44
2.2
Londoño
- Introducción a la mecánica
MOVIMIENTO PLANO
Consideremos un punto punto móvil cuya cuya trayectoria con respecto a un marco marco de referencia bien determinado es una curva plana, es decir, una curva enteramente contenida en un plano, como un círculo o una parábola, a diferencia de una curva espacial alabeada, como una hélice. Como ya vimos, los conceptos fundamentales de la cinemática son los de marco de referencia, r r r r r posición r , velocidad v y aceleración a . En el movimiento rectilíneo los vectores v y a tenían la misma misma dirección dirección de la recta. Ahora, en el movimiento curvilíneo, sus sus direcciones direcciones son distintas y su significación e interpretación geométrica se enriquecen.
Posición Fijemos un origen O en el marco de referencia. En un instante t, el punto móvil se encuentra r en P y su posición posición está dada por el vector posición posición r .
P
r
o
r
r
La posición r es una función vectorial del tiempo, r (t ) : a cada instante t le corresponde r
unívocamente un vector r . V
t r
t` r` r``
t``
o r
El extremo del vector r describe la trayectoria a medida que t avanza. En t ' = t + ∆ t el punto móvil está en P ' y su posición es r
r
r ' = r (t + ∆ t ) .
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
45
Cinemática
Se llama desplazamiento posición r
r
r
∆r = r ' − r
r
∆r
durante el intervalo de tiempo
∆t,
al cambio en el vector
.
P
r
∆r
vmedia dirección de ∆r P`
r`
o
El desplazamiento desplazamiento tiene tiene la dirección de la cuerda entre entre los puntos P y P ' , y se mide mide por por ella ella y no por el arco de curva. Se llama velocidad media (o promedio) durante el intervalo de tiempo
∆ t , al vector
r
r
v media
∆r = . ∆t
La velocidad media es un vector que tiene la misma dirección que el desplazamiento como se muestra en la figura anterior.
r
∆r ,
Velocidad La velocidad del punto móvil en el instante t se define como el límite de la velocidad media cuando el intervalo de tiempo ∆t tiende a cero y es, como ya vimos, la derivada respecto al r tiempo de la función vectorial r , r
v
r
r
=
lim
∆t → 0
∆r = ∆t
lim
∆t → 0
r
r (t + ∆t ) − r (t )
∆t
r
=
dr dt
=
r r&
.
La dirección del vector velocidad velocidad tiene una interpretación interpretación geométrica fundamental. Como la r velocidad media tiene la dirección del desplazamiento ∆ r y éste está en dirección de la r cuerda, la dirección dirección de v es el límite de las direcciones de las cuerdas trazadas desde el punto P a un punto P ' , a medida medida que el punto punto P ' se aproxim aproximaa a P. ¡ Pero ésta ésta es la definició definición n de lo lo que es la tangente a una curva en un punto !
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
46
Londoño
P
- Introducción a la mecánica
v Tangente a la curva
∆r
P`
direcciones de vmedia
r
El vector velocidad v en un punto de la trayectoria es un vector tangente a dicha trayectoria y apunta en la dirección en que en ese instante se está recorriendo la curva.
P
r
v
v
r
=
dr dt
r dirección tangente y en sentido o
del movimiento
La velocidad es siempre siempre un vector, con magnitud y dirección. Su magnitud, según vimos vimos r antes, se escribe v = v y se llama a veces veces rapidez. La velocidad es una función vectorial vectorial r
v ( t ) que de un instante a otro cambia tanto en magnitud como en dirección. En t ' = t + ∆ t , la velocidad es r
=
v'
r
v
(t + ∆t )
y el cambio en el vector velocidad, r
r
r
∆ v = v' − v
.
r
∆ v , durante el intervalo ∆ t
es
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
47
Cinemática
P
v
v
v'
∆v
P'
amedia dirección de
∆v
v'
r
r
Para hacer la diferencia v' − v común.
r
= ∆v
hemos trasladado paralelamente los vectores a un origen
Como el vector velocidad es tangente a la trayectoria y su dirección va cambiando plegándose r a la curva, el cambio ∆ v apunta siempre hacia adentro de la concavidad de la curva. La aceleración media (o promedio) durante el intervalo
∆t
es
r
r
a media
∆v = ∆t
,
y es un vector con la misma dirección de
r
∆ v , es decir hacia dentro de la curva.
Aceleración La aceleración del punto móvil en el instante t es el límite de la aceleración media cuando el intervalo de tiempo ∆ t tiende a cero. Es entonces la derivada respecto al tiempo tiempo de la la función vectorial velocidad. r
a
r
=
lim
∆t→ 0
∆v = ∆t
r
lim
v ( t + ∆t
r
) − v (t)
∆t
∆t→ 0
P
v r
o
a
r
=
dv dt
=
r &
v .
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
48
Londoño
- Introducción a la mecánica
r
Podemos dar una interpretación geométrica geométrica cualitativa a la dirección dirección de a . Según lo que r r r vimos de ∆ v y a media , a tiene que apuntar hacia adentro de la concavidad de la curva, nunca hacia afuera.
direcciones imposibles para
a P
direcciones posibles de
a
El vector aceleración es la rata temporal de cambio del vector velocidad, que cambia tanto en magnitud como en dirección. dirección. Veremos luego que que hay una componente del vector vector aceleración r vinculada sólo con el cambio de dirección de v y otra componente asociada únicamente con r r el cambio en magnitud de v : las componentes normal normal y tangencial de a . r
Como la definición de la derivada de una función vectorial que hemos usado para definir v y r a es análoga a la de la derivada de una función escalar real, comparte con ésta algunas propiedades. Por ejemplo, ejemplo, la derivación de una suma suma es r
r
d (u + v ) dt
r
=
du dt
r
+
dv dt
,
y la de un producto de escalar por vector es r
d ( f v ) dt
=
d f r v dt
r
+
f
dv dt
.
La presentación de conceptos que hemos hecho es válida no sólo para curvas planas sino para curvas espaciales cualquiera. cualquiera. Sin embargo, los movimientos movimientos más importantes importantes que vamos vamos a estudiar tienen trayectorias planas y por eso nos limitaremos a ellas. En el trabajo anterior tenemos un marco de referencia bien determinado, en el que hemos fijado un origen O, pero no hemos elegido ningún sistema de ejes y coordenadas. Por eso, las r r propiedades geométricas que hemos visto de v y de a sólo dependen de su carácter vectorial y no de un sistema específico de coordenadas. Pero para el análisis concreto de un movimiento, unos ejes y coordenadas específicas se hacen imprescindibles. imprescindibles. Presentaremos en primer lugar los ejes y coordenadas cartesianos, ilustrando su manejo con el movimiento parabólico y pospondremos para el estudio del movimiento circular la presentación de las direcciones y componentes normal y tangencial.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
49
Cinemática
Resumamos nuevamente los conceptos y definiciones básicas de la cinemática: P
Marco de referencia Posición Velocidad
r
v
r
r
v
r
r
=
dr dt
r
r
o
dv
=
Aceleración a
a
dt
2.3 COORDENADAS CARTESIANAS Fijemos en el marco de referencia referencia unos ejes cartesianos rectangulares rectangulares con origen en O. O. Los vectores unitarios en las direcciones x, y se escriben: ˆi
=
xˆ
=
uˆ x
jˆ
=
yˆ
=
uˆ y
Usaremos aquí la escritura ˆi , ˆj . Una característica muy importante que distingue a las coordenadas cartesianas, es la de que sus vectores unitarios son invariables: su magnitud, obviamente, es siempre 1 y sus direcciones permanecen constantes. Por eso d ˆi dx
=
d ˆi dy
=
d jˆ dx
d jˆ
=
dy
=
0
y
J
o
Por esa esa razón, si rˆ
=
x ˆi
+
y jˆ , con
I
x y
x
componente de la posición,
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
50
Londoño
r
v
r
dr
=
dt
dx ˆ d y ˆ i+ j dt dt
=
=
v x ˆi
+ v y jˆ ,
- Introducción a la mecánica
= =
vx
siendo
vy
x& y&
las componentes cartesianas del vector velocidad. r
Magnitud de v
r
= r
a
=
v
v=
r
=
dv
=
dt
v 2x
dvx ˆ i dt
+ v 2y +
dv y dt
,
jˆ
a x ˆi
=
a y jˆ ,
+
ax
con
ay
= =
v& x v& y
= =
&x& &y&
componentes cartesianas del vector aceleración. x (t )
se llaman las las ecuaciones paramétricas paramétricas de la trayectoria. trayectoria. Si se elimina t de ellas se
y (t )
obtiene la ecuación cartesiana de la trayectoria. r
r
r
Veamos gráficamente lo que son las componentes de r , v y a y sus relaciones.
y
y
y
v
vy y
x
x
r
ay ax
vx
r
o
a
x
r
o
r
vx
=
dx
=
dy
v y
o
x
vy
dt dt
=
x&
x
r
ax
=
ax
=
a
=
y&
dvx dt dvy d
= v& x = v& y
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
51
Cinemática
EJEMPLOS Y EJERCICIOS 1. EJEMPLO. Movimiento parabólico Se lanza un cuerpo con una cierta velocidad inicial, cerca de la superficie terrestre. Si la velocidad es pequeña, de modo que pueden despreciarse los efectos de fricción con el aire, la única fuerza que actúa sobre el cuerpo es la fuerza de atracción terrestre, como luego veremos con detalle, dando como resultado el hecho de que la aceleración del cuerpo es, en todos los puntos puntos de su trayectoria, trayectoria, la aceleración de la la gravedad, vector cuya cuya magnitud es g y cuya dirección es vertical hacia abajo. r
Supongamos que desde un punto 0 en el piso se lanza un cuerpo con velocidad v o . Elijamos unos ejes x, y, con origen en el punto de lanzamiento: x horizontal; y vertical hacia arriba. y
1
v0 2 o
x
Condiciones iniciales Recordemos que las condiciones iniciales son la posición y velocidad en un cierto instante. r En este caso, en el origen 0, punto de lanzamiento, con v o : i
y
v0
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
52
Londoño
- Introducción a la mecánica
Condiciones iniciales en 0: r
posición
x0
r0
y0 en
t
=
= =
0 0
0 v 0x
r
velocidad v 0
v0y
= =
v 0 cos v 0 sen
Posición o situación general Como ya dijimos, el vector aceleración es el mismo en todos los puntos,
y
g g
g
o
x
Por tanto: r
a
r
v
r
= 0 = −g
ax ay vx vy x
r
y
= =
= =
v ox v oy
v ox t
= v o cos θ o − g t = v o sen θ o − = (v o
v oy t −
gt
2
2
cos
=
θ0 )
gt
t
(v o sen θ o ) t −
gt
2
2
θo θo
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
53
Cinemática
y
y
= ( tan θ o ) x − = ( tan θ o ) x −
g
1 2
vo
2
cos
2 1 g sec
2
vo
2
θo
2
x2
θo x
2
,
o bien,
,
que es la ecuación de una parábola, abierta hacia abajo y cuyo vértice no está en el origen. Es importante notar que, aunque la ecuación cartesiana es interesante, no contiene información de “cómo” se recorre recorre la curva: ¿con qué velocidad, con qué aceleración? La información completa del movimiento está en x (t ) , y(t ) .
Posiciones particulares Hay posiciones particulares interesantes como: 1. Punto de máxima altura. Allí la tangente es horizontal y por tanto v1y t1
y1
=
v o sen
=
vo
=
0 , y así
θo
g 2
sen 2 2g
θo
,
máxima altura alcanzada.
y 1
y1 o
2.
v1
v0
x
Punto de alcance horizontal al nivel nivel del lanzamiento: un instante antes de que el cuerpo cuerpo choque con el piso.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
54
Londoño
(el valor t 2 v 2x v 2y
=
- Introducción a la mecánica
0 , corresponde al punto 0, en el cual también y
= v o cos θ o = − v o sen θ o
r
,
=
v2
v2
=
=
0 ).
vo
Por tanto v 2x v 2y
θ2
= vox = − voy
x2
=
v2x
2
2 vo
y
2
θo
sen
cos
θ2 = θo θo
g
=
vo
v2y 2
v2
sen 2 θ o g
Un problema clásico, resuelto por Galileo, es el del máximo alcance horizontal (al nivel del lanzamiento). Si la magnitud de la velocidad inicial, v o , es consta constante nte,, ¿cuá ¿cuáll debe debe ser el ángulo de lanzamiento variable
d x2 d θo
θo
=
θo
para que x 2 sea máxim áximo? o?
x 2 es ento entonce ncess una una funci función ón de de la
y podemos aplicar los métodos del cálculo para e l máximo de una función :
2 vo
2
cos 2 θ o g
=
0
⇒
cos 2 θ o
=
0 ,
2 θo
=
90°,
θ0 =
45 o
.
Claro que una simple inspección de x 2 nos muestra muestra el mismo mismo resultad resultado: o: el máxim máximo o valor valor de sen 2 θ o es 1, valor que se presenta cuando 2 θ o
=
90° ,
θo =
45° .
2. EJERCICIO Desde el punto A se lanza un cuerpo con velocidad horizontal v o . a)
determinar el rango de valores de v o para que el el cuerpo cuerpo pase pase por el agujero agujero BC.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
55
Cinemática
A
v0 1m B
3m C 1m E
2m
Unidades: SI Marco de referencia: el piso. piso. Ejes. Origen en A. Eje y hacia abajo. Eje x hacia la derecha. origen A
v0
x
1 B
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
56
Londoño
- Introducción a la mecánica
Situación general
= =
ax ay
0
vx
g
vy
= =
x
vo gt
y
= =
vo t g t2 2
Ecuación cartesiana de la trayectoria
t
=
y
=
x
,
vo
g x2 2 vo
a)
=
en B y C, x B
y
2g
=
<
yB
1
< g
y
.
2
=
xC
vo como
en y queda
,
2
<
2 , y así
y C , que con
2g vo
2
<
vo
<
2 ,
<
3 13 m / s < v
yB
=
1,
yC
=
2 , queda
se tiene,
2g
<
o sea, con g 4 43 m / s
=
9.8 m s − , 2
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
57
Cinemática
El móvil: Tomemos como como punto móvil móvil un pequeño pequeño trozo de agua. agua. Despreciando los efectos de fricción esa “partícula” seguirá una trayectoria parabólica, lo mismo que todos las otras partes del agua y así el chorro describe una parábola. El móvil es pues esa pequeña porción de agua, esa “partícula” de agua. Marco de referencia: el piso, el edificio, edificio, marco fijo a tierra. Ejes. Origen en el punto de lanzamiento, lanzamiento, como se indica. y A
v0
h
θ0 o
x
d Condiciones iniciales en 0,
t
=
0 x y
= =
0
vx
0
vy
= =
v o cos v o sen
θo θo
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
58
Londoño
- Introducción a la mecánica
d y v o son constan constantes tes y esa expresi expresión ón define define a h, altura altura a la cual cual se golpea golpea el edificio edificio,, como una función de
θo ,
ángulo ángulo de lanzamiento.
El problema problema es ahora un problema de cálculo, cálculo,
maximizar la función h (θ o ) . dh
Muestre que, haciendo
tan
=
d θo
θo =
vo
0 , se obtiene
2
gd
.
Para saber si en A, con el ángulo
θo
de lanzamiento que maximiza a h, el móvil sube o baja,
estudiemos v A y . Como x A
=
d , tA
vAy
que, con
v0
2
=
= =
d v o cos v o sen
θo
θo −
y así
gd v o cos
θo
=
g d tan θ o , queda
vAy
=
vo sen
θ
⎛ ⎜ ⎝
v o ⎜ sen θ o
(sen 2 θ o − 1) < 0 ,
−
gd 2
v 0 cos
⎞ ⎟ θ o ⎠⎟
,
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
59
Cinemática
2.
30° 20 m/s
4m
d P
45° Un esquiador salta de una pendiente de 30º a 20 m s −1 y cae sobre otra pendiente de 45º como se muestra muestra en la figura. figura. Determine: a)
la distancia d al punto P en que cae, 47 m
b)
la magnitud de la velocidad velocidad con que cae al punto P y el ángulo ángulo que esa esa velocidad forma con la pendiente de 45º. 14°
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
60
Londoño
- Introducción a la mecánica
5.
v0
θ
α
Desde la base de una colina que forma un ángulo proyectil con velocidad v o y án ángulo
con la horizontal, se lanza un
θ.
a) Muestre que el alcance medido sobre la colina es b) Con v o constante, ¿cuál debe ser
α
θ
2 vo
2
cos θ sen (θ − α ) g cos 2
α
.
para que dicho alcance sea máximo?
θ =
π 4
+
α 2
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cinemática
2.4
61
MOVIMIENTO RELATIVO
El movimiento de un cuerpo se refiere siempre a un marco de referencia, marco que comprende tanto un cuerpo rígido respecto al cual se da la posición del cuerpo móvil, como un reloj que permite medir el tiempo, tiempo, tiempo igual para todos en la mecánica mecánica clásica. Estamos estudiando ahora el movimiento de cuerpos puntuales o de puntos móviles y cuando decimos que el movimiento es relativo, queremos decir que todo movimiento es el movimiento de un punto móvil respecto respecto a un determinado marco de referencia. referencia. La cinemática es el estudio estudio de la r r r posición r , la velocidad v y la aceleración a del punto móvil respecto a un bien determinado marco de referencia. Es muy importante comprender que no existe ni se ha definido algo así como el movimiento de un punto respecto a otro punto: punto: no hay en mecánica tal cosa como la velocidad velocidad de un punto respecto a otro punto, sólo hemos definido la velocidad de un punto respecto a un marco de referencia, es decir, la velocidad de un punto respecto a un cuerpo rígido, rígido, y cuando en un cierto lenguaje informal, impreciso pero ineludible, se dice por ejemplo, “la velocidad de la partícula A respecto a la partícula B” se está hablando siempre de “la velocidad de la partícula
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
62
Londoño
- Introducción a la mecánica
La velocidad de A respecto al marco B, o simplemente velocidad relativa de A respecto a B, es r r d rAB v AB = , dt y análogamente la aceleración relativa de A respecto a B es r
a AB
r
=
d v AB dt
.
r
Nótese la importante relación rAB
A
rAB rBA
=−
r
rBA , y por por tanto, tanto,
r
rAB
r
v AB
r
= − rBA r
= − v BA
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cinemática
63
Las primeras aplicaciones sencillas tienen que ver sobre todo con las velocidades relativas. En varios casos son incluso movimientos uniformes, con velocidades constantes, de cinemática fácil, y cuyo énfasis está en las relaciones vectoriales entre las magnitudes y direcciones de las diversas velocidades relativas. En el estudio de un movimiento relativo es esencial en primer lugar identificar con claridad los 3 móviles (y los 3 marcos de referencia referencia en traslación) y denotarlos adecuadamente. Hay que escribir entonces la relación vectorial básica del movimiento relativo y luego identificar de manera ordenada las magnitudes y direcciones, o bien las componentes, tanto dadas como incógnitas, antes de proceder a plasmar la relación vectorial básica, bien sea geométricamente o analíticamente por componentes en algunos ejes.
EJEMPLOS Y EJERCICIOS 1. EJEMPLO
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
64
Londoño
- Introducción a la mecánica
Aquí es necesario aclarar que entre las 6 velocidades relativas involucradas hay diversas relaciones, pero todas son equivalentes. equivalentes. En efecto, supongamos que se comienza comienza con r
v AT
r
=
v AB
+
r
v BT . r
Puede ser preferible trabajar con v BA r
v AT
r
= − v AB +
r
v BT
o bien
r
= − v AB r
v BT
=
y así r
v BA
+
r
v AT
que era la relación original.
Interpretemos ahora los los datos datos del problema. Unidades: longitudes en km, km, tiempos tiempos en en horas. horas. r
v AT r
v BT
magnitud
2
dirección
→
magnitud
?
dirección
↑
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
65
Cinemática
En ambos casos si usted va en el bote mirando sólo el agua circundante (suponga que una espesa niebla le impide impide ver las orillas), la sensación sensación es la misma: viaja respecto al agua a 4 km h . El problema tiene entonces 2 incógnitas: 1)
r
magnitud de v BT
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
66
Londoño
r
- Introducción a la mecánica
El ángulo α de 60° , dirección de v BA , tiene una interpretación simple e importante: indica la dirección que debe dársele a la proa del bote para realizar el viaje, viaje que se efectúa “sesgado”, de modo que cuando una persona va en el bote, siente que está viajando en una una dirección respecto respecto al agua, pero respecto a tierra viaja en otra. otra. El movimiento es sorprendente sorprendente y poco intuitivo. Podemos esquematizarlo así: así:
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
67
Cinemática
vBA 120° x
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
68
Londoño
- Introducción a la mecánica
4. EJERCICIO La misma situación de río, bote y tierra la vamos a plantear de modo más general así:
Q
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
69
Cinemática
y así,
t
v b
5 vbv
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.