Fatigue assessment of bogie frames with FEMFAT Johann Habenbacher Sebastian Walch, Matthias Brücker, Alois Starlinger
JC M
Lineare Balkenelemente (B31): Lineare Federelemente (JOINTC): Massenelemente (MASS): Distributing Coupling Elemente(DCOUP3D): Multipoint Constraint Elemente (MPC):
JC(4x)
r = 1 mm Consideration Consideration of metallurgical notch
JC
M combined stress
M JC(4x)
HV
JC
1.40
JC 1.20
JC M
JC(4x)
M JC(4x )
M
JC JC
M JC
JC JC JC
JC(4x )
JC 1.00
JC
JC JC(4x)
JC(4x)
M
M
M
M JC
n o i t a 0.80 s i l i t u f o e e 0.60 r g e d
IIWn. prop. IIWprop (D)^(1/k) FEMFAT (DVS1608) Habenbacher
0.40
JC JC(4x)
M 0.20
M
HV
M
J C
0.00 0
J. Ha Habe benb nbac ache herr - Fa Fati tigue gue as asse sess ssme ment nt of User bogie bo gieMeeting fram fr ames es wi with th FE FEMF MFAT AT International FEMFAT 2011
30
60
90
120
150
180
degree (position of strain gauge)
1
Contents 1. Demands on manufacturer of rolling stock • Validation and acceptance of the design according to EN 13749 • Special standards used for certification
2. In-house In-house FEMFAT FEMFAT database database • Based on on effective effective notch stress stress – enhanced enhanced database database • Fatigue strength modifications (stress ratio, thickness, grinding, …)
3. Treatment Treatment of data from measurements measurements within fatigue assessment method
4. Multi Multiax axial ial loadin loading g
J. Ha Habe benb nbac ache herr - Fa Fatig tigue ue as asse sess ssme ment nt of bo bogie gie fr fram ames es wi with th FE FEMF MFAT AT
2
Contents 1. Demands on manufacturer of rolling stock • Validation and acceptance of the design according to EN 13749 • Special standards used for certification
2. In-house In-house FEMFAT FEMFAT database database • Based on on effective effective notch stress stress – enhanced enhanced database database • Fatigue strength modifications (stress ratio, thickness, grinding, …)
3. Treatment Treatment of data from measurements measurements within fatigue assessment method
4. Multi Multiax axial ial loadin loading g
J. Ha Habe benb nbac ache herr - Fa Fatig tigue ue as asse sess ssme ment nt of bo bogie gie fr fram ames es wi with th FE FEMF MFAT AT
2
Motivation • Stad Stadle lerr Rai Raill AG • Manufacturer of rolling stock • Headquarters in Switzerland • Department SDZ (Altenrhein) • Strength assessment • Bogie frames, car body shells and components
• Special requirements • Period of application is 40 years • Various strength assessments are necessary for the certification • Application of in-house experience to be competitive
J. Ha Habe benb nbac ache herr - Fa Fati tigue gue as asse sess ssme ment nt of bo bogie gie fr fram ames es wi with th FE FEMF MFAT AT
3
Validation and acceptance of the design Validation program EN 13749
Analysis
Laboratory tests
Track tests
• FKM-Guideline
• static tests
• FKM-Guideline
• IIW-Recommendations
• fatigue tests
• IIW-Recommendations
Bogie frame
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
4
Motor bogie frame of a tram
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
5
Analysis - FE-Model of a bogie frame JC M
Lineare Balkenelemente (B31): Lineare Federelemente (JOINTC): Massenelemente (MASS): Distributing Coupling Elemente(DCOUP3D): Multipoint Constraint Elemente (MPC):
JC(4x)
JC
M
M JC(4x) JC M
JC(4x)
M JC(4x )
M
JC JC
M JC
JC JC JC
JC
JC
JC(4x )
JC JC
JC JC(4x)
JC(4x)
M
M
M JC
M
JC JC(4x) M M
J C
M
Number of elements: Number of nodes: Degree of freedom:
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
300‘000 400’000 2’200’000
6
Analysis - Sheet thickness • Shell elements for weld seams • Using THK-groups for thickness correction
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
7
Analysis - Load cases •
About 64 single load cases (FE simulation)
•
100 load cases (superposition) which represent normal service operating conditions
•
The loads are derived from standards, simulations, tests or previous experience
20
40
60
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
8
Definition of weld seams with FEMFAT Visualizer • About 25 different types of weld seams • Consideration of post weld improvements
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
9
Weld seam definition • About 1200 weld seams are defined with FEMFAT Visualizer
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
10
Weld seam definition
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
11
Laboratory tests • 10 - 28 Cylinder for fatigue tests • 10 Mio. Load cycles
Load run 100% loads complete IMA-pr.no.: C041/08-1 Z04/Z05 Q4
100
Q3
Z09
Z08
Z03
75 Z16 Z13
Z12
Z02 SZ4
50 SZ3
25
Z07 ] m m [
SX2
SX1
n o i s r o t e l x a ] N k [ d a o l
Z1
Z14 Z06 V1 (SZ1)
Z10
SZ2 Z01
Z19
SY1 Q1/ Achsverwindung
Z11
0 0
10
20
30
40
50
60
70
-25
-50
-75
-100
Z03a
SY2 Q2
-125 load cycles
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
12
Laboratory tests 100 Stain gauges channels Comparison with analytical results
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
13
Track tests – EN 13749 Fatigue strength • Rainflow-counting • Miner rule
(M)
(WL, Dm)
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
aBK
14
Comparison of suitable standards for fatigue assessment 120
Allowable stress amplitudes at 2 Mio. load cycles
1 100 = R , ] a P M [ l u z , a S
DV 952 DVS1612
DIN 15018 B5
80 60 40
DIN 15018 B6 ERRI B12/RP60
20
FKM Nominal stress
Effective notch stress
0 3 1 3
1 1 2
2 1 2
1 1 4
2 2 5
3 1 4
1 1 5
5 1 2
4 1 4
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
3 1 9
4 2 4
15
Comparison of suitable standards for fatigue assessment Large scatter of allowable stress amplitudes and unknown consideration of: •
crack position (weld root crack or toe crack)
•
membrane stress and shell bending stress
•
stress magnification factors due to misalignment
"Dauerfestigkeit" einer Doppelkehlnaht unter wechselnder Zug-DruckBeanspruchung normal zur Schweissnaht Regelwerk Bemerkung
FKM Wurzelriss, Nr 414, FAT45
DVS1612
ERRI B12 RP 60 ERRI B12 RP 60
Linie F-
Kat. D, nicht geglüht
Kat. D, geglüht
50
41
65
Sa_2Mio,zd_97,5%, R = -1
29
Regelwerk
prEN1993 1-9: 2003
Bemerkung
FAT 36
Nr. 452
FAT 63
t = 10, ages = 10, Wurzelriss
Sa_2Mio,zd_97,5%, R = -1
23
27
32
38
STADLER prCEN/TS 13001DIN 15018 K4/B6 Kerbspannungs3-1: 2003 FAT/2 konzept
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
16
Data basis IIW
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
17
Contents 1. Demands on manufacturer of rolling stock • Validation and acceptance of the design according to EN 13749 • Special standards used for certification
2. In-house FEMFAT database • Based on effective notch stress – enhanced database • Fatigue strength modifications (stress ratio, thickness, grinding, …)
3. Treatment of data from measurements within fatigue assessment method
4. Multiaxial loading
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
18
In-house FEMFAT database More than 55 weld joints according to IIW recommendations defined • Consideration of metallurgical notch effect • Notch factors for stress component parallel to the weld seam • Modified notch factors for intersecting weld seams and runout of seams
Knotenfarbe
Ende
C100 C103
Typ Kombiniert x
C102 C105
x x
C101 C104
x x
C107 C109
x x
x
C106 C108
x x
x
x x
Qualität
Bemerkung
normal
inmitten der Schweissnaht
normal - gut
Schweissnahtende mit Fase (HY-Anarbeitung stirnseitig)
normal schlecht
Schweissnahtende ohne Fase (keine HYAnarbeitung stirnseitig)
verschliffen
Schweissnahtende mit Fase (HYAnarbeitung stirnseitig)
sehr schlecht
nicht gut zugänglich
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
19
In-house FEMFAT database - effective notch stress Based on IIW-Recommendation XIII-2240-08/XV-1289-08
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
20
In-house FEMFAT database – metallurgical notch Difference between weld root crack or toe crack Approach: Consideration of metallurgical notch effect • internal FEMFAT weld database • consistently with test data
k = 3,7 r = 1 mm Consideration of metallurgical notch
HV
IIW – recommendations
New Approach
HV
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
21
In-house FEMFAT database - Influence of stress ratio Haigh-diagram with Mσ = 0,15 (according to FKM-guideline)
S355, Haigh-Diagramm, Normalspannungen 200 200 175
R = -1
FKM IIW
e d u t i l p m a S S s a m g n u n n a p S
(
R = 0,5
R=0
150
FEMFAT weld
125
)
R = - ∞100 75
50
25 0 400
350
− 400
300
250
200
150
100
50
0
50
100 S
150
200
250
300
350
400
m
450
500
550
600
600
Mittelspannung
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
22
In-house FEMFAT database - post weld improvement techniques Database accounts for (according to IIW Fatigue recommendations) • Grinding • Residual stress conditions (peening…..) • Remelting of the weld toe (TIG dressing…)
2 S M D
HY
3 S M D
DMS 1
DMS 4
DMS 8
DMS 5
HY
7 S M D
k ⊥ = 3 σ
6 S M D
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
23
In-house FEMFAT database - Example of weld seam 343
344
HY HY 339
SID 408 HY – DHV MAT 339 – 346
2 S M D
3 S M D
DHV
DHV 346
HY
DMS 4
DMS 8
DMS 5 6 S M D
342
340
345
DMS 1
7 S M D
341
kσ⊥ = 3
DHV
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
24
Contents 1. Demands on manufacturer of rolling stock • Validation and acceptance of the design according to EN 13749 • Special standards used for certification
2. In-house FEMFAT database • Based on effective notch stress – enhanced database • Fatigue strength modifications (stress ratio, thickness, grinding, …)
3. Treatment of data from measurements within fatigue assessment method
4. Multiaxial loading
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
25
Treatment of data from measurements Questions: Strain state on inaccessible side Work around: • reading stresses from FEMFAT *.fms data including automatic weld stress correction option • estimation of effective notch stress in weld seam on inaccessible side
DMS
Inaccessible side
S M D
Strain gauge
Knotennr.: Bottom Grundmaterial: Top Grundmaterial: Schweissnahtmitte Schweissnahtmitte quer: Knotennr.: Bottom Grundmaterial: Top Grundmaterial: Schweissnahtmitte Schweissnahtmitte quer: Knotennr.: Bottom Grundmaterial: Top Grundmaterial: Schweissnahtmitte Schweissnahtmitte quer:
top sp
tp
sn
bottom sp
tp
-5.84E-01 -7.43E-01
1.26E-01 4.28E-01
-1.14E-01 1.22E-02
2.55E-01 3.41E-01
-5.19E-01 2.85E-02
4.13E-01
2.97E+00
-5.64E-02
3.94E-01
2.16E+00
-5.88E-03 -8.84E-03
3.91E-03 -1.45E-02
-5.12E-03 -1.04E-02
2.41E-03 3.83E-03
-2.38E-02 -1.79E-02
-2.94E-02 680754 -3.46E-03 3.62E-02
-1.39E-02
2.43E-02
1.93E-02
4.07E-03
1.35E-02
3.13E-02 4.41E-02
8.80E-02 7.67E-02
-1.88E-02 7.46E-03
-1.47E-02 -1.63E-02
-1.71E-02 4.67E-02
3.40E-01
2.33E-02
-1.91E-01
3.50E-01
5.14E-02
-1.31E-01
sn 680754 5.21E-01 1.16E+00
4.32E-01 680754 2.70E-04 -1.66E-02
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
1 s m f
2 s m f
3 s m f
26
Contents 1. Demands on manufacturer of rolling stock • Validation and acceptance of the design according to EN 13749 • Special standards used for certification
2. In-house FEMFAT database • Based on effective notch stress – enhanced database • Fatigue strength modifications (stress ratio, thickness, grinding, …)
3. Treatment of data from measurements within fatigue assessment method
4. Multiaxial loading
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
27
Multiaxial loading – simple example Stress components: Sx = 0 ± 100 MPa
Material: Sw = 150 MPa (R = -1)
Sy = 0 MPa
M = 0.3
Txy = 100 MPa Stress components 150.0
100.0
50.0 s s e r t s
0.0 0.000
Sx(t)
1.000
2.000
3.000
4.000
5.000
6.000
7.000
Sy(t) Txy(t)
-50.0
Multiaxial loading – simple example Material: Sw = 150 MPa (R = -1)
Stress components: Sx = 0 ± 100 MPa Sy = 0 MPa
M = 0.3
Txy = 100 MPa
notch factors are 1.01
utilisation 0.80 0.70 0.60 0.50
ax 0.40
ay a_tau
0.30 0.20 0.10 0.00 0
20
40
60
80
100
120
140
160
180
degree
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
29
Multiaxial loading of weld seams – simple example Stress:
Sx = 0 ± 100 MPa
Material: Sw = 150 MPa (R = -1)
Sy = 0 MPa
M = 0.3
Txy = 100 MPa
notch factors are 1.01
Utilisation to multiaxial loading 1.40
1.20
IIW n. prop. n 1.00 o i t a s i l 0.80 i t u f o e 0.60 e r g e d 0.40
IIW prop (D)^(1/k) FEMFAT (DVS1608) Habenbacher
0.20
0.00 0
30
60
angle
90
α (orientation
120
150
180
of strain gauge)
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
30
Multiaxial loading – simple example, DVS1608
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
Multiaxial loading – simple example, DIN 15018
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
Multiaxial loading – simple example,– BS 7608, Sign from Normal Stress
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
Multiaxial loading – simple example, base material
multiaxial loading, base material Sm=0, Sa=±100, Tm=100 Skalierte Normalspannung kritische Schnittebe ne Mod. Ve rglei chsspannung kritische Schnittebene Max./Min. Hauptnormalspannung Vorzeichenbehaftete Mises Spg. 2 (Vorzeiche n von hydrostatischer S pg.) Vorzeichenbehaftete Mises Spg. 1 (Vorzeichen von max. Hauptnormalspg.) Kritische Komponente a i reduziert kritische Schnittebene r e t i r Kritische Komponente kritische S chnittebene c Nokleby-Kriterium kritische Schnittebene
Vergle ichsspannung kritische Schnittebe ne
Werkstoffcharakteristische Schubspannung
FKM
Normalspannung kritische Schnittebene
Automatisch
0.00
0.20
0.40
0.60
0.80
1.00
normalized utilisation
J. Habenbacher - Fatigue assessment of bogie frames with FEMFAT
1.20
1.40
1.60