From LTE basics to 9155 LTE RF Design
September 2009
LTE Basics OFDM Fundamentals
2 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
3 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM
4 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Waveform
5 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Sending modulation symbol in parallel
6 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Symbol extract
7 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM
8 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Orthogonality lost
9 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Doppler & frequency offset effects
10 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Multi-path effect
11 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Multi-path effect
12 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM CP length
13 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM OFDM scalable
14 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of OFDM Full Tx/Rx chain
15 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Basics DOWNLINK STRUCTURE
16 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Physical Channels
17 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Channels Mapping
18 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Downlink: Frame Format, Channel Structure & Terminology
19 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Downlink: Number of Resource Blocks & Numerology
20 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink common Reference Signal structure
Reference signal symbol distribution sequence over 12 subcarriers x 14 OFDM symbols. The Reference signal sequence is correlated to Cell ID. 21 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink common Reference Signal structure per number of antenna port
22 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PBCH, SCH Time and frequency location
23 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Basic of cell search
24 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Primary BCH & Dynamic BCH
25 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Primary BCH & Dynamic BCH
26 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PCFICH & PHICH
27 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PDCCH
28 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PDCCH: DCI formats carried DCI includes resource assignments and other control information
29 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Shared Channel (DL-SCH)
30 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Power settings PDCCH
PBCH
Based o the simus done by R&D and also on first trials results the DL power settings is detailed in the slides below
31 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Power settings LA 0.x
32 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Power settings LA 1.0 RRH 30W
33 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Power settings LA 1.0 RRH 40W
34 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Basics UPLINK STRUCTURE
35 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
UL Physical Channels
36 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
UL Channels Mapping
37 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
SC-FDMA principle
38 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
SC-FDMA principle
39 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
SC-FDMA Tx/Rx chain
40 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Uplink: Number of Resource Blocks & Numerology
41 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Demodulation Reference Signal & Sounding Reference Signal
42 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Demodulation Reference Signal & Sounding Reference Signal
43 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PUCCH
44 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PUCCH
45 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PUCCH
46 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
PRACH
47 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Radom Access procedures
48 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Basics UL Power Control
49 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
IoT Control Mechanism (Inter-cell Power Control) Setting of Target_SINR_dB determines the IoT operating point Especially in a reuse-1 deployment, it is critical to manage the uplink interference level In LTE, e-NBs can send uplink overload indications to neighbor e-NBs via the X2 interface Power control parameters (i.e. Target SINR) can be adapted based on overload indicators Allows control of the IoT level to ensure coverage and system stability Overload indicator (X-2 interface) PC params
PC params Measure Interference, emit overload indicator
50 | Presentation Title | Month 2008
interference
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Based on overload indicator from neighbor cell, adapt PC params
Fractional Power Control
While using the same target SINR for each user results in very good fairness (as far as power allocation is concerned), it also results in poor spectral efficiency An improved power control scheme called Fractional Power Control adjusts the target SINR in relation to the UE’s path loss to its serving sector UE_TxPSD_dBm = a x PL_dB + Nominal_Target_SINR_dB + UL_Interference_dBm a is called the fractional compensation factor, and is sent via cell broadcast; 0 < a<1 Target_SINR_dB = Nominal_Target_SINR_dB - (1-a) x PL_dB Target SINR increases with decreasing path loss Flexible trade-off between cell edge rate and average spectral efficiency 51 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Target SINR
Improved Power Control Based on Neighbor Cell Path Loss
Path loss to the serving cell is not indicative of the amount of interference a user will generate to neighboring sectors An improved power control scheme adjusts the target SINR in relation to DPL_dB = PL_strongestNeighborCell_dB – PL_servingCell_dB UE_TxPSD_dBm = PL_dB + Nominal_Target_SINR_dB + (1-b) x DPL_dB + UL_Interference_dBm (1-b) x DPL_dB is sent to each UE via higher layer (RRC) signaling
Target_SINR_dB = Nominal_Target_SINR_dB + (1-b) x DPL_dB
Target SINR increases with increasing “radio position”
52 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Target SINR
LTE Basics Scheduler
53 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler
54 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
UL Scheduling mechanism
55 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL Scheduling mechanism
56 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Channel Quality Indicator, Pre-coding Matrix Indicator, Rank Indicator
57 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler weighted proportional fair
58 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler proportional fair principles
59 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler proportional fair principles
60 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler proportional fair principles
61 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheduler proportional fair principles
62 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Frequency Non-Selective Scheme 6
Single priority metric formed and used in the first stage of the MPE algorithm
5
4
3
Priority Metric
Then MPE algorithm continues as in FSS scheme
2
1
UE 1 UE 2 UE 3
0
UE 3 UE 2 UE 1 1
2
3
4
5
6
7
8
9
Resource Unit Index
The SRS SYNC SINR is a scalar quantity per user that is formed by averaging the SRS SINR across PRBs and then filtered in time; used to form a single priority metric, which is replicated and used for all PRBs To support a large number of UEs, the SRS period needs to be reduced given the multiplexing capabilities (max of 8 UEs per SRS transmission per frequency comb)
The regular MPE algorithm as in the FSS algorithm is then utilized, which minimizes testing/verification to just the new code introduced Currently also investigating an intermediate solution where the resolution of the frequency selective scheduler is reduced by a certain factor in order to retain some frequency selectivenessin the scheduling while reducing complexity (study in progress) 63 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Frequency Re-use strategies
Frequency re-use1
64 | Presentation Title | Month 2008
Fractional Frequency re-use
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Frequency Re-use strategies Soft Frequency re-use or dynamic frequency re-use
65 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Basics Link adaptation
66 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
DL MCS table
67 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
UL MCS table
68 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Basics Multi Antenna Technology Roadmap
69 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
MIMO Configuration
70 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Antennas Configuration
71 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Antennas Configuration
72 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Spatial Multiplexing
73 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LA1.0 Scheme supported
74 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Scheme supported after LA1.0
75 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Link Budgets Uplink Link Budget Considerations
Uplink Link Budget Main Principles
Link Budget is performed for one mobile located at cell edge (for each service) transmitting at max power The IoT (Interference over Thermal Noise) experienced by this user on the UL depends on the frequency reuse scheme and the service data rate and corresponding SINR that is guaranteed for cell edge users
UPLINK Analysis is an MAPL analysis
MAPL Max UE transmit Power Required Received Signal cell radius
77 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Main Principles UL link budget elaborated for user of service k at cell edge transmitting at maximum power
Uplink Path
Transmit Power
UE Transmit power (23dBm)
Losses and Margins
Feeder losses Penetration Loss (outdoor/indoor) Shadowing Margin
Gains
eNode-B Antenna Gain UE Antenna Gain
Receiver Sensitivity
Derived from SINR performances
Handoff Gain Body Loss
78 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Interference
= MAPL
Interference Margin
Maximum Allowable Path Loss
Uplink Link Budget Rationale Behind LKB Formulation UL Rates 128kbps 256kbps 512kbps
RangeUL_Guar_Serv
Link budgets are formulated for one service that is to be guaranteed at cell edge (RangeUL_Guar_Serv) For more limiting service rates link budgets are formulated under the assumption they are not guaranteed at cell edge but at a reduced coverage footprint
79 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Example for one service
Dense Urban (2.6GHz) Required Data Rate No. Resource Blocks Required MCS Used Bandwidth Target C/I eNode-B Noise Figure eNode-B Sensitivity Antenna Gain Cable & Connector Losses Body Losses Additional UL Losses Cell area coverage probability Overall standard deviation Shadowing Margin Handoff Gain Fast Fading Margin Penetration Margin Fixed IoT UE Antenna Gain UE Max Transmit Power MAPL UL Cell Range 80 | Presentation Title | Month 2008
PS 128 128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.5 dB -117.2 dBm 18.0 dBi 0.5 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 128.7 dB 0.46 km
No. Resource Blocks to Reach Data Rate Optimal Modulation & Coding Scheme (MCS) Signal to Interference Ratio per Resource Block Noise Figure of the eNode-B is supplier dependent Based on SINR, Noise Figure, Thermal Noise, Bandwidth Used
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Receiver Sensitivity
eNode-B Receiver Sensitivity Minimum required signal level to reach a given quality (SINR target) when facing only thermal noise SensitivitydBm
= SINRdB + 10.log10(F.Nth.NRB.WRB)
Where: F: eNode-B Noise figure in dB
Service dependent
Nth: Thermal noise density, 10log(Nth) =-174 dBm/Hz SINRdB: Signal to Interference ratio per Resource Block NRB: Number of resource blocks (RB) required to reach a given data rate WRB: Bandwidth of one Resource Block – One Resource Block is composed of 12 subcarriers, each of a 15kHz bandwidth – so WRB = 180kHz.\ 81 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget SINR Performances - Overview
SINR Target depends on: eNode-B equipment performance
Radio conditions (multipath fading profile, mobile speed) Receive diversity (2-way by default or optional 4-way) Targeted data rate and quality of service
The Modulation and Coding Scheme (MCS) Max allowed number of HARQ transmissions (Maximum of 4 on UL) HARQ Operating Point – 1% Post HARQ BLER target considered by default Derived from link level simulations or better by equipment measurements (lab or on-field measurements)
82 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget SINR Performances - Channel Model
In reality, a mix of multipath conditions exist across a typical cell For coverage assessment, the worst case model should be considered
ITU VehA multipath channel model are considered a good compromise For LTE some evolved multipath channel models have been defined such as EVA5Hz or EPA5Hz These are an extension of the VehA and PedA models used in UMTS to make them more suitable for the wider bandwidths encountered with LTE, e.g. >5MHz Main difference lies in the definition of a Doppler frequency instead of a speed, making the model useable for different frequency bands All SINR performances used in the link budget are for all EVehA3 and EVehA50 channel models
83 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget SINR Performances - Link Level Results for 10MHz Bandwidth (50 RB) LTE UL Throughput v.s. SNR, max 4HARQ Tx, EPedB-3km
40000
MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS MCS
35000
Throughput (kbps)
30000
25000
20000
= = = = = = = = = = = = = = =
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
MCS = 1 MCS = 3 MCS = 5 MCS = 7 MCS = 9 MCS = 11 MCS = 13 MCS = 15 MCS = 17 MCS = 19 MCS = 21 MCS = 23 MCS = 25 MCS = 27 T'put (kbps)
15000
10000
5000
0 -10
-5
0
5
10
15
SINR (dB)
84 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
20
25
30
Uplink Link Budget SINR Performances - Selection of Optimal SINR Figures
There are a number of possible solutions that can be used to provide a given throughput – solutions comprise a combination of: Modulation & Coding Scheme (MCS) Number of Resource Blocks (RB) Optimization Objective: Select # RB’s and MCS so as to maximize the receiver sensitivity and thus the link budget While at the same time respecting the selected HARQ operating point (1% post HARQ BLER objective)
85 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget SINR Performances - Summary for UL 10MHz Bandwidth (1x2 RxDiv)
Performance figures for typical UL link budget rates Number of RB’s
SINR (include margins) MCS, TBS and # HARQ Transmissions Service
VoIP
PS 64
PS 128
PS 256
PS 384
PS 512
PS 768
Bit Rate
12.2
64
128
256
384
512
768
1000
2000
MCS
6
6
8
10
10
10
10
10
10
TBS
328
176
392
872
1384
1736
2792
3496
6968
QPSK
QPSK
QPSK
QPSK
QPSK
QPSK
QPSK
QPSK
QPSK
Post HARQ BLER
1%
1%
1%
1%
1%
1%
1%
1%
1%
Required # of RB
1
2
3
5
8
10
16
20
40
-3.6 dB
-3.0 dB
-2.4 dB
-2.9 dB
-3.1 dB
-3.4 dB
-2.9 dB
-3.3 dB
Modulation
SINR (EVehA 3km/h) -3.7 dB
PS 1000 PS 2000
Rx Sensitivity -123 dBm -120 dBm -117 dBm -114 dBm -113 dBm -112 dBm -110 dBm -109 dBm -106 dBm
86 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget SINR Peformances - MCS and TBS Tables
Some Background Info Modulation & Coding Scheme (MCS) This determines the Modulation Order which in turn determines the TBS Index
Number of Resource Blocks For a given MCS the Transport Block Size (TBS) is given different numbers of resource blocks TBS Table
MCS Table NPRB MCS Index, IMCS
Modulation Order, QM
TBS Index, ITBS
0 1 2 3 …
QPSK QPSK QPSK QPSK QPSK
0 1 2 3 4
87 | Presentation Title | Month 2008
ITBS 0 1 2 3 4 5 6 …
1 16 24 32 40 56 72 328 104
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
2 32 56 72 104 120 144 176 224
3 56 88 144 176 208 224 256 328
4 88 144 176 208 256 328 392 472
… 120 176 208 256 328 424 504 584
Uplink Link Budget Implementation Margins
SINR performances from link level simulations assume ideal scheduling and link adaptation – reality will not be as good … For example in the downlink, we consider: Error free CQI feedback, Perfect PDCCHPCFICH decoding, CQI feedback rate 1/20ms, etc.
To account for such ideal assumptions there are currently two key elements to the margins incorporated into in SINR performances used in UL budgets today:
Implementation margin to account for the assumptions implicit in the link level simulations used to derive the SINR performances Currently considered to be ~1dB No variability is assumed for different environments or UE mobility conditions
Will be tuned based on SINR measurements (not yet performed)
ACK/NACK margin to account for the puncturing of ACK/NACK onto the PUSCH A 1dB margin is applied for VoIP services and 0.5dB for higher data throughputs
88 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Consideration of Explicit Diversity Gains
The SINR performance figures considered by Alcatel-Lucent in UL and DL link budgets are based on link level simulations that already account for the corresponding transmit and receive diversity gains, i.e. UL: default 1x2 Rx Diversity 2RxDiv gain accounted for in the SINR figures To account for 4RxDiv on the UL an additional 2-3dB gain is considered on the 2RxDiv SINR figures
DL: default 2x2 Tx Diversity SFBC pre-coding gains + 2RxDiv gain at the UE are accounted for in the SINR figures Note that an additional power combining gain is considered at the transmit side, i.e. for a 2 x 40W TxDiv configuration a 80W transmit power is applied in DL link budgets
89 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
INTERNAL NOTE – Noise Figure The Noise Figure of the eNode-B is supplier dependent Typically the Noise Figures of e-NodeBs range between 2 to 3dB Typical RRH Noise Figures for ALU product (June 2009)
RRH Type RRH2x (lower 700) 900 MC-TRX (1800) MC-RRH (1800) AWS RRH2x (2600) TRDU (2600)
90 | Presentation Title | Month 2008
Typical Noise Figure 2.2dB TBD - 2.5dB (assumed) 3 dB 2.5 dB TBD – 2.5dB (assumed) 2.6 dB 2.6 dB
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Exercise
Compute eNode-B sensitivity in VehA 3km/h for VoIP 12.2kbps @ 1% Post-HARQ BLER
For PS 384kbps @ 1% Post-HARQ BLER
Alcatel-Lucent equipment: Typical eNode-B Noise Figure: 2.5dB SINR figures: -3.7 dB for VoIP 12.2, -3.3dB for PS384
ANSWER: Sensitivity: -122.6 dBm for speech, -113.2 dBm for PS384
91 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Example for one service
Dense Urban (2.6GHz) Required Data Rate No. Resource Blocks Required MCS Used Bandwidth Target C/I eNode-B Noise Figure eNode-B Sensitivity Antenna Gain Cable & Connector Losses Body Losses Additional UL Losses Cell area coverage probability Overall standard deviation Shadowing Margin Handoff Gain Fast Fading Margin Penetration Margin Fixed IoT UE Antenna Gain UE Max Transmit Power MAPL UL Cell Range 92 | Presentation Title | Month 2008
PS 128 128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.5 dB -117.2 dBm 18.0 dBi 0.5 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 128.7 dB 0.46 km
Typical gain of Tri-sectored antenna, depends on frequency band Depends on feeder type, length and frequency band 3dB body loss when speech usage (UE near head), 0dB body loss when data usage
0dBi by default Depends on UE Power Class
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget UE Characteristics
LTE UE Max Transmit Power Depends on the power class of the UE
Only one power class is defined in 3GPP TS 36.101: 23dBm output power is considered with a 0 dBi antenna gain; ± 2dB tolerance in the standard WCDMA UE Max Transmit Power Multiple power classes were defined in 3GPP TS 25.101, the most prevalent WCDMA UE’s today are considered to be class 3 (24dBm +1/-3dB) The corresponding tolerance ranges for both WCDMA and LTE terminals are in fact the same: 4dB range 21-25dBm While the nominal Tx powers differ by 1dB Currently consider 23dBm in UL LTE link budgets 93 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Example for one service
Dense Urban (2.6GHz) Required Data Rate No. Resource Blocks Required MCS Used Bandwidth Target C/I eNode-B Noise Figure eNode-B Sensitivity Antenna Gain Cable & Connector Losses Body Losses Additional UL Losses Cell area coverage probability Overall standard deviation Shadowing Margin Handoff Gain Fast Fading Margin Penetration Margin Fixed IoT UE Antenna Gain UE Max Transmit Power MAPL UL Cell Range 94 | Presentation Title | Month 2008
PS 128 128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.5 dB -117.2 dBm 18.0 dBi 0.5 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 128.7 dB 0.46 km
Shadowing margin due to shadowing standard deviation Handoff gain Depends on depth of coverage (e.g. deep indoor, indoor daylight, outdoor). Also accounts for the indoor shadowing margin
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Shadowing Margin
Shadowing Margin: Slow fading signal level variations due to obstacles
Modelled (in dB) as a Gaussian variable with zero-mean and standard deviation depending on the environment, typically 6 to 8dB The shadowing standard deviation can include the variability associated with the indoor penetration. However, it is recommended to consider this as part of the penetration margin Impact on link budget : Take a margin to ensure the received signal is well received (above required sensitivity) with a given probability Typically 95% in Dense Urban, Urban and Suburban and 90% in Rural Computation as for UMTS and CDMA.
95 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Handoff Gain Unlike UMTS/WCDMA or CDMA, there is no soft-handoff functionality for LTE
No soft-handoff gain considered for LTE Far too pessimistic to only consider the shadowing margin computed with one cell unless considering an isolated cell A mobile at the cell edge can still handover to a neighbor cell with more favorable
shadowing, i.e. a lower path loss consider a Handoff Gain (or best server selection gain) Reference article: Analysis of fade margins for soft and hard handoffs, Rege, K.M.; Nanda, S.; Weaver, C.F.; Peng, W.-C., PIMRC 95 INTERNAL NOTE: This hard handoff gain can be considered for any system without soft handoff. So this is the case for GSM. However no gain is typically applied in GSM. For LTE the sampling frequency for handoff decisions as well as the handoff speed itself is much faster than GSM this leads to an LTE handoff gain not much less than that considered for WCDMA.
96 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Handoff Gain - Example Antenna Height
30 m
K2 Propagation Model
35.2
Shadowing Correlation
0.5
Hysteresis
2 dB
HO sampling time # of samples to decide HO
20 msec 4 samples
Correlation distance
50 m
Cell Range
100%
Typical for Suburban Incar & Rural
Typical for Dense Urban, Urban and Suburban Indoor
Shadowing Standard Deviation
6 dB
6 dB
7 dB
7 dB
8 dB
8 dB
10 dB
10 dB
Cell Area Coverage Probability
90%
95%
90%
95%
90%
95%
90%
95%
Cell Edge Coverage Probability
71%
84%
73%
85%
75%
86%
78%
88%
Handoff Hysteresis
2 dB
2 dB
2 dB
2 dB
2 dB
2 dB
2 dB
2 dB
Shadowing Margin (no SHO gain)
3.3 dB
5.9 dB
4.3 dB
7.2 dB
5.4 dB
8.7 dB
7.7 dB
11.7 dB
SHO Gain
2.7 dB
2.8 dB
3.1 dB
3.4 dB
3.6 dB
3.9 dB
4.7 dB
5.0 dB
3 km/h - HHO Gain
2.3 dB
2.5 dB
2.8 dB
3.1 dB
3.4 dB
3.6 dB
4.4 dB
4.8 dB
50 km/h - HHO Gain
2.1 dB
2.2 dB
2.6 dB
2.8 dB
3.1 dB
3.3 dB
4.1 dB
4.4 dB
100 km/h - HHO Gain
2.0 dB
2.0 dB
2.4 dB
2.6 dB
2.8 dB
3.0 dB
3.7 dB
4.0 dB
Reference article: Analysis of fade margins for soft and hard handoffs, Rege, K.M.; Nanda, S.; Weaver, C.F.; Peng, W.-C., PIMRC 95 97 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Handoff Gain - Example
Note that the full Handoff Gain is only applicable for UE’s located at the cell edge where we consider one rate guaranteed at the cell edge and others guaranteed within that coverage footprint, the other services will not take 4.0 dB benefit of the full handoff gain Handoff Gain
3.5 dB 3.0 dB 2.5 dB 2.0 dB 1.5 dB 1.0 dB 0.5 dB 128kbps 256kbps 512kbps
UL Rates
0.0 dB 0%
20%
40%
60%
% of Cell Range
Dense Urban, Sigma = 8dB, 95% coverage reliability, 3km/h mobility 98 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
80%
100%
Uplink Link Budget Penetration Margin
The penetration losses characterize the level of indoor coverage targeted by the operator (deep indoor, indoor daylight, window, incar, outdoor, etc) Highly dependent on the wall materials and number of walls/windows to be penetrated It is recommended to consider the penetration margin as a single “worst case” margin as the shadowing standard deviation doesn’t include the indoor penetration variability Typical Penetration Losses at 2GHz Environment
Penetration Margin (dB)
Dense Urban – Deep Indoor
20
Urban - Indoor
17
Suburban - Indoor
14
Rural – Incar
8
99 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
INTERNAL NOTE – Penetration Losses For 700/850/900MHz, lower penetration losses can be considered Note that the frequency dependency of the penetration losses is very materialdependent Typically, we can assume 2dB lower penetration margins compared to those at 2GHz For 2.6GHz, higher penetration losses could be considered Note that the frequency dependency of the penetration losses is very materialdependent Typically, we can assume 2dB higher penetration margins compared to those at 2GHz
100 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Example for one service
Dense Urban (2.6GHz) Required Data Rate No. Resource Blocks Required MCS Used Bandwidth Target C/I eNode-B Noise Figure eNode-B Sensitivity Antenna Gain Cable & Connector Losses Body Losses Additional UL Losses Cell area coverage probability Overall standard deviation Shadowing Margin Handoff Gain Fast Fading Margin Penetration Margin Fixed IoT UE Antenna Gain UE Max Transmit Power MAPL UL Cell Range 101 | Presentation Title | Month 2008
PS 128 128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.5 dB -117.2 dBm 18.0 dBi 0.5 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 128.7 dB 0.46 km
This sensitivity is calculated for noise only. A margin must be considered for the interference above noise: Interference Margin
Interference Margin or IoT
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Interference Margin
Sensitivity figures typical consider only thermal noise, the real interference, Ij, must also be considered (not only the thermal noise) Received Power, C jdBm Sensitivit y dBm InterferenceMargindB Ij InterferenceM argindB 10log Nth W
Interference margin or IoT (Interference over Thermal Noise) A reuse of 1 is typical (option to use schemes such as soft fractional reuse or interference coordination)
The IoT operating point can be set to achieve a minimum data rate at cell edge and/or to match incumbent technology coverage
102 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget WCDMA Noise Rise - What’s Different Between LTE and WCDMA?
By definition, Cell Load and Total Interference rise (“Noise Rise”) are linked:
I i tot _ dB 10log total 10log 1 xUL No W where Itotal is the total received power at the node B (including the useful signal) Differences with LTE Interference from adjacent cells only for LTE (no intracell interference) Max WCDMA cell load is dependent on power control stability No concept of cell load for LTE
Noise Rise (dB)
30 25 20 15 50% cell load 3dB Noise Rise
10 5 0 0
10
20
30
40
50
60
70
Cell Load (%)
103 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
80
90
100
LTE IoT What Determines the IoT for LTE?
The average IoT is dependent upon the targeted cell edge data rate (SINR) The higher the cell edge SINR target, the higher the average IoT
Ultimately there is a point at which the increased IoT can not be sustained with the corresponding SINR Based on system level simulations: 400
9
Average Throughput
Avg and 5% UE Throughput (kbps)
8
Average IoT (dB)
7 6 5 4 3 2 1 0
Cell Edge Throughput
300
200
100
0
-7
-6
-5
-4
-3
-2
-1
0
1
2
0
1
3
4
5
Mean IoT (dB)
Cell Edge SINR Target, TSINR (dB)
104 | Presentation Title | Month 2008
2
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
6
7
8
9
LTE IoT What Determines the IoT for LTE?
For LTE the IoT can be expressed as: IoT = 1 / (1 - RBLoad x FAvg x TSINR)
Where RBLoad = Average % loading of the resource blocks of adjacent cells Under full loading this can be considered to be 100%
FAvg = The average ratio between extracell interference and useful signal received at the eNode-B Based on system level simulations the typical value of FAvg for UL fractional power control is ~0.8 – this is quite comparable to that used for WCDMA
TSINR = SINR target at the cell edge
105 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE IoT The IoT for Targeted LTE Cell Edge Rates? 10 MHz bandwidth - 2RxDiv - Product Release LAx VoIP AMR 12.2 with TTI Bundling
Modulation Coding Rate Max # HARQ Tx Post-HARQ BLER Required # of RB
12.2 QPSK 0.31 4 1% 1
VehA 3km/h VehA 50km/h
-3.7 -2.1 RBLoad FAvg
VehA 3km/h VehA 50km/h
1.8 dB 3.0 dB
PS 8
PS 64
PS 128
PS256
PS 500
PS 1Mbps PS 2Mbps
8 64 128 256 384 500 QPSK QPSK QPSK QPSK QPSK QPSK 0.14 0.35 0.48 0.62 0.61 0.61 4 4 4 4 4 4 1% 1% 1% 1% 1% 1% 1 2 3 5 8 10 SNR Figures @ 2.6GHz (including implementation and ACK/NACK -3.38 -3.4 -2.9 -2.7 -3.3 -3 -3.8 -2.8 -2.6 -2.1 -2.5 -2.5
1000 QPSK 0.62 4 1% 21 margins) -3.3 -2.7
2000 QPSK 0.61 4 1% 41 -3.4 -2.9
100%
IoT = 1 / (1-RBLoad.FAvg.TSINR)
0.8 2.0 dB 1.8 dB
2.0 dB 2.4 dB
2.3 dB 2.5 dB
2.4 dB 3.0 dB
IoT for 100% RB Loading Ranges from 2-3dB for fractional power control – consider 3dB by default in LTE Link Budget 106 | Presentation Title | Month 2008
PS 384
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
2.0 dB 2.6 dB
2.2 dB 2.6 dB
2.0 dB 2.4 dB
2.0 dB 2.3 dB
Uplink Link Budget What Determines the IoT for LTE?
The average IoT is dependent upon the targeted cell edge data rate (SINR) The higher the cell edge SINR target, the higher the average IoT
Based on system level simulations:
100.0 dB
Omni and Directional UE antennas IoT
SINRs resulting in an IoT > 5-6dB is not considered reasonable
10.0 dB
1.0 dB
0.1 dB
Omni UE Antenna
Realistic Cell Edge SINR Operating Range
-6.0 dB
-4.0 dB
-2.0 dB
0.0 dB
Directional UE Antenna
2.0 dB
4.0 dB
Cell Edge SINR Target
107 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
6.0 dB
8.0 dB
Uplink Link Budget Overall MAPL & Cell Range
Overall MAPL for a given service:
MAPLjdB PMaxTXdBm TxgaindB TxlossdB RxgaindB RxlossdB BodylossdB PenetrationdB Sensitivity dBm InterferenceMargindB ShadowingMargindB HOGaindB Transmit Power
Max UE transmit Power Maximum Allowable Pathloss
Losses and Margins Gains
Interference margin extra cell interference
Gains - Losses- Margins
Reference Sensitivity
Reference Sensitivity
Interference
cell radius
•= MAPL 108 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget
MAPLdB Min
Example for Multiple Services
Dense Urban (2.6GHz)
VoIP
MAPL K jdB
1
K 2logR cell
PS 64
PS 128
PS 256
PS 384
PS 512
PS 768
PS 1000
PS 2000
64 kbps
128 kbps
256 kbps
384 kbps
512 kbps
768 kbps
1000 kbps
2000 kbps
1 RB
2 RB
3 RB
5 RB
8 RB
10 RB
16 RB
20 RB
40 RB
MCS 6
MCS 6
MCS 8
MCS 10
MCS 10
MCS 10
MCS 10
MCS 10
MCS 10
Used Bandwidth
180 kHz
360 kHz
540 kHz
900 kHz
1440 kHz
1800 kHz
2880 kHz
3600 kHz
7200 kHz
Target C/I
-3.7 dB
-3.6 dB
-3.0 dB
-2.4 dB
-2.9 dB
-3.1 dB
-3.4 dB
-2.9 dB
-3.3 dB
eNode-B Noise Figure
2.5 dB
2.5 dB
2.5 dB
2.5 dB
2.5 dB
2.5 dB
2.5 dB
2.5 dB
2.5 dB
Required Data Rate 12.2 kbps No. Resource Blocks Required MCS
eNode-B Sensitivity -122.7 dBm -119.6 dBm -117.2 dBm -114.4 dBm -112.9 dBm -112.1 dBm -110.3 dBm -108.8 dBm -106.2 dBm Antenna Gain
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
18.0 dBi
0.5 dB
0.5 dB
0.5 dB
0.5 dB
0.5 dB
0.5 dB
0.5 dB
0.5 dB
0.5 dB
Body Losses
3 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
Additional UL Losses
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
Cell area coverage probability
95%
95%
95%
95%
95%
95%
95%
95%
95%
Overall standard deviation
8.0 dB
8.0 dB
8.0 dB
8.0 dB
8.0 dB
8.0 dB
8.0 dB
8.0 dB
8.0 dB
Shadowing Margin
8.6 dB
8.6 dB
8.6 dB
8.6 dB
8.6 dB
8.6 dB
8.6 dB
8.6 dB
8.6 dB
Handoff Gain
3.6 dB
3.6 dB
3.6 dB
3.0 dB
2.4 dB
2.0 dB
1.5 dB
1.1 dB
0.5 dB
Fast Fading Margin
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
0 dB
Penetration Margin
21 dB
21 dB
21 dB
21 dB
21 dB
21 dB
21 dB
21 dB
21 dB
Fixed IoT
3.0 dB
3.0 dB
3.0 dB
3.0 dB
3.0 dB
3.0 dB
3.0 dB
3.0 dB
3.0 dB
0 dBi
0 dBi
0 dBi
0 dBi
0 dBi
0 dBi
0 dBi
0 dBi
0 dBi
23 dBm
23 dBm
23 dBm
23 dBm
23 dBm
23 dBm
23 dBm
23 dBm
23 dBm
131.1 dB
128.7 dB
125.3 dB
123.1 dB
122.0 dB
119.7 dB
117.8 dB
114.5 dB
0.53 km
0.46 km
0.37 km
0.32 km
0.30 km
0.25 km
0.23 km
0.18 km
Cable & Connector Losses
UE Antenna Gain UE Max Transmit Power
MAPL 131.2 dB UL Cell Range
109 | Presentation Title | Month 2008
0.53 km
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Fractional Power Control – Handling in LKB (4/4)
Respecting the SINR slope (dictated by the fractional power control parameters) means for services requiring very high SINR values that: Substantial reductions in allowable UE transmit power are required The corresponding impact on the link budget is substantial
110 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Propagation Models
For 700, 850 or 900 MHz - Okumura-Hata: K1 = 69.55 + 26.16 x log10(FMHz) - 13.82 x log10(Hb) - a(Hm) + Kc a(Hm) = (1.1 x log10(FMHz) - 0.7) x Hm - (1.56 x log10(FMHz) - 0.8) medium-sized city
K2 = 44.9 -6.55*log10(Hb) For AWS, 1.9GHz or 2.1GHz - COST-231 Hata: K1 = 46.3 + 33.9 x log10(FMHz) - 13.82 x log10(Hb) - a(Hm) + Kc K2 = 44.9 - 6.55 x log10(Hb) For 2.6GHz - modified COST-231 Hata: as COST-231 Hata is limited to 1.5GHz to 2GHz Based on measurements at higher frequencies (2.5GHz & 3.5GHz): K1 = 46.3 + 33.9 x log10(2000) + 20 x log10(FMHz/2000) - 13.82 x log10(Hb) a(Hm) + Kc K2 = 44.9 - 6.55 x log10(Hb) 111 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Uplink Link Budget Impact of TMA (1/3)
Tower Mounted Amplifier (TMA) also called Mast Head Amplifier (MHA)
Vertical Polarisation
Jumper Cable
Impact on link budget
Dual TMA
Slightly Reduce the global Noise Figure Compensate the cable losses 0.4dB DL insertion losses
Antenna
Duplexer
Duplexer
Feeder LNA Duplexer
LNA Duplexer
Jumper Cable
TX / RX
Usage recommended for UL coverage-limited scenarios
TXdiv / RXdiv
eNode-B
112 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Tower Mounted Amplifier Impact of TMA (2/3)
Friis formula to compute the overall noise figure of the receiver chain with TMA:
noverall nTMA nelement
nfeeder 1 nNode B 1 g TMA g TMA g feeder
NFelement 10 10
With
g element
Gelement 10 10
and
Where NFfeeder =-Gfeeder =Feeder Losses Typical TMA characteristics:
NFTMA =2 dB
GTMA =12 dB
DL Insertion losses = 0.4dB
113 | Presentation Title | Month 2008
Typical gain on uplink link budget (Macro site): 2.9dB gain for sites with 3dB cable losses 3.7 dB gain for sites with 4dB cable losses
Typical gain on uplink link budget (RRH site): 0.3dB gain for sites with 0.6dB cable losses
Note: TMA should not be considered for RRH sites
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Tower Mounted Amplifier Impact of TMA (3/3)
Dense Urban (2.6GHz) Required Data Rate No. Resource Blocks Required MCS Used Bandwidth Target C/I eNode-B Noise Figure eNode-B Sensitivity Antenna Gain Cable & Connector Losses Body Losses Additional UL Losses Cell area coverage probability Overall standard deviation Shadowing Margin Handoff Gain Fast Fading Margin Penetration Margin Fixed IoT UE Antenna Gain UE Max Transmit Power MAPL UL Cell Range 114 | Presentation Title | Month 2008
PS 128 (no TMA)
PS 128 (TMA)
128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.5 dB -117.2 dBm 18.0 dBi 3.0 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 126.2 dB 0.39 km
128 kbps 3 RB MCS 8 540 kHz -3.0 dB 2.4 dB -117.3 dBm 18.0 dBi 0.2 dB 0 dB 0 dB 95% 8.0 dB 8.6 dB 3.6 dB 0 dB 21 dB 3.0 dB 0 dBi 23.0 dBm 129.1 dB 0.47 km
Reduced Noise figure (based on Friis formula) No cable losses but 0.2dB jumper losses
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Around 2.9dB gain on MAPL for sites with 3dB cable losses
Common & Control Channel Considerations Overview
There are two main common and control channel considerations that should be assessed for an LTE network design to ensure that they will not limit the coverage. These include: INTERNAL NOTE – Attach Procedure ACK/NACK Transmission Either punctured onto the Physical Uplink Shared Channel (PUSCH)
Or over the Physical Uplink Control Channel (PUCCH)
115 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
INTERNAL NOTE – Common & Control Channel Considerations Attach Procedure
This is the procedure that the UE must go through to Attach to an LTE network UE
eNB
PGW
SGW
MME
RACH Preamble (1) Grant and TA (2)
Limiting Message
RRC Connection Request (3) RRC Connection Setup (4) RRC Connection Setup Complete (5) Attach request (6)
Authentication (optional)/ security (7-8) Create Default Bearer Request (9)
No MME Relocation
116 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
CDB Request (10)
INTERNAL NOTE – Common & Control Channel Considerations Attach Procedure
From a link budget perspective the limiting message from messages 1, 2, 3, 4, 5, 15 and 16 (that involve the air interface) must be considered to assess any link budget constraints UE
eNB
RRC Connection reconfiguration (14)
SGW
MME
Attach accepted (13)
Create Default Bearer Response (12)
RRC Connection reconfiguration complete (15) Attach complete (16) 1st UL bearer packet
Update Bearer Request (20) Update Bearer Response (21) 1st DL bearer packet
No MME Relocation
117 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
CDB Response (11)
PGW
INTERNAL NOTE – Common & Control Channel Considerations Attach Procedure
Message 3 (RRC Connection Request) 1 resource block with QPSK rate 1/3 providing an average effective data rate of 20.8 kbps (after 5 HARQ transmissions) SINR requirement = 0.7dB (including margins) UL link budget Dense Urban 2.6GHz band
Attach LKB Can be Limiting Depending on Cell Edge Rate Target
118 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Common & Control Channel Considerations ACK/NACK Transmission
DL transmission requires a steady stream of ACK transmissions over the UL to acknowledge the DL packets Correct ACK reception is critical for optimizing the DL efficiency ALU punctures ACK over the PUSCH initially and over the PUCCH in the longer term ACK/NACK Transmission: 1 RB, QPSK, SINR -3.4dB (PUSCH) & -4.2dB (PUCCH) UL LKB for Urban, 2.6GHz band ACK Is Never Foreseen to Limit UL Coverage 119 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE Link Budgets Downlink Link Budget Considerations
120 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Rationale Behind Downlink LKB Formulation (1/3)
1. DL Cell range defined by UL cell edge service link budget 2. DL throughputs computed for coverage probabilities associated with each corresponding UL service 3. Geometry distribution used for determining the cell edge throughput
121 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Rationale Behind Downlink LKB Formulation (2/3) UL Rates 128kbps (3RB) - guaranteed at cell edge 256kbps (5RB) 512kbps (10RB)
RangeUL_Guar_Serv
8623kbps (50RB) 3921kbps (50RB) 1323kbps (50RB) DL Rates
The above example illustrates the detailed DL Link Budget on the subsequent slides … Urban morphology, indoor 0dBi omni UE configuration, cell range fixed for UL 128kbps, 100% adjacent cell DL RB Loading, No TMA Note: The diagram is not to scale and doesn’t include all rates 122 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Rationale Behind Downlink LKB Formulation (3/3)
Uniform power per RB is assumed on the DL DL performances extracted from link level simulations The optimal MCS is selected for given number of RB to maximize throughput while ensuring a 20% initial BLER
Only TxDiv is assumed for referenced DL link level simulations As the DL link budget is focusing on cell edge performances it is considered that the rank and geometry are insufficient to justify Spatial Multiplexing (SM) Where a relatively low rate is guaranteed on the UL at cell edge, e.g. 512kbps) the relative UL cell ranges for the high UL rates will be very small and thus the corresponding DL SINRs will be relatively high due to the reduced coverage reliability – in such cases there is some justification for consideration SM performances (not yet incorporated here)
123 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Budget Example: 10MHz BW Dense Urban (2.6GHz) No. Resource Blocks Used Bandwidth UE Noise Figure eNode-B Antenna Gain Cable & Connector Losses Body Loss Penetration Margin Limiting UL Cell Range # DL Tx Paths Total DL eNode-B Tx Power / Path % DL Power for PDSCH Max eNode-B Tx Power / Service UE Antenna Gain Adjacent Cell Loading UL Service Cell Range DL Path Loss @ UL Cell Edge Total DL Losses @ UL Cell Edge DL Cell Area Coverage Probability Geometry at UL Service Cell Range Desired Signal Adjacent Cell Signal Noise Cell Edge SINR Optimal MCS Data Rate at UL Service Cell Edge 124 | Presentation Title | Month 2008
PS 128
PS 256
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.46 km 129.1 dB 150.6 dB 95% -4.9 dB -85.8 dBm -80.9 dBm -97.5 dBm -5.0 dB MCS 2 1323 kbps
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.37 km 125.7 dB 147.2 dB 61% -0.1 dB -82.3 dBm -82.2 dBm -97.5 dBm -0.2 dB MCS 7 3921 kbps
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Equivalent UL Service
Cell Range for Limiting UL Service (128kbps)
Cell Range for Equivalent UL Service (256kbps)
Coverage Probability for DL service 95% x (0.36)2 / (0.46)2
Downlink Budget Example: 10MHz BW Dense Urban (2.6GHz) No. Resource Blocks Used Bandwidth UE Noise Figure eNode-B Antenna Gain Cable & Connector Losses Body Loss Penetration Margin Limiting UL Cell Range # DL Tx Paths Total DL eNode-B Tx Power / Path % DL Power for PDSCH Max eNode-B Tx Power / Service UE Antenna Gain Adjacent Cell Loading UL Service Cell Range DL Path Loss @ UL Cell Edge Total DL Losses @ UL Cell Edge DL Cell Area Coverage Probability Geometry at UL Service Cell Range Desired Signal Adjacent Cell Signal Noise Cell Edge SINR Optimal MCS Data Rate at UL Service Cell Edge 125 | Presentation Title | Month 2008
PS 128
PS 256
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.46 km 129.1 dB 150.6 dB 95% -4.9 dB -85.8 dBm -80.9 dBm -97.5 dBm -5.0 dB MCS 2 1323 kbps
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.37 km 125.7 dB 147.2 dB 61% -0.1 dB -82.3 dBm -82.2 dBm -97.5 dBm -0.2 dB MCS 7 3921 kbps
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
% of total DL power dedicated to PDSCH
Geometry at the corresponding UL service range
The cell edge SINR
Downlink Budget DL Power Settings
Depending on the OAM power offset settings for the Resource Elements (RE) of different channel types we can compute the Average PDSCH Power / OFDM Symbol Example below for 10MHz, 2 x 40W PA Power Average % power / symbol allocated to PDSCH RE’s 32.1 / 40 = 80.2%
126 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Budget Geometry & SINR (1/2) Geometry distributions from system simulations
Geometry
A range of UE configurations, both
Rx Power Serving Site
Rx Power
Adjacent Site
All
omni and, directional UEs (fixed wireless) Examples in LKB are for coverage
Geometry Distributions (Different UE Configs)
reliabilities of 95% and 61%
100% 90%
Yield Geometries of -3.9 & 4.7dB
80%
respectively
70%
CDF
61% Coverage Reliability 60%
An additional 1dB is subtracted from these geometry values to align with field expectations
50%
Outdoor - 2 dBi - Omni Outdoor - 4 dBi - Omni Outdoor - 4 dBi - Direc. Outdoor - 6 dBi - Direc. Outdoor - 8 dBi - Direc. Outdoor - 10 dBi - Direc. Indoor - 0 dBi - Omni Indoor - 2 dBi - Omni Indoor - 4 dBi - Omni
40% 30% 20%
95% Coverage Reliability
10% 0% -5.0 dB
-1.0 dB
Geometry -3.9dB 127 | Presentation Title | Month 2008
3.0 dB
7.0 dB
11.0 dB
Geometry Geometry 4.7dB
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
15.0 dB
19.0 dB
23.0 dB
Downlink Budget Geometry & SINR (2/2)
PDSCH SINR for a defined cell range and coverage reliability: PDSCHSINR = PDSCHRx / [ PDSCHRx – Geometry + Thermal Noise] Where: PDSCHRx = PowerPDSCH – Total DL Losses PowerPDSCH = PowerMax PA x Power FractionPDSCH x RBService / RBMax – Power FractionPDSCH is the average fraction of the total power allocated to PDSCH Resource Elements (REs) per symbol across all RB’s
Thermal Noise = 10 x log10( F x Nth x NRB x WRB ) – – – –
F: eNode-B Noise figure in dB Nth: Thermal noise density, 10log(Nth) =-174 dBm/Hz NRB: Number of resource blocks (RB) required to reach a given data rate WRB: Bandwidth of one Resource Block
128 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Budget Example: 10MHz BW Dense Urban (2.6GHz) No. Resource Blocks Used Bandwidth UE Noise Figure eNode-B Antenna Gain Cable & Connector Losses Body Loss Penetration Margin Limiting UL Cell Range # DL Tx Paths Total DL eNode-B Tx Power / Path % DL Power for PDSCH Max eNode-B Tx Power / Service UE Antenna Gain Adjacent Cell Loading UL Service Cell Range DL Path Loss @ UL Cell Edge Total DL Losses @ UL Cell Edge DL Cell Area Coverage Probability Geometry at UL Service Cell Range Desired Signal Adjacent Cell Signal Noise Cell Edge SINR Optimal MCS Data Rate at UL Service Cell Edge 129 | Presentation Title | Month 2008
PS 128
PS 256
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.46 km 129.1 dB 150.6 dB 95% -4.9 dB -85.8 dBm -80.9 dBm -97.5 dBm -5.0 dB MCS 2 1323 kbps
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.37 km 125.7 dB 147.2 dB 61% -0.1 dB -82.3 dBm -82.2 dBm -97.5 dBm -0.2 dB MCS 7 3921 kbps
Max # RB for the bandwidth is assumed by default
The optimal MCS for the #RB and SINR Corresponding L1 Throughput for #RB, MCS and SINR
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget SINR Performances - Overview
Like the UL the DL SINR Performances depends on: eNode-B equipment performance
Radio conditions (multipath fading profile, mobile speed) Receive diversity (2-way by default or optional 4-way) Targeted data rate and quality of service
The Modulation and Coding Scheme (MCS) Max allowed number of HARQ transmissions HARQ Operating Point – 20% BLER for 1st HARQ Transmission considered by default Derived from link level simulations Note: Currently the Link Level Simulations referenced in the DL LKB are for EVehA3km/h, 2x2 TxDiv 130 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget SINR - Selection of Optimal SINR Figures
Based on a set of link level simulation results: Full range of MCS values
Full range of # RB’s
LTE DL 2x2 MIMO. EVA-3km/hr 60000
50000
Example for Downlink 50RB, 10MHz Bandwidth (2x2 MIMO)
Throughput (kbps)
40000
30000
MCS = 0
MCS = 1
MCS = 2
MCS = 3
MCS = 4
MCS = 5
MCS = 6
MCS = 7
MCS = 8
MCS = 9
MCS = 10
MCS = 11
MCS = 12
MCS = 13
MCS = 14
MCS = 15
MCS = 16
MCS = 17
MCS = 18
MCS = 19
MCS = 20
MCS = 21
MCS = 22
MCS = 23
MCS = 24
MCS = 25
MCS = 26
MCS = 27
MCS = 28
T'put (kbps)
20000
10000
0 -10
-5
0
5
10
15
20
SNR (dB)
131 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
25
30
35
40
45
50
Downlink Link Budget Downlink Performance Analysis (1/3)
Downlink Link Level Results for: 25 RB, MCS 28, TxDiv and 5MHz Bandwidth 16000 kbps
120.0%
14000 kbps
12Mbps Throughput
8000 kbps 6000 kbps 4000 kbps
Throughput
60.0%
40.0%
20% BLER
BLER_0
2000 kbps 0 kbps 12.00 dB
14.00 dB
16.00 dB
18.00 dB
20.00 dB
SINR 132 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
22.00 dB
24.00 dB
20.0%
0.0% 26.00 dB
BLER
80.0%
10000 kbps
19.4dB SINR
Throughput
12000 kbps
100.0%
Downlink Link Budget Downlink Performance Analysis (2/3)
Downlink Link Level Results for: 25 RB, 1-28 MCS, TxDiv and 5MHz Bandwidth
-5dB cell edge SINR 14000 kbps
25 dB
Throughput 20 dB
SINR
10000 kbps
15 dB
8000 kbps
10 dB
6000 kbps
5 dB
4000 kbps
0 dB
-5dB Cell Edge SINR Target
2000 kbps
-5 dB
660 kbps T’put 0 kbps
MCS 1
0
-10 dB 5
10
15
MCS Index 133 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
20
25
SINR
Throughput
12000 kbps
Downlink Link Budget Downlink Performance Analysis (3/3)
Downlink Link Level Results for: 1 to 25 RB, All MCS, TxDiv and 5MHz Bandwidth
-5dB cell edge SINR MCS 6
Throughput
MCS 5 100 kbps
MCS 4 MCS 3
10 kbps
MCS 2 Throughput
MCS 1
Throughput / RB
1 kbps 2 RB
MCS
MCS 0 7 RB
12 RB
17 RB
# Resource Blocks 134 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
22 RB
Modulation & Coding Scheme
1000 kbps
Downlink Budget Example: 10MHz BW (Multiple Services) Dense Urban (2.6GHz) No. Resource Blocks Used Bandwidth UE Noise Figure eNode-B Antenna Gain Cable & Connector Losses Body Loss Penetration Margin Limiting UL Cell Range # DL Tx Paths Total DL eNode-B Tx Power / Path % DL Power for PDSCH Max eNode-B Tx Power / Service UE Antenna Gain Adjacent Cell Loading UL Service Cell Range DL Path Loss @ UL Cell Edge Total DL Losses @ UL Cell Edge DL Cell Area Coverage Probability Geometry at UL Service Cell Range Desired Signal Adjacent Cell Signal Noise Cell Edge SINR Optimal MCS Data Rate at UL Service Cell Edge 135 | Presentation Title | Month 2008
PS 128
PS 256
PS 512
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.46 km 129.1 dB 150.6 dB 95% -4.9 dB -85.8 dBm -80.9 dBm -97.5 dBm -5.0 dB MCS 2 1323 kbps
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.37 km 125.7 dB 147.2 dB 61% -0.1 dB -82.3 dBm -82.2 dBm -97.5 dBm -0.2 dB MCS 7 3921 kbps
50 RB 9000 kHz 7 dB 18 dBi 0.5 dB 0 dB 21 dB 0.46 km 2 paths 30 W 80% 46.8 dBm 0 dBi 100% 0.30 km 122.4 dB 143.9 dB 40% 3.3 dB -79.1 dBm -82.4 dBm -97.5 dBm 3.2 dB MCS 10 8623 kbps
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Summary
The downlink link budgets presented here are indicative of what rates are achievable within the corresponding UL service coverage areas LTE coverage is not considered to be limited by the DL for typical eNode-B output powers and deployment scenarios with a 23dBm UE output power, link budgets should remain uplink limited It is important to understand that:
DL cell edge performances are strongly dependent upon scheduler parameters (e.g. tuning of the fairness of the proportional fair scheduler algorithm) or the available bandwidth (e.g. 10MHz vs 5MHz) DL performances in the link budget are based only on long term average PDSCH SINR values and do not account for dynamic channel variations that can be addressed with frequency selective scheduling functionalities Better estimates of DL performances can be achieved by means of: System level simulations and/or Radio Network Planning (RNP) analysis 136 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Required DL Output Power ?
A series of system simulation studies were performed to assess the required Power Amplifier (PA) sizing for 3 different important cases 700 MHz (10 MHz), 2.1 GHz (10 MHz), 2.1 GHz/AWS (5 MHz) and 2.6 GHz (20 MHz) All scenarios considered 2x2 MIMO on the DL and 2RxDiv on the UL In principle, all studies concluded the following: Spectrum efficiency for “reasonable” cell sizes is relatively invariant to reasonable choices for PA sizes Edge rates become much more sensitive to the choice of power at large cell radiuses
137 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Downlink Link Budget Downlink PA Sizing for LTE – Conclusions
Recommendations from study (independent of frequency)
138 | Presentation Title | Month 2008
Carrier Bandwidths
PA Power
1.4 MHz
2 x 10 W
3.0 MHz
2 x 10 W
5.0 MHz
2 x 20 W
10.0 MHz
2 x 30 W
15.0 MHz
2 x 40 W
20.0 MHz
2 x 40 W
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF Design
139 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
LTE eNode-B Dimensioning Key Issues to be considered
Coverage
Cell edge coverage expectations + depth of coverage Target operating frequency band + propagation assumptions
Overlay versus Greenfield deployment Antenna system sharing requirements (impact on coverage + optimization constraints) Radio features, e.g. TMA, RRH, ICIC
Capacity
Subscriber usage profile Subscriber forecast Spectrum constraints Peak throughput requirements Radio features, e.g. ICIC 140 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase Site Field Positioning Principles
Based on Site Count (from RF dimensioning process) Sites positioned to satisfy – RS coverage target (from LB for a target area reliability) – Capacity requirement
Placed either manually or utilizing Automatic Cell Planning (ACP) tools
Site Sharing Approach: The first and quickest approach without RNP is to overlay existing sites with LTE – A 1:1 mapping is most appropriate where the overlaid network is at a frequency band close to LTE band
Site overlay optimized with the aid of RNP predictions with an accurate propagation model – Sites can be added or deleted where there is limited or excess coverage, respectively – Analysis performed at the same time as antenna azimuth optimization (see next slide)
141 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RF Optimization Criteria
Azimuth optimization and tilt optimization are the main rules to optimize the network in order to have the best radio environment before implementing any features.
The aim are Optimize coverage in order to reach RSRP targets
To reduce the number of servers covering the same area in order to avoid excessive overlapping. – This minimize interference without impacting coverage, improve SINR so network performances like – Throughput – Capacity – Frequency re-use efficiency
142 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RSRP target
RS-RSSI: total power transmitted dedicated for Reference signal during one OFDM symbol duration Currently in Atoll it is more RS-RSSI is calculated, and the total power dedicated to RS is 1/6 of Max power. This approach is not 100% of the time in line wit power settings on the field LA0.x for a 30W PA power energy per RE for RS is 14.9 dBm. Considering 10MHz bandwidth 100 RE are used to calculate RS-RSSI, so total power dedicated to RS over one OFDM symbol is 34.9dBm, but Atoll calculates 30W/6, so 37dBm, so to do the right calculation for this configuration max power set in Atoll should be 43dBm instead of 45dBm.
143 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RSRP target LA1.0 for RRH 30W PA power energy per RE for RS is 16.2 dBm. Considering 10MHz bandwidth 100 RE are used to calculate RS-RSSI, so total power dedicated to RS over one OFDM symbol is 36.2dBm, but Atoll calculates 30W/6, so 37dBm, so to do the right calculation for this configuration max power set in Atoll should be 44dBm instead of 45dBm. LA1.0 for TRDU 40W PA power energy per RE for RS is 18.2 dBm. Considering 10MHz bandwidth 100 RE are used to calculate RS-RSSI, so total power dedicated to RS over one OFDM symbol is 38.2dBm, Atoll calculates 40W/6, so 38dBm, so it is ok
3GPP RSRP definition: Reference signal received power (RSRP), is determined for a considered cell as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.
144 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RF Optimization Criteria Outdoor RSRP target depending on environment and frequencies for UL PS 128 service and UL PS 256, considering 45dBm PA power and 14.9 dBm Reference signal Tx power per RE. RSRP value does not depends on the number of transmit
DL RS EIRP per RE and per transmit: 30.9dBm @ 2600MHz/2100MHz/AWS/1900MHz/1800MHz with 18dBi antenna gain & 2dB cable losses 30.9dBm @ 900MHz/850MHz with 17dBi antenna gain & 1dB cable losses 28.9dBm @700MHz with 15dBi antenna gain & 1 dB cable losses
145 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RF Optimization Criteria
Currently the calculation done in 9155 is the sum of all Reference signal resource elements power transmitted in a same OFDM time period over all the bandwidth. This approach is not in line with 3GPP as 3GPP specify the linear average of reference signal resource elements. To compensate this error the following work around must be followed and based on the same analysis done for RS-RSSI calculation LA0.x for RRH 30W PA power energy per RE for RS is 14.9 dBm. – For 5MHz bandwidth set in Cell table Max power column: eNode-B PA power -19dB – For 10MHz bandwidth set in Cell table Max power column: eNode-B PA power -22dB – For 20MHz bandwidth set in Cell table Max power column: eNode-B PA power -25dB
146 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RF Optimization Criteria LA1.0 for RRH 30W PA power energy per RE for RS is 16.2 dBm. – For 5MHz bandwidth set in Cell table Max power column: eNode-B PA power -18dB – For 10MHz bandwidth set in Cell table Max power column: eNode-B PA power -21dB – For 20MHz bandwidth set in Cell table Max power column: eNode-B PA power -24dB
LA1.0 for TRDU 40W PA power energy per RE for RS is 18.2 dBm. – For 5MHz bandwidth set in Cell table Max power column: eNode-B PA power -17dB – For 10MHz bandwidth set in Cell table Max power column: eNode-B PA power -20dB – For 20MHz bandwidth set in Cell table Max power column: eNode-B PA power -23dB
147 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Rollout Phase RF Optimization Criteria The method proposed is to: Set indoor penetration losses in 9155 clutter table Use the UL Link Budget Available Path loss with 0dB penetration losses set in the LB for the dimensioning service selected,
Design RSRP = RS per RE EIRP+ ANT_GAIN – Available Uplink Pathloss – indoor losses where: – RS per RE EIRP = Reference signal EIRP per resource element , it is automatically calculated by 9155 when the work around specified above is followed – ANT_GAIN = Node-B antenna gain – Available Uplink Pathloss: UL available pathloss calculated with the link budget when penetration loss is set to 0dB
The RSRP target values specified in slide , have been defined with this approach. If the user apply this approach, the following recommendation must be respected Select “indoor loss” icon in 9155 coverage study Do not select “shadowing taken into account “ icon as it is already done in RSRP target calculated below
148 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria Overlapping optimization The following rules are not technology specifics, and their efficiency have already been measured on GSM, W-CDMA networks.
Pollution and interference analysis – Within 4dB of the best server – number of servers should ≤ 4 – % area with 4 servers should be < 2%. – % of area with 2 servers should be < 30%. – Within 10dB of the best server – number of servers should ≤ 7 – % of area with 7 servers should be < 2%. – High signal level overlap analysis: – Increase the design threshold for the covered area by 10dB – % of 3 servers in the design area should not exceed 10%.. – Example: if the RS design threshold is -85dBm, a number of server’s analysis is done with a threshold equal to -75dBm.
149 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria SINR target This target can be used with 9155 RNP tool, but it is not 100% sure that it can be measured on the field with high accuracy as it is not 3GPP measurement criteria.
In 9155 SINR can be calculated based on reference signal, or PDSCH, and for loaded cases it provides the same results as power per RE RS= power per RE PDSCH The SINR target value depends on the traffic load: – 95% of the design area should have SINR ≥ -5dB, with 100% DL load – 95% of the design area should have a SINR ≥-2dB with 50% DL load
SINR does not depends on number of transmits
150 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria RSRQ target RSRQ= N*RSRP/RSSI where RSSI is all the power received in the N resource blocks used bandwidth during the same time period where RSRP is measured. RSRQ depends on the number of transit, as RSSI value depends on it, and not RSRP RSRQ target value depends on the traffic load: 1 transmit : – 95% of the design area should have RSRQ ≥ -17dB, with 100% DL load – 95% of the design area should have RSRQ ≥ -14dB, with 50% DL load
2 transmits : – 95% of the design area should have RSRQ ≥ -20dB, with 100% DL load – 95% of the design area should have RSRQ ≥ -17dB, with 50% DL load
4 transmits : – 95% of the design area should have RSRQ ≥ -23dB, with 100% DL load – 95% of the design area should have RSRQ ≥ -20dB, with 50% DL load
151 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria These targets are been obtained on several well known environments ; where a very good optimization has been done in W-CDMA due to critical inter-site distance : 400m. Same RNP environment has been re-used for LTE predictions without changing anything to evaluate the best SINR & RSRQ reachable in different full traffic load condition. The RNP prediction and RF optimization done for the different trials in US and Europe confirm that these targets can be reach and are a good way to optimize throughput and reduce interferences. Overlapping criteria, RSRQ target and SINR target defined above are in line to provide the same RF design. They allow managing interferences in order to obtain a RF network design able to support the best throughput . 10Mbps in cell center for mono-user when all surrounded cells have 100% load 1.5Mbps at cell edge in mono-user for 10MHz bandwidth when all surrounded cells have 100% load
152 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria Neighbors & Cell ID planning criteria Cell id is required to identify each cell, a cell id is the combination of one of the 3 sequences supported by P-SCH and the group Id supported by S-SCH. – So Realizing a cell id planning = realizing P-SCH planning and S-SCH planning – The strategy recommended is to use the same S-CH per site which induces that each sector uses a different P-SCH sequence
This distance depends on propagation path loss, the environment and the frequency. The main criteria are the following one:
Considering two cells cell A and cell B, on the same frequency carrier using the same cell ID, the distance between those must satisfy the following criterias: – RSRP criteria – At cell A edge (RSRPcellA ≤ -115dBm) : RSRPcellA ≥ : RSRPcellB + 10dB – At cell B edge (RSRPcellB ≤ -115dBm): RSRPcellB ≥ : RSRPcellA + 10dB – RSRQ criteria for 100% load case ( 2 transmits) – At cell A edge (RSRQcellA ≤ -20dB) : RSRQcellA ≥ : RSRQcellB + 10dB – At cell B edge (RSRQcellB ≤ -20dB): RSRQcellB ≥ : RSRQcellA + 10dB
153 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
RF optimization criteria Distance criteria Dense urban/ urban – – – –
2km @ 2600MHz considering 600m cell radius 2,4km @ 1800MHz and 2100MHz considering 700m cell radius 5,5km @ 850MHz and 900MHz considering 1,7km cell radius 6Km @ 700MHz considering 1,9km cell radius
Suburban – – – –
6km @ 2600MHz considering 1,8km cell radius 7km @ 1800MHz and 2100MHz considering 2,2km cell radius 18km @ 850MHz and 900MHz considering 5,5km cell radius 20Km @ 700MHz considering 6km cell radius
– – – –
17km @ 2600MHz considering 6km cell radius 21km @ 1800MHz and 2100MHz considering 7km cell radius 60km @ 850MHz and 900MHz considering 18km cell radius 65Km @ 700MHz considering 20km cell radius
Rural
154 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
www.alcatel-lucent.com www.alcatel-lucent.com
155 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover
156 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover
157 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover Preparation Phase
158 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover Execution Phase
159 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover Completion phase
160 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX
Hard Handover Execution time
161 | Presentation Title | Month 2008
All Rights Reserved © Alcatel-Lucent 2008, XXXXX