
89.8
75.6
56.7
36.7 23.1
18.5
KPL220P
220
313
262
206
160
151
140
122
105
88.4
66.3
42.5
21.7
KPL250P
250
346
289
230
179
169
158
139
120
101
75.6
48.3 30.7
24.7
KPL280P
280
380
317
254
202
192
177
156
135
114
85.2
54.1 34.5
27.8
KPL320P
320
417
349
281
225
215
197
174
150
126
94.8
61.8 38.6
31
KPL350P
350
455
382
308
253
238
218
192
165
139
104
67.6 41.3
34
KPL380P
380
492
413
334
275
258
238
210
180
152
114
73.4 45.2
37.1
KPL410P
410
529
445
361
298
279
258
225
195
164
123
79.2 49.7
40.3
KPL440P
440
546
476
401
333
309
275
235
203
175
133
85
55.2
44.6
KPL480P
480
582
514
435
360
335
297
255
220
190
144
92.7
61
48.5
KPL500P
500
690
578
472
384
363
321
273
233
199
152
96.6 63.4
KPL580P
580
770
654
540
440
410
361
310
267
230
174
112
80
58.5
KPL655P
655
850
730
608
496
455
407
350
303
262
197
126
89
66.1
KPL730P
730
935
803
670
552
510
453
388
335
290
219
141
98
73.7
KPL810P
810
1020
876
732
608
565
506
430
370
320
243
156
109
81.8
KPL885P
885
1090
952
802
665
618
550
470
405
350
266
171
119
89.3
27
51
KPL960P
960
1160
1030
870
720
670
594
510
440
380
288
185
128
96.9
KPL1100P
1100
1400
1200
1000
828
765
680
582
503
435
338
212
149
111
KPL1210P
1210
1530
1310
1100
912
848
759
645
555
480
363
234
165
122
KPL1320P
1320
1640
1430
1200
990
927
825
705
608
525
395
255
179
133
KPL1440P
1440
1740
1540
1300
1080
1000
891
765
660
570
432
278
195
145
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
53
OF 79
PART – B : NICAD BATTERY
KPL RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.14V PER CELL CELL
CAP
TYPE
AH
SECONDS 1
10
MINUTES 60
5
10
HOURS 30
60
90
2
3
5
8
10
KPL5P
5
6.9
5.8
4.6
3.7
3.3
2.8
2.3
2
1.7
1.3
0.9
0.6
KPL11P
11
15.2
12.8
10.2
8.2
7.2
6.2
5.1
4.3
3.7
2.9
2
1.3
0.5 1
KPL19P
19
26.3
22.1
17.6
14.2
12.5
10.7
8.8
7.4
6.3
5.2
3.4
2.2
1.8
KPL29P
29
40.2
33.7
25.9
21.7
19.1
16.3
13.4
11.3
9.7
7.6
5.2
3.4
2.7
KPL39P
39
53.1
44.4
36.7
29.8
25.9
21.7
18
15.2
13
10.2
7
4.5
3.6
KPL49P
49
67.2
56.5
46.4
38.6
33.7
27.8
22.7
19.2
16.3
12.8
8.7
5.7
4.6
KPL60P
60
80.7
67.5
54.7
46.5
40.6
33.6
27.5
23.5
20
15.7
10.7
7
5.6
KPL70P
70
92.6
78.2
63.8
50.6
44.1
35.4
29.3
25.1
23
18.3
12.5
8
6.5
KPL75P
75
107
85.7
66.7
52.7
45.9
36.3
30.2
27
23.2
19.4
13.4
8.8
7.1
KPL90P
90
123
98.1
77
58.8
51.2
38.9
32.9
29.4
27.1
22.7
16.1
10.3
8.3
KPL100P
100
139
111
87.5
66.9
58.2
44.2
37.7
33.7
31.1
25
17.8
11.8
9.5
KPL130P
130
170
136
108
82.8
72.3
55.1
47.4
42.2
39
32.5
23.2
14.8
12
KPL155P
155
200
163
129
100
88.1
66.7
58.1
51.8
47.9
40
27.7
18.2
14.7
KPL190
190
231
189
150
118
103
80.7
69.9
62.4
57.6
48.2
33.9
21.9
17.7
KPL220P
220
260
214
171
135
118
93
81.8
72.9
67.4
56.4
39.3
25.6
20.7
KPL250P
250
288
238
191
151
133
105
93.2
83.2
76.9
64.3
44.6
29.2
23.6
KPL280P
280
312
263
211
168
148
118
105
93.7
86.6
72.4
50
32.9
26.6
KPL320P
320
338
290
233
184
163
130
117
104
95.4
80.5
57.1
36.7
29.5
KPL350P
350
365
311
254
201
178
143
128
115
106
88.5
62.5
40.3
32.4
KPL380P
380
400
343
275
218
193
156
140
125
116
95.5
67.8
44
35.4
KPL410P
410
437
370
297
236
207
169
152
136
125
105
73.2
47.7
38.4
KPL440P
440
460
395
330
273
245
201
172
150
138
118
78.5
54.7
44.2
KPL480P
480
490
428
357
296
265
218
186
162
149
129
85.7
59.4
48
KPL500P
500
594
488
406
316
286
236
198
176
160
135
89.2
62.5
50.5
KPL580P
580
662
544
456
362
328
266
224
200
182
155
103
71.7
57.9
KPL655P
655
730
600
506
408
370
296
250
224
204
175
117
81
65.4
KPL730P
730
795
661
556
452
409
332
282
249
228
196
130
90.3
72.9
KPL810P
810
860
722
606
496
448
368
314
274
252
217
145
100
80.9
KPL885P
885
920
790
660
544
490
402
344
300
276
237
158
109
88.4
KPL960P
960
980
856
714
588
530
436
372
329
298
257
171
119
95.9
KPL1100P
1100
1190
992
834
678
609
501
426
372
342
295
196
136
110
KPL1210P
1210
1290
1080
909
744
672
552
471
411
378
324
216
150
121
KPL1320P
1320
1380
1180
990
815
735
603
516
450
414
354
236
163
132
KPL1440P
1440
1470
1280
1070
890
795
654
558
486
447
356
257
178
144
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
54
OF 79
PART – B : NICAD BATTERY
KPM RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.00V PER CELL CELL TYPE
CAP
SECONDS
AH
1
60
MINUTES
HOURS
5
10
15
30
60
90
2
3
5
8
KPM
11 P
11
40.5
28.7
24
21.1
18.9
14.9
9.3
6.6
5.1
3.5
2.2
1.4
KPM
18 P
18
69.1
49.4
39.2
34.6
31
24.3
15.3
10.8
8.4
5.8
3.6
2.2
KPM
25 P
25
101
71.5
55.2
48
43
33.8
21.3
15
11.7
8.1
5
3.2
KPM
32 P
32
125
89
69.8
61.4
55
43.2
27.2
19.2
15
10.3
6.4
4.1
KPM
39 P
39
149
106
82.8
73
65.4
51.3
32.3
22.8
17.8
12.3
7.8
4.8
KPM
45 P
45
174
124
98.1
86.4
77.4
60.8
38.3
27
21.1
14.5
9
5.9
KPM
55 P
55
199
142
116
102
91.2
71.6
45.1
31.8
24.9
17.1
11
6.7
KPM
60 P
60
229
164
129
113
101
79.7
50.2
35.4
27.7
19.1
12
7.5
KPM
80 P
80
270
204
166
154
141
112
70.6
50.2
38.9
26.8
16
10.5
KPM
100 P
100
325
248
202
187
172
136
85.9
61.1
47.4
32.5
20
12.8
KPM
120 P
120
377
290
236
218
201
159
100
71.4
55.3
38.1
24
15
KPM
145 P
145
457
340
276
254
239
189
120
87
68
46.8
29
18.4
KPM
165 P
165
507
390
320
292
276
217
139
100
78.3
53.9
33
21.2
KPM
190 P
190
556
440
359
331
312
246
157
113
88.6
61
38
24
KPM
210 P
210
594
475
401
369
348
274
175
127
99
68.2
42
26.8
KPM
230 P
230
679
533
441
406
383
302
193
139
109
74.9
46
29.5
KPM
250 P
250
741
590
483
445
419
330
211
152
119
82
50
32.3
KPM
275 P
275
801
635
524
483
455
359
229
166
129
89.1
55
35.1
KPM
300 P
300
843
675
566
522
492
387
247
179
140
96.3
60
37.8
KPM
320 P
320
890
720
606
558
526
415
265
191
150
103
64
40.5
KPM
340 P
340
935
755
648
597
563
443
283
205
160
110
68
43.3
KPM
360 P
360
1060
810
657
607
575
451
295
213
166
116
72
45.3
KPM
380 P
380
1110
853
703
650
616
483
315
228
178
124
76
48.5
KPM
410 P
410
1170
895
749
693
656
514
336
243
190
132
82
51.8
KPM
450 P
450
1450
1050
833
770
729
572
374
270
211
147
90
57.4
KPM
500 P
500
1570
1170
925
855
810
635
415
300
235
164
100
58.8
KPM
555 P
555
1700
1280
1030
949
899
705
461
333
260
181
111
70.8
KPM
600 P
600
1820
1390
1120
1030
980
768
502
363
284
198
120
77.1
KPM
655 P
655
1970
1500
1210
1120
1060
832
544
393
307
214
131
83.5
KPM
710 P
710
2120
1620
1310
1210
1150
902
589
426
333
232
142
90.5
KPM
760 P
760
2230
1700
1410
1300
1230
965
631
456
356
249
152
96.9
KPM
810 P
810
2350
1790
1500
1380
1310
1030
672
486
380
265
162
103
KPM
830 P
830
2550
1920
1540
1420
1350
1060
691
500
390
272
166
106
KPM
910 P
910
2730
2090
1680
1550
1470
1150
753
545
426
297
182
116
KPM
985 P
985
2950
2250
1820
1630
1590
1250
815
590
461
321
197
125
KPM
1060 P
1060
3180
2430
1970
1820
1720
1350
884
639
499
348
212
135
KPM
1140 P
1140
3350
2550
2110
1950
1850
1450
946
684
535
373
228
145
KPM
1220 P
1220
3520
2630
2250
2080
1970
1540
1010
729
570
397
244
156
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
55
OF 79
PART – B : NICAD BATTERY
KPM RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.05V PER CELL CELL TYPE
CAP
SECONDS
MINUTES
AH
1
60
5
10
15
30
HOURS 60
90
2
3
5
8
KPM
11 P
11
35.2
24.4
19.5
16.8
15.6
13
8.6
6.3
5
3.5
2.2
1.2
KPM
18 P
18
61
41.6
31.9
27.5
25.6
21.2
14.2
10.4
8.2
5.7
3.6
2.2
KPM
25 P
25
87
60
45
38.3
35.5
29.5
19.8
14.5
11.5
7.9
5
3.1
KPM
32 P
32
108
75
56.6
49
45.4
37.8
25.3
18.6
14.7
10.1
6.3
4
KPM
39 P
39
128
89
67.3
58.1
54
44.8
30
22
17.4
12
7.7
4.7
KPM
45 P
45
149
104
79.7
68.9
63.9
53.1
35.6
26.1
20.7
14.4
8.9
5.8
KPM
55 P
55
170
120
93.8
81.1
75.3
62.5
41.9
30.7
24.3
16.8
10.9
6.7
KPM
60 P
60
195
134
104
90.3
83.8
69.6
46.6
34.2
27.1
19
11.9
7.4
KPM
80 P
80
233
171
141
127
118
97.9
65.6
48.1
33.1
26.3
15.8
10.4
KPM
100 P
100
278
210
172
155
143
119
79.8
58.6
45.4
32
19.8
12.7
KPM
120 P
120
322
245
201
181
168
139
93.2
68.4
54.2
37.4
23.8
14.8
KPM
145 P
145
392
294
236
218
202
168
115
84.1
56.6
45.9
28.7
18.2
KPM
165 P
165
438
327
272
251
232
194
132
96.9
76.7
52.9
32.7
21
KPM
190 P
190
476
364
308
284
263
219
149
110
86.8
59.8
37.6
23.8
KPM
210 P
210
515
393
344
317
293
245
167
122
96.5
67
41.6
26.5
KPM
230 P
230
587
450
378
348
322
269
183
135
106
73.4
45.5
29.2
KPM
250 P
250
643
492
414
381
353
295
201
147
117
80.4
49.5
31.9
KPM
275 P
275
694
531
450
414
384
320
218
160
127
87.4
54.5
34.7
KPM
300 P
300
728
563
486
447
414
346
235
173
137
94.3
59.4
37.5
KPM
320 P
320
765
595
520
479
443
370
252
185
146
101
63.4
40.1
KPM
340 P
340
801
625
556
512
474
396
269
198
157
108
67.3
42.9
KPM
360 P
360
931
690
565
522
483
408
280
206
162
112
71.3
44.8
KPM
380 P
380
971
723
595
559
517
437
300
220
174
120
75.2
48
KPM
410 P
410
1010
755
625
595
551
466
320
235
185
128
81.2
51.2
KPM
450 P
450
1260
903
700
662
612
518
356
261
206
142
89.1
56.8
KPM
500 P
500
1370
1000
778
735
680
575
395
290
228
158
99
63.1
KPM
555 P
555
1480
1100
873
816
755
638
438
322
254
175
110
70.1
KPM
600 P
600
1600
1200
968
889
823
696
478
351
276
191
119
76.4
KPM
655 P
655
1730
1290
1040
963
891
753
517
380
299
207
130
82.7
KPM
710 P
710
1860
1380
1130
1040
956
817
561
412
324
224
141
89.6
KPM
760 P
760
1940
1440
1190
1120
1030
874
600
441
347
240
150
95.9
KPM
810 P
810
2020
1510
1250
1190
1100
932
640
470
3B0
256
160
102
KPM
830 P
830
2230
1650
1310
1220
1130
957
658
483
380
263
164
105
KPM
910 P
910
2400
1800
1450
1330
1230
1040
717
526
415
287
180
115
KPM
985 P
985
2590
1930
1560
1440
1340
1130
776
570
449
311
195
124
KPM
1060 P 1060
2790
2070
1690
1570
1450
1220
841
618
486
337
210
134
KPM
1140 P 1140
2910
2160
1780
1680
1550
1310
901
661
531
360
225
144
KPM
1220 P 1220
3030
2260
1870
1790
1650
1400
960
705
555
384
242
154
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
56
OF 79
PART – B : NICAD BATTERY
KPM RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.10V PER CELL
CELL TYPE
CAP AH
SECONDS
MINUTES
1
60
5
10
HOURS 15
30
60
90
2
3
5
8
KPM
11 P
11
29.5
20.1
15.8
14
12.8
11
8
6
4.7
3.3
2.1
1.3
KPM
18 P
18
52.5
34.1
27
22.9
20.9
18
13.1
9.9
7.8
5.5
3.5
2.2
KPM
25 P
25
73.6
50.2
38
32.3
29
25
18.3
13.8
10.9
7.6
4.9
3.1
KPM
32 P
32
91.2
63.7
48.5
40.6
37.1
32
23.4
17.6
13.9
9.8
6.2
3.9
KPM
39 P
39
107
76
58.5
48.3
44.1
38
27.7
20.9
16.5
11.7
7.6
4.7
KPM
45 P
45
125
87.3
68.2
57.2
52.2
45
32.9
24.8
19.6
13.8
8.7
5.7
KPM
55 P
55
142
98.5
77.9
67.3
61.5
53
38.7
29.2
23.1
16.3
10.7
6.6
KPM
60 P
60
161
111
88
75.5
68.4
59
43.1
32.5
25.7
14.1
11.6
7.3
KPM
80 P
80
196
142
113
99.6
94.6
83
60.6
45.7
36.1
25.5
15.5
10.3
KPM
100 P
100
232
174
137
123
115
101
73.7
55.6
43.9
31
19.4
12.6
KPM
120 P
120
270
204
161
142
135
118
86.1
64.9
51.3
36.2
23.3
14.7
KPM
145 P
145
326
246
195
165
157
138
103
79.8
63.1
44.5
28.1
18
KPM
165 P
165
370
272
220
190
180
159
119
91.9
72.6
51.2
32
20.8
KPM
190 P
190
400
305
245
215
204
180
134
104
82.2
58
36.9
23.5
KPM
210 P
210
428
330
268
241
228
200
150
116
91.8
64.7
40.8
26.3
KPM
230 P
230
501
378
298
264
251
220
165
128
101
71.2
44.6
28.9
KPM
250 P
250
546
413
326
290
274
241
180
140
110
77.9
48.5
31.6
KPM
275 P
275
589
446
352
315
298
262
196
152
120
84.7
53.4
34.4
KPM
300 P
300
615
468
382
340
322
283
212
164
130
91.4
58.2
37.1
KPM
320 P
320
640
500
408
364
345
303
226
175
139
97.9
62.1
39.7
KPM
340 P
340
664
518
437
389
368
324
242
188
148
105
66
42.4
KPM
360 P
360
770
572
461
405
375
330
249
192
154
109
69.9
44.4
KPM
380 P
380
806
599
485
426
393
345
266
205
165
116
73.7
47.5
KPM
410 P
410
841
625
505
446
410
364
284
219
176
124
79.6
50.7
KPM
450 P
450
1080
750
562
490
444
390
315
243
196
138
87.3
56.2
KPM
500 P
500
1170
836
638
560
506
450
350
270
218
153
97
62.5
KPM
555 P
555
1270
922
714
630
573
505
389
300
241
170
108
69.3
KPM
600 P
600
1360
1000
790
690
635
560
424
327
263
185
116
75.6
KPM
655 P
655
1450
1070
856
745
695
610
459
354
285
200
127
81.8
KPM
710 P
710
1540
1140
922
810
750
660
497
383
309
217
138
88.7
KPM
760 P
760
1610
1190
969
851
785
690
532
410
331
233
147
95
KPM
810 P
810
1680
1250
1010
892
820
728
567
437
352
248
157
101
KPM
830 P
830
1900
1380
1070
945
860
758
583
450
362
255
161
104
KPM
910 P
910
2040
1510
1180
1030
953
840
635
490
395
278
177
114
KPM
985 P
985
2170
1610
1280
1120
1040
915
688
531
427
301
191
123
KPM
1060 P
1060
2310
1710
1380
1210
1120
990
746
575
463
325
206
132
KPM
1140 P
1140
2410
1790
1450
1280
1180
1030
798
616
496
349
221
142
KPM
1220 P
1220
2520
1870
1510
1340
1230
1090
851
656
529
372
237
152
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
57
OF 79
PART – B : NICAD BATTERY
KPM RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.14V PER CELL CELL TYPE
CAP AH
SECONDS
MINUTES
1
60
5
10
15
30
HOURS 60
90
2
3
5
8
KPM
11 P
11
25.2
16.9
13.2
11.3
10.5
8.4
6.4
5.1
4.2
3.2
2.1
1.3
KPM
18 P
18
45.4
28.7
22.4
19.2
17.1
13.9
10.6
8.4
7
5.5
3.4
2.1
KPM
25 P
25
63
42.2
33
27
23.8
19.3
14.8
11.8
9.7
7.2
4.7
3
KPM
32 P
32
78
54
41.3
34.4
30.4
24.6
18.9
15
12.5
9.3
6
3.8
KPM
39 P
39
90.1
64.5
49.3
41.5
36.1
29.3
22.4
17.9
14.8
11
7.3
4.5
KPM
45 P
45
105
73.7
57
48.4
42.8
34.7
26.6
21.2
17.5
13.1
8.5
5.5
KPM
55 P
55
119
82.8
64.7
55.3
50.4
40.8
31.3
24.9
20.6
15.4
10.3
6.4
KPM
60 P
60
132
92
73.5
63
56.1
45.4
34.8
27.7
23
17.2
11.3
7.1
KPM
80 P
80
166
118
93.3
83
74.7
63.9
49
39
32.3
24.1
15
10
KPM
100 P
100
197
145
114
101
90.9
77.8
59.6
47.5
39.3
29.4
18.8
12.2
KPM
120 P
120
228
172
134
116
106
90.9
69.6
55.5
45.9
34.3
22.6
14.2
KPM
145 P
145
275
210
163
142
130
110
85.6
68.2
56.4
42.2
27.3
17.5
KPM
165 P
165
314
231
183
160
148
127
98.5
78.5
65
48.5
31
20.1
KPM
190 P
190
339
260
203
179
166
144
112
88.8
73.6
54.9
35.7
22.8
KPM
210 P
210
363
280
221
196
186
160
124
99.2
82.1
61.3
39.5
25.5
KPM
230 P
230
426
321
246
218
204
176
137
109
90.3
67.4
43.3
28
KPM
250 P
250
462
350
268
237
224
193
150
119
98.9
73.8
47
30.6
KPM
275 P
275
500
379
290
255
241
210
163
130
107
80.2
51.7
33.3
KPM
300 P
300
523
396
314
277
262
226
176
140
116
86.6
56.4
36
KPM
320 P
320
538
423
335
297
281
242
188
150
124
92.7
60.2
38.5
KPM
340 P
340
552
436
359
321
300
259
201
160
133
99.1
64
41.1
KPM
360 P
360
655
482
370
332
306
264
208
167
138
101
67.7
43.9
KPM
380 P
380
682
501
389
349
321
277
221
179
148
108
71.5
47
KPM
410 P
410
708
519
408
366
339
297
234
190
158
115
77.1
50.2
KPM
450 P
450
943
629
472
404
365
320
263
212
176
128
84.7
55.7
KPM
500 P
500
1020
704
530
460
414
360
292
235
195
142
94.1
61.3
KPM
555 P
555
1090
779
588
516
467
410
321
261
216
158
104
63.6
KPM
600 P
600
1170
854
646
572
520
445
355
284
235
172
113
74.5
KPM
655 P
655
1240
909
693
618
566
485
383
308
255
186
123
81
KPM
710 P
710
1310
964
740
664
612
527
416
334
277
202
134
87.3
KPM
760 P
760
1360
1000
778
698
650
567
442
357
296
216
143
94
KPM
810 P
810
1410
1040
816
722
672
594
468
381
316
230
152
100
KPM
830 P
830
1640
1160
882
774
701
607
482
391
324
236
156
103
KPM
910 P
910
1760
1280
969
858
780
670
530
427
355
258
171
113
KPM
985 P
985
1860
1360
1040
927
849
735
575
462
384
280
185
122
KPM
1060 P
1060
1960
1440
1110
996
918
790
624
501
413
301
199
131
KPM
1140 P
1140
2040
1500
1160
1040
963
840
663
536
445
324
214
141
KPM
1220 P
1220
2120
1550
1220
1090
1020
891
702
571
476
346
229
151
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
58
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 0.65V PER CELL CELL TYPE
CAP (Ah)
SECONDS 1
5
10
30
60
90
KPH
11 P
11
187
173
161
140
124
112
KPH
14 P
14
254
235
218
190
169
153
KPH
18 P
18
321
296
276
240
214
193
KPH
22 P
22
404
373
347
302
269
243
KPH
26 P
26
470
434
404
352
314
283
KPH
34 P
34
601
554
516
450
401
353
KPH
38 P
38
665
613
571
499
445
403
KPH
46 P
46
810
746
695
608
543
492
KPH
50 P
50
889
819
763
668
596
540
KPH
60 P
60
1010
934
870
763
682
613
KPH
65 P
65
1150
1060
989
869
777
705
KPH
85 P
85
1440
1320
1230
1090
975
888
KPH
95 P
95
1570
1440
1350
1190
1060
971
KPH
100 P
100
1700
1560
1460
1290
1160
1050
KPH
110 P
110
1830
1680
1570
1390
1250
1140
KPH
130 P
130
2100
1920
1790
1590
1430
1310
KPH
140 P
140
2220
2030
1900
1690
1520
1390
KPH
150 P
150
2360
2160
2020
1800
1620
1490
KPH
170 P
170
2660
2430
2270
2030
1840
1690
KPH
190 P
190
2930
2670
2510
2250
2040
1880
KPH
210 P
210
3200
2910
2740
2470
2240
2070
KPH
245 P
245
3580
3240
3050
2780
2530
2340
KPH
255 P
255
3700
3350
3160
2860
2630
2440
KPH
265 P
265
3820
3450
3250
2970
2720
2520
KPH
290 P
290
2630
2610
2590
2520
2430
2340
KPH
320 P
320
2880
2860
2840
2770
2660
2550
KPH
355 P
355
3220
3200
3180
3100
2980
2880
KPH
410 P
410
3730
3710
3680
3580
3450
3330
KPH
470 P
470
4240
4210
4180
4070
3920
3780
KPH
525 P
525
4760
4720
4690
4570
4400
4240
KPH
580 P
580
5250
5220
5180
5050
4850
4672
KPH
635 P
635
5750
5710
5670
5520
5320
5140
KPH
700 P
700
6340
6300
6250
6090
5870
5660
KPH
785 P
785
7110
7060
7010
6830
6580
6350
KPH
870 P
870
7880
7830
7770
7570
7290
7030
KPH
955 P
955
8650
8590
8530
8310
8000
7700
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
59
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 0.85V PER CELL CELL TYPE
CAP (Ah)
SECONDS 1
5
10
30
60
90
KPH
11 P
11
135
124
116
101
91.3
84.7
KPH
14 P
14
184
169
157
138
124
115
KPH
18 P
18
232
213
198
174
157
146
KPH
22 P
22
292
268
250
219
197
183
KPH
26 P
26
340
312
290
255
230
213
KPH
34 P
34
435
399
371
326
294
273
KPH
38 P
38
482
442
411
361
326
302
KPH
46 P
46
586
537
500
439
396
368
KPH
50 P
50
643
590
549
482
435
404
KPH
60 P
60
734
672
626
550
497
461
KPH
65 P
65
835
764
712
626
566
525
KPH
85 P
85
1040
954
889
783
708
656
KPH
95 P
95
1140
1040
971
856
773
717
KPH
100 P
100
1230
1120
1050
928
838
777
KPH
110 P
110
1330
1210
1130
998
902
837
KPH
130 P
130
1520
1380
1290
1140
1030
959
KPH
140 P
140
1610
1460
1370
1210
1090
1010
KPH
150 P
150
1710
1560
1460
1290
1160
1080
KPH
170 P
170
1930
1750
1640
1450
1310
1220
KPH
190 P
190
2130
1930
1810
1600
1450
1340
KPH
210 P
210
2320
2100
1970
1760
1590
1470
KPH
245 P
245
2600
2340
2210
1970
1780
1650
KPH
255 P
255
2690
2420
2280
2040
1850
1710
KPH
265 P
265
2770
2500
2350
2100
1910
1770
KPH
290 P
290
1930
1920
1900
1840
1760
1690
KPH
320 P
320
2120
2100
2090
2020
1930
1850
KPH
355 P
355
2400
2380
2360
2290
2190
2090
KPH
410 P
410
2770
2750
2730
2640
2530
2420
KPH
470 P
470
3150
3120
3100
3000
2870
2750
KPH
525 P
525
3520
3490
3470
3350
3210
3070
KPH
580 P
580
3900
3870
3830
3710
3560
3400
KPH
635 P
635
4270
4240
4200
4070
3900
3730
KPH
700 P
700
4740
4700
4660
4510
4320
4140
KPH
785 P
785
5300
5260
5220
5050
4840
4630
KPH
870 P
870
5860
5820
5770
5580
5350
5120
KPH
955 P
955
6420
6370
6320
6120
5860
5610
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
60
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.00V PER CELL CELL TYPE
CAP AH
SECONDS 1
MINUTES
5
30
60
3
5
10
HOURS
15
30
60
90
3
5
KPH
11 P
11
99.9
88
71.5
65.5
53.2
46
34
27
16.8
9.5
6.6
3.5
2.2
KPH
14 P
14
136
120
97.2
89
71.8
62.5
46.3
36.2
21.8
12
8.4
4.5
2.8
KPH
18 P
18
171
151
123
112
90.7
79
58.5
45.8
27.6
15.5
10.8
5.8
3.6
KPH
22 P
22
215
190
154
141
114
99.5
73.7
57.8
34.8
18.9
13.2
7
4.4
KPH
26 P
26
250
221
180
164
133
116
85.8
67.5
40.6
22.4
15.6
8.3
5.2
KPH
34 P
34
319
282
229
210
170
148
110
86.8
52.2
29.2
20.4
10.9
6.8
KPH
38 P
38
353
312
254
232
188
164
122
96.4
58
32.7
22.8
12.2
7.6
KPH
46 P
46
429
379
309
282
229
200
149
118
71.1
39.6
27.6
14.7
9.2
KPH
50 P
50
471
415
339
310
251
219
164
130
78.3
43
30
16
10
KPH
60 P
60
536
473
387
353
287
249
185
144
88.7
49.9
34.8
18.6
12
KPH
65 P
65
609
537
439
401
327
283
210
165
102
57.6
40.2
21.4
13
KPH
85 P
85
757
669
548
500
408
357
268
210
129
73.1
51
27.2
17
KPH
95 P
95
825
729
598
546
446
390
293
231
142
80
55.8
29.8
19
KPH
100 P
100
892
788
648
591
483
423
319
252
154
87.7
61.2
32.6
20
KPH
110 P
110
958
846
696
635
520
456
344
273
167
95.5
66.6
35.5
22
KPH
130 P
130
1090
965
796
725
596
523
396
317
194
110
76.8
41
26
KPH
140 P
140
1150
1020
842
767
631
554
420
338
207
118
82.2
43.8
28
KPH
150 P
150
1220
1080
897
817
673
588
445
356
222
126
88.2
47
30
KPH
170 P
170
1370
1210
1010
917
759
667
510
408
254
144
101
53.8
34
KPH
190 P
190
1500
1330
1110
1010
838
737
566
453
285
163
114
60.8
38
KPH
210 P
210
1630
1440
1210
1100
916
807
623
497
318
181
127
67.5
42
KPH
245 P
245
1800
1600
1340
1220
1020
906
705
573
366
210
146
78.1
49
KPH
255 P
255
1860
1650
1390
1260
1060
940
733
599
383
218
152
81.3
51
KPH
265 P
265
1910
1700
1430
1300
1090
969
759
624
399
228
159
84.8
53
KPH
290 P
290
1420
1410
1330
1260
1070
991
824
695
450
258
180
95.1
58
KPH
320 P
320
1560
1550
1460
1380
1180
1090
905
764
493
283
197
104
64
KPH
355 P
355
1770
1750
1660
1560
1330
1230
1030
866
552
317
221
117
71
KPH
410 P
410
2040
2020
1910
1800
1540
1430
1190
1000
639
367
255
135
82
KPH
470 P
470
2320
2300
2170
2050
1750
1620
1350
1140
725
417
290
154
94
KPH
525 P
525
2590
2570
2430
2290
1960
1820
1510
1280
814
467
326
172
105
KPH
580 P
580
2870
2840
2690
2530
2170
2010
1670
1410
899
516
360
190
116
KPH
635 P
635
3140
3120
2950
2780
2380
2210
1840
1550
984
565
394
208
127
KPH
700 P
700
3490
3460
3270
3080
2640
2450
2040
1720
1080
623
434
230
140
KPH
785 P
785
3900
3870
3660
3450
2950
2730
2270
1910
1220
699
487
257
157
KPH
870 P
870
4320
4280
4050
3810
3250
3020
2510
2120
1350
774
539
285
174
KPH
955 P
955
4730
4690
4430
4180
3580
3310
2750
2330
1480
850
592
313
191
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
61
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.05V PER CELL CELL TYPE
CAP
SECONDS
MINUTES
HOURS
AH
1
5
30
60
3
5
10
15
30
60
90
3
5
KPH
11 P
11
85.7
74.8
61.6
55.8
45.1
39.5
30.5
24.9
15.8
9.1
6.4
3.5
2.2
KPH
14 P
14
116
102
68.7
75.8
61.3
53.5
39.9
31.8
20.2
11.6
8.2
4.4
2.8
KPH
18 P
18
147
128
106
95.7
77.5
67.5
51.2
40.9
25.9
14.9
10.5
5.7
3.6
KPH
22 P
22
185
161
133
120
97.5
83.7
62.4
49.9
31.7
18.3
12.9
5.9
4.4
KPH
26 P
26
215
188
155
140
113
98.6
73.7
59
37.4
21.6
15.2
6.2
5.1
KPH
34 P
34
274
240
198
179
145
126
96
77.2
49
28.2
19.9
10.7
6.7
KPH
38 P
38
303
265
219
198
161
140
107
86.3
54.7
31.5
22.2
12
7.5
KPH
46 P
46
369
323
266
241
196
170
129
104
66.2
38.2
26.9
14.5
9.1
KPH
50 P
50
404
354
292
264
215
187
140
114
72
41.5
29.3
15.8
9.9
KPH
60 P
60
461
404
333
310
245
213
160
129
81.8
48.1
33.9
18.3
11.9
KPH
65 P
65
523
459
379
343
279
243
183
148
94.5
55.6
39.2
21.1
12.9
KPH
85 P
85
651
572
472
427
349
305
232
187
120
70.6
49.7
26.8
16.8
KPH
95 P
95
710
624
516
466
382
337
257
207
131
77.2
54.4
29.3
18.8
KPH
100 P
100
768
675
558
505
414
363
278
226
144
84.7
59.7
32.1
19.8
KPH
110 P
110
825
725
600
543
445
393
304
247
157
92.1
64.9
35
21.8
KPH
130 P
130
940
828
686
620
510
453
348
284
180
106
74.9
40.3
25.7
KPH
140 P
140
994
876
726
656
541
481
371
303
193
114
80.1
43.2
27.7
KPH
150 P
150
1050
933
773
699
577
507
390
318
204
122
86
46.3
29.7
KPH
170 P
170
1180
1040
869
785
650
575
443
360
234
133
98.3
52.9
33.7
KPH
190 P
190
1300
1150
956
863
718
637
497
404
264
158
111
59.9
37.6
KPH
210 P
210
1410
1250
1040
941
786
695
540
445
293
175
123
66.5
41.6
KPH
245 P
245
1560
1390
1160
1050
881
788
628
520
339
203
143
76.9
48.5
KPH
255 P
255
1610
1440
1200
1080
913
817
655
541
353
211
149
80
50.5
KPH
265 P
265
1660
1480
1230
1110
941
845
677
562
368
220
155
83.5
52.5
KPH
290 P
290
1270
1260
1170
1090
921
848
720
631
431
252
177
94
57.4
KPH
320 P
320
1400
1380
1290
1200
1010
931
791
693
472
277
194
103
63.4
KPH
355 P
355
1580
1560
1450
1350
1150
1060
897
787
529
310
217
115
70.3
KPH
410 P
410
1830
1810
1680
1560
1330
1220
1040
911
612
358
251
133
81.2
KPH
470 P
470
2080
2050
1910
1770
1510
1390
1180
1030
695
407
285
152
93.1
KPH
525 P
525
2320
2300
2130
1980
1691
1560
1320
1160
780
457
320
170
104
KPH
580 P
580
2570
2540
2360
2190
1872
1720
1460
1280
861
505
354
188
115
KPH
635 P
635
2820
2780
2590
2400
2054
1890
1600
1410
943
552
387
206
126
KPH
700 P
700
3130
3090
2870
2670
2280
2100
1780
1560
1040
589
427
227
139
KPH
785 P
785
3500
3460
3210
2980
2540
2330
1980
1740
1170
683
479
254
155
KPH
870 P
870
3870
3820
3550
3300
2810
2580
2190
1920
1290
757
531
282
172
KPH
955 P
955
4240
4190
3890
3620
3080
2840
2410
2110
1420
831
583
309
189
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
62
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.10V PER CELL CELL TYPE
CAP AH
SECONDS
MINUTES
HOURS
1
5
30
60
3
5
10
15
30
60
90
3
5
KPH
11 P
11
71
62.7
51.7
45.7
36.3
32.1
25.5
21.5
14.3
8.7
6.2
3.4
2.2
KPH
14 P
14
96.5
85.2
70.3
62.1
49.5
43.5
34.2
28.2
18.5
11.1
7.9
4.4
2.7
KPH
18 P
18
122
108
88.7
78.4
63
55.7
43.9
36.3
23.8
14.2
10.2
5.6
3.5
KPH
22 P
22
153
135
112
98.6
79.2
69.6
53.7
44.3
29
17.4
12.4
6.9
4.3
KPH
26 P
26
178
157
130
115
92.4
81.2
63.4
52.4
34.3
20.5
14.7
8.1
5.1
KPH
34 P
34
228
201
166
147
119
105
83
68.5
44.9
26.9
19.2
10.6
6.7
KPH
38 P
38
252
223
184
162
132
117
93
76.6
50.2
30
21.5
11.9
7.5
KPH
46 P
46
307
271
223
198
162
142
112
92.7
60.7
36.3
26
14.4
9
KPH
50 P
50
337
297
245
217
178
157
122
101
66
39.5
28.3
15.6
9.8
KPH
60 P
60
384
339
280
248
193
169
135
113
76
45.8
32.8
18.1
11.8
KPH
65 P
65
437
386
318
282
220
194
155
131
87.8
52.9
37.9
20.9
12.7
KPH
85 P
85
545
481
397
352
280
248
197
166
111
67.2
48
26.5
16.7
KPH
95 P
95
595
526
433
384
306
270
216
181
122
73.5
52.5
29
18.6
KPH
100 P
100
644
569
469
416
332
295
237
199
134
80.6
57.6
31.8
19.6
KPH
110 P
110
693
612
504
447
361
320
258
216
145
87.7
62.7
34.6
21.6
KPH
130 P
130
792
700
576
512
415
370
297
250
168
101
72.3
39.9
25.5
KPH
140 P
140
838
740
610
542
442
395
318
267
179
108
77.4
42.7
27.5
KPH
150 P
150
893
789
649
578
445
395
320
273
187
116
83.1
45.9
29.4
KPH
170 P
170
1000
887
730
650
501
448
366
312
213
133
94.9
52.4
33.3
KPH
190 P
190
1100
976
803
717
563
503
414
353
241
150
107
59.3
37.3
KPH
210 P
210
1200
1060
876
783
627
560
460
392
268
167
119
65.8
41.2
KPH
245 P
245
1340
1180
977
875
722
645
532
454
310
193
138
76.1
48
KPH
255 P
255
1390
1230
1010
906
756
675
554
472
323
201
144
79.2
50
KPH
265 P
265
1430
1260
1040
933
787
703
578
493
337
209
150
82.7
52
KPH
290 P
290
1130
1120
1020
921
747
699
624
560
406
247
175
93.7
56.9
KPH
320 P
320
1240
1230
1110
1010
821
766
684
614
445
270
192
103
62.7
KPH
355 P
355
1410
1390
1260
1150
931
858
765
687
498
303
215
115
69.6
KPH
410 P
410
1630
1610
1460
1330
1080
993
886
795
577
350
249
133
80.4
KPH
470 P
470
1850
1820
1660
1510
1220
1130
1010
903
655
398
283
151
92.2
KPH
525 P
525
2070
2040
1850
1690
1370
1260
1130
1010
735
446
318
170
103
KPH
580 P
580
2290
2260
2050
1870
1510
1400
1250
1120
812
493
351
187
114
KPH
635 P
635
2510
2470
2250
2040
1660
1530
1360
1230
889
540
384
205
125
KPH
700 P
700
2780
2740
2500
2270
1840
1690
1500
1350
980
595
424
226
137
KPH
785 P
785
3110
3070
2790
2540
2060
1890
1690
1510
1100
667
475
254
154
KPH
870 P
870
3440
3390
3090
2810
2280
2100
1870
1680
1220
740
526
281
171
KPH
955 P
955
3770
3720
3380
3080
2490
2300
2050
1840
1340
812
578
308
187
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
63
SHEET
DC SYSTEM
OF 79
PART – B : NICAD BATTERY
KPH RANGE TYPICAL CELL PERFORMANCE DATA ( 20o C + 5o C ) Discharge data is for full charged cells after 1 hour open circuit and allowing for voltage losses associated with connectors. AMPERES ON DISCHARGE TO 1.14V PER CELL CELL TYPE
CAP AH
SECONDS
MINUTES
HOURS
1
5
30
60
3
5
10
15
30
60
90
3
5
KPH
11 P
11
59.4
52.3
42.9
37.4
28.6
24.8
19.8
17.1
12.3
8
5.9
3.4
2.1
KPH
14 P
14
80.8
71
58.3
50.9
39
33.8
27
22.8
15.7
10.2
7.6
4.3
2.7
KPH
18 P
18
102
89.7
73.6
64.3
49.4
42.8
34.2
29.3
20.2
13.1
9.7
5.5
3.5
KPH
22 P
22
128
113
92.7
80.9
62.4
54
43.2
35.9
24.6
16
11.9
6.7
4.3
KPH
26 P
26
149
131
108
94.1
72.8
63
50.4
32.4
29.1
18.9
14
7.9
5
KPH
34 P
34
191
168
138
120
93.6
81
64.8
55.4
38.1
24.7
18.4
10.4
6.6
KPH
38 P
38
212
186
153
133
104
90
72
61.9
42.6
27.6
20.5
11.6
7.4
KPH
46 P
46
258
226
186
162
127
110
88.2
75
51.5
33.4
24.8
14
8.9
KPH
50 P
50
283
249
204
178
140
122
97.2
81.5
56
36.3
27
15.3
9.7
KPH
60 P
60
323
284
232
204
154
135
105
88.2
63.8
42.1
31.3
17.7
11.7
KPH
65 P
65
368
323
264
232
177
154
121
102
73.7
48.6
36.2
20.4
12.6
KPH
85 P
85
460
403
330
290
224
195
153
129
93.5
61.6
45.9
25.9
16.5
KPH
95 P
95
503
441
360
317
247
215
168
141
102
67.4
50.2
28.4
18.4
KPH
100 P
100
546
477
390
344
269
234
194
155
112
74
55.1
31.1
19.4
KPH
110 P
110
587
513
420
370
291
254
199
169
122
80.5
59.9
33.9
21.4
KPH
130 P
130
673
588
480
425
339
295
231
195
141
92.8
69.1
39
25.2
KPH
140 P
140
713
623
508
450
361
315
247
208
151
99.3
74
41.8
27.2
KPH
150 P
150
761
664
541
480
367
323
261
222
162
107
79.4
44.8
29.1
KPH
170 P
170
859
748
609
542
421
368
299
254
185
122
90.7
51.2
33
KPH
190 P
190
948
825
671
599
472
416
336
287
209
138
103
58
36.9
KPH
210 P
210
1040
901
732
656
526
464
374
319
232
153
114
64.4
40.8
KPH
245 P
245
1160
1010
817
736
606
534
431
368
268
177
132
74.4
47.5
KPH
255 P
255
1200
1040
846
763
635
559
451
384
279
184
137
77.5
49.5
KPH
265 P
265
1240
1070
871
787
660
582
469
400
292
192
143
80.8
51.5
KPH
290 P
290
1020
1000
854
772
650
576
473
427
334
226
169
92.8
56.3
KPH
320 P
320
1120
1090
938
848
714
633
519
469
366
248
185
102
62.1
KPH
355 P
355
1270
1240
1060
961
809
718
589
532
409
278
208
114
68.9
KPH
410 P
410
1460
1430
1230
1110
937
832
682
616
474
321
240
132
79.6
KPH
470 P
470
1660
1630
1400
1260
1060
945
775
700
538
365
273
150
91.3
KPH
525 P
525
1860
1820
1570
1420
1190
1060
868
784
604
410
306
168
102
KPH
580 P
580
2060
2010
1740
1570
1320
1170
961
868
667
452
338
186
113
KPH
635 P
635
2260
2210
1900
1720
1450
1280
1050
952
730
495
370
203
123
KPH
700 P
700
2500
2450
2110
1910
1610
1430
1170
1060
805
546
408
224
136
KPH
785 P
785
2800
2740
2350
2120
1790
1590
1300
1180
903
612
458
251
152
KPH
870 P
870
3100
3030
2600
2350
1980
1760
1440
1300
1000
679
507
278
169
KPH
955 P
955
3390
3320
2860
2580
2170
1930
1580
1430
1100
745
557
306
185
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-1 SHEET
64
OF 79
PART – B : NICAD BATTERY
TYPICAL TEMPERATURE DERATING CURVES FOR L-TYPE CELLS
FOR GRAPH PLEASE REFER TO THE HARD COPY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-1 SHEET
65
OF 79
PART – B : NICAD BATTERY
TYPICAL TEMPERATURE DERATING CURVES FOR M-TYPE CELLS
FOR GRAPH PLEASE REFER TO THE HARD COPY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-1 SHEET
66
OF 79
PART – B : NICAD BATTERY
TYPICAL TEMPERATURE DERATING CURVES FORH-TYPE CELLS
FOR GRAPH PLEASE REFER TO THE HARD COPY
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET 67
OF 79
PART – B : NICAD BATTERY
APPENDIX-2 SAMPLE CELL SIZING CALCULATION 1.0
The same load profile as in part – A of this Design Guide is considered. The discharge currents and durations are :
2.0
Since the battery backup is required for more than 4 hours, the low rate discharge type (L) cell is to be considered. As per catalog of Sabnife they do not have any cell which delivers 983 A for one minute in the KPL type of cells. Hence KPM type cell is considered.
3.0
For temperature derating factors and the discharge data for calculating the capacity rating factors, the data of M/s SABNIFE (for KPM type) included in Appendix-1 is considered.
4.0
The end cell voltage selected is 1.16 volts (Ref. item 6.4 of Part – B in this Design guide).
5.0
Min. expected electrolyte temperature is 17°C (Ref. Part – A of this Design guide). The temperature derating factors corresponding to the above temp. applicable for KPM type cells and as read from the curves included in Appendix-1 are 1 min = 0.96 1 hour = 0.97 2 hours/1 hr. 59 min = 0.98 8-10 hrs = 1.0 Hence the load currents as referred to the rated temperature of 25°C are 983 359 I1 = --------- = 1024A, I2= ------ = 370A 0.96 0.97 127 I3 = ------- = 131A, 0.97
13 I4 = ------ = 13A 1.0
6.0
The published discharge data from manufacturers does not indicate discharge ratings at the required end cell voltage of 1.16 volts. Hence these need to be extrapolated from the data available.
6.1
As per catalog of Sabnife they do not have any cell which delivers ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET 68
OF 79
PART – B : NICAD BATTERY
1024 A for one minute in the KPL type of cells. Hence select KPM type. Consider cell KPM 830P : Rated discharge current of KPM830P cell at 1 min is 1160A at an end cell voltage of 1.14 volts. 6.2
The extrapolated discharge data for KPM 830P cell comes to, 1 Min. 1 hr. 2 hrs. 8 hrs. 9 hrs. 10 hrs.
7.0
1050A 431.5A 305A 102.5A 91.1A(by interpolation) 82A
The performance factors (KT) are, 1 Min. 1 hr. 2 hrs. 8 hrs. 9 hrs. 10 hrs.
8.0
-
-
830/1050 830/431.5 830/305 830/102.5 830/91.1 830/82
=0.79 = 1.923 =2.721 = 8.097 = 9.109 =10.122
The cell sizing worksheet is filled up using the above data and the required cell size is 898 AH. determined as enclosed.
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-2
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET 69
DC SYSTEM
OF 79
PART – B : NICAD BATTERY
Project :
Date :
Lowest Expected Electrolyte Temp : 17oC
(1)
Per -iod
(2)
Load (Amperes)
Minimum Cell Voltage : 1.16V DC
(3) Change in Load (Amperes)
(4) Duration of Period (minutes)
Cell Mfg. : SAB NIFE
(5) Time to End of Section (minutes)
(6) Capacity Rating factor at T Min. rate (KT)
Cell Type : KPL 1440P
(7) Temperatu-
re Derating factor for T min. Tt
Sized By : RRN
(8) Required Section Size or (3)x(6)x(7) = Rated AH
Pos. Value
Neg. Value
LOAD DATA : A1= 983 A, M1= 1 Min; A2 = 359 A, A3= 127 A, M3= 60 Min; A4 = 13 A, A5= A, M5= Min; A6 = A, M6 = Min.
M2 = 59 Min. M4 = 480 Min.
Section - 1: First Period only - If A2 is greater than A1, go to Section-2 1 A1=983 A1-0=983 M1=1 T=M1=1
Section - 2: First Two Periods only - If A3 is greater than A2, go to Section-3 1 A1=983 A1-0=983 M1=1 T=M1+M2=60 2 A2=359 A2-A1= -624 M2=59 T=M2=59
Section - 3: First Three Periods only - If A4 is greater than A3, go to Section-4 1 A1=983 A1-0=983 M1=1 T=M1+...+M3=120 2 A2=359 A2-A1= -624 M2=59 T=M2+M3=119 3 A3=127 A3-A2= -232 M3=60 T=M3=60
Section - 4: First Four Periods only - If A5 is greater than A4 go to Section-5 1 A1=983 A1-0=983 M1=1 T=M1+...+M4=600 2 A2=359 A2-A1= -624 M2=59 T=M2+...+M4=599 3 A3=127 A3-A2= -232 M3=60 T=M3+M4=540 4 A4=13 A4-A3= -114 M4=480 T=M4=480
0.79 Sec.-1
1/0.96=1.042 Total
809 809
1.92 1.92 Sec.-2
1/0.97=1.031 1.031 Sub Total Total
1946
2.72 2.72 1.92 Sec.-3
1/0.985=1.015 1.015 1.031 Sub Total Total
2714
10.12 10.12 9.11 8.10 Sec.-4
1.0 1.0 1.0 1.0 Sub Total Total
9948
Sec.-5
Sub Total Total
1946 711
2714 532
9948 596
*** ***
1235 1235 ***
1723 459 2182 ***
6315 2114 923 9352 ***
Section - 5: First Five Periods only - If A6 is greater than A4 go to Section-6 1 A1= A1-0= M1= T=M1+...+M5= 2 A2= A2-A1= M2= T=M2+...+M5= 3 A3= A3-A2= M3= T=M3+...+M5= 4 A4= A4-A3= M4= T=M4+M5= 5 A5= A5-A4= M5= T=M5= ***
Section - 6: IF LOAD CYCLE HAS MORE THAN 5 LOAD PERIODS, CONTINUE FURTHER IN SIMILAR MANNER.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-2 SHEET 70
OF 79
PART – B : NICAD BATTERY
Section - 7: Random Equipment Load only (if needed) R AR= AR-0= MR=
T=M+R=
Section - 8: Maximum Section Size = 809
Section - 9: Random Section Size = -
Section - 10: Design margin Factor = 1.0
Section - 11: Aging Factor = 1.11
Section - 12: Uncorrected size = (8) + (9)= 809+ - = 809
Section - 13: All capacity required = (10) x (11) x (12) = 1.0 x 1.11 x 809 = 898 AH
Section - 14: Select the next higher standard size of the cell.
Section - 15: Therefore AH capacity of the cell = 910 AH
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-3
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
71
OF 79
PART – B : NICAD BATTERY
APPENDIX-3 COMPARISON OF Ni-Cd BATTERIES WITH LEAD ACID BATTERIES Some technical details of lead-acid and Ni-Cd battery cells are compared. Lead-Acid
Ni-Cd
a) Nominal voltage
2.0
1.2
b) Open Circuit voltage
2.05
1.28
c) Float charge voltage
2.15-2.3
1.4-1.5
d) Boost charge voltage
2.4-2.75
1.55-1.7
e) Final discharge voltage
1.75-1.85
1.00-1.16
f) Ah Efficiency
85-90%
Approx. 70%
g) Watt-hour Efficiency
68-75%
50-60%
h) SG
1.215+.01 at 27°CDRL
1.17-1.19 at 20°C
i) Maintenance Interval months :
3-12
6-12
j) Optimum battery room temperature
27°CDRL
20°-25°C
k) Loss of rated capacity per oC
For temp below 25°C Approx: : 0.43%
For temp below 20°C 0.5%
l) Life-Years:
a) Lead - antimony 14-18 years
m) Loss in life for every 8°10°Cincrease in electrolyte temp:above 25°C
b) Lead-Calcium: 20years
25 years
c) Plante : 20-25 years 50%
15%
ISSUE R3 FORM NO. 120 R1
SECTION: APPENDIX-3
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SHEET
DC SYSTEM
72
OF 79
PART – B : NICAD BATTERY
Project :
Date :
Lowest Expected Electrolyte Temp :
(1)
Per -iod
Minimum Cell Voltage :
Cell Mfg. :
(2)
(3)
(4)
(5)
Load
Change in Load (Amperes)
Duration of Period (minutes)
Time to End of Section (minutes)
(Amperes)
(6) Capacity Rating factor at T Min. rate (KT)
Cell Type :
(7) Temperatu re Derating factor for T min. Tt
Sized By :
(8) Required Section Size or (3)x(6)x(7) = Rated AH Pos Value
Neg. Value
LOAD DATA : A1= A3= A5=
A, A, A,
M1= M3= M5=
Min; Min; Min;
A2 = A4 = A6 =
A, A, A,
M2 = M4 = M6 =
Min. Min. Min.
Section - 1: First Period only - If A2 is greater than A1, go to Section-2 1 A1= A1-0= M1= T=M1= Sec.-1
Total
*** ***
Sec.-2
Sub Total Total
***
Sub Total Total
***
Sub Total Total
***
Sub Total Total
***
Section - 2: First Two Periods only - If A3 is greater than A2, go to Section-3 1 A1= A1-0= M1= T=M1+M2= 2 A2= A2-A1= M2= T=M2=
Section - 3: First Three Periods only - If A4 is greater than A3, go to Section-4 1 A1= A1-0= M1= T=M1+...+M3= 2 A2= A2-A1= M2= T=M2+M3= 3 A3= A3-A2= M3= T=M3= Sec.-3
Section - 4: First Four Periods only - If A5 is greater than A4 go to Section-5 1 A1= A1-0= M1= T=M1+...+M4= 2 A2= A2-A1= M2= T=M2+...+M4= 3 A3= A3-A2= M3= T=M3+M4= 4 A4= A4-A3= M4= T=M4= Sec.-4
Section - 5: First Five Periods only - If A6 is greater than A4 go to Section-6 1 A1= A1-0= M1= T=M1+...+M5= 2 A2= A2-A1= M2= T=M2+...+M5= 3 A3= A3-A2= M3= T=M3+...+M5= 4 A4= A4-A3= M4= T=M4+M5= 5 A5= A5-A4= M5= T=M5= Sec.-5
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: APPENDIX-3 SHEET
73
OF 79
PART – B : NICAD BATTERY
Section - 6: IF LOAD CYCLE HAS MORE THAN 5 LOAD PERIODS, CONTINUE FURTHER IN SIMILAR MANNER.
Section - 7: Random Equipment Load only (if needed) R AR= AR-0= MR=
T=M+R=
Section - 8: Maximum Section Size =
Section - 9: Random Section Size =
Section - 10: Design margin =
Section - 11: Aging Factor =
Section - 12: Uncorrected size = (8) + (9)=
Section - 13: All capacity required = (10) x (11) x (12)= AH
Section - 14: When AH capacity required is larger than the nearest standard cell, the next larger size cell is required.
Section - 15: Therefore AH capacity of the cell = AH
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: FACING SHEET SHEET
74
OF 79
PART – C : BATTERY CHARGER
PART-C BATTERY CHARGER
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
75
OF 79
PART – C : BATTERY CHARGER
1.0
SCOPE This section outlines the recommendations for the selection of types, rating & scheme for Battery Charger for stationary lead acid and Nickel Cadmium batteries used in power plants, industrial plants and chemical plants.
2.0
RECOMMENDED PRACTICE
2.1
Type
2.1.1
Static type Battery Chargers shall be used.
2.1.2
Silicon Controlled Rectifiers (SCR) type battery chargers are provided for both float and boost chargers.
2.2
Scheme
2.2.1
The charging equipment shall be suitable for charging each battery in float as well as in boost mode. The float charger should be provided with Automatic Voltage Regulator to maintain the output voltage within +1% of the set value under all load conditions and for an input voltage variation of +10% and frequency variation of +5%. Boost charging mode should have current control and limiting facility. The boost charger shall be provided with automatic constant current regulator to maintain the current output within +2% of the set value for AC input voltage and frequency variation of +10% and +5% respectively. The load limiting feature shall be provided for the chargers.
2.3
Type and quantity of chargers
2.3.1
Wherever 2x100% capacity batteries are provided for each service, 2x100% combined float cum boost charger shall be provided (For ex. battery chargers for I&C systems). Typical scheme of battery and charger connection is shown in sketch no. TCE.M2-EL-CW-S-2631 R0.
2.3.2
Wherever individual battery is provided for each service/system following chargers shall be provided. (a)
In a multiple unit power stations, battery charger with separate float and boost charging units shall be provided for each battery. ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
76
OF 79
PART – C : BATTERY CHARGER
Typical scheme of battery and charger connection is shown in sketch no. TCE.M2- EL-CW-S-2633 R0. (b)
2.3.4
For unit loads of each gas turbine, coal handling plant, switchyard etc. one battery, 2x100% combined float cum boost charger shalls be provided. Typical scheme of battery and charger connection is shown in sketch no. TCE.M2-EL-CW-S2632 R0.
Type and Quantity of chargers The requirement of type and standby chargers based on different types of plants and unit sizes are presented in Table below:
Sl.No .
Type of Plant
1.0
Coal/lignite based power plant Unit upto 250MW. Unit Load
1.1 1.1.1
Station Load 1.1.2 1.1.3
Coal handling plant(CHP) I & C System
1.1.4
Switchyard
1.2 1.2.1
500MW Unit Unit loads
1.2.2
Control loads
1.2.3
Station loads
1.2.4
Coal handling plant(CHP) I & C System
1.2.5
Quantity of Batteries Provided
Quantity of Main Chargers
Type of Charger
Quantity of Standby Chargers
Remarks
1X100% for each unit
One per battery
Float & Boost
One common float charger for unit load &station load
Float charger sizing-One unit load+stati-on load
1x100% for station load 1X100%
One per battery One per battery One per battery One per battery
Float & Bbost Float cum Boost Floot cum Boost Float cum Boost
Float cum Boost - 1no NIL.
CHP loads
One per battery
Float & Boost
Float & Boost1no
Unit power loads
One per battery One per battery One per battery One per
Float & Boost Float & Boost Float cum Boost Floot cum
Float & Boost1no Float & Boost1no Float cum Boost- 1no NIL.
Unit control loads Station loads
2x100% 1x100%
2X50% for power & control loads but feeding only power loads. 1X50% for control loads 1X100% 1X100% 2x100%
Float cum Boost- 1no
I&C system loads Swyd. load
CHP loads I&C system ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
77
OF 79
PART – C : BATTERY CHARGER
battery One per battery
Boost Float cum Boost
One per battery One per battery One per battery
Float cum Boost Float cum Boost Float cum Boost
Float cum Boost- 1no Nil
1X100%
One per battery
Float cum boost
Float cum boost- 1no
Complete unit +station loads
2X100% Batteries for a group of DG Sets (in one block) 1x100%
One per battery
Float cum Boost
Nil
Complete DG Set loads in one block
One per battery
Float cum Boost
Float cum Boost- 1no
Station loads
2X100% for complete plant
One per battery
Float cum Boost
Nil
Complete Unit & Station loads
2X100% for complete plant
One per battery
Float cum Boost
Nil
Complete Plant loads.
1.2.6
Switchyard
1x100%
2.0
Gas Turbine power plant. For all unit sizes Unit loads
1x100%
2.1 2.1.1 2.1.2 2.1.3
STG loads & Station loads I & C System
3.0 3.1
DG Plants Unit size upto 20 MW
3.1.1
Unit & Station loads DG Power plant Independent Power Plant (IPP) Unit loads in one block
3.2
3.2.1
3.2.2
Station loads
4.0
Hydro Power Plants All Unit Sizes
4.1
5.0 5.1 5.1.1
Industrial Plants All Types of Plants Complete Plant Loads
2X100% 2x100%
Float cum Boost- 1no
NIL.
loads Swyd. load
two unit loads STG loads +Station loads I&C system loads
2.4
Capacity
2.4.1
Float charger
2.4.2
The float charger for DC power and control supply system of plant shall be capable of meeting the following load requirements.
ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
DC SYSTEM
SECTION: WRITEUP SHEET
78
OF 79
PART – C : BATTERY CHARGER
(a)
Float charger current of the associated battery.
(b)
Continuous load of the DC system :
Continuous load of the DC system is obtained from the battery sizing calculations made as per Design Guide for Battery, Part – A and Part – B. It shall be recognised that 10 hour rating indicated in battery sizing does not consider the continuous load of the excitation system, boiler DC control panels, etc. As such the DC loads which exist during the normal running of the plant shall also be considered over and above the 10 hour loads indicated for the battery. (c)
Largest DC motor current.
(d)
25% margin shall be considered over and above loads.
2.4.3
The float charger for I&C system battery shall be capable of meeting the highest of the I&C system loads which will occur during the starting or tripping/shut down or running of the unit/plant.
2.5
Boost charger The rating of the Boost charger should be adequate to charge the battery after the battery is completely discharged within a period of 10 hours for lead acid and 8 hours for Nickel-Cadmium batteries. The boost charging voltage for lead acid battery will be between 2.40 to 2.75 V/cell and for nickel cadmium it will be between 1.53 V to 1.67 V for high discharge type (H), 1.54V to 1.69V for medium discharge type (M) and 1.55V to 1.7V for low discharge type (L). During boost charging of battery, the load is fed by the float charger. During boost charging the battery, the battery shall be disconnected from the load to avoid uneven charging of the battery bank).
3.0
DISCUSSION
3.1
The spare charger unit wherever provided should have facilities for connection to the DC distribution board. Drawing no. TCE.M2-ELCW-S-2633 R0 shows typical spare charger connection. The design of the leads from the spare charger should be such that chance of wrong connection (reversal of polarity) is totally eliminated.
3.2
The leads interconnecting the Battery, Charger and DC distribution board should be single core, armoured cables. The cable size should ISSUE R3 FORM NO. 120 R1
TATA CONSULTING ENGINEERS TCE.M6-EL-7186000
SECTION: WRITEUP SHEET
DC SYSTEM
79
OF 79
PART – C : BATTERY CHARGER
be rated for the emergency loads (2 hour or 1 hour of battery). The armouring of the cable should be of aluminium. 3.3
The cables shall be sized considering the voltage drop within acceptable limits of 5% from the battery to load terminal.
3.4
The Blocker diodes connected between the end cell Tap and the DC bus should be rated to carry the 1 min. output of the battery. Two diodes in series are preferred to safeguard the D.C system against short circuiting of one diode.
3.5
The ripple content of the DC output nominal voltage of the Float and Boost charger shall be within +1% of the nominal output voltage when battery is disconnected.
3.6
The transformer rating of the float & boost charger offered by the Vendor shall be checked for it's suitability by asking the sizing calculation from the charger supplier.
4.0
ENCLOSURES i.
Float cum boost charger with 2x100% batteries
TCE.M2-EL-CW-S-2631 R0
ii.
Float cum boost charger with 1x100% battery
TCE.M2-EL-CW-S-2632 R0
iii.
Float and boost charger 2633 R0 with 1x100% battery
TCE.M2-EL-CW-S-
ISSUE R3 FORM NO. 120 R1